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Editorial
There are many opportunities from combining disparate types of

data. The example below is the investigation of protein variability and
evolution by combining protein structures with sequences. The many
large-scale genome sequencing projects and the advent of individual
organism and metagenome sequencing is starting to accumulate in the
enormous numbers of protein sequences. In some cases there are tens
of thousands of sequences related to a single protein. Together with the
100,000+ structures in the Protein Data Base (PDB), this remarkable
data for comprehending the important structural and sequence
relationships. Understanding sequence conservation is obviously
important for the understanding of protein evolution and ultimately
for understanding phenomics. The datamining opportunities are
unprecedented for using these available big data sets to develop a
deeper understanding of protein evolution. We pioneered such
approaches with protein structures in 1985 by extracting potentials for
interacting amino acids when we were able to use only 42 protein
structures, which were sufficient for extracting the counts of the 190
types of amino acid pairs [1]. These large new data await clever new
applications by dataminers. One of our new projects uses these data to
identify closely interacting tight clusters of amino acids to characterize
their sequence and geometric variabilities. Amino acid substitutions in
proteins can be significantly better understood by considering the
closely interacting groups of amino acids within structures, which have
been combined naturally for favorable collective multibody
interactions tight packing. Two amino acids that are distant in
sequence may fold up into close contact pairs in the native structure.
Because they are close, if one of them is replaced with a smaller amino
acid, one of its neighbors may be replaced by a larger one, to maintain
protein stability. In densely packed proteins, these correlated
relationships involve more than simply pairs. In our project,
information derived from Multiple Sequence Alignments (MSA) will
be used to expand the numbers of physical clusters taken from
structures by substituting the amino acids, according to the sequence
alignments (see Figure 1).

Figure 1: Including additional clusters based on sequence
alignments. A physical cluster of 8 close residues (residues 1-4 and
10-13 identified in blue in the table headings) is shown within the
dashed circle at the top, with the central one in red. Sequence
alignments show variations at the positions shown in highlights. We
will use these additional sequences from the reliable multiple
sequence alignments to include additional clusters with these
specific sequence changes. The changed sequences in the additional
clusters will significantly enhance the present studies by providing a
large increase in the number of clusters of interacting residues that
available for this project, far beyond the number taken directly from
experimental structures. [modified from [4]]

By applying the sequence alignment to generate a larger number of
possible clusters, we will be directly including evolutionary
information. In a protein, amino acids co-evolve with other amino
acids in ways to compensate for changes that are introduced.
Characterizing these from a large set of proteins will permit
understanding these interactions better. In multiple-sequence
alignments of a given protein from different biological sources these
co-evolving residues can be identified. Even the intricacies of allostery
and how the proteins move and respond to other molecules could be
meaningfully investigated with these large sets of data. These groups of
correlated mutations can give insights into the structure and function
of a protein.

Contact clusters from a set of PDB structures can be selected to have
different CATH topologies. The CATH database [2] is a classification
of protein structures from Protein Data Bank. It contains a semi-
automatic, hierarchical classification of protein domains. The four
main levels in classification are Class, Architecture, Topology and
Homologous superfamily. Protein structures that have same topology
level share particular structural features. The current version of CATH
database (version 4.0) includes 69,058 annotated PDBs. There are
alternative ways to obtain MSA, from Pfam, or by using different
multiple sequence alignment procedures, such as, MUSCLE and
CLUSTAL Omega. Pfam [3] is a database of curated protein families,
each of which is defined by two alignments and a profile hidden
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Markov model (HMM). Protein sequences within one family are
aligned according to their functional regions, commonly termed
domains. The current version of the database is Pfam 27.0, which
contains a total of 14831 families. Table 1 shows a partial list of Pfam
families and the number of sequences in each family.

Family ID # Sequences Family ID # Sequences

PF00023 10811 PF00376 2639

PF00042 2007 PF00439 10075

PF00067 78448 PF00515 10038

PF00071 7863 PF00620 9481

PF00104 9214 PF01047 12725

PF00233 3100 PF01381 30271

PF00348 15289 PF01966 22279

Table 1: Pfam protein family ID and the number of sequences in each
multiple sequence alignment

The structural clusters and their sequences will capture the complex
evolutionary information from the sequence alignments. The
phylogenetic information could even be used as a weighting scheme
for the clusters. The tight clusters can be quite specific, and such
clusters will no longer depend just on the types of pairs of amino acids
involved, but rather on larger pieces of structure, i.e., they will be
protein-specific (different clusters for different proteins). Thus, a
protein-specific cluster set can be derived separately for each protein.
Previously Sander, Marks, and Onuchic have succeeded in predicting
structural contact pairs of amino acids from the sequence data [4-6].
By utilizing the strength of the inferred couplings, they developed
predictors of residue-residue proximity that have proven useful for
protein structure prediction. The multi-body clusters described above
provide a significantly more cooperative representation than do
pairwise clusters, and also show impressive gains in threading
calculations. Thus, we expect them to be superior for distinguishing
the importance of specific clusters.

Figure 2: Myoglobin structure showing three sets of functionally
related amino acids, marked in red, cyan and blue color, identified
by their residue substitution patterns.

When the amino acids are no longer required to be spatially close to
one another. These conserved groups of amino acids from a MSA are
collectively correlated with protein functions. Myoglobin is shown in
Figure 2 (PDB:2mgm). Three sets of amino acids are highlighted in
red, cyan and blue. They are connected to the function of the protein.
The amino acid substitutions in MSA may suggest novel mechanisms
for collective behaviors of such disparate sets of amino acids to achieve
certain functions, which may not have been known from previous
research, and understanding these become more important as more
proteins are utilized as drugs.

Overall the interpretation of the sequence data becomes
significantly more meaningful when they are combined with structural
information. There are many important opportunities in datamining
by combining diverse data types.
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