

1

An Empirical Performance Study for Validating a Performance Analysis Approach:
PSIM

Jinchun Xia, Yujia Ge*, Carl K. Chang

Department of Computer Science, Iowa State University, USA
*Now at Zhejiang Gongshang University,China

{jxia@iastate.edu, yge@iastate.edu, chang@iastate.edu}

Abstract

Performance analysis gains more attention in recent
years by researchers who focus their study on the early
software development stages to mitigate the risk of
redesign as problems emerge later. Previously we
proposed PSIM (a Performance SImulation and Modeling
tool) that integrated performance properties into software
architecture specifications expressed in several major
UML diagrams. PSIM models can be transformed into
Colored GSPN (Colored Generalized Stochastic Petri
Nets). As a result, the Colored GSPN models can be
simulated to perform model-based performance evaluation.
In this paper we briefly review the PSIM approach and
apply it to model a web-based electronic conferencing
system, called M-Net, to derive performance metrics. We
then conduct runtime performance testing to the
implementation of M-Net and compare the simulation data
to runtime testing data. The comparison results show the
effectiveness of the PSIM method in predicting system
performance and identifying system performance
bottlenecks.

Keywords

Empirical study, performance metrics, performance
analysis, performance testing, performance evaluation,
software architecture

1. Introduction

Software systems are becoming more and more complex
and heterogeneous which makes their development, testing
and maintenance more challenging. Due to the immaturity
of research in software performance testing [1], software
system performance analysis has become a major research
concern in the last decade. Unlike runtime performance
testing, performance analysis can be performed at early
stages of software development to help developers evaluate
software designs and avoid the huge cost of redesign when
problems emerge later. As reported by Standish Group,
only about twenty-eight percent of the U.S. companies'
projects succeeded in 2000 and more than forty percent
were cancelled before completion [2]. It was reported that
11.8% of the failure causes can be attributed to changing

requirement [3]. Performance analysis could mitigate this
risk by evaluating system performance before real changes
are introduced into the system.

In our previous work [4], we described a technique for
predicting the performance of a system through the analysis
of its performance requirements and early architectural
design. However, this approach was more suited to the
analysis of very early requirements and design, thus lacked
the ability to depict complex system functionality and
subsequent system behavior described in a more complete
requirements specification emerged later.

Among existing performance analysis methods, SPE
(Software Performance Engineering) [5] is well known for
its capability of modeling system performance. SPE has
two major models, System Execution Model and Execution
Graph, which are the models for system deployment and
system behaviors. Mathematical calculations based on the
two models suggest the system performance. Nevertheless,
there is very limited support from both System Execution
Model and Execution Graph for scheduling algorithms,
synchronous communication, random arrival and
processing delay distributions. Moreover, neither of the
two SPE models is able to predict system behavior under
the overload condition. In particular, there is no systematic
approach existing in these two methods to collect
performance metrics that are essential to later performance
evaluation.

Arief and his colleagues combined a formal simulation
language called SimML (Simulation Modeling Language)
[6] with UML to study the performance of a particular
event sequence. SimML solved existing problems in
System Execution Model and Execution Graph by
supporting random arrival time and processing delay
distribution, and predicting system behavior under the
overload condition. Nevertheless, SimML is a language for
constructing simulations, not for creating system or
software architectures. Thus, the designs created by system
and software architects can not be directly simulated.
Instead, a performance analyst must manually translate
those designs into a SimML model.

Some researchers try to transform UML models, which
are commonly used in the requirements, analysis, and

2

design phases of the software lifecycle, into simulation
models such as GSPN (Generalized Stochastic Petri Net) [7]
and Queue Network [8]. To enable this transformation,
UML needs to be extended to represent performance
properties. Most transformations are based on UML
statecharts, which makes the transformation process
difficult because of the added complexity of statechart
generation.

We described our approach – PSIM (Performance
SImulation and Modeling) in [9][10]. PSIM integrates
resources and performance properties into software system
architectural models, and transforms the architectural
models into a uniform simulation model. Based on this
model, simulations are executed and the results are used for
system performance analysis, performance requirements
validation, and system design evaluation. The software
architecture is described using UML, and the
transformation from architecture to performance simulation
model is based on CSCD (Case, Sequence, Collaboration
and Deployment) diagrams, UML stereotypes and tagged
values.

We applied PSIM to several small projects and found
that it can predict system performance to a certain level and
identify performance bottlenecks [9][10]. In this paper, we
further validate our approach by comparing the results
from PSIM simulation against the runtime testing results.
We applied PSIM approach to a web-based electronic
conferencing system, M-Net [11], by identifying and
simulating certain critical scenarios, and collecting
performance metrics during the simulation. After the
system was fully constructed, we conducted performance
testing and collected some performance data. Finally, we
compare the results from PSIM simulation and runtime
performance testing to evaluate the PSIM approach.

In summary, this paper reports the following work.

(1) Identifying and simulating critical scenarios of a
web-based distributed system, M-Net;

(2) Applying the PSIM approach to represent and
simulate those scenarios; then collecting performance data
based on the simulation;

(3) Conducting runtime performance testing for those
scenarios to gain necessary data;

(4) Comparing performance data from both PSIM
simulation and runtime performance testing to validate the
PSIM as a performance analysis approach.

The rest of this paper is organized as follows. Section 2
of this paper briefly introduces the PSIM approach. Section
3 discusses properties of typical web-based distributed
systems and their performance testing issues. Section 4
reports the results from PSIM simulations and preliminary

validation tests, and analyzes them as contrastive data.
Section 5 concludes with a summary and evaluation of the
approach, and suggests future work.

2. PSIM (Performance SImulation and
Modeling)

2.1. Extend UML to Specify Performance
Properties

The architectural model described in this paper is
represented by UML, the language widely accepted in
industry as a standard for specifying the requirements and
functionality of a software system. Although UML is
mainly used to capture system functionalities (i.e.
functional requirements), it also provides extension
mechanisms for users to specify system properties (i.e.
non-functional requirements). We model system
performance by extending CSCD (Case, Sequence,
Collaboration and Deployment) diagrams using stereotypes
and tagged values provided by UML.

The integration of performance metrics into software
architectural models is not a standalone procedure. It has to
cooperate with the procedure of integrating resources and
workload into the architectural models for the purpose of
simulation. Details are discussed in the following sub-
sections.

2.1.1. Integrating resources into software architecture.
Resource-constrained extensions to UML provide the
necessary semantics for transforming a functional
specification into a performance model. They are also used
to create deployments of hosts and connections. These
deployments are reusable across a variety of simulations
and offer a convenient way to allocate tasks during
workload specification. A set of stereotypes such as host,
connection, network interface, allocation domain, and CPU
are defined to support these extensions. Figure 1 shows the
UML sequence diagram specification with resource-
constrained extensions. In this extension, processing delay
is restricted to basic objects such as the client while lines of
code, memory usage, and disk I/O constraints pertain only
to processes or threads. All of the basic objects, processes
and threads can have the hold time values. The server is
classified and stereotyped as a Process although not shown
in the sequence diagram. The collaboration diagram
specification with resource-constrained extensions, shown
in Figure 2, contains the same information as the sequence
diagram except that it can also depict distances between
objects. The distances, together with network resource data,
will be used for calculating network transmission delay in
simulation.

3

 Meeting members:
AppClient

Central Server:
CentralServer

Application Server:
AppServer

DATAbase:
DBServer

1: request to talk

2: query where is the floor

3: query Database

4: notify current floor holder

5: current floor holder grant the floor

6: report central server

7: update database

8: get floor

9: do his talk

10: AppServer broadcast his talk

size = 500 bytes
lines of code = 2000
memory usage = 1000 bytes

size = 400 bytes
lines of code = 1500
memory usage = 600 bytes size = 500 bytes

lines of code = 8000
sequence of
{ disk I/O = 1{
 action = write
 file name = mnet
 size = 10k bytes}

} size = 500 bytes
processing delay =
50msec size = 1000 bytes

lines of code = 10000
memory usage = 1000 bytes

size = 500 bytes
lines of code = 1000
memory usage = 500 bytes

size = 500 bytes

lines of code = 10000
sequence of
{ disk I/O = 1{
 action = write
 file name = mnet
 size = 10k bytes}

}
size = 500 bytes
lines of code = 2000
memory usage = 1000 bytes

hold time = 1min
size = 500 bytes
lines of code = 5000

size = 500 bytes
processing delay = 800msec

Figure 1. “Meeting Procedure” scenario: Sequence diagram with resource-constrained extensions

:CentralServer :AppServer

:DBServer
r :AppClient

1: request

2: query

3: query DB
4: notify floorholder

5: grant

6: report

7: update
8: get floor

9: talk

10: broadcast

distance=100m

distance=100m

distance=8000m

Figure 2. “Meeting Procedure” scenario: Collaboration diagram with resource-constrained extensions

2.1.2. Integrating workload into software architecture.
Workload extensions supply the tools needed to build a
simulation. These extensions have two important roles. The
first is to identify interactions, which will drive the
simulation, and their arrival information. The second is to
allocate any processes or threads within these simulations
to specific hardware.

M-NET - MP Simulation

duration = 30 min

Figure 3. “Meeting Procedure” scenario: use case
diagram with workload extensions

The use case diagram specification with workload
extensions is illustrated in Figure 3. Use case is used to
identify a group of interactions that will define the
simulation. Such a collection is called a workload. A
workload may include other use cases, thus increase the
number of interactions for a particular simulation. A
duration value may be attached to a workload indicating
how much time will be given to run the simulation. If the
workload includes other use cases, the root workload’s
duration will supersede any other use case durations. When
an interaction is added to a workload, the interaction must
be given arrival information. The arrival information
explains how to inject the interaction into the simulation
and includes the inter-arrival time, the number of

4

repetitions, and the initial delay. The information can be
annotated on either the sequence or the collaboration
diagram. The arrival information should come from system
operational profiles or speculatively designed workloads.

2.1.3. Embedding performance metrics into
architecture. Performance metric extensions equip
analysts with the means to view output from a performance
simulation. Metrics are associated with each interaction in
the simulation as well as every hardware component that
gets invoked. There are certain metrics that apply to each
individual interaction within a workload. These metrics
include the total completed, average response time, and
total execution time.

2.2. Generating Performance Simulation Model
from Software Architecture

We choose GSPN [7] as simulation models because of
their ability to randomize arrival and processing delays and
their capacity to model complex interactions. Some
researchers have defined the transformation from UML
statecharts to GSPN [12]. However, there exists no
technique that can transform our extended UML diagrams
so we have to define our own transformation. This new
transformation combines interaction and deployment
diagrams to produce a Colored GSPN [13]. Before we start
the transformation, the consistency of all the diagrams must
be validated. During the simulation, performance metrics
will be automatically collected. A tool called PSIM-suite
was created to automate this procedure. PSIM-suite is
capable of reading in a workload and constraints,
generating a Colored GSPN, and simulating the Net to
collect necessary metrics.

In this new set of transformations, tokens are primarily
used to represent messages traveling through a distributed
software system. Tokens also serve as control mechanisms
that introduce queuing and synchronization. Color plays an
integral part in the development of the new UML
transformations. It is either absent or in the form of <o, m>
or <p, t, m, i> where the variables o, m, p, t, and i refer to
any object, message, process, thread, or iterator. Color
offers a higher degree of modeling ability because variables
can be replaced with constants or expressions. The
expressions make it possible to model scheduling
algorithms, context switching, and disk operations. A place
may depict a message queue, message completions,
resource visits, memory usage, disk usage, or a semaphore
lock. We define three types of places in our transformation:
workload based places such as Workload::Started,
interaction based places such as
Interaction::Message::Destructor, and deployment based
places such as Host::Object::Completions. Similar to
places, transitions are generated according to three
categories: workload, interaction, and deployment. An
example transition is shown in Table 1:

Table 1. Interaction::Message::Object::Return
Type
Immediate Transition
Multiplicity
0, otherwise
1, Object Multiplicity > 1 and Message = Return
Input Arcs
Place Weight Color Multiplicity Inhibito

r
Object::Processor 1 <o, m> 1 Yes
Object::Queue 1 <O, M> 1 No
Output Arc
Place Weight Color Multiplicity
Object::Processor 1 <O, M> 1

3. Web-based Distributed Systems and
Performance Testing

3.1. N-tier architecture and performance
testing

N-tier architecture is the most popular style for web-
based distributed system. The N-tier architecture, usually
including client, web tier, middle tier and database, offers
to create a more scalable and cost-effective infrastructure in
web-based systems as shown in Figure 4. Because of the
multiple client/server relationships and potential masked
bottlenecks, performance testing is important for those
systems. The M-Net system tested in this paper is based on
J2EE architecture which facilitates N-tier application
development.

 App
Server

Browser Web
Server

Internet DBMS

Total Response Time

Response Time Response TimeResponse Time

Figure 4. Web-based distributed system performance

3.2. Characteristics of M-Net
M-Net [11] is a web-based electronic conferencing

system, which enables people in geographically dispersed
locations to hold virtual meetings through the internet. It
also includes various applications to support collaborative
meetings, including chat, slideshow, IxiFtp, and layered
whiteboard.

The M-Net can be considered as a three-tier
client/server system. The three tiers are client, server, and
database. M-Net client is actually a Java applet that is
downloaded from a server, and run in any browser. Figure
5 shows the communication patterns of M-Net.

Many functions of M-Net require interactions among
clients, servers and database, though client-to-client
interactions are still handled through client-to-server
message passing. Details are described in section 4.1.

5

Client Side

Server Side

M-Net AppServer

(Java Application)

Central Server

(Java application)

MS-
Access

JDBC

M-Net AppServer

(Java Application)

M-Net AppServer

(Java Application)

App

Client

App

Client
… App

Client

App

Client

App

Client

App

Client
… …

Central

Client

Central

Client

Central

Client

Central

Client
Database Server

(Java application)

Figure 5. Top level system architecture of M-Net

3.3. Performance Testing Tools

We need tools to test J2EE systems. Among all the
performance testing tools, load testing tools were
determined as the most appropriate for their ability to
simulate usage and measure the performance. There are
three most popular load testing tools. LoadRunner is a tool
that predicts enterprise-level system behavior and
performance by emulating thousands of users and employs
performance monitors to identify and isolate problems. E-
Load is to perform load testing, scalability testing, and
stress testing of enterprise Web applications. The Grinder
is a pure Java load-testing framework. It is freely available
under a BSD-style open-source license. The Grinder has a
graphical console application, comes with a mature plug-in
for testing HTTP services, as well as a tool which allows
HTTP scripts to be automatically recorded. In our
experiments, we made available and used both Grinder and
LoadRunner to test the response time of our system.

4. Performance Study on M-Net
The well-known 80/20 rule suggests that 20% of

scenarios may account for 80% of the work. Hence the
PSIM model requires that these critical 20% of scenarios
be identified and simulated. These critical scenarios either
have high execution frequencies, or carry heavy workloads.
For experiment purpose, we identified five critical
scenarios for M-Net. These critical scenarios and how we
identified them are reported in our previous work [4]. The
five critical scenarios are cited as below:

(1) Log on and log off.
(2) Meeting Procedure.
(3) Open slide show.
(4) Display a slide and use the pointing device.

(5) Close slide show.

Among all the five critical scenarios, “Meeting
Procedure (MP)” scenario will be studied as an example in
the following subsections. A tool SABRE-TM [4] is used
to create the graphic scenarios and explore the relationships
among them. We apply PSIM approach and execute
performance testing to each of these scenarios. PSIM
simulations give measurements such as utilization,
response time, residence time, queue length, and
throughput for both interaction and hardware (CPU,
memory, hard disk, etc.). During the performance testing,
we collect metrics such as CPU utilization, memory usage,
transaction response time and throughput. We focus on
both response time and scalability.

Response time is defined as the length of time that a user
must wait from the instant that they submit a request to the
instant that they view the response to that request.

Scalability is determined by how consistent the response
time is when additional concurrent users are added. As the
number of concurrent users is increased, if response time
increases, then poor scalability is indicated.

In this study, we particularly focus our interests on the
response time and CPU utilization as we believe that these
two factors are essential to indicating system scalability.
Most other metrics such as queue length, throughput,
network utilization, disk utilization, and memory usage are
all eventually reflected on this leading metric “response
time”.

4.1. PSIM Simulation on “Meeting Procedure
(MP)” Scenario

In the M-Net system, there are many runtime
interactions among users which are handled through
servers. Before building PSIM model, complex usage-
patterns representing a mass of critical system activities
should be created. In this section, the most frequently used
scenario “Meeting Procedure (MP)” is studied as an
example. The MP scenario illustrates the procedure when a
meeting member wants to talk. At the start of a meeting,
the chairperson initially holds the floor. During the meeting,
the floor can be held by any user. When one user wants to
express his ideas, he should first request the floor from the
application server. The application server contacts the
central server (DBServer) to identify the current
floorholder, then it sends a message to the current
floorholder. If the floorholder agrees to release the floor,
the application server will give the floor to the requester.
The DBServer then needs to update the database entry
accordingly. The whole procedure is depicted in the
extended sequence diagram (Figure 1 in section 2.1.1). The
parameter values come from prototyping or requirements.
Specific hardware values such as instructions per cycle
come from hardware specifications or real measurements.

6

In the extended collaboration diagram, shown in Figure 2
in section 2.1.1, the distance between Database Server and
Central Server and the distance between Central Server and
Application Server are set to 100m, while the distances
between client and all the servers are set to 8km1.

Without lose of generality, we assume that request for
floor follows the Poisson distribution.

The duration of the simulation was set to 30 minutes, as
shown in Figure 3 in section 2.1.2. We simulated the
“Meeting Procedure (MP)” scenario with different
workloads. Both the simulation and the test are based on
five different inter-arrival rates: 1, 0.3, 0.1, 0.05, and 0.008.
The relationships among Poisson arrival rate, number of
meeting members, and number of requests per second are
shown in Table 2. Values in this table came from the
complex usage-patterns, which are created from usage data
collected during the past two years, and assumptions based
on the study of similar systems.

Table 2. Relationships between request and

number of meeting members
#(Meeting
Members)

10 20 50 100 500

#(Request to
talk)/sec

1 3 10 20 120

Arrival rate
(Poison)

1 0.3 0.1 0.05 0.008

After specifying the arrival information, all processes
are assigned to particular hosts. The Application Server,
Central Server, and DBServer are installed on machines
Kyoto, Osaka, and Cancun, respectively. Initial memory
and disk usage are carefully denoted for each process and
host. Also, since the processes have not been decomposed
into threads, they are assumed to be single threaded. As a
result, each process is supplied with a default main thread.
Each thread then is allocated to a particular allocation
domain and given scheduling attributes. The attributes
indicate that all the threads run at a high priority in the
system scope, and with a FIFO order. Osaka allocation
domain is depicted in Figure 6.

1 For telephony applications, distance represents a major concern

of system performance.

: Host

default :
Allocation
Domain

main : Thread

scheduling scope = System
scheduling policy = FIFO
priority = 127

: Proxy Server

initial memory usage = 2 MB

Osaka:: Host

default :
Allocation
Domain

main : Thread

scheduling scope = System
scheduling policy = FIFO
priority = 127

 Central Server

initial memory usage = 3 MB

Figure 6. “Meeting Procedure” scenario (Central
Server Allocation): Deployment diagram with

workload extensions

From Figure 7, we can see that the response time
remains steady when the inter-arrival rate is no less than
0.1 but keeps climbing when the inter-arrival rate is 0.05.
This means the software design and deployment could not
handle the requests when arrival rate reaches 0.05.
Moreover, the heavier the workload, the higher the slope.

-50

0

50

100

150

200

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
1

Time In Second

R
es

po
ns

e
T

im
e

In
 S

ec
on

d

rate = 1

rate = 0.3

rate = 0.1

rate = 0.05

rate = 0.008

Figure 7. Average response time from PSIM

After studying the performance metrics on servers,
clients, CPUs, network interfaces, connections, and
different queues, which are all collected during the
simulation, we identify the Cancun CPU as bottleneck for
this performance problem. With the simulation result,
software designers have better cues to assess their system
architecture design or resource deployment. After
modifying their design, they can apply the PSIM approach
again. Assisted by the PSIM-suite, designers can quickly
reevaluate the modified design. Through this iteratively
redesign – PSIM simulation procedure, causes for
performance bottlenecks existing in software design can be
finally identified. If there is no way to get rid of
performance problem, the performance requirements
themselves may not be satisfiable, or system requirements
may not be accurate or realizable. Then requirements
engineers need to get involves and the software
development retracts back to requirements engineering
stage.

7

4.2. Performance Testing on “Meeting
Procedure (MP)” Scenario

In the previous section, we assume that the request for
floor follows Poisson distribution and the relationships
between inter-arrival rates and numbers of request per
second are shown in Table 2. In this section, we use
LoadRunner to automatically generate client requests and
test the real response time for the MP scenario afterwards.
The comparison of runtime measurement and PSIM
simulation results for average response time are shown in
Table 3 and Figure 8.

Table 3. Average response time for the MP
scenario

(Request Per
second)

1 3 10 20 120

Arrival rate 1 0.3 0.1 0.05 0.008
Real testing 50.3421 46.3253 53.62 89.2 ∞

PSIM 46.88 46.88 46.93 67.233 90.9

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

1 3 10 20 120

Request Per Second

Real Testing

PSIM Simulation

Figure 8. Comparison of real testing and PSIM
simulation for average response time in the MP
scenario

From Table 3 and Figure 8 we can see that both runtime
measurements and PSIM simulation have similar data
patterns. The response time at arrival rate 1 falls below 60
because there is no completion during the first 60 seconds
due to the hold time attached to message 9 “do his talk” in
Figure 1. Both of the real testing and PSIM simulation
show that the system suffers from the heavy workload
when the arrival rate reaches 0.05. One big difference is
demonstrated when request arrival time reaches 0.008.
PSIM gives response time 89.6 while in real testing this
value is infinite. This happens because the distributed
system was actually down under the stress workload so that
the user could never gain response from the server.
However, PSIM simulation tool takes each system as an
ideal software system which will never fail. Therefore,
even though the server is overloaded, and the service queue
keeps growing, under PSIM the server still generates
results and produces responses. When “server down” event

happens, we can only identify it by studying the response
time curve itself. If this curve keeps climbing sharply, the
server may not work as usual. It is hard to differ “server
down” from “server busy”, but we can still identify them
by running longer simulations and comparing slopes of
different response time curves.

We also notice that the difference between the results
obtained from PSIM simulation and the runtime
measurements become evident as the load increases. This is
due to the fact that our PSIM model only takes the major
resources into account. Some resources, such as disk
caching, CPU caching, and computer bus speed, are not
negligible. However, these resources are not taken into
account in our PSIM models. When system encounters
performance problem, both its hardware and software will
have abnormal behaviors. The blunt “lines of code”
variable makes the accuracy even worse.

CPU utilization for server Cancun is shown in Figure 9.
Both PSIM simulation and real testing illustrate the
exhaustion of CPU resource at arrival rate 0.008.

0
10

20
30

40
50

60
70

80
90

100
C

an
cu

n
C

P
U

 U
til

iz
at

io
n

(%
)

1 3 10 20 120

Requestion Per Second

Real Testing

PSIM Simulation

Figure 9. Comparison of real testing and PSIM
simulation for Cancun CPU Utilization in the MP
scenario

Originally the Database Server was installed in the same
machine with the Central Server. Later on we changed the
system deployment by moving the Central Server to
another machine. This deployment modification may incur
two contrary effects: (1) Performance improvement
because of the increase of computing power; (2)
Performance degradation by introducing extra network
connection. PSIM simulation demonstrated that the
deployment change reduced response time by an average of
0.01 second while the LoadRunner testing shows the
decrease in response time is only less than 0.0002 second.
This fact reveals one deficiency in PSIM tools: the
methodology does not address network collisions and hop
delays. In addition, TCP establishment delay was not
explicitly shown with messages in any of the extended
UML diagrams. Except for the insufficient accuracy, PSIM
is effective in predicting system performance at the same

8

accuracy level with runtime performance testing, and hence
help make decisions on software architecture.

Empirical study on all the other four M-Net critical
scenarios obtained similar results and proved that PSIM is
capable of predicting M-Net system performance and
identifying performance bottlenecks.

5. Conclusions and future work

In this paper, we validated our approach PSIM, a
technique to predict system performance early in software
lifecycle, by performing an empirical study on a web-based
application, M-Net. Based on usage data collected during
past experience, we identified critical scenarios and usage
patterns. For those critical scenarios, we applied PSIM to
examine software system performance, conducted real
testing through performance testing tool, and compared
results from both experiments to evaluate the effectiveness
of PSIM. The results show that PSIM is promising in
predicting software system performance and identifying
performance bottlenecks. It hence provides a plausible way
for software designers to evaluate their design and validate
the performance requirements during early stages in
software development.

Our study showed that the PSIM methodology
overcomes many of the limitations with previous UML
performance modeling techniques. First and foremost, the
methodology builds a linkage between performance
modeling and functional decomposition. The system
architectures and software designs can be directly
simulated and the simulations can determine whether the
architectures and designs will meet performance
requirements. Furthermore, the methodology is capable of
modeling complex feature interactions, synchronous
communication, and a suite of different scheduling
attributes including priority, scope, and policy. In addition,
the methodology makes it possible to profile software and
hardware resources in terms of utilization, throughput, and
residence time. Memory and disk space can be planned
with this methodology as well. Also included is the ability
to model different arrival and processing delay
distributions.

Still, there are areas that can be improved. For instance,
the methodology does not address network collisions and
hop delays. In addition, TCP establishment delay must be
explicitly shown with messages in interaction diagrams.
Other topics that were not examined include disk and CPU
caching, computer bus speed, and the performance of other
I/O resources such as video cards. The methodology also
makes it difficult to model retransmissions and network
element failures.

Finally, the “lines of code” variable does not seem to be
an accurate tool for calculating CPU service time. We may
need to elaborate more in this variable to make it a feasible
factor for performance evaluation. Another consideration
might be to add probabilities to messages to allow more
than one sequence per interaction. Moreover, when more
scheduling policies are desirable, a time slicing policy may
be included.

6. Acknowledgements

This work was partially supported by NSF grant #CCR-
0098346. The reported work benefited heavily from Jeff
Wise’ original thesis work.

7. References
[1] E.J. Weyuker and F.I. Vokolos, “Experience with
Performance Testing of Software System: Issues, an Approach,
and Case Study”, IEEE Tran. Software Eng., Vol. 26, no 12, 2000,
pp.1147-1156.

[2] Standish group, Extreme Chaos, survey report, 2001.

[3] Standish group, The Chaos Report, survey report, 1994.

[4] J. Cleland-Huang, C.K. Chang and H. Kim, “Requirements-
Based Dynamic Metrics In Object-Oriented Systems”, Proc. 5th
IEEE Int’l Symp. Requirements Eng. (ISRE), Toronto, Canada,
Aug. 2001, pp.212-219.

[5] C.U. Smith and L.G. Williams, Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software,
Addison Wesley, 2002.

[6] L.B. Arief and N.A. Speirs, “A UML Tool for an Automatic
Generation of Simulation Programs”, ACM Proc. 2nd Int’l
Workshop on Software and Performance, 2000, pp.71-76.

[7] M.A. Marsan et al, Modeling with Generalized Stochastic
Petri Nets, West Sussex, England, John Wiley and Sons, 1995.

[8] E. Lazowska, J. Zahorjan, G. Graham, K. Sevcik,
Quantitative System Performance Computer System Analysis
Using Queueing Network Models, Prentice-Hall, 1984.

[9] J. Wise, Using UML for Performance Specification and
Analysis of Distributed Software Systems, master’s Thesis, Univ.
of Illinois at Chicago, 2002.

[10] J. Wise, C.K. Chang, J. Xia, and J. Cleland-Huang,
Performance Analysis Based on Requirements Traceability, tech.
report 05-04, Dept. Computer Science, Iowa State Univ., 2005.

[11] J. Zhang, M-Net Server Enhancement and NT Service,
Master’s Project Report, Apr. 2002.

[12] P. King, and R. Pooley, “Using UML to derive stochastic
Petri net models”, Proc. 15th Annual UK Performance Eng.
Workshop, 1999, pp.45-56.

[13] G. Chiola and G. Franceschinis, “Colored GSPN Models and
Automatic Symmetry Detection”, Proc. 3rd Int’l Workshop Petri
Nets and Performance Models, Dec. 1989, pp.50-60.

