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Abstract

Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately
needed therapies designed to combat a range of disorders associatedwith aging. As such, the field was selected as the focus for the 2014meeting of the
AmericanSociety forNanomedicine.Regenerative, protective, immunemodulatory, anti-microbial and anti-inflammatory products, or imaging agents
are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-
brain barrier. Diagnostic imaging serves to preciselymonitor disease onset and progressionwhile neural stem cell replacement can regenerate damaged
tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies
serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders.

From the Clinical Editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical
setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage.
Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine
delivery systems that would affect stem cell repair and regeneration in the nervous system.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Nanotechnology approaches for targeted delivery of therapeutics and for control of stem cell behavior. These are outlined in box designations in their
utilities to address neurological disorders.
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development of desperately needed therapies and diagnostics to
combat degenerative, inflammatory, infectious and genetic disorders
associated with aging. This growing field was selected as the focus
for the 2014 meeting of the American Society for Nanomedicine.1

A fundamental hurdle in developing effective therapies for
nervous system disorders resides in an inherent inability of nerve
cells to regenerate and/or even repair modest damage incurred to
the brain and spinal cord.2 Nervous system injury follows a variety
of insults such as stroke, trauma, developmental disorders, aging,
malignancy, chemical exposures or microbial infections.3-7

Typical treatment options utilized, or in development, include
therapeutic symptomatic management, stem cell implantation,
neural tissue grafts or guidance strategies.8-12 Another significant
challenge associated with improving nervous system function
includes transport of therapeutics across the blood-brain barrier
(BBB). Typically, the therapies need to be delivered to the site of
the nervous system malfunction and be available long-term. This
could be overcome by surgical delivery of therapies to the affected
brain and spinal cord sites. Alternative approaches are site-directed
drug delivery. However, in contrast to other regions of the body,
the nervous system poses unique challenges to site-specific drug
delivery as the BBBmoderates entry of substances into the brain.13
Nanotechnology approaches offer several opportunities to
overcome these challenges, including the ability to circulate drug
for extended times and to permit functionalization with targeting
moieties to promote transport across cell membranes.6,14 This
could facilitate the use of multifunctional therapeutic, imaging
and diagnostic devices, called theranostics.15

Drug targeting to specific locations is needed for enabling
delivery across the BBB and for controlling the fate and behavior
of the stem cells in stem cell-based therapies. This review
surveys recent developments in delivery systems for nanomedi-
cines that cross the BBB and those that affect stem cell repair or
regeneration (Figure 1). These nanotechnology approaches serve
as enabling technologies in the emerging field of nanoneur-
omedicine related to applications in diagnostics, imaging and
therapeutics of relevance to the nervous system.
Advances in polymer chemistry and nanoparticle delivery
for central nervous system (CNS) targeting

In many cases, nervous system targeted therapies include
antioxidants, anti-inflammatory agents, immunomodulatory

Image of Figure�1


Table 1
Summary of polymeric nanoparticle use for enhanced CNS drug delivery.

Approach

Nanoparticle properties Targeting In vivo efficacy Ref

Core
polymer

Linkage Surface
coating

Size
(nm)

PDI/
GSD

Z-Pot.
(mV)

Payload Encap.
%

Ligand Amt. Admin
Route

Dosage
(mg/kg)

Response

Receptor PBCA Acrylate PS80 230 NA NA Dalargin 30 (S) NA NA i.v. 7.5 42.5 (28.9)
% MPE

18

Receptor PBCA Acrylate PS20 230 0.1 NA Dalargin 30 (S) NA NA i.v. 10 7 20

PS40 85.2 (20.7)
% MPE

7.4 (25.9)
% MPE

PS80 97.7 (4.6)
% MPE

C40 17.9 (16)
% MPE

Receptor PBCA Acrylate PS80 270 NA NA Doxorubicin 80 (S) NA NA i.v. 5 6 μg/g 21

Receptor PBCA Acrylate PS80 270 1.07 NA Doxorubicin 70 (S) NA NA i.v. 3 × 2.5 43 % IST 22

Receptor PBCA Acrylate PS80 290 0.08 NA Loperamide 47 (S) NA NA i.v. 3.6 53.9 (34.2)
% MPE

23

Receptor PLGA/PVA Ester PS80 239.9 0.187 8.2 Doxorubicin 75 NA NA i.v.
i.v.

3 × 1.5 40 % LTS 27

P188 242.4 0.211 6.0 40% LTS
PLGA/HSA P188 408.6 0.289 8.1 97 25% LTS
PLGA/PVA PS80 166.9 0.266 −25.0 Loperamide 77 7 80% MPE

P188 168.5 0.346 −17.9 80% MPE
PLGA/HSA PS80 292.4 0.092 −18.9 82 40% MPE

P188 287.7 .077 −17.5 50% MPE
Receptor PLGA/HSA Ester P188 468 (19) .404

(.158)
−11.2 Doxorubicin 88.5 Lecithin 7% i.v. 3 × 2.5 -12.1 (24.1)

μg/mm2

31

Receptor Chitosan-
PEG

Ether NA 637 (2) NA 18 (4) Z-DEVD-
FMK

23 (1) Transferrin
Receptor Mab

NA i.v. 1 PEC 62

Receptor PBCA Acrylate NA 300 0.177 NA Dalargin (S) Apo B 12.5
μg/mL
(S)

i.v. 7.5 15.17 (14.11)
% MPES

107

Apo E 26.08 (21.43)
% MPE

PS80 Apo B 64.68 (25.61)
% MPE

Apo E 52.09 (11.22)
% MPE

NA Loperamide (S) Apo E 3.6 52.8 (35.5)
% MPEP

PS80 NA 96.7 (12.1)
% MPE

Apo E 96.7 (12.1)
% MPE

Receptor PEG-PLGA
(50:50)

Ester-Ether NA 120 NA −14 Urocortin NA Lactoferrin 42/
particle

i.v. 28 μg 25% 87

Adsorption PLGA Ester P188 155 (26) 0.13
(0.01)

−15.2
(5.6)

Loperamide 15.1
(0.7)

g7 peptide 39
umol/g

i.v. 2.7 60% MPE 108

(continued on next page)
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Table 1 (continued)

Approach

Nanoparticle properties Targeting In vivo efficacy Ref

Core
polymer

Linkage Surface
coating

Size
(nm)

PDI/
GSD

Z-Pot.
(mV)

Payload Encap.
%

Ligand Amt. Admin
Route

Dosage
(mg/kg)

Response

Receptor PEG-PLGA
(25:75)

Ester-Ether NA 132 NA −21.42 Novel active 57.52 NA NA i.v. 4 PPT 29

Adsorption NA 151 −19.59 peptide 48.18 TGN 25% 1 PEC
Receptor PLA Ester PVA 300 or

125TEM
0.1 or
1.05

−19.3
(0.5)

Ritonavir 89.7 NA NA i.v.
(d10)

45 10 μg/g 30

Adsorption 157TEM 0.14 or
1.06

2.4
(0.3)

TAT 0.23
μg/mg

80 μg/g

Adsorption P407-
Chitosan

Ester-Ether PEG 148 (31) .30 (.01) 12.1
(0.8)

β-galactosidase N90 RVG29 1.8% i.v. 5 ~25% of
dose

63

Cell NA NA P407 383 NA −10.2 Atazanavir 100 (H) NA NA s.c. 2 × 250 10.6 ng/g 105

365 −24.6 Folate 40% 33 ng/g
471 −21.5 Ritonavir NA 4.1 ng/g
454 −18.3 Folate 40% 34.5 ng/g

Values inside parenthesis are composition for core polymer or standard deviation for numerical values.
NA – Not applicable or not analyzed in reference.
Size – Hydrodynamic diameter determined from DLS unless otherwise noted.
Encap % – percentage of drug encapsulated into core polymer. (S) – surface absorption of drug. (H) – core is homogenized drug.
i.v. – intravenous administration via tail vein.
s.c. – subcutaneous administration.
Dosage – mg drug/kg mouse unless otherwise noted. Multiple administrations are listed as number of administrations × dose of drug for each administrat .
Response – Various methods utilized to evaluate response compared to either soluble drug or nanoparticle drug without targeting modification: concentration g/g, ng/g) given as mass of drug present per mass of
brain tissue; PEC – performance equivalent to control; PPT – positive performance to test; MPE – maximal possible effect; LTS – long-term survival; IS – increased survival time.

718
S.K

.
M
allapragada

et
al

/
N
anom

edicine:
N
anotechnology,

B
iology,

and
M
edicine

11
(2015)

715–729
ion
(μ
T



Figure 2. Strategies for nanoparticles to traverse the blood-brain barrier.
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compounds, growth factors, genes, siRNA and anti-microbials.
The rational design of particles for central nervous system (CNS)
drug delivery should take into consideration both drug-polymer
compatibility and BBB transport. Development of a CNS
targeting strategy is dictated by the desired surface properties
of the particulate drug carrier. In this context, particle chemistry,
particle surface modification and functionalization, and drug
targeting strategies are discussed.

Particle chemistry

Nanoparticles can provide targeted delivery to specific areas
of the nervous system by choice of appropriate sizes and
chemistries. Several classes of biodegradable polymers have
been studied for CNS delivery and include polyalkyl cyanoac-
rylates, polyesters, polyanhydrides, and polyethers. These
polymers demonstrate tunable erosion profiles, easily modified
surface chemistry, and sustained payload release profiles.16,17

The chemistries are summarized in Table 1.

Poly(alkyl cyanoacrylates)
Dalargin, a hexapeptide, adsorbed to the surface of poly(butyl

cyanoacrylate) (PBCA) nanoparticles and coated with the
surfactant polysorbate 80, provided the first successful delivery
of a peptide administered by intravenous injection to the CNS.18

In this and related work, polysorbate 80 coating of the
nanoparticle proved essential for BBB penetration. PBCA is
readily biodegradable with no toxic metabolites and is rapidly
cleared.19 The rate of degradation can be modified by
substitution of the alkyl group, but these substitutions also affect
metabolite toxicity. This is the most well-established polymeric
nanoparticle delivery system for crossing the BBB, and has been
loaded with compounds that include the hexapeptide
dalargin, 18 ,20 doxorubicin, 21 ,22 loperamide, 23 and
tubocurarine.24 Therapeutics predominantly were adsorbed
onto the PBCA nanoparticle surface after polymerization. This
decouples the release of the drug from PBCA degradation, often
resulting in poor controlled release.

Polyesters
The biomedical applications of polyesters have been known

for more than 40 years. Degradable polyesters were investigated
for CNS delivery and include poly(lactic acid) (PLA) and
poly(lactic-co-glycolic acid) (PLGA).25 Polyesters are commer-
cially available and approved for human use by the U.S. Food
and Drug Administration (FDA, Silver Spring, MD) making
them promising candidates for use as biodegradable platforms.
One of their most important properties is their low cytotoxicity
attributable to their rapid degradation into metabolites that are
quickly processed by cells.26 Additionally, the preparation of
polymers into nanoparticles is such that the therapeutic agent can
be incorporated into the polymer matrix, coupling their release to
polymer degradation kinetics.25,26 Surface modifications can be
performed either by altering the polymer prior to particle
formation or by conjugation to the surface post-particle
formation. There are advantages and disadvantages to both
methods of surface modifications. CNS delivery of drugs is
enhanced by polyester core nanoparticles including, but not
limited to, loperamide,27,28 active peptides,29 ritonavir,30 and
doxorubicin.27,31

Image of Figure�2
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Even through the use of polyesters for drug delivery,
shortcomings remain for their general use. Notably, all
polyesters undergo bulk erosion due to the stability of ester
bonds,32,33 which often result in rapid, or burst, release of drug
payloads.28,31,34-36 Degradation, notably, depends on the
backbone chemistry. Polyglycerol adipate is more hydrophilic
because of the single carbon chain compared to PLA, which has
a two-carbon chain backbone and shows much slower
degradation. The lactic acid component of PLGA can easily be
varied between 50 and 100% and the release profiles of
encapsulated payloads extended.36,37 The molecular weight of
the polymer can be varied to marginally control the release of
payload.35,36,38 Coating the PLGA surface with hydrophobic
materials, like gelatin or chitosan34, can decrease the initial drug
burst and extend the release period. The rapid degradation of
polyester products occurs in microenvironments with a low pH
(1.5 – 3.6),39,40 which can be problematic when the therapeutic
payload is denatured in parallel.

Polyanhydrides
Polyanhydrides possess good biocompatibility and drug

delivery potential. This has fostered significant research with
these materials.41 Degradable polyanhydrides were developed
for CNS delivery and include sebacic acid and 1,3 bis(p-carbox-
yphenoxy)propane. Polyanhydrides specifically developed for
CNS delivery included implantable wafer systems for the
treatment of Alzheimer’s disease42,43 and for brain cancer.44-46

These polyanhydride implants are degraded into biocompatible
metabolites and are readily eliminated.47 The design and
commercialization of the Gliadel® wafer, a FDA approved
implantable device for the controlled release of carmustine, is an
example of a successful polyanhydride implant48 and is inserted
following surgical removal of brain tumors.

The preparation of polyanhydride nanoparticles allows for the
incorporation of drugs within a polymer matrix, which enables
the release of the payload with the polymer degradation. With
most backbone chemistries (aliphatic or aromatic hydrocarbons),
polyanhydride-based devices are surface degrading.32,33 By
varying the degree of hydrophobicity based on backbone
chemistry, polyanhydride devices can rapidly degrade (days),
or very slowly degrade (over one year), and as such control drug
release.49-51 The incorporation of moieties (e.g., ethylene glycol)
within the polymer backbone shifts the degradation towards a
combination of bulk and surface erosion.17 Polyanhydride
particles are also affected by surface modification of the terminal
carboxylic acid groups.52,53 The monomers released from
polyanhydride degradation are not as acidic (4.2 – 6.5) as
those seen during polyester degradation.39,40 Surface erosion,
along with a wider range of pH microenvironments make
polyanhydrides promising carrier materials. However, polyan-
hydrides are highly susceptible to hydrolytic degeneration with
the half-lives of the anhydrides six orders of magnitude greater
than polyesters.33 Partially due to this hydrolytic susceptibility,
they are not as translatable as the other polymer chemistries.

Polyethers
Synthetic and naturally inspired polyethers have been used in

polymeric drug delivery for over 30 years.54-56 Poly(ethylene
glycol) (PEG) and poly(propylene glycol) (PPG) have been used
as triblock pluronics ([PEG]n-[PPG]m-[PEG]n) together with
other polymers. Those naturally derived polymers such as
chitosan, a cationic polysaccharide, are promising drug delivery
vehicles.57,58 Polyethers are not very susceptible to hydrolytic
degradation since their ether bond is very stable in water.
Instead, polyethers can be degraded either by enzymes, through
oxidation or by dissociation prior to excretion. While there are
specific enzymes for chitosan, degradation of the synthetically
derived polyethers has only been reported in bacterial
cultures.59,60 Without a biodegradation mechanism, polyether
particles synthesized from synthetically-derived polyethers are
inert.61 For CNS delivery, polyether particle cores can either
incorporate chitosan62,63 or be incorporated into the backbone
of other polymers to facilitate desired amphiphilicity in
polyanhydrides.64,65

Particle surface modification and functionalization

While the route of administration can affect the bioavailabil-
ity of nanotherapeutics, intravenous injection remains the
preferred delivery method for evaluating CNS nanotherapeutic
efficacy. When administered intravenously, nanotherapeutics
first interact with the plasma in the circulation. Particle size,
surface chemistry, hydrophobicity and charge are all known to
greatly influence the absorption of proteins, cellular interactions
and duration of circulation.66-68 The presence of a PEG corona
on the particle surface also alters the profile of absorbed serum
proteins on the surface when administered intravenously.69

Additionally, these surface coatings have been observed to
reduce clearance through the reticuloendothelial system
(RES).68,70 Only the polysorbates result in biological effects
after intravenous injection, with polysorbate 80 having the
greatest efficiency.20 This has also been shown to occur in other
drug-PBCA nanoparticles containing doxorubicin.21 Coating
PBCA with polysorbate 80 can facilitate delivery of particle
therapeutics across the BBB, although the exact mechanism of
enhancement is unclear.71,72 In a comparison of surfactants,
multiple polysorbates (20,40,60,80), multiple poloxamers (184,
188, 388, 407, 908), Brij 35 and Cremophors (EZ, RH 40) were
coated onto PBCA nanoparticles with dalargin adsorbed to the
surface. The current consensus is that polysorbate 80 on the
surface affects the type of serum proteins which are adsorbed,
influencing transport across the BBB.73 An alternative route of
administration is intranasal administration that has received
considerable attention in recent years.66-68,74,75 Properties of the
core polymers, including additional modification of the particle
surface either by polyethers (specifically PEG), stabilizers or
surfactants are commonly used to enhance drug delivery to the
CNS. Moreover, the choice of surface functionalization has
significant implications on the overall effectiveness of delivery
across the BBB.76

Polyethers are used as surface modifiers to alter the surface
property of the core nanoparticle for CNS therapies. The surface
attachment of PEG is generally accomplished through conjuga-
tion to the core polymer either pre- or post-particle synthesis,
essentially forming a block copolymer. For example, the
tri-block copolymer pluronic can be used to coat the surface of
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particles through adsorption as a stabilizer in emulsion particle
synthesis. Drug devices and nanoparticles coated with PEG
possess a steric stabilization effect in which the hydrophilic PEG
opposes interactions with the host, especially phagocytosis and
cellular adhesion.20,21,68-73,77-79 Surfactants, including pluronic,
poly(vinyl alcohol) (PVA) and to a lesser extent human serum
albumin (HSA), are used as stabilizers in many nanoparticle
formation methods. While both PVA and HSA are biocompat-
ible, PVA is not biodegradable.80 The use of these stabilizers
controls the size of the particles synthesized, reduce the
polydispersity of the synthesized particle size, and enhance
drug encapsulation efficiency. However, the inclusion of these
surfactants can alter the surface properties of the nanoparticle
core, which can be more important in influencing penetration of
the BBB.76 A summary of particle surface modifications and
their impact on BBB penetration is shown in Table 1.

CNS nanoparticle drug targeting strategies

While particle core chemistry and surface modification can
control the release of the payload and reduce RES clearance,
neither directly addresses the mechanism by which they cross the
BBB. One strategy to move nanoparticles across the BBB is to
initiate transcytosis of the brain capillary endothelial cells
(BCEC). This is accomplished by either binding a ligand for a
surface expressed receptor on the circulation side of the BCEC
(i.e., receptor-mediated) or by adsorbing the particle to the
BCEC membrane, inducing endocytosis (i.e., adsorptive medi-
ated). A second strategy to transverse the BBB is utilization of
innate immune cells, like monocytes and macrophages that
phagocytose nanoparticles with drug payload(s) and carry the
drug within the cells across the BCEC (i.e., cell-mediated). A
schematic of these strategies to transverse the BBB is depicted in
Figure 2. While this section focuses on the use of these
technologies to improve polymeric nanoparticle delivery of
therapeutics across the BBB, these methods have also been
applied to liposomes, solid lipid nanoparticles and inorganic
nanoparticles. Recent reviews have discussed the utility of these
additional delivery systems.25,81

Endothelial transcytosis

Receptor-mediated. Receptors on the BCEC can be targets to
improve nanoparticle uptake through receptor-mediated endo-
thelial transcytosis and include low density lipoprotein
receptor,69,82,83 transferrins,84-87 leptins,88 epidermal growth
factor,89 diphtheria toxin,90 and insulin.91,92 Use of those
cellular receptors and improved BCEC transport is attained by
surface modification of nanoparticles with endogenous ligands,
peptides derived from the endogenous ligands and antibodies
against the receptors. A summary of particle surface modifica-
tions for receptor-mediated endothelial transcytosis and their
impact on BBB penetration is provided in Table 1.

Receptor-mediated endothelial transcytosis engages proteins
differently. In regards to brain endothelial cells, apolipoproteins
adsorbed to the surfaces of polyhexadecylcyanoacrylate
(PHDCA) nanoparticles are biologically distinct from those
adsorbed onto nanoparticles of PEG-PHDCA copolymers.69

Apolipoprotein E (ApoE) and ApoB-100 absorbed on the surface
of the PEG-PHDCA nanoparticles results in particle penetration
of BCEC; whereas, the same amount of opsonizing proteins on
PHDCA nanoparticles results in clearance without BCEC
penetration.69 Two limitations to receptor-mediated endothelial
transcytosis are the quantity of receptors on the BCEC surface
that can limit the amount of transport and the lack of specificity
of expression of these receptors for BCEC, thus limiting
specificity of brain delivery and particle-receptor mediated
transcytosis.93

Adsorption-mediated. Cell-penetrating peptides increase the
delivery of nanoparticles across the BCEC by adsorption-me-
diated transcytosis. Examples include the human immunodefi-
ciency virus type 1 transactivator of transcription protein,30,94,95

poly-arginines,96 and Syn-B vectors.97,98 The herpes simplex
virus type 1 peptide (gH625) has also been shown to increase the
transport of polystyrene particles across the BCEC.99 A modified
opioid peptide (g7) enhances BCEC penetration of nanoparti-
cle-encased drugs by conformationally promoting
macropinocytosis.100 After traversing the BCEC layer, addition-
al modification of the cell surface with antibodies to cell specific
markers was shown to enhance the specificity of g7-nanoparticle
delivery.101 A summary of particle surface modifications for
adsorption-mediated endothelial transcytosis and the in vivo
impact on BBB penetration is outlined in Table 1.

Cell-mediated transcytosis
Cell-mediated transcytosis was first demonstrated utilizing

serotonin-carrying liposomes in monocyte-macrophages.102

Such a transport method was also used in the delivery of
antiretrovirals103 and catalase.104 Crystalline antiretroviral drug
nanoparticles were rapidly taken up into human monocyte
derived macrophages and subsequently transferred to BCEC.105

Experiments performed with catalase-loaded polymeric nano-
particles also showed enhanced brain delivery when the
nanoparticles were pre-loaded into macrophages.106

For this method of delivery, the liposomes were not modified
to be hydrophilic, neutrally charged or an ultra-small size, but
rather to make the particles more amenable to phagocytosis.
Similarly, folate surface modification of nanoformulated antire-
troviral therapy particles to engage the folate receptor on
macrophages resulted in transfer of more nanoparticles to
BCECs in vitro and corresponded to pharmacodynamic
benefits.105 A summary of the use of particles for cell-mediated
transcytosis and their in vivo impact on BBB penetration are
shown in Table 1.
Neural stem and neural progenitor cells

Neural stem cells and neural progenitor cells can play key
roles in addressing neurodegenerative disorders. Studies dem-
onstrating the importance of nanoscale materials and features
that help to regulate neural stem cell (NSC) adhesion,
proliferation and differentiation into specific neural lineages
are discussed. Although details defining mechanisms regulating
NSC behaviors with nanomaterials remain to be clearly
elucidated, a number of significant advances have been achieved
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that can be used for targeting specific neural tissue sites for
delivery as well as nanotechnological approaches to control stem
cell differentiation and behavior. Applications of nanotechnol-
ogies to address neurodegenerative disorders and infections of
the nervous system have been developed. In addition to delivery
of bioactive molecules, the use of NSC and neural progenitor
cells (NPC) synergistically with nanotechnological approaches
offers a novel opportunity to address treatments for nervous
system disorders and may serve as mechanism(s) for repairing
deficits after injury. This requires the development of methods
for controlling the development and differentiation of these cells
in ways that are relevant for their use in cell transplants or within
implants to be used in a variety of CNS or peripheral nervous
system (PNS) targets.

In a developing embryo, NSC can differentiate into all of the
specialized cell types of the CNS and PNS. Of particular interest
is the potential for use of human NSC in regenerative medicine to
treat a range of conditions including spinal cord injury,
Parkinson’s disease (PD), amyotrophic lateral sclerosis and
blindness. Moreover, the ability to use NSC as “off-the-shelf”
cellular targets to improve drug design and validation for
screening is of intense interest to pharmaceutical companies.
NSC are also being studied to improve our fundamental
knowledge of developmental principles as well as to improve
our understanding of CNS birth disorders.

NSCs are multipotential progenitors of neurons and glia that
have been isolated from the CNS. Like NSC, NPC have the
capacity to differentiate into specific types of cells though they
are somewhat more specified in their differentiation
capacities.109 NSC and NPC offer several advantages for CNS
repair. NPCs can proliferate in culture and can survive following
transplantation into the brain, spinal cord and eye, which is being
used as a basis for therapeutic approaches. Here they integrate
and stably express foreign genes, or help replace damaged or
diseased cells.109 They can be clonally expanded, providing a
renewable supply of transplantable material. They can also be
engineered to express exogenous genes for neurotransmitters and
neurotrophic factors that can help neuron survival. Thus, it is
possible that NPC may also be capable of integrating into host
neural circuitry and/or supply trophic factors to enable cell
survival and recovery.

NPC have been isolated from various regions of the CNS,
such as the cortex, hippocampus, subventricular zone, spinal
cord ependyma and retina.110-114 Considerable effort has been
devoted to elucidate the stem cell microenvironment, or “niche”,
controlling cell fate.115 A number of studies demonstrated that
differentiating NPC are regulated not only via intrinsic genetic
control, but also in large part by direct cell-to-cell contact and
cell-to-extracellular matrix interactions, topographical control as
well as by soluble factors.116-122 Such interactions can involve a
complex “cocktail” of these signaling proteins.123

An important strategy to regulate NPC is to manipulate the
microenvironment. Micro- and nanotechnology approaches have
considerable potential to mimic the microenvironment in which
NPC integrate at the site of injury or neurodegeneration.124-127

Nanomaterials have unique biomimetic characteristics and can
manipulate biological and mechanical properties of this
microenvironment.127 This can have profound influences on
neural stem cell differentiation and functional integration.124-126

Different nanomaterial preparations including nanoparticles,
nanofibers, nanotubes and nanotopographical scaffolds can
be fabricated and applied to address critical requirements for
cell control in repair and can best affect the microenvironment of
the CNS.

Nanoparticles are commonly used for stem cell imaging
and tracking; intracellular drug/trophic factor/plasmid DNA
carriers to control stem cell proliferation and differentiation; and
as biosensors to monitor intracellular levels of relevant
biomolecules/enzymes.128-132 Nanofibers and nanotopographi-
cal scaffolds have been used to direct cell fate during
differentiation because they can be designed to mimic the
microenvironment. Nanotubes are mostly used in tissue
engineering due to their mechanical, electrical and thermal
properties. Each of these nanoengineered systems can have a
broad range of applications for cell therapy to address a variety of
neurodegenerative disorders.

Nanofibers

Nanofibers are an important tool in the field of tissue
engineering as they can closely mimic the extracellular matrix
architecture, and thus specifically be used to maximize
cell-substrate interactions.133 Other benefits of nanofibers
include drug delivery and tissue engineering scaffolds. In neural
tissue engineering, they can act as a guidance cue for various cell
types and sprouting axons. A number of studies have
characterized the innate properties of biopolymeric nanofibers
towards survival, proliferation and differentiation of NPC as an
initial step before use for tissue engineering scaffold constructs.
Common methods for fabricating nanofibers involve electro-
spinning, phase separation and self-assembly.133,134 Electro-
spinning (or electro-spraying) is a widely used method for
creating nanofibers ranging from 50 nm to 1000 nm.133 NPC
have been shown to selectively differentiate into various
neuronal and glial cell types depending on the varying tunable
properties of nanofibers. Graphene oxide has been shown to
promote the growth and differentiation of adult stem cells and
when coated in varying amounts on polycaprolactone nanofibers
caused differing expression of neural markers in differentiated
adult hippocampal NSC.135 Coating with high concentrations of
graphene oxide resulted in differentiation to myelinating
oligodendrocytes and also an increased expression of various
molecules responsible for enhancing differentiation for oligo-
dendrocytes during development. Retinoic acid induced differ-
entiation for adult NSC and resulted in expression of neural
differentiation markers when cells were cultured on
nanofibers.136 Polysaccharide chitosan-derived nanofibers en-
hance both proliferation and differentiation of neurons and
human NSC as compared to another polysaccharide, cellulose
acetate.137 Ren et al fabricated nanofibers of varying diameters
and alignment using polyether sulfone and optimized the
differentiation of human pluripotent stem cell-derived neural
crest stem cells towards a Schwann cell lineage.131 Electrical
stimulation of NSC resulted in increased neurite outgrowth when
cultured on electrospun nanofibers of poly-L-lactide (PLLA)
blended with polyaniline (PANi) (PLLA/PANi nanofibers).138
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Xu et al139 examined the efficacy of polyhydroxyalkanoate
(PHA) nanofiber matrices by using three different types of PHA;
poly(3-hydroxybutyrate) (PHB), copolymer of 3-hydroxybuty-
rate and 4-hydroxybutyrate (P3HB4HB), and copolymer of
3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). All
three PHAs in 2- or 3D matrices supported the growth and
differentiation of NSC, but PHBHHx produced the most efficient
NSC neuronal differentiation. Additionally, 3D had a greater
advantage over 2D matrices in regards to NSC attachment and
neurite formation. Immobilization of bioactive molecules on
nanofibers has been tested for culturing NSC. Collagen was
immobilized on nanofibers of copolymer of methyl methacrylate
(MMA) and acrylic acid (AA) (PMMAAA) by an N-(3-dimethy-
laminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/
N-hydroxysuccinimide (NHS)IKV activation process.140 These
collagen-immobilized nanofibers enhanced the attachment and
viability of the cultured NSC. Coupling brain-derived neuro-
trophic factor (BDNF) to nanofibers is more effective in
enhancing NSC proliferation and directing their differentiation
toward neuronal and oligodendrocyte fates compared to soluble
BDNF.141 Silva et al142 encapsulated murine NPC within a
three-dimensional network of nanofibers formed by self-assem-
bly of isoleucine-lysine-valine-alanine-valine -containing
amphiphilic peptides. These nanofibers induced a selective
differentiation of NSC towards neurons and reduced differenti-
ation towards an astrocyte fate. In addition to NPC differenti-
ation, nanofibers can differentiate embryonic stem cells to
neurons.143-145

Nanoparticles

Nanoparticles, typically in the range of 1 to 100 nm are
capable of acting as a whole unit in terms of size-related
intensive properties. Properties of nanoparticles vary signifi-
cantly compared to properties of bulk material due to the high
surface area to volume ratio. In tissue engineering, nanoparticles
are used for delivering therapeutic molecules such as drugs,
antibiotics, growth factors, cytokines and other factors that can
influence differentiation of stem cells.146-151 Magnetic nanopar-
ticles have also been used for manipulating cellular function by
using an applied external magnetic field.152,153 Both natural and
synthetic polymers can be used for nanoparticle fabrication and
encapsulating bioactive molecules. Magnetic nanoparticles made
up of iron oxide and conjugated with CD133 were successfully
used for isolation of NSC from ependymal cells of adult rats.154

All rats remained alive and healthy after the procedure and cells
extracted were found to be capable of neuronal differentiation.

For cancer treatment that targets glioblastoma, a population of
NSC displaying tumor-tropic migratory capabilities of NSC were
loaded with pH sensitive doxorubicin-loaded mesoporous silica
nanoparticles and used as self-destructive carriers.155 Nanopar-
ticles have also been used for cell tracking. NSC loaded with iron
oxide nanoparticles can be transplanted and subsequently tracked
using noninvasivemagnetic resonance imaging.128,131,156 Retinoic
acid (RA) loaded nanoparticles using polyethylenimine (polyca-
tion) complexed with RA and dextran sulfate (polyanion) were
used for controlling the differentiation of subventricular zone NSC
by intracellular delivery of RA.157 A similar strategy was used for
controlling mobilization and migration of human NSC by using
hepatocyte growth factor (HGF) and leukemia inhibitory factor
(LIF) loaded PLGA nanoparticles.158 Titanium dioxide (TiO2)
coated with silicon dioxide (SiO2) selectively differentiate mouse
NSC toward a neuronal phenotype. This can occur by altering nine
different proteins involved in signaling, molecular chaperones,
cytoskeleton and nucleoproteins.159
Nanotubes

Nanotubes are tubular structures with diameters of a
nanometer scale (~1-50 nm). They are considered to have a
very large length to diameter ratio for any material. Carbon
nanotubes (CNT) are most commonly used for tissue
engineering160-162 because of their various electronic,
thermal and mechanical properties. CNT are characterized into
single-walled carbon nanotubes (SWNT) and multi-walled carbon
nanotubes (MWNT) depending on the number of tubes (single/
concentric). Arc discharge, laser ablation, chemical vapor
deposition, liquid pyrolysis and ball milling are the methods
generally used for CNT fabrication.160,163,164 A rope like structure
with a diameter of 1 mm and length of 1.5 cm was created using
CNTs fabricated by chemical vapor deposition.165 Electrical
stimulation of NSC plated on these ropes caused them to
differentiate into neurons at earlier stages compared to NSC
growing on control conditions. Electrical stimulation promoted
neuronal maturation and enhanced the speed of neurite outgrowth.
In a different study, subventricular zone NSC were transplanted at
the site of stroke in a rat model along with hydrophilic (HL) or
hydrophobic (HP) CNT.166 HP-CNT reduced infarct cyst volume
and increased expression of nestin, an NSC marker. Cell
proliferation was increased with improved behavioral outcomes.
Both HP-CNT and HL-CNT increased expression of microtubu-
le-associated protein-2 (MAP-2) and reduced expression of glial
fibrillary acidic protein (GFAP) suggesting that NSC differentiated
towards a neuronal fate when transplanted along with these CNT.
Park et al167 createdCNT patterns by creating amonolayer of CNT
followed by selective adsorption of laminin on the CNT patterns.
Human NSC grew selectively on these patterns and exhibited
significantly different outgrowth behaviors. Mouse embryonic
NSC from cortex were shown to differentiate into neurons,
astrocytes and oligodendrocytes on glass coverslips coated with
layer-by-layer assembled SWNT-polyelectrolyte multilayer thin
films.168 Differentiation (neurite outgrowth and expression of
neural markers) was comparable to NSC grown on glass coverslips
coated with a poly-L-ornithine (PLO) substrate.
Nanotopographical scaffolds

Along with various biochemical cues, topographical cues
have also been shown to alter growth, proliferation and
differentiation of NSC.169,170 The morphology, alignment,
focal adhesion assembly and differentiation of human
NSC (towards neurons and astrocytes) was affected by
fibronectin-coated polyurethane acrylate substrates with diverse
nanoscale shapes (groove and pillar) and dimensions (ranging
from 300 to 1500 nm groove width and pillar gap).171
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Other promising nanomaterials

Various types of hybrid nanomaterials have been synthesized
recently for imaging, therapeutic and biomedical applications.
Hybrid nanomaterials are a combination of inorganic and organic
nanomaterials, such that they not only exhibit the advantageous
properties of the two materials involved but can also exhibit
additional advantages of their own.172,173 These hybrid nano-
materials include technologies such as Nanoscale Metal–
Organic Frameworks (NMOFs),174-176 functionalized nanotubes
and nanogels. Lin and co-workers used a mesoporous silca-based
nanoparticle system and cadmium sulfide nanocrystals as
removable caps for controlled release of drugs and
neurotransmitters.177 This particle system was found to be
biocompatible and was used to investigate neurochemical
interactions in astrocytes. Liposomes are closed bilayer phos-
pholipid systems used for better entrapment and delivery of
therapeutic drugs.178 Liposomes can also be used for virus free
transfection to generate induced pluripotent cells,179 gene
delivery to mesenchymal stem cells,180 targeting peripheral
neurons and Schwann cells for enhanced uptake181 and targeting
the CNS.182,183 Similarly, dendrimers are macromolecules of
nanoscale dimensions with a central core, branched intermediate
structure and then exterior functional groups. Combinations of
various properties of these hierarchial components make
dendrimers very promising candidates for drug delivery
systems.184,185 Moreover, because of their anti-amyloidogenic
potential, they have also been used for the treatment of various
neurological disorders such as Alzheimer’s, PD and prion
diseases.186,187

Altogether, nanomaterials and nanodevices have shown
considerable promise in mimicking the nervous system’s
microenvironment, and thus can be used as effective tools for
controlling NSC growth and differentiation. Functionalized
nanoparticles using sugars and proteins by applying different
bioconjugation techniques can resemble pathogens and target
specific cell types. Cell targeting of nanoparticles during nervous
system injury allows differentiation of stem cells into specific
neurons or glia for controlling therapeutic cellular interventions.
This approach may also reduce nonspecific deleterious bystander
effects to the surrounding cells. Also, nanoscale patterning of
proteins can be used for stimulating cells at the subcellular level
that can affect cell migration, differentiation and proliferation. In
the field of neural regeneration research, nanoscale patterning of
a conduit with various neurotrophic factors can function as a
guidance cue for regenerating axons. Aligned nanofibers have
already been used for selective differentiation and alignment of
NSC. Use of neurotrophic factor releasing nano- and micro-par-
ticles reflects a strategy for neuroprotection and neuroregenera-
tion following spinal cord or other types of nerve injuries or
neurodegeneration.

Although nanotechnology has produced positive results, a
degree of caution is necessary, especially with respect to use of
nanotechnology for NSC differentiation. Nanoparticles and
nanotubes were found to be cytotoxic in some studies and
decreased the proliferation of NSC. It has also been speculated
that in some cases, immune cells may not be capable of
recognizing nanoparticles all the time, and nanoparticles can pass
unaided through the BBB itself. Other challenges associated with
nanotechnology would be reducing the high cost associated with
fabrication, scaling up production, improving the specificity for
targeted cells and finally reducing the side effects that
nanodevices may have on cells and other tissues.

Clinical applications

Nanotechnology is now considered as a potent tool to
overcome various clinical challenges such as tissue engineering,
drug delivery, imaging, diagnostics and therapeutics. While
nanofibers are used for fabricating scaffolds to mimic a tissue
microenvironment, and thus used for nerve, bone and other types
of tissue engineering, nanoparticles have been used chiefly as
drug delivery vehicles to control delivery of therapeutic agents at
sites of injury and inflammation. Before using them for clinical
applications, we need to understand the stability of these
nanocarriers. Polymeric micelles have been known to improve
the stability of hydrophobic drugs by encapsulating them inside
or near to the hydrophobic core of the micelle. Hydrophilic
chains on the outside help in enhancing in vivo compatibility and
interaction of the micelles with tissues. Some important
parameters that affect the stability of micellar carriers include
lengths of the hydrophobic and hydrophilic blocks, chemical
nature and molecular weight of hydrophilic blocks, physical state
(amorphous or crystalline) of core forming polymer, pH
sensitivity, interaction of micelle with serum proteins, thermo-
dynamic stability above critical micelle concentration (CMC)
and kinetic stability below CMC by having a stiff core.188,189

These nanodevices have also been used as tools to augment stem
cell differentiation ex vivo. Furthermore, imaging the molecules
of interest in vivo has become much simpler with the
improvement in technologies associated with functionalizing
nanoparticles. In addition, the use of nanoscale devices in clinical
trials is on a constant rise since the approval of Doxil by the US
FDA, the first FDA approved nanodrug.81,190-192 As of January
2012, of the 789 ongoing clinical trials, 25 involved nanodevices
and 122 involved nanotherapeutics.191 By taking into account
various peer reviewed publications, Weissig et al concluded that
there are 43 nanopharmaceutical drugs that have been approved
by the FDA (or equivalent foreign agencies).191 A high
percentage of clinical trials (~72% out of 6242 entries) involving
nanodrugs were found to be related to cancer treatments.190

Nanoengineering as a manufacturing process and the necessity of
nanomaterials for enhancing the therapeutic effect or enhancing
functionality of existing drugs are the two main criteria for
considering a drug as a nanopharamaceutical.191
Conclusions and outlook

As summarized above, nanotechnology and nanomedicine
approaches serve as enabling technologies to overcome
significant challenges associated with diagnosis, imaging and
therapies to address malfunction of the nervous system. As
described here, nanoscale systems with appropriate chemistries
and functionalization can be extremely promising for safe,
effective, targeted and site-specific, and sustained delivery of
bioactive agents for imaging and to treat disorders of the nervous
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system. Nanomedicine offers new ways for therapeutics and
imaging agents to traverse the BBB. A combination of delivery
and stem cell-based therapies can significantly impact neuror-
egeneration. Future studies will continue to investigate strategies
using nanotechnology to engineer scaffolds with various
materials that can be used to regulate NSC fate decisions.
Outcomes from these types of investigations are likely to provide
important new information in designing and fabricating a 3D
biomimetic neural stem cell niche. These enabling nanotechnol-
ogies can significantly impact diagnosis and therapies of nervous
system disorders, which is outlined in detail in the accompanying
review on clinical applications of nanoneuromedicine.
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