
   
 

   
 

1 

Classification Of Ad Tone in Political Video 
Advertisements Under Class Imbalance and 

Low Data Samples 
Mohit Baskota  

Dept. of Computer Science 
Iowa State University 
Ames, United States 

mbaskota@iastate.edu  
 

Abstract—Ad tone defines the aim of a political video advertisement, which can be either to 
promote a specific candidate, to attack the candidates or to contrast the candidates. 
Depending upon the aim, a political video advertisement can be classified into either 
promote, attack or contrast class. Analysis of ad tone in political video advertisements can 
provide more insights about the political campaign to political science researchers. Political 
campaigns are investing more and more on online platforms, which creates a large amount 
of political video advertisements. Manual classification of ad tones in political video 
advertisement is time-consuming, labor intensive and not scalable. Hence, there is a need for 
an efficient and effective classification model for automatic classification of the ad tones in 
political video advertisements. The available labeled dataset is very small in size and suffers 
from class imbalance. Due to this reason, the performance of the minority class is poor 
compared to the majority class. Moreover, due to the way the different classes are defined, 
all three classes decompose into sub-parts and suffer from class overlapping problem. There 
has been an attempt in automatic classification of political ad tones, but it does not take class 
imbalance into account. We investigate a couple of data augmentation techniques to 
overcome the class imbalance problem and the effectiveness of deep learning models on ad 
tone classification using text-based features. In our experiments, the best deep learning 
model offers a better F1 score of 0.570 on the minority class compared to the F1 score of 
previous work, which is 0.527. However, the performance is still unsatisfactory. We design 
hand-crafted features specific for ad tone classification using Support Vector Machine as the 
classifier. Our proposed approach gives the best weighted average F1 score of 0.860 on the 
entire test set and F1 score of 0.657 on the minority contrast class. 

I. INTRODUCTION 

Shifting from the traditional print and broadcast media, political campaigns are now spending 
heavily on online platforms to reach their voters. In presidential election 2012, campaigns spent 
around $94.4M on web advertisements compared to $8.5M on broadcast and $2.4M on print media 
[1]. With the help of micro-targeting, political campaigns can reach a specific group of audiences 
depending on demographic groups, interests, and several other criteria [2]. This is why, in the 
present days, there are more focus on online platforms for the advertisements than the traditional 
media. The expenditure on digital advertisements was significantly higher in the presidential 



   
 

   
 

2 

election campaign in 2016 compared to 2012 [3]. According to Google’s transparency report, 
political campaigns have spent around $64M in advertisements on Google's platform since May 
31, 2018, and around 18 percent of them are video advertisements [4]. The number of political 
video advertisements in platforms like YouTube is increasing and automatic analysis of the 
contents of the political video advertisements is of great importance to political science 
researchers. 

Analysis of the contents in the political video advertisement was started by Wesleyan Media 
Project (WMP) [5]. It covers all the broadcast television political advertisements from the year 
2010. The code-book, WMP - 2010 [6] is a document developed by political science researchers. 
It contains an extensive set of questions about a political video advertisement such as the tone of 
the ad, sponsors of the ad, issues mentioned in the ad, appearance of the American flag in the ad, 
and several others [7]. With manual coding, the researchers successfully answer all the questions 
from the codebook. However, manual coding is tremendously time consuming. With the 
significant increase in political video advertisements in online platforms, their method of manual 
coding is not scalable. Therefore, coding of online video advertisements needs to be automated. 

Among the several questions from the code-book, we focus on answering the following question 
using an automated approach. “In your judgment, is the primary purpose of the ad is to 
promote a specific candidate, attack a candidate, or contrast the candidates?” Given a 
political video advertisement, our aim is to classify the tone of the ad as either promote, contrast 
or an attack. 

While the codebook provides the question, it fails to give the definition of each ad tone. Before 
proceeding to classify the ads to their respective ad tone category, we first seek to get the 
definitions of all the ad tone categories. The work in [8], with consultation of political science 
researchers, gave the concrete definition of all the ad tone categories. Following is their definition 
of all the ad tone categories and we follow the same definition for our work. 

Attack ad is an ad that contains only attacks against others such as one of the following cases. 
1. Candidate A attacks candidate B in the same party. 
2. An organization attacks a candidate. 
3. An organization attacks a party. 

Promote ad is an ad that fits one of the following criteria.  
1. Candidate A promotes himself/herself than others. 
2. Candidate A attacks candidate B in another party. 
3. Candidate A attacks another party. 

Contrast ad is an ad that promotes one candidate while attacks another candidate in the same party. 

To the best of our knowledge, there are no other datasets available for online political video ads 
with labeled ad tones apart from the one created in [8]. The corpus consists of 773 online political 
video ads divided into 498 promote ads, 191 attack ads, and 84 contrast ads. The dataset is very 
small in size and has class imbalance. The class imbalance occurs when data samples in the dataset 
are not uniformly distributed across different classes. The class with more data samples compared 



   
 

   
 

3 

to others is called the majority class and the ones with fewer data samples are called the minority 
class. As most of the classification models are dependent on data statistics, they may be biased 
towards the majority class and have very poor performance on the minority classes. In our dataset, 
the promote class is the majority class. The attack and contrast classes are the minority classes. 
Even if we collect many more ads and label them manually, class imbalance still exists because 
the election campaigns tend to focus more on promote and attack ads compared to contrast ads. 

Classification of ad tones in the online political video advertisement is challenging not only due to 
the limited availability of labeled data and class imbalance problem. If we revisit the definition of 
all the ad tones, we can observe that it suffers from class decomposition and overlapping problem 
[9]. The classes are decomposed into small sub-parts such that some sub-part overlaps between 
the classes. For example, in the definition of promote class, an ad belongs to the promote class 
even if it attacks a candidate from another party. The only subtle difference between this kind of 
promote ad and attack ad is that attack ad involves attacking candidates in the same party. This 
makes the classification of political ad tones harder to solve if relying only on word patterns used. 

To address class imbalance, we investigated two oversampling methods for data augmentation. 
The first method uses a Recurrent Neural Network (RNN) [10] based model to generate synthetic 
text from the contrast class. The second method uses language translation to translate text from 
speech in ads from the contrast class to an intermediate language and translated it back to the base 
language, creating new samples in the minority class.  

For ad tone classification, we investigated deep learning language models. We propose a neural 
network model which has better performance on the minority contrast class with F1 score of 0.570. 
It is approximately 5 percent higher than the F1 score of the current classification model proposed 
by [8]. We trained for word embeddings [11] using our dataset and also implemented pre-trained 
word2vec [12][13] with the aim to overcome the class imbalance problem. However, both the 
models over fit the training set and did not perform well. 

We designed hand-crafted features and used Support Vector Machine (SVM) to classify the ad 
tones. To address class imbalance, we oversample the minority classes using SMOTE [17]. This 
model performs best among all the models with an average F1 score of 0.860 on the entire test set 
and 0.657 on the contrast class. 

The paper is organized as follows. Section II provides a brief summary of the related work. In 
Section III describes our proposed approach. Experimental design, results and analysis are 
described in Section IV. The conclusion and the description of the future work are described in 
Section V. 

II. RELATED WORK 

Classification of ad tones in political ads: As per our best knowledge, the first and only prior 
work related to classification of political ad tones is described in “Automated coding of political 
video advertisements” [8]. This work gives the definitions of all three classes of ad tones in 
political video ads. Multiple machine learning models (e.g., SVM, K-nearest neighbors, Naive 
Bayes) were applied to textual features extracted from audio and Optical Character Recognition 
(OCR) from images. Good performance on the entire dataset was achieved, but the performance 
is low on the contrast class with the best F1 score of 0.527. The low performance on the contrast 



   
 

   
 

4 

class is due to limited number of training samples and class imbalance. The authors of [8] did not 
investigate any techniques to tackle the class imbalance problems. 

Classification under class imbalance: The techniques that deal with imbalanced data 
classification fall into two categories – algorithmic [14] and data manipulation techniques [14]. 
The algorithmic approach focuses on enhancing and designing the algorithm to handle the 
imbalance in the data naturally. Data manipulation techniques handle the imbalance in the data by 
modifying the distribution of the data to create a balance in the training set before any machine 
learning algorithm is applied. Oversampling of the minority classes and under sampling of the 
majority classes are approaches [15] and [16]. Synthetic Minority Over-sampling Technique 
(SMOTE) [17] is a very popular technique that creates a balanced data set using random 
oversampling of the minority class. In this technique, we select the K-neighbors of a sample from 
minority class. For each neighbor the difference between its feature vectors and minority data 
sample is calculated. The difference is then multiplied by some random number between 0 and 1 
and then the result is added to the original feature vector. This causes the selection of K random 
point between the selected sample and its K-neighbors. This approach will help to create a balanced 
dataset. 

Data augmentation in the text: Data augmentation has been used widely in the area of vision to 
deal with the class imbalance problem [18] [19]. However, there has been very limited use of data 
augmentation techniques in natural language processing (NLP). One of the techniques of data 
augmentation in NLP is using synonym replacement [20] [21] [22]. However, in recent years RNN 
[10] and Generative Adversarial Network (GAN) [23] have been used to generate good quality 
synthetic texts [24]. Another simple technique of data augmentation can be language translation 
which has been proven to be helpful to achieve better performance in the recent Kaggle challenge 
for Toxic Comment classification [25]. They translated English documents to another intermediate 
language and translated them back to English to augment the training set. While translation helped 
them to achieve better performance, it is not always the case and depends largely at the problem 
being solved. 

Video classification using text-based features: The idea of using text-based features for video 
classification has been extensively used [26][27]. The advantage of using text-based features is 
that we can utilize a large number of researches that have been conducted in document 
classification for the video classification problem. The textual features of the video can be 
extracted from the texts that appear in the key-frames of the video using OCR techniques [28] 
[27]transcribing the speech in the video [29][30][31] or other human annotated data like tags, title, 
description and more. The work in [32] described a video characterization technique using image 
and language understanding. They used speech recognition to obtain the transcript and use Term 
frequency Inverse document frequency (TF-IDF) to measure the relative importance of words for 
the text extracted from the videos. Work in [8] used text features obtained from both OCR and 
speech recognition to classify the ad tone in political video advertisements. 

Language modeling using deep neural networks: Following the impressive advances in 
computer vision, recent research in NLP are increasingly focusing on deep learning methods [33]. 
Traditional machine learning models in NLP depend heavily on handcrafted features while deep 
learning based models enable automatic feature representation. Authors in [34] showed that a 
simple deep learning model can outperform most state-of-the-art techniques in NLP tasks such as 



   
 

   
 

5 

Named-Entity Recognition (NER). Models based on neural networks have been performing better 
in various NLP tasks following the success of word embeddings [35] [11] and deep learning 
methods [36]. Word embeddings or distributional vectors capture the similarity between the words. 
They are pre-trained on a large unlabeled dataset by predicting a word based on its context 
[11][13]such that the word vectors can capture contextual information. They have been very 
efficient in capturing contextual similarity among the words. They are generally used as the first 
layer in a deep learning model. Word embeddings can be randomly initialized and trained on a 
given dataset or can pre-trained on a large unlabeled dataset. The fact that they can be pre-trained 
on a very large dataset and can be transferred to another problem is sometimes found to improve 
the performance when the size of the labeled dataset is small [37]. Google’s word2vec [12] was 
trained on 100 million words from Google news dataset and has a vocabulary of 3 million words 
with embedding dimension of 300 features.  

III. PROPOSED WORK 

Supervised machine learning requires sufficiently large and balanced dataset to achieve good 
performance. Our dataset consists of 773 videos and has a class imbalance ratio for the contrast, 
promote, and attack class of approximately 1:2:6. The small labeled dataset and the imbalance 
ratio greatly reduce the overall classification performance. Moreover, due to the class imbalance, 
the classifier favors more towards the majority class, resulting in very low performance for the 
minority class. To overcome this problem, we investigate a couple data augmentation techniques. 
We then extract text-based features from the videos and investigate various existing language 
models to generate additional text features for classification. Finally, we propose hand-crafted 
features for ad tone classification. After feature extraction, we oversample features of both the 
minority classes using SMOTE [17], creating a balanced training dataset for supervised machine 
learning classifiers. We describe the process of text extraction from the videos, the data 
augmentation techniques, the feature extraction process, and various classification models. 

A. Text extraction from the video 

The two primary sources of the text in political video ads are the key-frames and the audio. We 
extract the text from both audio and key-frames and use it as the feature. 

1. Audio text extraction 

We use speech recognition software [38] to create a transcript from the audio extracted 
from the video. Firstly, we extract audio from the video ad. Then we use Google’s speech 
to text API [38] to extract the text from the audio source. Google speech to text API only 
supports audio shorter than 50 seconds. When the video is longer than 50 seconds, we split 
the generated audio into several parts of about 50 seconds each and send each part to 
Google speech to text API for text extraction. The extracted text from all the parts is then 
concatenated to create a single text document corresponding to the video ad.  

 



   
 

   
 

6 

 
Figure 1: Overview of end-to-end process for model 1. 

2. OCR text extraction from key-frames 

OCR text extraction from the frames generated from the video is more complex. One of 
the major problems is that we can generate frames from a video at various rates. This can 
cause two problems. 1) With a high frame extraction rate, we will end up with many frames 
with similar texts on them. As a result, it will be very time-consuming and will incur a 
monetary cost associated with OCR if using a paid third-party service like Google Vision. 
We will also end up with many duplicate texts. 2) If we generate frames with a smaller 
rate, we might lose some frames with the texts in it. To address these situations, we use an 
open source python library PySceneDetect [39] for scene detection. With scene detection, 
we limit the number of frames generated and select the frames that are important. We use 
Content detector mechanism from PySceneDetect with the threshold of 13, which separates 
scenes using changes in color and intensity between neighboring frames. After scene 
detection, we take first, middle and last frames of each scene as key frames and use Google 
Vision API [40] to get the text from the frames. We follow the same process for all the 
detected scenes. Finally, after extracting texts from all the detected scenes, we take the 
union of the sentences to create an OCR text document for the video to remove duplicate 
sentences. 

B. Data Augmentation Techniques 

We investigate two techniques for augmentation to increase the number of samples in the dataset 
to create a balanced dataset. 

1. Synthetic text generation 

The word level recurrent neural network architecture in [41] is inspired by DeepMoji [42]. 
The first layer of this architecture is a 100-dimensional word embedding. This embedding 
layer is followed by LSTM layers. The outputs of all the layers are then fed into the 



   
 

   
 

7 

attention layer which weighs the most important temporal features. The embedding layer 
and the LSTM layers are skip connected into the attention layer, which helps to ease back 
propagation by preventing vanishing gradients. The output will be the probabilities of the 
candidate words for the next word. 

We trained the networks with different configurations by varying the number of LSTM 
layers from 1 to 4 with 128 and 256 cell size. The training data comprises of the texts 
extracted from the audio of contrast class videos as explained previously. We kept the 
maximum length of the generated text to be 200 as our dataset does not have documents 
that have more than 200 words. We fixed the embedding dimension as 100 and trained 
both bidirectional and unidirectional RNN. 

2. Language translation 

Motivated by the improvement in the performance by using language translation in toxic 
comment classification task [25], we created new data samples for the contrast class using 
Google Translate API [43]. We translated the text from English to first in French then did 
the second translation of the translated French text to Spanish. Finally, we translated the 
Spanish text back to English to generate a new sample for the contrast class. 

C. Feature Extraction 

All our classification models use text-based features. We describe the process of feature extraction, 
extracting text features from the video. We describe our proposed feature engineering method to 
create domain-specific handcrafted features, which is specific to our problem. 

1. Bag of words  

Bag of words is a simple approach of representing text data for the machine learning 
algorithm. It is called a bag of words because, in this model, a document is represented 
with the words it contains, disregarding the grammar and the order of the words. We 
combine the text we extracted from audio and OCR, remove the stop words from it and 
convert all the words into the lower case. Then we extract word level n-grams from the 
whole corpus and create a vocabulary. Now from each ad, we calculate the TF-IDF for all 
the word level n-grams in the document to create a feature vector. So, for a given n-gram 
word from the vocabulary in a given document, its index in the feature vector consists of 
its TF-IDF value. We investigate a total of 3 different word level n-grams: 1-gram, 2-gram, 
and 3-gram. 

2. Encoded text sequence 

Machine learning requires a numeric representation of the text and cannot work directly on 
the text data. So, we create the encoding of the text sequence of the document to create a 
feature vector. We first, combine both the audio and OCR texts extracted in the previous 
step from the whole dataset and remove stop words. Tokenization is one of the important 
steps in natural language processing. It splits a document into a list of words. We use Keras 
Tokenizer API to extract the tokens [44]. We limit the number of words in the vocabulary 
to be 2000 such that the less frequent words are not included in the vocabulary. The 



   
 

   
 

8 

vocabulary consists of only the top 2,000 frequent words. After tokenization, we will get 
the index for each word in the vocabulary. The document length of each ad is variable, and 
we cannot have a variable length feature vector. Since no document in our corpus has the 
total number of words greater than 200, we fix the length of the feature vector to be 200. 
Now for each ad, we concatenate the extracted text from the audio and the OCR creating a 
document that represents an ad. Then we use Keras texts_to_sequences API [44] to encode 
each word in the document with its index in the vocabulary creating an encoded text 
sequence. We finally pad the sequence with leading zeros to create the fix-sized feature 
vector. 

3. Feature engineering 

The definitions of the three classes have very subtle but important difference. To 
differentiate among the classes depends on whether the candidates/organizations belong to 
the same party. By looking at just the words and the sentiment of an ad, one cannot simply 
tell whether it is an attack, promote or contrast ad. This is because there is a decomposition 
of the class into subparts and there is also a class overlapping problem. For example, a 
promote ad does not only promote a candidate. If the ad attacks a candidate from another 
party, it is still considered as a promote ad. It is differentiated from the attack ad by just 
this one simple difference. An attack ad involves attacking a candidate in the same party 
while a promote ad involves attacking a candidate from a different party. For the contrast 
ad, there needs to be the case that the candidate being promoted, and the candidate being 
attacked both are in the same party. So, the contrast class overlaps between the promote 
class and the attack class. 

The information about the political parties involved, the number of candidates that are 
being attacked, and whether the candidates belong to the same party or the different party 
are very important features. We perform Named Entity Recognition (NER) on the text 
extracted from audio and frames using Google Natural Language API [45] to extract the 
names of the persons. As the API is not accurate, we do additional text matching to find 
the names of the candidates. We create a JSON configuration file that has all the candidate 
names in the dataset mapped to their respective political party. This way we can extract the 
name of the candidates mentioned in the ad with their corresponding political party. 

Extracting the name of the candidate being attacked and the one being promoted in the ad 
is non-trivial. In each political ad, the sponsor of the ad must be provided. The ad sponsor 
is very important to find out the candidates that are being attacked or promoted in the ad. 
Each sponsor normally supports and attacks a list of the candidates. Although in a given 
ad, a sponsor tends to support one of the candidates and attack one or many. We use a 
political website [46] to extract the information about the sponsors. This website has very 
good information about the sponsors including the candidates they promoted and attacked 
in an election with the expenditure. We create a JSON configuration file of all the sponsors 
in the 2016 presidential election together with the names of the candidates they promoted 
and attacked. We then perform simple text matching in the extracted texts to identify the 
sponsor. Once the sponsor is found, we then take the name of the candidate identified 
previously and match the configuration file of the corresponding sponsor to find out who 
are attacked or promoted. We finally create a feature vector with the following feature-set: 



   
 

   
 

9 

total number parties detected, count of the Republican candidates, count of the Democrat 
candidates, count of the candidates that are attacked, count of the candidates that are 
promoted.  

D. Classification Models 

We investigate the classification models that were not considered in the previous work [8]. We 
first focus on the classification models based on neural networks. We investigate a simple feed-
forward neural network and then further expand our model to use the word embedding trained on 
our dataset. We then extend the model to use the pre-trained word embedding rather than the word 
embedding trained on our dataset. Finally, we experiment with SVM with our proposed features 
and feature level data augmentation. 

1. Model 1: Fully connected neural network 

We use the bag of words TF-IDF features of word n-grams described in the previous 
section. As we have three classes, the output layer has three units. We use softmax as the 
activation function to get the prediction probabilities of the three classes. The first hidden 
layer connected to the input layer has 256 hidden units with Relu as the activation function. 
We use dropout for regularization. Our second layer has 128 hidden units with Relu as the 
activation function and is connected to the output layer. Figure 1 gives the overview of 
end-to-end process for model 1. 

2. Model 2: Fully connected neural network with word embedding 

Our hypothesis is that the classifier will have more contextual information to learn from 
the data with the help of word embedding as compared to a simple bag of words model. 
We train word embedding on our dataset using word2vec with the skip gram model with a 
window size of 5 and a feature dimension of 50. We use the same model described above 
but the input layer, in this case, is connected to our learned embedding layer and the 
embedding layer is flattened and connected to the first hidden layer. We use the embedding 
as the feature vector instead of a bag of words for this model. The rest of the network is the 
same as that of Model 1. 

3. Model 3: Fully connected neural network with pre-trained word embedding 

We also expand our embedding model to use pre-trained word embedding. Our hypothesis 
is that due to low data samples, the word embedding trained with our dataset is not able to 
learn as much contextual information required for the classifier. So, we use pre-trained 
word2vec embedding, which was trained on 100 billion words from a Google News 
dataset. The dataset has 3 million words and phrases and the length of the embedding vector 
is 300. The network structure is the same as that of Model 2 except that we replace the 
input embedding layer with the pre-trained word2vec embedding. 

 



   
 

   
 

10 

  

 
Figure 2 End-to-end process for model 4. 

4. Model 4: SVM with hand crafted feature and oversampling 

We generate the feature vector as described in the feature engineering portion of the 
previous section. We use SMOTE [17] as the oversampling technique to overcome the 
problem of class imbalance. With the generated feature vectors for all the ads, we use a 
library in python for SMOTE to create synthetic samples of the minority classes – attack 
and contrast and train the expanded training dataset with SVM. We created 177 and 249 
synthetic samples in attack and contrast class respectively creating a balanced training set 
with 295 samples in each class. 

 

IV.  EXPERIMENTS AND ANALYSIS 

A. Dataset and Ground Truth 

1. Dataset 

Per our knowledge, there is no other publicly available labeled dataset apart from the one 
created by [8]. We take the ground truth from the available dataset and download the video 
from the actual source [47][48]. The ground truth for the videos are given by the definitions 
as described in Section I. The dataset contains 773 ads in total with 498 in promote class, 
191 in attack class and 84 in contrast class. Figure 3 shows the distribution of ads in the 
dataset. 



   
 

   
 

11 

 

2. Training and Test Sets 

For the first three neural network models, that are based on neural network, we split the 
dataset with 80% of the data in training set and remaining 20% in the test set, keeping the 
original ratio of three classes in each set. For the last method that uses SVM and 
handcrafted features, we split the dataset such that 60% of the data is in training set and 
40% of the data in the test set keeping the original ratio of three classes in each set. We  
increase  the  test  size  in  this  case  because  we  will perform  oversampling  of  minority  
class  in  the  training  set.  That way we will have an increased number of samples in both 
the test and training set. 

3. Parameter Tuning 

We experimented with various hyper-parameters for the first three neural network models. 
We changed the number of hidden layers from 1 to 4 with varying number of hidden units: 
64, 128, 256 and 512. 

We used the grid search algorithm to find the best parameters for our last model that is 
based on SVM. We select the parameter C = [0.1, 1, 10, 100, 1000], Kernel = ['linear', 
'poly', 'rbf', 'sigmoid'], Gamma = [0.001, 0.01, 0.1, 1.0, 10,], Decision function shape = 
['one vs one', ‘one vs rest’] for the grid search. 

4. Performance Metrics 

 To compare our result with the previous work, we follow the same performance metrics 
 that are used by the previous work. We use the weighted Precision (P), recall (R), and F1 
 score to measure the performance of all the models. The three metrics are defined below 

Figure 3: Distribution of ads over different classes. P: Promote class, A: Attack class, C: 
Contrast class 



   
 

   
 

12 

 where Ni is the number of ads in ith class, Pi, Ri, F1i is the precision, recall and F1 score 
 for ith class, respectively. 

𝑃𝑃 =
∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1 ∗ 𝑃𝑃𝑖𝑖
∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1

;𝑅𝑅 =
∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1 ∗ 𝑅𝑅𝑖𝑖
∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1

;𝐹𝐹1 =
∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1 ∗ 𝐹𝐹1𝑖𝑖
∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1

 

B. Classifier Training 

The three neural network-based models were all trained for 100 epochs with a batch size of 10. 
We used categorical cross-entropy as the loss function and stochastic gradient descent algorithm 
for the optimizer. 

For our proposed model 4, we used the best parameter found from the grid search. We used ‘rbf’ 
kernel with C=1000 and gamma = 0.001 to train the model.  

We trained all the models using 10–fold cross-validation in the training set. The training set was 
first divided into 10 sets of equal size. The model was then trained on the 9 of those sets and the 
remaining one was used for the validation. Then we take the performance of the classifier in the 
test set. We repeat this same process for 10 times and report the average performance on the test 
sets. 

C. Experiment Results and Analysis 

1. Data Augmentation Techniques 

1. Synthetic text generation 

The best result from the synthetic text generation is shown in Table 1. As we can see that 
the generated text does not have good quality. The text generated is very short and it does 
not convey any meaning. The state-of-the-art text generation is usually performed on large 
training dataset with millions of documents. Our dataset has only 84 documents and the 
generator was not able to learn on such small dataset and generate good quality texts. As 
the text generated from this method is not good, we do not use it as our data augmentation 
technique. 

2. Language translation 

We applied the aforementioned translation method to the data in the contrast class. The 
examples of original text and the translated text are shown in Table 2. The final text has 
some new synonym words and change in the sentence structure. We translated all the 
samples in the contrast class, doubling the size of the contrast class. We added the new 
samples to the training set and trained the best performing SVM classifier from the 
previous work. We do not get any noticeable improvement in the performance. The 
performance remained approximately the same. This is because there was not a substantial 
increase in the size of the contrast class. Moreover, the newly generated samples did not 
differ much in regards to the words in the original text.  The classification model uses a 
bag of words as the feature and change in the sentence structure is not that important to it.  



   
 

   
 

13 

 

is is and rubio the and watched ted cruz country cruz cruz cruz cruz country now ' s m the , , 

i ' s s fo 

r a do to liners to the the an be the the reagan this a of clinton the members of the the the 
into to we to you on his that will to the bill military the would that in made trump in and 
clinton want security trump trump trump it ' under and to to it fight it to ' s for the i this this 
message , 

and is for the jim colored and roadside cruz is and for the to resolution and are in ted trump 
cruz one the the the that to and utmost line and trump the a time of and amnesty author 
laborers that vote the to marco rubio politicians trump trump rubio trump have a values the ' 
s t rules it ' m s s and to one here ' s m 

president ted cruz cruz ' s conservatives our and conservatives cruz cruz cruz cruz 

' s i let cruz cruz cruz 

- cruz cruz cruz cruz john 

ted cruz ' taxes 

Table 1: Sample text generated from the contrast class using synthetic text generation 
method 

 

Original Text Translated Text 

justice scalia's death us the next president 
just who donald trump pick person from 
suggested the alabama supreme court 
ban everything is on the line now our 
freedoms america the battleground do 
you trust you trust to fill our federal 
courts values for ted cruz,cruz for 
president let's take our 

country back, 

 

the death of Scalia of Justice, the next president, of 
which Donald Trump has chosen the person of the 
supreme court of Alabama, everything is in danger 
now, our freedoms, the United States, the 
battlefield on which you trust to fulfill the values of 
our federal courts for ted cross, cross for the 
president. recover our country, 



   
 

   
 

14 

got a republican feel take the first step 
monday evening for a major political 
party party is doing carly fiorina a 
conservative outside who has a bold new 
blueprint to take our country back carly 
fiorina a conservative leader we can trust 
to take our country back before barley for 
america, 

I have the feeling that the Republicans are taking 
the first step on Monday night, because an 
important political party is Carly Fiorina, an 
outside conservative, with a bold new plan to get 
our country back. America 

Table 2: Original text from contrast class and the text obtained after translation. 

 

 

 

Figure 4: Training and validation accuracy across all epochs 
for Model 1 

Figure 5: Training and validation accuracy across all epochs 
for Model 2 

 
Figure 6: Training and validation accuracy across all epochs for Model 3 



   
 

   
 

15 

2. Classification Models 

1. Neural network-based models (Model 1, Model 2, Model 3) 

Table 3 shows the result of the model 1 and compares it with model 4 and the best models 
from [8]. The F1 score of model 1 on the entire set is 0.846 which is a slight improvement 
over Rule-based method and SVM (1,2)- W. However, the F1 score on the contrast class 
was improved approximately by 5 percent compared to SVM based models. It was not able 
to improve the F1 score on the contrast class compared to Rule-based method. Figure 4 
shows the training and validation accuracy for model 1. We can see that it converges at 
epoch 70. If we go beyond that the difference between training and validation start to grow 
bigger and the model will over-fit on the training data. We report the performance of model 
1 at epoch 70. This model does perform better compared to SVM based models but not 
with a huge difference. The reason is that the distribution of the words among the classes 
are very similar as shown in Figure 5 and with have very low data samples and imbalanced 
dataset. 

We do not report the performance of model 2 and model 3 because they did not perform 
well compared to any other models. Model 2 converges at epoch 20 with very low 
performance and starts overfitting on the training data rapidly as shown in Figure 5. Model 
3 performs worse as it starts overfitting on the training data right away as shown in Figure 
6. The reason for the bad performance of the word embedding model is because the audio 
text we extracted from political ads is not syntactical as a normal audio conversation. The 
ad has various segments with each segment talking about different topics. Therefore, the 
word embedding trained on our dataset performed better than the pre-trained word2vec 
because it was able to learn the contextual similarity of the words in our dataset but pre-
trained was not able to. So, the major problem in this case also is the low number of data 
samples to train the word embedding. 

2. Support vector machine with hand crafted feature and oversampling (Model 4) 

Our proposed model 4 achieves the best performance compared to all the other models as 
shown in table 3. It achieves the best F1 score of 0.860 on the entire set. It achieves best 
F1 score on promote and contrast but the attack class. While the performance of the attack 
class drops by 3 percentage as compared to SVM 5- ch, our model does better on the 
contrast class by 12 percentage compared to SVM based models. While there is an 
improvement in performance, we do not improve greatly. This is because of the scenarios 
like when we detect candidates that are being attacked and promoted in the ad, a lot of 
times when an ad is attacking a candidate, there is a section at the end mentioning the 
candidate who approves it. In that case, the ad will detect both promoted and attacked 
candidates, but the ad is attacking the candidate. Table 4 shows the classification result on 
test set. The rows with red indicate that the actual class label and predicted class labels are 
different. 

We performed better than the Rule-Based method but not very significantly. However, the 
advantage of our method over the Rule-Based is that we do not have to hard code all the 
rules. We just have to add the name of the candidates and the sponsor in the configuration. 



   
 

   
 

16 

 

Models Entire set Promote Attack Contrast 

 P R F1 P R F1 P R F1 P R F1 

Model 4 

(SVM with 
our 
handcrafted 
features) 

0.874 0.850 0.860 0.941 0.895 0.917 0.824 0.786 0.804 0.596 0.733 0.657 

Model 1 0.852 0.841 0.836 0.869 0.932 0.899 0.821 0.781 0.788 0.825 0.443 0.576 

Rule Based 0.846 0.832 0.838 0.903 0.918 0.910 0.834 0.634 0.720 0.534 0.774 0.632 

SVM 5 - ch 0.849 0.853 0.845 0.873 0.96 0.909 0.916 0.765 0.831 0.679 0.505 0.527 

SVM (1,2)- 
W 0.823 0.827 0.819 0.894 0.943 0.895 0.843 0.725 0.823 0.566 0.688 0.523 

Table 3: Performance of our best performing models compared with that of two best 
performing models [8]: SVM 5-ch (5 character n-grams) and SVM (1-2)-Word n-grams. 

P, R, F1 denote precision, recall and F1 score, respectively. SVM performance are 10-
fold cross validation on the entire dataset. Model 1 performance was measured on a 

separate test set.                 

 

 

S. N 

Total 
Parties 
count 

Republican 
Candidates 
count 

Democrat 
Candidates 
count 

Total 
Candidates 
attacked 

Total 
Candidates 
promoted 

Actual 
Class 

Predicted 
Class 

1 1 2 0 1 1 Attack Contrast 

2 1 3 0 3 0 Attack Attack 

3 1 2 0 1 1 Attack Contrast 

4 1 1 0 1 0 Attack Attack 

5 1 2 0 1 1 Attack Contrast 

6 1 1 0 1 0 Attack Attack 

7 1 2 0 1 1 Attack Contrast 

8 1 5 0 5 0 Attack Attack 



   
 

   
 

17 

9 1 1 0 1 0 Attack Attack 

10 1 1 0 1 0 Attack Attack 

11 1 1 0 1 0 Attack Attack 

12 1 1 0 1 0 Attack Attack 

13 1 1 0 1 0 Attack Attack 

14 0 0 0 0 0 Attack Promote 

15 1 1 0 1 0 Attack Attack 

16 1 1 0 1 0 Attack Attack 

17 2 1 1 2 0 Attack Attack 

18 1 0 1 1 0 Attack Attack 

19 1 1 0 1 0 Attack Attack 

20 1 1 0 1 0 Attack Attack 

21 0 0 0 0 0 Attack Promote 

22 2 4 1 4 1 Attack Contrast 

23 1 1 0 1 0 Attack Attack 

24 1 0 1 1 0 Attack Attack 

25 1 1 0 1 0 Attack Attack 

26 1 2 0 1 1 Attack Contrast 

27 1 1 0 1 0 Attack Attack 

28 1 1 0 1 0 Attack Attack 

29 1 2 0 2 0 Attack Attack 

30 1 1 0 1 0 Attack Attack 

31 1 1 0 1 0 Attack Attack 

32 1 2 0 1 1 Attack Contrast 

33 1 1 0 1 0 Attack Attack 

34 1 1 0 1 0 Attack Attack 

35 1 1 0 1 0 Attack Attack 

36 1 1 0 0 1 Attack Promote 

37 1 3 0 2 1 Attack Contrast 

38 1 0 1 1 0 Attack Attack 

39 1 1 0 1 0 Attack Attack 

40 1 1 0 1 0 Attack Attack 

41 1 2 0 1 1 Attack Contrast 



   
 

   
 

18 

42 0 0 0 0 0 Attack Promote 

43 1 2 0 2 0 Attack Attack 

44 1 1 0 1 0 Attack Attack 

45 1 1 0 1 0 Attack Attack 

46 1 1 0 1 0 Attack Attack 

47 1 1 0 1 0 Attack Attack 

48 1 1 0 1 0 Attack Attack 

49 1 1 0 1 0 Attack Attack 

50 1 1 0 1 0 Attack Attack 

51 1 1 0 1 0 Attack Attack 

52 1 0 1 1 0 Attack Attack 

53 1 1 0 1 0 Attack Attack 

54 1 1 0 1 0 Attack Attack 

55 1 2 0 1 1 Attack Contrast 

56 1 0 1 1 0 Attack Attack 

57 1 1 0 1 0 Attack Attack 

58 1 1 0 1 0 Attack Attack 

59 1 3 0 2 1 Attack Contrast 

60 1 0 1 1 0 Attack Attack 

61 1 0 1 1 0 Attack Attack 

62 1 1 0 1 0 Attack Attack 

63 1 2 0 1 1 Attack Contrast 

64 1 0 1 1 0 Attack Attack 

65 1 1 0 1 0 Attack Attack 

66 1 2 0 1 1 Attack Contrast 

67 1 0 1 1 0 Attack Attack 

68 1 1 0 1 0 Attack Attack 

69 1 1 0 1 0 Attack Attack 

70 1 0 1 1 0 Attack Attack 

71 1 2 0 1 1 Attack Contrast 

72 1 1 0 0 1 Promote Promote 

73 1 1 0 0 1 Promote Promote 

74 1 0 1 0 1 Promote Promote 



   
 

   
 

19 

75 1 1 0 1 0 Promote Attack 

76 1 0 1 0 1 Promote Promote 

77 1 1 0 0 1 Promote Promote 

78 1 1 0 0 1 Promote Promote 

79 1 1 0 0 1 Promote Promote 

80 2 1 1 1 1 Promote Promote 

81 1 1 0 0 1 Promote Promote 

82 1 0 1 0 1 Promote Promote 

83 2 1 1 1 1 Promote Promote 

84 1 1 0 0 1 Promote Promote 

85 1 1 0 0 1 Promote Promote 

86 1 0 1 0 1 Promote Promote 

87 1 0 1 0 1 Promote Promote 

88 1 1 0 0 1 Promote Promote 

89 1 1 0 0 1 Promote Promote 

90 1 1 0 0 1 Promote Promote 

91 1 1 0 0 1 Promote Promote 

92 1 0 1 0 1 Promote Promote 

93 1 1 0 0 1 Promote Promote 

94 0 0 0 0 0 Promote Promote 

95 1 0 1 0 1 Promote Promote 

96 1 1 0 0 1 Promote Promote 

97 1 1 0 0 1 Promote Promote 

98 1 0 1 0 1 Promote Promote 

99 1 0 1 0 1 Promote Promote 

100 2 1 1 1 1 Promote Promote 

101 1 1 0 0 1 Promote Promote 

102 1 1 0 1 0 Promote Attack 

103 0 0 0 0 0 Promote Promote 

104 1 0 1 0 1 Promote Promote 

105 1 1 0 0 1 Promote Promote 

106 1 2 0 1 1 Promote Contrast 

107 1 1 0 0 1 Promote Promote 



   
 

   
 

20 

108 0 0 0 0 0 Promote Promote 

109 1 1 0 0 1 Promote Promote 

110 1 0 1 0 1 Promote Promote 

111 2 1 1 1 1 Promote Promote 

112 1 0 1 0 1 Promote Promote 

113 1 0 1 0 1 Promote Promote 

114 1 1 0 0 1 Promote Promote 

115 1 1 0 0 1 Promote Promote 

116 0 0 0 0 0 Promote Promote 

117 1 0 1 0 1 Promote Promote 

118 0 0 0 0 0 Promote Promote 

119 2 1 1 1 1 Promote Promote 

120 1 0 1 0 1 Promote Promote 

121 1 1 0 0 1 Promote Promote 

122 1 1 0 0 1 Promote Promote 

123 1 1 0 0 1 Promote Promote 

124 2 1 1 1 1 Promote Promote 

125 1 0 1 0 1 Promote Promote 

126 1 1 0 0 1 Promote Promote 

127 0 0 0 0 0 Promote Promote 

128 1 0 1 0 1 Promote Promote 

129 1 2 0 1 1 Promote Contrast 

130 2 1 1 1 1 Promote Promote 

131 1 1 0 0 1 Promote Promote 

132 2 1 1 1 1 Promote Promote 

133 1 0 1 0 1 Promote Promote 

134 1 1 0 0 1 Promote Promote 

135 1 1 0 0 1 Promote Promote 

136 1 1 0 0 1 Promote Promote 

137 1 0 1 0 1 Promote Promote 

138 1 0 1 0 1 Promote Promote 

139 1 1 0 0 1 Promote Promote 

140 1 0 1 0 1 Promote Promote 



   
 

   
 

21 

141 1 0 1 0 1 Promote Promote 

142 1 0 1 0 1 Promote Promote 

143 1 1 0 0 1 Promote Promote 

144 1 1 0 0 1 Promote Promote 

145 1 1 0 0 1 Promote Promote 

146 1 0 1 0 1 Promote Promote 

147 1 1 0 0 1 Promote Promote 

148 1 1 0 0 1 Promote Promote 

149 1 0 1 0 1 Promote Promote 

150 1 0 1 0 1 Promote Promote 

151 1 0 1 0 1 Promote Promote 

152 1 0 1 0 1 Promote Promote 

153 1 0 1 0 1 Promote Promote 

154 1 0 1 0 1 Promote Promote 

155 1 0 1 0 1 Promote Promote 

156 0 0 0 0 0 Promote Promote 

157 1 1 0 0 1 Promote Promote 

158 1 2 0 1 1 Promote Contrast 

159 1 0 1 0 1 Promote Promote 

160 1 1 0 0 1 Promote Promote 

161 1 1 0 0 1 Promote Promote 

162 1 1 0 0 1 Promote Promote 

163 1 1 0 0 1 Promote Promote 

164 1 1 0 0 1 Promote Promote 

165 1 1 0 0 1 Promote Promote 

166 1 0 1 0 1 Promote Promote 

167 1 0 1 0 1 Promote Promote 

168 1 0 1 0 1 Promote Promote 

169 1 0 1 0 1 Promote Promote 

170 1 1 0 0 1 Promote Promote 

171 1 1 0 0 1 Promote Promote 

172 1 1 0 0 1 Promote Promote 

173 0 0 0 0 0 Promote Promote 



   
 

   
 

22 

174 1 1 0 0 1 Promote Promote 

175 1 1 0 0 1 Promote Promote 

176 1 0 1 0 1 Promote Promote 

177 1 1 0 0 1 Promote Promote 

178 1 0 1 0 1 Promote Promote 

179 1 1 0 0 1 Promote Promote 

180 1 0 1 0 1 Promote Promote 

181 0 0 0 0 0 Promote Promote 

182 1 1 0 0 1 Promote Promote 

183 1 1 0 0 1 Promote Promote 

184 1 1 0 0 1 Promote Promote 

185 1 1 0 0 1 Promote Promote 

186 1 0 1 0 1 Promote Promote 

187 1 1 0 0 1 Promote Promote 

188 1 0 1 0 1 Promote Promote 

189 1 0 1 0 1 Promote Promote 

190 1 1 0 0 1 Promote Promote 

191 1 1 0 0 1 Promote Promote 

192 1 0 1 0 1 Promote Promote 

193 1 1 0 0 1 Promote Promote 

194 1 0 1 0 1 Promote Promote 

195 1 1 0 0 1 Promote Promote 

196 1 1 0 0 1 Promote Promote 

197 1 1 0 0 1 Promote Promote 

198 1 1 0 0 1 Promote Promote 

199 1 1 0 0 1 Promote Promote 

200 1 0 1 0 1 Promote Promote 

201 1 0 1 0 1 Promote Promote 

202 0 0 0 0 0 Promote Promote 

203 1 1 0 0 1 Promote Promote 

204 1 1 0 0 1 Promote Promote 

205 1 1 0 0 1 Promote Promote 

206 1 1 0 0 1 Promote Promote 



   
 

   
 

23 

207 1 1 0 0 1 Promote Promote 

208 1 1 0 0 1 Promote Promote 

209 1 1 0 0 0 Promote Promote 

210 1 1 0 0 1 Promote Promote 

211 1 1 0 0 1 Promote Promote 

212 1 0 1 0 1 Promote Promote 

213 1 0 1 0 1 Promote Promote 

214 1 0 1 0 1 Promote Promote 

215 1 1 0 0 1 Promote Promote 

216 0 0 0 0 0 Promote Promote 

217 1 1 0 0 1 Promote Promote 

218 1 1 0 0 1 Promote Promote 

219 1 1 0 0 1 Promote Promote 

220 1 0 1 0 1 Promote Promote 

221 1 1 0 0 1 Promote Promote 

222 1 0 1 0 1 Promote Promote 

223 1 1 0 0 1 Promote Promote 

224 1 1 0 0 1 Promote Promote 

225 1 1 0 0 1 Promote Promote 

226 1 1 0 0 1 Promote Promote 

227 1 0 1 0 1 Promote Promote 

228 1 1 0 0 1 Promote Promote 

229 1 1 0 0 1 Promote Promote 

230 1 1 0 0 1 Promote Promote 

231 1 0 1 0 1 Promote Promote 

232 1 1 0 0 1 Promote Promote 

233 1 1 0 0 0 Promote Promote 

234 1 0 1 0 1 Promote Promote 

235 1 0 1 0 1 Promote Promote 

236 1 0 1 0 1 Promote Promote 

237 1 0 1 0 1 Promote Promote 

238 1 1 0 0 0 Promote Promote 

239 1 1 0 0 1 Promote Promote 



   
 

   
 

24 

240 1 1 0 0 0 Promote Promote 

241 1 1 0 0 1 Promote Promote 

242 1 0 1 0 1 Promote Promote 

243 1 0 1 0 1 Promote Promote 

244 1 1 0 0 0 Promote Promote 

245 1 1 0 0 1 Promote Promote 

246 1 1 0 0 1 Promote Promote 

247 1 0 1 0 1 Promote Promote 

248 1 0 1 0 0 Promote Promote 

249 1 0 1 0 1 Promote Promote 

250 0 0 0 0 0 Promote Promote 

251 0 0 0 0 0 Promote Promote 

252 1 1 0 0 1 Promote Promote 

253 1 1 0 0 1 Promote Promote 

254 1 1 0 0 1 Promote Promote 

255 1 1 0 0 1 Promote Promote 

256 1 1 0 0 0 Promote Promote 

257 1 1 0 0 1 Promote Promote 

258 1 1 0 0 1 Promote Promote 

259 1 1 0 0 1 Promote Promote 

260 1 0 1 0 1 Promote Promote 

261 1 0 1 0 1 Promote Promote 

262 1 1 0 0 1 Promote Promote 

263 1 1 0 0 1 Promote Promote 

264 1 0 1 0 1 Promote Promote 

265 1 0 1 0 1 Promote Promote 

266 0 0 0 0 0 Promote Promote 

267 0 0 0 0 0 Promote Promote 

268 1 1 0 0 1 Promote Promote 

269 1 1 0 0 1 Promote Promote 

270 1 1 0 0 1 Promote Promote 

271 1 1 0 0 1 Promote Promote 

272 1 1 0 0 1 Promote Promote 



   
 

   
 

25 

273 1 1 0 0 1 Promote Promote 

274 1 1 0 0 1 Promote Promote 

275 1 2 0 1 1 Contrast Contrast 

276 1 2 0 1 1 Contrast Contrast 

277 1 1 0 0 1 Contrast Promote 

278 1 2 0 1 1 Contrast Contrast 

279 1 3 0 2 1 Contrast Contrast 

280 1 2 0 1 1 Contrast Contrast 

281 1 2 0 1 1 Contrast Contrast 

282 2 2 1 0 0 Contrast Contrast 

283 1 2 0 1 1 Contrast Contrast 

284 1 2 0 1 1 Contrast Contrast 

285 1 1 0 0 1 Contrast Promote 

286 1 2 0 1 1 Contrast Contrast 

287 1 2 0 1 1 Contrast Contrast 

288 1 3 0 2 1 Contrast Contrast 

289 1 1 0 0 1 Contrast Promote 

290 1 1 0 0 1 Contrast Promote 

291 1 3 0 2 1 Contrast Contrast 

292 1 2 0 1 1 Contrast Contrast 

293 2 1 1 2 0 Contrast Attack 

294 1 1 0 0 1 Contrast Promote 

295 2 2 1 0 0 Contrast Contrast 

296 1 3 0 2 1 Contrast Contrast 

297 1 2 0 1 1 Contrast Contrast 

298 1 2 0 1 1 Contrast Contrast 

299 1 3 0 2 1 Contrast Contrast 

300 1 2 0 1 1 Contrast Contrast 

301 1 2 0 1 1 Contrast Contrast 

302 1 2 0 1 1 Contrast Contrast 

303 1 2 0 1 1 Contrast Contrast 

304 2 2 1 0 0 Contrast Contrast 

305 1 4 0 3 1 Contrast Contrast 



   
 

   
 

26 

306 1 1 0 0 1 Contrast Promote 

307 1 2 0 1 1 Contrast Contrast 

308 1 2 0 1 1 Contrast Contrast 

309 1 2 0 1 1 Contrast Contrast 

Table 4: Classification result for model 4 in test set. 

V. CONCLUSION 

We investigated various approaches for classification of ad tone in political video advertisements 
under class imbalance and low data samples. To overcome the class imbalance problem, we 
investigated data augmentation techniques in the text. We found that creating new data samples 
using both synthetic text generation and language translation did not perform well. Our dataset is 
very small to generate good quality synthetic texts using recurrent neural networks.  

We found that model 1, which is based on a simple neural network achieves better performance 
on the entire set and in the minority contrast class compared the previous work. However, model 
1 did not perform better than the previous rule-based method on the minority contrast class. We 
found that the model 2, which has word embedding trained on our dataset performs better than the 
model 3 which is has pre-trained word2vec for word embedding. Both model 2 and model 3 did 
not perform better than any other models. They rapidly start overfitting on the training data in a 
few epochs of training. 

We observed that the classification of political ad tones depends on the identification of the 
candidates that are being attacked and promoted in the ad. Our proposed model, model 4, which 
takes into account of the candidates that are being attacked and promoted in the ad, performs the 
best in the entire test set. It performs best on promote and contrast classes but the F1 score on 
attack class is reduced by approximately 3 percentage compared to previous work. Our proposed 
method has a clear advantage over rule-based method. Our method does not hard code the name 
of the candidates and parties as rules. Instead, use configuration to detect names and parties 
avoiding crafting rules for new dataset. 

  

 

 

 

 

 

 



   
 

   
 

27 

REFERENCES 

  
[1] “Expenditures on presidential election 2012.” [Online]. Available: 

https://www.opensecrets.org/pres12/expenditures.php. 

[2] “About targeting for video campaigns.” [Online]. Available: 
https://support.google.com/youtube/answer/2454017?hl=en. 

[3] C. B. Williams, “Digital Advertising Expenditures in the 2016 Presidential Election,” Soc. 
Sci. Comput. Rev., vol. 36, no. 4, pp. 406–421, 2018. 

[4] “Transparency report on political advertising on Google.” [Online]. Available: 
https://transparencyreport.google.com/political-ads/overview. 

[5] “The Wesleyan Media Project.” [Online]. Available: http://mediaproject.wesleyan.edu/. 

[6] “WMP Codebook 2010.” [Online]. Available: http://mediaproject.wesleyan.edu/wp-
content/uploads/2016/09/WMP-2010-releasecodebook_v1.2.pdf. 

[7] “About The Wesleyan Media Project.” [Online]. Available: 
http://mediaproject.wesleyan.edu/about/project-background/. 

[8] L. Qi, C. Zhang, A. Sukul, W. Tavanapong, and D. A. M. Peterson, “Automated coding of 
political video ads for political science research,” in Proceedings - 2016 IEEE 
International Symposium on Multimedia, ISM 2016, 2017. 

[9] J. Stefanowski, “SIST 13 - Overlapping, Rare Examples and Class Decomposition in 
Learning Classifiers from Imbalanced Data.” 

[10] S. Hochreiter and J. J. Urgen Schmidhuber, “Long Short term Memory,” Mem. Neural 
Comput., vol. 9, no. 8, pp. 1735–1780, 1997. 

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words 
and Phrases and their Compositionality.” 

[12] “Google Word2Vec.” [Online]. Available: https://code.google.com/archive/p/word2vec/. 

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word 
Representations in Vector Space.” 

[14] C. Lemnaru and R. Potolea, “LNBIP 102 - Imbalanced Classification Problems: 
Systematic Study, Issues and Best Practices,” 2012. 

[15] H. He and E. Garcia, “Learning from imbalanced data,” Ieee Trans. Knowl. Data Engin, 
vol. 21, no. 9, pp. 1263–1284, 2009. 



   
 

   
 

[16] Y. Yan, Y. Liu, M. L. Shyu, and M. Chen, “Utilizing concept correlations for effective 
imbalanced data classification,” Proc. 2014 IEEE 15th Int. Conf. Inf. Reuse Integr. IEEE 
IRI 2014, pp. 561–568, 2014. 

[17] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic 
Minority Over-sampling Technique,” 2002. 

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep 
Convolutional Neural Networks.” pp. 1097–1105, 2012. 

[19] C. Szegedy et al., “Going Deeper with Convolutions.” 

[20] George A. Miller, “WordNet: A Lexical Database for English,” Commun. ACM, vol. 38, 
no. 11, pp. 39–41, 1995. 

[21] X. Zhang, J. Zhao, and Y. Lecun, “Character-level Convolutional Networks for Text 
Classification *.” 

[22] W. Y. Wang and D. Yang, “That’s So Annoying!!!: A Lexical and Frame-Semantic 
Embedding Based Data Augmentation Approach to Automatic Categorization of 
Annoying Behaviors using #petpeeve Tweets *.” 

[23] I. J. Goodfellow et al., “Generative Adversarial Nets.” 

[24] W. Fedus, I. Goodfellow, A. M. Dai, and G. Brain, “MASKGAN: BETTER TEXT 
GENERATION VIA FILLING IN THE.” 

[25] “Toxic comment classification challange.” [Online]. Available: 
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge/discussion/52557. 

[26] Y. Song, M. Zhao, J. Yagnik, and X. Wu, “Taxonomic classification for web-based 
videos,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 871–878, 
2010. 

[27] D. Brezeale and D. J. Cook, “Automatic Video Classification: A Survey of the Literature,” 
IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 38, no. 3, pp. 416–430, 
May 2008. 

[28] M. G. Christel, “Video Classification and Retrieval with the Informedia Digital Video 
Library System,” 2002. 

[29] M. Features, P. Wang, R. Cai, and S. Yang, “A hybrid approach to news video 
classification multimodal features A Hybrid Approach to News Video Classification 
with,” no. February, pp. 2–6, 2015. 



   
 

   
 

[30] H. Chatbri et al., “Automatic MOOC video classification using transcript features and 
convolutional neural networks,” 2016. 

[31] A. G. Hauptmann and R. Jin, “Multi-modal Information Retrieval from Broadcast Video 
using OCR and Speech Recognition.” 

[32] M. A. Smith and T. Kanade, “Video skimming and characterization through the 
combination of image and language understanding techniques,” pp. 775–781, 2002. 

[33] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent Trends in Deep Learning Based 
Natural Language Processing.” 

[34] R. Collobert, J. Weston, J. Com, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural 
Language Processing (Almost) from Scratch,” 2011. 

[35] T. Mikolov, M. Karafiát, L. Burget, J. " Honza, " ˇ Cernock´ycernock´y, and S. 
Khudanpur, “Recurrent neural network based language model,” 2010. 

[36] R. Socher et al., “Recursive Deep Models for Semantic Compositionality Over a 
Sentiment Treebank.” 

[37] Y. Kim, “Convolutional Neural Networks for Sentence Classification.” 

[38] “Google Speech To Text.” [Online]. Available: https://cloud.google.com/speech-to-text/. 

[39] “PySceneDetect.” [Online]. Available: https://pyscenedetect.readthedocs.io/en/latest/. 

[40] “Google Vision API.” [Online]. Available: https://cloud.google.com/vision/. 

[41] “TextGenRNN.” [Online]. Available: https://github.com/minimaxir/textgenrnn. 

[42] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann, “Using millions of emoji 
occurrences to learn any-domain representations for detecting sentiment, emotion and 
sarcasm.” 

[43] “Google Translation API.” 

[44] “Keras text Processing API.” [Online]. Available: https://keras.io/preprocessing/text/. 

[45] “Google Natural Language API.” [Online]. Available: https://cloud.google.com/natural-
language/. 

[46] “Open Secrets.” [Online]. Available: https://www.opensecrets.org/pacs/. 

[47] “PTAA.” 

[48] “PCL.” [Online]. Available: http://pcl.stanford.edu/.

 


	I. Introduction
	II. Related work
	III. Proposed work
	IV.  Experiments and Analysis
	V. Conclusion
	References

