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Abstract 

Performance analysis gains more attention in recent 
years by researchers who focus their study on the early 
software development stages to mitigate the risk of 
redesign as problems emerge later. Previously we 
proposed PSIM (a Performance SImulation and Modeling 
tool) that integrated performance properties into software 
architecture specifications expressed in several major 
UML diagrams. PSIM models can be transformed into 
Colored GSPN (Colored Generalized Stochastic Petri 
Nets). As a result, the Colored GSPN models can be 
simulated to perform model-based performance evaluation. 
In this paper we briefly review the PSIM approach and 
apply it to model a web-based electronic conferencing 
system, called M-Net, to derive performance metrics. We 
then conduct runtime performance testing to the 
implementation of M-Net and compare the simulation data 
to runtime testing data. The comparison results show the 
effectiveness of the PSIM method in predicting system 
performance and identifying system performance 
bottlenecks. 
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1. Introduction 

Software systems are becoming more and more complex 
and heterogeneous which makes their development, testing 
and maintenance more challenging. Due to the immaturity 
of research in software performance testing [1], software 
system performance analysis has become a major research 
concern in the last decade. Unlike runtime performance 
testing, performance analysis can be performed at early 
stages of software development to help developers evaluate 
software designs and avoid the huge cost of redesign when 
problems emerge later. As reported by Standish Group, 
only about twenty-eight percent of the U.S. companies' 
projects succeeded in 2000 and more than forty percent 
were cancelled before completion [2]. It was reported that 
11.8% of the failure causes can be attributed to changing 

requirement [3]. Performance analysis could mitigate this 
risk by evaluating system performance before real changes 
are introduced into the system. 

In our previous work [4], we described a technique for 
predicting the performance of a system through the analysis 
of its performance requirements and early architectural 
design. However, this approach was more suited to the 
analysis of very early requirements and design, thus lacked 
the ability to depict complex system functionality and 
subsequent system behavior described in a more complete 
requirements specification emerged later.  

Among existing performance analysis methods, SPE 
(Software Performance Engineering) [5] is well known for 
its capability of modeling system performance. SPE has 
two major models, System Execution Model and Execution 
Graph, which are the models for system deployment and 
system behaviors. Mathematical calculations based on the 
two models suggest the system performance. Nevertheless, 
there is very limited support from both System Execution 
Model and Execution Graph for scheduling algorithms, 
synchronous communication, random arrival and 
processing delay distributions. Moreover, neither of the 
two SPE models is able to predict system behavior under 
the overload condition. In particular, there is no systematic 
approach existing in these two methods to collect 
performance metrics that are essential to later performance 
evaluation. 

Arief and his colleagues combined a formal simulation 
language called SimML (Simulation Modeling Language) 
[6] with UML to study the performance of a particular 
event sequence. SimML solved existing problems in 
System Execution Model and Execution Graph by 
supporting random arrival time and processing delay 
distribution, and predicting system behavior under the 
overload condition. Nevertheless, SimML is a language for 
constructing simulations, not for creating system or 
software architectures. Thus, the designs created by system 
and software architects can not be directly simulated. 
Instead, a performance analyst must manually translate 
those designs into a SimML model. 

Some researchers try to transform UML models, which 
are commonly used in the requirements, analysis, and 
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design phases of the software lifecycle, into simulation 
models such as GSPN (Generalized Stochastic Petri Net) [7] 
and Queue Network [8]. To enable this transformation, 
UML needs to be extended to represent performance 
properties. Most transformations are based on UML 
statecharts, which makes the transformation process 
difficult because of the added complexity of statechart 
generation. 

We described our approach – PSIM (Performance 
SImulation and Modeling) in [9][10]. PSIM integrates 
resources and performance properties into software system 
architectural models, and transforms the architectural 
models into a uniform simulation model. Based on this 
model, simulations are executed and the results are used for 
system performance analysis, performance requirements 
validation, and system design evaluation. The software 
architecture is described using UML, and the 
transformation from architecture to performance simulation 
model is based on CSCD (Case, Sequence, Collaboration 
and Deployment) diagrams, UML stereotypes and tagged 
values. 

We applied PSIM to several small projects and found 
that it can predict system performance to a certain level and 
identify performance bottlenecks [9][10]. In this paper, we 
further validate our approach by comparing the results 
from PSIM simulation against the runtime testing results. 
We applied PSIM approach to a web-based electronic 
conferencing system, M-Net [11], by identifying and 
simulating certain critical scenarios, and collecting 
performance metrics during the simulation. After the 
system was fully constructed, we conducted performance 
testing and collected some performance data. Finally, we 
compare the results from PSIM simulation and runtime 
performance testing to evaluate the PSIM approach.  

In summary, this paper reports the following work. 

(1) Identifying and simulating critical scenarios of a 
web-based distributed system, M-Net; 

(2) Applying the PSIM approach to represent and 
simulate those scenarios; then collecting performance data 
based on the simulation; 

(3) Conducting runtime performance testing for those 
scenarios to gain necessary data; 

(4) Comparing performance data from both PSIM 
simulation and runtime performance testing to validate the 
PSIM as a performance analysis approach. 

The rest of this paper is organized as follows. Section 2 
of this paper briefly introduces the PSIM approach. Section 
3 discusses properties of typical web-based distributed 
systems and their performance testing issues. Section 4 
reports the results from PSIM simulations and preliminary 

validation tests, and analyzes them as contrastive data. 
Section 5 concludes with a summary and evaluation of the 
approach, and suggests future work. 

2. PSIM (Performance SImulation and 
Modeling) 

2.1. Extend UML to Specify Performance 
Properties 

The architectural model described in this paper is 
represented by UML, the language widely accepted in 
industry as a standard for specifying the requirements and 
functionality of a software system. Although UML is 
mainly used to capture system functionalities (i.e. 
functional requirements), it also provides extension 
mechanisms for users to specify system properties (i.e. 
non-functional requirements). We model system 
performance by extending CSCD (Case, Sequence, 
Collaboration and Deployment) diagrams using stereotypes 
and tagged values provided by UML.  

The integration of performance metrics into software 
architectural models is not a standalone procedure. It has to 
cooperate with the procedure of integrating resources and 
workload into the architectural models for the purpose of 
simulation. Details are discussed in the following sub-
sections. 

2.1.1. Integrating resources into software architecture. 
Resource-constrained extensions to UML provide the 
necessary semantics for transforming a functional 
specification into a performance model. They are also used 
to create deployments of hosts and connections. These 
deployments are reusable across a variety of simulations 
and offer a convenient way to allocate tasks during 
workload specification. A set of stereotypes such as host, 
connection, network interface, allocation domain, and CPU 
are defined to support these extensions. Figure 1 shows the 
UML sequence diagram specification with resource-
constrained extensions. In this extension, processing delay 
is restricted to basic objects such as the client while lines of 
code, memory usage, and disk I/O constraints pertain only 
to processes or threads. All of the basic objects, processes 
and threads can have the hold time values. The server is 
classified and stereotyped as a Process although not shown 
in the sequence diagram. The collaboration diagram 
specification with resource-constrained extensions, shown 
in Figure 2, contains the same information as the sequence 
diagram except that it can also depict distances between 
objects. The distances, together with network resource data, 
will be used for calculating network transmission delay in 
simulation. 
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 Meeting members:
AppClient 

Central Server:
CentralServer

Application Server:
AppServer

DATAbase: 
DBServer 

1: request to talk

2: query where is the floor

3: query Database

4: notify current floor holder

5: current floor holder grant the floor

6: report central server

7: update database

8: get floor

9: do his talk

10: AppServer broadcast his talk

size = 500 bytes 
lines of code = 2000 
memory usage = 1000 bytes

size = 400 bytes 
lines of code = 1500 
memory usage = 600 bytes size = 500 bytes

lines of code = 8000
sequence of 
{ disk I/O = 1{ 
  action = write 
  file name = mnet
  size = 10k bytes}

} size = 500 bytes 
processing delay = 
50msec size = 1000 bytes 

lines of code = 10000
memory usage = 1000 bytes

size = 500 bytes 
lines of code = 1000 
memory usage = 500 bytes 

size = 500 bytes

lines of code = 10000
sequence of 
{ disk I/O = 1{ 
  action = write 
  file name = mnet
  size = 10k bytes}

} 
size = 500 bytes 
lines of code = 2000
memory usage = 1000 bytes

hold time = 1min
size = 500 bytes
lines of code = 5000

size = 500 bytes 
processing delay = 800msec 

 

Figure 1. “Meeting Procedure” scenario: Sequence diagram with resource-constrained extensions 
 

 

:CentralServer :AppServer

:DBServer
r :AppClient

1: request

2: query

3: query DB 
4: notify floorholder

5: grant

6: report

7: update 
8: get floor

9: talk

10: broadcast

distance=100m 

distance=100m 

distance=8000m

 

Figure 2. “Meeting Procedure” scenario: Collaboration diagram with resource-constrained extensions 
 

2.1.2. Integrating workload into software architecture. 
Workload extensions supply the tools needed to build a 
simulation. These extensions have two important roles. The 
first is to identify interactions, which will drive the 
simulation, and their arrival information. The second is to 
allocate any processes or threads within these simulations 
to specific hardware. 

 

M-NET - MP Simulation 

duration = 30 min

 

Figure 3. “Meeting Procedure” scenario: use case 
diagram with workload extensions 

 

The use case diagram specification with workload 
extensions is illustrated in Figure 3. Use case is used to 
identify a group of interactions that will define the 
simulation. Such a collection is called a workload. A 
workload may include other use cases, thus increase the 
number of interactions for a particular simulation. A 
duration value may be attached to a workload indicating 
how much time will be given to run the simulation. If the 
workload includes other use cases, the root workload’s 
duration will supersede any other use case durations. When 
an interaction is added to a workload, the interaction must 
be given arrival information. The arrival information 
explains how to inject the interaction into the simulation 
and includes the inter-arrival time, the number of 
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repetitions, and the initial delay. The information can be 
annotated on either the sequence or the collaboration 
diagram. The arrival information should come from system 
operational profiles or speculatively designed workloads. 

2.1.3. Embedding performance metrics into 
architecture. Performance metric extensions equip 
analysts with the means to view output from a performance 
simulation. Metrics are associated with each interaction in 
the simulation as well as every hardware component that 
gets invoked. There are certain metrics that apply to each 
individual interaction within a workload. These metrics 
include the total completed, average response time, and 
total execution time. 

2.2. Generating Performance Simulation Model 
from Software Architecture 

We choose GSPN [7] as simulation models because of 
their ability to randomize arrival and processing delays and 
their capacity to model complex interactions. Some 
researchers have defined the transformation from UML 
statecharts to GSPN [12]. However, there exists no 
technique that can transform our extended UML diagrams 
so we have to define our own transformation. This new 
transformation combines interaction and deployment 
diagrams to produce a Colored GSPN [13]. Before we start 
the transformation, the consistency of all the diagrams must 
be validated. During the simulation, performance metrics 
will be automatically collected. A tool called PSIM-suite 
was created to automate this procedure. PSIM-suite is 
capable of reading in a workload and constraints, 
generating a Colored GSPN, and simulating the Net to 
collect necessary metrics. 

In this new set of transformations, tokens are primarily 
used to represent messages traveling through a distributed 
software system. Tokens also serve as control mechanisms 
that introduce queuing and synchronization. Color plays an 
integral part in the development of the new UML 
transformations. It is either absent or in the form of <o, m> 
or <p, t, m, i> where the variables o, m, p, t, and i refer to 
any object, message, process, thread, or iterator. Color 
offers a higher degree of modeling ability because variables 
can be replaced with constants or expressions. The 
expressions make it possible to model scheduling 
algorithms, context switching, and disk operations. A place 
may depict a message queue, message completions, 
resource visits, memory usage, disk usage, or a semaphore 
lock. We define three types of places in our transformation: 
workload based places such as Workload::Started, 
interaction based places such as 
Interaction::Message::Destructor, and deployment based 
places such as Host::Object::Completions. Similar to 
places, transitions are generated according to three 
categories: workload, interaction, and deployment. An 
example transition is shown in Table 1: 

Table 1. Interaction::Message::Object::Return 
Type 
Immediate Transition 
Multiplicity 
0, otherwise 
1, Object Multiplicity > 1 and Message = Return 
Input Arcs  
Place Weight Color Multiplicity Inhibito

r 
Object::Processor 1 <o, m> 1 Yes 
Object::Queue 1 <O, M> 1 No 
Output Arc   
Place Weight Color Multiplicity  
Object::Processor 1 <O, M> 1  

 

3. Web-based Distributed Systems and 
Performance Testing 

3.1. N-tier architecture and performance 
testing 

N-tier architecture is the most popular style for web-
based distributed system. The N-tier architecture, usually 
including client, web tier, middle tier and database, offers 
to create a more scalable and cost-effective infrastructure in 
web-based systems as shown in Figure 4. Because of the 
multiple client/server relationships and potential masked 
bottlenecks, performance testing is important for those 
systems. The M-Net system tested in this paper is based on 
J2EE architecture which facilitates N-tier application 
development.  

 App
Server

Browser Web 
Server 

Internet DBMS

Total Response Time 

Response Time Response TimeResponse Time

 

Figure 4. Web-based distributed system performance 

3.2. Characteristics of M-Net 
M-Net [11] is a web-based electronic conferencing 

system, which enables people in geographically dispersed 
locations to hold virtual meetings through the internet. It 
also includes various applications to support collaborative 
meetings, including chat, slideshow, IxiFtp, and layered 
whiteboard. 

The M-Net can be considered as a three-tier 
client/server system. The three tiers are client, server, and 
database. M-Net client is actually a Java applet that is 
downloaded from a server, and run in any browser. Figure 
5 shows the communication patterns of M-Net. 

Many functions of M-Net require interactions among 
clients, servers and database, though client-to-client 
interactions are still handled through client-to-server 
message passing. Details are described in section 4.1. 
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(Java Application) 

Central Server 

(Java application) 

MS-  
Access 

JDBC 
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(Java Application) 
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(Java Application) 

App 

Client 

App 

Client 
… App 

Client 

App 

Client 

App 

Client 

App 

Client
… … 

Central 

Client 

Central 

Client 

Central 

Client 

Central 

Client 
Database Server 

(Java application) 

 
Figure 5. Top level system architecture of M-Net 

 
3.3. Performance Testing Tools 

We need tools to test J2EE systems. Among all the 
performance testing tools, load testing tools were 
determined as the most appropriate for their ability to 
simulate usage and measure the performance. There are 
three most popular load testing tools. LoadRunner is a tool 
that predicts enterprise-level system behavior and 
performance by emulating thousands of users and employs 
performance monitors to identify and isolate problems. E-
Load is to perform load testing, scalability testing, and 
stress testing of enterprise Web applications. The Grinder 
is a pure Java load-testing framework. It is freely available 
under a BSD-style open-source license. The Grinder has a 
graphical console application, comes with a mature plug-in 
for testing HTTP services, as well as a tool which allows 
HTTP scripts to be automatically recorded. In our 
experiments, we made available and used both Grinder and 
LoadRunner to test the response time of our system. 

4. Performance Study on M-Net 
The well-known 80/20 rule suggests that 20% of 

scenarios may account for 80% of the work. Hence the 
PSIM model requires that these critical 20% of scenarios 
be identified and simulated. These critical scenarios either 
have high execution frequencies, or carry heavy workloads. 
For experiment purpose, we identified five critical 
scenarios for M-Net. These critical scenarios and how we 
identified them are reported in our previous work [4]. The 
five critical scenarios are cited as below: 

(1) Log on and log off. 
(2) Meeting Procedure. 
(3) Open slide show. 
(4) Display a slide and use the pointing device. 

(5) Close slide show. 

Among all the five critical scenarios, “Meeting 
Procedure (MP)” scenario will be studied as an example in 
the following subsections. A tool SABRE-TM [4] is used 
to create the graphic scenarios and explore the relationships 
among them. We apply PSIM approach and execute 
performance testing to each of these scenarios. PSIM 
simulations give measurements such as utilization, 
response time, residence time, queue length, and 
throughput for both interaction and hardware (CPU, 
memory, hard disk, etc.). During the performance testing, 
we collect metrics such as CPU utilization, memory usage, 
transaction response time and throughput. We focus on 
both response time and scalability.  

Response time is defined as the length of time that a user 
must wait from the instant that they submit a request to the 
instant that they view the response to that request.  

Scalability is determined by how consistent the response 
time is when additional concurrent users are added. As the 
number of concurrent users is increased, if response time 
increases, then poor scalability is indicated.  

In this study, we particularly focus our interests on the 
response time and CPU utilization as we believe that these 
two factors are essential to indicating system scalability. 
Most other metrics such as queue length, throughput, 
network utilization, disk utilization, and memory usage are 
all eventually reflected on this leading metric “response 
time”. 

4.1. PSIM Simulation on “Meeting Procedure 
(MP)” Scenario 

In the M-Net system, there are many runtime 
interactions among users which are handled through 
servers. Before building PSIM model, complex usage-
patterns representing a mass of critical system activities 
should be created. In this section, the most frequently used 
scenario “Meeting Procedure (MP)” is studied as an 
example. The MP scenario illustrates the procedure when a 
meeting member wants to talk. At the start of a meeting, 
the chairperson initially holds the floor. During the meeting, 
the floor can be held by any user. When one user wants to 
express his ideas, he should first request the floor from the 
application server. The application server contacts the 
central server (DBServer) to identify the current 
floorholder, then it sends a message to the current 
floorholder. If the floorholder agrees to release the floor, 
the application server will give the floor to the requester. 
The DBServer then needs to update the database entry 
accordingly. The whole procedure is depicted in the 
extended sequence diagram (Figure 1 in section 2.1.1). The 
parameter values come from prototyping or requirements. 
Specific hardware values such as instructions per cycle 
come from hardware specifications or real measurements. 
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In the extended collaboration diagram, shown in Figure 2 
in section 2.1.1, the distance between Database Server and 
Central Server and the distance between Central Server and 
Application Server are set to 100m, while the distances 
between client and all the servers are set to 8km1.  

Without lose of generality, we assume that request for 
floor follows the Poisson distribution.  

The duration of the simulation was set to 30 minutes, as 
shown in Figure 3 in section 2.1.2. We simulated the 
“Meeting Procedure (MP)” scenario with different 
workloads. Both the simulation and the test are based on 
five different inter-arrival rates: 1, 0.3, 0.1, 0.05, and 0.008. 
The relationships among Poisson arrival rate, number of 
meeting members, and number of requests per second are 
shown in Table 2. Values in this table came from the 
complex usage-patterns, which are created from usage data 
collected during the past two years, and assumptions based 
on the study of similar systems.  

 
Table 2. Relationships between request and 

number of meeting members 
#(Meeting 
Members) 

10 20 50 100 500 

#(Request to 
talk)/sec 

1 3 10 20 120 

Arrival rate 
(Poison) 

1 0.3 0.1 0.05 0.008

 

After specifying the arrival information, all processes 
are assigned to particular hosts. The Application Server, 
Central Server, and DBServer are installed on machines 
Kyoto, Osaka, and Cancun, respectively. Initial memory 
and disk usage are carefully denoted for each process and 
host. Also, since the processes have not been decomposed 
into threads, they are assumed to be single threaded. As a 
result, each process is supplied with a default main thread. 
Each thread then is allocated to a particular allocation 
domain and given scheduling attributes. The attributes 
indicate that all the threads run at a high priority in the 
system scope, and with a FIFO order. Osaka allocation 
domain is depicted in Figure 6. 

                                                                 
1 For telephony applications, distance represents a major concern 

of system performance. 

 

: Host

default :
Allocation 
Domain

main : Thread

scheduling scope = System 
scheduling policy = FIFO 
priority = 127 

: Proxy Server

initial memory usage = 2 MB

Osaka:: Host

default :
Allocation 
Domain

main : Thread

scheduling scope = System 
scheduling policy = FIFO 
priority = 127 

 Central Server

initial memory usage = 3 MB

Figure 6. “Meeting Procedure” scenario (Central 
Server Allocation): Deployment diagram with 

workload extensions  

From Figure 7, we can see that the response time 
remains steady when the inter-arrival rate is no less than 
0.1 but keeps climbing when the inter-arrival rate is 0.05. 
This means the software design and deployment could not 
handle the requests when arrival rate reaches 0.05. 
Moreover, the heavier the workload, the higher the slope.  
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Figure 7. Average response time from PSIM 

After studying the performance metrics on servers, 
clients, CPUs, network interfaces, connections, and 
different queues, which are all collected during the 
simulation, we identify the Cancun CPU as bottleneck for 
this performance problem. With the simulation result, 
software designers have better cues to assess their system 
architecture design or resource deployment. After 
modifying their design, they can apply the PSIM approach 
again. Assisted by the PSIM-suite, designers can quickly 
reevaluate the modified design. Through this iteratively 
redesign – PSIM simulation procedure, causes for 
performance bottlenecks existing in software design can be 
finally identified. If there is no way to get rid of 
performance problem, the performance requirements 
themselves may not be satisfiable, or system requirements 
may not be accurate or realizable. Then requirements 
engineers need to get involves and the software 
development retracts back to requirements engineering 
stage. 
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4.2. Performance Testing on “Meeting 
Procedure (MP)” Scenario 

In the previous section, we assume that the request for 
floor follows Poisson distribution and the relationships 
between inter-arrival rates and numbers of request per 
second are shown in Table 2. In this section, we use 
LoadRunner to automatically generate client requests and 
test the real response time for the MP scenario afterwards. 
The comparison of runtime measurement and PSIM 
simulation results for average response time are shown in 
Table 3 and Figure 8. 

Table 3. Average response time for the MP 
scenario 

# (Request Per 
second) 

1 3 10 20 120

Arrival rate 1 0.3 0.1 0.05 0.008
Real testing 50.3421 46.3253 53.62 89.2 ∞ 

PSIM 46.88 46.88 46.93 67.233 90.9
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Figure 8. Comparison of real testing and PSIM 
simulation for average response time in the MP 
scenario  

From Table 3 and Figure 8 we can see that both runtime 
measurements and PSIM simulation have similar data 
patterns. The response time at arrival rate 1 falls below 60 
because there is no completion during the first 60 seconds 
due to the hold time attached to message 9 “do his talk” in 
Figure 1. Both of the real testing and PSIM simulation 
show that the system suffers from the heavy workload 
when the arrival rate reaches 0.05. One big difference is 
demonstrated when request arrival time reaches 0.008. 
PSIM gives response time 89.6 while in real testing this 
value is infinite. This happens because the distributed 
system was actually down under the stress workload so that 
the user could never gain response from the server. 
However, PSIM simulation tool takes each system as an 
ideal software system which will never fail. Therefore, 
even though the server is overloaded, and the service queue 
keeps growing, under PSIM the server still generates 
results and produces responses. When “server down” event 

happens, we can only identify it by studying the response 
time curve itself. If this curve keeps climbing sharply, the 
server may not work as usual. It is hard to differ “server 
down” from “server busy”, but we can still identify them 
by running longer simulations and comparing slopes of 
different response time curves. 

We also notice that the difference between the results 
obtained from PSIM simulation and the runtime 
measurements become evident as the load increases. This is 
due to the fact that our PSIM model only takes the major 
resources into account. Some resources, such as disk 
caching, CPU caching, and computer bus speed, are not 
negligible. However, these resources are not taken into 
account in our PSIM models. When system encounters 
performance problem, both its hardware and software will 
have abnormal behaviors. The blunt “lines of code” 
variable makes the accuracy even worse. 

CPU utilization for server Cancun is shown in Figure 9. 
Both PSIM simulation and real testing illustrate the 
exhaustion of CPU resource at arrival rate 0.008.  
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Figure 9. Comparison of real testing and PSIM 
simulation for Cancun CPU Utilization in the MP 
scenario  

Originally the Database Server was installed in the same 
machine with the Central Server. Later on we changed the 
system deployment by moving the Central Server to 
another machine. This deployment modification may incur 
two contrary effects: (1) Performance improvement 
because of the increase of computing power; (2) 
Performance degradation by introducing extra network 
connection. PSIM simulation demonstrated that the 
deployment change reduced response time by an average of 
0.01 second while the LoadRunner testing shows the 
decrease in response time is only less than 0.0002 second. 
This fact reveals one deficiency in PSIM tools: the 
methodology does not address network collisions and hop 
delays. In addition, TCP establishment delay was not 
explicitly shown with messages in any of the extended 
UML diagrams. Except for the insufficient accuracy, PSIM 
is effective in predicting system performance at the same 
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accuracy level with runtime performance testing, and hence 
help make decisions on software architecture. 

Empirical study on all the other four M-Net critical 
scenarios obtained similar results and proved that PSIM is 
capable of predicting M-Net system performance and 
identifying performance bottlenecks. 

5. Conclusions and future work 

In this paper, we validated our approach PSIM, a 
technique to predict system performance early in software 
lifecycle, by performing an empirical study on a web-based 
application, M-Net. Based on usage data collected during 
past experience, we identified critical scenarios and usage 
patterns. For those critical scenarios, we applied PSIM to 
examine software system performance, conducted real 
testing through performance testing tool, and compared 
results from both experiments to evaluate the effectiveness 
of PSIM. The results show that PSIM is promising in 
predicting software system performance and identifying 
performance bottlenecks. It hence provides a plausible way 
for software designers to evaluate their design and validate 
the performance requirements during early stages in 
software development.  

Our study showed that the PSIM methodology 
overcomes many of the limitations with previous UML 
performance modeling techniques. First and foremost, the 
methodology builds a linkage between performance 
modeling and functional decomposition. The system 
architectures and software designs can be directly 
simulated and the simulations can determine whether the 
architectures and designs will meet performance 
requirements. Furthermore, the methodology is capable of 
modeling complex feature interactions, synchronous 
communication, and a suite of different scheduling 
attributes including priority, scope, and policy. In addition, 
the methodology makes it possible to profile software and 
hardware resources in terms of utilization, throughput, and 
residence time. Memory and disk space can be planned 
with this methodology as well. Also included is the ability 
to model different arrival and processing delay 
distributions. 

Still, there are areas that can be improved. For instance, 
the methodology does not address network collisions and 
hop delays. In addition, TCP establishment delay must be 
explicitly shown with messages in interaction diagrams. 
Other topics that were not examined include disk and CPU 
caching, computer bus speed, and the performance of other 
I/O resources such as video cards. The methodology also 
makes it difficult to model retransmissions and network 
element failures. 

Finally, the “lines of code” variable does not seem to be 
an accurate tool for calculating CPU service time. We may 
need to elaborate more in this variable to make it a feasible 
factor for performance evaluation. Another consideration 
might be to add probabilities to messages to allow more 
than one sequence per interaction. Moreover, when more 
scheduling policies are desirable, a time slicing policy may 
be included. 
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