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ABSTRACT 

Testing object-oriented software is critical because object-oriented languages have 

been commonly used in developing modern software systems. Many efficient test input 

generation techniques for object-oriented software have been proposed; however, state-

of-the-art algorithms yield very low code coverage (e.g., less than 50%) on large-scale 

software. Therefore, one important and yet challenging problem is to generate desirable 

input objects for receivers and arguments that can achieve high code coverage (such as 

branch coverage) or help reveal bugs. Desirable objects help tests exercise the new parts 

of the code. However, generating desirable objects has been a significant challenge for 

automated test input generation tools, partly because the search space for such desirable 

objects is huge.  

To address this significant challenge, we propose a novel approach called Capture-

based Automated Test Input Generation for Objected-Oriented Unit Testing (CAPTIG). 

The contributions of this proposed research are the following.  

First, CAPTIG enhances method-sequence generation techniques. Our approach intro-

duces a set of new algorithms for guided input and method selection that increase code 

coverage. In addition, CAPTIG efficently reduces the amount of generated input. 

Second, CAPTIG captures objects dynamically from program execution during either 

system testing or real use. These captured inputs can support existing automated test in-

put generation tools, such as a random testing tool called Randoop, to achieve higher 

code coverage. 
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Third, CAPTIG statically analyzes the observed branches that had not been covered 

and attempts to exercise them by mutating existing inputs, based on the weakest precon-

dition analysis. This technique also contributes to achieve higher code coverage.  

Fourth, CAPTIG can be used to reproduce software crashes, based on crash stack trace. 

This feature can considerably reduce cost for analyzing and removing causes of the 

crashes. 

In addition, each CAPTIG technique can be independently applied to leverage existing 

testing techniques. We anticipate our approach can achieve higher code coverage with a 

reduced duration of time with smaller amount of test input. To evaluate this new ap-

proach, we performed experiments with well-known large-scale open-source software 

and discovered our approach can help achieve higher code coverage with fewer amounts 

of time and test inputs. 
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CHAPTER 1.  INTRODUCTION 

Conducting effective testing of object-oriented software is critical for providing high con-

fidence on its correctness in view of the widespread use of object-oriented languages in the 

development of modern software systems. 

Among different types of testing, unit testing has been widely adopted in practice as an 

important means to improving software quality. Unit testing is a testing method for checking 

functional behavior of a unit in a program. Each unit is a set of method invocation sequences 

(in short, method-sequences) with test inputs. Test inputs, such as a method‘s arguments and 

receiver object, affect behavior of a method invocation, test coverage, and efficiency of test-

ing.  

Manually writing test inputs of unit testing are labor intensive. It is difficult to explore all 

possible behaviors of a unit under testing. In particular, developers under the pressure of 

meeting release deadline often do not have sufficient resources to write test inputs for reveal-

ing bugs. To make matters worse, writing tests for object-oriented code requires complex da-

ta inputs.  

To reduce this manual effort in object-oriented unit testing, many researchers have devot-

ed efforts to introduce automated test input generation techniques [31][35][74][77][82][86] 

that automatically generate test inputs for a unit (e.g., a class or a method). These test inputs 

are in the form of method invocations, where (1) primitive values (such as integer values) for 

primitive-type method arguments are automatically generated, and (2) objects for receivers 

and non-primitive-type method arguments are automatically generated via composing meth-

od-sequences. However, most input generation algorithms are evaluated only with small or 
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toy software. To be more practical, these algorithms should scale up and yield higher code 

coverage for large-scale software (e.g., a system with over 1,000 methods). 

There are many automated test input generation techniques. Yet, one important and chal-

lenging problem is to generate desirable objects for receivers or arguments of methods to 

achieve high code coverage (such as branch coverage). A desirable object means an object 

input with high potential to satisfy test criteria, such as ―structural code coverage‖ to observe 

a wide range of behaviors of a unit. Desirable objects help exercise the not-yet-covered code. 

A code coverage criterion is generally used to show how well the unit has been exercised. In 

this thesis, we use branch coverage, which measures how many branches having been exer-

cised. Achieving high code coverage helps test inputs to access parts of code rarely or never 

accessed under normal conditions, and assures important conditions have been tested. 

If an automated test input generation can archive high code coverage, test inputs can be 

used to attack practical debugging problems. In this thesis, the generated test inputs are ap-

plied to a crash reproduction problem. Reproducing software crash is important, particularly 

for debugging the crash. However, crash reproduction is often labor intensive and challeng-

ing. This study addresses crash reproduction problem by the automated test input generation 

technique developed here. 

The main purposes of this thesis are (1) to develop new techniques that generate desirable 

test inputs, including objects and method-sequences, to achieve higher code coverage with a 

smaller set of inputs, and (2) to develop a new technique that reproduces a given crash only, 

based on crash stack trace by using the proposed test input generation approach. The follow-

ing subsections address challenges of this research area and briefly describe solutions.  
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1.1. Challenges in Test Input Generation 

It is difficult and expensive to write test inputs manually, that cover all branches or state-

ments in a software system, since a developer or tester cannot create test inputs to account for 

all possible situations within limited time. Making it worse, code becomes more complex af-

ter several releases of enhancements.  

In addition, writing test inputs for object-oriented software becomes more difficult and 

complicated than that for software systems developed in procedural languages, such as C 

language. For example, a tester only needs to prepare input arguments for tested functions 

plus global variables in procedural languages. On the contrary, a tester needs to prepare both 

receiver object and arguments for object-oriented languages. Objects significantly increase 

the complexity of testing. In particular, input objects have a huge search space, since an ob-

ject could have many member fields of primitive types and other object types (e.g., container 

classes such as Stack and List.) Because of information hiding, object fields often cannot 

be directly constructed, but are indirectly constructed through a sequence of specific method 

invocations. Because of these difficulties, automated test input generation approaches are still 

unsatisfactory and often impractical for object-oriented software. 

Automated testing has the potential to address these test input generation problems or at 

least to assist them. In general, in order to generate desirable object inputs to visit all feasible 

execution paths, existing automated test input generation tools are employed two techniques: 

(1) direct input construction and (2) method-sequence generation.  

The techniques of direct input construction, such as Korat [31], directly assign values to 

object fields under construction. However, these techniques require the value domain (i.e., 
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the set of selected values) for each primitive-type field be manually specified. The techniques 

of method-sequence generation [41][74][66][66][85] propagate method-sequences to produce 

an object under construction. However, because of the huge search space of possible method-

sequences, method-sequence generation techniques are often ineffective to find method-

sequences that can produce desirable objects to cover target branches [57][59]. 

Failing to generate desirable objects is the main cause of low code coverage achieved by 

the aforementioned techniques. For example, Figure 1 shows an uncovered area of an open-

source system, called Apache XML Security [3], after running a state-of-the-art random test-

ing tool, Randoop [74], for 80 minutes. The target method Algorithm() takes a Document 

argument. The first statement super(doc) in the method checks the validity of the Document 

argument. Because Randoop failed to generate a desirable Document object, the super(doc) 

causes an exception, Thus, all lines after line 87 cannot be covered by Randoop. 

 

80  /∗ 

81   ∗ 

82   ∗ @param doc 

83   ∗ @param algorithmURI is the URI of the algorithm as String 

84   ∗/ 
85  public Algorithm(Document doc, String algorithmURI) { 

86 

87    super(doc); 

88 

89    this.setAlgorithmURI(algorithmURI); 

90    ... 

 

Figure 1. A motivation example. doc is insufficient and causes exception in line 87. Line 89 

cannot be reached unless a desirable doc object is put. The code fragment is from 
org.apache.xml.security.algorithms.Algorithm 
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Now, the main challenges are discussed (that we empirically observed) for a state-of-the-

art random testing tool, called Randoop, to achieve high structural code coverage, such as 

branch coverage. The analysis of these challenges motivates the CAPTIG approach. Randoop 

was chosen in this preliminary empirical study for two main factors: (1) Randoop can be ap-

plied to any real-world code bases in a totally automated fashion without any manual effort, 

and (2) Randoop has been shown to outperform other systematic and pure random test input 

generation tools in terms of achieved branch coverage [74]. 

Randoop ran on three large-scale open-source systems, namely, Apache Commons Col-

lections [1], Apache XML Security [3], and JSAP [17], until their code coverage was saturat-

ed, which means either coverage levels off without much further increase, or a tool cannot 

continue to run because of memory shortage. As a result, Randoop achieves 45.2% of branch 

coverage for Apache Commons Collection, 29.6% for Apache XML Security, and 54.1% for 

JSAP. Then, 10 source code files from each subject system were randomly selected, and the 

causes of uncovered branches were manually investigated. Table 1 summarizes major causes 

for uncovered branches by Randoop.  

Table 1. Categories of main causes for not-covered branches from 10 source files from three 

open-source systems 

cause 

No. 
cause of uncovered branches # of branches (%) 

1 insufficient object 135 (46.3%) 

2 string comparison 61 (20.9%) 

3 container object access 39 (13.4%) 

4 array comparison 25 (8.6%) 

5 exception branches 18 (6.1%) 

6 environmental setting 9 (3.1%) 
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The top main cause (No. 1) of an uncovered branch is that Randoop was unable to gener-

ate a desirable object required to exercise certain branches. This factor accounts for nearly 50% 

of the uncovered branches in this study. As shown in Figure 1, the generated object ‗doc‘ 

does not satisfy the desirable condition for covering the branches in the methods under test. 

String comparison (cause No. 2) contributes as the second main cause. Most string com-

parisons were performed by simple constraints, such as equality (e.g., equals() and 

equalsIgnoreCase()), size (e.g., length()), and substring (e.g., contains(), sub-

string(), and charAt()). However, Randoop failed to find a desirable string randomly to 

satisfy such constraints, since the input space of the string is huge.  

The third main cause is container object access. Creating a certain size of a container with 

necessary elements is not easy. For example, creating ArrayList that contains 20 BankAc-

count instances is not easy. 

Similar to the third main cause, the fourth main cause, array comparisons, includes access-

ing array elements and checking their size. This randomly creates an array with desirable el-

ements or size is difficult.  

Exception branches are related to a try..catch statement, or a branch that checks excep-

tion type. These branches are relatively difficult to cover by automated tools due to the pecu-

larity of exception handling code that handles run-time errors. To determine a desirable con-

dition, it should be investigated how exceptions are defined and where these exceptions have 

been thrown (e.g., an exception propagation path). 
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Finally, the last two main causes (cause No. 5 and 6) are branches related to an environ-

mental setting (e.g., environment variables and file system structure) and non-deterministic 

execution (e.g., multi-thread and user interaction), which are difficult to be addressed by au-

tomated testing approaches. Indeed, the former cause can be alleviated with mock object-

based approaches [66][84] and the latter cause with concurrent testing approaches [77]. 

The causes No. 1, 3, and 4 are related to a lack of desirable objects, and few existing ap-

proaches can effectively address these main causes, especially when testing real-world code 

bases. Thummalapenta et al. [82] pointed out that creating desirable objects is a main chal-

lenge in automated testing techniques, such as dynamic symbolic testing [63][77]. 

Motivated by the above observations, this research addresses the problem of generating 

method-sequence and desirable inputs for object-oriented unit testing with emphasis on 

achieving high coverage, usability, and scalability. 

1.2. Challenges in Crash Reproduction 

In software development and maintenance processes, reliable crash reproduction is an es-

sential first step to debugging. Unfortunately, crash reproduction in a manual way is tedious 

and time-consuming for developers [27]. To assist crash reproduction, many approaches have 

been proposed [14][18][19][22][24][46][69][80], including capture-replay and post-failure-

process approaches. 

Capture-replay approaches record software executions, and reproduce the executions by 

playing the recorded executions. However, the capturing process usually incurs substantial 

performance overhead. Alternatively, post failure-process approaches, such as Windows Er-
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ror Reporting System [46] and Breakpad [14] collect memory dumps or stack traces after 

crashes occur. Since these approaches do not incur any additional performance overhead, 

they are widely used in practice. The information collected from post-failure-process ap-

proaches is used to prioritize debugging efforts and provide debugging hints for developers 

[46].  

When post-failure-process approaches are adopted, developers must reproduce reported 

crashes manually. A typical debugging scenario using crash information includes: (1) in-

specting stack traces, (2) executing a debugger on methods listed in the stack traces, (3) ob-

serving input and output values of methods, and (4) tweaking the input values to understand 

and reproduce the crashes. This manual process requires time consuming and non-trivial hu-

man efforts. 

Reproduced crashes are helpful to identify and finally repair the failure. Figure 2 shows 

the importance of crash reproduction. For the reported bug #437861, the developer could not 

reproduce the crash based on reporter‘s comment without a test case. For bug #702, the de-

veloper also had the same problem, but could reproduce the failure after obtaining the test 

case for the crash. 
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AspectJ Bug #437861 

2003/09/27 Reporter said "don’t have a simple test case yet , but 

hopeful this stack trace will be revealing." and 

added stack trace information. 

 

<4 months later> 

 

2004/01/14 Developer said "Priority will go up if a 

self−contained test case is submitted." 

2004/03/18 Developer marked it as INVALID. 

 

 

Apache Common Collection Bug #702 

2005/06/08 Reporter reported bug with a method call and crash 

stack trace information. 

2005/07/09 Developer said "Do you have a test case for this?" 

 

<5 months later> 

 

2005−12−11 Reporter added test cases. 

2006−01−21 Developer said "As always, a good test case makes all 

the difference." and marked as FIXED. 

 

Figure 2. A brief summary of comments in AspectJ bug #43786 and Apache Common Col-

lection Bug #70. This example shows difficulty and importance of reproducing failure. Note, our 

approach reproduces these failures. 

 

Despite of its importance, reproducing failure is often labor intensive and time consuming 

because software engineers frequently have difficulties in understanding comments in a bug 

report. The survey result by Bettenburg et al. [27] mentioned that incomplete information of 

bug reports is the most commonly encountered problem with bug report in developers‘ expe-

rience. Accordingly, it is highly important for software engineers to automatically reproduce 

a crash based on given information. 

To illustrate the present state of the practice for crash reproduction, we study the bug re-

ports from open-source systems and test input generation techniques. The first case studied 

how quickly crashes are fixed. It was assumed that crash fixing time is greatly affected by 
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crash reproduction time, since developers consider crash reproduction as the most useful ac-

tivity to obtain information for fixing a bug [27]. Crashes were reproduced by this study‘s 

approach (see Section 7.3). The original failure fixing time for these failures was measured. 

Originally, 69.4% of the failures took over a week, and 61.1% took over a month. In addition, 

Anvik et al. [21] also discussed that approximately 50% of fixed bugs took over a week and 

30% of fixed bugs took over a month to resolve. Therefore, it is believed that bug fixing time 

is not trivial and can be reduced by adopting an automated failure reproduction technique.  

Table 2 presents the number of fixed bug reports (i.e., a bug report closed with a ―fixed‖ 

status) of five open-source projects over six years. Approximately 68% of the failures took 

over a week and 46% of the failures took over a month for resolution. For this empirical 

study, bug reports from five open-source projects were used, including AspectJ Development 

Tools [6], Eclipse C/C++ Development Tools [10], Eclipse Equinox [11], Eclipse Graphical 

Editing Framework [12] and Eclipse Java Development tools [13]. 

Table 2. Amount of time to fix reported bugs 

systems total 
over period (yy/mm) 

a week a month from to 

AspectJ Development Tools 612 68.3%        50.2%          02/07 08/03 

Eclipse C/C++ Development Tools 5333 70.4%        53.8%     02/01      08/03 

Equinox            2103 66.4%            53.0% 01/10      08/03 

Eclipse Graphical Editing Framework 714 59.9%        39.9%     02/07      08/03 

Eclipse Java Development tools 18167   68.4%        64.8%     01/10      08/03 

total              26929 68.4%        46.3%         - - 
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There is a difficulty of reproducing failure by using the random test input generation tech-

nique with an empirical study. A set of crash stack traces from bug reports was extracted 

from AspectJ Development Tools, Apache Commons Collections [1], and Apache Commons 

Math [2]. Based on the crash stack trace of the bug reports, a list of relevant classes and 

methods to being tested were extracted. Next, the extended version of Randoop on AspectJ 

Development Tools, Apache Commons Collections, and Apache Commons Math was run 

with the list of classes and methods for 10 minutes. Then, the number of reproducible failures 

was counted. These results show the random test input generation approach reproduced only 

13 bugs among 101 crash stack traces, which is 12.9% of reproducibility. In brief, the ran-

dom approach is not sufficient to reproduce a failure. Therefore, an automated failure repro-

duction technique, which is better than random approach, is desirable. 

1.3. Research Objectives 

The goal of CAPTIG is to automate the creation of test inputs that achieve high structural 

code coverage and apply generated test inputs to crash reproduction. The specific aims of the 

proposed research are the following. 

Capture inputs dynamically from program execution: CAPTIG captures objects from 

normal program execution (e.g., results from system testing or real usage by end users). It is 

not easy to automatically generate the desirable inputs required to cover many branches. 

However, by running and using the software during this execution, many actual inputs will 

be created and can be collected via CAPTIG. The captured objects can be fed to the-state-of-

art testing techniques as initial test inputs. Since these inputs reflect real usage, capturing the-
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se inputs and exploiting them in automated testing provide great potential for being desirable 

in achieving new branch coverage.  

Generate method-sequences by new techniques: CAPTIG generates test inputs by con-

structing a method-sequence generation technique. An enhanced method-sequence genera-

tion algorithm that improves the existing techniques is proposed. Moreover, CAPTIG evolves 

the captured objects. Sometimes the captured inputs may not be exactly desirable inputs to 

cover a target branch (e.g., a not-yet-covered branch), but provide a good basis to direct the 

execution to reach the target branch. As an initial input to a method-sequence generation of 

CAPTIG, captured inputs can evolve gradually toward reaching the target branch. 

Statically analyze observed not-yet-covered branches and mutate captured inputs: 

CAPTIG diversifies test inputs by mutating existing captured objects to exercise not-yet-

covered branches. Although existing techniques are assisted by captured inputs to cover more 

branches, there are still not-yet-covered branches. For some not-yet-covered branches, mu-

tate the captured inputs on purpose to cover uncovered branches and employ a static analysis 

technique to mutate these captured inputs. First, CAPTIG identifies constraints of not-yet-

covered branches. That is, CAPTIG collects preconditions, based on not-yet-covered branch-

es information. Then, CAPTIG generates constraints and places them into a constraint solver 

to obtain counter-examples. CAPTIG parses the counter-examples to obtain a value that an 

input object must have to be desirable. To verify whether the diversified input satisfies the 

precondition of the target branch, CAPTIG invokes a method under test with the diversified 

input. 
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Reduce the number of generated method-sequences: Current automated test input gen-

eration tools are not concerned with the number of test inputs. CAPTIG prunes redundant 

method-sequences without running test inputs by checking the inclusion-relation of the gen-

erated test inputs. This can reduce the number of test inputs without abating code coverage. 

Reducing test inputs helps to not only analyze, manage, and understand generated test inputs, 

but also curtails the testing time for a regression test. Many test-suite reduction techniques 

have been proposed [32][50][70]. However, these techniques require execution of test cases 

to identify redundant test inputs, which can be very inefficient and impractical for huge test 

inputs. 

 Reproduce Software Crash: CAPTIG reproduces crashes, based on crash stack trace in-

formation. CAPTIG generates test cases that direct crashed methods to reproduce the original 

crashes. Reproduced crashes are helpful to identify and repair the failure. 

The proposed techniques yield methods to capture and use objects from program execu-

tion to generate desirable objects and reproduce a crash. To the best of our knowledge, this 

approach is the first work to obtain a method-sequence generation basis from captured in-

formation of execution and to automatically reproduce a crash. The proposed approach also 

yields an efficient method to generate method-sequence by achieving higher code coverage. 

The techniques developed in this research can be useful in practical unit testing and crash 

reproduction by achieving high coverage with meaningful test inputs. 

In addition, each of these CAPTIG techniques can be independently used and adopted to 

leverage existing testing techniques. To facilitate the evaluation of our novel approach, well-

known, large-scale open-source software will be used. 
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1.4. Organization 

The remainder of this thesis is organized as follows.  

Preliminaries: Chapter 2 discusses the basic concept of this research, including automat-

ed software testing, test input generation, test case reduction and crash reproduction. While 

Chapter 2 describes concepts that directly related to this thesis, Chapter 9 gives wider review 

of literature, which describes the state-of-the-art works in this area. 

 Approaches: Chapters 3 through 6 describe this study‘s approach. Chapter 3 describes 

the method-sequence generation with explanation of existing method-sequence generation 

techniques and improvements. This chapter also describes the test input reduction technique 

used in this study. Chapter 4 describes the object-capture-based input generation technique, 

which captures objects dynamically from program executions and generates test inputs, based 

on captured objects. While both Chapter 3 and 5 describes automated test input generation, 

Chapter 5 describes the crash reproduction technique that shows usability of generated meth-

od-sequences and objects. Chapter 6 describes implementation of the techniques. 

Evaluations and discussions: Chapters 7 and 8 assess the effectiveness of this study‘s 

techniques in comparison with exisiting automated test input generation techniques, using 

experiments, case studies (Chapter 7), and a discussion of this study‘s approaches, strengths, 

and limitations (Chapter 8). Chapter 10 offers concluding remarks. 
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CHAPTER 2.  BACKGROUND OF RESEARCH 

Software testing [20] is classified into unit testing, module testing, integration testing, sys-

tem testing, acceptance testing, and field testing in terms of hierarchical levels of testing. A 

unit is the smallest component of testable software application and a unit testing focuses on 

testing each individual unit. Unit testing examines individual units before integrating them 

into a larger system. In contrast, system testing checks the end-to-end behavior of the entire 

application. This study‘s CAPTIG approach is in the context of a particular testing activity—

writing unit tests. 

Software testing addresses a variety of fields to satisfy many aspects of requirements, such 

as functional correctness, compatibility, performance, and usability. To satisfy these test re-

quirements, inputs of unit testing should be desirable to reveal unsatisfied properties. Code 

coverage is used as a metric to show the quality of unit test cases. Test cases, which have 

good quality to satisfy test requirements, will achieve high code coverage. The goal of this 

study‘s approach is to achieve higher code coverage with a small set of test inputs. 

The CAPTIG approach applies the generated test inputs to one of the practical testing 

problems—crash reproduction. Based on limited information on crashes, this study‘s crash 

reproduction approach reproduces the crash by using automated test input generation tech-

niques developed through this study. 

In this chapter, research background is discussed, including unit testing of object-oriented 

software, desirable object input construction, test case reduction, and crash reproduction. 
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2.1. Unit Testing of Object-oriented Software 

The main difference between unit tests of procedural languages (such as C) and object-

oriented languages (such as C++ and Java) is that in procedural languages, a tester only 

needs to prepare input arguments for tested functions plus global variables. However, in ob-

ject-oriented languages, a tester needs to prepare both receiver and arguments. For example, 

suppose a class BankAccount has a private integer-typed member field accountBalance and 

a method deposit(int amount). If testers want to test deposit(int amount), they should 

prepare the arguments (such as -1, 0, 1, 100, and 1000000) as well as receiver objects (such 

as a BankAccount instance with accountBalance=-100, -1, 0 and 1000). Such a receiver 

object can be created by constructing and invoking a method-sequence. Figure 3 shows a 

sample legal method-sequence for the BankAccount class. Note, without the statement in line 

05, the entire sequence becomes illegal because the method-sequence cannot be compiled 

successfully without a BankAccount instance. 

 

01 Int a=1000;  //Variable declaration 

02 Int b=−1;    //Variable declaration 

03 

04 //Construct with a initial balance 

05 BankAccount account = new BankAccount(a); 

06 

07 //Test with −1 

08 account.deposit(b); 

09 

10 //Test with 1000 

11 account.deposit(a); 

 
 

Figure 3. A method-sequence example 
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2.2. Desirable Object Construction 

To address desired object construction challenges, existing automated test input genera-

tion tools adopt two main techniques: (1) direct input construction and (2) method-sequence 

generation. 

2.2.1. Direct Input Construction 

The techniques of direct input construction, such as Korat [31] and TestEra [59], directly 

assign values to object fields of the object under construction. If an object field of the object 

is also a non-primitive type (i.e., requiring an object), the techniques further construct an ob-

ject for this object field and assign values to object fields of this second-level object. This 

procedure is conducted repeatedly until the object-field values of the object have been as-

signed to a small pre-defined bound of levels.  

To avoid generating invalid objects (e.g., tree objects with cycles among tree nodes), these 

techniques require the specification of class invariants for checking and filtering invalid ob-

jects. However, in practice, class invariants are rarely documented. In addition, these tech-

niques require the value domain (i.e., the set of selected values) for each primitive-type ob-

ject field be manually specified.  

All of these factors cause these techniques to be ineffective for testing real-world classes. 

For example, Korat [31] was evaluated on primarily data structures and its application re-

quires much manual effort for preparing class invariants and value domains. In addition, the 

coverage of various branches requires a high bound of levels beyond the small bound that 

can be handled by the direct input construction approach. 



18 

 

 

 

 Korat requires users to provide a repOk() Boolean method, which checks the validity of 

a given object against the required class invariant for the class of the object. TestEra [59] re-

quires users to provide class invariants specified in the Alloy specification language [56]. 

Both Korat and TestEra use class invariants to efficiently prune both invalid objects (those 

violating class invariants) and redundant objects (those with equivalent states), when generat-

ing a bounded-exhaustive set of objects (whose size is within a relatively small bound). Their 

techniques also require users to provide a finite domain of values for primitive-type fields in 

the generated objects.  

2.2.2. Method-sequence Generation 

To generate inputs and method-sequences shown in Figure 3, random testing [49] has 

been applied. Random testing has many advantages, including practical applicability, free of 

bias, and ease of implementation. One of the important goals for random testing is to achieve 

high code coverage with a minimal set of test cases. 

Various techniques on method-sequence generation have been proposed for generating 

objects used to test input generation. Random-testing techniques (such as JCrasher [41] and 

Randoop [74]) generate random method-sequences, sometimes with pruning based on feed-

back from previously generated sequences [74]. Evolutionary testing techniques (e.g., eToc 

[85] and Evacon [66]) use genetic algorithms to evolve initial method-sequences to ones 

more likely to cover target branches. Bounded-exhaustive testing techniques (such as JPF 

[86], Rostra [88], and Symstra [89]) for method-sequence generation produce exhaustive 

method-sequences up to a certain length, sometimes with pruning of equivalent concrete ob-

jects [86][88] or subsumed symbolic objects [89]. However, the coverage of various branches 
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leads to very long method-sequences, whose lengths are beyond the small bound that can be 

handled by these techniques.  

In contrast, the CAPTIG approach is able to capture objects produced with long method-

sequences (from real applications) and further evolve these objects by using more method-

sequences or by directly mutating these objects. Recent sequence-mining techniques, such as 

MSeqGen [82], statically collect method-sequences (that can produce objects of a specific 

type) from various applications, and then apply dynamic symbolic execution [82] or random 

testing [74] on these collected sequences. In contrast, this study dynamically collects method-

sequence from execution. 

CAPTIG can be viewed as a novel integration of both direct input construction and meth-

od-sequence generation techniques for generating desirable inputs. The input capturing and 

diversifying of CAPTIG can be viewed as a type of direct input construction, but it does not 

suffer from the limitations of earlier techniques, such as Korat [31]. For example, CAPTIG 

does not require class invariants, and constructs valid method-sequences and objects by di-

rectly capturing them from normal program executions. CAPTIG can construct inputs of very 

large size beyond a size within a small bound. In addition, CAPTIG mutates captured inputs 

to attempt moving towards target branches while Korat does not exploit guidance from the 

target branch. 

CAPTIG can also be viewed as a technique of method-sequence generation, since the test 

input generation techniques explore and generate new method-sequences derivied from the 

captured and mutated test inputs. The diversified inputs often reflect desirable inputs or in-

puts close to desirable inputs. Therefore, some other method invocations in method-
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sequences generated by the test input generation techniques can evolve the captured and mu-

tated inputs into the desirable ones. 

2.3. Test-Suite Reduction 

Test-suite reduction techniques reduce the size of a test-suite, while retaining test re-

quirements of the test-suite. In other words, these techniques select a smaller representative 

subset of test inputs that can still achieve the same code coverage as the entire test input set. 

Test-suite reduction can diminish the cost of executing, managing, and analyzing test inputs. 

Given requirements on this set of test inputs, the test-suite reduction problem can be stated as 

follows [50]. 

Given: Test-suite    and a set of test input requirements            that must be satisfied 

to provide the desired code coverage of the program, and subsets of              , one as-

sociated with each of the      such that any one of the test inputs    belonging to    can be 

used to test   . 

Problem: Find a minimal set of test inputs from    that satisfies all of    . 

Finding the minimal set is an NP-complete problem [46]. Thus, test-suite reduction tech-

niques use approximation to find the minimal representative set. The heuristics used by Har-

rold et al. execute generated test inputs one-by-one [50]. If the test requirement (such as code 

coverage) is satisfied, unused test inputs are redundant and executed test inputs are repre-

sentative. There are many algorithms for test-suite reduction [32][50][70]. These approaches 

need to run test inputs and check test requirements. 
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Test-suite reduction techniques have been reconsidered for object-oriented systems. Pre-

viously, test-suite reduction techniques do not need to consider the same input values. Cer-

tainly, the same input value leads to the same behavior of a unit under test. In an object-

oriented system, the behavior of a method depends upon arguments and receiver objects. 

Therefore, it is important to consider both arguments and receiver objects. 

JPF [86] and Rostra [88] detect redundant unit tests by using bounded exhaustive genera-

tion with state matching of argument and receiver objects. They share the use of state match-

ing on objects and prune sequences that create a redundant object. They use Henkel and Di-

wan‘s term-based representation [51] for an object. However, Carlos et al. [74] found this 

representation cannot express reuse of an object (i.e., aliasing) and mutation (i.e., change of 

values) of an object via a method that mutates its parameters. Therefore, current test-suite 

reduction approaches need to be improved to address these limitations. 

2.4. Crash Reproduction 

To assist crash reproduction, many approaches have been proposed 

[14][18][19][22][24][46][69][76][80], including capture-replay and post-failure-process ap-

proaches. Capture-replay approaches monitor software execution by using software instru-

mentation or special hardware for storing monitored information to reproduce software exe-

cution [22] [69] [80]. For example, ReCrash instruments software capture all inputs of meth-

ods [22]. When a crash occurs, ReCrash reproduces the crash using the captured method in-

put arguments. Capture-replay approaches reliably reproduce software execution, but incur 

non-trivial performance overhead. For example, ReCrash incurs 13-64% performance over-

head. Due to this overhead, capture-replay techniques are not commonly used in practice.  
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Instead, post-failure-process approaches are widely deployed in practice [14][18][19] 

[24][46][79][76]. These approaches do not incur any overhead, since they do not capture in-

formation during software execution. These approaches store crash information, such as 

memory dumps or stack traces, only at the time of crashes. For example, the Windows Error 

Reporting (WER) system automatically dumps crash information, including stack traces, and 

sends it to a WER server [47]. Bug reporting systems, such as Bugzilla [79], also encourage 

users to include crash stack traces when they report bugs. This crash information is very use-

ful for developers to debug crashes and prioritize their debugging efforts [46] [62]. However, 

developers should manually reproduce failures based on crash information. 
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CHAPTER 3.  ENHANCED METHOD-SEQUENCE GENERATION 

To generate test inputs automatically, random testing has been proposed [49], which se-

lects test inputs randomly from the input domain of a program. The concept and implementa-

tion of random testing are relatively simple compared to other existing techniques, while ran-

dom testing is offering several benefits as an effective black box testing technique, such as 

reliability. Random testing has been widely accepted because this technique does not require 

human intervention and avoids human bias for the generation of test cases. Human bias is 

problematic, because it only allows for input values and method-sequences that can be con-

trived by testers. 

This chapter begins with explanations of existing method-sequence generation techniques 

and related problems. Then, it describes this study‘s approaches in two categories, input se-

lection and method selection, to improve existing method-sequence generation techniques. 

Finally, it proposes a test input reduction technique to reduce the size of generated test inputs 

and method sequences. 

3.1. Random Testing for Object-oriented Software 

Random testing techniques have been also applied to testing of object-oriented software 

[41][49][74][77], which randomly create method-sequences to generate input objects. These 

techniques are spotlighted, due to their simplicity. Random testing for an object-oriented sys-

tem is usually more scalable than other automated testing techniques [74]. For example, 

state-of-the-art automated test input generation techniques, including exhaustive testing 

[86][88][89], can only test a limited number of classes at a time, primarily because memory 
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usage becomes exponentially large as the number of classes increases. Random testing is eas-

ier to scale up, because this technique keeps input data, which is not exponentially large.  

Although random testing techniques are scalable, they cannot achieve high code coverage 

on large-scale software systems (e.g., a system has over 1,000 methods). These techniques 

often generate many redundant test cases that do not contribute to increasing code coverage 

with low code coverage (e.g., lesser than 50% of code coverage - see our empirical study re-

sults). To be widely useful, random testing techniques should scale and yield higher code 

coverage even for large-scale systems. 

Constructing unit tests for object-oriented codes involves a number of choices—what 

methods to call, what arguments to give, or what order for invocations. The search space of 

possible method-sequences is very large, and choice of method/input selection strategies can 

have a considerable impact on the effectiveness of method-sequence generation techniques. 

Therefore, finding a better method/input selection strategy is crucial for testing object-

oriented programs. 

3.2. Adaptive Random Testing for Object-oriented Software 

It has been argued that random testing lacks a systematic approach to learn from previous-

ly executed input data. Alternatively, adaptive random testing (ART) [33] offers an oppor-

tunity to choose evenly distributed inputs over the range of possible input values. Thus, it 

became one of the most effective approaches in the area of automated test input generation. 

One study shows that ART is at least 50% more efficient than random testing. 
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There are many ART approaches [33][33][35]. Among them, the simplest adaptive ran-

dom selection technique is Distance-based Adaptive Random Testing (D-ART), also called 

fixed-sized-candidate-set ART [32]. D-ART uses two input data sets; a candidate set has sev-

eral input data and an executed set saves used inputs. D-ART checks a sum of distances from 

all elements of the executed set to each candidate input in the candidate set, and chooses the 

farthest candidate as an input value. 

Ciupa et al. suggest adaptive random testing for object-oriented software (ARTOO) [35] 

that applies the D-ART approach to the object-oriented system by choosing input objects 

from an object pool, which contains available object inputs. Because their object-oriented 

version of D-ART needs to calculate the distance between objects, they introduced a new no-

tion, object distance. As a result, ARTOO found the first fault in a much smaller number of 

test inputs, using only 20% of the number of test inputs required by an undirected random 

testing approach. 

ARTOO characterizes objects by elementary distance (the distance between the direct 

values of objects), type distance (the distance between types of objects, completely inde-

pendent of the values of the object themselves), and field distance (the distance between in-

dividual fields of the objects). The object distance is calculated as a summation of these three 

components with weights and normalization.   

A major problem with ARTOO is that a dimension of input domain increases calculation 

time exponentially. For example, integer type values are easier and faster for checking the 

distance. However, calculating an object distance takes a much longer time. In Ciupa‘s paper 



26 

 

 

 

[35], it took a much longer time (160% from unguided random testing) because of the calcu-

lation of the object‘s distance, although ARTOO generates a smaller number of test inputs. 

3.3. Feedback-directed Input Generation 

This section describes the feedback-directed input generation [73] technique in detail. The 

feedback-directed input generation technique incrementally generates method-sequences by 

selecting a target method being tested and selecting inputs to the method. Feedback-directed 

input generation starts with a set of primitive type declarations with predefined values as ini-

tial inputs for an object generation seed. It generates method-sequences based on relation-

ships between the argument types and return types for each method. This technique executes 

the generated method-sequence to verify the newly created sequence (the one just extended) 

and obtain feedback (return values or generated objects) from the execution of the previously 

generated sequences. Feedback-directed input generation uses this feedback as an input for a 

new method-sequence. By doing this, executing generated method-sequences incrementally 

create new inputs. These modified inputs can be used as generation seeds to generate more 

method-sequences, which create more objects.  

The following steps describe the process of feedback-directed input generation technique: 

1) The feedback-directed input generation technique selects one of the methods under 

test.  

2) To determine input arguments and a receiver for this selected method, the tech-

nique searches sequences from a sequence pool, which contains previously con-

structed sequences.  
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3) If the technique finds sequences that construct the same type of objects as the type 

of one of the arguments and the receiver of the selected method, the technique 

merges these sequences. 

4) Then, the technique appends the selected method to the end of the merged se-

quence to make a new sequence. 

Randoop is a well-known and state-of-the-art random testing tool for object-oriented sys-

tems that implement feedback-directed input. Randoop creates JUnit [26] test cases, based on 

the sequences. The experimental results show that Randoop outperforms systematic and un-

guided random test input generation tools in terms of code coverage and error detection [74].  

For example, assume we specify the class BankAccount mentioned in Figure 3. Randoop 

might randomly choose one of BankAccount‘s constructors as a target method and generate a 

sequence that creates a BankAccount instance. After creating the instance, Randoop might 

randomly choose one of BankAccount‘s methods as a target method being tested. Suppose 

there are only two methods in the class BankAccount: void deposit(int) and boolean 

verifyAccountOwner(BankClient). If Randoop chooses the deposit(int) as a method 

under test, it selects a predefined integer declaration as the input value of the method, and 

successfully composes a new method-sequence. On the contrary, if it chooses the verifyAc-

countOwner(BankClient) as a method under test and there is no method that returns a 

BankClient instance in the list of methods under tests, verifyAccountOwner cannot be test-

ed. This input finding strategy is called bottom-up strategy. 

However, Randoop achieves only 50% of code coverage as discussed in Chapter 1. Based 

on this study‘s analysis, there are four important reasons for the lower code coverage: First, 
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Randoop uses an undirected random selection strategy to select input data, although these 

inputs are based on feedback. Therefore, an adaptive distribution of input selection (a di-

rected random selection) may be desirable. This problem is addressed through this study‘s 

enhanced input selection techniques. 

Second, method selection for the next target method is random. In detail, it retrieves a 

complete method list of classes under test, then randomly chooses one method as a target 

method. Although this strategy retains fairness for a method selection, it makes the growth of 

code coverage slower when a strategy selects a method that does not contribute to increasing 

code coverage. This problem is addressed through this study‘s enhanced method selection 

techniques. 

Third, Randoop only focuses on use of feedback from execution and a bottom-up (accu-

mulative) strategy to determine proper inputs of the method under test. If required arguments 

or receiver objects for a method under test are not available (i.e., all of these instances cannot 

be produced at that moment), the random method selection algorithm gives up and tries to 

select another method for testing. This strategy makes the test of multi-parameter methods 

even more difficult. For example, if one method needs five different types of objects as input 

arguments, it is more likely to give up testing this method than a method with one argument. 

This problem is addressed by this study‘s on-demand input creation technique. 

Fourth, Randoop generates too many redundant test cases, although it tries to eliminate 

redundant test cases, based on state matching during test input generation. Indeed, Randoop 

generates a huge number of redundant test cases. For example, it often generates more than 

1,000 test cases in five seconds, but most of them are not helpful to increase code coverage. 
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Executing test cases takes a long time; thus, having a minimal set of test cases is important 

for efficient testing. Some test reduction techniques have been proposed [32][50][52][70] to 

obtain a smaller set of test cases by eliminating redundant test cases. However, to eliminate 

redundant test cases requires considerable extra time to execute all test cases to measure cov-

erage and determine the redundancy. This problem is addressed by this study‘s test input re-

duction techniques. 

3.4. Enhanced Input Selection 

This study proposes three input selection approaches that collectively help achieve higher 

code coverage with a small set of test cases. In addition, each approach can be independently 

pluggable in the existing random testing algorithms. This study‘s approaches use different 

selection points in the construction of test inputs. 

 Simplified distance-based Selection collects the farthest test input from the used values 

with lower computation cost than ARTOO.  

 On-demand Input Creation immediately generates needed inputs (such as arguments and 

receiver objects) for the method under test. This technique also generates arrays by gath-

ering values that have a requested element type.  

 Type-based Selection gives equal chances between different data types to be chosen.  

As said ealier, these approaches are pluggable in existing random testing algorithms. 
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3.4.1. Simplified Distance-based Input Selection 

ARTOO‘s object calculation requires computational overhead as described in Section 3.2. 

This study suggests a simplified object distance, which is more efficient and requires lower 

computation cost. Input data types for this study are classified into three categories—

primitive types (including boxed types and a string type), array types, and object types. This 

categorization removes vagueness of the ARTOO‘s object distance algorithm. 

Primitive Type 

This study determines the distance between two primitive types as follows: 

• Number type : |p − q|. 

• Character type: convert to a number type (e.g. based on ASCII code table) and 

calculate as a number type. 

• Boolean type: 0 if identical, otherwise a positive constant value which is greater 

than 0. 

• String type: the Levenshtein distance [64]. It measures the minimum number of 

edits needed to transform one string into the other, with the allowable edit opera-

tions being insertion, deletion, or substitution of a single character. 

Array-type distance 

For an array-type distance, we consider element type. If an array element type is a primi-

tive, distance between two arrays is calculated as follows: 
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• identical: array size is identical, type of each element is compatible
1
, and all the el-

ement values are the same. 

• same_size: array size is identical, type of each element is compatible, but some of 

element values are not identical. Calculate ∑| ( )   ( )| , where      

                      , and  ( ) and  ( )are     elements of two arrays, respec-

tively. 

• different_size : array size is different, type of each element is compatible, calculate 

∑|   |, where   and   are a size of each array. 

• different: they have different types of elements. 

Normalize and provide a weight for each category to make the following equation: 

0 = identical < same_size < different_size < different = 1. 

Object type distance 

Categorize object distance between two objects into four levels: 

• identical: identical types and identical field values.  

• similar: identical types, but different field values.  

• compatible: compatible types.  

• different: different types.  

The degree of distance is the following: 

                                                 
1
 This study defines compatible types that has the same super class. 
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0 = identical < similar < compatible < different = 1. 

We test the equality of two objects by the equal() method and == operator to decide 

whether they are identical. If their types are identical, this study‘s algorithm compares its 

member variables to decide whether the distance of two objects is identical or close. If they 

do not have identical object types, the algorithm explores their super classes to decide wheth-

er their distance is compatible or different. 

3.4.2. On-demand Input Creation 

This study proposes the on-demand input creation technique, which actively creates nec-

essary test inputs on-demand in the absence of necessary objects (including an instance that 

has no chance to be created). If a method under test requires an input argument, Randoop 

checks the availability of this type of object. If there are no available instances, the tool will 

not test the selected method. On the contrary, this study‘s on-demand input creation approach 

generates all required arguments and receiver objects. 

 For example, when boolean verifyAccountOwner(BankClient) method has been cho-

sen, and currently no sequences return a BankClient instance, the on-demand input creation 

technique searches the constructor of BankClient class to compose a legal sequence. On the 

contrary, Randoop gives up testing this method because no sequences return BankClient 

instance. 

Algorithm 1 represents the getInputSequences method, a core component of the on-

demand input creation approach. The getInputSequences method creates inputs on-demand 

if there is no corresponding feedback. First, on-demand input creation checks argument types 
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of the method under test and places the argument types into an array variable called P (Line 

2). S is an array that has the same size as P. S records sequences that have corresponding 

feedback with respect to input arguments in P. Pi and Si indicate ith element of P and S, re-

spectively. From lines 6 to 32, the algorithm traverses each argument to find a sequence that 

returns the same type of feedback. If the algorithm cannot find the same type of feedback, the 

algorithm reaches Line 17. If the argument type is an array, the algorithm generates a se-

quence that returns an array. arrayGeneration creates and returns an array by searching the 

feedback, based on an element type of array.  



34 

 

 

 

 

procedure getInputSequences(methodUnderTest) 

input     

  methodUnderTest a signature of method under test 

output 

  S               sequences for each argument 

begin 

01  //check input argument types of the method under test 

02  P = getInputParamTypes(methodUnderTest) 

03  S = {}  

04 

05  for (i = 0 to P − 1)) 

06      //search previously constructed sequences 

07      sequencesForType = getSequencesFromInputType(Pi) 

08 

09      if sequencesForType > 0 then 

10         //Select only one sequence for the type 

11         Si = randomSelect(sequencesForType) 

12         continue 

13      end if 

14 

15      //if there is no feedback for the input arguments, 

16      //create input arguments. 

17      if Pi is array then 

18         Si = arrayGeneration(Pi) 

19         continue 

20      end if 

21 

22      if Pi is abstract or interface then 

23         constructors = findCompatibleConstructors(Pi) 

24      else if Pi is object then 

25         constructors = findObjectConstructors(Pi) 

26      end if 

27 

28      constructor = randomSelect(constructors) 

29      //Recursively call getInputSequences() 

30      inputSeqforObject = getInputSequences(constructor) 

31      Si = objCreationSeq(constructor, inputSeqforObject) 

32  end for 

33  return S 

end 

 

Algorithm 1. On-demand input creation 

If the argument type is class, findCompatibleConstructors finds all constructors of the 

class (lines 22-26). If the class type is abstract or interface, findObjectConstructors finds 

all possible constructors of compatible classes to make an input instance. Note, if the con-

structor needs other objects as arguments again, this study‘s approach recursively searches 
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input objects within a preset depth. In Line 30, the algorithm calls getInputSequences re-

cursively, since the selected constructor method might need other necessary input objects to 

be invoked. The statement in Line 31 creates an argument by calling the constructor. Finally, 

Line 33, the algorithm returns all the found and generated sequences that create arguments. 

Array Input Generation 

Array is one of the input types that make the size of its input domain exponentially huge. 

For example, suppose there is an array of type  . If the domain size of type   is   and the 

length of the array is   in length, the domain size of the array is   . Like an object type, an 

array's high dimension of the input domain makes it difficult to achieve high code coverage. 

Nevertheless, a simple array generation technique increases code coverage in spite of the 

complexity of array input. Since Randoop does not provide a direct approach to generate ar-

rays, Randoop lacks the strength to cover more branches that takes an array type of input. As 

a seed statement, Randoop declares primitive data type variables with random values. 

Through execution feedback, Randoop might be able to generate array type variables, but the 

possibility for this is low. 

This study‘s array generation approach is described as follows. If a method under test 

takes an array input, the algorithm finds all available values that match an array‘s element 

type from the previously generated inputs. When using a type-matching strategy, this study 

also uses the  type-based input selection approach. After listing all the available values, the 

algorithm chooses a size of input array by a randomly-generated number (the size is up to the 

number of possible values.) Based on the chosen size, the algorithm randomly selects the 

values among the available values and assigns them to a random position of the array. By 
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doing this, our array generation technique generates arrays as input data from non-array 

feedback. 

3.4.3. Type-based Input Selection 

Randoop generates a sequence of statements. Each element in the sequence represents a 

particular statement, including method calls, assignments, and declarations. Every variable 

used as an input to a statement is the result of a previous statement in the sequence. Randoop 

keeps a set of all generated sequences. When Randoop selects a new method, called foo, to 

create a method-sequence, it iterates all statements in the existing available sequences from 

the set to search values with a type matched to the input type. When possible values are 

found, one is selected to use as an input for the method foo. 

There are two possible type-matching techniques to choose input data for generating test 

inputs—compatible type-matching and identical type-matching. Literally, compatible type-

matching assumes compatible types as a matched type, while identical type-matching defines 

only the same types as a matched type. If two objects have the common ancestor class or in-

terface, their types are compatible. For instance, consider an interface, I, and two classes, C 

and D, which implement I. In this instance, C and D are compatible types. 

An input selection technique can be wrongly directed if only one matching strategy be-

tween two type-matching techniques is used. By retaining only the identical type-matching 

technique, compatible type values never receive a chance for selection. On the other hand, if 

the compatible type-matching technique is only used, identical types have a lower probability 

of being selected than compatible types because the number of compatible type values is 
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greater, in general, than that of identical type values. Input data must be selected with equal 

probability among compatible and identical type values.  

To solve this problem, fair probability is set between two type-matching techniques in-

stead of using only one matching technique. For example, input data can be selected with a 

probability 0.5 for compatible type values and 0.5 for identical type values. 

3.5. Enhanced Method Selection 

This section describes this study‘s method selection techniques for method sequence gen-

eration. The coverage-based method selection technique prioritizes target methods to maxim-

ize the coverage in a given test time. Open-access selection allows the testing of all protected 

and private classes and methods. 

3.5.1. Coverage-based Method Selection 

Existing random testing tools randomly choose the method under test. Alternatively, test-

ers manually specify test order of methods under test. It is believed an appropriate selection 

of methods during test input generation improves code coverage. There are often over 1,000 

testable methods in a large-scale software system [56]. Therefore, it is difficult to manually 

determine the optimal test order of methods under test.  

The coverage-based method selection technique prioritizes methods under test, based up-

on their coverage to maximize the coverage in a given test time. A lower-coverage method 

has higher priority. Since this technique gives a higher priority to methods under test that 

have not been exercised during the method-sequence generation and avoids testing the higher 

coverage method multiple times, this technique increases coverage. This technique reduces 
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the generation time required towards preset coverage goal by giving the higher probability to 

be selected to low-coverage methods (i.e., that have lower branch coverage). The coverage-

based method selection avoids the inefficiency of choosing high-coverage methods (have a 

higher branch coverage) multiple times during method-sequence generation.  

This study prioritizes methods based upon probability weights. The following function f(m) 

returns a weight of a method, m, to be selected:  

Equation 1. Weight of method selection  

 ( )     (
 

             
 ) 

                 (
 

                          
 ) 

                 (
   (                 |              )

                
 ) 

 

where m is a method under test, ―coverage of m‖ is code coverage rate of m, ―coverage of the 

class of m‖ is a code coverage rate of m‘s receiver object, ―test counts of m‖ indicates the 

number of times m has been successfully tested, and ―    (                 |   

           )‖ denotes the maximum of test counts among all methods under test. If code 

coverage of a method under test or a class of the method is higher, the method has a lower 

chance of being chosen for the test. , η, and λ are positive values are chosen based on our 

empirical study. This study uses branch coverage as code coverage, γ = 2, η = 3, and λ = 1 in 

its experiment. 
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According to the function f(m), if code coverage of a method under test and a receiver 

class of the method is higher and the count of a method that has been selected more than oth-

er methods, the method has a lower probability of being tested. In other words, the methods 

that do not have potential to increase code coverage will have lower probability of being test-

ed. 

3.5.2. Open-access Method Selection 

The open-access method selection technique can test non-public methods. In Java, private 

and protected methods are difficult to test, since these non-public methods cannot be ac-

cessed from outside classes or packages. This study found that 17% for Ant, 28% for Java 

containers, and 34% for ASM methods are non-public methods. The open-access method se-

lection increases code coverage by changing non-public methods to public ones. 

To include non-public methods for testing, this study modified method accessibility by us-

ing the ASM Bytecode Framework [5]. The open-access method selection approach searches 

all non-public methods and classes, and changes them to public ones at the bytecode level. 

3.6. Test Input Reduction 

An important goal of automated test input generation techniques, including method-

sequence generation, is to achieve high code coverage with a small set of inputs. Although 

researchers have proposed many techniques to achieve this goal, the method-sequence gener-

ation technique generates a huge number of redundant test inputs. For example, it often gen-

erates more than 1,000 test inputs in five seconds, but most of them are not helpful to in-
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crease code coverage. Executing test inputs takes a long time; thus, having a smaller set of 

test inputs is important for efficient testing. 

This study applied two reduction techniques: (1) coverage-based reduction and (2) se-

quence-based reduction. Coverage-based reduction was proposed by Harrold et al. [50]. This 

technique checked coverage for each test input to determine redundancy. Additionally, se-

quence-based reduction was proposed as a new approach in this paper. Sequence-based re-

duction detected redundancy by checking the inclusion-relationship of method-sequences. By 

appling both techniques, our experiments showed that approximately 99% of the test inputs 

were redundant and can be removed without diminishing code coverage.   

3.6.1. Coverage-based Reduction 

A newly created sequence may not improve code coverage. In this situation, the new se-

quence is redundant in terms of code coverage, although the new sequence is not identical 

with and behaviorally different from the previous sequences. Coverage-based reduction re-

moves this kind of redundant sequence. The redundant test input, based upon coverage, is 

defined as follows.  

Definition 1 A test input, t, is redundant for a test-suite, S, if and only if there exists a test 

input t’ from S such that cov(t)cov(t’), where cov(t) returns coverage by t, and cov(t’) by t’.  

Figure 4 shows an example. There are two test cases test12() and test34(); both test 

TreeMap.remove() with the different input values. test12() uses a Short type variable as 

an input, and test34() uses an Integer type variable. They have values 1 and 10, respec-

tively. TreeMap instance var0 does not have any element inside. Thus, the containsKey 



41 

 

 

 

method cannot find an element by any key. Therefore, the code coverage of the target method 

is not different, although these two test cases use different types and values. Consequently, 

one of these test cases is redundant in terms of code coverage. 

 

 

public void test12() throws Throwable { 

  TreeMap var0 = new TreeMap(); 

  Short var1 = new Short((short)1); 

  Object var2 = var0.remove((Object) var1); 

  // Regression assertion 

  assertTrue(var2 == null); 

} 

 

public void test34() throws Throwable { 

  TreeMap var0 = new TreeMap(); 

  Integer var1 = new Integer(10); 

  Object var2 = var0.remove((Object) var1); 

  // Regression assertion 

  assertTrue(var2 == null); 

} 

 
 

Figure 4. Two method-sequences with the same coverage 

 

This study applies the coverage-based reduction technique to Randoop. To apply the cov-

erage-based reduction technique, instrumented symbols in the bytecode to measure code cov-

erage are used; thus, the reduction technique can check code coverage immediately after gen-

erating a new method-sequence. If a newly generated method-sequence covers only the pre-

viously covered areas, the sequence is considered redundant. 

For more details, the coverage-based reduction technique adds a variable for each branch 

to record whether this branch has been reached. Therefore, if a new method-sequence covers 

one or more branches that have never been reached, then this sequence is not redundant. 
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Moreover, because the on-demand input creation technique saves not only different method-

sequences, but also all involved objects (including return objects and involved receiver ob-

jects), the coverage-based reduction technique can easily reuse the existing receiver and ar-

guments to directly execute the new sequence to measure code coverage. 

For example, let‘s recall the method-sequence in Figure 3 as seqA: 

01 Int a=1000;  //Variable declaration 

02 Int b=−1;    //Variable declaration 

03 

04 //Construct with a initial balance 

05 BankAccount account = new BankAccount(a); 

06 

07 //Test with −1 

08 account.deposit(b); 

09 

10 //Test with 1000 

11 account.deposit(a); 

 

If the on-demand input creation technique generates and saves seqA, then there is a 

BankAccount instance with deposit = 999 in an object pool. Now, assume a newly created 

sequence seqB by adding the following bold lines (lines 12 and 13) to seqA: 

01 Int a=1000;  //Variable declaration 

02 Int b=−1;    //Variable declaration 

03 

04 //Construct with a initial balance 

05 BankAccount account = new BankAccount(a); 

06 

07 ’Test with −1 

08 account.deposit(b); 

09 

10 ’Test with 1000 

11 account.deposit(a); 

12 int c=Integer.NAN; 

13 account.deposit(c); 
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For testing code coverage of seqB, it is not necessary to rerun statements in lines 1-11 (i.e., 

seqA) of Figure 3, because the seqA‘s related receiver object from the object pool were just 

queried. And, statements in lines 12 and 13 are executed. Finally, it is recognized that seqB 

touches some branches that have not yet been covered. 

3.6.2. Sequence-based Reduction 

A test input of object-oriented systems consists of method invocations that create and 

modify both receiver object and arguments. However, existing test input reduction tech-

niques do not consider method-sequence. Previous approaches consider only coverage of test 

inputs or only receiver objects to remove redundant test inputs.  

The sequence-based reduction technique prunes redundant method-sequences by checking 

the inclusion-relation of the generated test cases. Since this technique does not check code 

coverage, it does not need to execute any test cases to determine redundancy. 

We define redundant test inputs, based upon sequence relationships as follows.  

Definition 2 A test input, t, is redundant for a test-suite, S, if and only if there exists a test 

input t’ from S such that is seq(t) seq(t’), where seq(t) and seq(t’) each returns a sequence 

set of method invocations of t and t’, respectively.  

The sequence-based reduction technique checks whether a sequence is a subset of another 

sequence. If this is the case, eliminate the sequence. For example, SeqB is based on SeqA. 

Because SeqA is composed of statements in lines 1-11, and SeqB is composed of statement in 

lines 1-13, it is easy to see that sequence A is a subset of SeqB (i.e., SeqA   SeqB). Therefore, 
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each branch reached by SeqA is definitely reached by SeqB. In this case, the sequence-based 

reduction technique eliminates SeqA.  

Randoop incrementally generates test inputs based on previously constructed test inputs. It 

concatenates sequences that create input arguments of a method under test. After concatena-

tion, the algorithm appends this method invocation under test at the end of the concatenated 

sequence. In this process, it is possible to generate many redundant method-sequences. To 

explain more clearly, assume a method rec.method(arg), where rec is a receiver object 

and arg is an argument of method. There should be two sequences called SeqRec and SeqArg 

that create rec and arg, respectively. To create a valid method-sequence that tests 

rec.method(arg), SeqRec and SeqArg need to be merged first. Name the merged sequence 

SeqRecArg. Finally, construct a new sequence called SeqValid by appending the statement to 

call rec.method(arg) at the end of SeqRecArg. It is obvious that each SeqRec and SeqArg is 

a subset of SeqValid. 

Figure 5, 6, and 7 show test inputs generated by CAPTIG. The test input test23() in Fig-

ure 5 tests the TreeMap.get() method. Before calling the method, CAPTIG creates a 

TreeMap instance and a Byte type input value. Similarly, test53() in Figure 6 tests the 

TreeMap.put() method. 
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public void test23() throws Throwable { 

  TreeMap var0 = new TreeMap(); 

  Byte var1 = new Byte((byte)10); 

  Object var2 = var0.get((Object)var1); 

 

  //Regression assertion 

  assertTrue(var2 == null); 

} 

 
 

Figure 5. Test case 23 

 

 

public void test53() throws Throwable { 

  TreeMap var0 = new TreeMap(); 

  Object var1 = new Object(); 

  Object var2 = new Object(); 

  Object var3 = var0.put(var1, var2); 

 

  //Regression assertion 

  assertTrue(var3 == null); 

} 

 
 

Figure 6. Test case 53 

 

Figure 7 shows a test case created by merging Figure 5 and Figure 6. The purpose of the 

test case test72() is to test the TreeMap.containsKey() method. As shown in Figure 7, the 

method-sequence includes the method-sequences from Figure 5 and Figure 6, and the con-

tainsKey method is appended at the end (except assertion and exception statements). In this 

case, our sequence-based reduction technique prunes test23() and test53() because they 

are redundant and unnecessary. 
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public void test72() throws Throwable { 

  TreeMap var0 = new TreeMap(); 

  Byte var1 = new Byte((byte)10); 

  Object var2 = var0.get((Object)var1); 

  TreeMap var3 = new TreeMap(); 

  Object var4 = new Object(); 

  Object var5 = new Object(); 

  Object var6 = var3.put(var1, var2); 

 

  try { 

    boolean var7 = var3.containsKey((Object)var4); 

    fail("Expected exception of type ClassCastException"); 

  } catch(ClassCastException e) { 

    //Expected exception 

  } 

 

  //Regression assertion 

  assertTrue(var2 == null); 

  //Regression assertion 

  assertTrue(var6 == null); 

} 

 
 

Figure 7. Test case 72 

 

The benefits of the sequence-based reduction are the following. (1) Sequence-based re-

duction does not decrease code coverage, because code coverage of a subset sequence is also 

a subset of the code coverage of a superset sequence. (2) Sequence-based reduction does not 

require execution of test inputs. 
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CHAPTER 4.  OBJECT-CAPTURE-BASED INPUT GENERATION 

In this section, an approach that captures objects dynamically from program executions 

(e.g., ones from system testing or real use) is proposed. The captured objects assist an exist-

ing automated test input generation tool, such as a random testing tool, to achieve higher 

code coverage. Afterwards, this approach mutates collected instances, based on observed but 

not-covered branches. 

4.1. Overview 

CAPTIG accepts a set of classes under test (i.e., the classes whose unit tests are automati-

cally generated). CAPTIG produces a set of unit tests for the given classes under test, with 

the objective of achieving high structural code coverage, such as branch coverage. 

To generate unit tests for the classes under test, the key idea of CAPTIG is to capture ob-

jects that can be used directly or indirectly to generate unit tests for these classes. Some ex-

ample types of objects include (1) classes under test (e.g., receiver classes), (2) arguments of 

a method under test, and (3) objects needed to directly or indirectly construct the first two 

types of objects.  

To capture these types of objects, CAPTIG requires normal program executions, such as 

those resulting from system tests and user interactions with systems. A system with normal 

program executions (used by CAPTIG for capturing objects) is called a system under moni-

toring. Note, a system under monitoring is not necessarily the system where the classes under 

test are integrated. A system under monitoring can be another system that uses (either con-

sumes or produces) objects falling into the first and third types of objects described above. 
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That is, CAPTIG can be applied even before classes under test are integrated. Existing manu-

ally written unit tests or automatically generated unit tests for these classes under test can al-

so be used to produce normal program executions. In this case, a system under monitoring is 

just the classes under test. 

Figure 8 shows the overview of CAPTIG‘s three phases—object capturing (CAP), object 

generation (MET), and object mutation (PRE). In the CAP phase, CAPTIG conducts 

bytecode instrumentation of the system under monitoring and then executes the instrumented 

system, instead of the original one with given program executions. During these executions, 

the instrumented system captures encountered objects and serializes them into a file. In the 

MET phase, CAPTIG generates the captured objects by feeding these objects to an existing 

automated test input generation tool that produces method-sequences. These generated meth-

od-sequences derive objects from the captured objects. In the PRE phase, to cover those 

branches not yet covered by the MET phase, CAPTIG mutates captured objects in an attempt 

to cover not-yet-covered branches. 

4.2. Object Capture (CAP) 

The CAP phase consists of two parts—instrumentation and object serialization. In the first 

part, instrumentation, CAPTIG inserts object-capturing code at each method‘s entry point of 

the system under monitoring. The inserted code invokes a capture procedure shown in Algo-

rithm 2. Pseudo-code for object capturing and passes arguments to CAPTIG‘s serialization mod-

ule. The capture procedure captures objects along with their types. Figure 9 shows an in-

strumented code example.  
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Figure 8. Overview of CAPTIG approach for object capturing 

 

The next part is object serialization, described in Algorithm 2. First, run the instrumented 

system to serialize objects through normal program executions. If the instrumented capture 

procedure is invoked, the capture procedure receives a type and a concrete state of the ob-

ject to be serialized. Then, the capture procedure keeps types and states of all serialized ob-

jects to maintain an object repository without redundant objects with the same state [88]. 

This study‘s approach serializes objects in memory first and serializes the objects into files 

whenever the number of objects reaches a preset limit or the program under monitoring 

finishes its execution. 
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procedure capture(objs[]) 

input 

  objs[]  

global 

  Map<type, state> mapStates //keeps objects to avoid having redundants 

  Set<object> setObjs  // keeps objects to be serialized 

begin 

01    for each obj   objs[] 

02       //get a type and linearized state of the object obj 

03       type  getType(obj); 

04       state  representState(obj); 

05 

06       //check whether the obj has been serialized 

07       if (!isSerialized(type, state)) then 

08         mapStates.add(type, state); 

09         setObjs.add(obj); 

10       end 

11    end 

12 

13    //check whether enough number of obj has been serialized 

14    if (hasEnoughInstances(setObjs)) then 

15       // serialize objects and clear the setObjs set 

16       serializeToFileAndClearSet_Thread(setObjs); 

17    end 

end 

 

Algorithm 2. Pseudo-code for object capturing 

 

 

public Algorithm(Document doc, String algorithmURI) { 

 

  // instrumented 

  ObjCapture.capture(new Object[]{this, doc, algorithmURI}); 

 

  super(doc); 

  this.setAlgorithmURI (algorithmURI); 

} 

 
 

Figure 9. Code instrumented from the code shown in Figure 1 

 

One challenge here is there are many types of objects in program executions and the same 

type of objects can also have many instances. It was observed that most of these objects have 
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isomorphic states, and these instances do not contribute to increasing code coverage. There-

fore, it is desirable to capture only objects with non-isomorphic states for each class type. To 

check state isomorphism of objects, OCAT uses a concrete state representation. Xie et al. [88] 

defined a state representation of a program heap. This study adopted a part of its definition to 

define the state of an object to be a subset of a program heap state. 

Let   be the set consisting of all primitive values, including null. Let   be a set of ob-

jects whose fields are from a set  . 

DEFINITON 1. A state is an edge-labeled graph〈   〉, where 

  * 〈     ̅〉 |          ̅      +    

State isomorphism is defined as graph isomorphism, based on node bijection [31]. 

DEFINITON 2. Two states, 〈     〉 and 〈     〉, are isomorphic iff there is a bijection 

         such that: 

  * 〈 ( )  ( )  ( ̅)〉 | 〈     ̅〉      ̅    +    * 〈 ( )  ( )  ̅〉 | 〈     ̅〉      ̅   +   

Note, these two isomorphic states have the same fields for all objects and the same values for 

all primitive fields. 

These preceding definitions of state representation and isomorphic states help prune re-

dundant objects. If two objects have isomorphic states, then these two instances are consid-

ered as redundant. Other than using object-state, isomorphism to detect redundant objects, 

two alternative ways could be used. One way is to use an abstract state representation [86]. 

However, an abstract state representation is too coarse-grained, since it ignores the field val-
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ues in an object and checks only the structural shape of the object. Another way is to use 

equals(); however, the outcomes of executing equals() depend on its implementation, and 

equals() can be implemented in various ways by different developers. For example, 

equals() may be implemented, based upon an object‘s reference value. Although the refer-

ence values of two instances are different, these two instances could have the same states. In 

this case, using equals() identifies these two instances have different states. 

According to the empirical study in Chapter 7, using an abstract state representation incurs 

storage of few objects and using equals() incurs storage of too many isomorphic objects. 

Consequently, both aforementioned alternative ways are inadequate to identify different ob-

jects for CAPTIG. Therefore, concrete state representation is used. 

4.3. Method-based Object Mutation (MET) 

This section describes the MET phase, which generates objects by invoking method-

sequences with captured objects. After objects are captured and serialized from a system un-

der monitoring, they are de-serialized and used as test inputs. Particularly, they leverage a 

method-sequence generation technique by using the captured objects in two ways. First, the 

captured objects can be directly used. Second, captured objects contribute to the creation of 

other necessary objects for testing. Let   be a set of captured objects by CAPTIG. Consider 

two target methods    of class i and    of class j. Next, consider two sets of desired objects, 

    and      that cover code in methods    and   , respectively. Let     be a set of re-

turned objects of invoking    on    . If       , the method    can be directly covered by 
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using captured objects. If      , but          and       , then code in    can be 

indirectly covered by feeding the returned objects of invoking    on captured objects. 

Any method-sequence generation technique can generate more objects from captured ob-

jects. This thesis uses the feedback-directed input generation (Randoop) technique [74] that 

randomly generates method-sequences and verifies their validity by execution. Randoop ex-

tends method-sequences by repeating the processes, such as method selection, sequence se-

lection, merging, extension, and execution. By repeating the sequence-construction process, 

Randoop incrementally generates new objects. Randoop generates method-sequences starting 

from a set of primitive-type declarations with predefined values. In this study‘s case, Ran-

doop starts with a set of method calls that de-serialize captured objects and declares other 

primitive-type input values. The de-serialized captured objects provide a good basis to lead 

the method-sequence generation technique to generate desirable objects. 

Figure 10 presents an example of a generated sequence with objects captured. A captured 

instance of FastTreeMap is modified by invoking add() and putAll() methods with other 

captured objects. First, the example loads a FastTreeMap instance from captured objects as a 

receiver var0. Then, var1, var2, and var3 are loaded as input arguments for the last two 

subsequent method calls in Figure 10. In particular, the method call var0.add() adds the 

loaded instance to FastTreeMap and var0.putAll() adds all elements of a captured in-

stance of BeanMap. 
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FastTreeMap var0 = (FastTreeMap) Serializer.loadObject  

                       ("capobj/FastTreeMap/hash_32"); 

String var1 = (String) Serializer.loadObject 

                       ("capobj/String/hash_98 "); 

BeanMap var2 = (BeanMap) Serializer.loadObject 

                       ("capobj/BeanMap/ hash_32"); 

Integer var3 = (Integer) Serializer.loadObject 

                       ("capobj/Integer/hash_808"); 

var0.add (var3, var1); 

var0.putAll ((java.util.Map) var2); 

 
 

Figure 10. A generated method-sequence with captured objects  

 

Using captured objects as initial inputs reduces the huge search space of desirable objects 

in the method-sequence generation process, because the captured objects are likely close to 

desirable objects. Therefore, captured objects make the method-sequence generation ap-

proach effective to produce desirable objects, and construct method-sequences with the cap-

tured objects to achieve high code coverage. This study‘s empirical results (Chapter 7) show 

that using captured objects with Randoop significantly increases the code coverage achieved 

by Randoop alone. 

4.4. Precondition-based Object Mutation (PRE) 

Generating objects by invoking method-sequences with captured objects may not cover all 

branches. The PRE phase statically analyzes conditions of uncovered branches after execut-

ing MET. Then, the phase generates method-sequences for uncovered branches by purposely 

mutating captured objects. 

Figure 11 shows an overview of the PRE phase. (1) CAPTIG identifies not-yet-covered 

branches by analyzing source code and branch coverage information. (2) CAPTIG conducts a 
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static analysis (e.g., the weakest precondition analysis) to collect preconditions starting from 

the not-yet-covered branches in a backward traversal manner of code analysis. (3) CAPTIG 

uses a Satisfiability Modulo Theories (SMT) solver [43] to get a satisfiable model of the 

computed precondition. (4) CAPTIG uses the solved solution from a SMT solver as a con-

crete input value of the method that has the targeted not-covered-branch. (5) If the solution is 

related to a member field of an object input, CAPTIG loads and mutates a captured object. 

CAPTIG uses the Java reflection API [81] to modify a value of the corresponding member 

field of a captured object, based upon the solution of the SMT solver. 

After mutating objects, CAPTIG saves mutated objects into the object pool of the CAP-

TIG system. Then, CAPTIG generates method-sequences, as it did in the MET phase, now to 

test the target method that has not-covered branches with the newly mutated object inputs. 

After all, CAPTIG concretely executes the generated sequence to verify whether a mutated 

object satisfies the condition of a target branch. 
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Figure 11. Overview of object mutation 

The following steps illustrate the example of mutating an AbstractRefereceMap object 

in Apache Commons Collection (see Figure 12): 

1. The coverage report indicates the true branch of “parent.keyType > HARD‖ has 

not been covered. CAPTIG parses the report and source code to determine the pred-

icate of the not-covered branch. 

mutated objects

1. read source code and branch 

    coverage data

2. precondition analysis to 

    collect constraints

generated objects

caputured objects

source code

coverage 

data

constraint solver

4. get output from the constraint 

    solver 

5. mutate captured/generated 

    objects based on the ouput

3. covert constraints to 

    constraint solver’s format
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2. CAPTIG checks variables in the predicate to determine whether they are input ar-

guments including arguments, a receiver, or object fields of a receiver and argu-

ments. Here, HARD is a constant field, whose value is 0 and parent.keyType is a 

protected member field of the receiver. 

3. CAPTIG converts the predicate to the input format of Yices, a SMT solver:           

(define var::int)(assert+ (> var 0))(check) 

4. Yices outputs (= var 1) from the input and OCAT parses the output. 

5. CAPTIG randomly selects an instance of AbstractReferenceMap and modifies its 

parent.keyType to 1. 

 

public static final int HARD = 0; 

protected int keyType; 

 

... 

 

public Object getKey() { 

return (parent.keyType > HARD) 

          ? ((Reference) key).get() 

          : key; 

} 

 

 

Figure 12. An object mutation example 

 

When modifying member-field values of an object, CAPTIG does not change a private 

field value as a default setting, since modifying a private field value might break class invari-

ants and make the object invalid. Indeed, the empirical results in Chapter 7 show only a few 

cases that a variable in a target predicate is related to a private field. However, it is good to 

have an optional functionality to handle this kind of occasional situations. To avoid invalid 

objects caused by modifying private field values, CAPTIG provides an option of allowing 
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developers to provide a predicate method (also called repOk() [31]) that checks class invari-

ants. Programming best practices suggest that a programmer provides such a method when 

writing a class. After mutating an object, CAPTIG checks whether repOk() returns true to 

ensure state validity of the object [65]. For example, CAPTIG executes repOk() to check 

state validity and getKey() to verify it after Step 5. If it is still not a desirable receiver, it 

throws an exception when executing getKey(), or when repOk() returns false. CAPTIG 

repeats Step 5 for up to a preset number of times. If the mutated object is valid, CAPTIG se-

rializes the object as a new instance and uses it as a test input for the method under test. Oth-

erwise, CAPTIG tries to mutate other objects. 

This study‘s mutation technique is related to dynamic symbolic execution techniques 

[63][77] in that both use constraint solvers to change objects and cover more branches using 

the changed objects. However, as shown in Figure 1, without desirable objects at the first 

phase, sometimes it is difficult to formulate all conditions and determine all constraints. 

There exist unrevealed conditions; thus, a constraint solver becomes ineffective in such cases. 

For example, without a desirable doc object, a program execution throws an exception at 

Line 87 in Figure 1. Moreover, although conditions are perfectly formulated and constraints 

are well determined, it is difficult to construct a desirable object that satisfies these con-

straints. Captured desirable objects help cover unrevealed conditions without perfect formu-

lation of conditions. This study‘s CAPTIG approach uses desirable objects first by object 

capturing and object generation, and then applies object mutation to captured objects. 
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CHAPTER 5.  CRASH REPRDUCTION 

Generated test inputs cannot directly be used to find and fix a bug, although they achieve 

high code coverage. To show usability of generated method-sequences and objects, we at-

tempt to solve a crash reproduction problem. In software development, reproducing given 

software crash in a predictable way is important. The reproduced crash is helpful to identify 

and finally repair the crash.  

However, the process of reproducing crash is often labor intensive and time consuming, 

since software engineers frequently suffer to understand comments on a bug report and re-

produce the crash to reveal its cause. In a practical testing process, a user or tester reports 

program crashes to bug report management systems for further tracking and reviewing. Then, 

a developer tries to understand and reproduce the reported crashes. Accordingly, technology 

that can assist software engineers to reproduce a crash effectively, based upon given infor-

mation, is highly regarded. 

To address this crash reproduction problem, we propose techniques and present an imple-

mentation, which automatically reproduces crashes using information collected from post-

failure-process approaches. Our approach has many clear benefits: It is a fully automated ap-

proach. This can be applied to existing and widely deployed post-failure-process approaches 

such as WER [46], Apple Crash Reporter [8], Google Break Pad [14], and Bugzilla [79], 

without requiring additional instrumentation or special deployment. Therefore, this study‘s 

approach does not incur any performance overhead.  

Our approach emulates developers‘ typical manual reproduction scenario. This approach 

first collects crashed call stack trace information from bug reports or post-failure-process sys-
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tems. Crash call stack trace information (in short as crash stack trace) is active stack frames 

in the calling stack upon execution of a system at the moment of the system crash. Based up-

on the crash stack trace, our approach automatically generates test cases that reproduce a 

crash. For example, our approach invokes each method in the stack traces using generated 

inputs as a form of test case. Execution of these test cases can reproduce crashes. Our work 

focuses on reducing the amount of time for software engineers to reproduce a crash. 

To illustrate the approach effectively, we use a simple source code example shown in  

Figure 13. The BankAcc class has one constructor and two public methods. The deposit() 

method deposits money into an account and the withdraw() method withdraws money from 

an account. The AccCheck class has the checkAccounts() method, which invokes three 

methods, (a) deposit(), (b) summarize(), and (c) withdraw() in lines 06, 11, and 13, re-

spectively. When one of these methods are invoked, checkAccounts() crashes and produces 

stack traces as shown in Figure 13. 
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class BankAccount 

{ 

01  public int pid; 

02  public String name; 

03  public double balance; 

04 

05  public BankAccount (int pid, String name, double balance)  

06  { ... }; 

07  public void deposit (double amount) { ... }; 

08  public void withdraw (double amount) { 

09   ... 

10   throw new BankAccountException (); 

11   ...  

12  }; 

} 

 

class AccCheck 

{ 

01 static boolean checkAccounts(int branchID, 

02                   ArrayList<BankAccount> arrAcc) { 

03    int cnt = 0; 

04    for (BankAccount acc : arrAcc) 

05      if (acc.balance > 1000 && acc.balance <= 2000) { 

06        acc.deposit(100);                   // crash method (a) 

07        cnt++; 

08      } 

09 

10    if (cnt > 500) 

11      summarize(arrAcc);                    // crash method (b) 

12    if (branchID == 1000 && arrAcc.get(0).pid == 10) { 

13      arrAcc.get(0).withdraw(500);          // crash method (c) 

14      return true; 

15    } 

16    return false; 

17  } 

18 

19  static void summarize (ArrayList<BankAccount> arrAcc) 

20  {  ...  } 

} 

 
 

Figure 13. Bank account and account check classes and methods 

 

Using the crash stack traces shown in Figure 14, a developer can employ CAPTIG to gen-

erate test cases as shown in Figure 17, 19, and 21, which reproduce the original crashes. By 

executing these test cases, the developer can easily locate and fix the bugs. 
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BankAccountException: 

at bank.BankAccount.deposit(BankAccount.java:7) 

at bank.AccCheck.checkAccounts(AccCheck.java:6) 

 

(a) crash stack trace of deposit() 
 

BankAccountException: 

at bank.AccCheck.summarize(AccCheck.java:216) 

at bank.AccCheck.checkAccounts (AccCheck.java:11) 

 

(b) crash stack trace of summarize() 
 

BankAccountException: 

at bank.BankAccount.withdraw(BankAccount.java:10) 

at bank.AccCheck.checkAccounts (AccCheck.java:13) 

 

(c) crash stack trace of withdraw() 
 

 

Figure 14. Examples of crash stack traces 

 

5.1. Architecture of Crash Reproduction 

Our crash reproduction approach consists of three main modules: (1) stack trace pro-

cessing, (2) test case template generation, and (3) input generation as shown in Figure 15. (1) 

As inputs, our approach only takes a crash stack trace and the location of classes (i.e., class 

paths) that includes crashed and related methods. Then, the stack trace processing module 

analyzes a given crash stack trace to extract initial information of the crash, such as the ex-

ception type, crash location, and crashed methods. (2) Based on the extracted information, 

the test case template generation module constructs a test case template, which contains re-

ceiver object, argument, their constructors, and crashed methods. (3) The input generation 

module generates inputs based on the test case template to complete a test case. To generate 

inputs, three input generation techniques are proposed—feedback-directed, object-capture-

based, and precondition-based input generation. 
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Figure 15. The architecture of crash reproduction. 

 

5.2. Stack Trace Processing 

CAPTIG extracts the following information from a given stack trace: 

• an exception or assertion type, 

• locations of the crash, and 

• all class and method information in the stack trace. 
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First, CAPTIG extracts information in classes and methods from the crash stack trace. For 

example, from crash stack trace (a) in Figure 13, CAPTIG extracts class information (e.g., 

class name, type, namespace, hierarchy and etc.) of bank.BankAccount and bank.AccCheck, 

and method information of deposit()and checkAccounts(). Second, CAPTIG extracts ob-

ject class types used in the receiver and arguments of crashed methods. For example, CAP-

TIG extracts crashed methods, deposit() and checkAccounts(), and argument classes of 

the crashed methods, ArrayList, BankAccount, Double and Integer
2
 from Figure 13. 

Third, CAPTIG finds all compatible class types of the extracted classes from the previous 

steps by analyzing their inheritance and implementation relationships of all classes in their 

class paths. If the extracted class is a concrete class, CAPTIG finds classes that share a super-

class. If the extracted class is an interface or abstract class, CAPTIG finds all concrete classes 

that implement the interface or extend the abstract class. These extracted object class types 

are used in the input generation module. 

5.3. Test Case Template Generation 

The test case template generation module constructs test case templates, based on the in-

formation extracted by the stack trace processing module. A test case template contains in-

termediate information, such as a crashed method, its exception type, and argument types. 

This information is used to generate test inputs and test cases. 

Figure 16 shows a test case template generated from crash stack trace (a) in Figure 13: lines 

03-04 show the exception type and crashed method. Lines 01-02 indicate class types that 

                                                 
2
 Boxed data types are used for primitives. 
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should be prepared through input generation. Note, this example does not have a receiver 

class type for AccCheck, since checkAccounts() is a static method. 

 

01: types: Integer ArrayList BankAccount 

02: types(BankAccount): Integer String Double 

03: exception: bank.BankAccountException 

04: target: AccCheck.checkAccounts(Integer, 

                                   ArrayList<BankAccount>) 

 
 

Figure 16. A test case template of the crash (a) in Figure 13 

 

5.4. Crash Input Generation (Feedback-directed) 

The crash input generation modules generate test inputs for a receiver and arguments to 

reproduce crashes. To generate test inputs, an approach that incrementally conducts two input 

generation techniques is proposed—feedback-directed input generation and object-capture—

based input generation. Each crash input generation technique generates test inputs to con-

struct test cases that might reproduce crashes. 

First, the feedback-directed input generation technique generates test inputs by construct-

ing method-sequences [73]. Second, the object-capture-based technique generates test inputs 

by capturing objects from normal program execution. Since captured objects reflect a real 

usage of the system, using captured objects improves crash reproducibility [58]. The object-

capture-based input generation technique is based on our capture-based input generation ap-

proach (including method-based and precondition-based object mutation) discussed in Sec-

tion 4. 



66 

 

 

 

This study used an enhanced feedback-directed input generation algorithm [56][59] dis-

cussed in Chapter 3 to generate more diverse inputs. The technique was further modified to 

focus on crash information. First, higher priorities were set to the crashed method and related 

methods, while constructing method-sequences. Second, a criterion to stop generating inputs 

was set, when all instances of the necessary input types are created. This modification allows 

the algorithm to generate inputs that have a higher possibility of reproducing crashes. 

Figure 17 presents an example of a test case by the feedback-directed input generation 

technique. The test case uses the method-sequence that creates an ArrayList<BankAccount> 

object and invokes checkAccounts() surrounded by the try..catch statement. This test 

case reproduces the crash (a) in Figure 14, located in line 06 of AccCheck in Figure 13. 

 

public static void test1() { 

01  int v0 = 1; 

02  String v1 = "hi"; 

03  double v2 = 2000; 

04  BankAccount v3 = new BankAccount(v0, v1, v2); 

05  ArrayList<BankAccount> v4 = new ArrayList<BankAccount>(); 

06  v4.add(v3); 

07 

08  try { 

09     boolean var = AccCheck.checkAccounts(v0, v4); 

10     fail("Expected exception."); 

11  } catch (bank.BankAccountException e) { 

12     // Expected exception. 

13  } 

} 

 
 

Figure 17. A test case that reproduces the crash (a) in Figure 14 based on the feedback-directed 

input generation technique. 
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5.5. Crash Input Generation (Object-capture-based) 

The feedback-directed input generation technique is fast, but may not create all necessary 

objects because the search space for object generation is huge [58]. For example, in Figure 

13, it is hard to generate inputs that reach the crashed invocation (b) in Line 11 by using the 

feedback-directed input generation technique, which cannot generate an array list that con-

tains more than 500 objects of BankAcc.  

To address this limitation, the object-capture-based input generation technique uses ob-

jects captured from normal program executions (e.g., system tests or planned normal execu-

tions). This technique provides additional objects and their variations to be used as inputs for 

a test case, which may increase the crash reproducibility of our approach. 

5.5.1. Object Capturing 

To capture objects, we use our object capturing approach (so-called CAP) described in 

Section 4.2. We first instruments the target system. Then, we execute the instrumented sys-

tem, which captures objects into files during its execution. Figure 18 shows an example of a 

captured object from normal execution that creates ArrayList<BankAccount>. Note, the 

CAP process can be completed once in-house, it does not incur any additional overhead for 

deployed software. 
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<list> 

  <BankAccount> 

    <pid>1 </pid> 

    <name>Kim</name> 

    <balance>1201 </balance> 

  </BankAccount> 

  <BankAccount> 

    <pid>2 </pid> 

    <name>Steve</name> 

    <balance>2238 </balance> 

  </BankAccount> 

... 

... 

  <BankAccount> 

    <pid>1020 </pid> 

    <name>Kevin</name> 

    <balance>742 </balance> 

  </BankAccount> 

</list> 

 
 

Figure 18. A captured object example - ArrayList of BankAccount 

 

5.5.2. Method-based Object Mutation  

To generate more crash reproducible objects, use the MET approach described in Section 

4.3. The MET approach combines captured objects and feedback-directed input generation to 

generate more objects and their variations. The captured objects were used as seeds for the 

feedback-directed input generation. The feedback-directed input generation technique gener-

ates method-sequences related to the captured object and creates additional objects. These 

additional objects might increase crash reproducibility. 

For example, suppose a crashed method takes a Foo object as an argument. The feedback-

directed input generation identified a method-sequence, ‗Foo getFoo(Bar bar);‘, to create 

the Foo object. Suppose it was not possible to directly create Bar to invoke the method-

sequence. Thus, the technique could not create the Foo object. Now, assume the object-

capture-based technique cannot capture Foo, but is able to capture a Bar object. This object 
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can be a seed for the feedback-directed technique to invoke ‗Foo getFoo(Bar bar)‘ that 

creates a Foo object. Finally, the generated Foo object can be used to reproduce the original 

crash. 

Figure 19 presents an example of a generated test case with captured objects. Two cap-

tured instances of ArrayList are de-serialized from lines 03 to 06. These two instances are 

merged by invoking putAll() methods in Line 07. Therefore, the captured instances can 

make crashed invocation (b), checkAccounts(), of Figure 13 and reproduce the crash (b) in 

Figure 14. 

 

public static void test32() { 

01  Integer v0 = (Integer) Serializer. 

02            loadObject ("capobj/Integer/hash_808"); 

03  ArrayList v1 = (ArrayList) Serializer. 

04            loadObject ("capobj/ArrayList/hash_35"); 

05  ArrayList v2 = (ArrayList) Serializer . 

06            loadObject ("capobj/ArrayList/hash_48"); 

07  v1.putAll(v2); 

08 

09  try { 

10     boolean v3 = AccCheck.checkAccounts (v0, v1); 

11     fail ("Expected exception."); 

12   } catch (bank.BankAccountException e) { 

13    //  Expected exception 

14   } 

} 

 
 

Figure 19. A test case that reproduces the crash (b) in Figure 14 

 

5.5.3. Precondition-based Object Mutation 

The precondition-based input generation technique (so-called PRE) statically analyzes the 

crashed methods and computes the weakest precondition [43] that could raise the original 

crash. Unlike the PRE phase in the object-capture-based input generation, this approach for 
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crash reproductions uses the crash stack traces instead of not-covered-branch information. 

This approach conducts a backward symbolic analysis from the crash location to the entry 

point of the crashed methods [36]. Then, it uses a Satisfiability Modulo Theories (SMT) 

solver [43] to check the satisfiability of the computed precondition. If it is satisfiable, the 

SMT solver returns a satisfiable model, which is a set of concrete values assigned to each rel-

evant field or input argument to satisfy the computed precondition. Figure 20 shows an ex-

ample of a satisfiable model. Finally, the PRE approach mutates objects, based on the 

satisfiable model to generate crash reproducible inputs. Currently, the PRE approach only 

supports two kinds of crashes—NullPointerException and user defined exceptions—

raised by explicit throw statements (e.g., crash invocation (c) in Figure 13). 

 

weakest precondition: 

branchID == 1000                        (1) 

arrAcc != null                          (2) 

arrAcc.get(0) != null                   (3) 

arrAcc.get(0).balance <= 1000 || > 2000 (4) 

arrAcc.get(0).pid == 10                 (5) 

 

A satisfiable model: 

branchID = 1000                             (1) 

arrAcc = instanceof ArrayList<BankAccount>  (2) 

arrAcc.get(0) = instanceof BankAccount      (3) 

arrAcc.get(0).balance = 1000                (4) 

arrAcc.get(0).pid = 10                      (5) 

 

 

Figure 20. The weakest precondition and a satisfiable model 

 

To illustrate the PRE approach for crash reproduction, use the example in Figure 13. To 

reproduce the BankAccountException thrown by withdraw(), it is necessary to determine 

the feasible execution path from the entry point of checkAccounts() to the throw statement 

in withdraw(). Assume the crash stack trace (c) as shown in Figure 14. This stack trace in-
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dicates the method ascend sequence for the backward computation. The backward computa-

tion begins from the exception thrown statement in withdraw(). Every path is enumerated in 

a depth first manner until the entry point of checkAccounts() is reached. Consider the 

backward path (withdraw(): lines 10, 09, 08, checkAccounts(): lines 13, 12, 10, 09, 05, 04, 

03, 02, 01) traversed by ComputeWP(). Predicates branchID == 1000, arrAcc != null, 

arrAcc.get(0) != null and arrAcc.get(0).pid == 10 are added to the precondition set 

when the algorithm computes the weakest precondition of Line 12 in checkAccounts(). 

These predicates are the essential conditions for successfully executing the field access 

statement and taking the desired branch at Line 12. Other predicates, such as ar-

rAcc.get(0).balance <=1000 or >2000, are also added, while the algorithm traverses the 

path in a backward manner until the entry point of checkAccounts(). Then, we check the 

satisfiability of this precondition using an SMT solver. Since this precondition is satisfiable, 

the SMT solver returns a satisfiable model as shown in Figure 20. Based on this model, the 

objects are mutated. 

Figure 21 presents the generated test case guided by the satisfiable model in Figure 20. 
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public static void test50() { 

01  // an object from feedback−direct technique 

02  int v0 = 1; 

03  String v1 = "hi"; 

04  double v2 = 2000; 

05  BankAccount v3 = new BankAccount(v0, v1, v2); 

06  ArrayList<BankAccount> v4 = new ArrayList<BankAccount>(); 

07  v4.add(v3); 

08 

09  // object mutation code generated by setValues() 

10  v3.pid = 10; 

11  v3.balance = 1000; 

12  v5 = 1000 

13 

14  try { 

15     boolean v6 = AccCheck.checkAccounts(v5, v4); 

16     fail ("Expected exception"); 

17   } catch (bank.BankAccountException e) { 

18    // Expected exception 

19   } 

} 

 
 

Figure 21. A test case that reproduces the crash (c) in Figure 14 

 

5.5.3.1. Weakest precondition computation  

This section describes how to obtain the weakest precondition from crashed locations. The 

weakest precondition computation is an inter-procedural, path-sensitive, and context-

sensitive backward analysis algorithm. Since a backward manner of analysis is used, the ap-

proach is similar to SnuggleBug [37] and XYLEM [68]. Similar precondition mapping rules 

(transformers) are used in SnuggleBug. 

Unlike SnuggleBug, this approach narrows the overall backward analysis space by con-

sidering the method invocation sequences based on the crash stack traces. This can improve 

scalability, since this approach only considers relevant methods listed in the crash stack trace. 

Also, this approach is more precise than XYLEM, because an SMT solver [43] is employed 

to verify the satisfiability of the computed preconditions. 
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Algorithm 3. Weakest precondition computation algorithm for a crash condition presents our in-

ter-procedural backward computation algorithm. Given a crash stack trace, stackTrace, the 

algorithm first creates a call stack cs from stackTrace (Line 01). The call stack cs indicates 

the method ascend sequence used for the backward computation process. The startLine of 

the backward computation is set to the line immediately before the crash location (Line 03) 

to compute the weakest precondition to reach the crash location with the desired crash condi-

tion failCond. A crash condition is the necessary precondition to reproduce the original 

crash at the crashed line. To begin the backward computation process, this approach invokes 

ComputeMethod() with the crashed method signature, the starting line number, the crash call 

stack created from stackTrace, the current invocation depth (initially, 0), and the crash con-

dition (Line 04). 

The starting instruction of the backward computation is retrieved from the getStart-

ingInstruction() procedure (Line 05). This is the Java instruction where the backward 

computation starts. Then, a stack structure stDfs is created or retrieved from htPost2Dfs 

(Line 07-09). A stDfs holds the set of instructions whose preconditions will be computed. 

Initially, the starting instruction and the input postCond are pushed into stDfs (Line 09). 

ComputeMethod() computes the weakest precondition in a backward and depth first man-

ner [68]. Inside a loop, the (inst,postCond) pair that lies on the top of stDfs is popped out 

(Line 14). The computePrecondition() procedure computes the weakest precondition of 

the instruction inst, given the postcondition postCond (Line 15). 
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 procedure ComputeWP 

input     

  stackTrace  the stack trace 

  failCond    the crash condition 

output   

  preCond     a weakest precondition for crash condition 

  satModel    a satisfiable model from SMT solver 

global    

  DEPTH_MAX   maximum invocation depth 

  htPost2Dfs  a hash table mapping postconditions to working stacks 

  summary     a table to hold summary information for each method 

begin 

01 cs = create the initial call stack from crash stack trace stackTrace 

02 method = stackTrace.exceptionMethod 

03 startLine = stackTrace.exceptionLine - 1 

04 return ComputeMethod(method, startLine, cs, 0, failCond) 

end 

 

procedure ComputeMethod(m, startLine, cs, depth, postCond) 

begin 

05 instStart  getStartingInstruction(m, startLine) 

06 push m onto cs // update call stack 

07 stDfs  htPost2Dfs.get(postCond) // try to resume 

08 if stDfs is null or empty then 

09   stDfs ← initialize stack and push (instStart, postCond) 

10   htPost2Dfs.add(postCond, stDfs) 

11 end if 

12 

13 while stDfs ≠ 0 do // depth-first traversal 

14   (inst, postCond)  stDfs.pop() 

15   preCond  computePrecondition(inst, postCond) 

16 

17     if inst is an invocation && depth < DEPTH_MAX then 

18       m’  getTargetMethod(inst) 

19       preCond’  map preCond to m’ 

20       preCond’’  summary.get(<m’, preCond’, depth+1>) 

21 

22       if no summary information matched then 

23         preCond’’  ComputeMethod(m’, -1, cs, depth+1, preCond’) 

24         summary.put(<m’, preCond’, depth+1>, preCond’’) 

25       end if 

26       preCond  map preCond’’ back to current method 

27     end if 

28 

29     if inst is not the entry node then 

30       preds  get predecessors of inst 

31       pushPredsToStack(preds, stDfs) // push in each predecessor 

32     else if depth == 0 && cs is the outermost invocation in stackTrace then 

33       (bSatisfiable, satModel)  perform SMT check on preCond 

34       if bSatisfiable is true then 

35         return (preCond, satModel) 

36       end if 

37     else // inside a specific invocation 

38       return (preCond, NULL) // continue depth-first traversal in caller 

39     end if 

40   end while 

41 return NULL // failed to find a satisfiable weakest precondition 

end 

Algorithm 3. Weakest precondition computation algorithm for a crash condition 
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To support inter-procedural analysis, this approach handles invocation instructions in the 

following manner. When the current invocation depth depth is less than the maximum al-

lowed depth DEPTH_MAX, the precondition of the invocation instruction is computed by recur-

sively calling ComputeMethod() for the target method (Line 23). The postcondition is 

mapped into the scope of the target method before calling ComputeMethod() (Line 19). The 

computed precondition is mapped back into the scope of the current method after calling 

ComputeMethod() (Line 26). 

During this computation, a table is maintained, summary, which holds all of the input-

output summaries for each method. A summary in the table maps a method and its corre-

sponding postcondition to a computed precondition. In this way, the summary information 

can be reuseed whenever a match is found in the table. By reusing the summary information, 

re-computing the precondition of the same method is avoided with the same postcondition 

for multiple times (lines 20-24). 

To continue the depth first traversal, all predecessors of the current instruction are pushed 

into stDfs (lines 30-31). The backward computation continues until it reaches the entry of 

method m. If the current method is not in any invocation context (i.e., depth is 0) and method 

m is the outermost method in the crash stack trace, the algorithm employs an SMT solver to 

check the satisfiability of the computed precondition preCond (lines 32-33). Otherwise, the 

precondition is returned to the caller method, and the depth first computation goes on inside 

the caller‘s ComputeMethod() procedure (Line 38). 

computePrecondition() computes the weakest precondition for the successful execution 

of each instruction with a given postcondition. Table 3 lists some of the mapping rules that 
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map postconditions to preconditions according to the instruction type. The φ operator in the 

table represents a replacement operation of variable instances. For example, φ(v1/v2) means 

that all occurrences of v2 in the postcondition are replaced with v1. The mapping rules are 

reused from SnuggleBug [37]. 

Table 3. Some mapping rules for computePrecondition 

instruction type mapping rules 

v1 = v2 φ(v2/v1) 

v1 = v2 op v3 φ(v2 op v3/v1) 

v1 = v2.f1 
φ(v2.f1/v1) 

v2 ≠ null 

v1 = v2[i] 

 

φ (v2[i]/v1) 

v2 ≠ null, i ≥ 0, i < v2.length 

v1[i] = v2 

 

φ(v2/v1[i]) 

v1 ≠ null, i ≥ 0, i < v2.length 

v1 = new T φ(instanceof(T)/v1) 

v1 = v2.foo() 
φ(ret of v2.foo()/v1) 

v2 ≠ null 

return v1 φ(v1/ret of current method) 

 

5.5.3.2. Object mutation based on precondition 

This section presents the mutation approach on the top of the weakest precondition com-

putation. Object mutation is based on the satisfiable model returned by ComputeWP() in Al-

gorithm 3. The mutated objects are used to reproduce the original crash. 
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Algorithm 4 presents an overview of the mutation approach. Given the crash stack trace, 

stackTrace, and the set of objects to mutate, this procedure outputs a set of mutated objects 

that fully or partially satisfy the weakest precondition to reproduce the original crash. 

 

procedure MutateObjects 

input       

  stackTrace   the stack trace 

  objects      objects to mutate 

output     

  objects      objects mutated 

begin 

01 if stackTrace.exceptionType == explicit ’throw’ then 

02   failCond = {TRUE} 

03 else if stackTrace.exceptionType==NullPointerException then 

04   listRef  getObjectRefernces(stackTrace.exceptionLine) 

05   foreach ref in listRef do 

06     failCond = failCond or {ref == NULL} 

07   end foreach 

08 end if 

09 

10 (preCond, satModel) = ComputeWP(stackTrace, failCond) 

11 if satModel != NULL then 

12   // set member fields according to model 

13   setValues(objects, satModel) 

14   return objects 

15 else 

16   return NULL 

17 end if 

end 

Algorithm 4. Object-mutation algorithm based on precondition 

Before computing the weakest precondition with the ComputeWP() procedure, first gener-

ate the crash condition. The crash condition is the precondition that should be satisfied when 

executing the crashed line to reproduce the original crash. Different exception types have dif-

ferent crash conditions. For a user defined exception thrown explicitly, the crash condition is 

simply a TRUE predicate (lines 01-02). This means the exception will be thrown whenever the 

throw instruction is executed. For a NullPointerException, its crash condition is con-
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structed differently (lines 03-07). To reproduce a NullPointerException, a null de-

reference is required for the crashed line. 

After generating the crash condition, now compute the weakest precondition to reproduce 

the original crash by ComputeWP() (Line 10). If the weakest precondition exists, obtain a 

satisfiable model, satModel by ComputeWP(). Consequently, the input objects can be mutat-

ed based on the satModel (lines 11-13). In the setValues() procedure, mutate objects by 

assigning new values indicated in the satisfiable model to their accessible fields. 

To avoid violating class invariants [31], the algorithm only mutates publicly accessible 

object member fields. With this restriction, it cannot guarantee the mutated objects satisfy all 

of the predicates in the computed weakest precondition. As a result, the executions with mu-

tated objects could still fail to reproduce the original crash. However, even with limited mu-

tation and satisfying only partial of the weakest precondition predicates, the mutated objects 

are still useful to reproduce additional crashes. This is later shown in our evaluation section. 

5.5.3.3. Imprecision in object mutation 

Due to the lack of information in crash stack traces, sometimes it is not possible to distin-

guish which object is truly responsible for a crash. For example, a null de-reference in line 

‗int total = o1.count() + o2.count();‘ could have been caused by either o1 or o2. 

However, the crash stack trace only indicates the crashed line number and does not indicate 

the responsible object reference. In such cases, the mutation approach might not be precise. 

5.5.3.4. Loop Handling 
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Due to the undecidability problem in software verification [24], the inter-procedural, path-

sensitive, and context-sensitive backward analysis could run forever. This problem is mainly 

caused by loops and recursive calls in crashed code. In these cases, the number of elements in 

stDfs continues to increase as the backward computation goes on. To address this issue, an 

option is introduced, specified by users, to limit the maximum number of times a loop can be 

computed. Hence, the algorithm, given this value, could enumerate every execution path in a 

finite number of steps and guarantee return. Recursive calls are handled similarly by setting a 

maximum invocation depth before the analysis starts. However, this kind of approximations 

might cause CAPTIG to fail to find the weakest precondition, even if one actually exists. In 

this experiment, both option values are set as two. 
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CHAPTER 6.  IMPLEMENTATION 

This chapter describes implementation of our approach. First, individual implementations 

of each approach are explained, and then the integerated implementation of the individual 

implmentations is described.  

6.1. Individual Implementation 

Previously, the approaches have been implemented using four independent tools. The fol-

lowing is a brief introduction for each tool. 

PERT – This tool name stands for ―Practical Extensions of a Randomized Testing Tool.‖ 

This tool implements the four techniques used here, namely, simplified distance-based input 

selection, type-based input selection, open-access method selection, and array generation 

testing approaches. These techniques were incorporated to a state-of-the-art random testing 

tool, Randoop. 

GenRed – This tool name stands for ―A Tool for Generating and Reducing Object-

Oriented Test Cases.‖ This tool implements two techniques  that  achieve  given  code cover-

age  more  quickly  (i.e.,  less  time  and  number of  tests). On-demand input creation active-

ly creates necessary input objects, although there are no available objects, and coverage-

based method selection prioritizes methods to increase the code coverage rate. GenRed also 

implements test case reduction techniques, such as coverage-based reduction and sequence-

based reduction that reduce redundant testing. Finally, GenRed integrates two separated pro-

cesses—the generation and reduction—of test cases. 
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OCAT – This tool implements capture and generation of objects for Java. OCAT stands 

for ―Object Capture based Automated Testing.‖ The tool conducts bytecode instrumentation 

of the system under monitoring and then executes the instrumented system instead of the 

original one with the given program executions. During these executions, the instrumented 

system captures encountered objects and serializes them into a file. Then, OCAT generates 

objects by using the captured objects; these generated method-sequences derive objects from 

the captured objects to achieve high code coverage.  

STAR – This tool implements the technique used in this study, which reproduces crashes 

using information collected from post-failure-process approaches. STAR stands for ―Stack 

Trace-based Automated Reproduction framework.‖ As inputs, STAR only takes a crash stack 

trace and the location of classes (i.e., class paths) that includes crashed and related methods. 

Then, STAR conducts stack track, the test case template generation and crash input genera-

tion.  

6.2. CAPTIG Implementation 

These four tools are combined into one—CAPTIG. Next, we briefly describe the imple-

mentation of each phase in our approaches for CAPTIG.  

Enhanced Method-sequence Generation 

We have implemented method-sequence generation techniques on top of Randoop. The 

implemented techniques include simplified distance-based input selection, input on-demand 

creation, array input generation, type-based input selection, coverage-based method selection, 

open-access method selection, coverage-based reduction, and sequence-based reduction. Pre-
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viously, these techniques were separately implemented into two different tools—PERT and 

GenRed. Both GenRed and PERT were implemented on top of Randoop. 

Object Capturing 

Instrumentation techniques are widely used to capture objects and infer their associated 

invariants [22][45]. Similarly, CAPTIG uses an instrumentation framework called ASM [5] 

to insert object-capturing code. For storing objects, CAPTIG uses the XStream framework 

[86], which serializes objects into XML files. XStream can serialize objects that do not im-

plement the java.io.Serializable interface; whereas, the Java serialization technique 

cannot serialize objects that do not implement that interface. Figure 22 shows an example of 

serialized objects in a form of XML. 

Method-based Object Mutation 

The captured objects are de-serialized for Randoop, a tool that implements Randoop. The 

de-serialized objects are used as seeds for Randoop to generate more objects. To measure 

branch coverage of tests generated by Randoop with seeded captured objects, Cobertura [9] 

is used. Cobertura instruments the target Java Bytecode and generates a coverage report after 

executing tests. 

Precondition-based Object Mutation 

To compute the weakest preconditions for the crashes, CAPTIG first translates the related 

program code from Java bytecode into static single assignment (SSA) form [42] using WA-

LA APIs [15]. It then applies the inter-procedural backward computation algorithm to com-

pute the weakest preconditions. CAPTIG employs a satisfiability modulo theories solver, 

Yices [43], to check for the satisfiability of the computed preconditions. Finally, CAPTIG 
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mutates objects by using Java reflection APIs [16], based on models from Yices. The gener-

ated test cases are finally converted to JUnit [26] test cases that reproduce a crash. 

Stack Trace Processing 

We parse a crash stack trace to extract necessary information. To identify receiver and ar-

gument classes, and its compatible classes, we use a program analysis library, WALA [15]. 

 

 

<org.apache.commons.collections.FastTreeMap serialization="custom"> 

  <unserializable−parents/> 

  <tree−map> 

    <default/> 

    <int>0 </int> 

    <string>first</string> 

    <string>First Item</string> 

    <string>second</string> 

    <string>Second Item</string> 

  </tree−map> 

<org.apache.commons.collections.FastTreeMap> 

  <default> 

    <fast>true</fast> 

    <map> 

      <no−comparator/> 

      <entry> 

        <string>first</string> 

        <string>First Item</string> 

      </entry> 

      <entry> 

        <string>second</string> 

        <string>Second Item</string> 

      </entry> 

    </map> 

  </default> 

</org.apache.commons.collections.FastTreeMap> 

</org.apache.commons.collections.FastTreeMap> 

Figure 22. An example of a serialized object  
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CHAPTER 7.  EXPERIMENTAL EVALUATION 

In this section, some results are presented of the work completed thus far in pursuance of 

the research objectives. This section proceeds with the following research questions. 

Research questions for enhanced method-sequence generation: 

RQ1. How much can new method-sequence selection algorithms improve code coverage? 

RQ2. How many test inputs can CAPTIG reduce? 

RQ3. How much time can CAPTIG reduce to execute test cases? 

Research questions for object-capture-based input generation: 

RQ4. How much can CAPTIG improve code coverage through captured objects? 

RQ5. How much can mutated objects further improve code coverage? 

Research questions for crash reproduction: 

RQ6. How many crashes can CAPTIG reproduce, based on crash stack traces? 

RQ7. Are generated test cases that reproduce crashes helpful for debugging? 

7.1. Enhanced Method-sequence Generation 

This section reports the empirical evaluation on the performance and usefulness of the en-

hanced method-sequence generation approach used in this research. The goal of this experi-

ment is to compare code coverage of this approach to the current state-of-the-art approach, 

Randoop, in terms of time cost (generation time of test inputs) and the number of test inputs. 

In addition, the comparison results are shown among all the individual approaches. Note, the 

branch coverage was used for code coverage measurement. 
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7.1.1. Evaluation Setup 

The subjects were selected from well-known open-source systems, ISSTA Containers, Ja-

va Collections, ASM, Apache Commons Collections, and Apache Ant. Table 4 presents in-

formation about the subjects.  

ISSTA Containers has container classes (TreeMap, BinTree, FibHeap, and BinomialHeap) 

used in Visser et al.‘s paper [86]. The Java collection library is a well-known JDK package 

(java.util) for Java developers. It contains the collection framework, container classes, and 

miscellaneous utility classes, including list, set, and map classes. ASM [5] is a Java bytecode 

manipulation and analysis framework. ASM can modify existing classes or dynamically gen-

erate classes, directly in binary form. Apache Commons Collections [1] provides new inter-

faces, implementations, and utilities, such as buffer, queue, map, and bag. Container classes 

are commonly used to evaluate a generation tool, since it is difficult to make a desirable con-

tainer class instance (e.g., a long list with various values) automatically. Apache Ant [4] is a 

Java-based build tool similar to the tool called MAKE in C/C++.  

Each approach was evaluated by measuring branch coverage criteria. A machine was used 

with Windows Vista, Intel Pentium 2.2Ghz Dual Core, 3GB RAM.  
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Table 4. Subject open-source systems for enhanced method sequence generation 

systems classes methods KLOC description 

ISSTA Containers  

(ISSTA) 
5 7 2 toy container classes 

Java Collections 1.6 

(JDK) 
45 634 22 Java‘s collection library 

ASM 3.1 111 1353 40 
a Java bytecode manipula-

tion framework 

Apache Commons  

Collections 3.2 (ACC) 
273 2468 63 

an extended collection li-

brary 

Apache Ant 1.7.1 (ANT) 769 3001 209 a Java-based build tool 

 

This section addressed the following research questions: 

RQ1. How much can new method-sequence selection algorithms improve code coverage? 

RQ2. How many test inputs can CAPTIG reduce? 

RQ3. How much time can CAPTIG reduce to execute test cases? 

7.1.2. Overall Results 

Table 5 shows code coverage of the original Randoop and these approaches. ISSTA is a 

relatively small system that has only 71 methods, and state-of-the-art Randoop achieved over 

86.6% of the code coverage. Based upon Randoop‘s results, it is believed from the borderline 

of code coverage that automated tools can achieve has been nearly reached. Contrary to ex-

pectations, this approach achieved 91.6% of code coverage, which is 5% more than Randoop. 

This approach improves code coverage by 12-15% more code coverage than Randoop for 

ASM and ANT. JDK shows the best results—raised by 22.8% of code coverage—by this ap-

proach compared to Randoop‘s code coverage, in spite of the large number of methods and 

code size.  
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Table 5. Overall results of enhanced method-sequence generation compared to Randoop 

based on code coverage improvement 

systems Randoop CAPTIG improvement 

ISSTA  86.6% 91.6% 5.0% 

JDK 43.2% 66.0% 22.8% 

ASM 22.4% 37.9% 15.5% 

ANT 41.9% 54.5% 12.5% 

 

Table 8 represents the number of test inputs and generation time between Randoop and the 

approaches used in this study to reach certain code coverage (coverage goal
3
). To achieve 42% 

of code coverage for JDK, Randoop generated 10,700 test cases in 485 seconds; meanwhile, 

this approach generated 1170 test cases in 6 seconds. CAPTIG achieves the coverage goal 

more quickly with fewer test cases. Throughout all of these systems, almost one-half of the 

test time and test case size are reduced to achieve certain code coverage. 

Table 6. Overall results of enhanced method-sequence generation compared to Randoop 

based on certain coverage goal 

systems 
coverage 

goal 

# test inputs 

(Randoop:CAPTIG) 
ratio 

time (sec) 

(Randoop:CAPTIG) 
ratio 

ISSTA  82% 14209:8347 1:0.59 340:191 1:0.56 

JDK 42% 10700:1170 1:0.11 485:6 1:0.01 

ASM 20% 20469:2867 1:0.15 471:37 1:0.08 

ANT 40% 19466:8145 1:0.42 712:243 1:0.34 

 

                                                 
3
 The coverage goal was determined by subtracting 1-4% from the highest coverage of Randoop for each 

subject system with 2500-3000 seconds of generation time. 
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Figures 23-Figure 26 show code coverage for ISSTA, ANT, ACC, and JDK with respect to 

the number of test inputs and the amount of time. This study‘s combined approach shows 

significant improvement. Next, each individual approach will be discussed in the following 

sections. 

  

Figure 23. Overall results of enhance method-sequence generation for ISSTA  

  

Figure 24. Overall results of enhance method-sequence generation for ANT 
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Figure 25. Overall results of enhance method-sequence generation for ASM 

 

  

Figure 26. Overall results of enhance method-sequence generation for JDK 
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proach generally shows better code coverage at the beginning, but the Randoop sometimes 

surpasses it. This is because ARTOO‘s distance-based approach is too meticulous to select an 

input, and object calculation is computationally expensive. 

This study‘s simplified distance-based input selection reduces the computation time, and 

increases code coverage in terms of both generation time and the number of test cases. Fig-

ures 27-29 show the simplified distance-based input selection overcomes Randoop and AR-

TOO‘s distance-based approach constantly through ANT, ISSTA and JDK. 

 

Figure 27. Results of distance-based input selection for ANT 
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Figure 28. Results of distance-based input selection for ISSTA  

 

 

Figure 29. Results of distance-based input selection for JDK 
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Table 7. Results of distance-based input selection compared to ARTOO. 

system 
coverage 

goal 

# test inputs 

(ARTOO:simplifed) 
ratio 

generation time (sec) 

(ARTOO:simplified) 
ratio 

ISSTA  82% 12865:9088 1.4:1 338:237 1.43:1 

JDK 42% 4340:3518 1.2:1 7997:1977 4.0:1 

ASM 20% 13673:13802 0.99:1 4867:479 10.1:1 

 

7.1.4. On-demand Input Creation 

The array generation approach shows approximately 10% of code coverage increments for 

JDK and 5-7% for ASM. For ISSTA Containers, the array generation approach shows 1-2% 

lower coverage than Randoop‘s code coverage because methods of five ISSTA do not take an 

array input. Figures 30 and 31 illustrate the array generation approach has the improvement 

for ASM and JDK. 

  

Figure 30. Results of on-demand input creation for ASM 
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Figure 31. Results of on-demand input creation for JDK 
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Figure 32. Results of type-based input selection for ISSTA   

 

 

Figure 33. Results of type-based input selection for JDK 
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and 90 seconds, respectively, to achieve 25% of goal branch coverage. For ACC, Randoop 

and this study take 1092 and 90 seconds, respectively, to achieve 40% of goal branch cover-

age. To achieve 45% of branch coverage for ANT, Randoop takes 305 seconds and this study 

takes 123 seconds. The results show this study achieved the coverage goal more quickly. 

Throughout all the subject systems, the test time is significantly reduced for achieving certain 

branch coverage. 

Table 8. Results of distance-based input selection compared to Randoop in terms of coverage 

goal 

system coverage goal 
time (sec)  

(Randoop:cov-based) 
ratio 

JDK 40% 471 : 13 36.2 : 1 

ASM 25% 1092 : 90 12.1 : 1 

ACC 40% 3539 : 235 15.0 : 1 

ANT 45% 305 : 123  2.5 : 1 

 

Figures 34-36 show branch coverage for systems with respect to generation time. Through 

these systems, this study‘s coverage-based method selection constantly outperforms Randoop 

in terms of code coverage and generation time. Therefore, the on-demand input creation and 

coverage-based method selection techniques show better performance than Randoop. 
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Figure 34. Results of coverage-based method selection for ACC 

  

Figure 35. Results of coverage-based method selection for ASM 
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 Figure 36. Results of coverage-based method selection for JDK 

 

Table 9 compares code coverage of test inputs generated by this study and Randoop in 

2500-3000 seconds. The results for Java Collections show 13.7% of code coverage incre-

ments by GENRED compared to Randoop‘s coverage. The test results for Apache Com-
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Table 9. Comparison results of coverage-based method selection in terms of coverage goal 
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JDK 43.4%   57.1% 13.7% 

ASM 26.9%   36.1% 9.2% 

ACC 40.3%   52.5% 12.2% 

ANT 48.6%   53.9% 5.3% 
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codes. The open-access approach shows the best coverage besides the all combined approach 

for ASM system with respect to both time and the number of test inputs. 

 

Figure 37. Open-access method selection results for ANT 

 

Figure 38. Open-access method selection results for ISSTA  
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centages in Table 10 show an average of the results through four open-source systems. Se-

quence-based reduction removes 51.8% of the test cases and the testing time (including com-

pile and execution time) without reducing coverage. Coverage-based reduction removes 98.4% 

of test cases and 89.4% of testing time. Both approaches eliminated 99.4% of the test cases 

and 94.5% of the testing time. According to the test case reduction rate, the sequence-based 

reduction technique is not effective compared to coverage-based reduction. However, the se-

quence-based reduction technique, because the technique does not need to check code cover-

age, is able to remove some test cases, which cannot be removed by the coverage-based re-

duction technique.  

Table 10. Overall results of test-suite reduction 

type sequence-based coverage-based both 

removed test cases 51.8% 98.4% 99.4% 

reduced testing time 51.8% 89.4% 94.5% 

 

Tables 11 and 12 show the results for each system. For Apache Common Collections, se-

quence-based reduction shows that 44.9% of the test cases remained as non-redundant test 

cases. Note, only 32.9% of the testing time was used. Coverage-based reduction reduces the 

size of test-suite and testing time significantly. For ASM, the coverage-based reduction tech-

nique needs only 469 test cases and 30 seconds to compile and run, and achieves 80% branch 

coverage. The combined approach (denoted as "both" in Tables 11 and 12) also showed good 

results for ASM. This result has only 124 test cases and 7 seconds testing time with 80% 

branch coverage.  
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Table 11. Comparison results between Randoop and CAPTIG in terms of the number of 

generated test cases 

system 
the number of test cases 

 base seq-based cov-based both 

JDK 46,964   24,094 (51.3%)   440 (0.9%)   181 (0.4%)  

ASM 73,823   33,601 (45.5%)   469 (0.6%)   124 (0.2%) 

ACC 27,106   12,158 (44.9%)   1,032 (3.8%)   413 (1.5%) 

ANT 35,522   17,185 (48.4%)   822 (2.3%)   347 (1.0%) 

 

Table 12. Comparison results between Randoop and CAPTIG in terms of testing time 

system 
testing time (seconds) 

 base seq-based cov-based both 

JDK 412   156 (37.9%)   7 (1.7%)   13 (3.2%) 

ASM 107   73 (68.2%)   30 (28.0%)   7 (6.5%) 

ACC 605   197 (32.6%)   43 (7.1%)  54 (8.9%) 

ANT 176     99 (56.3%) 26 (14.8%)  14 (8.0%) 

 

Figure 39 shows the testing time for reduced test cases for each system. By combining 

both reduction approaches, the testing time of the reduced test-suite takes less than 10% from 

the original test-suite. 
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Figure 39. Testing time with reduced test cases 

 

7.2. Captured and Mutated Objects 

This study‘s approach was evaluated by comparing code coverage of the capture-based 

input generation approach and a state-of-the-art tool, Randoop. The evaluation was designed 

to address the following research questions: 

RQ4. How much can CAPTIG improve code coverage through captured objects? 

RQ5. How much can mutated objects further improve code coverage? 
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7.2.1. Evaluation Setup 

This study‘s evaluation was conducted on a machine with Linux, Intel Xeon 3.00GHz, 

and 16GB memory. A widely used Java code coverage analysis tool was adopted, Cobertura 

[9], to measure branch coverage.  

Three open-source projects, Apache Commons Collections (ACC), Apache XML Security 

(AXS), and JSAP, were used as test subjects. Table 13 shows the subjects‘ information. ACC 

[1] is an extended collection library that provides new utilities, such as buffer, queue, and 

map. AXS [3] is a library implementing the XML Digital Signature Specification and XML 

Encryption Specification. JSAP [17] is a command-line argument parser. 

Table 13. Subject open-source systems for capture-based input generation 

system time (sec) # objects size (MB) 

Apache Commons     

Collections 3.2 (ACC) 

273 2522 63 

Apache XML  

Security 1.0 (AXS) 

179 1185 40 

JSAP 2.1 (JSAP) 77 462 11 

 

We apply our approach to instrument each subject system to enable object capturing. Then, 

the system tests were executed to include each subject system to capture objects. Table 14 

shows the statistics of the object-capturing phase, including time spent in capturing objects, 

the number of captured objects, and the size of the serialized file. For ACC, this study‘s ap-

proach captured and serialized 14,999 objects in 311 seconds, and the serialized file is 7.6MB. 

For AXS, this approach took 366 seconds to capture 11,390 serialized objects in 410MB. For 

JSAP, this approach captured and serialized 292 objects in 1 second. The serialized file was 
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15KB. The branch coverage of the captured executions for each subject was 52.7% (ACC), 

36.0% (AXS), and 32.9% (JSAP). 

Table 14. Statistics of captured objects: showing time to capture, number, serialized file size 

of captured objects, and branch coverage of captured executions. 

system time (sec) # objects size coverage 

ACC 311 14999 7.6MB 52.7% 

AXS 366 11390 410MB 36.0% 

JSAP 1 292 15KB 32.9% 

 

The captured objects and the serialized file size depend on the subject system and the exe-

cuted tests. For example, the AXS‘s serialized file is relatively big, since AXS loads and 

maintains XML file contents, and the contents are stored in objects. However, the serialized 

files are manageable, even if the entire suite of tests is executed for a relatively large software 

system (i.e., a system that has over 1,000 methods), such as ACC and AXS. In addition, it is 

possible to limit the number of captured objects and size of the serialized files. 

7.2.2. Captured Objects 

RQ4. How much can CAPTIG improve code coverage through captured objects? 

This section shows coverage improvement by leveraging captured objects through CAP-

TIG to assist Randoop (denoted as CAP + MET). First, as described in Section 4.1, the ob-

jects were captured by executing tests provided with each subject system. The number of 

captured objects is shown in Table 14. Then, the captured objects are fed as test inputs for 

Randoop and the branch coverage is measured. Similarly, Randoop is run alone on subject 

systems and the branch coverage is measure. Each tool is run until the tool‘s coverage is sat-
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urated, which means either one of the tools‘ coverage levels off without much further in-

crease, or one of the tools runs out of memory and cannot continue to run. Since the number 

and quality of captured objects depend upon the tests initially provided with the subject sys-

tem, the coverage of such tests is measured (denoted as a captured execution). 

Figure 40 shows the branch coverage of three subjects with two approaches, Randoop and 

CAPTIG (CAP + MET), based on the number of generated tests. As a baseline, the coverage 

of the captured executions is shown. The x-axis indicates the number of tests generated by 

each approach. As the number of tests grows, generally the branch coverage also increases. 

As Figure 40 indicates, there is a substantial coverage difference between CAPTIG and 

Randoop. For ACC, after 46,000 tests are generated, CAPTIG achieves 64.2% branch cover-

age, 19.0% improvement from Randoop‘s achieved coverage, 45.2%. Similarly, for AXS, 

CAPTIG improves 28.5% branch coverage in comparison to Randoop. For JSAP, the cover-

age improvement is 17.3% over Randoop. 

These encouraging results suggest that captured objects play an important role to improve 

code coverage by assisting an existing testing technique. It was observed that the captured 

objects are influenced by the original set of tests provided with the subject system. However, 

the CAPTIG‘s achieved coverage is much higher than the coverage achieve by simply exe-

cuting these original tests shown in the last column of Table 14. And, captured objects can 

lead a random generation technique to cover more branches. 



 

 

Figure 40. Branch coverage achieved by CAPTIG, Randoop, and Captured Executions 
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7.2.1. Mutated Objects 

RQ5. How much can mutated objects further improve code coverage? 

Next, the PRE phase is evaluated by using static analysis and an SMT solver. Although 

the CAP and MET phases increase the code coverage substantially, still there are not-covered 

branches. For example, for JSAP, 28.6% of the branches are not covered after the CAP and 

MET phases. 

We further apply the PRE phase described in Section 4.4 and evaluate whether PRE im-

proves the coverage further, although the current mechanism of mutating objects can handle 

only a limited set of situations. Note, that we do not modify private fields of objects in our 

evaluation. The coverage distribution bars in Figure 41 present branch coverage improvement 

contributed by Randoop, CAPTIG (CAP + MET), and CAPTIG (PRE). For ACC, 45.2% are 

covered by Randoop, and CAPTIG (CAP + MET) further improves this coverage percentage 

by 19.0%. Finally, CAPTIG (PRE) increases an additional 5.4%. Similarly, after CAPTIG 

(CAP + MET) improves the coverage by 28.5% for AXS and 17.3% for JSAP, CAPTIG 

(PRE) further improves the coverage by 6.9% more for AXS and 6.2% for JSAP. 

 

 



107 

 

 

 

 

Figure 41. Branch coverage distributions of each approach with captured and mutated ob-

jects. 

Such an improvement may seem marginal. However, since code coverage becomes satu-

rated after more than 46,000 tests, further improvement would be difficult to obtain, in gen-

eral. The PRE phase can still improve 6.2% of branch coverage on average, which is not triv-

ial. 

Overall, by combining random and systematic approaches, CAPTIG (CAP + MET + PRE) 

improves branch coverage on average by 27.8% (with a maximum increase of 35.4% for 

AXS) in comparison to the coverage by Randoop alone. 
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7.3. Crash Reproduction 

This section presents this study‘s experimental setup and evaluation results of the crash 

reproduction approach. The evaluation was designed to address the following research ques-

tions: 

RQ6. How many crashes can CAPTIG reproduce, based on crash stack traces? 

RQ7. Are generated test cases that reproduce crashes helpful for debugging? 

7.3.1. Evaluation Setup 

Subjects 

CAPTIG‘s crash reproduction feature is evaluated by using bug reports (from July 2003 to 

November 2009), which include stack traces from three open-source systems, AspectJ De-

velopment Tools (AJDT) [6], Apache Commons Collection (ACC) [1] and Apache Com-

mons Math (ACM) [2].  

AJDT is a tool that supports aspect-oriented software development, including an AspectJ 

compiler. Eight versions of AJDT are used (1.1.0, 1.1.1, 1.2.0, 1.2.1, 1.5.0, 1.5.2, 1.5.3, and 

1.5.4). Particularly, the org.aspectj package was used for AJDT. ACC implements known 

data structures, such as buffer, queue, map, and bag. Two versions of ACC, versions 3.1 and 

3.2, were used. The ACM is a library of self-contained mathematics and statistics compo-

nents. Thus, ACM versions 1.2 and 2.0 were used for this study‘s evaluation. 

Bug Report Collecting and Processing  

Bug reports include metadata and textual contents to describe crashes. Some users include 

crash stack traces in their bug reports, and this study uses bug reports, which contain crash 
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stack traces for this experiment. From bug reports, a bug id, version number, and crash stack 

traces were extracted by using InfoZilla [27].  

Some bug reports were excluded. First, we do not use bug reports with invalid crash traces. 

After extracting stack traces, method names, and their line numbers were obtained. Then, the 

methods were checked to determine if they exist and the line numbers were matched with the 

corresponding version of the system. We prune cases where users report an incorrect version 

or wrong stack trace information. In addition, all non-fixed bug reports were excluded. Even 

if they included valid stack traces, it could not be determined whether they are real bugs. 

Table 15 shows the number of the bug reports
4
 used in this study‘s experiments. Six hun-

dred seventy-four bug reports were extracted, but only 184 bug reports included stack traces. 

After pruning the non-fixed bug reports and bug reports with invalid stack traces, 101 bug 

reports remained. 

Table 15. Bug reports used in this experiment 

system 
# of bug re-

ports 

# of bug reports 

with stack traces 

 # of valid stack 

traces 

AJDT 461 162 83 

ACC 97 8 8 

ACM 116 14 10 

Total 674 184 101 

 

 

 

                                                 
4
 Bug reports for AJDT can be found in http://bugs.eclipse.org, and bug reports for both ACC and ACM can 

be found in https://issues.apache.org/. 
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Criteria of Reproducibility 

To determine whether a crash is reproduced or not, the exception type and location of the 

original and reproduced crashes [22] were checked. If the reproduced exception type and the 

original type were identical, and both crashed in the same line, it was assumed the crash is 

successfully reproduced. 

Object Capturing 

This study‘s crash reproduction approach requires captured objects from normal program 

execution. To capture objects, subject systems were instrumented and executed system tests 

were provided by each subject. The instrumented systems capture objects and serialize them 

during execution of the system tests. 

By executing instrumented systems with their system tests, 12,420 objects were captured, 

serialized, and zipped in 342MB on average for each version of AJDT, 61,408 objects were 

zipped in 104MB for ACC and 7,012 objects were zipped in 4MB for ACM. Often, execut-

ing instrumented systems incurs a huge overhead [22][69][76][80]. However, note, this cap-

turing process is conducted once in-house. The deployed software does not incur any addi-

tional overhead. 

7.3.2. Reproducibility  

This section shows how many crashes are reproducible by this study‘s approach.  

Table 16 shows the number of reproducible crashes from the feedback-directed, object-

capture-based input generation techniques. The total number of collected stack traces is 101. 

The ―feed‖ column shows the number of reproducible crashes using feedback-directed input genera-

tion technique. The column denoted as ―met‖ represents the number of additional reproducible crash-



111 

 

 

 

es by the MET technique. Similarly, ―pre‖ presents the number of additional reproducible crashes by 

the PRE technique. 

 

Table 16. Reproducible crashes of AJDT, ACC and ACM. 

system 
# of 

crashes 

# of reproducible crashes 

feed met pre total 

AJDT 1.1.x 21 0 0 +10 10 

AJDT 1.2.x 16 2 +2 0 4 

AJDT 1.5.x 46 9 +10 +5 24 

ACC 8 1 +2 +2 5 

ACM 10 1 0 +1 2 

total 101 13 +14 +18 45 

percent  12.9% +13.9% +17.8% 44.6% 

 

For feedback-directed and object-capture-based input generation, three minutes were set 

as a time limit to generate each test. If these techniques could not generate reproducible test 

cases in 3 min, it was assumed they could not reproduce the corresponding crash. 

The feedback-directed input generation technique reproduces 13 crashes for all subjects. 

The MET technique reproduces 14 more crashes from the feedback-directed technique. 

Eighteen more crashes are reproduced by the PRE technique. Overall, the result is very 

promising: our approach reproduces 45 (44.6%) crashes. We anticipated this study‘s ap-

proach significantly reduces developers‘ efforts on reproducing crashes, since 44.6% of the 

crashes can be reproduced automatically. 
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We also examine the bug fix time for these 44.6% reproducible bugs. Surprisingly, ap-

proximately 68% of these crashes took over a week and 46% took over a month to be re-

solved. The main reason of this long bug fix time is due to the challenges of reproduction 

[27]. Developers do not have enough resources to reproduce all bugs. Irreproducible bugs 

receive low fix priorities. It is anticipated that this study‘s crash reproduction approach helps 

developers reproduce crashes quickly and thus shorten the overall bug fix time. 

7.3.3. Usability 

In this section, the usefulness of the reproducible test cases for debugging is evaluated. 

The source code (a) in Figure 42 shows a buggy TreeList method in ACC 3.1
5
. This 

method deletes one node from a tree. TreeList can crash with a null-pointer-exception when 

the iterator method previous() is called, because remove(int) incorrectly removes a node. 

More specifically, a tree misses a link of a left node after deletion. The link should be kept 

before deletion. 

According to the bug report history, the bug was reproduced 5 months later. This bug 

could not be easily reproduced, and so was treated as non-severe. However, after a manually 

written reproducible test case was submitted, this bug was immediately resolved soon with 

the developer‘s comment, ―As always, a good test case makes all the difference.‖ 

Comparably, this study‘s approach effectively generates a test case, shown in (b), which 

reproduces this bug. In lines 01-02 of (b), the test case loads an object of TreeList, which 

                                                 
5
 http://issues.apache.org/jira/browse/COLLECTIONS-70 
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has several nodes with integer values. A statement in Line 04 removes one node. A crash oc-

curs when previous() is invoked in Line 09. 

 

private AVLNode removeSelf() { 

       ... 

822  if(heightRightMinusLeft() > 0) { 

       ... 

834   } else{ 

835 

836     AVLNode leftMax = left.max(); 

837     value = leftMax.value; 

838     if(rightIsNext ) { 

839       right = leftMax.right; 

840     } 

841     left = left.removeMax(); //buggy 

842     if(relativePosition > 0) { 

843       relativePosition−−; 

844     } 

845   } 

       ... 

} 

(a) a buggy code 
 

public void test87() throws Throwable{ 

01  TreeList var0 =(TreeList ) Serializer 

02                   .loadObjectFromFile("TreeList/hash_924548"); 

03  java.lang.Integer var1 =(java.lang.Integer) 10; 

04  var0.remove(var1); 

05  java.util.ListIterator var2 = var0.listIterator(); 

06  java.lang.Object var3 = var2.next(); 

07  java.lang.Object var4 = var2.next(); 

08  try{ 

09     java.lang.Object var5 = var2.previous(); 

10     fail("Expected exception of NullPointerException"); 

11   } catch(java.lang.NullPointerException e ) { 

12    // Expected exception 

13   } 

} 

(b) a test case reproducing the crash in (a) 
 

+++    AVLNode leftPrevious = left.left; 

841     left = left.removeMax(); 

+++    if(left == null ) { 

+++      left = leftPrevious; 

+++      leftIsPrevious = true; 

+++     } 

 

(c) fixed code of (a). Line +++ are added code. 
 

Figure 42. A buggy code example from Apache Commons Collections and its reproducible test 

cases 
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This generated test case exactly reproduces the crash specified in the bug report and would 

have helped developers investigate the method in Line 04 in (b). The fixed code (c) shows 

the added statements to fix the code (a) by saving previous node information. 

As another example, Figure 43 shows an erroneous source code snippet
6
. The crash hap-

pens in the Erf.erf() method. When the method is invoked with an input value greater than 

26 (e.g., Erf.erf(27)), the crash happens with MaxIterationsExceededException. This 

study‘s approach identifies the crash condition and successfully generates a crash reproduci-

ble test case. By running the test case, developers can easily locate and fix the bug. 

 

 

public static double erf(double x) 

throws MathException { 

51 double ret = Gamma. 

               regularizedGammaP(0.5,  x * x,   

                                1.0e−15,  10000); 

52 if (x < 0)  { 

53   ret = −ret; 

54 } 

55 return ret; 

} 

 

 

Figure 43. A code snippet that illustrates #301 bug of Apache Commons-Math 2.0 

 

7.4. Summary of Results 

The experimental result shows this study‘s enhanced method-sequence generation ap-

proaches increases code coverage by 13.95% as compared to Randoop. In addition, this re-

duction approach removes 51.8% of the redundant test cases without the need to execute 

them. 

                                                 
6
 https://issues.apache.org/jira/browse/MATH-301 
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Captured object and mutated object help a state-of-the-art random testing tool, Randoop, 

to achieve high branch coverage: on average 70.7%, with 27.7% improvement while Ran-

doop alone can only achieve 43.0%. This study‘s crash reproduction approach reproduces 

44.6% of the original crashes automatically on 101 crash stack traces. These techniques are 

directly applicable to the existing widely deployed post-failure-process approaches and re-

produce crashes without incurring any run-time overhead.  
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CHAPTER 8.  DISCUSSIONS 

In this chapter, issues regarding this study‘s two main approaches - the object-capture-

based input generation and crash reproduction, are discussed. We also discuss threats to the 

validity of this study‘s approach. 

8.1. Object-capture-based Input Generation 

The achieved coverage of this study‘s object-capture-based input generation approach de-

pends upon both quality and quantity of captured objects. However, capturing objects is a 

relatively easier process than writing unit test cases. For example, objects can be captured 

from: 

 executions of system tests, and 

 typical system executions by individual developers or users. 

These executions can be completed independently and captured objects are reused for test 

input generation. Even captured object instances from a system can be reused for different 

system testing tasks as long as they share some objects. For example, objects in the JDK 

package (i.e., java.util) are commonly used for many Java applications. Note, a system 

under monitoring (a system with executions used by CAPTIG for capturing objects) is not 

necessarily the system where the classes under test are integrated. A system under monitoring 

can be another system that uses (either consumes or produces) objects falling into the same 

type of objects shared between a system under test and a system under monitoring. That is, 

CAPTIG can be applied even before classes under test are integrated. Note, existing manual-

ly written unit tests, or automatically generated unit tests for the classes under test can also be 
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used to produce normal program executions. In this case, a system under monitoring is just 

the classes under test. 

8.1.1. Software Evolution 

Captured objects may be obsolete and no longer valid during software evolution, since an 

object from running a new system version may have different fields and methods from a 

same-type object from running a previous version. Nonetheless, if both the (dynamically col-

lected) method-sequences and the states of objects of concern, it is possible to locally repro-

duce the objects by executing the dynamically collected method-sequences and update the 

obsolete objects, based on the captured state information. Such an extended capability for 

CAPTIG remains as our future work. 

8.1.2. Branches Still Not Covered 

The evaluation result shows OCAT increases 25.5% of the branch coverage on average by 

using both generated and mutated objects. However, there are still more than 20% of branch-

es not covered. As shown in Table 1, some not-covered branches (due to string manipulation, 

container object access, and exception branches) are difficult to cover. It is planned to further 

improve branch coverage via the following directions. 

Cross-system object capturing. The sources for capturing objects do not need a limit to 

be only subject systems. Suppose one is testing ACC and it requires an object, FOO. It is 

possible to use other systems that use FOO and capture the objects from these systems. Cap-

turing objects from one system and using them to test other systems may help further in-

crease the applicability of this study‘s approach. 
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Iterative generation and mutation phases. Two phases, object generation and object 

mutation, can be iteratively applied to generate a larger number of objects over iteration. The 

quality of the generated objects may decrease when the number of iterations increases. How-

ever, the iterations could likely improve branch coverage gradually over time, since the two 

phases have complementary strengths to achieve structural code coverage, and the new ob-

jects generated from the object mutation phase could be exploited by the object generation 

phase. 

8.1.3. Validity of Generated Objects 

In the object generation phase, assume the generated method-sequences indirectly create 

valid objects, if invocations of the method-sequences do not throw exceptions. Indeed, the 

chance of creating invalid objects may be low in this case. However, this assumption may not 

be true, in general. In the object mutation phase, CAPTIG does not change private fields of 

objects as a default option. Even if CAPTIG does not change private fields and changes only 

public fields, it may still be likely to create invalid objects, which violates class invariants 

(either explicitly specified by developers or not specified at all). To avoid invalid objects, the 

developer could write the implementation of a special class-invariant-checking method, 

called repOk(), which checks the validity of mutated objects. However, this method can be 

difficult or time-consuming to implement. To explore this issue in future work, it is planned 

to empirically investigate how a high percentage of invalid objects could be generated by the 

object generation and object mutation phases, respectively, when repOk() method is not 

provided. 
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8.2. Crash Reproduction 

This study‘s evaluation results show that CAPTIG reproduces 44.6% of crashes, which is 

promising. However, still 55.4% of crashes are not reproduced. This section discusses the 

challenges of reproduction, and presents threats to the validity of the evaluation. 

8.2.1. Irreproducible Crashes 

To understand the challenges of reproduction, manually inspect the main causes of irre-

producible crashes by CAPTIG. The main causes
7
 are listed in Table 17. We discuss each 

cause in detail. 

Table 17. Main causes of irreproducible crashes in AJDT. 

cause # of crashes 

mutation challenges 21 (25.3%) 

insufficient objects 11 (13.3%) 

XStream crash 6 (7.2%) 

fail to compute preconditions  4 (4.8%) 

other 3 (3.6%) 

 

8.2.2. Mutation Challenges 

After computing the weakest precondition to reproduce crashes, CAPTIG mutates objects 

accordingly. However, this process has several challenges. 

Challenge 1: Keeping Class Invariants - To avoid violating class invariants, CAPTIG 

only mutates object member fields that are publicly accessible. This limits CAPTIG‘s muta-

                                                 
7
 Note, an XStream crash is a technical engineering issue, while the others illustrate the challenges of this 

study’s approach. 
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tion ability. Suppose one of the predicates in the computed weakest precondition is related to 

a private field. Even though CAPTIG has obtained a satisfiable model, it could not directly 

mutate the private field, since such mutation would violate class invariants. By mutating only 

public fields, the mutated objects may only partially satisfy the predicates in the computed 

weakest preconditions and may not reproduce the original crashes. 

Challenge 2: Understandings in Abstract Semantics - In some cases, a predicate in the 

precondition could not be satisfied by simply mutating object member fields. In total, 25% of 

the irreproducible crashes fall into this category. For example, predicate specialContain-

er.size() == 10 could not be satisfied because CAPTIG does not know how to increase 

the number of objects in this special container class. Satisfying such predicates requires un-

derstanding the abstract semantics of the target program. Understanding the abstract seman-

tics could be completed by using static analysis techniques, such as abstract interpretation 

[75]. Human assistance is also helpful in satisfying this kind of predicates by providing pro-

gram semantic information. 

8.2.3. Lack of Objects 

CAPTIG requires input objects to reproduce crashes generated with two different tech-

niques—feedback-directed and object-capture-based. However, when irreproducible crashes 

are investigated, it was determined that many necessary object types are not instantiated. 

Without necessary object inputs, the generated test cases cannot be executed, and thus cannot 

reproduce the original crashes. As shown in Table 4, 11 out of the 83 crashes in AJDT are 

not reproduced by CAPTIG for this reason. In this study‘s experiment, the object capturing 



121 

 

 

 

ability of CAPTIG is limited to the provided system tests. Adding more object capturing or 

object generation approaches to CAPTIG might be helpful to address this challenge. 

8.2.4. Failure to Compute Weakest Preconditions 

Four crashes are not reproduced because CAPTIG could not compute the weakest precon-

ditions, which satisfy the corresponding crash conditions. Due to the undecidability problem 

[24], a precondition computation algorithm could run without termination. To address this 

issue, some approximations were made for this study‘s weakest precondition computation 

algorithm ComputeWP(). These include unrolling loops only a limited number of times and 

setting a maximum depth for invocations. However, with these approximations, CAPTIG 

might not find a feasible weakest precondition to reproduce the target crash. For example, a 

crash that occurs inside a loop might not be reproducible, as it requires CAPTIG to unroll the 

loop many times to find a feasible weakest precondition. 

Another reason for failing to compute a weakest precondition is the presence of non-linear 

arithmetic in the predicates. General SMT solvers have limited support for non-linear arith-

metic over an infinite solution domain [43]. 

8.3. Threats to the Validity 

The following threats to validity of this study‘s evaluation were determined. 

The subject software might not be representative. In this experiment, open-source sys-

tems were used as subjects. Since systems with high quality bug reports and crash stack trac-

es were intentionally selected, there might exist a subject selection bias. In addition, all of the 
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subjects are open-source. Hence, they might not be representative of closed-source systems. 

This threat could be reduced by more experiments on wider types of subjects in future work. 

CAPTIG results rely on captured objects. In this study‘s evaluation, system tests pro-

vided by the open-source systems were used to capture objects. As a result, the quality and 

quantity of captured objects depend on the subject system and given capturing executions. 

Thus, CAPTIG‘s achieved coverage improvement and the reproducibility of CAPTIG may 

depend on the quality and quantity of the system tests initially provided with the subject sys-

tems. In future work, it is planned to empirically investigate the impact of either quality or 

quantity of existing system tests or other program executions on the effectiveness of CAP-

TIG. 
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CHAPTER 9.  REVIEW OF LITERATURE 

This chapter describes related works of random input generation, object input construction 

and crash reproduction. Related works in this chapter are wider than background works in 

Chapter 2, which discusses works directly related to this study.  

9.1. Random Input Generation 

There are several random testing tools for the object-oriented system testing 

[21][30][35][41][72]. JCrasher [41] uses return values as inputs, building parameter graphs to 

determine method calls whose return values are the same type of input values. Agitator [30] 

creates test inputs by using several well-known techniques, such as symbolic execution, 

feedback-driven, and model-based random input generation. Jartege [71] uses a model-based 

random generation to generate random inputs, based on JML specifications. RUTJ [21] is a 

GUI-based randomized unit-testing tool that requires the user to write code as seed inputs. 

ARTOO [35] applies the distance-based adaptive random testing [33] to choose inputs from 

an object pool. ARTOO incorporates AutoTest [67], which uses a formal specification to de-

termine whether randomly generated method calls are error revealing. 

Although some of these state-of-the-art random testing techniques scale up to test large-

scale software systems, random testing is still commonly thought of as ineffective for large-

scale software systems. For example, Randoop can only achieve less than 50% branch cover-

age with enormous test cases toward large-scale software systems. Most of the generated test 

cases are redundant. 
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9.2. Object Input Construction 

Software systems, based on object-oriented programming techniques, are in widespread 

use on contemporary computing systems. However, testing an object-oriented system is chal-

lenging. For example, object-oriented programming increases the complexity of testing. Ob-

ject type arguments have a large search space for objects, because an object can have many 

member fields of primitive types (e.g., integer) and other object types (e.g., a container class, 

such as stack and list). These difficulties in testing of objected-oriented systems make code 

coverage of automated test input generation tools unsatisfactory
8
. Many researchers have de-

voted their efforts on this issue and have introduced several tools. 

There are two main types of techniques for generating desirable objects—direct object 

construction and method-sequence generation. 

9.2.1. Direct Input Construction 

Two representative techniques for direct object construction are Korat [31] and TestEra 

[59]. Korat requires users to provide a repOk() predicate method, which checks the validity 

of a given object against the required class invariant for the class of the object. TestEra re-

quires users to provide class invariants specified in the Alloy specification language [55]. 

Both Korat and TestEra use class invariants to efficiently prune both invalid objects (those 

violating class invariants) and redundant objects (those with isomorphic states) when gener-

ating a bounded-exhaustive set of objects (whose size
9
 is within a relatively small bound). 

These techniques also require users to provide a finite domain of values for primitive-type 

                                                 
8
 This study’s results show they are lower than 50% of branch coverage.  

9
 The size of an object is the total number of objects used to construct direct or indirect non-primitive fields 

of the object. 
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fields in the generated objects. The object-capturing phase of our CAPTIG approach can be 

seen as a type of direct object construction. However, CAPTIG constructs objects from nor-

mal program executions (from system tests or real use) and these captured objects are valid 

by construction, without requiring class invariants or a finite domain of values for primitive-

type fields of objects. 

9.2.2. Method-sequence Generation 

Various techniques on method-sequence generation have been proposed for generating 

objects used in test input generation. Random-testing techniques (such as JCrasher [41] and 

Randoop [74]) generate random method-sequences, sometimes with pruning based on feed-

back from previously generated sequences. Evolutionary testing techniques (e.g., eToc [85] 

and Evacon [54]) use genetic algorithms to evolve initial method-sequences to ones more 

likely to cover target branches. This study‘s CAPTIG approach integrates Randoop, a ran-

dom-testing technique, for evolving captured objects, and, in principle, can integrate an evo-

lutionary technique to evolve captured objects. The object-capturing and object-mutation 

phases of CAPTIG provide benefits beyond the integrated random testing technique in 

achieving branch coverage, as shown in the empirical evaluation. 

9.2.3. Exhaustive Testing 

Bounded-exhaustive testing techniques (such as JPF [86], Rostra [88], and Symstra [89]) 

for method-sequence generation produce exhaustive method-sequences to a certain length, 

sometimes with pruning of equivalent concrete objects [86][88] or subsumed symbolic ob-

jects [89]. However, the coverage of various branches requires long method-sequences, 

whose lengths are beyond the small bound that can be handled by these techniques. In con-
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trast, this CAPTIG approach is able to capture objects produced with long method-sequences 

(from real system executions) and further evolve these objects with more method-sequences 

or directly mutate these objects. 

9.2.4. Sequence Mining 

Recent sequence-mining techniques, such as MSeqGen [82], statically collect method-

sequences (that can produce objects of a specific) from various applications, and then apply 

dynamic symbolic execution [82] or random testing [73] on these collected sequences.  

MSeqGen shares the same spirit with CAPTIG in exploiting code elsewhere beyond the code 

implementation under test to improve automated test input generation. This study‘s CAPTIG 

approach has unique benefits over MSeqGen in the following two main aspects. First, CAP-

TIG dynamically captures real program execution environments, such as user inputs, global 

states, and file I/O; whereas, MSeqGen statically collects partial method-sequences (from 

code bases), whose later execution often does not reproduce desirable program execution en-

vironments. Second, CAPTIG can capture objects produced or affected by multi-threading; 

whereas, MSeqGen does not support the collection of method-sequences involving multi-

threading. On the other hand, MSeqGen has its advantages, complementing CAPTIG in ad-

dressing the issue of generating desirable objects. For example, since CAPTIG dynamically 

captures objects from program executions, the ability to capture objects relies on the quality 

of not only the programs under monitoring, but also the system tests or real use that produces 

the program executions; whereas, MSeqGen relies on the quality of only the programs under 

mining. 
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9.3. Crash Reproduction 

9.3.1. Capture-Replay 

Capture-replay techniques have been used for debugging [22][80] to reproduce crashes. 

Normally, these techniques record and replay program execution by setting checkpoints, and 

capturing global states and event logs. They set up monitoring environments, monitor execu-

tion of the target program, record the status and behavior of a checkpoint, and convert the 

captured program execution into unit tests. The common applications of these approaches are 

regression testing, based on recorded execution. 

For example, the techniques need to change a platform (e.g., modifying java virtual ma-

chine) or a target program (e.g., bytecode instrumentation) to build an environment for moni-

toring. Next, the techniques set checkpoints to record the state of a program under monitoring 

at the moments. Then, the execution of the program under monitoring saves log events be-

tween checkpoints. Finally, the recorded execution can be replayed, based on the recorded 

data. To record a failure, a software engineer runs the subject program until the failure re-

occurs. Then, the software engineer replays the recorded execution that has exactly the same 

unit behavior that causes the failure.  

Among them, jRapture [80] and ReCrash [22] have recently been used to generate unit 

tests to reproduce a given program failure, based on recording failure execution. These tech-

niques have recently been used to generate unit tests for testing purposes, such as regression 

testing. During system testing, these techniques capture the interaction (i.e., method calls) of 

a unit such as the class under test with other classes interacting with the unit. Based upon 

captured interactions, these techniques then generate unit tests for the class under test; in con-
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trast to the system tests, these unit tests are less expensive to run when the class undergoes 

some changes. The execution of the generated unit tests would replay exactly the same unit 

behavior exercised in the capturing phase; the code coverage of the unit achieved in the cap-

turing phase is the same as the code coverage of the unit achieved by the generated unit tests. 

In contrast, CAPTIG evolves and mutates the captured inputs, achieving higher structural 

code coverage than the capturing phase.  

9.3.2. Post-Failure-Process 

Bugzilla [79] and JIRA [7] are bug report management systems that allow users to report 

bugs along with crash stack traces. Microsoft Windows Error Reporting (WER) [47], Apple 

Crash Reporter [8], Google Breakpad [14], and Mozilla Talkback [18] automatically collect 

crash information after crashes occur. This collected information is useful for debugging or 

prioritizing debugging efforts [46]. However, these systems do not support automated crash 

reproduction. CAPTIG facilitates automated crash reproduction using crash data collected by 

these systems. 
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CHAPTER 10.  CONCLUSIONS AND FUTURE WORKS 

This chapter describes our three approach enhanced method-sequence generation, object-

capture-based input generation and crash reproduction. Lastly, future works are described. 

10.1. Enhanced Method-sequence Generation 

Extended techniques were proposed, such as simplified distance-based input selection, on-

demand input creation, type-based input selection, coverage-based method selection, open-

access selection, and sequence-based reduction techniques, to increase coverage and elimi-

nate redundant test cases, based on achieving preset coverage goal. This study implemented 

these techniques on top of Randoop and tested with large-scale software systems. This 

study‘s experiments show that all techniques increased code coverage. This study‘s tech-

niques yielded the best code coverage when all are applied together; they increased code 

coverage up to 22.8% and eliminated 51.8% of redundant test inputs. 

This proposed approach is applicable for other existing testing techniques. Anyone who 

wants to increase random testing coverage should consider integrating these suggested tech-

niques into their tools. 

10.2. Object-capture-based Input Generation 

In automated unit testing of object-oriented software, one important and yet challenging 

problem is to generate desirable objects for receivers or arguments to achieve high code cov-

erage (such as branch coverage) or find bugs. To address this significant problem, the CAP-

TIG approach was proposed, which captures objects from program executions, generates 

more objects using captured objects and method-sequences (exploiting a state-of-the-art ran-
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dom-testing tool called Randoop [74]), and mutates the objects to cover those not-yet-

covered branches. CAPTIG was evaluated with three open-source systems. This study‘s em-

pirical results showed that CAPTIG helps Randoop achieve high branch coverage—70.7%, 

on average, improved from 43.0% achieved by Randoop alone. 

10.3. Crash Reproduction 

Automated crash reproduction techniques were proposed by using only stack traces, and 

presented CAPTIG, an implementation of this study‘s techniques. The experiments on the 

bug reports of AspectJ Development Tools, Apache Commons Collection, and Apache 

Commons Math showed that CAPTIG reproduces 44.6% of crashes and the reproduced 

crashes are useful for debugging. 

CAPTIG is directly applicable to existing bug report management systems and post-

failure process systems, such as Microsoft Windows Error Reporting, Apple Crash Reporter, 

Google Breakpad, and Mozilla Talkback, without having to deploy new software. Therefore, 

CAPTIG does not incur any run-time performance overhead. In addition, automated crash 

reproduction will significantly reduce developers‘ debugging efforts. 

10.4. Future Works 

Instead of capturing object states, we capture (1) method sequence without actual input 

arguments and (2) class usage patterns that reveal method invocation orders. In addition, the 

capture-based input generation technique need to be applied to other input generation tech-

nique rather than the method sequence generation technique. This work remains as our future 

work. 
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