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The complete characterization of a flaw requires information about 
the flaw type (crack, void, inclusion, etc.), flaw size, and orientation. 
Here we are only concerned with the determination of the flaw type so 
that the appropriate sizing algorithms can be chosen. This type of 
classification problem using ultrasonic waves is very suitable for employ­
ing the tools and techniques of artificial intelligence [1,2]. Adaptive 
learning methods, for example, have in the past been employed to train 
a flaw classification module so that it can distinguish between cracks 
and volumetric flaws [3]. Some of the limitations of this approach, 
however, have been due to the empirical nature of the features used 
for classification and the difficulty of understanding and adjusting 
the decision-making process when errors occur. 

In contrast, we have chosen to develop a classification scheme 
in the form of a rule-based expert system where the features used by 
the system for classification come from model-based fundamental knowledge, 
and where the rules are made explicit and modifiable. In this paper 
we will describe the nature of the expert flaw classification system 
we are building and demonstrate its use with some ultrasonic data. 
As currently constituted, the domain of knowledge of the system is highly 
constrained. The flaw classifier is concerned with distinguishing between 
single isolated volumetric and crack scatterers. The design of the 
system, however, is such that these constraints are not essential. 

SYSTEM OVERVIEW 

As outlined in Fig. 1, the expert flaw classification system, FLEX 
(Flaw Expert), consists of essentially four major components: 1) a 
user-interface that allows the visual display and manipulation of ultrasonic 
data, 2) a set of tools that allow a user to manipulate and modify the 
rules of the system, 3) a module called FEAP (for FEAture Processing), 
and 4) a module called FLAP (for FLAw Processing). FEAP and FLAP are 
being designed as two separate, cooperating expert systems. 
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Feature Processing (FEAP) 

It is the job of FEAP to take the preprocessed ultrasonic data 
from a given experiment, and determine confidence factors associated 
with each feature being used by the system. These confidence factors 
are numbers in the range [-1,1], where -1 indicates complete certainty 
that a feature is not present, 1 indicates complete certainty that a 
feature is present, and numbers in between indicate the degree of certainty 
or uncertainty (see Appendix). Both FEAP and FLAP manipulate these 
confidence factors according to the conventions and methods developed 
by Shortliffe and Buchanan for the MYCIN project [4]. FEAP also deter­
mines the percentage of the ultrasonic data sets, if there are more 
than one, in which there is positive evidence (positive confidence factors) 
for each feature. Currently, FEAP assumes that the data it uses has 
had non-flaw dependencies removed through the application of the measure­
ment model of Thompson and Gray [5]. This preprocessing is done so 
that we can rationally evaluate features characteristic of the flaw 
type only. FEAP uses a combination of fundamental knowledge of flaw 
scattering properties, and heuristic knowledge based on our familiarity 
with actual experimental data. For example, a Kirchhoff model of how 
a flat crack behaves at normal incidence indicates [6] that in the frequency 
domain we can expect a linearly increasing amplitude with increasing 
frequency (solid line in Fig. 2a). A more exact numerical model of 
the scattering process verifies this linear behavior, but indicates 
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that a modulation also exists (dotted line in Fig. 2a). In principle, 
therefore, we would expect to seek such a characteristic feature over 
the entire bandwidth of our experimental ultrasonic system. In reality, 
however, experimental results (see Fig. 2b) show the presence of this 
feature only up to about the center frequency of the transducer. This 
type of heuristic knowledge is then factored into our actual search 
for, and evaluation of, this feature. 

Currently, the module FEAP is in an early stage of development. 
We have outlined a set of decision trees, for extracting all the features 
and their associated confidence factors, and are now in the process 
of automating that extraction process. However, because of the modular 
nature of the system, flaw classification evaluations are still possible 
by having a human operator replace FEAP and provide the necessary confi­
dence factors to FLAP. Below we wi~l outline a sample application of 
FLEX to some ultrasonic data which does the feature evaluation in just 
that manner. 
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Fig. 2. a) Theoretical response of a crack at normal incidence. b) 
400 micron crack in INlOO. 
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Flaw Processing (FLAP) 

Once the feature evaluation process is complete, FLAP evaluates 
the evidence produced by FEAP according to an explicit set of rules 
and reaches a conclusion as to flaw type. Currently, we are using nine 
features and a corresponding set of nine rules to perform the classifica­
tion. These nine features (see Table 1) were chosen because analytical, 
numerical, and approximate models of the scattering process show that 
they can be expected to help distinguish between single, isolated volu­
metric and crack-like scatterers. For more complicated geometries (flaws 
near a surface, etc.) and flaw types (porosity, microcracking, etc.), 
these features would have to be modified and/or supplemented by other 
flaw features. As indicated in Table 1, both time and frequency domain 
features are used in the evaluation process. Having multiple domains 
has been found, in our test cases, to be particularly useful for handling 
noise and other experim~ntal system inaccuracies. 

Table 1. Features used in FLEX for classification of an isolated flaw 
as to flaw type (volumetric or crack) and the corresponding 
domain in which the feature is defined. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Feature 

Positive-Leading-Edge-Pulse 
Flash-Points 
Rayleigh-Wave 
Creeping-Wave 
Ringing 
Linearly-Increasing-Amplitude 
Plateau-With-Shallow-Nulls 
Decreasing-Amplitude-With-Deep-Nulls 
Sharp-Nulls 

Domain 

Time 
Time 
Time 
Time 
Time 
Frequency 
Frequency 
Frequency 
Frequency 

The flaw classification rules used by FLAP exist in two forms: 
external and internal. The external form of the rules is designed for 
English-like readability and .easy modification by non-programmers. 
The external rules are in the form of (if ..• then ..• ) types of conditional 
statements where the "if" part of the rule is called the antecedent 
part of the rule and the "then" part is the consequent. A typical external 
rule in FLAP is: 

(Rule 204 
(if 

(then 

ringing is detected in the trailing response of at least 50 
percent of the flaw signals in the time domain) 
there is weak belief in the accumulating evidence supporting 
the determination of a volumetric flaw) 

There are four important pieces of such a rule: 1) the feature 
it applies to, 2) the percentage of flaw signals where this feature 
exists, 3) the qualification (e.g., weak belief) on the strength of 
evidence associated with this feature, and 4) the type of evidence (accum­
ulating or non-accumulating). The percentage value is used as a threshold 
to decide if the evidence is sufficient to warrant invoking the rule. 
This gives us, in a simple manner, a way to account for uncontrollable 
uncertainties in the system, such as noise, and to minimize their influence 
on the flaw classification process. Similarly, the use of phrases such 
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as "weak belief" in our rules allows us to control the "weight" of the 
evidence associated with that rule. Note that, unlike adaptive learning 
systems, such weights are explicit in their meaning and modifiable in 
clear English text. The use of accumulating and non-accumulating evidence 
allows us to merge the existence of strong features (non-accumulating 
evidence), where the existence of a single data set with this feature 
is sufficient to add this evidence into our conclusion, and less strong 
features (accumulating evidence) that are indicative of flaw type, but 
where an average value over all data sets is taken as the net evidence 
for this feature. Actually, our feature evidence is categorized into 
three classes: 

(1) Sufficient. Example: The unique response of linearly increasing 
amplitude in the frequency domain is sufficient evidence to conclude 
that the flaw type is a crack. This type of evidence is considered 
to be non-accumulating. 

(2) Necessary. Example: We always expect to see a negative leading 
edge pulse in the time domain for cracks. If positive evidence exists 
for a positive leading edge pulse, we record negative accumulating evidence 
for cracks. 

(3) Indicative. Example: Ringing, or resonance, in the time 
domain is indicative of a volumetric flaw. When a net positive evidence 
is found for this feature, we record positive accumulating evidence 
for a volumetric flaw. · 

The external rules of FLAP are automatically translated into internal 
form as part of the rule modification tools of FLEX. This internal 
rule form is designed for simple evaluation by the program. For example, 
the above Rule 204 would translate to: 

(RULE 204 
(IF (>= (FEAT-PC (QUOTE RINGING)) 50)) 
(THEN (SETQ ACC VOL EVD 

(CONS <* 0.3 (ZERO-CLIP (FEAT-CF (QUOTE RINGING)))) 
ACC_VOL_EVD)))) 

Once all the external rules are translated into such internal forms, 
it is the task of FLAP to evaluate these rules and reach a conclusion 
based on the confidence factors and percentage values provided by FEAP 
(or an equivalent human operator). This part of FLAP is a simple inference 
engine whose actions can be summarized as follows: 

Rule evaluation consists of two phases: evaluating the rule antecedent 
and evaluating the rule consequent. Recall the rule antecedent is the 
conditional or "if" clause. If the conditional is true, then the conse­
quent or "then" clause of the rule is evaluated for side effects, i.e., 
making an entry into one of the evidence lists supporting the two hypothe­
ses. At the current time, FLAP selects every rule for evaluation without 
regard to order or weight. A rule is said to "fire" if the antecedent 
is true. 

Another capability of FLAP is its ability to explain the results 
of its classification. We have chosen to implement this feature of 
the system in the form of an audit trail which provides a summary of 
the rule firings and the evidence (or lack of it) which caused the particu­
lar conclusions to be reached. An example of such an audit trail for 
a specific problem will be given in the next section. 
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The conclusion of the system is in the form of the total evidence 
(confidence factors) for both volumetric and crack-like flaws). Typically, 
there may be positive evidence for both types of flaws. If, however, 
there is a wide enough variation in this evidence, a firm conclusion 
can be reached. 

FLEX is currently being developed on a Symbolics 3670 system using 
Symbolics extended Common Lisp. The user interface, which employs bit­
mapped graphics and a mouse, is necessarily system dependent. The overall 
architecture, knowledge representation scheme, and inference strategy 
are not system dependent. Our expectation is that production-oriented 
implementations will be possible on a variety of 32-bit microcomputers. 

AN EXAMPLE FLAW CLASSIFICATION 

To see some of the elements of the behavior of this system, we 
have given in diagram 1 an outline of the application of FLEX to the 
classification of an artificial 400~m radius crack placed in a sample 
of INlOO. Thirteen different time domain waveforms and corresponding 
frequency domain results were available from this sample through the 
use of the multi-viewing transducer system developed at Iowa State by 
Dr. D. 0. Thompson and his co-workers [7). Each of the waveforms or 
spectra corresponded to a different "look-angle" at this flaw. In diagram 
1, we have followed the behavior of this sytem by examining in detail, 
for this particular example, one of the nine rules, Rule 202, and its 
consequences. Diagram 1 shows the external form of this rule and the 
internal form that this rule is translated into by the Translator. 
For this particular example, a human operator, using the visual display 
features of FLEX, examined all thirteen look-angles and provided estimates 
of the confidence factors associated with each feature. This data was 
fed into the inference procedure of FLAP and the conclusion shown was 
drawn. As mentioned previously, there is typically evidence for both 
flaw types, as we see here. However, we also see that the difference 
in confidence values is strong enough so that one could, with moderate 
confidence, conclude that this was a crack. 

By invoking the explanation facility, we can see the reason why 
each rule did or did not fire. In the case of Rule 202, we found flash­
points in 100 percent of the look-angles so the threshold of 50 percent 
was exceeded and the rule fired. The value of 0.68 given is the average 
confidence factor given for this feature over the thirteen look-angles. 
This value is multiplied by 0.5 to factor in the weight of the evidence 
(moderate belief) for this feature (see Appendix). Following this explana­
tion in diagram 1, we see a tabulation of all the non-accumulating and 
accumulating evidence from all the rules for this example. Rule 202 
is seen to provide an entry in the accumulating crack evidence list 
(ACC-CRK EVD) as it should. Finally, we note that the total confidence 
factors given in the conclusion are just the "sum" of all the accumulating 
or non-accumulating evidence for crack or volumetric, where the "sum" 
is labelled with an M superscript to indicate it is actually carried 
out according to the methods developed for the MYCIN expert system [4) 
(see also the Appendix). 

SUMMARY AND CONCLUSIONS 

We have shown some of the major elements of FLEX that are currently 
operational. As mentioned, the automating of the feature extraction 
portion of the system (FEAP) is a particularly challenging task that 
we are now undertaking. Extension of this system to do intelligent 
signal preprocessing and post-classification flaw s~z~ng is also possible 
because of the very modular nature of the system. However, probably 
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more important from a practical standpoint, is the ability of the system 
to handle different testing needs and classification problems. The design 
of the system will also take into account this important necessity. 
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APPENDIX 

Confidence Factor Notes 

1. Confidence Factors (CF's) are not the same as probabilities. 
Particularly, a CF of N for conclusion X does not imply a CF of (1-N) 
for conclusion not-X. For this reason, CF's are usually calculated 
and manipulated with heuristics developed as part of the expert system. 

2. The CF for a particular feature evaluation can be regarded 
as the difference between the belief that the feature is present and 
the belief that the feature is not present. That is, 

CF = MB - MD 

MB Measure of Belief. 0 =< MB =< +1 
MD Measure of Disbelief. 0 =< MD =< +1 
CF Confidence Factor -1 =< CF =< +1 

3. For uncertain judgements, we partition the range of CF [ -1,+1] 
into nine non-overlapping subranges: 

-1.0 =< CF =< -0.9 ------> Certain disbelief 
-0.8 < CF =< -0.6 ------> Strong disbelief 
-0.6 < CF =< -0.4 ------> Moderate disbelief 
-0.4 < CF < -0.2 ------> Weak disbelief 

-0.2 =< CF =< +0.2 ------> Uncertainty 

+0.2 < CF < +0.4 ------> Weak belief 
+0.4 =< CF < +0.6 ------> Moderate belief 
+0.6 =< CF < +0.8 ------> Strong belief 
+0.8 =< CF =< +1. 0 ------> Certain belief 

These subranges have two purposes: 

a. When explaining a conclusion to an end user, map the CF 
values to the applicable partition name. 

b. When getting uncertain judgements from users, map them to 
the CF value which is the midpoint of the applicable partition. For 
example, if a user's confidence in his/her evaluation of ringing is 
"moderate belief", then assign a value of +0.5 to the CF. 

4. The ~ operation for summing accumulating evidence (see the 
note in Diagram 1) is borrowed from MYCIN [4]. For example, in adding 
two positive confidence factors CFl and CF2, the sum is defined as: 
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M 
CFl + CF2 = CFl + (l-CFl)*CF2 

Note that this sum is independent of the order of adding CFl and 
CF2. 
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Diagram 1. An example flaw classification of an artificial circular 
crack in INlOO. 

I EXTERNAL RULES 

• • • (RULE 202 
(IF FLASH POINTS ARE DETECTED IN THE LEADING EDGE RESPONSE 

OF AT LEAST 50 PERCENT OF THE FLAW SIGNALS IN THE TIME DOMAIN) 
(THEN THERE IS MODERATE BELIEF IN THE ACCUMULATING EVIDENCE SUPPORTING 

THE DETERMINATION OF A CRACK) 

I • • • I INTERNAL RULES 

• • • 

TRANSLATOR 

1 
(RULE 202 (IF (>= (FEAT-PC (QUOTE FLASH-PTS)) 50) 
(THEN (SETQ ACC-CRK-EVD (CONS(* 0.5 (ZERO-CLIP) 
(FEAT-CF (QUOTE FLASH-PTS)))) ACC-CRK-EVD)))) 

: I 
I FEATURE EVIDENCE 

• • • 

INFERENCE PROCEDURE 

l 
CONCLUSION 

t THE CONCLUSION: THE FLAW TYPE IS A CRACK WITH CONFIDENCE 0.51 
(THE CONFIDENCE IN VOLUMETRIC IS 0.18) 

• • • 
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I EXPLANATION FACILITY-----+ AUDIT TRAIL 

: l 
RULE 202 FIRED. FLASH-PTS DETECTED IN 100.0 PERCENT OF THE 

SIGNALS (50 PERCENT NEEDED), THE RESULTING CONTRIBUTION 
TO ACC-CRK-EVD IS (0.5 * 0.68 = 0.34) • 

• • (NAC-CRK-EVD 0.0) 
(ACC-CRK-EVD (0.175 0.108 0.34)) 
(NAC-VOL-EVD NIL) 
(ACC-VOL-EVD (0.03 0.075 0.081) 

M M 
I NOTE: 0.51 = 0.175 + 0.108 + 0.34 

M M 
0.18 = 0.030 + 0.075 + 0.081 
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