
Evaluation of partitioning schemes of the nested partitions method in the context of
simulation-based optimization

by

Jagpreet Chhatwal

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Industrial Engineering

Program of Study Committee:
Sigurdur Olafsson, Major Professor

Sarah M. Ryan
Tapabrata Maiti

Iowa State University

Ames, Iowa

2004

Copyright© Jagpreet Chhatwal, 2004. All rights reserved.

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

J agpreet Chhatwal

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

111

TABLE OF CONTENTS

LIST OF TABLES.. v

LIST OF FIGURES.. Vl

ACKNOWLEDGEMENTS .. vii

ABSTRACT ... viii

CHAPTER 1. Introduction

1.1 Continuous Decision Variables......... 2

1.2 Discrete Decision Variables.. 4

CHAPTER 2. Simulation Optimization

2.1 Simulation Optimization for Discrete Systems... 7

2.2 Problem Setting... 8

2.3 Metaheuristics.. 8

2.3.1 Tabu Search.. 9

2.3.2 Simulated Annealing... 10

2.3.3 Genetic Algorithm... 11

CHAPTER 3. Nested Partitions Method

3.1 NP Algorithm ... 12

3 .2 Black Box Model for Simulation Optimization.. 15

3 .3 Partitioning in NP Method.. 16

3.3.1 Importance of Partitioning Scheme ... 17

3 .3 .2 Intelligent Partitioning.. 18

3 .3 .3 NP Algorithm with Intelligent Partitioning 21

CHAPTER 4. Case Study: A Job Shop Model

4.1 Problem Definition.. 24

4.2 Entropy Calculations.. 25

4.3 Intelligent Partitioning Schemes... 30

IV

CHAPTER 5. Conclusions and Future Work... 3 7

APPENDIX A - Code of NP Method with Intelligent Partitioning in C 38

APPENDIX B- Program Output for One Iteration of the NP Method 55

REFERENCES ... 60

v

LIST OF TABLES

Table 4.1 Mean Processing Times of Machines in Each Work Station................. 23

Table 4.2 Category division of sample points.. 27

Table 4.3 Categories having sample points with statistically different
performance estimates .. 28

Table 4.4 Average Entropy Values of Workstations ... 28

Table 4.5 Performance of different partitioning schemes 32

Table 4.6 Solution of NP Method Using Intelligent partitioning scheme 34

Table 4.7 Sample variance in performance estimate of profit for different partitions .. 35

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Vl

LIST OF FIGURES

Manufacturing System Consisting of Four Work Stations................... 23

Entropy comparisons of workstations using sample size of 40..... 29

Entropy comparisons of workstations using sample size of 60............ .. 29

Entropy comparisons of workstations using sample size of 100.. 3 0

Steps of Nested Partitions Method.. 31

Performance comparison of partitioning schemes............................. 33

Vll

ACKNOWLEDGEMENTS

I would especially like to thank Dr. Olafsson, my major professor, for his guidance

and help given during the length of my studies at Iowa State University. I sincerely

appreciate his efforts in guiding and encouraging me for further studies. I will miss him as

my adviser during my doctoral studies.

I would like to express thanks to Dr. Sarah Ryan, my committee member, for laying a

strong foundation of stochastic systems in me, which motivated me for this thesis' topic and

higher studies in the same field. In addition, I am highly thankful to Dr. Tapabrata Maiti, my

minor representative of statistics, for his invaluable guidance and making me fascinate this

subject.

I am thankful to my parents for their moral encouragement and financial assistance,

which made this journey possible. Above all, I am highly indebted to God, Who is the

driving force of all.

vm

ABSTRACT

A new generic partitioning scheme of the nested partitions (NP) method in the

context of simulation optimization is evaluated in this thesis. A heuristic, which partitions the

feasible region "intelligently", is applied on a discrete-event simulation model of a

manufacturing system whose objective is to maximize total profits.

The basic idea of NP method is to divide the feasible region into partitions and

evaluate each region's performance using sampling. Based on performance evaluation, the

most promising region is selected for the next iteration. The efficiency of NP method relies

heavily on partitioning, if done effectively, can decrease computational time. To develop a

generic intelligent partitioning scheme, the idea of diversity known from information theory

is applied. Numerical results show that the efficiency of the NP method depends on the

partitioning scheme of the feasible region. In addition, intelligent partitioning shows good

results, but doesn't always guarantee high computational efficiency.

1

CHAPTERl

Introduction

Optimization under uncertainty has been studied since long time, but due to recent

advancements in computing techniques, it is nowadays solved with a different prospective.

Simulation is now widely used for this kind of problem. Much research has already been

done in the area of optimization via simulation and there is lot more to come in the near

future. The main advantage of using simulation is that the performance of a complex system

can be estimated from the output of a simulation model.

Evaluating the performance of every feasible point using optimization under

uncertainty is very time consuming. Even though many algorithms have been developed,

there are some difficulties when applying these problems to the real world. Solving complex

problems requires great amount of time. Hence, there is a need for efficient algorithms which

can reduce some amount of work.

An algorithm discussed in this thesis is based on the Nested Partitions (NP) method

and the main focus is on partitioning schemes. It is shown how partitioning in different ways

changes the amount of work required to measure the performance of the system under

consideration. Therefore, partitioning in an effective way is important when using NP

method. Implementing the NP method is quite problem dependent, and in particular,

partitioning schemes that have been devised in the past have drawn heavily on specific

structure related to the application itself. It requires substantial effort on the practitioner using

this method to devise effective partitioning schemes. In this thesis, a generic partitioning

2

scheme, based on the idea of entropy from information theory, has been implemented in the

context of simulation-based optimization. This feature can be incorporated in a black box

model of simulation optimization.

There are many methods of optimization under uncertainty. Using these methods

depends upon the structure of the problem. For example, gradient estimation, sample path

optimization, and stochastic optimization are applicable when the feasible decision variables

are continuous. On the other hand random search and statistical methods are applicable for

discrete decision variables. Based on above differences we can divide simulation

optimization in two main categories; continuous parameter simulation optimization and

discrete parameter simulation optimization. Further details are given below.

1.1 Continuous Decision Variables

Until recently most techniques were developed for continuous input parameters.

There are several common methods used for continuous input parameters which are

categorized as gradient-based methods. In these methods simulation is used to obtain the

estimate of the gradient of the expected system performance with respect to the (continuous)

parameter.

The classical stochastic optimization methods are based on an iterative search in the

direction of time of the gradient. This was originally suggested by Robbin-Monro and Keifer­

Wolfowitz in the 1950s (Robinson et al., 1951). The Robbins-Monroe algorithm is simply a

root finding procedure for functions whose values are not known but observed with noise.

The Robbins-Monroe algorithm estimated the gradient directly; whereas, the Keifer­

Wolfowitz algorithm uses finite differences to the derivative. In both cases, the primary

3

implementation problem determines the step size. One of the problems with the Robbins­

Monroe algorithm is that when it is applied to the solve optimization problems with

minimization as objective with an unbounded feasible set, the convergence of the algorithm

is not guaranteed when the objective function grows faster than quadratically in the decision

parameter. Andrad6ttir (1996) has proposed an alternative approach that addresses this

problem using scaling.

The most straightforward approach for the gradient estimation methods is the finite

difference method (Glynn, 1989). This method is simple to implement and generally

applicable, but it has several difficulties when applied to practical problems. One of the big

difficulties is that too much time is spent calculating the gradient. The other difficulty is the

gradient estimate obtained using finite differences are generally biased. Trying to reduce bias

leads to another difficulty; large variance in the estimation. To reduce variance methods such

as CRN (Common Random Number) have been suggested.

Another approach to continuous parameter simulation optimization is sample path

optimization. It involves approximating the original simulation optimization problem with a

deterministic optimization problem. It uses simulation to generate one sample path and it

yields and an estimated optimal solution that depends on the sample path that the

approximate deterministic optimization problem is based on. Several researchers have

studied simulation optimization approaches of this form. More details about different

simulation optimization techniques can be found in Andrad6ttir (1998).

4

1.2 Discrete Decision Variables

In this section a brief review of simulation optimization techniques is given when the

feasible region is discrete. Random search methods are mostly used for solving this category

of problems. These methods do not guarantee to converge; hence are also called heuristics. In

early research literature, specialized heuristics were typically developed to solve complex

combinatorial optimization problems. This required a new approach for every new problem

and information obtained from one problem did not always generalize well to different class

of problems. On the other hand, with the emergence of more general solution strategies or

metaheuristics, the main challenge has become to adapt these metaheuristics to a particular

problem or class of problem. Some of the commonly used metaheuristics are tabu search

simulated annealing, and genetic algorithms. More details of these methods can be found in

section 2.3. An algorithm discussed in this thesis is based on nested partitions method. Other

than random search methods, statistical selection methods are commonly used.

The most popular statistical methods used are ranking and selection (R&S) and

multiple comparison procedures (MCPs), which are applicable when the input parameters are

discrete and the number of designs to be compared are both discrete and small (say between

2 and 30). Simulations are performed to compare two or more system designs. Ranking and

selection are selection methods developed to select the best system or a subset that contains

the best system design from a set of competing alternatives (Goldman and Nelson 1994).

Multiple comparison procedures use pairwise comparison to derive relationships among all

designs. In other words, R&S yield the best system while MCPs yield information about

relationships among the alternative solutions. Sanchez (1997) gives an overview of R&S

with samples. Wen and Chen (1994) present single-stage sampling procedures for different

5

MCPs. Goldman and Nelson (1994, 1998) provide comprehensive reviews of R&S and

MCPs.

The remainder of this thesis is organized as follow: Chapter 2 defines simulation

optimization problem; how it is different from other optimization problems. In addition,

commonly used metaheuristics for simulation optimization are explained briefly. In

Chapter 3, nested partitions method is explained in detail, and importance of partitioning the

feasible region in an efficient way. Chapter 4 discusses the results of partitioning schemes in

the context of simulation-based optimization of a manufacturing system. A job shop model is

considered where the objective is to maximize the profit by finding optimal number of

machines in each workstation and finally, in Chapter 5, the conclusions and future research is

proposed.

6

CHAPTER2

Simulation Optimization

Optimizing complex and large discrete systems like manufacturing systems, supply

chain management, determining policies in inventory systems and financial systems itself is a

large problem. It is not possible to express them in a simple analytical or mathematical form.

For this reason, simulation is often used to estimate the performance of a stochastic system

for different set of parameters. Simulation optimization is defined as finding the best set of

decision parameters for a system, where the performance is evaluated based on the output of

a simulation model of this system.

Stochastic optimization and simulation optimization are very closely related to each

other. In simulation optimization the focus is on output from stochastic discrete-event

simulation models, whereas stochastic optimization is generally more broadly defined,

encompassing any system that has stochastic behavior. Simulation requires much more

computation work as compared to an optimization problem. Even a single replication of a

model requires more work than many large linear programming problems. Therefore, even a

considerably small reduction in number of simulation runs can save large amount of time.

Simulation optimization is relatively difficult problem to solve. Its main reason is that

the performance cannot be determined but has to be estimated. Even when there is no

uncertainty, optimization can be difficult when the number of design variables is large and

little is known about the structure of the problem. Hence, noise is the performance adds

additional complexity. Because of these estimates it is not possible to conclusively determine

7

if one design is better than other. A solution to this problem is to consider to designs different

only if they are statistically different from each other. In addition, more simulation

replications can give better estimates but at the expense of time.

2.1 Simulation Optimization for discrete systems

One of the disadvantages of simulation historically is that it was not an optimization

technique. Relatively small number of system configurations was estimated and best out of

them was chosen. But with the advent of fast processors and computing techniques,

simulation is now widely used for optimization. There has been a great deal of work on

simulation optimization in research literature, and more recently optimization routines have

been incorporated into several commercial simulation packages.

Estimating the performance of system for every set of parameters using optimization

under uncertainty is a very time consuming process. Various search methods can be found in

literatures that have been applied to this class of problem. Andrad6ttir (1995, 1996) has

developed two random search methods for discrete parameter simulation optimization. One

of them is locally convergent while other is globally convergent. Gong, Ho, and Zhai (1992)

have analyzed a method for discrete simulation optimization called the stochastic comparison

method.

Simulated annealing has been proposed by Haddock and Mittenthal (1992). Many

other heuristics designed for simulation optimization can be found in Andrad6ttir (1998).

Other than that, tabu search, and genetic algorithm are widely used for this class of problems,

which can be found in detail under section 2.3.

8

2.2 Problem Setting

A simulation optimization problem is like an optimization problem where the

performance is an output of a simulation model instead of an analytical function. Different

components of the problem can be defines as:

• decision variables

• objective function, and

• constraints

Here, decision variables are denoted by 8 and the constraints are represented by these

variables to be contained in some feasible region 8, that is() E 0 . The objective function is a

real valued function defined on these variables f: 0 ~ R, but due to the stochastic nature

and complexity of the system an analytical expression doesn't exist for JO, and it must be

estimated using the a function of a stochastic simulation output, say L(B). Typically this

might be an unbiased estimate of the true objective function, that is f(B) = E[L(B)].

2.3 Metaheuristics

Metaheuristics are general solution strategies that can be applied to a particular class

of problems. These are generally designed for solving complex optimization problems where

other methods can't be used effectively or efficiently. The practical advantage of

metaheuristics lies in both their effectiveness and general applicability. The metaheuristics

approach to solve complex problems is to start with an initial solution or an initial set of

solutions, and then applying an improving search guide by certain principles. Tabu search,

genetic algorithms, and simulated annealing are some of the commonly used metaheuristics.

9

Although these methods are generally designed for combinatorial optimization in the

deterministic context and may not have guaranteed convergence, they have been quite

successful when applied to simulation optimization. However, there practical implementation

in simulation optimization do not adequately account for the presence of simulation noise.

Several simulation optimization packages that have been developed for commercial

simulation software use above mentioned metaheuristics as their primary search methods.

For example genetic algorithms are used in AutoStat and SimRunner, and tabu search,

genetic algorithms, and scatter search are all used in Optquest.

The main concern of using these metaheuristics for simulation optimization is that

they do not account for noise per se. These methods move from one solution to another better

solution, or one set of solutions to another set of better solutions, and thus improving the

solution quality until the method terminates. However, when simulation is used to estimate

the performance, determining what constitutes a better solution becomes an issue. Here,

solution or set of solutions is considered better only if the improvement is statistically

significant.

2.3.1 Tahu Search

Tabu search was introduced by Glover (1989, 1990) to solve combinatorial

optimization problems and it has been widely used effectively for simulation optimization.

The main idea of this algorithm is to make moves from solution to solution and tabu certain

moves, that is they cannot be visited as long as they are in the tabu list. Tabu list is dynamic,

and after every move, the latest solution or the move that resulted in that solution is added to

the list and the oldest solution or the move is removed from the list. Another characteristic of

10

tabu search is that the search always selects the best non-tabu solution from the

neighborhood, even if it is worse than the current solution. This helps the search in breaking

local optima, and the· tabu list ensures that the search doesn't revert back. Although tabu

search has been widely used in commercial packages for simulation optimization but it

doesn't account for simulation noise.

2.3.2 Simulated Annealing

Simulated annealing, introduced by Kirkpatrick eta!. (1983), is one of the oldest

metaheuristics. Unlike tabu search, simulated annealing does not evaluate the entire

neighborhood in every iteration. Instead, it randomly chooses only one solution from the

current neighborhood and evaluates its costs. That means simulated annealing requires more

iterations to find the best solution than tabu search. Another disadvantage is that it does not

have memory, and hence it may revisit a recent solution. As a solution-to-solution search

method, in each step it selects a candidate fY E N ((} k) from the neighborhood of the current

solution (}k Ee. The definition of the neighborhood is determined by the user. If the

candidate is better than the current solution it is accepted, but if it is worse it is not

automatically rejected, but rather accepted with probability

where f : e ---+ R is an objective function to be minimized, and T k is a parameter called the

temperature. The probability of acceptance is high is the performance difference is small and

T k is large. The key to simulated annealing is to specify a cooling schedule {Tk } ;=1 , by which

the temperature is reduced so that initially inferior solutions are selected with a high enough

11

probability so local optimal are escaped, but eventually it becomes small enough so that

algorithm converges.

2.3.3 Genetic Algorithm

Genetic algorithm is set based or population based unlike tabu search and simulated

annealing, which are solution-to-solution based algorithms. It is based on the idea of survival

of the fittest and resembles an evolutionary process where two fit individuals are allowed to

reproduce to generate offspring that resemble the parents (Goldberg 1989). In each step, a

subset of the current set of solutions is selected based on their performance and these

solutions are combined into new solutions. The operators used to create the new solution are

survival, where a solution is carried to the next iteration without change, crossover, where the

properties of two solutions are combined into one, and mutation, where a solution is modified

slightly. The same process is then repeated with same set of solutions. Out of the above three

steps, only the selection depends upon simulation performance.

Another random search metaheuristics is the Nested Partitions (NP) method (Shi and

Olafsson, 1997) which is explained in detail in the next chapter.

12

CHAPTER3

Nested Partitions Method

Nested partitions method is one of the recently developed metaheuristics used for

combinatorial optimization problems. Introduced by Shi and Olafsson (2000a), it can be

easily adapted to simulation optimization problems (Shi and Olafsson (2000b). The key idea

behind this method lies in systematically partitioning the feasible region into subregions,

evaluating the potential of each region, and then focusing the computational effort to the

most promising region. This process is carried out iteratively with each partition nested

within the last. The computational effectiveness the NP method relies heavily on the

partitioning, which if carried out in a manner such that good solutions are clustered together,

can reach a near optimal solution very quickly.

3.1 NP Algorithm

NP method is used for solving optimization problems (Shi and Olafsson, 2000a),

which can be represented in the form

min/(B),
BEE!

(1)

where e is a finite feasible region. In simulation optimization context f : e ~ R IS a

performance function that is subject to noise. In other words, for any feasible point

BE 0, /(B) cannot be evaluated analytically. Often f(B) is an expectation of some random

estimate of the performance of a complex stochastic system given a parameter B, that is

f(B) = E[L(B)]. Here L(B) is a random variable which depends on the parameter e Ee and

13

is a discrete event simulation estimate of the performance. It is assumed that the feasible

region is n-dimensional, that is, E> c Rn such that

(2)

where E> i is some finite set. Also, let m((Ji) = IE> i I be the number of values that the i-th

dimensional variable can take.

In Olafsson (1999) this method is further improved by drawing on ideas from

statistical sampling techniques traditionally used for comparing few alternatives with a

global optimization framework aimed at large-scale optimization. The main components of

NP method are:

• Partitioning: at each iteration, the feasible region is partitioned into subsets that

cover the feasible region but concentrate the search in what is believed to be the

most promising region.

• Random Sampling: to evaluate each of the subsets, a random sample of

solutions is obtained from each subset and used to estimate the performance of

the region as whole.

This method can be understood as an optimization framework that uses partitioning

to divide the design space into regions that can be analyzed individually and then aggregates

the results from each region to determine how to continue the search, that is, how to

concentrate the computational effort. In other words, the NP method adaptively samples from

the entire space of possible feature subsets and concentrates the sampling effort by

systematic partitioning of this space. The computational efficiency of the NP method relies

14

heavily on the partitioning, which, if carried out in a manner such that good solutions are

clustered together, can reach a near optimal solution very quickly.

In the k-th iteration of the NP algorithm, a region r5(k) ~ 8 is considered most

promising. It means that the algorithm assumes it to be the region that most likely contains

the optimal solution, and thus the computation effort should be concentrated in this region.

As in the beginning nothing is known about the location of the optimal solution, the

algorithm is initiated with r5(0) = 0 . The most promising region is then partitioned into M

subsets or subregions and the entire surrounding region 0 \ r5(k) is aggregated into one.

Thus in each iteration M + 1 disjoint subsets that cover the entire feasible region are

considered. Each of these M + 1 regions is sampled using some random sampling scheme to

obtain the sets of solutions, and then simulated performance function values at randomly

selected points are used to estimate the promising index for each region. This index

determines the most promising region in the next iteration by taking the subregion scoring

highest on the promising index. If the surrounding region rather than subregion is found to

have the highest promising index, the method backtracks to previous solution corresponding

to the larger region. The new most promising region is partitioned and sampled in a similar

manner. This generates a sequence of set of partitions, with each partition nested within the

last, is referred as partition tree. The distance of the current promising region from the top of

the tree, which corresponds to the minimum number of iterations it takes to move to this

regions is called the depth of the region. Once the maximum depth is reached, that is the

region that will not be partitioned further, the algorithm terminates. In the context of job-shop

model, this maximum depth is equal to the number of workstations that need to be fixed.

15

Performance of each region has a noise because of simulation. Therefore, selecting

the most promising region has noise and this region is selected with less confidence as

compared to deterministic optimization context. But selecting most promising region m

deterministic optimization itself has noise. Hence, there are two sources of randomness:

• There is a sampling error due to a small sample of solutions being used to

estimate the overall performance of a subregion which often contains large set of

feasible points.

• For each of the sample solutions, the performance is estimated using simulation,

and is hence noisy.

The nested partitions method is not affected much by noise. The reason for this

robustness is that this method includes a built-in mechanism for recovering from incorrect

moves. Sometimes the simulation noise may cause the algorithm to move to the wrong

subregion. However, as the search progresses the surrounding region continues to be

sampled, which allows the algorithm to recover from incorrect moves through backtracking.

It is shown in the result that irrespective of noise level statistically same solution is found.

3.2 Black Box Model for Simulation Optimization

One of the current difficulties in implementing many simulation optimization

algorithms for practical problems appears to be that they can be quite complicated and

require substantial knowledge on part of the user. To bridge this gap, Olafsson and Kim

(2001) present a framework for a black-box simulation-based optimization package that is

intended for use by simulation practitioners. As the general problem of simulation-based

optimization is extremely hard, the framework combines elements from a variety of methods

16

that have been found to be effective in this context, including random search, adaptive

sampling, and ranking-and-selection. Implementation of NP method is quite problem

dependent and, partitioning schemes in the past have drawn heavily on specific structure

related to the application itself. This however, requires substantial effort on part of the

practitioner using this method. Olafsson and Kim, 2001 presents a new framework for

automating these decisions,

The main components of the method proposed for the black-box implementation are:

• Intelligent partitioning

• Guided random sampling

• Guided local search

3.3 Partitioning in NP Method

Partitioning plays important role in simulation optimization using NP method. In

these problems, besides finding a good solution, one also needs to keep in mind the number

of simulation replications. For a complex problem, each replication is very time consuming,

therefore it is imperative to direct the algorithm to move in the direction that requires fewer

replications. It has been shown in the results that different partitioning schemes can affect

number of simulation runs greatly. The amount of extra work done on partitioning schemes is

very less as compared to the work done in finding optimal solution without considering any

intelligent partitioning. Hence, this area requires considerable attention for the efficacy of NP

method.

17

3.3.1 Importance of Partitioning Scheme

The selected partition imposes a structure on the feasible region. When the

partitioning is done in such a way that good solutions are clustered together in the same

subsets and then those subsets are selected by the algorithm with the little effort. On the other

end of the spectrum, if the optimal solution is surrounded by solutions of poor quality it is

unlikely that the algorithm will move quickly towards those subsets. This can be made more

rigorous by looking at how the minimum probability P* of moving in the right direction can

be guaranteed. The amount of computational effort is directly proportional to the variance of

the solution in each region (Olafsson and Kim, 2001). Therefore, it is advantageous to cluster

together similar solutions, that is, the diversity of the solutions with respect to the simulation

estimates of the objective function values, should be as small as possible.

Another concept that makes partitioning important is the overlap between the subsets.

Assume 8 g c 8 contains an optimal solution whereas, 8 \ 8 g does not. Define

[eg[-IBEE>g :/(B)<minaeeie f(a)I
r(e) = g •

g e
g

Smaller the overlap between the 'good' set eg and the 'poor' set of solutions8\8g, the

larger the value of the above equation. Furthermore, it can be shown that the number N (8 g)

of uniformly selected samples required to select the region e g that contains the optimal

solution correctly with probability at least If/, grows exponentially with this overlap (Olafsson

and Shi, 2002):

r(E>g)>O,

r(E>g) = 0.

18

Therefore, from the above theoretical results, it is clear that the good partitioning scheme

should have the following two properties: (i) partition such that variance between each region

is minimized, and (ii) to p~ition such that overlap between the region that should be

selected and the other regions is minimized.

Incorporating structure into the partitioning is critical for the efficiency of the method

and the theoretical derivations that justify this can be found in Olafsson (1999) and Olafsson

and Shi (2002). However, it is equally important to devise a methodology that can automate

or semi-automate the process of partitioning. With this the practitioner does not need to

understand every detail of the complex problem to form a partitioning scheme. Intelligent

partitioning scheme has been devised based on the above mentioned characteristics (Olafsson

and Kim, 2001), which can be seen in the next section.

3.3.2 Intelligent Partitioning

To develop a generic intelligent partitioning scheme, idea of diversity known from

information theory and its applications to areas such as machine learning (Mitchell 1997) is

applied. Assuming that the solution of the optimization problem can be written as

() = (()1' B2 , ••• ,(Jn), then the generic partitioning scheme will be to fix one of these n values at

a time. Thus, for example 8 can be partitioned into m(B;) subsets defined by

19

where Bu E 0; forj=l,2, .. .,m(B;). The only decision to be made is the order in which these

variables should be fixed first, and so forth. Each order of decision variables creates a

different partition, implying n! different partitions. Among those, the best partition is the one

that has the least overlap between the region containing the global optimum and regions not

containing the global optimum, or alternatively minimizes the sum of the variance in each

region. To use traditional diversity measures each solution is classified into fixed categories.

It is done in such a way that solutions in each category are statistically same and for any two

categories there is at least one solution in each such that those two have different statistical

parameters. The boundaries between the categories are determined from the simulation error.

Since, it is not possible to do this for every possible solution, therefore, a sample of solutions

is considered.

Following is the detailed algorithm for intelligent partitioning as incorporated in NP

method, introduced by Olafsson and Kim (2001).

Step 1 Start by using random sampling to obtain a set of Mo sample solutions.

Step2 Simulate the performance L(B) of each one of these sample solutions, and record the

average standard errors 2 •

Step 3 Construct g(s 2) intervals or categories for the sample solutions such that each

solution in the sample interval has statistically equivalent performance, but for

different intervals there are at least two solutions that make them distinguishable.

Step 4 Let i = 1.

Step 5 Fix(}; = (}ii , j = 1, 2 , ... m ((};) .

20

Step 6 Drawing on the idea of entropy (Mitchell 1997) calculate the following quantity for

each dimension ()i of the feasible region:

where PlJ is the proportion of samples with ()i = () iJ and fall in category l, and

M(Bu) = Number of samples for which ()i = ()u

Step 7 If i = n, continue to step 8; otherwise let i = i + 1 and go back to step 5.

Step 8 A high entropy value in the above equation indicates high diversity, so it is desirable

to partition by fixing the lowest entropy dimensions first. Thus, we order the

dimensions according to their entropy values

and let this order determine the intelligent partitioning.

The above defined method is quite generic and can be applied to any problem which

can be formulated according to equation (2) above. In addition it also automates the process

of identifying good partitions. The value of Mo i.e. number of sample solutions used to build

partitioning depends upon how much computation time should be used to assure the quality

of the partitioning. But, it should be large enough so that entropies of each partition tend to

stabilize. It has been shown in the results that if Mo is not large enough, entropies have lot of

noise and order of each partition is not fixed for different iterations of NP method.

21

3.3.3 NP algorithm with Intelligent Partitioning

The following algorithm is used for comparing intelligent partitioning scheme with

other possible partitioning schemes:

Step 1 Apply algorithm Intelligent Partitioning to obtain a ranking:

Step 2 Let k=O and a-(0) = 0 .

Step 3 Given the current most promising regiona-(k), partition a-(k) into

M = m (t9 [d ca ck lll)

subregionsa-1 (k),. . .,a-M (k) by fixingt9[d(a(klll' that is

a-1 (k) = {e E a-(k): B[d(a(klll = B1 }

and aggregate the surrounding region

0" M+I (k) = E) \ O"(k)

into one region (which can be empty).

Step 4 Use a uniform sampling procedure to select Af;points

nJI nJ2 nJN1
u 'u , ... , u '

from each of the regions a-/k) ,j= I, 2, .. ., M+ 1.

Step 5 Use discrete event simulation of the system to obtain a sample performance

L(B 11), L(B12),. . ., L(B 1N 1),

for each of the regionsa-/k) ,j= I, 2, .. ., M+l.

/\

Step 6 Calculate the estimated promising index I (a-1) of each region,

22

I\

I(a1) =. min L(B1;),j= 1, 2, ... , M+l.
1e{J,2, ... N1}

Step 7 Select the index of the region with the best promising index,

I\ I\

j k E arg . min I (a 1) .
1~1,2, ... M+I

If more than one region is equally promising, the tie can be broken arbitrarily. If this

index corresponds to a region that is a subregion of a(k) , then let this be the most

promising region in the next iteration. Otherwise if the index corresponds to the

surrounding region, backtrack to larger region containing the most promising region.

That is let

a(k + 1) = {aik (k),

s(a(k)),

I\

ifik<M+l

otherwise.

Step 8 If d(a(k)) = n, that is, all dimensions have been fixed then go to step 8; otherwise go

back to step 3.

Step 9 If 0[11 , 0[21 ,. • ., (}[nJ can be arranged with a new permutation, go back to step 2;

otherwise stop.

23

CHAPTER4

Case Study: A Job Shop Model

Waiting Queue

\ 0 0 0 0 D D D
c;o q 0 q D 0 q

D
D 0 D D

D 0 0 D 0
Work Work Work Work

Station 1 Station 2 Station 3 Station 4

Figure 4.1: Manufacturing System Consisting of Four Work Stations

A job-shop model is considered to numerically evaluate the results of intelligent

partitioning scheme as proposed by Olafsson and Kim (2001). ANSI-standard version of C

(Kernighan and Ritchie, 1988) is used to model and evaluated partitioning schemes. Part of

the job-shop model code is taken from Law and Kelton (2000), which uses simlib, a C-based

simulation library of inbuilt functions.

Table 4.1: Mean Processing Times of Machines in Each Work Station

Work Station
Exponential mean processing time for a machine

(in hours)

1 0.333

2 0.8

3 0.55

4 0.15

24

Model Parameters: -

Exponential mean Inter-arrival time for jobs = 0.25 hours

Maximum number of machines in each work station = 8

Cost of each machine= $15,000

Profit of each job = $400

Length of the simulation= 240*8 hours (240 days assuming 8 hours shift)

Number of simulation runs during search phase = 2 (to add deliberate noise in the model)

Number of simulation runs for entropy calculation= 20

Number of sample samples used for entropy calculation (Mo) = 100

Number of sample points used to measure performance of each sub-region= 5

Number of sample points used to measure performance of the surrounding region= 30

4.1 Problem Definition

A simple job-shop model is considered as shown in figure 4.1 which consists of four

workstations (WS), each having variable number of machines. The problem considered here

is simple and can easily be solved using queuing theory, but the focus here is on the behavior

of the performance based on different partitioning schemes. Jobs arrive with the above

mentioned mean arrival time and are processed through each workstation. Each workstation

has identical machines in parallel with a fixed mean service time. The objective is to find the

optimal number of machines in each workstation that maximizes the total profit over a fixed

simulation run. The objective function random variable is defined as follow:

f = ($400 *throughput)- ($25000* total number of machines)

25

For this example NP method is used to find optimal number of machines in each

workstation using different partitioning scheme. The concept of entropy or information value

is used to find intelligent partitioning scheme, as proposed by Olafsson and Kim (2001).

Results show that intelligent partitioning using order of entropy gives good results.

4.2 Entropy Calculations

From information theory's perspective, entropy is defined as the minimum number

of bits of information needed to encode the classification of an arbitrary member of some

region. To find the entropy of each workstation, 100 sample points are obtained using

random sampling and their corresponding performances are estimated using simulation.

Based on the average sample error, these points are divided into different intervals or

categories. The maximum value of entropy depends upon the number of categories in which

100 sample points can be divided, such that, solutions (here, profit value) in each category

are statistically identical, and for any two different categories, estimated performance of each

sample point is statistically different from the estimated performance of each sample point of

another category. The maximum possible value of entropy is log 2 (c), where c is the number

of categories in which sample points can be divided. To explain the concept of entropy, a

simple data set is considered consisting of 4 workstations, with maximum 4 machines in

each. Table 4.2 shows 20 random sample points, their performance, and how they are

designated to different categories. This table shows performance for different model

parameters.

Mo= 20;

j = 1, 2, 3, and 4;

l = 1, 2, and 3;

For i = 1:

P11 = O;p21 = 717;p31 = O; M(B11) = 7;

p12= 6/6;p22= O;p32= O; M(B12) = 6;

p13= O;p23= O;p33= 212; M(B13) = 2;

pu= 4/5;p24= O;p34= 1/5; M(B14) = 5;

E(B,) = 0.1804

26

Similarly, E(B2), E(B3), and E(B4) are calculated.

Notations: -

E(B,) -

m(B;) -

PlJ

Entropy of workstation i

Maximum number of machine in workstation i

Number of machines in workstation i and in partition}

Number of partitions in i-th workstation

Proportion of samples with B; = e u and fall in category l

g(s 2)-Total categories or intervals

Number of samples for which B; =Bu

27

Table 4.2: Category division of sample points

Sample
Number of Machines

Point
Profit($) Category

WSl WS2 WS3 WS4

1 2 2 1 1 1,349,893.38

2 2 3 1 2 1,327,484.50

3
2 3 2 1 1,316,422.25

4 2 3 2 1 1,316,3 82.25

5 2 3 3 1 1,291,746.63
I

6
4 2 3 1 1,251,475.63

7 4 2 1 4 1,241,244.38

8 4 4 2 2 1,236,960.00

9 2 3 4 3 1,233,142.25

10
4 2 4 3 1,192,111.13

11 1 2 1 2 998,559.94

12 1 4 1 2 953,453.31

13 1 3 3 1 946,275.56

14 1 3 2 3 926,040.06 II

15 1 2 3 3 923,826.69

16 1 4 1 4 900,266.69

17 1 3 4 4 852,840.06

18 3 1 1 1 617,320.00

19 3 1 4 3 493,591.13 III

20
4 1 4 2 490,751.13

28

Table 4.3 shows 7 categories in which 100 sample points are divided, having statistically

different performance estimates with 99% confidence.

Table 4.3: Categories having sample points with statistically different performance estimates

Interval Profit Range ($)

1 2879680 - 2688640

2 2688640 - 2499420

3 2499420 - 2110980

4 2110980 - 1751080

5 1751080- 1266400

6 1266400 - 828159

7 828159 - 612259

Table 4.4 below, shows the average entropy of each workstation calculated using 100

sample points. Workstation 2 has the lowest entropy value, implying there is least diversity in

solutions if number of machines in workstation 2 is fixed first. In other words, lowest

information is needed to decide number of machines in workstation 2. Therefore, number of

machines in workstation 2 is decided first, followed by workstation 3, workstation 1, and

finally workstation 4.

Table 4.4: Average Entropy Values of Workstations

Work Station Average Entropy

1 1.7862

2 1.1414

3 1.6228

4 2.0815

29

Number of sample points (Mo) for entropy calculation depends upon application

considered. For this problem, Figure 4.2, Figure 4.3, and Figure 4.4 show how entropy

changes with iterations of NP algorithm for different number of sample points. Entropies

tend to stabilize as number of sample points increases. Hence, the order of entropies, also

stabilize with number of sample points. Value of Mo should be large enough, so that order of

entropies doesn't change for different iterations of NP algorithm.

1.8

1.6

Entropy Using Sample Siz.e of 40

"::~·· ~
~ 0.8 /~./·,'lt-_,,""N""' /\ ;--

0.6 v y
0.4

0.2

0+--.-----.---.-~~~~~~~~~~~~~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

-+---WS I

--ws2
WS3

WS4

Figure 4.2: Entropy comparisons of workstations using sample size of 40

25

2

6: 1.5
g
Jj I

0.5

Entropy Using Sample Siz.e of 60

~--:0.~
/'"•/~-~~,..~----~---

I 2 3 4 5 6 7 8 9 JO JI 12 13 14 15 16

Iterations

-+---WS I

,...ws 2
WS3

·· WS4

Figure 4.3: Entropy comparisons of workstations using sample size of 60

30

Entropy Using Sample Size of 100

2.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

-+-WS I

--ws2
WS3

r WS4

Figure 4.4: Entropy comparisons of workstations using sample size of 100

4.3 Intelligent Partitioning Scheme:

Table 4.5 shows average simulation runs for all 24 orders with which workstations

can be fixed. These results show average values of 16 replications of NP method. Order of

fixing number of machines in each work station according to intelligent partitioning is:

Work Station 2 -7 Work Station 3 -7 Work Station 1 -7 Work Station 4

and the average simulation-model runs is 402. The best order is

Work Station 3 -7 Work Station 2 -7 Work Station 1 -7 Work Station 4

with 373 average number of simulation-model runs, and worst order is

Work Station 4 -7 Work Station 2 -7 Work Station 1 -7 Work Station 3.

Average number of simulation runs or steps taken by the NP algorithm to find "good"

solution using partitioning scheme as directed by entropy is much better than the worst case

partitioning. Figure 4.5 shows different steps of NP method to fix machines in workstation.

31

Step 2

Step 3

Step 4

where,
® - Machines fixed
• - Complementary set of machines

Figure 4.5: Steps ofNested Partitions Method

32

Table 4.5: Performance of different partitioning schemes

Order of Fixing Workstations Simulation Runs
Order

Profit($)
Number Standard

WSl WS2 WS3 WS4 Average
Deviation

1 1 2 3 4 2888854 422 182.3
2 1 2 4 3 2877730 414 191.2
3 1 3 2 4 2892208 473 166.2
4 1 3 4 2 2884976 423 95.3
5 1 4 2 3 2879086 473 151.8
6 1 4 3 2 2889774 420 105.7
7 2 1 3 4 2883698 409 91.0
8 2 1 4 3 2890440 456 145.3
9 2 3 1 4 2891768 400 80.4
IO 2 3 4 I 2875954 398 58.1
11 2 4 1 3 2890268 409 80.7
12 2 4 3 I 2884490 409 109.6
13 3 I 2 4 2880649 402 71.4
14 3 I 4 2 2866228 448 168.6
15 3 2 1 4 2871216 373 66.6
16 3 2 4 I 2881508 519 243.2
17 3 4 I 2 2872556 462 225.2
18 3 4 2 1 2881750 448 126.3
19 4 I 2 3 2883570 404 65.4
20 4 I 3 2 2862968 504 197.7
21 4 2 I 3 2882036 409 76.5
22 4 2 3 I 2891316 412 127.8
23 4 3 I 2 2871354 431 91.2
24 4 3 2 I 2889942 384 50.4

Mean and standard deviation of 'average simulation runs' for 24 cases is 429.25 and

36.55 respectively. Mean and standard deviation of profit is $2,881,847 and $8370.6

respectively. This implies, on the long-run, NP method with random partitioning scheme will

take 429.25 simulation runs with profit of $2,881,847 where as, with intelligent partitioning

33

scheme it will take 402 simulation runs and estimated profit value is $2,880,649.

99% confidence interval of average simulation runs and profit is [424, 434] and

[2880443, 2883252] respectively. Hence, the difference between average simulation runs is

statistically significant whereas, difference between profits is statistically insignificant. It

shows that performance measure of the NP method depends on the partitioning schemes only

marginally. The possible reason for this is that the NP method has an in-built recovering

mechanism to backtrack to the higher region from the present region. Moreover, the number

of simulation runs can have significant differences using different partitioning schemes.

Figure 4.6 shows the comparison of simulation runs of 3 partitioning schemes of the NP

method for different replications. Results of the NP method using partitioning scheme

determined by the entropy order for different replications are shown in Table 4.6.

Perfonnance Comparison of Partitioning Schemes

1400

1200

"' 1000 = = ~
800 =

-+-Best
.::

600 ~

=
-11- Intelligent

Worst e 400 Ci5

200

1 2 3 4 5 6 7 8 9 10111213141516
Replications

Figure 4.6: Performance comparison of partitioning schemes

34

It can be seen from the table 4.6 that for this partitioning scheme; 10 out of 16 times

NP algorithm finds near-optimal solution without any backtracking. Using exhaustive

simulation runs for good solutions, optimal solution was found to be:

Workstation 1 2 machines

Workstation 2 4 machines

Workstation 3 3 machines

Workstation 4 1 machine

Expected profit for the above configuration of machines is $2,912, 140.

Table 4.6: Solution of NP Method Using Intelligent partitioning scheme

Number of Machines Profit
Average

Replications
($)

Simulation
WSl WS2 WS3 WS4 Runs

1 2 4 3 1 2912740 351

2 2 4 3 1 2909380 351

3 3 4 4 1 2893060 351

4 3 4 4 1 2904100 491

5 3 4 6 1 2862060 351

6 2 4 3 1 2912240 351

7 2 5 3 1 2898440 461

8 2 5 4 2 2877300 571

9 5 4 3 2 2862300 461

10 6 5 3 1 2832740 461

11 2 4 4 1 2916040 351

12 2 5 4 1 2882100 461

13 3 4 3 1 2907580 351

14 3 5 3 1 2896920 351

15 2 4 5 2 2861080 351

16 4 5 3 3 2850980 351

35

It is intuitive that low entropy implies low variability in the performance of the

solution. Level of variability in the performance function for different orders of fixing

workstations is shown in table 4.7. Assuming each workstation is fixed first; sample variance

is calculated using idea of correlated sampling from Nelson-Matejcik (1995). The following

equation is used to measure variability:

M n 2

S 2 (k) = KoL:!(xij(k)-X;.(k)-X.1(k) + x •• (k))
j=I i=I

where,

2
Ko= '

(M - l)(n0 -1)

_ 1 M n0

x •• (k) = LLXu(k),
M. no J=I i=I

Notations: -

Xu - Estimated performance of a sample point

M - Number of partitions

n0 - Number of sample points

Table 4.7 shows the estimated sample variance of difference of sample means using 8

partitions (M), and 12 sample points from each partition (n0).

36

Table 4.7: Sample variance in performance estimate of profit for different partitions

Workstation
Sample Variance

Fixed

1 1, 142,149,182,243

2 463, 174,750,858

3 898,057,632,489

4 1,020,633, 138,030

Differences in vanance suggest that there is a need for two-stage sampling as

discussed in Olafsson (2004). Number of sample points needed to estimate the performance

of each region is given by the following equation: -

where,

N; - Total number of sample points from region}

no - Initial number of sample points

s2 - Variance of the region estimated using no sample points

E - Indifference zone

g2 - Constant depending upon no and minimum probability of making correct selection

Therefore, max {O, (N;- no)} more sample points are needed from each region to

estimate its performance.

37

CHAPTERS

Conclusions and future work

In this thesis a new intelligent partitioning scheme for the Nested Partitions method is

implemented on a manufacturing system. Importance of partitioning schemes is emphasized,

particularly for simulation-based optimization problems. For the numerical evaluations, a

job-shop model is optimized to test intelligent partitioning scheme.

Though intelligent partitioning shows good results, but it doesn't guarantee that

algorithm will take fewer steps to find optimal solution. As results vary largely with different

partitioning schemes, hence, if done appropriately, it can save huge amount of computational

time. It is seen that the average number of simulation runs taken by the NP method using

intelligent partitioning scheme is lower as compared to random partitioning.

More research is needed to identify partitioning schemes that can guarantee good

solutions. Because of the fixed computing-budget, there is a trade-off between obtaining high

quality estimates and allowing the search to explore the feasible region for more solutions.

Research is needed in deciding the appropriate proportion of computing efforts to be spent

for each task.

38

APPENDIX A - Code of NP Method with Intelligent Partitioning in C

#define EVENT ARRIVAL 1 /* Event type for arrival of a job to the

system. *I

#define EVENT DEPARTURE 2 /* Event type for departure of a job from

a particular station. */

#define EVENT END SIMULATION 3 /* Event type for end of the simulation.*/

#define STREAM INTERARRIVAL 1 /* Random-number stream for interarrivals.

*/

#define STREAM JOB TYPE

#define STREAM SERVICE

#define STREAM MACHINE

#define MAX NUM STATIONS

#define MAX NUM JOB TYPES

#define NUM RUNS

#define NUM RUNS2

#define NUM RUNS3

#define NUM SAMPLES

#define MAX MACHINES

#define N_points

#define S region

2 /* Random-number stream for job types. */

3 /* Random-number stream for service times.

*/

5 /* Random-number stream for number of

machine. */

5 /* Maximum number of stations. */

3 /* Maximum number of job types. */

2 /* Number of simulation runs in sub

regions. */

20 /* Number of simulation runs for entropy

calculation. */

20 /* Number of simulation runs for most

promising solution */

100 /* Sample size to find number of

partitions */

8 /* Upper Constraint on number of machines

in each station */

5 /* Number of sample points to measure

performance of each sub region*/

30 /* Number of samples from surrounding

region*/

/* Declare non-simlib global variables. */

int num_stations, num_job_types, i,j,l,k,p,

num_machines[NUM_SAMPLES+lO] [MAX_NUM_STATIONS + l],

39

total_machines[NUM_SAMPLES+lO],num_tasks[MAX_NUM_JOB TYPES+l],

intervals, count runs=O, route[MAX_NUM_JOB_TYPES +l] [MAX_NUM_STATIONS

+ 1],index[NUM_SAMPLES+lO], rank[MAX_NUM_STATIONS+l], iteration,

num_machines_busy[MAX_NUM_STATIONS + 1],job type,

task,num_machines s[NUM_SAMPLES+lO] [MAX_NUM_STATIONS + 1],

fix_num_machines[MAX NUM_STATIONS + 2];

float mean interarrival, length simulation, prob_distrib_job_type[26],

prob_distrib sample[26], throughput[MAX_NUM_JOB_TYPES +l],

profit[MAX_NUM_JOB_TYPES+l] [NUM_SAMPLES+lO], T_VALUE,

mean service[MAX_NUM_JOB_TYPES +l] [MAX_NUM_STATIONS + 1],

profits[NUM_SAMPLES+lO], sample_profit[MAX_NUM_JOB TYPES+l],

avg_thru[MAX_NUM_JOB_TYPES+l] [NUM_SAMPLES+lO], mean_sample_profit,

performance_index[MAX_MACHINES+2], Entropy_s[MAX_NUM_STATIONS+l],

Ent[MAX NUM_STATIONS+l], Entropy[MAX_NUM_STATIONS+l];

FILE *infile, *outfile;

/* Declare non-simlib functions. */

arrive(int new_job);

depart(void);

objective(int runs_o);

model(int runs_m);

sample(int sample size);

sorting(int points);

stdev(float *pro);

group(void);

entropy(void);

search(void);

void

void

void

void

void

void

double

void

void

void

int

void

surrounding region(int fix);

optimal(void);

#include "simlib.h"

#include "myheader.h"

/* Required for use of simlib.c. */

40

main() /* Main function. */

/* Open input and output files. */

in file

outf ile

fopen ("jobshop. in", "r");

fopen("jobshop.out", "w");

for(iteration=l;iteration<=16;iteration++) {

/*clock starts on program execution*/

clock t start=O,finish=O;

double total=O;

start= clock();

if(NUM_SAMPLES<=40)

T_VALUE=2.708;

else if(NUM_SAMPLES>40)

T_VALUE=2.660;

count_runs=O; /* Initialize simulation runs */

/* Read input parameters. */

fscanf(infile, "%d %d %f %f", &num_stations, &num_job_types,

&mean_interarrival, &length_simulation);

for (i = 1; i <= num_job_types; ++i)

fscanf (infile, "%d", &num_tasks [i]);

for (i = 1; i <= num_job_types; ++i)

for (j = 1; j <= num_tasks[i]; ++j)

fscanf (infile, "%d", &route [i] [j]);

for (j = 1; j <= num_tasks[i]; ++j)

fscanf (infile, "%f", &mean_service [i] [j]);

for (i = 1; i <= num_job_types; ++i)

fscanf(infile, "%f", &prob_distrib_job_type[i]);

/* Probability distribution of machines */

for (i = 1; i <= MAX_MACHINES; ++i)

prob_distrib_sample[i]=(float)i/MAX_MACHINES;

/* Write report heading and input parameters. */

41

fprintf(outfile, "Job-shop model\n\n");

fprintf(outfile, "Number of work stations%2ld\n\n",

num_stations);

fprintf (outfile, "\n\nNumber of job types%25d\n\n",

num_job_types);

fprintf(outfile, "Number of tasks for each job type ");

for (i = 1; i <= num_job_types; ++ii

fprintf (outfile, "%5d", num_tasks [i]);

fprintf(outfile, "\n\nDistribution function of job types ");

for (i = 1; i <= num_job_types; ++i)

fprintf(outfile, "%8.3f", prob_distrib_job_type[i]);

fprintf(outfile, "\n\nMean interarrival time of jobs%14.2f

hours\n\n", mean_interarrival);

fprintf(outfile, "Length of the simulation%20.lf eight-hour

days\n\n\n", length_simulation);

fprintf(outfile, "Job type Work stations on route");

for (i = 1; i <= num_job_types; ++i) {

fprintf(outfile, "\n\n%4d ", i);

for (j = 1; j <= num_tasks[i); ++j)

fprintf (outfile, "%5d", route [i) [j));

fprintf(outfile, "\n\n\nJob type ");

fprintf(outfile, "Mean service time (in hours) for successive

tasks");

for (i = 1; i <= num_job_types; ++i) {

fprintf(outfile, "\n\n%4d ", i);

for (j = 1; j <= num_tasks[i); ++j)

fprintf (outfile, "%9. 2f", mean_service [i) [j]);

fprintf(outfile,"\n\nNumber of simulation runs(replications)

%10d\n",NUM_RUNS);

fprintf(outfile,"\nMaximum number of machines in each station

= %5d\n",MAX_MACHINES);

fprintf(outfile,"\nNumber of points from each region

(N_points) =%5d\n",N_points);

fprintf(outfile,"\nNumber of points from surrounding region

(S_region) =%5d\n",S_region);

42

fprintf(outfile,"\nNumber of sample points for entropy

calculation(NUM_SAMPLES) =%5d\n\n",NUM_SAMPLES);

sample(NUM_SAMPLES);

sorting(NUM_SAMPLES);

group();

entropy();

search();

optimal();

fprintf(outfile,"\n\nToal simulations runs

/*clock stops at the end of program*/

finish= clock();

%d", count runs);

total = (double) (finish - start) I (double) CLOCKS PER_SEC;

fprintf(outfile,"\nTotal execution time= %f\n\n\n\n",total);

fclose(infile);

fclose(outfile);

return O;

void model(int runs m)

/* Initialize throughput of each job to zero */

for(i=l;i<=num_job types;i++)

throughput[i]=O;

/*Run model for specified number of NUM RUNS*/

for(i=l;i<=runs_m;i++) {

/* Initialize all machines in all stations to the idle state. */

for (j = 1; j <= num_stations; ++j)

num_machines_busy[j] = O;

/* Initialize simlib */

init simlib();

/* Set maxatr max(max number of attributes per record, 4) */

43

maxatr 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */

/* Schedule the arrival of the first job. */

event schedule(expon(mean interarrival, STREAM INTERARRIVAL),

EVENT_ARRIVAL);

/* Schedule the end of the simulation. */

event schedule(8 * length_simulation, EVENT_END_SIMULATION);

/* Run the simulation until it terminates after an end­

simulation event (type EVENT END_SIMULATION) occurs. */

do {

/* Determine the next event. */

timing();

/* Invoke the appropriate event function. */

switch (next event type)

case EVENT ARRIVAL:

arrive(l);

break;

case EVENT DEPARTURE:

depart();

break;

case EVENT END SIMULATION:

break;

/* If the event just executed was not the end-simulation event

(type EVENT_END_SIMULATION), continue simulating. Otherwise,

end the simulation. */

} while (next event_type != EVENT_END_SIMULATION);

void arrive(int new_job)

44

/* Function to serve as both an arrival event of a job to the system, as

well as the non-event of a job's arriving to a subsequent station along

its route. */

int station;

/* If this is a new arrival to the system, generate the time of the

next arrival and determine the job type and task number of the

arriving job. */

if (new_job == 1)

event schedule(sim_time + expon(mean_interarrival,

STREAM_INTERARRIVAL), EVENT_ARRIVAL);

job_type

task

random_integer(prob_distrib_job type, STREAM_JOB TYPE);

1;

/* Determine the station from the route matrix. */

station = route [job type] [task];

/* Check to see whether all machines in this station are busy. */

if (num_machines_busy[station] == num_machines[l] [station])

/* All machines in this station are busy, so place the arriving job

at the end of the appropriate queue. Note that the following data

are stored in the record for each job:

else

1. Time of arrival to this station.

2. Job type.

3. Current task number. */

transfer[l]

transfer[2]

transfer[3]

sim_time;

job_type;

task;

list file(LAST, station);

/* A machine in this station is idle, so start service on the

arriving job (which has a delay of zero). */

sampst(O.O, station);

sampst(O.O, num stations+ job_type);

/* For station. */

/* For job type. */

45

++num_machines_busy[station];

timest((float) num_machines_busy[station], station);

/* Schedule a service completion. Note defining attributes beyond

the first two for the event record before invoking event schedule.*/

transfer[3] job_type;

transfer[4] task;

event schedule(sim_time + expon(mean service[job_type] [task],

STREAM_SERVICE), EVENT DEPARTURE);

void depart(void)

/* Event function for departure of a job from a particular station. */

int station, job_type queue, task_queue;

/* Determine the station from which the job is departing. */

job type transfer[3];

task

station

transfer[4];

route [job type] [task];

/* Check to see whether the queue for this station is empty. */

if (list size[station] == 0)

else

/* The queue for this station is empty, so make a machine in this

station idle. */

--num_machines_busy[station];

timest((float) num_machines_busy[station], station);

/*The queue is nonempty, so start service on first job in queue.*/

list remove(FIRST, station);

/* Tally this delay for this station. */

sampst(sim_time - transfer[l], station);

46

/* Tally this same delay for this job type. */

job_type_queue transfer[2];

task_queue transfer[3];

sampst(sim_time - transfer[l], num stations+ job_type_queue);

/* Schedule end of service for this job at this station. Note

defining attributes beyond the first two for the event record

before invoking event schedule. */

transfer[3] job_type_queue;

transfer[4] task_queue;

event schedule(sim_time + expon(mean_service[job_type queue]

[task_queue], STREAM_SERVICE),EVENT DEPARTURE);

/* If the current departing job has one or more tasks yet to be done,

send the job to the next station on its route. */

if (task< num_tasks[job_type]) {

++task;

arrive(2);

else ++throughput[job_type];

void sample(int sample size)

/* Estimate's the performance of a sub-region from sample points. */

for(l=l;l<=sample size;l++) {

total_machines[l]=O;

for (j = 1; j <= num_stations; ++j) {

num_machines[l] [j] random_integer(prob_distrib sample,

STREAM_MACHINE);

total_machines(l]=total_machines[l] + um_machines[l] [j];

model(NUM_RUNS2);

count runs++;

47

objective(NUM_RUNS2);

void sorting(int points)

/* Function to sort performance estimates in decreasing order */

register int a,b;

register float t;

for(a=l;a<=points;++a)

profits[a]=profit[l] [a];

for(a=l;a<=points;++a)

for(b=points;b>a;--b) {

if(profits[b-l]<profits[b)) {

t=profits [b-1];

profits[b-l]=profits[b];

profits[b]=t;

for(a=l;a<=points;++a)

for(b=l;b<=points;++b)

if (profits [a] ==profit [1] [b]) {

double stdev(float *pro)

for (j = 1; j <= num_stations; ++j)

num_machines_s[a] [j]=num_machines[b] [j];

break;

/* Function returns standard error of the performance to categorize sample

points */

register float mean,suml=O,sum2=0;

for(i=l;i<=NUM_SAMPLES;i++)

suml+=pro[i];

mean=suml/NUM SAMPLES;

for(i=l;i<=NUM_SAMPLES;i++)

48

sum2+=(pro[i]-mean)*(pro[i]-mean);

return sqrt(sum2/NUM_SAMPLES-l);

void group(void)

double t;

k=l; index[k]=l;

for(l=l;l<NUM_SAMPLES;l++) {

t=(profits[index[k]]-profits[l])/stdev(profits)*

sqrt(NUM_SAMPLES);

if (t>=T_VALUE) {

k++; index[k]=l;

intervals=k;

index[k+l]=NUM_SAMPLES+l;

void entropy(void)

/* Function calculates entropies of each workstation */

int a,b,s[NUM_SAMPLES] [MAX_MACHINES],count,SS[MAX_MACHINES];

float p[NUM_SAMPLES] [MAX_MACHINES],M[MAX NUM_STATIONS] [MAX_MACHINES]

,I[MAX_NUM_STATIONS] [MAX_MACHINES], t;

for(i=l;i<=num_stations;i++) {

Entropy[i]=O;

for(j=l;j<=MAX_MACHINES;j++) {

k=l;count=O;

do{

for(l=index[k];l<index[k+l] ;l++) {

if(num_machines s[l] [i]==j)

count++;

s[k] [j]=count;

k++; count=O;

while(k<=intervals);

49

for(j=l;j<=MAX_MACHINES;j++) {

SS[j]=O;

for(l=l;l<=intervals;l++)

SS [j] +=s [l] [j] ;

for(j=l;j<=MAX_MACHINES;j++)

for(l=l;l<=intervals;l++) {

if(SS[j]==O) {

p (1) [j l =0;

continue;

p[l] [j]=(float)s[l] [j]/SS[j];

for(j=l;j<=MAX_MACHINES;j++) {

Ent[j]=O;I[i] [j]=O;

M[i] [j] =(float) SS [j] /NUM_SAMPLES;

for(l=l;l<=intervals;l++) {

if (p [l] [j l == 0)

continue;

I[i] [j]-=p[l] [j]*log(p[l] [j])/log(2);

Ent [j] =M [i] [j] *I [i] [j] ;

Entropy[i]+=Ent[j];

Entropy_s[i]=Entropy[i];

for(a=l;a<=num_stations;++a) {

for(b=num_stations;b>=a;--b) {

if(Entropy_s[b-l]>Entropy_s[b]) {

t=Entropy_s[b-1];

Entropy_s[b-l]=Entropy_s[b];

Entropy_s[b]=t;

fprintf(outfile,"\nEntropy_s[%d] %f", a, Entropy_s [a]);

50

for(a=l;a<=nurn_stations;++a)

for(b=nurn_stations;b>=l;--b) {

if(Entropy[a]==Entropy_s[b]) {

rank[a]=b;

Entropy s[b]=O;

break;

/* Assign ranks to entropies */

for(a=l;a<=nurn_stations;++a)

fprintf(outfile,"\nrank[%d] %d", a, rank [a]);

void search(void)

int a,w=O,q=l,t,rnd,total_points,ternp[MAX_MACHINES+2];

float prob distrib surr[2];

for(j=l;j<=2;j++)

do{

prob_distrib_surr[j]=(float)j/2;

if(q==nurn_stations)

total_points=S;

else

total_points=N_points;

for(p=l;p<=MAX_MACHINES;p++) {

for(l=l;l<=total_points;l++) {

total_rnachines(l] = O;

for(j=l;j<=nurn_stations;j++) {

if(rank[j]==q) {

nurn_rnachines [l] [j J = p;

total_rnachines[l]=total_rnachines[l] +

nurn_rnachines[l] [j];

else if(rank[j]<q) {

nurn_rnachines [l] [j] =fix_nurn_rnachines [j];

total_rnachines[l]=total_rnachines[l] +

nurn _machines [l] [j] ;

51

else if(rank[j]>q) {

num_machines[l] [j] = random_integer

(prob distrib_sample,STREAM_MACHINE);

total_machines[l]=total_machines[l] +

num_machines [l] [j];

model(NUM_RUNS);

count runs++;

objective(NUM_RUNS);

} /* End of total_points for loop */

/* Finding performance index of each region*/

for(a=l;a<=total_points;++a)

profits[a]=profit[l] [a];

for(a=total_points;a>l;--a) {

if(profits[a-l]<profits[a])

profits[a-l]=profits[a];

temp[p]=p;

performance index[p]=profits[l];

fprintf(outfile,"\nPerformance index of region[%d]

%f\n",p,performance index[p]);

//end of MAX MACHINES loop

for(a=MAX_MACHINES;a>l;--a) {

if(performance index[a-l]<performance index[a]) {

performance index[a-l]=performance index[a];

temp[a-l]=temp[a];

fprintf(outfile,"\nMax. performance

performance index[l]

/* Searching surrounding region */

if (q>l) {

% f\n",

52

for(l=l;l<=S region;l++) {

do{

t=O;

total_machines[l]=O;

for(j=l;j<=num_stations;j++) {

if(rank[j]>=q)

num_machines[l] [j] = random_integer

(prob_distrib_sample,STREAM_MACHINE);

rnd=random_integer(prob_distrib_surr,4);

if(rank[j]<q && (rnd==l 11 q==2)) {

num_machines[l] [j] =

surrounding region(j)

else if(rank[j]<q && rnd==2 && q!=2) {

num_machines[l] [j] = random_integer

(prob_distrib_sample,STREAM_MACHINE);

t++;

total_machines[l] = total_machines[l]

+ num_machines[l] [j];

}while{t==q-1);

model(NUM_RUNS);

count runs++;

objective(NUM_RUNS);

/* Finding performance index of surrounding region*/

for(a=l;a<=S region;++a)

profits [a] =profit [1] [a];

for(a=S region;a>l;--a) {

if(profits[a-l]<profits[a])

profits[a-l]=profits[a];

temp[MAX_MACHINES+l]=MAX_MACHINES+l;

performance index[MAX_MACHINES+l]=profits[l];

53

fprintf(outfile,"\nPerformance index of surrounding

region = %f\n",

else

performance index[MAX_MACHINES+l]=O;

if(performance index[MAX_MACHINES+l]<performance index[l]) {

for(j=l;j<=num_stations;j++)

if(q==rank[j]) {

fix_num_machines[j]=temp[l];

fprintf(outfile,"Promising No. of machines

in WS %d

break;

%d",j,fix_num_machines[j]);

else{

w++;

q++;

q--;

fprintf(outfile,"\n\n\n

if (w>15) {

BACKTRACK: q

fprintf(outfile,"\nlnfinite do loop");

exit (0);

}while(q<=num_stations); //q for loop ends

int surrounding_region(int fix)

/* Uniform sampling of points from surrounding region */

int b=O; /* Initialize variables */

do{

%d\n\n",q);

b=random_integer(prob_distrib_sample,STREAM_MACHINE);

}while(b==fix_num_machines[fix]);

return b;

54

void optimal(void)

/* Function estimates the performance of near optimal solution */

total_machines[l]=O;

fprintf(outfile,"\n\nMost promising number of machines :-\n");

for (j = 1; j <= num_stations; ++j){

num_machines[l] [j]=fix_num_machines[j];

fprintf(outfile, "%5d", fix_num_machines[j]);

total_machines[l] total_machines[l] + num_machines[l] [j];

total_machines[l]);

for(l=l;l<=l;l++) {

model(NUM_RUNS3);

count_runs++;

objective(NUM_RUNS3);

fprintf(outfile,"Most promising Profit %f", profit[l][l]);

void objective(int runs_o) /* Performance estimate function. */

fprintf(outfile, "\nNurnber of machines in each station[%d]",l);

for (j = 1; j <= num_stations; ++j)

fprintf (outfile, "%5d", num_machines [l] [j]);

for (i = 1; i <= num_job_types; ++i) {

avg_thru[i] [l]=throughput[i]/runs_o;

/* Objective function*/

profit [i] [l] =400*avg_thru [i] [l]-15000*total_machines [l];

fprintf(outfile,"\n\nAverage throughput of job type %d = %f",

i, avg_thru [i] [l]);

fprintf(outfile,"\n\nAverage profit of job type %5d %f",

i,profit [i] [l]);

sample_profit[i]+=profit[i] [l];

55

APPENDIX B - Program Output for One Iteration of the NP Method

Job-shop model

Number of work stations 4

Number of job types 1

Number of tasks for each job type 4

Distribution function of job types 1.000

Mean inter-arrival time of jobs 0.25 hours

Length of the simulation 240.0 eight-hour days

Job type Work stations on route

1 1 2 3 4

Job type Mean service time (in hours) for successive tasks

1 0.33 0.50 0.20 0.25

Number of simulation runs 3

Maximum number of machines in each station = 8

Number of points from each region (N_points) = 12

Entropy[!]= 0.704993

Entropy[2] = 0.923220

Entropy[3] = 0.500000

Entropy[4] = 0.500000

rank[l] = 2

rank[2] = 3

rank[3] = 4

rank[4] = 1

Performance index ofregion[l] = 1358266.750000

Performance index of region[2] = 1344266.750000

56

Performance index ofregion[3] = 1335400.000000

Performance index ofregion[4] = 1373200.000000

Performance index ofregion[5] = 1342266.750000

Performance index ofregion[6] = 1309666.750000

Performance index ofregion[7] = 1269000.000000

Performance index ofregion[8] = 1264466.750000

Max. Performance= 1373200.000000

Most promising number of machines in WS 4 = 4

Performance index ofregion[l] = 974800.000000

Performance index ofregion[2] = 1362933.250000

Performance index ofregion[3] = 1350066.750000

Performance index ofregion[4] = 1290333.250000

Performance index ofregion[5] = 1343266.750000

Performance index ofregion[6] = 1302333.250000

Performance index ofregion[7] = 1295800.000000

Performance index ofregion[8] = 1287666.750000

Max. Performance= 1362933.250000

Performance index of surrounding region= 1396733.250000

BACKTRACK: q = 1

Performance index ofregion[l] = 1363266.750000

Performance index ofregion[2] = 1361733.250000

Performance index ofregion[3] = 1323733.250000

Performance index ofregion[4] = 1321600.000000

Performance index ofregion[5] = 1260333.250000

Performance index ofregion[6] = 1303866.750000

57

Performance index ofregion[7] = 1293866.750000

Performance index ofregion[8] = 1249800.000000

Max. Performance= 1363266.750000

Most promising number of machines in WS 4 = 1

Performance index ofregion[l] = 1012066.750000

Performance index ofregion[2] = 1355733.250000

Performance index ofregion[3] = 1361933.250000

Performance index ofregion[4] = 1370600.000000

Performance index ofregion[5] = 1352533.250000

Performance index ofregion[6] = 1314400.000000

Performance index of region[7] = 1280800.000000

Performance index ofregion[8] = 1280400.000000

Max. Performance= 1370600.000000

Performance index of surrounding region= 1356333.250000

Most promising number of machines in WS 1 = 4

Performance index ofregion[l] = 671200.000000

Performance index ofregion[2] = 1386600.000000

Performance index ofregion[3] = 1375400.000000

Performance index ofregion[4] = 1376200.000000

Performance index ofregion[5] = 1335533.250000

Performance index ofregion[6] = 1344533.250000

Performance index of region[7] = 1328600.000000

Performance index of region[8] = 13113 3 3 .250000

Max. Performance= 1386600.000000

Performance index of surrounding region= 1393933.250000

58

BACKTRACK: q = 2

Performance index of region[l] = 1063133.250000

Performance index ofregion[2] = 1414600.000000

Performance index ofregion[3] = 1373200.000000

Performance index ofregion[4] = 1330866.750000

Performance index ofregion[5] = 1368066.750000

Performance index ofregion[6] = 1348466.750000

Performance index ofregion[7] = 1295666.750000

Performance index ofregion[8] = 1302666.750000

Max. Performance= 1414600.000000

Performance index of surrounding region= 1358133.250000

Most promising number of machines in WS 1 = 2

Performance index ofregion[l] = 689333.375000

Performance index of region[2] = 141793 3 .250000

Performance index ofregion[3] = 1407066.750000

Performance index ofregion[4] = 1414733.250000

Performance index ofregion[5] = 1373533.250000

Performance index of region[6] = 1360800.000000

Performance index ofregion[7] = 1353733.250000

Performance index ofregion[8] = 1333333.250000

Max. Performance= 1417933.250000

Performance index of surrounding region= 1331733.250000

Most promising number of machines in WS 2 = 2

Performance index ofregion[l] = 1415266.750000

Performance index ofregion[2] = 1403466.750000

59

Performance index ofregion[3] = 1389000.000000

Performance index ofregion[4] = 1389400.000000

Performance index ofregion[5] = 1350466.750000

Performance index ofregion[6] = 1341266.750000

Performance index ofregion[7] = 1332133.250000

Performance index ofregion[8] = 1319400.000000

Max. Performance= 1415266.750000

Performance index of surrounding region= 1354066.750000

Most promising number of machines in WS 3 = 1

Most promising number of machines in each workstation:-

2 2 1 1

Most promising Profit= 1410340.000000

Toal simulations runs= 865

Total execution time= 388.0 seconds

60

REFERENCES

Andrad6ttir, S. 1995. "A method for discrete stochastic optimization," Management Science,

41, 1946-1961.

Andrad6ttir, S. 1996. "A global search method for discrete stochastic optimization," SIAM J

Optimization, 6, 513-530.

Andrad6ttir, S. 1998. "A Simulation Optimization Techniques," in J. Banks (ed.), Handbook

of Simulation, 303-333.

Glower, F. 1989. Tabu Search- Part I. ORSA Journal on Computing 1: 190-206.

Glyn, P.W. 1989. "Optimization of Stochastic Systems Via Simulation," in Proceedings of

the Winter Simulation Conference, 90-105.

Goldsman, D., and Nelson, B.L. 1994. "Ranking, selection, and multiple comparisons in

computer simulation," in Proceeding of the Winter Simulation Conference, 192-199.

Goldsman, D., and Nelson, B.L. 1998. "Statistical screening, selection, and multiple

comparison procedures in computer simulation," in Proceeding of the Winter Simulation

Conference, 159-166.

Goldberg, D.E. 1989. "Genetic Algorithm in Search, Optimization, and Machine Learning,

Addison-Wesley.

Gong, W.-B., Ho, Y.-C., and Zhai, W. 1992. "Stochastic comparison algorithm for discrete

optimization with estimation" in Proceedings of the 3 lst Conference on Decision and

Control, 795-800.

61

Haddock, J., and Mittenthal. J. 1992. "Simulation Optimization using simulated annealing,"

Comput. Ind. Engng, 22, 387-389.

Kernighan, B.W., and Ritchie, D.M. 1988. The C Programming Language, Prentice Hall.

Kirkpatrick. S., Gelatt, C.D. Jr., and Vecchi, M.P. 1983. "Optimization by Simulated

Annealing," Science, 220, 671-680.

Law, A.M., and Kelton W.D. 2000. Simulation Modeling and Analysis, McGraw-Hill, Inc.

Mitchell, T.M. 1997. Machine Learning, McGraw-Hill, Inc.

Nelson, B.L., and Matejcik, F.J. 1995. "Using common random numbers for indifferences­

zone selection and multiple comparisons in simulation," Management Science, 41, 1935-

1945.

Olafsson, S. 1999. "Iterative ranking-and-selection for large-scale optimization," m

Proceedings of the Winter Simulation Conference, 479-485.

Olafsson, S., and Kim, J. 2001. "Towards a framework for black-box simulation

optimization," in Proceedings of the Winter Simulation Conference, 300-306.

Olafsson, S., and Shi, L. 2002. "Ordinal comparison via the nested partitions method'',

Discrete Event Dynamic Systems: Theory and Applications, 12, 211-239.

Olafsson, S. 2004. "Two-stage Nested Partitions Method for stochastic optimization",

Methodology and Computing in Applied Probability, 6, 5-27.

62

Robinson, H., and Monro, S. 1951. "A stochastic approximation method." Annals of

Mathematical Statistics, 22, 400-407.

Sanchez, S.M. 1997. "It is a far, far better mean I find ... ," in Proceedings of the Winter

Simulation Conference, 31-3 8.

Shi, L., and Olafsson, S. 1997. "An Integrated Framework for Deterministic and Stochastic

Optimization," in Proceedings of the Winter Simulation Conference, 358-365.

Shi, L., and Olafsson, S. 2000a. "Nested Partitions Method for Global Optimization," in

Proceedings of the Winter Simulation Conference, 390-407.

Shi, L., and Olafsson, S. 2000b. "Nested Partitions Method for Stochastic Optimization,''

Methodology and Computing in Applied Probability, 2, 271-291.

Wen, M.J., and Chen, H.J. 1994. "Single-stage multiple comparison procedures under

heteroscedasticity,'' American Journal of Mathematical and Management Sciences, 14, 1-48.

