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Abbreviations 

AICAR 5-aminoimidazole-4-carboxamide ribonucleotide 

AIR 5-amino-imidazole- ribonucleotide 

AMP, ADP, ATP adenosine mono-, di-, triphosphate 

CAIR 5-aminoimidazole-4-carboxy ribonucleotide 

E. coli   Escherichia coli 

eSS   E. coli SAICAR synthetase 
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PIX Positional Isotope Exchange 
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PRPP 5-phospho-α-D-ribosyl-1-pyrophosphate 
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Abstract 

SAICAR synthetase catalyzes the eighth step in bacterial de novo purine 

nucleotide biosynthesis:  ATP + L-aspartate + CAIR  ADP + Pi + SAICAR 

Enzymes involved in nucleotide synthesis are common targets for chemotherapeutic and 

antimicrobial drugs.  They work by reducing the rate of growth of rapidly proliferating 

cells, thus preventing tumor growth and microbial fecundity.  L-Alanosine, an L-aspartate 

analogue that acts as a substrate for SAICAR synthetase, is a natural product with 

antiviral and antitumor activities.  The product of the reaction is a potent inhibitor of 

adenylosuccinate synthetase and adenylosuccinate lyase and is responsible for L-

alanosine toxicity.  L-Alanosine may be effective as a chemotherapeutic agent in 

combination with other drugs for certain T-Cell lymphocyte tumors. 

 Crystal structures of E. coli SAICAR synthetase with CAIR revealed two new 

Mg2+ binding sites.  The binding of CAIR and metals orders a loop (residues 35-39).  

Site-directed mutagenesis experiments and crystal structures reveal a role in L-aspartate 

binding for this loop.  Analogs of CAIR (AICAR and IMP) are phosphorylated, as 

revealed by crystal structures, and likely mimic a putative phosphoryl intermediate of the 

substrate.  Positional Isotope Exchange (PIX) experiments show migration of 18O from 

the bridging position of γ-18O-ATP to terminal positions of the β-phosphoryl group only 

in the presence of CAIR, indicative of the formation of a phosphoryl intermediate.   

 The enzyme from humans combines SAICAR synthetase and AIR carboxylase 

activities.  The kinetic mechanism of human SAICAR synthetase was Steady State 

Ordered (CAIR first, ATP second, and L-aspartate last.)  Elimination of AIR carboxylase 

activity by mutation or by direct inhibition causes a 10-fold difference in the “on” rate 
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constant for CAIR, suggesting a functional linkage between the AIR carboxylase and 

SAICAR synthetase active sites.  
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Chapter I. Introduction 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase [EC.6.3.2.6, 5’-

phosphoribosyl-4-carboxy-5-aminoimidazole:L-aspartate ligase (ADP)] (SAICAR1 

synthetase) catalyzes the eighth step in bacterial de novo purine nucleotide biosynthesis: 

ATP + L-aspartate + CAIR    SAICAR + ADP + Pi. 

Lukens and Buchanan (1) first reported the enzymatic activity in 1959, and subsequently 

Miller and Buchanan (2) purified and reported properties of the enzyme from chicken 

liver.  Patey and Shaw later determined that AIR carboxylase activity co-purified with 

SAICAR synthetase activity (3).  More recently, the Davisson laboratory has determined 

kinetic parameters for the enzyme from chicken (4), and the Stubbe laboratory has done 

the same for the enzyme from E. coli (5).  Nelson et al. marks the first time that a detailed 

kinetic study was performed and reports the kinetic mechanism to be Rapid Equilibrium 

Random (6).  Structures have been reported of the unligated and adenine nucleotide 

complexes from Saccharomyces cerevisiae (7-10), adenine nucleotide complexes from 

Methanocaldococcus jannaschii (PDB identifiers 2YZL and 2ZO2), and unligated 

                                                 
1 The abbreviations used are: SAICAR, 5-aminoimidazole-4(N-succinylcarboxamide) ribonucleotide; 

CAIR, 5-aminoimidazole-4-carboxy ribonucleotide; CAIRs, 5-aminoimidazole-4-carboxy ribonucleoside; 

AICARs, 5-aminoimidazole-4-carboxamide ribonucleoside; AICAR, 5-aminoimidazole-4-carboxamide 

ribonucleotide; AIR, 5-aminoimidazole ribonucleotide; N5-CAIR, N5-carboxy-5-aminoimidazole-4-

carboxy ribonucleotide; aspartate, L-aspartate; Asp, L-aspartate; NAIR, 5-aminoimidazole-4-nitro 

ribonucleotide; PRPP, phosphoribosyl pyrophosphate  eSS, Escherichia coli SAICAR synthetase; tSS, 

Thermatoga maritime SAICAR synthetase; ySS, Saccharomyces cerevisiae SAICAR synthetase; hSS, 

human SAICAR synthetase. 
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structures from Thermatoga maritima (11), Homo sapiens (12), and Geobacillus 

kaustophilus (PDB identifier 2YWV.) 

 The role of SAICAR synthetase in central metabolism makes it an important 

enzyme to most life forms.  In fact all organisms, except some parasitic protozoa, have a 

de novo purine biosynthesis pathway with SAICAR synthetase activity.  Some tumor cell 

lines do not have an intact salvage pathway and rely solely on de novo purine 

biosynthesis (13).  Moreover, cells undergoing rapid growth such as tumors and bacterial 

infections rely on de novo nucleotide synthesis and inhibition of these enzymes has 

proven a useful strategy for chemotherapeutic drugs and antibiotics (13). 

 

De novo Purine Biosynthesis: 

The de novo purine biosynthesis pathway transforms PRPP to IMP, where it branches to 

steps specific for AMP and GMP synthesis.  The pathway was first elucidated in the 

1950s and early 1960s in the avian system by Buchanan and co-workers (1,2,14-16).  

Buchanan reported 10 enzymatic activities that were necessary for the conversion of 

PRPP to IMP.  In contrast, 12 activities are involved in the pathway of micro-organisms 

(17,18).  Using the E. coli gene nomenclature, PurT and PurK are the two additional 

activities.  PurT and PurN appear redundant (the conversion of GAR to FGAR), but PurT 

uses formate as the formyl donor as opposed to N10-formyl tetrahydrofolate (19-21).  

PurK was long thought to merely enhance CO2 binding in micro-organisms; and in fact, 

cells are still able to grow with PurK knocked out under conditions of high CO2 (22,23).  

In 1992, Stubbe found out that a stoichiometric ATP requirement was needed for PurK 

functionality (5) and later identified a new intermediate N5-CAIR (24).  Despite the 
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sequence homology of the enzymes that catalyze the formation of CAIR in microbial 

versus vertebrate systems, the enzymes catalyze different reactions.  The enzyme is an 

N5-CAIR mutase in microbial systems and an AIR carboxylase in the avian system. 

 

Significance to Human Health 

SAICAR synthetase is already a target in the treatment of cancer.  L-Alanosine is a 

natural product of Streptomyces alanosinicus with antiviral and antitumor activities.  L-

Alanosine is a substrate analogue of L-aspartate in vitro and in vivo for SAICAR 

synthetase (6,25).  The product of the L-alanosine reaction is L-alanosyl-5-amino-4-

imidazolecarboxylic acid ribonucleotide, the compound responsible for L-alanosine 

toxicity and a potent inhibitor of adenylosuccinate synthetase and adenylosuccinate lyase 

(enzymes participating in de novo purine nucleotide biosynthesis) (25-27). 

A complication of L-alanosine therapy is its comparable toxicity toward healthy 

and cancerous cells; however, specific cancers show enhanced susceptibility toward the 

toxic effects of L-alanosine.  Methylthioadenosine phosphorylase (MTAP) is an 

important salvage enzyme for adenine nucleotides.  The gene for MTAP in humans is 

proximal to tumor suppressor genes p15 and p16, and as a consequence, many tumor 

cells that lack one or more suppressor genes also have no gene for MTAP.  

Approximately 30% of T-cell acute lymphocytic leukemia lack the MTAP salvage 

pathway and rely entirely on de novo purine nucleotide biosynthesis for adenine 

nucleotides (13,28-31).  L-Alanosine is toxic to cell lines of such cancers at 

concentrations well below those that poison cells with intact salvage pathways.  Hence, 
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L-alanosine in combination with salvage pathway precursors of adenine nucleotides 

offers an effective therapy for these cancers (13,29-32). 

 

Genetic Properties and Subunit Assembly of SAICAR synthetase 

Because of the presence of gene fusions in purine biosynthesis in some organisms, it is 

useful to also consider the PurK and PurE activities when discussing the genetic 

properties of the SAICAR synthetase activity (PurC).  In E. coli, and many other micro-

organisms, PurK, PurE, and PurC all are individual peptides (18).  PurK crystallizes as a 

homodimer (33) and PurE crystallizes as a homo-octamer (34).  PurC was reported by 

Stubbe to be a homotrimer by analytical ultracentrifugation (5), but it was found to be a 

dimer when crystallized (35).  The S. cerevisiae homologue crystallizes as a monomer 

(8,9). 

 In yeast and fungi, two genes, Ade1 and Ade2, are responsible for the 

transformation of AIR to CAIR.  Ade1 has sequence homology to PurC, and the purified 

protein has SAICAR synthetase activity in in vitro experiments on purified proteins 

(36,37).  Sequence homology indicates Ade2 is a gene fusion of PurK and PurE and has 

both activities in in vitro experiments conducted with purified protein (38,39).  The same 

study showed that Ade2 has a native mass of 490 kDa, implying an octamer of 62 kDa 

subunits.  This matches the oligomeric state of E. coli PurE (34) and the human 

bifunctional enzyme (12) and suggests a general scheme for subunit assembly around the 

PurE domain. 

 In 1973, Patey and Shaw observed that AIR carboxylase activity co-purified with 

SAICAR synthetase activity (3).  Subsequently, functional complementation screening 
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showed that the gene in vertebrates is a fusion of SAICAR synthetase) and AIR 

carboxylase activities (40-43).  The enzyme from chicken has a mass in excess of 330 

kDa and possesses 6–8 identical subunits of 47 kDa (3,4).  The human homologue of the 

protein has recently been crystallized as a homo-octamer (12).   

 Regulation of purine biosynthetic genes varies greatly among micro-organisms 

(18).  The genes necessary to transform PRPP to IMP in E. coli are contained in seven 

operons.  All, except for purA, have a common control site and are co-regulated by the 

repressor protein PurR.  The free bases hypoxanthine and guanine bind directly to PurR 

and enhance its DNA binding properties, while nucleotides and other bases have no 

effect.  Similar repression was observed in Salmonella typhimurium. 

 Bacillus subtilis, on the other hand, encodes all of the genes necessary to 

synthesize IMP from PRPP in a single operon (18).  A PurR protein has also been 

identified for this organism, but it bears no structural or mechanistic similarities to the E. 

coli protein.  It is regulated by specifically binding to PRPP which reduces the affinity of 

the protein for its DNA binding site. 

 The genes required for de novo AMP biosynthesis in Saccharomyces cerevisiae 

are called the ADE genes and are repressed at the transcriptional level by the presence of 

extracellular hypoxanthine and adenine (44).  The proteins Bas1 and Bas2 activate 

transcription in vivo in the absence of these regulatory purine bases.  A study by Som et 

al. (44) implicates the purine biosynthesis intermediate SAICAR in the Bas1 and Bas2 

mediated activation of ADE transcription.  When genes upstream of SAICAR synthetase 

in the pathway were knocked out, ADE gene repression was not reversed even when low 

levels of inhibitory purine bases were present in the media.  When genes upstream of 
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SAICAR synthetase were knocked out, ADE genes were de-repressed even when high 

levels of inhibitory purines were present in the media.  This suggests that SAICAR might 

be a signaling molecule for gene transcription, though no information was reported 

regarding the in vivo concentration of the molecule under the various experimental states.  

Moreover, in vitro experiments failed to show enhanced binding of Bas1 and Bas2 to 

their chromosomal binding sites in the presence of SAICAR.  This could be because 

SAICAR is chemically transformed to a different metabolite or exists in a metal 

nucleotide complex.  Alternately, a different protein might help to mediate the 

interaction.  Only SAICAR synthetase and adenylosuccinate lyase are currently known to 

bind SAICAR.  

 

Properties of the Chemical Reaction: 

The reaction catalyzed by SAICAR synthetase is as follows:  

 

An extensive survey using analogues of CAIR demonstrated considerable promiscuity for 

this substrate (37).  Some notable results were that 2’-deoxy-CAIR, 3’-deoxy-CAIR, and 

5’-deamino-CAIR were all substrates.  GTP and 2'-dATP can substitute for ATP in the 

reaction, while CTP and UTP inhibit the enzyme (36).  Catalysis is supported by 

magnesium and manganese but is not supported by calcium (6).  L-Aspartate and L-
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alanosine are the only substrates for ligation that have been reported for the E. coli 

enzyme (6).  L-malate is a substrate for the S. cerevisiae enzyme but not the E. coli 

enzyme (37).  

 Nelson et al. (6) determined the kinetic mechanism of the E. coli enzyme to be 

Rapid-Equilibrium Random.  The Km values for CAIR, ATP, and L-aspartate were 6.6 

µM, 60 µM, and 790 µM, respectively, and kcat was 9.0 s-1.  These values were all 

comparable to previous values published for E. coli PurC except that the Km for CAIR is 

6-fold lower (5,6).  Two facts that could explain the discrepancy are that CAIR 

spontaneously decarboxylates (45), and the product, AIR inhibits SAICAR synthetase 

(6).  Vmax was achieved with 6 mM Mg2+, which is in excess of the amount necessary to 

put all of the ATP into an MgATP2- complex (6).  There are several possible explanations 

for this:  1) The enzyme could place the ATP in an unfavorable conformation for binding 

metal; 2) The enzyme might recognize a Mg2+•CAIR complex for catalysis; 3) An 

additional Mg2+ binding site might exist on the enzyme; 4) Mg2+ might bind to the 

product SAICAR increasing the rate of release from the enzyme. 

Kinetic constants from other organisms have also been reported.  For yeast, the 

Km values for CAIR, ATP, and L-aspartate were 1.6 µM, 14 µM, and 960 µM, 

respectively (36).  The kinetic constants for the SAICAR synthetase activity of the 

bifunctional AIR Carboxylase/SAICAR synthetase enzyme from chicken have also been 

reported (4).  This system provides problems for assaying the transformation of CAIR to 

SAICAR because AIR carboxylase rapidly decarboxylates CAIR to AIR.  Firestine et al. 

(4) used NAIR, the 4-nitro analogue of CAIR, with the aim of specifically inhibiting the 

PurE activity so that PurC activity could be measured.  In the presence of NAIR, the Km 
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values for CAIR, ATP, and L-aspartate were 3 µM, 10 µM, and 1.4 mM, respectively, 

and kcat was 3.6 s-1.  

 

Possible Chemical Mechanisms: 

Coupling the hydrolysis of a nucleoside triphosphate to a ligation reaction is a 

common strategy in nature.  The enzyme adenylosuccinate synthetase catalyzes one of 

the two reactions specific to de novo AMP biosynthesis (46-49): 

 

Adenylosuccinate synthetase putatively transfers the γ-phosphoryl group of GTP to the 

O-6 atom of IMP.  The α-amino group of L-aspartate then attacks the resulting 

intermediate of 6-phosphoryl-IMP (6-PIMP), forming adenylosuccinate.  6-PIMP has 

been trapped in crystal structures of adenylosuccinate synthetases from several sources 

(50-52).  Positional Isotope Exchange (PIX) experiments have provided evidence for the 

creation of a 6-PIMP (53), and a preferred flux through the random mechanism with IMP 

and GTP binding first was demonstrated with isotope exchange at equilibrium (54).  

Markham and Reed have suggested an alternative mechanism in which L-aspartate first 

reacts with IMP (55).  The resulting intermediate has a nucleophilic 6-oxyanion that 

attacks the γ-phosphoryl group of GTP, forming a phosphoryl intermediate identical to 
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that created by the reaction of L-aspartate with 6-phosphoryl-IMP.  No evidence exists, 

however, for a coupled L-aspartate-IMP intermediate. 

 

Chemical Properties of CAIR: 

A considerable amount of research has been done on the chemical and thermodynamic 

properties of CAIR and related compounds.  Some of the results are useful in considering 

the chemical mechanism and natural substrates for SAICAR synthetase.  CAIR is prone 

to decarboxylation to AIR, a precursor in de novo purine biosynthesis.  This 

decarboxylation is catalyzed by acid and inhibited by the presence of transition metals 

(45).  These crystalline transition metal complexes were later characterized, though their 

crystal structures were never solved (56,57).  Shaw did not find Mg2+ to inhibit the 

decarboxylation, nor did he crystallize any nucleotide complexes with it.  Some data 

regarding the effects of Mg2+ on the AIR carboxylase reaction may provide indirect data 

for an Mg2+•CAIR complex in solution.  In the AIR carboxylase reaction, the presence of 

Mg2+ both shifted the AIR/CAIR equilibrium away from AIR and decreased the rate of 

decarboxylation of CAIR to AIR, while having little impact on the rate of conversion of 

AIR to CAIR (4). 

 Studies reporting the tautomeric state of the exocyclic amine in 5’-

aminoimidazole ribonucleotide (AIR) are also of interest.  NMR studies of AIR give 

evidence for a 5-imino resonance form in aqueous solution. The resonances of atom H4 

in 1H NMR and of atom C4 in 13C NMR are at unusually high field strengths, consistent 

with significant levels of the imino form of AIR (58).  Slow chemical exchange of H4 

hydrogen atoms with solvent deuterium further supports the presence of the imino form 
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of AIR.  Although no data have been presented regarding resonance states of CAIR, a 

similar labilization of the C4 bond is observed in the facile decarboxylation of CAIR 

(45,59).  Among researchers studying the AIR carboxylase reaction, there is interest in a 

proposed isoCAIR intermediate in the reaction (the tautomer of CAIR with an imino 

nitrogen in the 5 position and a tetrahedral carbon at C4) (60).  Recently, discrete Fourier 

transform calculations were performed on CAIR and isoCAIR analogs (both bases had a 

methyl at the N1 position instead of a ribotide) and showed only a 3.1 kcal/mol higher 

value for the ground state energy for isoCAIR than CAIR (61).  This shows that the 

formation of an imino might be on the same energy magnitude as the formation of a 

hydrogen bond.  Such an imino resonance form could put more charge on the carboxyl 

group of CAIR increasing its nucleophilicity.  This is illustrated in the proposed 

mechanism of Nelson et al. (6).  

 

Structures of  SAICAR Synthetases from other organisms: 

Structures have been reported for the SAICAR synthetases of S. cerevisiae and T. 

maritima.  The enzyme from yeast was first crystallized in 1996 (8).  The fold was novel, 

but the domains bore similarities to other nucleotide binding proteins and are compared 

in detail in a subsequent publication (9).  Interestingly, Domain B has similarities with 

other enzymes that couple peptide-formation to nucleoside triphosphate cleavage. 

 Complexes of the yeast enzyme with adenine nucleotides were subsequently 

reported (7).  1OBG was co-crystallized with ATP and Mg2+, and the resulting complex 

had different crystal packing from the unligated structure, 1A48, and had AMP and 

sulfate bound to the enzyme.  It is unclear why AMP was present because the hydrolysis 
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product of the enzyme is ADP.  One possibility is that ADP was present but the adjacent 

sulfate ion competes with the β-phosphoryl group.  1OBD resulted from the soaking of 

ATP and Mg2+ into the 1A48 crystal form, and Mg2+•ATP was observed in the active 

site.  It is unclear whether this structure accurately represents the correct adenine-

nucleotide-enzyme complex because the loop that is involved in phosphoryl binding also 

participates in a lattice contact in the unligated 1A48 structure, and its position was 

unchanged after the soak.  An additional binding site for AMP distal from the active site 

was modeled into both structures.  Generation of electron density maps revealed density 

for the nucleotide only in the 1OBG structure, and the generation of symmetry molecules 

showed that a lattice neighbor was hydrogen-bonded to the nucleotide.  The different 

packing of 1OBD would preclude the formation of this interaction.  There is no evidence 

from solution studies for an allosteric adenine binding site. 

 In all three structures, sulfate binds to several conserved residues in a location on 

the opposite side of the active site cleft from the adenine nucleotide.  Two arginines and 

the positive dipole of a helix are oriented towards the sulfate.  If the 5’-phosphoryl group 

of CAIR was positioned in this location, its carboxyl group would be placed near the 

phosphoryl chain of the adenine nucleotide.  Attempts to crystallize in the presence of 

AICAR yielded significant density in this region, indicative of a phosphoryl group, but 

the density was weak for the ribose and absent for the base (10). 

 The structure of SAICAR synthetase from T. maritima has also been deposited as 

a part of the T. maritima structural genomics project (11).  Different from yeast, the T. 

maritima enzyme is a dimer and is approximately 75 amino acids shorter.  The chain 

length difference is clustered in four insertions.  Notably, one of the insertions occurs in 
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the region of subunit association of T. maritima, possibly interfering with it, and another 

is in the C-terminal domain where significant conformational differences occur.  The 

differences in the C-terminal domain of T. maritima place several conserved residues, 

which comprise the putative 5’ phosphoryl binding site in yeast, away from the active 

site. 

 The crystal structure of human AIR carboxylase/SAICAR synthetase bifunctional 

enzyme revealed a. homo-octamer with the central organization around AIR carboxylase 

domains, similar to that of the E. coli PurE enzyme (12).  SAICAR synthetase 

subdomains are at the periphery of the octamer and link up with neighboring subunits as 

observed for the E. coli SAICAR synthetase dimer.  The AIR carboxylase/SAICAR 

synthetase octamer, however, has a set of channels that interconnect active sites, though 

there has been no biochemical evidence for channeling.  In fact when the human 

bifunctional enzyme was incubated with AIR, HCO3
-, L-aspartate, ATP, and Mg2+, the 

rate of SAICAR production was increased 6-fold with the addition of eSS (4).  This 

suggests that CAIR from the AIR carboxylase was released into the bulk solvent so that 

the added eSS could interact with it.  The human enzyme is highly disordered in the 

SAICAR synthetase active site.  Residues corresponding to 34–56 and 199–220 of the E. 

coli enzyme are without electron density in the human bifunctional enzyme, and many of 

these absent residues correspond to those that interact with CAIR.  Additionally the 

average B-factor for residues 1-265 (corresponding to the SAICAR synthetase domain) is 

63.4; while the B-factor for residues 266-425 (corresponding to the AIR carboxylase 

domain) is 35.6.  This indicates an average B-factor that is nearly 2-fold larger for the 
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SAICAR synthetase domain.  It is unclear what the source of this disorder is. 

 

Thesis Organization 

This thesis contains six chapters.  Chapter I contains a literature review with some 

general information regarding the steps involved in converting AIR to SAICAR.  Chapter 

II presents the structure of the E. coli enzyme with bound ligands and relates these 

findings to the proposed chemical mechanism.  Chapter III presents a study of the kinetic 

mechanism of human SAICAR synthetase and demonstrates a linkage of functions in the 

bifunctional enzyme.  Chapter IV includes structural and PIX data that supports a 

mechanism in which a phosphoryl intermediate is created prior to the attack by L-

aspartate.  Chapter V shows kinetic, as well as structural, evidence for the importance of 

the 30s loop in the role of binding aspartate.  General conclusions from the research are 

presented in Chapter VI. 
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Abstract 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase (SAICAR 

synthetase) converts 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) to 4-(N-

succinylcarboxamide)-5-aminoimidazole ribonucleotide (SAICAR).  The enzyme is a 

target of natural products that impair cell growth.  Reported here are the crystal structures 

of the ADP and the ADP•CAIR complexes of SAICAR synthetase from Escherichia coli, 

the latter being the first instance of a CAIR-ligated SAICAR synthetase.  ADP and CAIR 

bind to the active site in association with three Mg2+, two of which coordinate the same 

oxygen atom of the 4-carboxyl group of CAIR; whereas, the third coordinates the α- and 

β-phosphoryl groups of ADP.  The ADP•CAIR complex is the basis for a transition-state 

model of a phosphoryl-transfer reaction involving CAIR and ATP, but also supports an 

alternative chemical pathway in which the nucleophilic attack of L-aspartate precedes the 

phosphoryl-transfer reaction.  The polypeptide fold for residues 204–221 of the E. coli 

structure differs significantly from those of the ligand-free SAICAR synthetase from 

Thermatoga maritima and the adenine nucleotide complexes of the synthetase from 

Saccharomyces cerevisiae.  Conformational differences between the E. coli, T. maritima, 
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and yeast synthetases suggest the possibility of selective inhibition of de novo purine 

nucleotide biosynthesis in microbial organisms. 
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Introduction 
 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase [EC.6.3.2.6, 5'-

phosphoribosyl-4-carboxy-5-aminoimidazole:L-aspartate ligase (ADP)] (SAICAR1 

synthetase) catalyzes the eighth step in bacterial de novo purine nucleotide biosynthesis: 

 

ATP + L-aspartate + CAIR  ADP + Pi + SAICAR 
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Lukens and Buchanan (1) first described the enzyme in 1959.  In 1962 Miller and 

Buchanan (2) demonstrated its presence in a variety of life forms and reported the 

purification and properties of the synthetase from chicken liver.  More recently, the 

Stubbe laboratory purified SAICAR synthetase from Escherichia coli (3).  The E. coli 

enzyme exhibits a rapid-equilibrium random kinetic mechanism (4).  In contrast, the 

SAICAR synthetase from Saccharomyces cerevisiae is a monomer (5-8) and that from 

Thermatoga maritima a dimer (9).  Comparable enzymes from vertebrates have masses in 

excess of 330 kDa and possess 6–8 identical subunits of 47 kDa (10,11).  The vertebrate 

systems are bifunctional, combining 5-aminoimidazole ribonucleotide carboxylase (AIR 

carboxylase) and SAICAR synthetase activities (10-12). 

L-Alanosine can replace L-aspartate as a substrate both in vitro and in vivo for 

SAICAR synthetase (4,13,14).  The product of the SAICAR synthetase reaction, L-

alanosyl-5-amino-4-imidazolecarboxylic acid ribonucleotide, is a potent inhibitor of 

adenylosuccinate synthetase and adenylosuccinate lyase, being the compound responsible 

for L-alanosine toxicity (13).  Many cancers (approximately 30% of all T-cell acute 

lymphocytic leukemia, for instance) lack a salvage pathway for adenine nucleotides and 

rely entirely on de novo biosynthesis (15).  L-Alanosine is toxic to cell lines of such 

cancers at concentrations well below those that poison cells with intact salvage pathways.  

Hence, L-alanosine may be effective as a chemotherapeutic agent in combination with 

other drugs (15). 

Differences in subunit size, function, and assembly of microbial and vertebrate 

SAICAR synthetases suggest the potential for selective inhibition of SAICAR 

synthetases and, hence, the possibility of new antibiotics.  Efforts to further develop 
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specific inhibitors of microbial SAICAR synthetases would benefit from a basic 

understanding of structure-function relations; however, for SAICAR synthetase such 

information is lacking.  To this end, we report the structures of the ADP and ADP•CAIR 

complexes of E. coli SAICAR synthetase (hereafter, eSS).  The latter complex is the first 

structure of a CAIR-bound SAICAR synthetase and reveals a previously unsuspected 

requirement for Mg2+ in the recognition of CAIR by the synthetase.  (A total of three 

metal ions bind to the active site).  The CAIR•ADP complex is consistent with a 

chemical mechanism composed of two partial reactions, a phosphoryl transfer from ATP 

and a nucleophilic attack by L-aspartate, but the relative order of the two reactions is 

unclear.  Moreover, the conformation of eSS differs significantly from that of ligand-free 

SAICAR synthetase from T. maritima in the region of the CAIR binding site, suggesting 

the possibility of substrate-induced conformational changes in microbial synthetases. 

 

Experimental Procedures 

Materials— ATP, L-aspartate, NADH, phosphoenolpyruvate, pyruvate kinase, and 

lactate dehydrogenase were purchased from Sigma.  CAIR was synthesized as described 

previously (4).  E. coli strain BL21(DE3) came from Invitrogen. 

Enzyme Preparation— Selenomethionine-substitution in eSS employed the inhibition of 

methionine biosynthesis coupled with selenomethionine supplementation (16).  BL21 

DE3 cells were transformed with a pET 28b vector containing the eSS insert with an N-

terminal hexahistidyl tag (4).  All bacterial cultures contained 30 μg/mL kanamycin 

sulfate (Gibco).  An overnight culture was prepared in LB media (Sigma), and the cells 

isolated by centrifugation (1500xg for 10 min).  The pellet was resuspended in 24 mL of 
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M9 media, supplemented with 1 mM MgSO4, 0.3 mM FeSO4, and 0.5 µM thiamin.  Four 

mL of inoculant were added to each of 6 flasks containing 650 mL of M9 media with the 

same supplements.  The flasks were shaken at 37 °C to an OD600 of 0.8.  The temperature 

was adjusted to 16 °C, and 35 mg each of L-leucine, L-isoleucine, and L-valine, and 65 

mg each of L-phenylalanine, L-lysine, and L-threonine were added as solids to each flask.  

After shaking for 20 minutes, 2 mL of a 20 mg/mL solution of L-selenomethionine was 

added to each flask.  IPTG was added to a final concentration of 0.5 mM after an 

additional 15 minutes of agitation.  Cells were isolated after 18 hrs. by centrifugation 

(1500xg, 10 min), resuspended in 10 mM KPi (pH 7.0), centrifuged again, and finally 

resuspended in 100 mL lysis buffer containing 50 mM KPi, 300 mM NaCl, and 10 mM 

imidazole (pH 8.0).  Cells were disrupted by sonication in the presence of 0.25 mg/mL 

lysozyme, 50 μg/mL DNAase I, 1 mL of 100 mM phenylmethanesulfonyl fluoride 

(PMSF) in isopropanol, and 5µg/mL leupeptin.  The lysate was centrifuged (33,000xg, 1 

hr.) and the supernatant fluid loaded onto 25 mL of Ni-nitrilotriacetic acid (NTA) agarose 

(Novagen), pre-equilibrated in lysis buffer.  The column was washed sequentially with 2 

column volumes each of lysis buffer, lysis buffer containing 20 mM imidazole, and lysis 

buffer containing 40 mM imidazole.  eSS was subsequently eluted from the column with 

lysis buffer containing 250 mM imidazole.  Immediately upon elution, dithio-threitol 

(DTT) and ethylenediaminetetraacetic acid (EDTA) were added to the fractions to final 

concentrations of 5 mM and 10 mM, respectively.  Fractions were pooled and dialyzed 

overnight in buffer containing 15 mM Tris·HCl, 25 mM KCl, 5 mM MgCl2, 5 mM 

dithiothreitol, and 5 mM EDTA (pH 8.0).  Non-selenomethionine substituted protein was 
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prepared using an identical protocol, except cell growth and expression was done in LB 

media, and no amino acid supplements were added. 

Protein concentration was determined by the method of Bradford (17) using 

bovine serum albumin as a standard.  Protein purity was confirmed by sodium 

dodecylsulfate polyacryl-amide gel electrophoresis (SDS-PAGE) (18).  Mass 

determinations of purified protein were done by the Iowa State University core facility 

using an Applied Biosystems Voyager System 6075 Matrix Assisted Laser 

Desorption/Ionization-Time-of-Flight Mass Spectrometer (MALDI-TOF MS).  The 

specific activity of eSS was determined using previously described assay conditions (4) 

with substrate concentrations of 360 µM ATP-Mg2+, 40 µM CAIR, and 5.6 mM L-

aspartate.  The dependence of velocity on the concentration of Mg2+ was investigated 

using the substrate concentrations of 300 µM ATP, 65 µM CAIR, and 7.5 mM L-

aspartate, with concentrations of free-Mg2+ ranging from 90–7000 μM. 

Crystallization— Crystals were grown by the method of hanging-drop vapor diffusion in 

VDX-plates (Hampton Research).  Two µL of protein solution were mixed with 2 µL of 

well solution and allowed to equilibrate against 0.5 mL of well solution.  For the ADP 

complex, a protein solution (15 mg/mL) was prepared in a buffer containing 15 mM 

Tris·HCl, 25 mM KCl, 55 mM MgCl2, 50 mM ADP, 5 mM DTT, and 5 mM EDTA (pH 

8.0).  The protein solution for the CAIR•ADP complex was identical except for the 

addition of 1.5 mM CAIR and 10 mM L-aspartate and that the protein did not include 

selenomethione.  Crystals used for this diffraction study grew from well solutions 

containing 3.4–3.8 M sodium formate and 50 mM Tris·HCl (pH 8.5). 
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Data Collection— For the ADP complex, crystals were transferred to a cryoprotectant 

solution containing 4 M sodium formate, 50 mM  Tris·HCl pH 8.5, 25 mM MgCl2, 25 

mM ADP, and 10% (w/v) sucrose.  This buffer was supplemented with 1 mM CAIR and 

10 mM L-aspartate for the CAIR•ADP complex.  After approximately 30 seconds of 

equilibration, crystals were plunged into liquid nitrogen. 

For the ADP complex, MAD data were collected on Beamline 4.2.2 of the 

Advanced Light Source, Lawrence Berkley Laboratory.  Complete anomalous sets were 

taken at wavelengths of peak absorbance, the inflection point, and remote from the 

absorption edge of Se.  Data were indexed, integrated, scaled, and merged using d*trek 

(19).  Intensities were converted to structure factors using the CCP4 (20) program 

TRUNCATE. 

Data from the CAIR•ADP complex were collected at Iowa State University from 

a single crystal (temperature, 115 K) on a Rigaku R-AXIS IV++ rotating anode/image 

plate system using CuKα radiation from an Osmic confocal optics system.  Data were 

processed and reduced using the program package CrystalClear provided with the 

instrument.  Intensities were converted to structure factors using the CCP4 program 

TRUNCATE. 

Structure Determination and Refinement— Structure determination for the 

selenomethionine-replaced protein was accomplished using the SOLVE/RESOLVE 

software package (21,22).  Electron density was modeled as polyalanine by RESOLVE, 

followed by manual fitting using Xtalview (23).  Refinement was performed against the 

structure factors from the remote wavelength using CNS (24).  Non-crystallographic 

restraints were not used during refinement.  Refinement began with a cycle of simulated 
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annealing (starting temperature of 3500 K) with slow cooling in increments of 25 K to a 

final temperature of 300 K, followed by 100 steps of conjugate gradient energy 

minimization.  Subsequent cycles had lower initial starting temperatures (as low as 500 

K).  Individual thermal parameters were refined after each cycle of simulated annealing 

and subject to the following restraints: bonded main-chain atoms, 1.5 Å2; angle main-

chain atoms, 2.0 Å2; bonded side-chain atoms, 2.0 Å2; and angle side-chain atoms, 2.5 

Å2.  Water molecules were automatically added using CNS if a peak greater than 3.0σ 

was present in Fourier maps with coefficients (Fobs–Fcalc)eiαcalc.  Refined water sites were 

eliminated if they were further than 3.2 Å from a hydrogen-bonding partner or if their 

thermal parameters exceeded 50 Å2.  The contribution of the bulk solvent to structure 

factors was determined using the default parameters of CNS.  Constants of force and 

geometry for the protein came from Engh and Huber (25) and those for ADP from CNS 

resource files with appropriate modification of dihedral angles of the ribosyl moiety to 

maintain a 2'-endo ring pucker. 

 For the native CAIR•ADP complex, molecular replacement was performed using 

AMORE with the ADP complex as the starting model.  Refinement was performed using 

the methods employed for the ADP complex. 

Routines in the CCP4 suite of programs were used in the calculation of surface 

areas and in the superposition of structures. 

 

Results 

Protein Preparation, Data Collection, and Structure Determination— Selenium-

modified and native eSS were pure on the basis of sodium dodecylsulfate polyacrylamide 
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gel electrophoresis.  The specific activity of the selenomethionine-substituted protein was 

15±1 U/mg, comparable to that of the native protein (4).  Mass spectrometry of native 

and selenomethionine-substituted proteins indicated 8.5 (relative to a maximum of 10) Se 

atoms per monomer.  SOLVE initially located 17 Se sites, generating a phase set with a 

figure-of-merit of 0.37.  Iterations of density modification by RESOLVE increased the 

figure-of-merit to 0.67.  Statistics of data collection and refinement are in Tables I&II. 

Overview of eSS Structure— An eSS homodimer occupies the crystallographic 

asymmetric unit.  The subunits of the dimer are virtually identical with a superposition of 

all Cα atoms yielding a root-mean-squared deviation of 0.34 Å for both nucleotide 

complexes.  No electron density is present for the polyhistidyl tag.  Observable electron 

density begins with Met1 and continues to the C-terminus (Asp237).  Electron density is 

weak only for residues 35–39 of the ADP complex but strong for the same segment in the 

ADP•CAIR complex. 

Domain 1 of the eSS fold (Fig. 1) consists of a β-sheet (strands β1−β3, β6, and 

β7) with its inter-strand connections (helix α1 and an anti-parallel loop β4–β5).  Domain 

2 consists of a β-sheet (strands β8–β13) and associated helices α2–α6.  The beta sheet of 

Domain 1 curls (like the fingers of a right hand relative to its palm) over Domain 2, 

creating a cleft, half of which is filled by ADP-Mg2+ and the other half by CAIR.  The 

subunits come together with two-fold symmetry forming a dimer that buries 

approximately 2400 Å2 of surface in the interface. 

The major structural difference between the ADP and ADP•CAIR complexes is 

the aforementioned levels of electron density associated with residues 35–39.  

Superposition of all Cα carbons of subunit A from the ADP and ADP•CAIR complexes 
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gives a root-mean-squared difference of 0.18 Å and a maximum displacement of 0.67 Å.  

The former value is comparable to the coordinate uncertainty of 0.25 Å determined by 

the CCP4 program SFCHECK.  The high level of agreement occurs despite the difference 

in ligation, and infers selenomethionine substitution in the ADP complex causes little 

perturbation to the structure.  The largest Cα displacements (0.7 Å) are in the loop 

(residues 124−130) that coordinates metal ions associated with CAIR and for residues in 

the vicinity of the 5'-phosphoryl group of CAIR.  The conformation of the adenine 

nucleotide and its interactions with the protein are identical (within coordinate 

uncertainty) in the ADP and ADP•CAIR complexes. 

Comparison of eSS to tSS— eSS (237 residues) and tSS (PDB identifier 1KUT, 230 

residues) share 39% sequence identity.  tSS, like eSS, is a dimer (Fig. 1).  Cα atoms of 

the eSS and tSS subunits superimpose with a root-mean-squared deviation of 

approximately 1.2 Å, using the sequence alignment of Fig. 2; however, the polypeptide 

fold associated with segment 204–221 of eSS, which includes strand β13 and helix α5, 

differs strikingly from that of tSS (Figs. 1&3).  The alternative fold of tSS exposes six 

hydrophobic residues and increases the solvent-accessible surface area of each subunit by 

approximately 1000 Å2 (from 1220 Å2 in eSS to 2200 Å2 in tSS). 

Unlike the alternative fold of tSS, the eSS fold has an extensive network of 

hydrogen bonds.  Interacting residues fall in two clusters: Asp202, Arg231, and Thr205 and 

Arg39, Asp175, Arg199, Asp210, Lys211, Asp212, Arg213, and Arg215.  The latter more 

extensive cluster apparently anchors helix α5 with respect to Domain 1 and Domain 2, 

while positioning hydrophilic side chains in the active site cleft of eSS.  In contrast, helix 

α5 in tSS is displaced relative to that of eSS (Fig. 3), taking residues corresponding to 
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Arg199, Lys211 and Arg215 away from the active site.  Most of the residues in segment 

204–221 of eSS are conserved among microbial SAICAR-synthetases; for instance, 

Asp175, Arg199, Asp210, Lys211, Asp212 and Arg215 are conserved and present in tSS. 

Comparison of eSS to ySS— SAICAR synthetase from Sacharomyces cerivisae (ySS) has 

69 more amino acids than eSS, appearing primarily as insertions before residues 1, 77, 

105 and 221 of the E. coli synthetase (Figs. 1&2).  Neglecting insertions, eSS and ySS 

are 27% identical in sequence, and superimpose with a root-mean-squared deviation of 

3.3 Å.  The first and second sequence insertions come together in ySS (PDB identifiers 

1OBD, 1OBG, and 1A48), where they define a putative binding site for AMP.  (AMP 

appears in good electron density only at a lattice contact in 1OBG.  Hence, the functional 

significance of the first two insertions in the ySS sequence remains unclear).  The third 

insertion occurs at the subunit interface of the eSS dimer and probably blocks the 

dimerization of ySS subunits.  The fourth insertion extends the helix corresponding to α5 

of eSS and the connecting segments at the N- and C-terminal ends of that helix.  The 

fourth segment replaces residues 204–221 in eSS but nonetheless retains a functional 

active site. 

Adenine nucleotide interactions— ADP-Mg2+ binds to eSS in an anti conformation (Fig. 

4).  Val15, Leu24, Leu26, and Val81 are in contact with one side of the adenine base while 

Met86 packs against the other.  Atom N1 of ADP binds to the backbone amide group of 

Leu84, and the exocyclic amine, N6, binds to the backbone carbonyl group of Lys82 and 

the side chain of Gln69 (Table III).  No side-chain interaction between atom N6 and the 

protein was reported for ySS (PDB identifiers 1OBG and 1OBD); however, His72 of ySS 
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structurally corresponds to Gln69 of eSS and is in a position to interact with the adenine 

nucleotide.  This position is conserved as glutamine or histidine in microbial systems. 

The ribosyl moiety is C2'-endo, as observed for the adenine nucleotides in ySS 

structures.  Atom O2' of the ribose binds to Glu179, corresponding to an equivalent 

interaction with Glu219 in ySS. 

The polyphosphoryl group of the adenine nucleotide interacts with strands β1 and 

β2, which together constitute a P-loop motif (26,27).  The α-phosphoryl group interacts 

with backbone amide groups of Lys11, Ala12, and Lys13, with atom NZ of Lys13, and with 

Mg2+ (hereafter, Mg2+ site-1).  The β-phosphoryl group interacts with the backbone 

amide group and side-chain of Lys11, the amino group of Lys123, and Mg2+ site-1.  Four 

water molecules complete the octahedral coordination sphere of the Mg2+ site-1 (Table 

IV).  Lys13, Glu179, Lys177, and Asp191 form additional hydrogen bonds with the hydrated 

magnesium. 

Although adenine nucleotides in ySS and eSS are in proximity to corresponding 

residues, significant differences are evident.  Structural superpositions using the β-sheet 

of Domain 2 reveal displacements in Domain 1 by as much as 4 Å, with the eSS structure 

being more tightly closed about its adenine nucleotide relative to the ySS structures. In 

1OBD of ySS (ATP-Mg2+ introduced by soaking), a lattice neighbor hydrogen bonds 

with the P-loop and is in proximity to bound ATP-Mg2+.  In 1OBG (ATP-Mg2+ 

introduced by co-crystallization), the intrusive lattice contact is gone, but the active site 

has AMP and a sulfate anion.  The α-phosphoryl group of ADP-Mg2+ in eSS, a sulfate 

anion in 1OBG, and a water molecule in 1OBD occupy corresponding sites; whereas, the 
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β-phosphoryl group of ADP-Mg2+ in eSS and the γ-phosphoryl group of ATP-Mg2+ in 

1OBD occupy equivalent sites. 

Interactions of CAIR— The CAIR molecule and its two associated Mg2+ atoms are 

covered by strong electron density (Fig. 5).  The 5'-phosphoryl group of CAIR interacts 

with the side chains of Arg94, Ser100 and Arg199 as well as backbone amide group of 

Ser100.  These interactions resemble those of the sulfate anion in ySS.  The phosphoryl 

group is proximal to the N-terminal end of helix α2, a structural element often observed 

in the binding of phosphoryl groups (28).  Hydrogen bonds between the 5'-phosphoryl 

group of CAIR and the protein involve only two of its terminal oxygen atoms; the third 

hydrogen bonds with a water molecule that in turn interacts with a hydrated Mg2+ 

associated with CAIR (hereafter, Mg2+ site-2). 

 The ribosyl moiety of CAIR is C2'-endo.  Its 3'-hydroxyl group hydrogen bonds 

with Asp175 and its 2'-hydroxyl group interacts with Arg215 and the backbone carbonyl of 

Asp196. 

 The base moiety of CAIR interacts extensively with the active site by way of 

octahedrally coordinated Mg2+ at site-2 and -3 (Fig. 6).  The side chain of Glu90 bridges 

between the two metal sites, as do single oxygen atoms from the 4-carboxyl group of 

CAIR and the carboxyl side chain of Asp129.  Atom N3 of CAIR coordinates to Mg2+ site-

2, while a formate molecule bridges Mg2+ site-1 and site-3.  Water molecules occupy all 

other coordination positions of the metals, completing their octahedral coordination 

spheres. 

Water molecules associated with metals at sites 2 and 3 hydrogen bond with 

Asp36 and Asp125.  In fact, the appearance of strong electron density for residues 35–39 in 
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the ADP•CAIR complex may be due to interactions of Asp36 with one water molecule in 

each of the inner coordination spheres of the metals (Fig. 7).  Asp36 is in a loop that 

probably binds L-aspartate.  The interactions of Asp36 appear in concert with several new 

hydrogen bonds between the backbone elements of Gly35, Gly37, Ala38, and Arg39 and the 

side chain of Ser33. 

The high Mg2+ requirement for substrate recognition is consistent with findings 

from kinetics.  Plots of reciprocal velocity vs. 1/[Mg2+] and 1/[Mg2+]2 are nonlinear; 

however, the plot of reciprocal velocity vs. 1/[Mg2+]3 is linear with a regression r-value of 

0.99 (data not shown). 

 

Discussion 

Nucleotide complexes presented here are probably the closest representations of a 

productive substrate-enzyme complex for a SAICAR synthetase to date.  The number of 

direct hydrogen bonds between ADP-Mg2+ and protein in the eSS structure (a total of 12) 

exceeds that for the ySS structures (8 for 1OBD and 7 for 1OBG).  Additional 

interactions may account for the more closed active sites in eSS relative to ySS 

complexes.  Moreover, lattice contacts in 1OBD of ySS could prevent the relaxation of its 

P-loop in the presence of ATP-Mg2+, and sulfate could well interfere with the recognition 

of the adenine nucleotide in all complexes of ySS.  The recognition of the adenine 

nucleotide as observed in eSS may facilitate the binding of CAIR.  The ADP•CAIR 

complex provides the first instance of an enzyme-bound CAIR molecule covered by 

strong electron density. 
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The reaction catalyzed by SAICAR synthetase could resemble that of 

adenylosuccinate synthetase, an enzyme involved in the first committed step in de novo 

AMP biosynthesis (29-31).  Adenylosuccinate synthetase putatively transfers the γ-

phosphoryl group of GTP to atom O6 of IMP.  The α-amino group of L-aspartate then 

attacks the resulting phosphoryl intermediate (6-phosphoryl-IMP), forming 

adenylosuccinate.  6-Phosphoryl-IMP appears in crystal structures of adenylosuccinate 

synthetases from several sources (32-34).  Kinetic experiments using positional isotope 

exchange (35) and isotope exchange at equilibrium (36) support this mechanism; 

however, no experiment has proven that 6-phosphoryl-IMP lies on the reaction pathway.  

Markham and Reed (37) have suggested an alternative mechanism in which L-aspartate 

first reacts with IMP.  The resulting intermediate has a nucleophilic 6-oxyanion that 

attacks the γ-phosphoryl group of GTP, forming a tetrahedral intermediate identical to 

that created by the reaction of L-aspartate with 6-phosphoryl-IMP. 

The two mechanisms as they pertain to the SAICAR synthetase reaction appear in 

Fig. 8.  Unlike adenylosuccinate synthetase, no information is available regarding the 

intermediate generated in the active site of SAICAR synthetase.  The electron-

withdrawing effects of Mg2+ site-2 and site-3 should enhance the electrophilic properties 

of the carbon atom of the 4-carboxyl group.  Conceivably then, L-aspartate could react 

with CAIR and form a dioxyanion intermediate, which in turn is phosphorylated by ATP.  

L-Aspartate, however, is present in the crystallization experiment, and yet no electron 

density appears for L-aspartate or the L-aspartate adduct of CAIR, suggesting the 

phosphorylation step precedes the nucleophilic attack of L-aspartate. 
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The ADP•CAIR structure is a reasonable starting point for modeling the transition 

state in the formation of a carbonyl phosphate intermediate (Fig. 9).  The bridging oxygen 

atom between the β- and γ-phosphoryl groups of ATP coordinates the Mg2+ at site-1 and 

is in-line with the proximal oxygen atom of the 4-carboxyl group of CAIR.  Terminal 

oxygen atoms of the γ-phosphoryl group of ATP hydrogen bond with Lys11, Lys123, and 

Lys177 and the metal ions at site-1 and site-3.  The reaction coordinate is the movement of 

the γ-phosphorus atom of ATP through the plane defined by its terminal oxygen atoms. 

Nelson et al. (4) suggested a catalytic abstraction of a proton from the 5-amino 

group of CAIR analogous to the abstraction of a proton from atom N1 of IMP by an 

aspartyl side chain in adenylosuccinate synthetase (31,38).  No protein side chain of eSS, 

however, interacts or could be in a position to interact with the 5-amino group of CAIR.  

Furthermore, 4-carboxyimidazole ribonucleotide (CAIR without the 5-amino group) is a 

substrate for yeast SAICAR synthetase (14), again supporting the absence of any 

essential role for the 5-amino group of CAIR. 

Other observations, however, caution against the complete dismissal of the 5-

amino group of CAIR in the chemical mechanism.  The 5-amino group of enzyme-bound 

CAIR is in a cluster of water molecules and probably has an environment similar to that 

of CAIR in solution.  Even in solution, the 5-imino form of CAIR may be dominant.  

NMR resonances of atom H4 and atom C4 of AIR (CAIR without a carboxyl group) 

come at unusually high field strengths, consistent with the imino form (39).  Slow 

chemical exchange of atom H4 of AIR with solvent deuterium further supports the imino 

form (39).  Enhanced charge density at atom C4 would retard spontaneous 

decarboxylation of CAIR.  Indeed, transition metals decrease decarboxylation rates 
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probably by stabilizing of the imino form of CAIR (40,41).  Hence, Mg2+ site-2 and site-3 

could stabilize the imino form as a means of protecting CAIR from spontaneous 

decarboxylation.  The imino form of CAIR, as suggested by Nelson et al. (4), would also 

increase the dianionic form of the 4-carboxyl group and thereby enhance its nucleophilic 

properties. 

Another mechanism by which the 5-amino group of CAIR could participate in the 

SAICAR synthetase reaction is by hydrogen bonding with L-aspartate.  In this respect, 

differences in the active sites of the E. coli and yeast SAICAR synthetases are possible as 

malate is a substrate for the yeast (14) but not the E. coli enzyme (4). 

The different folds for tSS and eSS present an intriguing issue: Does the solvent-

exposed fold of tSS represent a functionally relevant state of microbial SAICAR-

synthetases?  Side-chain atoms in the eSS ADP complex move no further than 0.8 Å 

upon CAIR binding; whereas, in tSS they are up to 14 Å away from comparable 

positions.  T. maritima is a thermophile, and elevated temperatures generally enhance 

hydrophobic and weaken electrostatic interactions.  High temperatures, then, would 

increase the thermodynamic penalty associated with a fold that exposes hydrophobic 

residues (as observed in the tSS crystal structure) as well as reduce the importance of 

hydrogen bonds that evidently stabilize the eSS fold but are lacking in tSS.  These factors 

might shift tSS toward an eSS-like fold at high temperatures but favor the observed tSS 

fold at low temperatures.  Unfortunately, the specific activity for tSS at any temperature 

has not been reported (9). 

The tSS structure could also represent a ligand-free conformation shared by most, 

if not all, microbial SAICAR synthetases.  Adenine nucleotide binding could organize the 
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active site; but once organized, the enzyme would be meta-stable, returning to its less 

compact conformation on a time scale slow in comparison to catalytic events.  The 

kinetic mechanism is rapid equilibrium random (4), but progress curves under specific 

conditions exhibit a significant lag phase2.  The lag is consistent with a slow 

conformational transition from a catalytically nonfunctional to a functional state. 

Vertebrate SAICAR synthetases differ fundamentally from their bacterial 

homologs in subunit organization (multimeric systems of perhaps eight subunits) and 

function (the vertebrate subunit combines SAICAR synthetase and AIR carboxylase 

activities).  Hence, the alternative-folding phenomenon observed here for microbial 

systems may only be a remote possibility for vertebrate systems.  Stabilization of this 

putative nonfunctional state of the bacterial system may be an effective strategy in the 

development of agents that selectively inhibit de novo purine biosynthesis in bacteria. 
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Table I.  Statistics of data collection.  Values for last shell are in parentheses. 

 

 Inflection (E1) Peak (E2) Remote (E3) 

Wavelength (Å) 0.97900 0.97884 0.98671 

Resolution (Å) 46.4–2.00 (2.07–2.00) 46.4–2.20 (2.28–2.00) 46.4–2.00 (2.07–2.00) 

Reflections measured 276309 215947 286076 

Reflections unique 40967 31041 40775 

Redundancy 6.74 (5.28) 6.96 (7.05) 7.02 (5.42) 

% Completeness 99.7 (97.2) 100.0 (100.0) 99.6 (95.8) 

Rmerge
a 0.133 (0.515) 0.107 (0.345) 0.067 (0.331) 

I/σ(I) 7.9 (2.6) 10.3 (4.5) 16.3 (4.7) 

f' (electrons) -15.2 -9.45 -4.8 

f'' (electrons) 6.4 10.5 0.5 

 
Table I. Footnotes. 
a Rmerge = ΣjΣi | Iij - <Ij> | /ΣiΣjIij, where i runs over multiple observations of the same 
intensity, and j runs over all crystallographically unique intensities. 
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Table II.  Statistics of refinement. 
 

 ADP complex ADP•CAIR complex 

Space Group P212121 P212121

Unit Cell Parameters a=59.42, b=67.13, c=148.5 a=59.43, b=67.12, c=149.3 

Resolution 25–2.00 (2.07–2.00) 25–2.05 (2.12–2.05) 

No. of Reflections 286076 205397 

No. of Unique Reflections 40775 34593 

% Completeness 99.6 (95.8) 90.4 (61.7) 

Rmerge
a 0.067 (0.331) 0.059 (0.280) 

No. of atoms 4207 4095 

No of solvent sites 363 197 

Rfactor
b 20.4 22.0 

Rfree
c 24.0 26.3 

Mean B for protein (Å2) 25 31 

Mean B for ligands (Å2) 23 28 

Mean B for waters (Å2) 33 36 

RMS deviations: 

   Bond lengths (Å) 0.005 0.006 

   Bond angles (deg.) 1.3 1.3 

   Dihedral angles (deg.) 22.5 22.6 

   Improper angles (deg.) 1.98 1.86 

 
Table II. Footnotes. 
a Rmerge = ΣjΣi | Iij - <Ij> | /ΣiΣjIij, where i runs over multiple observations of the same 
intensity, and j runs over all crystallographically unique intensities. 
b Rfactor = Σ || Fobs | - | Fcalc || /Σ | Fobs |, where | Fobs | > 0. 
c Rfree based upon 10% of the data randomly culled and not used in the refinement. 
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Table III.  Selected polar contacts involving ligands.  Reported distances are for 
subunit A in the ADP•CAIR complex. 

 

Ligand 

atom 

Bonding 
partner 

Distance 

(Å) 

ADP: 

  N1 Leu84 N 3.06 

  N6 Gln69 OE1 2.62 

 Lys82 O 2.98 

  N7 Asp191 N 3.03 

  O2’ Glu179 OE2 2.92 

  O1A Lys11 N 3.03 

 Ala12 N 2.70 

 Lys13 N 2.73 

  O2A Lys13 NZ 2.78 

  O1B Lys11 N 2.75 

 Lys11 NZ 2.88 

  O2B Lys123 NZ 2.91 

CAIR: 

  O3A Ser100 OG 2.64 

 Arg94 NH2 2.61 

  O2A Arg94 NH1 3.15 

 Ser100 N 2.93 

 Arg199 NH1 2.96 

  O3' Asp175 OD1 2.62 

  O2' Arg215 NH2 2.77 
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Table IV.  Coordination distances and coordinating atoms of Mg2+ at sites 1–3. 

Mg2+ site-1 Mg2+ site-2 Mg2+ site-3 

ADP O2A 2.06 Asp129 OD2 2.12 Asp129 OD2 2.16 

ADP O3B 2.11 Glu90 OE1 2.06 Glu90 OE1 2.17 

Formate O1 2.05 CAIR O8  2.07 CAIR O8 2.12 

Wat2 2.12 CAIR N3 2.16 Wat11 2.19 

Wat3 2.15 Wat9 2.13 Wat12 2.01 

Wat4 2.08 Wat10 2.01 Formate O2 2.25 
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Figure 1.  Structures of SAICAR synthetases.  (left) The active site of eSS is a deep cleft that 
extends without interruption between subunits of the dimer.  Bold lines and filled circles 
represent bound ADP-Mg2+ and CAIR-Mg2+.  (center) The schematic of tSS places the 
subdomain with the different fold (dark gray) in the context of the dimer.  (right) The schematic 
of the ySS monomer reveals the structures of four sequence inserts (dark gray) described in the 
Results section.  Parts of this figure were drawn with MOLSCRIPT (42) 
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Figure 2.  Sequence alignment based on structure.  Superpositions of structures of SAICAR 
synthetase from yeast (ySS), T. maritima (tSS), and E. coli (eSS) determined corresponding 
residues.  The relationship between elements of sequence and secondary structure (α-helices as 
cylinders and β-strands as arrows) of the E. coli synthetase appear immediately below its 
sequence. 
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Figure 3.  Variation in the folds of eSS and tSS.  The superposition of subunits A and B of tSS 
onto eSS using the β-sheet of Domain 2 reveals significant variations between subunit A (white) 
and subunit B (gray) of tSS, as well as an even larger conformational difference between each of 
the tSS subunits and subunit A of eSS (black).  Subunit B of eSS (not shown) is virtually identical 
in conformation to subunit A.  Parts of this figure were drawn with MOLSCRIPT (42). 
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Figure 4.  Enzyme-bound ADP.  (left) Stereoview of ADP in which dotted lines represent 
donor-acceptor interactions.  The filled circle represents Mg2+, and open circles are water 
molecules coordinated to the metal.  Parts of this figure were drawn with MOLSCRIPT (39).  
(right) Omit electron density covering the hydrated ADP-Mg2+ molecule bound at the active site 
of eSS.  The contour level is at 1σ with a cutoff radius of 1 Å.  Mg2+ is the filled circle and water 
molecules are crosses.  Dotted lines indicate coordinate bonds to the metal.  Parts of this figure 
were drawn with Xtalview (21). 
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Figure 5.  Enzyme-bound CAIR.  (left) Stereoview of CAIR in which dotted lines represent 
donor-acceptor interactions.  Asp212 is shown but not labeled.  Parts of this figure were drawn 
with MOLSCRIPT (42).  (right) Omit electron density (contour level of 1σ with a cutoff radius of 
1 Å) covering formate, hydrated Mg2+ and CAIR.  Filled circles are Mg2+, and crosses are water 
molecules.  Parts of this figure were drawn with Xtalview (23). 
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Figure 6.  Stereoview of metal sites in the ADP•CAIR complex.  Mg2+ and water molecules 
are filled and open circles, respectively.  Coordination bonds are dashed lines.  The adenine base 
is omitted for clarity.  Parts of this figure were drawn with Molscript (42). 
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Figure 7.  Stereoview of loop 32−40 of the ADP•CAIR complex.  Side chains have been 
omitted except for Ser33 and Asp36.  Mg2+ are black spheres and water molecules are open 
spheres.  Donor-acceptor are dotted lines.  Parts of this figure were drawn with Molscript 
(42). 
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Figure 8.  Model transition state for the phosphoryl transfer from ATP.  See text for details. 
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Chapter III. Linkage of Function in Human AIR Carboxylase/SAICAR 

Synthetase† 

 

Pending submission to Journal of Biological Chemistry 

 

Daniel J. Binkowski, Nathaniel D. Ginder, Herbert J. Fromm and Richard B. Honzatko* 

 

Abstract: In steps 6 and 7 of mammalian de novo nucleotide biosynthesis, a bifunctional 

enzyme converts 5-aminoimidazole ribonucleotide (AIR) to 4-carboxyl-5-

aminoimidazole ribonucleotide (CAIR), and then CAIR to 5-aminoimidazole-4-(N-

succinylcarboxamide) ribonucleotide (SAICAR).  This, and other enzymes of purine 

nucleotide biosynthesis, are targets in the inhibition of growth in T-cell acute 

lymphoblastic lymphomas and of microorganisms injurious to human health.  Data from 

initial velocity and inhibition kinetics shown here are consistent with a Steady State 

Ordered Sequential kinetic mechanism for human SAICAR synthetase activity with 

CAIR binding first, ATP second, and L-aspartate last.  The kinetic mechanism for the 

human enzyme differs markedly from the Rapid Equilibrium Random Sequential 

mechanism reported for Escherichia coli SAICAR synthetase, and is consistent with a 

CAIR-induced conformational change that orders the active site of the human enzyme.  

Suppression of AIR carboxylase/CAIR decarboxylase activity in the human enzyme 

employed either a directed mutation (Lys304→Ala) of the AIR carboxylase site or specific 

ligation of the AIR carboxylase pocket by NAIR, a slow, tight-binding inhibitor.  The 

Michaelis constant for CAIR differs tenfold depending on whether the elimination of AIR 
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carboxylase activity is by inhibition or mutation.  Ligation of the AIR carboxylase site by 

NAIR slows the rate of association of CAIR with the SAICAR synthetase pocket, 

indicating a functional linkage between the two active sites that maintains a constant flux 

through SAICAR synthetase. 

________________________________________________________________________ 

1Abbreviations: 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide, SAICAR; 5-

aminoimidazole-4-carboxy ribonucleotide, CAIR; 5-aminoimidazole-4-carboxamide-β-D-ribofuranoside, 

AICARs; 5-aminoimidazole ribonucleotide, AIR; 4-nitro-5-aminoimidazole ribonucleotide, NAIR; 5-(N-

carboxy)-aminoimidazole-ribonucleotide, N5-CAIR; ethylenediaminetetraacetic acid, EDTA.  Escherichia 

coli SAICAR synthetase, eSS; Avian AIR carboxylase/SAICAR synthetase, avSS; Human SAICAR 

synthetase, hSSwt; Human SAICAR synthetase mutant Lys304→Ala K304A, K304A, Ala304; Human 

SAICAR synthetase wild type with NAIR, hSSnair. 

2Daniel J. Binkowski, Nathaniel D. Ginder, and Richard B. Honzatko, unpublished results. 

 

Introduction 

5-Aminoimidazole ribonucleotide 4-carboxylase/phosphoribosylaminoimidazole-

succinocarboxamide synthetase (hereafter AIR1 carboxylase/SAICAR synthetase), is a 

bifunctional enzyme that catalyzes steps 6 and 7 of mammalian de novo purine nucleotide 

biosynthesis (1-3): 

AIR + CO2 → CAIR      AIR carboxylase 

CAIR + ATP + L-aspartate → SAICAR + ADP + Pi  SAICAR synthetase 

In bacteria such as Escherichia coli, the conversion of AIR into SAICAR employs three 

single-function enzymes, PurK, PurE and PurC (4): 

AIR + HCO3
– +ATP → N5-CAIR + ADP + Pi  N5-CAIR synthetase 

(PurK) 
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N5-CAIR → CAIR      N5-CAIR mutase 

(PurE) 

CAIR + ATP + L-aspartate → SAICAR + ADP + Pi  SAICAR synthetase 

(PurC) 

Bacterial systems use ATP and bicarbonate in the generation of N5-CAIR; whereas, 

vertebrate bifunctional enzymes use carbon dioxide and AIR directly without cofactors to 

make CAIR (5-8).  Fungi such as Candida albicans and Cryptococcus neoformans 

combine the PurK and PurE activities in a single protein but retain a single-function 

enzyme for the synthesis of SAICAR from CAIR (9, 10). 

Enzymes of de novo purine nucleotide biosynthesis are targets in the treatment of 

cancer and infectious disease.  Many cancers, for instance, have damaged salvage 

pathways for purine nucleotides, and hence exhibit increased sensitivity to the inhibition 

of de novo purine nucleotide biosynthesis (11).  L-Alanosine, an analog of L-aspartate, 

shows promise in treatments of leukemia and gliomas.  SAICAR synthetase (in humans 

and bacteria) uses L-alanosine in forming 5-aminoimidazole-4-(N-alanosylcarboxamide) 

ribonucleotide, a potent inhibitor of adenylosuccinate synthetase and adenylosuccinate 

lyase (12-14).  L-Alanosine toxicity is due to the blockage of de novo purine nucleotide 

biosynthesis, as supplemental doses of 2′-deoxyadenosine lessen toxicity.  Treatments 

that employ L-alanosine and supplements of 2′-deoxyadenosine or methylthioadenosine 

analogs, however, selectively inhibit cancer cell lines deficient in methylthioadenosine 

phosphorylase (11). 

Bacterial strains that are impaired in purine nucleotide biosynthesis can be 

effective inoculants against some strains of pathogenic bacteria.  Blockage of purine 
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metabolism in Candida albicans and Crypotcoccus neoformans attenuates the virulence 

and invasiveness of the former (15) and moderates meningoenciphilitis infections in 

immune-compromised rodents caused by the latter (16).  Virulence attenuation by 

removal of genes for purine nucleotide biosynthesis is also an attribute of Brucella 

species; vaccines against these infectious organisms are PurE knockouts (17-20). 

Firestine and colleagues characterized avian AIR carboxylase/SAICAR 

synthetase and synthesized NAIR, a nitro analog of CAIR (7, 8, 21).  Inhibition by NAIR 

and the source of carboxyl donor in the AIR carboxylase reactions differentiates 

vertebrate and bacterial AIR carboxylases.  NAIR is a slow, tight-binding inhibitor of 

vertebrate AIR carboxylases, but a rapid-equilibrium inhibitor of bacterial enzymes (7, 

21).  Carbon dioxide is the carboxyl donor for vertebrate AIR carboxylases, but the 

bacterial enzyme uses bicarbonate (4, 8).  

On the time scale of most laboratory experiments, NAIR binds irreversibly to the 

active site of AIR carboxylase, thereby eliminating the loss of CAIR due to the reverse 

(decarboxylation) reaction of the vertebrate bifunctional enzyme (7, 21).  NAIR interferes 

with AIR carboxylase activity as an analog of AIR/CAIR, but does not inhibit the 

SAICAR synthetase activity of the Class-II bifunctional enzyme from chicken (7).  

Hence NAIR permits kinetic studies of the SAICAR synthetase reaction by inhibiting 

CAIR decarboxylation catalyzed by AIR carboxylase. 

The structure of the human AIR carboxylase/SAICAR synthetase reveals a 

channel (9 Å minimum diameter, 70 Å length) between each AIR carboxylase/SAICAR 

synthetase active site of a homooctamer (23).  CAIR produced in the AIR carboxylase 

site could travel directly to the SAICAR synthetase site without coming in contact with 
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the bulk solvent.  Existing kinetics investigations, however, provide no support for 

channeling.  With the AIR carboxylase site ligated by NAIR, CAIR from the bulk solvent 

still reaches the SAICAR synthetase active site (7).  Herein we report the kinetic 

mechanism of the SAICAR synthetase reaction of the human enzyme with the AIR 

carboxylase pocket ligated by NAIR and with the same pocket impaired by the directed 

mutation of a conserved residue implicated in the binding of AIR and CAIR of the AIR 

carboxylase domain.  The SAICAR synthetase activities of both forms of the enzyme are 

consistent with a Steady State Ordered Sequential kinetic mechanism, with CAIR first, 

followed by ATP and then L-aspartate; however, the Km for CAIR is tenfold higher for 

the NAIR-ligated system relative to the mutant enzyme.  This indicates that the SAICAR 

synthetase active site is sensitive to the functional status of the AIR carboxylase site.  The 

increase in the Km for CAIR in the presence of NAIR is not due to the binding of NAIR 

to the SAICAR synthetase pocket but most likely to a decrease in the rate of CAIR 

ligation of the SAICAR synthetase pocket. 

 

Experimental 

Materials— L-Aspartate, L-malate, maleate, ATP, NADH, phosphoenolpyruvate, 

pyruvate kinase and lactate dehydrogenase came from Sigma.  L-Alanosine was obtained 

from the Drug Research and Development Branch, National Cancer Institute, Bethesda, 

MD.  5-Aminoimidazole-4-carboxamide-β-D-ribofuranoside (AICARs) was purchased 

from Toronto Research Chemicals.  All other chemicals were reagent grade.  The 

nucleoside precursor of NAIR and the human SAICAR synthetase gene (ADE2) were 

generous gifts from Dr. V. J. Davisson, Department of Medicinal Chemistry & Molecular 
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Pharmacology, Purdue University.  Low-range molecular mass protein standards for 

SDS-PAGE came from Bio-Rad.  Ampli-Taq DNA polymerase was purchased from 

Midwest Scientific.  Restriction enzymes were purchased from New England Biolabs.  

Nickel-nitrilotriacetic acid-agarose resin and E. coli Rosetta (DE3) cells came from 

Novagen and Invitrogen, respectively.  The Iowa State University DNA Sequencing and 

Synthesis Facility accomplished all primer synthesis and DNA sequencing for the 

confirmation of nucleic acid constructs. 

Chemical Syntheses— NAIR was synthesized from its nucleoside precursor by the 

method of Yoshikawa (24).  CAIR was synthesized by the methods of Firestine (7), 

which afford improved yields (>30%) relative to protocols published previously (4, 14).  

After lyophilization, CAIR was dissolved in 10 mM TAPS, pH 9.0, to prevent 

decarboxylation, and stored at –80 ºC.  The concentration of CAIR was determined by 

the direct assay for organophosphate and by the coupling of ADP production to NADH 

conversion to NAD+ by means of the pyruvate kinase/lactate dehydrogenase coupled 

enzyme assay (4, 14, 25).  The concentration of NAIR was determined by the direct assay 

for organophosphate (14, 25).  Multiple determinations of the concentrations of CAIR 

and NAIR are within 5% agreement for all studies reported here. 

Subcloning and Directed Mutations— The original ADE2 gene was in a pET3a vector 

provided by V. J. Davisson.  In order to facilitate rapid purification, the gene was 

transferred (using appropriate primers to incorporate cut sites NdeI and BamHI) to a 

pET24b vector bearing a C-terminal hexahistidyl tag.  The resulting stop codon was 

removed by a point mutation affording an 8 amino acid linker between the last amino 

acid of the protein and the first histidine residue of the tag. 
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Construction of Lys304→Ala Enzyme— The mutation of Lys304 to alanine employed 

primers 5′- 

CTTCGAGTAACATCTGCGCATGCGGGACCAGATGAAACTCTGAGGATTAAAG

C-3′ and 5′- 

GCTTTAATCCTCAGAGTTTCATCTGGTCCCGCATGCGCAGATGTTACTCGAAG

-3′, where altered codons are in bold typeface.  Protocols were used from the Stratagene 

Quick Change mutagenesis kit.  Mutations were confirmed by DNA sequencing of the 

entire gene. 

Purification of Recombinant Human AIR Carboxylase/SAICAR Synthetase— The tag-free 

form of the enzyme was isolated as a control to verify the properties of the C-terminal 

tagged protein.  E. coli Rosetta cells were transformed with the pET3a vector containing 

the insert for untagged human SAICAR synthetase.  Single colonies of each mutant were 

used to inoculate overnight cultures of Luria broth (LB) containing chloramphenicol (24 

µg/mL) and ampicillin (100 µg/mL).  Ten cultures of 800 mL LB in 2 L flasks were 

inoculated with the overnight culture and grown with shaking at 38 °C to an OD600 of 0.7, 

at which point the temperature was reduced to 16 ºC, followed by the induction of protein 

expression by the addition of 200 µL of 1 M isopropyl-β-D-thiogalactopyranoside 

(IPTG).  Cells were collected 15 hrs post-induction, re-suspended in 50 mM Tris, pH 8.0, 

2 mM EDTA, 5 µg/mL leupeptin, 1 mM phenylmethanesulfonyl fluoride (PMSF), and 

0.25 mg/mL lysozyme, and then disrupted by French press at 4 ºC.  After centrifugation 

(37000xg, 30 min.), streptomycin sulfate was added to the supernatant fraction with 

constant stirring to a final concentration of 1% (w/v).  Precipitate was removed by 

centrifugation (37000xg, 15 min.), whereupon the supernatant fraction was subjected to 
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ammonium sulfate fractionation, retaining soluble protein between 22–32% saturation.  

Fractionated protein was dissolved in a minimal amount of 50 mM Tris, pH 8.0, 2 mM 

dithiothreitol (DTT), and 2 mM EDTA, and applied to a Sephacryl S-200 size exclusion 

column (2.5x80 cm) equilibrated with the same buffer.  Fractions with substantial 

SAICAR synthetase and CAIR decarboxylase activities were pooled.  Concentrated 

protein solution was applied to a DEAE cellulose column (2.5x50 cm.) equilibrated with 

50 mM Tris, pH 8.0, 2 mM EDTA, and then eluted as pure enzyme by the same buffer.  

The enzyme was stored in this buffer without further dialysis.  Protein purity was 

determined by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), 

and its concentration determined by method of Bradford using bovine serum albumin 

(BSA) as a standard (26). 

Purification of C-terminal Polyhistidyl-tagged Wild-type and Mutant Human AIR 

Carboxylase/SAICAR Synthetase— C-terminal hexa-histidyl tagged clones (pET24b) 

were grown as above for the non-tagged protein using kanamycin (30 µg/mL) and no 

ampicillin.  Cells were collected by centrifugation, re-suspended in lysis buffer (20 mM 

KPi, 200 mM NaCl, 10 mM imidazole, pH 8.0, 5 µg/mL leupeptin, 1 mM 

phenylmethanesulfonyl fluoride (PMSF), 0.25 mg/mL lysozyme, and 50 µg/mL DNase I), 

and then disrupted by French press.  After centrifugation (37000xg, 30 min) the 

supernatant fraction was loaded onto a column of nickel nitrilotriacetic acid (NTA)-

agarose, equilibrated in 20 mM KPi, 200 mM NaCl, and 10 mM imidazole, pH 8.0.  The 

column was washed with 10 volumes of the equilibration buffer, and then the enzyme 

was eluted with 20 mM KPi, 200 mM NaCl, and 250mM imidazole, pH 8.0.  The protein 

was desalted by passage through a G-50 column (1.5x40 cm), equilibrated and run with 
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50 mM Taps, pH 8.5, 25 mM KCl, 2 mM EDTA, 2 mM dithiothreitol (DTT), and 20 mM 

sodium bicarbonate.  Protein concentrations and purity were determined as above for the 

non-tagged enzyme. 

Kinetics— Data were acquired by coupled  and direct assays (4, 7, 14), using a Cary 100 

Bio UV spectrophotometer.  The coupled assay was verified over the pH range 5.5–11 by 

observing a linear relationship between enzyme concentration in the presence of 

saturating concentrations of substrates and the rate of disappearance of NADH, 

monitored at 340 nm.  Analogs of ATP, CAIR, and L-aspartate were added individually 

at maximal concentrations with 100 μM ADP to verify the absence of inhibition of 

coupling enzymes.  Assays performed on the wild-type enzyme in the presence of NAIR 

(done in triplicate) varied the concentration of one substrate while holding other 

substrates at 5xKm (in studies involving inhibitors) or 10xKm (in studies without 

inhibitors).  Assays performed on the K304A mutant enzyme employed a fixed 

concentration of CAIR of 15 µM, which is at least a 20-fold excess over Km.  Details 

regarding the conditions of assay are in the legends of the figures.  Assays of SAICAR 

synthetase activity (total volume of 1 mL) were performed in 50 mM Taps, pH 8.0, 10 

mM MgCl2, and 1 mM dithiothreitol (DTT) and initiated by the addition of enzyme to a 

final concentration of 4 µg/mL.  Assays of CAIR decarboxylase activity were done in 50 

mM Tris-HCl, pH 7.8, and 2 mM EDTA (prepared with water that had been boiled and 

degassed to remove dissolved CO2) and initiated by the addition of enzyme to a final 

concentration 125 ng/mL.  Direct and coupled assays were performed at 37 ºC with 

enzyme solutions stored on ice when not in use.  Velocities for decarboxylase activity 

were based on an extinction coefficient of 11,500 (cm M)-1, valid at pH 7.8, λ=250 nm. 
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For most assays, substrate concentrations change by less than 10% of their initial 

values.  In such cases, data from linear progress curves provide measures of initial 

velocity, and such data were fit readily to the appropriate initial velocity models using 

software packages Grafit (27), Igorpro (Wavemetric, Inc.) and Dynafit (28).  Initial 

concentrations of CAIR needed to determine its Km for the Ala304 mutant enzyme were 

so low, however, that a 10% limiting depletion of substrate provided a signal too small 

for reliable detection.  Progress curves for such assays were acquired to reaction 

endpoints (the equilibrium is far to the right due to the influence of the coupled assay), 

and the data fit to appropriate models by Dynafit (28, 29).  In deciding the kinetic 

mechanism of inhibition, data were fit to models for competitive, uncompetitive, mixed 

and true noncompetitive inhibition.  The best model was determined by Akaike weight 

(29) and lowest Chi-squared value, and when necessary, by the principle of Occam’s 

Razor. 

Dynamic Light Scattering— Protein samples were prepared by diluting recombinant wild 

type and K304A enzymes into filtered water to a final concentration of 1 mg/mL and a 

total volume of 1 mL.  Centrifugation for 15 min removed insoluble debris from each 

sample.  A sample of filtered and centrifuged water confirmed the cleanliness of the 

cuvette prior to its use in the determination of mass of the protein sample.  A Protein 

Solutions Dynapro machine was used to collect and analyze light scattered from a 12 µL 

sample of dust-free mutant or wild type enzyme.  Data were collected (approximately 400 

scans) at 100% laser power at 25 ºC.  Anomalous data were removed prior to the final 

mass calculations, using the Dynamics V6 software and an isotropic sphere model. 
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Results 

Human SAICAR Synthetase Expression and Purification— Purification of non-tagged 

wild-type protein required 24 hours.  The non-tagged recombinant enzyme had a kcat one-

third of that of the enzyme from chicken (7).  The introduction of a C-terminal tag 

enabled rapid purification (3 hrs), improved yield by twofold, and increased kcat by three-

fold.  The catalytic rate of the tagged human enzyme, then, is comparable to that of the 

native chicken enzyme (3.1–4 s–1) (7).  Eight liters of culture provided 250–300 mg of 

purified wild-type or K304A mutant enzyme with kcat values of 3.6 ± 0.8 s–1 and 3.3 ± 0.3 

s–1, respectively (Table 1).  Tagged and non-tagged systems were at least 95% pure by 

sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (data not 

shown).  The low specific activity of the non-tagged enzyme (not used in further 

investigations) was probably due to non-functional protein of identical or near-identical 

mass. 

Elimination of CAIR Decarboxylation Activity— Decarboxylase activity in the chicken 

bifunctional enzyme is at least 50-fold faster than the consumption of CAIR in the 

synthesis of SAICAR (7).  In order to avoid complications in determining the kinetic 

mechanism of human SAICAR synthetase, we eliminated CAIR decarboxylation by 

inhibition with NAIR and by directed mutation.  The crystal structure of E. coli PurE 

(PDB accession identifier 1D7A) reveals Arg46 (corresponding to Lys304 of the human 

enzyme) in an interaction with the 5´-phosphoryl group of CAIR.  Elimination of this 

interaction should lower the affinity of CAIR for the AIR carboxylase pocket in the 

bifunctional enzyme.  Indeed, CAIR decarboxylase activity of the wild-type human 

enzyme exhibits a Km for CAIR of 30 ± 3 μM and a kcat of 130 ± 6 s–1; whereas, the 
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K304A mutant enzyme exhibits decarboxylation rates of CAIR of ~0.002 s–1, equivalent 

to the rate of decarboxylation of CAIR in the absence of enzyme.  10 μM NAIR reduces 

the rate of CAIR decarboxylation to baseline levels (~0.002 s–1) as well.  Concentrations 

of NAIR up to 250 μM have no observable effect on the rate of SAICAR synthesis of 

either the wild-type or K304A mutant enzyme.  Hence the K304A mutant enzyme and 

the NAIR-ligated wild-type enzyme are distinct systems that allow the investigation of 

the SAICAR synthetase reaction in the context of a nonfunctional AIR carboxylase active 

site. 

General Kinetic Properties of the Human Enzyme— Although a crystal structure of the 

human enzyme is available (23), the kinetic properties of human AIR 

carboxylase/SAICAR synthetase are not in the literature.  The native masses of the 

polyhistidyl-tagged wild-type and K304A mutant enzyme as determined by dynamic light 

scattering are 380 ± 10 kDa for each protein.  Native masses (and the specific activities) 

of the wild-type and mutant enzymes decrease during storage at 4 °C, a process 

accelerated at 25 °C.  Hence, all work reported here uses enzyme aged not more than 36 

hrs post-purification, and stored on ice before use in assays.  As the calculated mass for 

the tagged subunit is 50 kDa, the values observed here are consistent with the 400 kDa 

expected mass for an octamer, which agrees with the oligomeric state observed in the 

crystal structure (23).  Wild-type and K304A constructs showed optimum activity 

between pH 7.9–8.1. 

Plausible Kinetic Mechanisms from Initial Velocity Studies— Initial velocity data with 

one substrate at saturation (10xKm) and the systematic variation of the concentrations of 

the other two substrates about their Km values appear in Figure 1.  Two of three families 
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of Lineweaver-Burk plots clearly have a common point of intersection in quadrants 2 or 

3.  The third plot favors a family of parallel lines, but the alternate interpretation of a set 

of intersecting lines with the point of intersection deep into quadrant 3 is a possibility.  

The Lineweaver-Burk plots of Figure 1 excludes a Ping-Pong kinetic mechanism, as at 

least two and perhaps all three of the plots would be sets of parallel lines.  Moreover, 

equations for Rapid Equilibrium Sequential mechanisms with ordered substrate binding 

or with any pair of substrates binding randomly (Random AB, Random BC, and Random 

AC) lack one or more terms necessary to account for the qualitative appearance of the 

plots in Figure 1.  The Steady State Ordered Sequential mechanism (A first, B second, C 

last) is the simplest that accounts for the data of Figure 1: 
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where v is the observed initial velocity, Vmax, the maximal velocity, A, B, and C the 

concentrations of CAIR, ATP, and L-aspartate, respectively, and the kinetic parameters 

are combinations of elementary rate constants defined in Table 1 and by Scheme 1.  The 

Rapid Equilibrium Random Sequential mechanism, however, is also consistent with the 

data of Figure 2, and results in a slightly more complex relationship: 
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 Where v, Vmax, A, B, and C are defined as in Equation 1, and the definition of 

kinetic parameters are given by Nelson et al. (14) and Fromm (30, 31).  For the Rapid 

Equilibrium Random Sequential mechanism to account for the data of Figure 2c, 

parameter Kab associated with the 1/AC term of Equation 2 must be near zero.  Kab near 

zero corresponds to virtually no dissociation of CAIR from the E•CAIR•ATP complex, a 
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distinct possibility if the enzyme stabilizes the carbonyl phosphate intermediate of CAIR 

to form a complex of E•CAIR-phosphoryl•ADP.   

We choose the Steady State Ordered Sequential mechanism (Equation 1) to 

interpret the data of Figure 2 (the experimental justification for excluding the Rapid 

Equilibrium Random Sequential mechanism (Equation 2) comes in the next section.)  A 

global fit of Equation 1 requires Vmax from each plot of Figure 1 to be the same.  As data 

sets were collected on different days and from different preparations of enzyme, the data 

of Figures 2a,b,&c were fit by Equations 3, 4 and 5, respectively. 
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Equations 3, 4 and 5 come from Equation 1 by eliminating the terms associated with the 

substrate at a saturating concentration.  Parameters Ka, Kb, and Kc are the Michaelis 

constants for CAIR, ATP and L-aspartate, respectively.  For a steady state mechanism, 

the Michaelis constants are not dissociation constants but depend, as shown in Table 1, 

on the off-rates of products as well as the on-rates of the substrates.  Equations 3–5 

provide two independent determinations of Ka, Kb, and Kc, and three determinations of 

kcat, all of which are in reasonable agreement (Table 1). 

The data in Figure 1 come from the NAIR-ligated enzyme.  The low Km for CAIR 

of the K304A mutant enzyme requires initial concentrations of CAIR too small for the 

accurate determination of product levels.  (An alternative protocol presented in the next 

section, however, allows the determination of Ka, the Km for CAIR).  Nonetheless values 
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for Kb, Kc, and kcat are available from experiments in which CAIR is at a saturating 

concentration (10xKm).  Assays which varied the concentration of CAIR place an upper 

limit of 1 µM on Ka (Table 1). 

Inhibition Kinetics— The response of NAIR-ligated and K304A SAICAR synthetases to 

competitive inhibitors with respect to CAIR, ATP and L-aspartate can distinguish 

between the Steady State Ordered and the Rapid Equilibrium Random kinetic 

mechanisms.  Moreover, the coupled assay pulls the reaction to completion, converting 

low initial concentrations of CAIR completely to product.  The time dependence of 

product formation over the entire progress curve at different inhibitor concentrations also 

has the necessary information to make a determination of the kinetic mechanism of 

inhibition. 

ADP cannot be used as a competitive inhibitor of ATP in these studies, as the 

assay couples to ADP production by SAICAR synthetase.  Moreover, ADP at nonzero 

concentrations invalidates simplified steady-state initial velocity equations, which rest on 

the assumption of a product concentration of zero.  AMP circumvents the forgoing 

problems, being a competitive inhibitor with respect to ATP (Figures 2e and 3e) and an 

uncompetitive inhibitor with respect to CAIR (Figures 2d & 3d).  (Uncompetitive 

inhibition with respect to CAIR precludes an interaction of AMP at the CAIR pocket).  

IMP, a competitive inhibitor with respect to CAIR for E. coli SAICAR synthetase (14), 

has no effect on the wild-type or K304A enzymes.  AICAR inhibition of the human 

systems is weak but competitive with respect to CAIR (Figures 2a & 3a).  Maleate, a 

competitive inhibitor with respect to L-aspartate for the Ala304 mutant enzyme (Figure 

3i), is a mixed inhibitor with respect to L-aspartate of the NAIR-ligated wild-type 

 



 64  
 

enzyme.  L-Malate, however, exhibits competitive inhibition with respect to L-aspartate 

of the NAIR-ligated wild-type enzyme (Figure 2i). 

Analysis of data from Figure 3 and Figures 3b,c,e,f,h&i employs Equations 6–8, 

which together represent inhibition of the Steady State Ordered Sequential kinetic 

mechanism by competitive inhibitors of A, B or C from Scheme I: 
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In Equations 6–8, Ia, Ib, and Ic are the concentrations of competitive inhibitors of A 

(CAIR), B (ATP), and C (L-aspartate), respectively, and KIa, KIb, and KIc are dissociation 

constants for the competitive inhibitors of A, B, and C, respectively.  All other terms are 

defined as in Equation 1.  Fixing the concentrations of any two of three substrates 

simplifies Equations 6–8 to familiar relationships for inhibition of a one-substrate system: 

competitive, uncompetitive and non-competitive inhibition.  For instance, fixing B and C 

in Equation 6 leads to Equation 9: 
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Equation 9 is mathematically identical to competitive inhibition of a single substrate 

enzyme, except that the slope in a 1/v vs. 1/A plot depends on the fixed concentrations of 

B and C.  Analysis of the data here employs standard models of inhibition for a single 

substrate system and hence inhibitor dissociation constants are apparent constants.  To 

distinguish between Steady State Ordered and Rapid Equilibrium Random mechanisms, 
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the particular values of KIa, KIb, and KIc are unimportant; rather, the mechanism of 

inhibition for each of 9 sets of data (3 inhibitors x 3 pairs of fixed substrates) reveals the 

mechanism (30, 31).  Using Dynafit (28), the data of each panel of Figure 2 and Figure 

3b,c,e,f,h,&i were fit to models of competitive, uncompetitive, noncompetitive, and 

mixed inhibition of a single substrate system.  The best-fitting models appear in Table 2.  

The occurrence of uncompetitive inhibition is inconsistent with the Rapid Equilibrium 

Random mechanism, but all patterns of inhibition are consistent with the Steady State 

Ordered mechanism. 

In conducting initial velocity investigations of the K304A enzyme, however, all 

concentrations of CAIR were well above the determined value of Kc (Michaelis constant 

for CAIR).  The extinction coefficient for NADH→NAD+ precludes lower 

concentrations of CAIR, and fluorescence detection of NADH is not an option due to the 

self-quenching properties of NADH at high initial concentrations in the coupled assay.  

On the other hand, the high initial concentrations of NADH and PEP insure that the 

SAICAR synthetase assays run to completion in the presence of limiting concentrations 

of CAIR.  Hence, Figure 4a,d&g represent data taken at fixed concentrations of CAIR 

and (5xKm) for ATP and L-aspartate, while the concentrations of each of the three 

different inhibitors are varied.  Fitting data to models of inhibition for a single-substrate 

enzyme allowed the determination of mechanism (Table 3).  The K304A mutant enzyme 

likewise demonstrates the Steady State Ordered mechanism determined for the NAIR-

ligated, wild-type enzyme. 

Substrate Specificity and Inhibition by Dicarboxylic Acids— In searching for competitive 

inhibitors of L-aspartate, data were compiled that indicated significant differences in the 
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human systems ( both NAIR-ligated wild-type and K304A enzyme) and E. coli SAICAR 

synthetase (Table 3).  The human enzyme discriminates against L-alanosine (12–15-fold 

higher Km than that of L-aspartate); whereas, the E. coli synthetase uses L-aspartate and L-

alanosine with equal facility.  L-Cysteine sulfinic acid is a substrate but exhibits substrate 

inhibition only for the NAIR-ligated wild-type human enzyme.  Fumarate did not inhibit 

the three enzymes.  Maleate and succinate are competitive inhibitors with respect to L-

aspartate for the E. coli and K304A enzymes, but non-competitive inhibitors of the 

NAIR-ligated wild-type human enzyme.  Non-competitive mechanisms are not due to the 

chelation of Mg2+ at high concentrations of ligand, as the mechanism remains 

competitive for the E. coli enzyme at comparable concentrations of ligand.  L-Malate is a 

competitive inhibitor with respect to L-aspartate for all three systems. 

 

Discussion 

The study here is the first determination of a kinetic mechanism for a bi-functional 

SAICAR synthetase.  The mechanism, Steady State Ordered Sequential with CAIR 

binding first, ATP second and L-aspartate last, differs from that of E. coli SAICAR 

synthetase which is Rapid Equilibrium Random Sequential.  There is a precedent for 

enzymes from different organisms that catalyze identical chemical mechanisms having 

different kinetic mechanisms.  Adenylosuccinate synthetases from human placenta and E. 

coli have Rapid Equilibrium Random mechanisms; whereas, the mechanism of the 

enzyme from Plasmodia falciparum is Ordered (32-34).  Other examples include adenine 

phosphoribosyltransferases from Leishmania donovoni and Giardia lamblia, the former 

having an Ordered kinetic mechanism and the latter Random (35, 36). 
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Ordered and Random kinetic mechanisms fit well with the observed structures of 

E. coli SAICAR synthetase and human AIR carboxylase/SAICAR synthetase (23, 37).  

ADP and CAIR•ADP complexes of the E. coli enzyme are well ordered, with only a 

small region of disorder in the ADP complex associated with an element (residues 34–38) 

that may be critical in the recognition of L-aspartate (37).  A Rapid Equilibrium Random 

kinetic mechanism does not exclude the possibility of a preferred pathway for the binding 

of substrates, and recent evidence from directed mutations of the active site suggest a 

dependence of L-aspartate association on the presence of CAIR, and perhaps even ATP2. 

The human enzyme, in contrast, is highly disordered in the SAICAR synthetase 

active site (23).  Residues corresponding to 34–56 and 199–220 of the E. coli enzyme are 

without electron density in the human bifunctional enzyme, and many of these absent 

residues correspond to those that interact with CAIR.  Figure 4 illustrates these portions 

of the protein.  Additionally the average B-factor for residues 1-265 (corresponding to the 

SAICAR synthetase domain) is 63.4 Å2; while the B-factor for residues 266-425 

(corresponding to the AIR carboxylase domain) is 35.6 Å2.  This indicates an average B-

factor that is nearly 2-fold larger for the SAICAR synthetase domain.  It is unclear what 

the source of this disorder is.  The SAICAR synthetase active site of the bifunctional 

human enzyme may require bound CAIR to induce order.  The binding of ATP may be 

an obligatory second substrate, because its presence could lead to the formation of the 

carbonyl phosphate of CAIR.  For the human enzyme, the carbonyl phosphate 

intermediate may be a prerequisite for the binding of L-aspartate.  Indeed, L-aspartate is 

present in crystallization conditions in the CAIR•ADP complex of the E. coli enzyme but 

not bound to the active site (37).  Hence, even for the E. coli enzyme, which has the 
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Random mechanism, L-aspartate may bind productively only after the phosphorylation of 

CAIR. 

As the kinetic mechanism of SAICAR synthetase reaction catalyzed by the human 

bifunctional enzyme is steady state, the Michaelis constants (Ka, Kb, and Kc) listed in 

Table I are not dissociation constants of the respective substrates from the fully ligated 

enzyme complex.  As indicated in Table I, Ka, Kb, and Kc depend on elementary rate 

constants for the association of substrates, and the release of products.  One cannot 

simply ascribe a change in a Michaelis constant to an equilibrium-binding phenomenon 

as would be the case for a rapid equilibrium kinetic mechanism.  The 10-fold increase in 

Ka (the Michaelis constant for CAIR) could arise from a complex variation in rate 

constants k1, k7, k9, and k11 (Scheme I defines these elementary rate constant); but k7, k9, 

and k11 also appear in the definitions of kcat, Kb and Kc.  Hence, if k7, k9, and/or k11 

change, then kcat, Ka, Kb and Kc are all likely to change.  A 10-fold change in Ka (Table 1) 

with no significant change in kcat then is likely due to a change in k1, the “on” rate for 

CAIR.  In other words, the 10-fold increase in Ka for the NAIR-ligated AIR 

carboxylase/SAICAR synthetase relative to that of the K304A enzyme likely stems from 

a 10-fold decrease in k1 of the NAIR-ligated system relative to that of the K304A system.  

Evidently, the SAICAR synthetase active site can sense the status of the AIR carboxylase 

active site.  Differences in the kinetics of the two forms of the human enzyme studied 

here also extend to the recognition of dicarboxylic acid analogs of L-aspartate (Table 3): 

maleate is a competitive inhibitor with respect to L-aspartate in the K304A mutant but a 

noncompetitive inhibitor of the NAIR-ligated wild-type enzyme.  Cysteine sulfinate is a 
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substrate for both human forms, but only the NAIR-ligated wild-type enzyme exhibits 

substrate inhibition. 

Two mechanisms could account for the NAIR-dependent on rate for CAIR.  On 

the basis of the recent crystal structure of the human enzyme, NAIR probably cannot 

directly impede the flow of CAIR to the SAICAR synthetase pocket.  The AIR 

carboxylase/SAICAR synthetase octamer, however, has a set of channels that 

interconnect active sites (23).  The ligation of the AIR carboxylase pocket by NAIR 

could impair mechanisms that facilitate the transport CAIR to the SAICAR synthetase 

pocket through these channels.  If the rate of diffusion of CAIR from the bulk solvent to 

the SAICAR synthetase active site is less than the rate of transport through these 

channels, the presence of NAIR would increase the on rate for CAIR.  Alternatively, 

NAIR ligation to the AIR carboxylase site may promote conformational disorder in the 

SAICAR synthetase active site.  The decrease in the rate constant k1 (the on-rate for 

CAIR) could reflect a NAIR-impeded reorganization of the SAICAR synthetase active 

site in response to the binding of CAIR.  In fact, the linking element between the AIR 

carboxylase and SAICAR synthetase domains directly connects the NAIR and CAIR 

binding pockets (Fig 5). 

The change in the Michaelis constant for CAIR at the SAICAR synthetase pocket 

may be a metering mechanism by which the bifunctional enzyme outputs a steady flow of 

SAICAR even as concentrations of CAIR fluctuate.  This could be important if any of the 

metabolites downstream of CAIR in de novo purine nucleotide biosynthesis are toxic or if 

upstream metabolites participate in regulatory functions.  In principle, AIR carboxylase 

activity overwhelms SAICAR synthetase activity when AIR and CO2 levels are 
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sufficient.  The AIR carboxylase activity of the bifunctional chicken enzyme, for 

instance, is 10-fold higher than its SAICAR synthetase activity when CAIR is removed 

from solution by exogenous E. coli SAICAR synthetase (8).   Moreover, AIR carboxylase 

catalyzes its reverse reaction 4-fold faster than its forward reaction.  Under circumstances 

of high concentrations of AIR and CO2, then, either CAIR or AIR saturates the AIR 

carboxylase pocket, a condition perhaps mimicking the NAIR-ligated system.  If flux 

through AIR carboxylase falls below that of SAICAR synthetase, however, the 

production of SAICAR will not diminish immediately.  As local concentrations of CAIR 

fall, the association rate for CAIR (k1 in the SAICAR synthetase reaction) increases and 

the Km for CAIR falls.  Consequently, the concentration of CAIR remains above its 

Michaelis constant, allowing the enzyme to operate at Vmax over at least a 10-fold decline 

in the local concentration of CAIR.  The Steady State Ordered mechanism may have 

evolved from a Rapid Equilibrium Random mechanism as a way to maintain even flux 

through the de novo pathway for purine nucleotide biosynthesis. 
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Table 1.  Steady state Ordered Sequential model for human SAICAR synthetase.   

Parameter 
Fitted values and weighted 

mean 

kcat = k7k9k11/(k7k9+k7k11+k9k11) 

3.6 ± 0.1 (Figure 1a) 

3.5 ± 2 (Figure 1b) 

3.6 ± 0.3 (Figure 1c) 

3.6 ± 0.8 (mean) 

(3.3 ± 0.3) 

Ka = k7k9k11/[k1(k7k9+k7k11+k9k11)] 

8.6 ± 0.7 (Figure 1a) 

11 ± 2 (Figure 1b) 

9.8 ± 1.4 (mean) 

(<1) 

Kb = k7k9k11/[k3(k7k9+k7k11+k9k11)] 

23 ± 3 (Figure 1a) 

24 ± 3 (Figure 1c) 

24 ± 3 (mean) 

(34 ± 3) 

Kc = k9k11(k6+k7)/[k5(k7k9+k7k11+k9k11)] 

430 ± 50 (Figure 1b) 

620 ± 90 (Figure 1c) 

530 ± 70 (mean) 

(500 ± 40) 

Kia = k2/k1 4 ± 1 (Figure 1a) 

Kib = k4/k3 29 ± 5 (Figure 1b) 

The symbol E represents polyhistidyl-tagged SAICAR synthetase in the presence of 10 
μM NAIR, and substrates A, B and C represent CAIR, ATP and ASP, respectively.  
Indicated parenthetically are the data used in determining the fitted value for a parameter.  
The weighted mean is Σ(1/σj)2Pj/Σ(1/σj)2, where the summations run over independent 
determinations of a specific parameter Pj and its standard deviation σj.  Values for kcat are 
in s−1, and all other parameters in μM.  E0 is the total enzyme concentration in all of its 
forms.  All calculations employed six-digit values, the final entry being rounded to its 
first significant digit.  Values in parenthesis are for the Lys304→Ala enzyme determined 
at saturating concentrations of CAIR.
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Table 2.  Inhibition mechanisms of NAIR-ligated wild-type and Lys304→Ala AIR 
carboxylase/SAICAR synthetases.  

Varied substrate Inhibitor 

CAIRa ATP L-Aspartate 

AICAR Competitive 

0.37 ± 0.05/0.12 ± 0.06 

Non-competitive 

4.6 ± 0.3/1.6 ± 0.7 

Non-competitive 

5.6 ± 0.4/2.16 ± 0.09 

AMP Uncompetitive 

7.6 ± 0.2/8.8 ± 7 

Competitive 

2.3 ± 0.1/6.9 ± 0.6 

Non-competitive 

10.6 ± 0.6/9.2 ± 0.4 

L-Malate Uncompetitive 

108 ± 5/ – 

Uncompetitive 

77 ± 3/ – 

Competitive 

16.8 ± 0.7/ – 

Maleate Uncompetitive 

– /4.3 ± 0.9 

Uncompetitive 

– /9.4 ± 0.3 

Competitive 

– /2.2 ± 0.1 

 
Table 2.  Footnote. 
Dissociation constants are apparent (dependent upon fixed concentrations of substrates at 
which they were determined).  Values for dissociation constants (in mM) are paired, the 
first corresponding to inhibition of the NAIR-ligated wild-type enzyme and the second to 
the Lys304→Ala enzyme.  Models of inhibition define parameters Ki, the constant of 
disoociation for the inhibitor from the enzyme•inhibitor complex, and Kis the dissociation 
of the inhibitor from the enzyme•substrate•inhibtior complex.  Competitve inhibition uses 
only Ki, uncompetitive inhibition only Kis, and non-competitive inhibition both Ki and Kis 
with Ki=Kis. 
 
aFor the Lys304→Ala enzyme, the data from experiments which systematically varied 
CAIR provided a value for Kc, the Michaelis constant for CAIR, of 0.??±0.?? µM, 
substantially lower than Kc for the NAIR-ligated wild-type enzyme reported in Table 1. 
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Table 3.  Kinetic parameters for analogs of L-aspartate in SAICAR synthetase 
reactions.   
 

Enzyme source 

Substrate/Inhibitor Human 
recombinant, 

NAIR-ligated 

Human 
recombinant 

Lys304→Ala 

E. coli recombinant 

L-Aspartatea Km=0.5±0.1 

kcat=3.3±0.7 

Km=0.67±0.05 

kcat=3.4±0.1 

Km=0.77±0.08 

kcat=6.2±0.2 

L-Alanosinea Km=15±2 

kcat=3.0±0.6 

Km=5.5±0.5 

kcat=3.3±0.1 

Km=0.83±0.05 

kcat=6.0 ± 0.7 

L-Cysteine sulfinatea Km=50±20 

kcat=3±1 

Kss=40±20b

Km=40±4 

kcat=3.4±0.1 

Km=5.6±0.3 

kcat=6.0 ± 0.1 

L-Malatec Ki=16.8±0.7 Ki=12.7±0.9 Ki=20±1 

Maleatec Ki=3.5±0.4, 

Kis=10±3d

Ki=2.2±0.1 Ki=1.6±0.3 

Succinatec Ki=68±8, 

Kis=260±40d

Ki=44±2 Ki=64±5 

 
Table 3.  Footnotes. 
Assays employs saturating concentrations (5xKm) of CAIR and ATP, in 50 mM Taps, pH 
8.0, 10 mM MgCl2, and 1 mM dithiothreitol (DTT) at a temperature of 37º C.  Michaelis 
and inhibition parameters have units of mM, and kcat is in units of s–1. 
 
aData are fit to a Michaelis-Menten equation using Grafit (27). 
bKm, Kss, and kcat come from a model of substrate inhibition in which the binding of a 
second substrate molecule (governed by the parameter Kss) to the enzyme-substrate 
complex prevents catalysis. 
cData are fir to a model of competitive inhibition with respect to L-aspartate using Dynafit 
(28) in which Ki governs the dissociation of inhibition from the 
enzyme•CAIR•ATP•inhibitor complex. 
bData are fit to a model of noncompetitive inhibition with respect to L-aspartate using 
Dynafit (28) in which Ki governs the dissociation of inhibition from the 
enzyme•CAIR•ATP•inhibitor complex and Kis governs the dissociation of inhibitor from 
the enzyme•CAIR•ATP•L-aspartate•inhibitor complex.
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Figure 1.  Reciprocal velocity versus reciprocal substrate concentration.  Solid lines 
are Equations 3, 4 and 5 for panels A, B and C, respectively, using the parameters of 
Table 1.  (A) Concentrations of CAIR vary from 3–16 μM, and those of ATP are (■) 20, 
(Δ) 40, (♦) 65, and (□) 160 μM.  (B) Concentrations of ATP vary from 15–75 μM, and 
those of L-aspartate are (■) 200, (Δ) 350, (♦) 500, (□) 750, and (▲) 1200 μM.  (C) 
Concentrations of CAIR vary from 3–24 μM, and those of L-aspartate are (■)200, (Δ) 
400, (♦) 800, and (□) 1200 μM. 
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Figure 2.  Response of NAIR-ligated wild-type AIR carboxylase/SAICAR synthetase 
to inhibitors.  Lines come from fits of data to competitive, uncompetitive and non-
competitive models of inhibition of a single-substrate enzyme as described in the text.  
Fixed substrate concentrations are: ATP and L-aspartate at 200μM and 3mM, 
respectively, for panels A, D, and G, CAIR and L-aspartate at 32μM and 3mM, 
respectively, for panels B, E and H, and CAIR and ATP at 35 μM and 200μM, 
respectively, for panels C, F, and I.  (A) Concentrations of CAIR vary from 4–30μM, and 
those of AICAR are (▲) 0, (□) 0.5, (♦) 1, (Δ) 1.5, (■) 3.5 mM.  (B) Concentrations of 
ATP vary from 20–200μM, and those of AICAR are (□) 0, (♦) 1, (Δ) 4, and (■) 8mM.  
(C) Concentrations of L-aspartate vary from 0.2–2.4 mM, and those of AICAR are (□) 0, 
(♦) 2, (Δ) 4, and (■) 6.5 mM.  (D) Concentrations of CAIR vary from 4–20 μM, and those 
of AMP are (▲) 0, (□) 5, (♦) 10, (Δ) 15, (■) 20 mM.  (E) Concentrations of ATP vary 
from 20–200 μM, those of AMP are (□) 0, (♦) 5, (Δ) 10, and (■) 10 mM.  (F) 
Concentrations of L-aspartate vary from 0.2–2.4 mM, and those of AMP are (▲) 0, (□) 
2.5, (♦) 5, (Δ) 7.5, and (■) 15 mM.  (G) Concentrations of CAIR vary from 6–40 μM, and 
those of L-malate are (□) 0, (▲) 25, (◊) 50, and (■) 100mM.  (H) Concentrations of ATP 
vary from 20–120 μM, and those of L-malate are (▲) 0, (□) 25, (♦) 50, (Δ) 75, and (■) 
100 mM.  (I) Concenrations of L-aspartate vary from 0.4–3.2 mM, and those of L-malate 
are (▲) 0, (□) 25, (♦) 50, (Δ) 75, and (■) 100 mM. 
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Figure 3.  Response of Lys304→Ala AIR carboxylase/SAICAR synthetase to 
inhibitors.  Lines come from fits of data to competitive, uncompetitive and non-
competitive models of inhibition of a single-substrate enzyme as described in the text.  
Fixed substrate concentrations are: ATP and L-aspartate at 200μM and 2.5mM, 
respectively, for panels A, D, and G, CAIR and L-aspartate at 15μM and 3mM, 
respectively, for panels B, E and H, and CAIR and ATP at 18μM and 200μM, 
respectively, for panels C, F, and I.  Panels A, D and G are plots of product formation vs. 
time, whereas panels B, C, E, F, H, and I are plots of reciprocal velocity vs. reciprocal 
substrate concentration.  (A) Concentration of CAIR is 13.3 μM, and those of AICAR are 
(■) 0, (Δ) 0.5, (♦) 1.5, and (□) 2 mM.  (B) Concentrations of ATP vary from 10–85 μM, 
and those of AICAR are (▲) 0, (□) 0.5, (♦) 1, (Δ) 1.5, and (■) 2.5 mM.  (C) 
Concentrations of L-aspartate vary from 0.2–1.6 mM, and those of AICAR are (▲) 0, (□) 
0.5, (♦) 1, (Δ) 1.5, and (■) 2 mM.  (D) Concentration of CAIR is 36 μM, and those of 
AMP are (■) 0, (Δ) 3.75, (♦) 7.5, (□) 11.25, and (▲) 15 mM.  (E) Concentrations of ATP 
vary from 30–240 μM, and those of AMP are (■) 0, (Δ) 5, (♦) 10, and (□) 20 mM.  (F) 
Concentrations of L-aspartate vary from 0.4–3.2 mM, and those of AMP are (▲) 0, (□) 
3.75, (♦) 7.5, (Δ) 11.25, and (■) 18 mM  (G) Concentration of CAIR is 11 μM and those 
of maleate are (■) 0, (Δ) 1, (♦) 2, (□) 4, and (▲) 8 mM.  (H) Concentrations of ATP vary 
from 10–80 μM, and those of maleate are (▲) 0, (□) 1, (♦) 2, (Δ) 4, and (■) 8 mM.  (I) 
Concentrations of L-aspartate vary from 0.2–1.2 mM, and those of maleate are (▲) 0, (□) 
0.9, (♦) 1.8, (Δ) 3.6, and (■) 7.2 mM. 
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Figure 4: Human SAICAR synthetase domain with missing elements modeled from 
E. coli and S. cerevisiae SAICAR synthetase.  Elements in light blue were generated 
from the coordinates of the human enzyme (2H31).  The orange beta strand is modeled 
from E. coli structure 2GQS.  The 30s loop in gold, the rest of the orange domain, and the 
green P-loop was modeled from S. cerevisiae structure 2CNQ. (left) the SAICAR 
synthetase domain from humans.  The 30s loop and elements close to α5 that had no 
density are modeled using structures from other organisms.  These are shown as 
transparent.  (right) a model of what human SAICAR synthetase might look like when 
ordered.  The P-loop, from yeast, is raised relative to that of the human structure.  This 
lifting might be caused by the ordering of the gold and orange elements when CAIR is 
bound. 
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Figure 5.  A proposed mechanism for linking the NAIR binding site of the AIR 
Carboxylase Domain to the CAIR binding site of SAICAR synthetase of the human 
bi-functional enzyme.  The SAICAR synthetase domain is in light blue, the AIR 
carboxylase is in tan, and the interconnecting element is in red.  Parts of the SAICAR 
synthetase active site not present in the human model are gold and orange and modeled 
from S. cerevisiae SAICAR synthetase (2CNQ).  (left) View of a single bi-functional 
subunit. (right) View of the entire octamer. 
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Chapter IV Entrapment of Phosphoryl Intermediates by SAICAR 

Synthetase*,† 
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Fromm, and Richard B. Honzatko‡

 

Abstract 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase (SAICAR synthetase) 

catalyzes the eighth step in bacterial de novo purine nucleotide biosynthesis and is a 

target in the development of antimicrobial and chemotherapeutic agents.  The proposed 

enzyme-mediated reaction proceeds by the transfer of the γ-phosphoryl group of ATP to 

the carboxyl group of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR), followed by 

the nucleophilic attack of the α-amino group of L-aspartate on the carbonyl phosphate 

intermediate.  No evidence exists to support this or any other mechanism of SAICAR 

synthetase action.  Presented here are data from structure determinations and positional 

isotope exchange that are consistent with the formation of the carbonyl phosphate of 

CAIR as a reaction intermediate.  Enzyme from Escherichia coli crystallized with IMP, 

ATP and Mg2+ has 1-N-phosphoryl IMP in its active site, as evidenced by X-ray 

diffraction data to 1.5 Å resolution.  Moreover under similar conditions, 4-carboxamide-

5-aminoimidazole ribonucleotide (AICAR) is N-phosphorylated in crystal structures.  In 

positional isotope exchange kinetics using E. coli and human enzymes, 18O in the β,γ- 
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bridging position of 18O-γ ATP moves to a terminal position of the β-phosphoryl group 

only in the presence of enzyme and CAIR.  The positional exchange of 18O is consistent 

with the reversible formation of a stable phosphoryl intermediate and combined with 

crystallographic data is fully consistent with the formation of the carbonyl phosphate of 

CAIR.  The N-phosphorylated derivatives of IMP and AICAR may represent tight-

binding analogues of the carbonyl phosphate of CAIR. 
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Introduction 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase [EC.6.3.2.6, 5'-

phosphoribosyl-4-carboxy-5-aminoimidazole:L-aspartate ligase (ADP)] (SAICAR1 

synthetase) catalyzes the eighth step in bacterial de novo purine nucleotide biosynthesis: 

ATP + L-aspartate + CAIR  ADP + Pi + SAICAR 

Lukens and Buchanan (1) first described the enzyme in 1959.  Miller and Buchanan (2) 

then demonstrated its presence in a variety of life forms, and reported the purification and 
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properties of the synthetase from chicken liver.  More recently, the Stubbe laboratory 

purified SAICAR synthetase from Escherichia coli (3).  The E. coli enzyme (hereafter 

eSS) is a homodimer of 27 kDa subunits, and adopts a Rapid Equilibrium Random 

Sequential kinetic mechanism (4,5).  Comparable enzymes from vertebrates are homo-

octamers and bifunctional, combining 5-aminoimidazole ribonucleotide carboxylase 

(AIR carboxylase) and SAICAR synthetase activities in subunits of 47 kDa (6-9).  The 

kinetic mechanism of SAICAR synthetase of the human bifunctional enzyme, unlike the 

E. coli enzyme, is Steady State Ordered Sequential with CAIR binding first, then ATP 

and last L-aspartate (10).  Hence, bacterial and vertebrate SAICAR synthetases exhibit 

substantial differences in subunit size, subunit organization and kinetic mechanism.  The 

ultimate goal here is to exploit differences in microbial and vertebrate enzymes in the 

development of antibiotic or antifungal agents. 

SAICAR synthetase is already a target in the treatment of cancer.  L-Alanosine is 

a natural product of Streptomyces alanosinicus with antiviral and antitumor activities.  L-

Alanosine is a substrate analogue of L-aspartate in vitro and in vivo for SAICAR 

synthetase (4,11).  The product of the L-alanosine reaction is L-alanosyl-5-amino-4-

imidazolecarboxylic acid ribonucleotide, a compound responsible for L-alanosine toxicity 

and a potent inhibitor of adenylosuccinate synthetase and adenylosuccinate lyase 

(enzymes participating in de novo purine nucleotide biosynthesis) (11-13). 

A complication of L-alanosine therapy is its comparable toxicity toward healthy 

and cancerous cells; however, specific cancers show enhanced susceptibility toward the 

toxic effects of L-alanosine.  Methylthioadenosine phosphorylase (MTAP) is an 

important salvage enzyme for adenine nucleotides.  The gene for MTAP in humans is 
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proximal to tumor suppressor genes p15 and p16, and as a consequence, many tumor 

cells that lack one or more suppressor genes also have no gene for MTAP.  

Approximately 30% of T-cell acute lymphocytic leukemia lack the MTAP salvage 

pathway and rely entirely on de novo purine nucleotide biosynthesis for adenine 

nucleotides (14-18).  L-Alanosine is toxic to cell lines of such cancers at concentrations 

well below those that poison cells with intact salvage pathways.  Hence, L-alanosine in 

combination with salvage pathway precursors of adenine nucleotides offers an effective 

therapy for these cancers (15-19). 

Although several structures of microbial SAICAR synthetases (9,20-24) are 

available, as well as one structure of human AIR carboxylase/SAICAR synthetase (9), 

most of what is known about enzyme-bound CAIR and essential metal cofactors comes 

from investigations of the synthetase from E. coli (PDB identifier 2GQS) (5).  The eSS 

subunit folds into two domains, each consisting of a central β-sheets (strands β1─β3, β6, 

and β7 in Domain 1 and strands β8–β13 in Domain 2) with inter-strand connections that 

contribute important structural elements to the active site (anti-parallel beta-loop β4–β5 

and helix α5).  The two domains define a cleft, half of which is filled by ADP and the 

other half by CAIR (5).  Three magnesium cations are in the active site, one associated 

with the α- and β-phosphoryl groups of ADP, and the other two with the 4-carboxyl 

group of CAIR.  Nelson et al. (4) suggest a mechanism involving the initial formation of 

the carbonyl phosphate of CAIR, which is attacked subsequently by the α-amino group of 

L-aspartate.  The CAIR•ADP•Mg2+ structure is the basis for a model of the transition 

state for the phosphoryl transfer step of the reaction (5). 
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The putative chemical mechanism for SAICAR synthetase is similar to the 

reaction catalyzed by adenylosuccinate synthetase: 

GTP + L-aspartate + IMP  GDP + Pi + SAMP 

The widely accepted mechanism of adenylosuccinate synthetase first proposed by 

Lieberman (25) and more fully explored by others (26-31), also involves the formation of 

a phosphorylated intermediate, 6-phosphoryl IMP, with subsequent nucleophilic 

substitution by L-aspartate.  In this regard, adenylosuccinate synthetase and SAICAR 

synthetase catalyze similar chemistry, even though the respective enzymes from E. coli 

bear little structural similarity. 

Provided here is the first evidence for the existence of a phosphoryl intermediate 

in the SAICAR synthetase reaction.  AICAR and IMP are analogues of CAIR and 

intermediates of de novo purine nucleotide biosynthesis; SAICAR synthetase 

phosphorylates each on a nitrogen atom corresponding in position to an oxygen atom of 

the 4-carboxyl group of CAIR.  The phosphoramidates of AICAR and IMP are present in 

the active sites of crystal structures of eSS.  Additionally, 18O-labeled ATP undergoes 

positional isotope exchange (PIX) in the presence of enzyme, CAIR and Mg2+, but not in 

the presence of the enzyme alone.  Positional isotope exchange influences chemical shifts 

of 31P resonances in NMR due to the redistribution of 18O and 16O atoms covalently 

attached to the β- and γ-phosphoryl groups of ATP.  A chemical shift difference of 0.012 

ppm occurs as a result of the migration of 18O from the β-γ bridging position of ATP to a 

non-bridging position of the β-phosphoryl group (32).  The structures of phosphoryl 

intermediates reported here support efforts to develop specific inhibitors of microbial 

SAICAR synthetases. 
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Experimental Procedures 

Materials— ATP, L-aspartate, NADH, phosphoenolpyruvate, pyruvate kinase, and 

lactate dehydrogenase were purchased from Sigma.  CAIR was synthesized as described 

previously (4).  E. coli strain BL21(DE3) came from Invitrogen.  NAIR was synthesized 

as previously described (10,33).  Other materials and their sources are provided in the 

procedures that follow. 

Enzyme Preparation— N-terminal hexa-histidyl tagged eSS and C-terminal hexa-histidyl 

tagged hSS were prepared by Ni-NTA affinity chromatography as described 

previously(5,10).  Protein concentration was determined by the method of Bradford (34) 

using bovine serum albumin as a standard.  Protein purity was confirmed by sodium 

dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) (35). 

Synthesis of P18O4
2–— Synthesis and isolation of P18O4

2– followed Boyer et al. (36).  0.45 

g of PCl5 was added to 1 g of frozen 97% 18O enriched water (Stable Isotope 

Laboratories) in a 50 mL round bottom flask, sealed with a one way vent to relieve 

pressure.  The flask was equilibrated slowly to room temperature, then allowed to stand 

for 15 min before the addition of 1.25 g of imidazole.  The reaction mixture was diluted 

with water to 1 L, adjusted to pH 9.0 with KOH, and loaded onto a 2x20 cm column of 

AG1X4 (Dowex-2, Biorad).  The column was washed with distilled/deionized water and 

eluted with 30 mM HCl.  Phosphate content was determined by the acid molybdate assay 

(37).  Product was dried to a brownish syrup. 

Synthesis of the bis(4-Morpholine N,N′-dicylcohexylcarboxamidine) Salt of ADP-

Morpholidate— The synthesis of ADP-morpholidate followed Moffatt et al (38).  
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Dicyclohexylcabodiimide (1 g, 4.8 mmoles) was dissolved in 35 mL of t-butyl alcohol 

(Fisher Scientific).  The dicyclohexylcabodiimide solution was added dropwise over 3 

hours to a 16 mL refluxing mixture of 50 mM ADP (MP Biochemicals) and 31 mM 

morpholine (Sigma) in 50% aqueous t-butyl alcohol.  The mixture refluxed for an 

additional 3 hrs., then cooled to room temperature.  The volume of the mixture was 

reduced in vacuo to 25 mL, then added to 50 mL of diethyl ether.  Solid dicyclohexyl 

urea was removed by filtration, and the filtrate applied to a 2x25 cm. column of Dowex-2 

(HCO3
–), equilibrated with 1 mM triethyl ammonium bicarbonate (TEAB).  After 

thoroughly washing the column with water, a 6 L gradient of triethyl ammonium 

bicarbonate (5–500 mM) eluted AMP-morpholidate first and ADP-morpholidate second 

(at about 0.3 M triethyl ammonium bicarbonate).  Fractions from the second peak were 

pooled and lyophilized.  The resulting powder was dissolved in methanol, and 3 

equivalents of 4-morpholine N,N′-dicyclohexylcarboxamidine were added.  (Wehrli and 

Moffatt (39) describe the preparation of dicyclohexylcarboxamidine).  This mixture was 

dried in vacuo, dissolved in 3 mL of methanol, and precipitated with 30 mL diethyl ether.  

Triturating the resulting syrup with fresh diethyl ether gave 0.1 mmole of the bis(4-

morpholine N,N′-dicyclohexylcarboxamidine) salt of ADP-morpholidate. 

Synthesis of γ-18O-ATP— The bis(4-morpholone N,N′-dicyclohexylcarboxamidine) salt of 

ADP-morpholidate (0.1 mmole) was dissolved in 3 mL dry pyridine, evaporated to 

dryness, and rendered anhydrous by three more evaporations with 2-mL portions of 

pyridine.  Residual pyridine was removed by two evaporations with 2-mL portions of 

anhydrous benzene. 
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Distilled tri-n-butylamine (0.072 mL, 0.3 mmole, Sigma) was added to H3PP

18O , 

evaporated to dryness, and then made anhydrous by evaporations of three 2-mL portions 

of distilled pyridine.  Residual pyridine was removed by evaporations with two 2-mL 

portions of benzene.  Anhydrous H P18

4

3 P O4 was dissolved in distilled anhydrous dimethyl 

sulfoxide (2 mL) and added to the anhydrous bis(4-morpholine N,N′-

dicyclohexlcarboxamidine) salt of ADP-morpholidate.  The solution was sealed and 

stored at 35 °C for 45 hr.  The mixture was diluted with 40 mL of distilled/deionized 

water, and applied to a 2 x33 cm. column of DEAE-cellulose (HCO3
–).  After thorough 

washing with water, a 3-L linear gradient of 0.005–0.35 M triethylamine-bicarbonate 

eluted purified γ-18O ATP.  The product was twice lyophilized and analyzed by 

electrospray ionization mass spectroscopy (ESI-MS).  γ-18O-ATP was quantified by the 

action of yeast hexokinase (Roche) coupled to glucose-6-phosphate dehydrogenase. 

Positional Isotope Exchange— Three 1 mL samples containing 3μg eSS, 5 mM γ-18O-

ATP, 11 mM MgCl2, 1 mM DTT, 100 mM Hepes, pH 7.8, and 10 mM KCl were 

prepared.  One sample had additionally 2.5 mM L-aspartate, and another 100 μM CAIR.  

After 8 hrs of incubation, the addition of 20 mM EDTA stopped the reactions.  

Experiments involving hSS employed similar conditions, using 50 mM Taps, pH 8.1, 

supplemented with 10 μM NAIR, instead of 100 mM Hepes, pH7.8.  NAIR extinguishes 

the conversion of CAIR to AIR by hSS (10), 

Fifty μL of chloroform was added to each sample, followed by centrifugation to 

remove precipitated protein.  The aqueous fraction was diluted by half with water and 

injected onto a 2x8 cm 650M DEAE (TosoHaus) HPLC column.  The column was 

washed with 50 mM Hepes, pH 7.0, 4 mM KPi (Buffer A) for 10min at a flow-rate of 1 
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mL/min.  A gradient from 0–150 mM in NaCl (15 min.) followed by a wash with 150 

mM NaCl (10 min.) eluted AMP, ADP, L-aspartate, and CAIR, and then a gradient from 

150–500 mM NaCl (45 min.) eluted ATP.  ATP fractions containing the highest 

absorbance at 259 nm were used for NMR.  Samples were prepared by adding 100 µL of 

500 mM CDTA (pH 7.0) and 20 µL of 50 mM 2,2-dimethyl-2-silapentane-5-sulfonic 

acid (pH 7.0) to make a final volume of 1 mL. 

NMR experiments— All NMR experiments were performed on a Bruker DRX-400 NMR 

spectrometer operating at 121.5 MHz.  Data was collected over 1320–1972 scans with a 

pulse-width and -angle of 12 µs and a 75˚, respectively.  Data were transformed using 0.2 

Hz line broadening constant.  An indirect shift reference was applied to all samples using 

an 1H NMR spectra of the internal 2,2-dimethyl-2-silapentane-5-sulfonic acid standard 

(40) (SRcalc = 671.3 Hz, –1.091 ppm). 

Crystallization— Crystals were grown by the method of hanging-drop vapor diffusion in 

VDX-plates (Hampton Research).  Two μL of a protein solution were mixed with 2 μL of 

a well solution and then equilibrated against 0.5 mL of well solution.  All protein 

solutions contained 15 mg/mL eSS, 15 mM Tris-HCl, 25 mM KCl, 5 mM dithiothreitol, 

40 mM MgCl2, and 5mM EDTA (pH 8.0).  The protein solutions for the 1-

PIMP•ADP•Mg2+, IMP•ADP•Mg2+, and AICAR•ADP•Mg2+ complexes were 

supplemented with 15 mM IMP/25 mM ATP, 15 mM IMP/25 mM ADP, and 15 mM 

AICAR/25 mM ADP, respectively.  The well solutions contained 50 mM Tris-HCl and 

3.4–3.8 M sodium formate (pH 8.5).  The protein solution for the PAICAR•ADP•Mg2+ 

complex contained 15 mM AICAR, 25 mM ADP, 40 mM MgCl2, and the well solution 

contained 0.5–0.7 M L-aspartate, 50 mM Tris-HCl (pH 8.5) and 27–30% PEG 8000.  
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Crystallization conditions for the AICAR•ADP•Mg2+ and PAICAR•ADP•Mg2+ 

complexes differed only in the choice of precipitant (3.4-3.8 M formate as opposed to 

PEG 8000) and the time for crystals to grow sufficiently for data collection (48 hrs. as 

opposed to more than 1 week). 

Data Collection— The crystals grown from formate were transferred to a cryoprotectant 

solution containing 4 M sodium formate, 50 mM  Tris·HCl, pH 8.5, 10% w/v sucrose, 

and ligands at the same concentrations as their respective protein solutions.  For the PEG 

8000 condition, 10% w/v sucrose was added to the well solution, and it was 

supplemented with the ligands present in the protein solution.  After approximately 30 

seconds of equilibration, crystals were plunged into liquid nitrogen. 

Data from the complexes other than 1-PIMP•ADP•Mg2+ were collected at Iowa 

State University from a single crystal (temperature, 115 K) on a Rigaku R-AXIS IV++ 

rotating anode/image plate system using CuKα radiation from an Osmic confocal optics 

system.  Data were processed and reduced using the program package CrystalClear 

provided with the instrument.  For the 1-PIMP•ADP•Mg2+ complex, data were collected 

on Beamline 4.2.2 of the Advanced Light Source, Lawrence Berkley Laboratory 

(wavelength of 1 Ǻ).  Data were indexed, integrated, scaled, and merged using d*trek 

(41).  Intensities were converted to structure factors using the CCP4 (42) program 

TRUNCATE. 

Structure Determination and Refinement— Structures were solved by molecular 

replacement with the program AMoRE (42) and 2GQS (less ligands and water 

molecules) as the starting model.  Refinement was performed using CNS 1.1 (43), 

beginning with a cycle of simulated annealing (starting temperature of 3500 K) with slow 
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cooling in increments of 25 K to a final temperature of 300 K, followed by 100 steps of 

conjugate gradient energy minimization.  Subsequent cycles had lower initial starting 

temperatures (as low as 500 K).  Individual B-factors were refined after each cycle of 

simulated annealing and subject to the following restraints: bonded main-chain atoms, 1.5 

Å2; angle main-chain atoms, 2.0 Å2; bonded side-chain atoms, 2.0 Å2; and angle side-

chain atoms, 2.5 Å2.  Water molecules were automatically added using CNS if a peak 

greater than 3.0σ was present in Fourier maps with coefficients (Fobs–Fcalc)eiαcalc.  Refined 

water sites were eliminated if they were further than 3.2 Å from a hydrogen-bonding 

partner or if their thermal parameters exceeded 50 Å2.  The contribution of the bulk 

solvent to structure factors was determined using the default parameters of CNS.  Non-

crystallographic restraints/constraints were not used during refinement.  Constants of 

force and geometry for the protein came from Engh and Huber (44) and those for ADP, 

IMP, 1-PIMP, PAICAR, AICAR, and formate from CNS resource files, with appropriate 

modification of dihedral angles of the ribosyl moiety to maintain a 2’-endo ring pucker. 

 

Results 

Protein Preparation, Data Collection, and Structure Determination—eSS and hSS were 

pure on the basis of sodium dodecylsulfate polyacrylamide gel electrophoresis.  eSS and 

hSS had specific activities of 15 ± 1 and 3.7 ± 0.1 U/mg, respectively, comparable to 

values previously reported (4,10). 

General Features of Ligand Complexes of eSS— An eSS homodimer occupies the 

crystallographic asymmetric unit in the IMP•ADP•Mg2+, AICAR•ADP•Mg2+, 1-

PIMP•ADP•Mg2+, and PAICAR•ADP•Mg2+complexes reported here (Fig. 1).  The 
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subunits are identical to within the coordinate uncertainty.  Electron density is not present 

for the polyhistidyl tag; however, observable electron density begins with Met1 and 

continues to the C-terminal Asp237.  The protein component of the four different 

complexes is nearly identical to that of the CAIR•ADP•Mg2+ structure (2GQS) (5).  

Differences in protein structure appear in the 30s loop (anti-parallel loop defined by β-

strands 4 and 5 of Domain 1).  Electron density for the IMP•ADP•Mg2+ complex is weak 

for residues 35–39, but represented well by a single conformation with reasonable 

stereochemistry and contacts.  The 30s-loops in the 1-PIMP•ADP•Mg2+, 

AICAR•ADP•Mg2+, and PAICAR•ADP•Mg2+complexes are identical to that of the 

CAIR•ADP•Mg2+ complex (5).  Superposition of all Cα positions of the A subunit of each 

complex against the CAIR•ADP•Mg2+ structure gave root-mean-squared deviations from 

0.3–0.4 Ǻ. 

Phosphoryl Intermediates— Phosphoryl groups form phosphoramidate bonds with the 

amide nitrogen of AICAR and the N1 atom of IMP, resulting in PAICAR and 1-PIMP 

(Fig. 2).  The phosphorylated nitrogen atoms correspond to the oxygen atom of the 4-

carboxyl group of CAIR (position O7 in PDB 2GQS) that accepts the γ-phosphoryl of 

ATP in the proposed mechanism (4).  The distances between N and P atoms in the 

phosphoramidate linkages are 1.76 and 1.79 Ǻ for PAICAR and 1-PIMP, respectively, 

close to the observed N-P bond distance of 1.77 Ǻ, taken from the crystal structure of 

NaHPO3NH2 (45). 

The observed electron density in the 1-PIMP•ADP•Mg2+ complex cannot 

represent an average of IMP•ADP and ADP•Pi complexes, bound with mutual 

exclusivity.  Crystallization of the enzyme in the presence of IMP, ADP, Mg2+ and Pi 
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(data not shown) results in electron density identical to that reported here for the 

IMP•ADP•Mg2+ complex.  Hence, the presence of Pi is not responsible for the 

appearance of density associated with atom N1 of IMP.  Moreover, thermal parameters of 

atoms for ligands and protein are comparable throughout the active site indicating full 

occupancy of the ligands.  Finally, the relative positions of the ribosyl and base moieties 

of IMP and 1-PIMP (and an associated Mg2+) in the IMP•ADP•Mg2+ and 1-

PIMP•ADP•Mg2+ complexes differ, consistent with substantially different modes of 

ligand recognition by the enzyme.  Similar arguments leave but one reasonable 

interpretation of the electron density extending from the amide group of AICAR, that 

being a covalently linked phosphoryl group. 

Ligand-protein interactions in the 1-PIMP•ADP•Mg2+ and PAICAR•ADP•Mg2+ 

complexes correspond to those of the CAIR•ADP•Mg2+ complex as presented by Ginder 

et al. (5).  Described here are only the new interactions involving the additional 

phosphoryl group of each intermediate.  The phosphoryl group (whether it be part of 1-

PIMP or PAICAR) coordinates magnesium ions at sites 1 and 3, and hydrogen bonds 

with the side chains of Lys11 and Lys177 (Fig. 3).  Protein and metal ions recognize only 

two of three oxygen atoms of the phosphoryl group; the remaining oxygen atom projects 

toward the putatively binding locus of L-aspartate, and interacts with the Mg2+ at site 1 

through a bridging water molecule.  The following atoms of PAICAR and 1-PIMP define 

trigonal bipyramidal geometries: the nitrogen atom of the phosphoamidate bond, three 

oxygen atoms of the N-phosphoryl group, and one oxygen atom of the β-phosphoryl 

group of ADP.  Such geometry is consistent with the transition state proposed by Ginder 

et al. (5) for the phosphotransfer reaction.  Distances (averaged over both subunits) from 
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the N- and P-atoms of the phosphoramidate bond to the nearest β-oxygen atom of ADP 

are 4.8 and 3.1 Å, respectively, for the PAICAR complex and 4.9 and 3.2 Å for the 1-

PIMP complex.  The N-P-O bond angle (averaged over both subunits) is 164° and 170° 

for the PAICAR and 1-PIMP complexes, respectively. 

Although, not involved in a direct interaction with the phosphoryl intermediates, 

the χ1 angle of Ser33 differs by ~120° relative to its value in the CAIR•ADP•Mg2+, 

AICAR•ADP•Mg2+, and IMP•ADP•Mg2+ complexes.  The change in χ1 breaks a 

hydrogen bond between Ser33 and the amide nitrogen of Gly37.  The significance of the 

conformational change in Ser33 is weighed in the discussion section. 

Binding Variations of Nucleotides— The relative positions and conformations of the 

adenine nucleotide in the four complexes reported here and the two reported previously 

(5) are identical.  The positions and interactions of AICAR and CAIR define a first 

binding mode, 1-PIMP and PAICAR together define a second binding mode, and IMP a 

third mode. 

AICAR binds so that its carbonyl oxygen coordinates Mg2+ at sites 2 and 3 (mode 

1).  The 5′-phosphoribosyl group of PAICAR takes up the same position as that of 

AICAR, but the dihedral angle defined by atoms C2′-C1′-N1-C2 differs by ~30° (Fig 4).  

The ~30° rotation of the carbonyl of PAICAR relative to that of AICAR and CAIR 

distorts the octahedral symmetry of the inner coordination spheres of Mg2+ at sites 2 and 

3, and perhaps weakens interactions between atoms N3 and the carbonyl oxygen of 

PAICAR, while enhancing interactions of the N-linked phosphoryl group.  Comparable 

distortions in the octahedral symmetry of Mg2+ at sites 2 and 3, and a ~30° rotation in the 

dihedral angle C2′-C1′-N9-C8 of 1-PIMP, occur in the 1-PIMP•ADP•Mg2+ complex. 
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Differences in the interactions of IMP in the IMP•ADP•Mg2+ complex (binding 

mode 3) and CAIR in the CAIR•ADP•Mg2+ complex (binding mode 1) are more 

pronounced than those between binding modes 1 and 2 (Fig. 5).  Although the 5′-

phosphoryl groups are nearly identical in position and orientation, the ribosyl and base 

moieties take up different positions, largely due to changes in dihedral angles O3A-PA-

O5′-C5′ (~18°) and C2′-C1′-N9-C8 (~40°).  In the superposition of the two protein 

complexes, the positions of atoms C4′ and C1′ differ by 1.0 and 0.9 Ǻ, respectively, and 

the positions of atoms of CAIR corresponding to atoms N7 and O6 of IMP differ by 1.8 

and 3.5 Å, respectively.  Mg2+ is absent from site 2 in the IMP•ADP•Mg2+ complex, but 

remains coordinated to atom N7 of IMP.  Four water molecules coordinate this Mg2+ 

(hereafter, site 2′), defining a square pyramidal inner coordination complex.  An oxygen 

atom of the 5′ phosphoryl group and the O6 atom of IMP hydrogen bond with water 

molecules coordinated to the Mg2+ at site 2′.  A formate ion bridges metal sites 1 and 3 as 

in the CAIR•ADP•Mg2+ and AICAR•ADP•Mg2+ complexes; however, a second formate 

ion spans the Mg2+ at metal site 1 and atom N1 of IMP (Figure 4). 

Positional Isotope Exchange— A principle peak of 514 appears in the electrospray 

ionization mass spectrum consistent with the calculated mass (515.2) of the γ-18O-ATP 

(data not shown).  The 31P NMR spectrum of a 1:1 mixture of γ-16O-ATP (Sigma) and  γ-

18O-ATP (Fig. 6) reveals differences in chemical shift of 0.098 and 0.017 ppm in the γ- 

and β-P resonances, consistent with the reported value of 0.085 and 0.017 ppm, 

respectively (46).  No positional isotope exchange occurs in γ-18O-ATP in the presence of 

enzyme alone (either eSS or hSS) or enzyme and L-aspartate; however, exchange does 

occur in the presence of enzyme and CAIR (Fig. 7).  The appearance of a new triplet 
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associated with the β-phosphoryl resonance is due to the migration of 18O from the β-γ 

bridging position to a terminal oxygen position of the β-P atom. 

 

Discussion 

In the case of adenylosuccinate synthetase, the results of positional isotope exchange and 

the entrapment of 6-PIMP in crystals structures offer persuasive evidence in favor of 6-

PIMP as an intermediate in the enzyme mediated reaction (26,27,47,48).  The proposed 

mechanism for SAICAR synthetase is analogous to that of adenylosuccinate synthetase in 

that PCAIR is the putative intermediate formed prior to the nucleophilic attack of L-

aspartate (4,5).  The results here are consistent with the formation of PCAIR in the active 

site of SAICAR synthetase, and for the first time, demonstrate the capacity of a SAICAR 

synthetase to transfer the γ-phosphoryl group of ATP to form intermediates (1-PIMP and 

PAICAR) structurally similar to PCAIR. 

The combination of AICAR, ADP and Mg2+ with SAICAR synthetase results in 

different crystalline complexes, depending on the choice of precipitant, PEG 8000 or 

formate.  The results are reproducible.  In an initial preliminary structure of the 

AICAR•ADP•Mg2+ complex, grown in the presence of formate and ATP, weak electron 

density was present at the N-phosphoryl locus.  Such density could arise from a slow 

enzyme-mediated reaction between AICAR and ATP.  Repeating the experiment using 

formate and ADP, and minimizing the time of crystal growth (2-days), the weak electron 

density disappeared, resulting in the AICAR•ADP•Mg2+ complex reported here.  A 

complex with PAICAR at full occupancy in the active site, however, resulted fortuitously 

under conditions of crystallization in which PEG 8000 replaced formate as a precipitant.  
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Evidently, sufficient ATP was present to phosphorylate AICAR under conditions of 

crystallization.  ATP exists as a minor impurity in the ADP, and could form over time by 

the slow disproportionation of ADP into ATP and AMP.  The absence of formate may 

enhance the rate of phosphorylation of AICAR by ATP; the formate anion binds at the N-

phosphoryl site and may synergistically enhance ADP inhibition of SAICAR synthetase 

just as the nitrate anion enhances GDP inhibition of adenylosuccinate synthetase (49,50) 

 A preliminary structure of the 1-PIMP complex (data not shown) indicated that 

the initial choice of crystallization conditions (using ATP and formate) were near 

optimal.  Data complete to 1.5 Å were taken resulting in the structure reported here.  In 

order to demonstrate the role of ATP in the formation of 1-PIMP, crystals were grown for 

an equal length of time in the presence of ADP.  The resulting complex had IMP and 

ADP in the active site.  Efforts to trap phosphoryl intermediates of GMP and XMP 

resulted in ADP complexes only with no evidence for additional ligand binding beyond 

the presence of some electron density at the 5′-phosphoryl binding locus. 

Efforts to trap a phosphoryl intermediate of CAIR in a crystalline complex have yet to 

succeed.  The phosphate ester linkage of PCAIR is presumably less stable than the 

corresponding phosphoramidate linkages of PAICAR and 1-PIMP.  At pH 8.5, the 

hydroxide anion is in relative abundance, and the net rate of ATP hydrolysis through 

PCAIR probably depletes the reservoir of ATP.  Experimental conditions of PIX differ 

from those of crystallography primarily in the concentration of enzyme subunits (0.1 μM 

vs. 500 μM) and pH (7.0 vs. 8.5).  If the hydrolysis of enzyme bound PCAIR by the 

hydroxide anion is first-order in the concentrations of the enzyme-PCAIR complex and 

the hydroxide anion, then the rate of ATP hydrolysis during the PIX experiment 160,000-
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fold lower than under the conditions of crystallization.  In fact, little, if any, hydrolysis of 

ATP occurred during the PIX experiment. 

The IMP•ADP•Mg2+ complex may represent an initial binding step of CAIR with 

the active site.  Mg2+ is absent from site 2, but remains associated with the N-7 and O-6 

atoms of IMP (Figure 4).  These atoms correspond to atom N-3 and an oxygen atom of 

the 4-carboxyl group of CAIR, suggesting a comparable enzyme-bound CAIR•Mg2+ as a 

possibility.  The preferred substrate for SAICAR synthetase then could be CAIR•Mg2+, 

hence accounting for the requirement of 8 mM Mg2+ in order to achieve maximum 

velocity (4).  Litchfield and Shaw have shown that transition metals reduce the rate of 

decarboxylation of CAIR, suggesting that a metal-nucleotide complex in solution 

involving the 4-carboxyl group would protect the substrate outside of the active site of 

the enzyme (51). 

The ~30° rotation about the C1′-N1 bond of PAICAR relative to AICAR (Figure 

4) may explain the failure of L-aspartate to bind to the CAIR•ADP•Mg2+ complex 

reported in previous work and for the absence of a functional group in the active site that 

recognizes the 5-amino group of CAIR (5)  The altered tilt angle in the base moiety due 

presumably to the N-phosphoryl adduct, would change the optimal direction of approach 

for the α-amino group of L-aspartate.  Furthermore if the active site were to hydrogen 

bond with the 5-amino group of CAIR, then the altered tilt angle of PCAIR would likely 

disrupt that hydrogen bond.  (The 5-amino group differs in position by 1.1 Å in 

superpositions of the AICAR and PAICAR complexes).  Hence by not recognizing the 5-

amino group, the active site enhances the stability of the carbonyl phosphate intermediate 

relative to that of CAIR.  L-Aspartate could bind in the absence of CAIR, as is consistent 
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with a Random kinetic mechanism, but the binding is nonproductive until after the 

formation of the carbonyl phosphate.  The failure of L-aspartate to bind to the PAICAR 

complex (L-aspartate is present during crystallization) is unclear.  Differences in 

hydrogen-bonding interactions between PAICAR and PCAIR are the likely cause, 

suggesting a critical role in the recognition of L-aspartate by the phosphoester oxygen 

atom of the carbonyl phosphate of PCAIR.  The observed conformational change in Ser33 

is also consistent with a cause-and-effect relationship between the binding pocket for L-

aspartate and the functional moiety occupying the N-phosphoryl locus. 

AICAR and IMP are downstream intermediates in de novo purine biosynthesis, 

but they are usually not at concentrations high relative to CAIR.  Hence the formation of 

PAICAR and 1-PIMP in vivo is unlikely under most circumstances.  IMP levels in 

muscle, however, rise 200-fold during ischemia and anoxia (52-56), reaching 3.8 μmol/g 

wet weight in skeletal muscle after 20 minutes of induced ischemia (60% of the 

concentration of ATP under control conditions) (55).  The soreness in muscle following 

severe exercise is linked to ischemia (55,57) and the break-down of ATP to ADP, AMP, 

IMP, adenosine, inosine, adenine, and hypoxanthine (54,58-61).  The effects of ischemia 

on heart muscle are similar though not as extreme (62-68).  Injury to heart muscle during 

reperfusion after ischemia is a matter of concern in heart surgery and transplantation (62).  

Formation of 1-PIMP could exacerbate the effects of purine nucleotide loss due to 

ischemia by diminishing de novo purine nucleotide biosynthesis through the inhibition of 

SAICAR synthetase. 

One of the long-term goals of research is the development of new antibiotics that 

target bacterial SAICAR synthetases, but not the multifunctional enzyme (AIR 
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carboxylase/SAICAR synthetase) present in vertebrates.  Not surprisingly, the PIX data 

for the E. coli and human enzymes are consistent with the formation of a carbonyl 

phosphate intermediate of CAIR.  Nonetheless, both the subunit organization and amino 

acid sequence of the human enzyme differs substantially from that of the E. coli enzyme 

(5,6,9), holding out the possibility for substantial differences in ligand binding for the E. 

coli and human enzymes.  Given that SAICAR synthetase can transfer the γ-phosphoryl 

group of ATP to an amide nitrogen, the enzyme itself has the capacity to synthesize its 

own potent inhibitor. 
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Table 1: Statistics of X-Ray Data Collection and Refinement 
Ligand Complex AICAR, Mg2+, 

ADP 
PAICAR, Mg2+, 

ADP 
IMP, Mg2+, ADP N1-PIMP, Mg2+, 

ADP 

Space Group P212121 P212121 P212121 P212121

Unit Cell Parameters a=59.43, b=66.83, 
c=153.72 

a=59.20, b=68.21, 
c=149.14 

a=59.32, b=67.75, 
c=146.53 

a=59.18, b=67.34, 
c=148.81 

Resolution 61.3 – 1.95 (2.02 – 
1.95) 

62.0 – 2.29     
(2.47 – 2.29) 

61.5 – 2.00 (2.07 – 
2.00) 

44.5 – 1.50 (1.55 – 
1.50) 

Reflections 221756 148,200 234,413 429897 

Unique Reflections 42798 27,893 37,051 93,711 

% Completeness 94.1 (62.9) 99.8 (100) 91.0 (55.2) 97.7 (97.0) 

Rmerge
a 0.066 (0.186) 0.091 (0.236) 0.055 (0.194) 0.066 (0.490) 

No. of atoms 4,154 4,148 4,161 4,354 

No of solvent sites 256 248 255 452 

Rfactor
b 21.5 20.7 21.3 23.2 

Rfree
c 24.5 25.2 24.2 24.8 

Mean B for protein (Å2) 24.1 28.3 27.5 24.6 

Mean B for ligands (Å2) 19.6 24.7 25.4 20.4 

Mean B for waters (Å2) 28.6 29.9 31.2 34.5 

   Bond lengths (Å) 0.006 0.006 0.006 0.005 

   Bond angles (deg.) 1.2 1.2 1.3 1.2 

   Dihedral angles (deg.) 22.6 22.6 22.8 22.6 

   Improper angles (deg.) 0.72 0.73 0.73 0.72 

Table II. Footnotes. 
a Rmerge = ΣjΣi | Iij - <Ij> | /ΣiΣjIij, where i runs over multiple observations of the same 
intensity, and j runs over all crystallographically unique intensities. 
b Rfactor = Σ || Fobs | - | Fcalc || /Σ | Fobs |, where | Fobs | > 0. 
c Rfree based upon 10% of the data randomly culled and not used in the refinement. 
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Figure 1.  Structure of SAICAR synthetase.  The active site of eSS is a deep cleft that 
extends without interruption between subunits of the dimer.  Bold lines and filled circles 
represent bound 1-PIMP, ADP, and Mg2+.  Secondary elements are labeled and the P-
loop (β1,β2), the 30s loop (β4, β5), and helix 5 (α5) are shaded in grey.  Parts of this 
figure were drawn with MOLSCRIPT (69). 
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Figure 2.  CAIR Analogues and demonstration of their electron density.  (left) 
Chemical structures of AICAR, CAIR, and IMP with an asterisk marking the 
corresponding nucleophilic atoms.  (center) Chemical structures of 1-PIMP and N-
phosphoryl AICAR.  (right) Omit electron density covering the hydrated 1-PIMP-Mg2+ 
molecule and N-phosphoryl AICAR bound at the active site of eSS.  The contour level is 
at 1σ with a cutoff radius of 1 Å.  Parts of this figure were drawn with Xtalview (21). 
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Figure 3.  Stereoview of the active site of the PAICAR•ADP•Mg2+ complex.  Mg2+ at 
sites 1, 2 and 3 are filled circles.  Coordination bonds are dashed lines.  Adenosine is 
omitted for clarity and labeled as Ade.  The 5'-ribose moiety of PAICAR is labeled as 
RP.  Parts of this figure were drawn with Molscript (69). 
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Figure 4.  Stereoview of the superposition of AICAR•Mg2+ and PAICAR•Mg2+.  
Mg2+ at sites 2 and 3 in the two structures are nearly identical, so they are drawn as a 
single set of filled circles.  PAICAR is drawn in black lines and AICAR in grey lines. 
The rotation around the C2'-C1'-N1-C2 torsion angle is evident by looking at how well 
the 5'-ribose moieties overlay.  Parts of this figure were drawn with Molscript (69). 
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Figure 5.  Stereoview of the IMP•ADP•Mg2+ Complex.  Mg2+ at sites 1, 2 and 3 are 
filled circles.  Coordination bonds are dashed lines.  Adenosine is omitted for clarity and 
labeled as Ade.  IMP is drawn in black lines. The CAIR•ADP•Mg2+ structure of 2GQS is 
superimposed and CAIR is drawn in grey and magnesium site 2 in dashed grey lines.  
The formate ion that bridges sites 1 and 2 is not labeled for clarity, and the other binding 
site is abbreviated as “form.”  Parts of this figure were drawn with Molscript (69). 
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Fig. 6.  31P NMR spectrum of the γ-phosphorus of a 1:1 mixture of γ-16O/ γ-18O ATP 
each at 5mM (a), and 5mM γ-16O ATP (unlabeled) (b).  Both samples contained 50mM 
HEPES (pH 7.0),  10% D2O, 4mM KPi, and NaCl from HPLC isolation (see 
experimental procedures).  1mM DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid) was 
also added for indirect chemical shift referencing by use of 1D 1H NMR (parameters for 
calculation of a new SR value are listed in results).  
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Figure 7. 31P-NMR spectrums of the β-P18O4 peaks of purified γ-18O ATP from three 
different incubation conditions using eSS (left) and hSS (right).  (A) 5mM γ-18O ATP 
only, (B) 5mM γ-18O ATP, 5 mM L-aspartate; (C) 5mM γ-18O ATP, 1mM CAIR2,3; (D) 
depiction of the chemical shift of the β-phosphate peaks associated with movement of the 
β-γ bridging 18Oxygen to a terminal β-phosphate position.  γ-18O ATP incubation 
utilizing CAIR for hSS incorporated 10μM NAIR to prevent decarboxylation of CAIR by 
the AIRC half of the enzyme.  Arrows denote the original and chemical shifted peaks for 
(C). 
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Abstract 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase [EC 6.3.2.6, 5′-

phosphoribosyl-4-carboxy-5-aminoimidazole: L-aspartate ligase (ADP)] (hereafter, 

SAICAR synthetase) is a target in the treatment of cancer.  Conformational differences in 

SAICAR synthetases suggest significant conformational change attends the binding of 

the substrate 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).  The radius of gyration 

of the enzyme from Escherichia coli, as measured by dynamic light scattering, decreases 

in response to CAIR binding.  Alanine mutations of Asp36??, Arg94, Ser100, Asp175, 

Arg199, Lys211 and Arg215 (all in proximity to CAIR) cause up to a 95-fold increase in 

the Km for CAIR, but some (alanine mutations of Asp36, Lys211, and Arg215) cause 

more than 100-fold increases in the Km for L-aspartate with no effect on the Km of CAIR 

or ATP.  Additional mutations, which probe the interaction of Asp36 with hydrated Mg2+ 

associated with the 4-carboxyl group of CAIR, further implicate the 30s loop (residues 

31–43) as an important determinant in L-aspartate recognition.  Structural data presented 
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here reveal interactions involving Arg215 and the 30s loop with L-aspartate, and that 

maleate, a competitive inhibitor with respect to L-aspartate, binds to the β-carboxyl locus 

of the amino acid substrate.  These data support a mechanism in which CAIR organizes 

the active site for the productive binding of L-aspartate through its interactions with 

Arg215 and the 30s loop. 
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Introduction 

Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase (SAICAR2 synthetase), 

an enzyme in de novo purine biosynthesis, catalyzes the conversion of ATP, 4-carboxy-5-

aminoimidazole ribonucleotide (CAIR) and L-aspartate into 5-aminoimidazole-4-(N-

succinylcarboxamide) ribonucleotide (SAICAR), ADP, and Pi.  In bacteria such as 

Escherichia coli, the conversion of 5-aminoimidazole ribonucleotide (AIR) into SAICAR 

employs three single-function enzymes, PurK (AIR to N5-CAIR), PurE (N5-CAIR to 

CAIR), and PurC (CAIR to SAICAR) (5); whereas in vertebrates, a single enzyme 

catalyzes the transformation of AIR to SAICAR (1,2,4,62).  The chemistry of the AIR to 
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SAICAR transformation differs for vertebrate and bacterial systems, the latter using ATP 

and bicarbonate in the generation of N5-CAIR (3,41,62); whereas, the vertebrate enzyme 

uses carbon dioxide and AIR directly to make CAIR.  Fungi such as Candida albicans 

and Cryptococcus neoformans combine the PurK and PurE functions into a single protein 

but retain a single-function enzyme similar to that of the E. coli system for the synthesis 

of SAICAR from CAIR (38,39). 

Enzymes of de novo purine nucleotide biosynthesis are targets in the treatment of 

cancer and infectious disease.  Many cancers, for instance, have damaged salvage 

pathways for purine nucleotides and, hence, are more sensitive to the inhibition of de 

novo purine nucleotide biosynthesis than non-cancerous cells (13).  Blockage of purine 

metabolism in Candida albicans and Crypotcoccus neoformans attenuates 

meningoencephilitis infections in immune compromised rodents, even though these 

organisms are capable of salvaging purines from the host (63,64).  Similarly, mutant 

Brucella with a PurE gene knockout, but intact salvage pathways, exhibit diminished 

virulence.  Such mutants have been used in vaccines for humans and animals (65). 

L-Alanosine therapy shows promise as a treatment for certain types of leukemia 

and gliomas (13).  SAICAR synthetase in humans uses L-alanosine in place of L-

aspartate, forming the SAICAR analog, 5-aminoimidazole-4-(N-alanosylcarboxamide) 

ribonucleotide, a potent inhibitor of adenylosuccinate synthetase and adenylosuccinate 

lyase (25,27).  L-Alanosine is toxic to both cancerous and normal cells, but supplemental 

doses of deoxyadenosine ameliorates L-alanosine toxicity toward normal cells (25), 

allowing for the selective inhibition of cancer cell lines with homozygous deficiencies in 

methylthioadenosine phosphorylase (13). 
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L-Alanosine has potential as a drug because SAICAR synthetase is unable to 

distinguish it from L-aspartate (6).  In contrast, L-alanosine is a poor substrate for 

adenylosuccinate synthetase and aspartate carbamoyltransferase (66,67).  Hence, the 

recognition of L-aspartate in SAICAR synthetase must differ in some fundamental way 

from its recognition in these other systems.  Recent structures of E. coli SAICAR 

synthetase in complexes with ADP•Mg2+ and CAIR•ADP•Mg2+ infer a role for CAIR in 

the recognition of L-aspartate (35).  Reported here is a crystal structure of an L-

aspartate•sulfate•ADP•Mg2+ complex that confirms the interaction of Arg215 and 

residues 31–43 (30s loop) with the amino acid substrate.  The properties of mutant 

SAICAR synthetases are consistent with a mechanism in which the binding of CAIR 

brings Arg215 and the 30s loop into the active site.  The CAIR-induced conformational 

changes enable the productive binding of L-aspartate.  The enzyme interacts directly with 

only one of two oxygen atoms of the β-carboxyl group of L-aspartate, as opposed to more 

extensive recognition of the same moiety by adenylosuccinate synthetase and aspartate 

carbamoyltransferase.  The weak recognition of the β-carboxyl group by SAICAR 

synthetase may explain its inability to distinguish the true substrate from L-alanosine. 

 

Experimental Procedures 

Materials— L-Aspartate, L-malate, L-cysteine sulfinate, succinate, maleate, ATP, NADH, 

phosphoenolpyruvate, pyruvate kinase and lactate dehydrogenase came from Sigma, 5-

aminoimidazole-4-carboxamide-β-D-ribofuranoside (AICARs) from Toronto Research 

Chemicals, alkaline phosphatase from Roche, kanamycin sulfate from Gibco, E. coli 

strains BL21(DE3) and chemically competent DH5α from Invitrogen, isopropyl-β-D-
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thiogalactopyranoside (IPTG) from Anatrace, 2′-deoxyribonucleoside triphosphates and 

restriction endonuclease DpnI from New England Biolabs, PfuTurbo DNA polymerase 

from Stratagene, QIAprep Spin Miniprep kit for plasmid isolation from Qiagen, and Ni-

nitrilotriacetic acid (NTA)-agarose from Novagen.  L-Alanosine was obtained from the 

Drug Research and Development Branch, National Cancer Institute, Bethesda MD.  All 

other chemicals were of reagent grade.  The pET 28b vector containing the insert coding 

for eSS with an N-terminal hexahistidyl tag came from previous work (6).  Integrated 

DNA Technologies and the Iowa State University DNA Synthesis and Sequencing 

Facility generated oligonucleotide primers. 

Synthesis of CAIRs— AICARs (250 mg) was saponified for 4 hours in 6 M NaOH (4 mL) 

as described by Srivastava et al. (68) subject to modifications (6).  4 mL of pure ethanol 

was added (via syringe to avoid the introduction of O2) to the reaction mixture (under N2 

at 0 °C), then mixed vigorously.  The syrupy bottom phase was transferred by pipette to 

10 mL of pure ethanol in a dry 250 mL lyophilizer flask, and mixed with a magnetic stir-

bar.  The ethanol layer was discarded, and the remaining syrup triturated with 10 mL 

ethanol three times.  The resulting hard, light purple, glassy residue was triturated with 1–

2 mL of methanol, yielding a whitish-purple colloid.  Lyophilization provided a light 

purple hygroscopic substance, which was purified by DEAE chromatography, using a 

buffer of triethylammonium bicarbonate, pH 8.0.  CAIRs was collected and lyophilized 

as described previously (6). 

Synthesis of CAIR— 100 mg of purified CAIRs was phosphorylated by the procedure of 

Yoshikawa et al. (69) as modified by Meyer et al.  (5).  After lyophilization, CAIR was 

dissolved in 10 mM CHES, pH 8.5, to prevent decarboxylation (62), and stored at –80 ºC.  
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The concentration of CAIR was determined by the stoichiometric conversion of NADH 

to NAD+ using SAICAR synthetase and the coupling enzymes pyruvate kinase and 

lactate dehydrogenase and by chemical assays described previously (6).  Both procedures 

indicated concentrations of CAIR within 3% agreement. 

Construction of mutant SAICAR synthetases— Directed mutagenesis employed protocols 

from Stratagene using the Polymerase Chain Reaction (PCR), PfuTurbo DNA 

polymerase, 2′-deoxyribonucleoside triphosphates, template DNA (pET 28b vector 

containing the eSS insert with an N-terminal hexahistidyl tag), and primers and their 

reverse complements with the following sequences: 

D175A, 5′-GGTCTGATTCTGGTCGCGTTCAAGCTGG-3′,  

R199A 5′-CGGACGGTAGCGCCCTGTGGGACAAAGAAACG-3′;  

R94A 5′-GGTTGAGTGTGTCGTGGCGAACCGTGCTGCTGG-3′; 

S100A 5′-CCGTGCTGCTGGCGCTCTGGTGAAACGTC-3′; 

K211A 5′- 

GGACAAAGAAACGCTGGAGAAAATGGCGAAAGACCGTTTCCGCCAGAGC-3′;  

R215A 5′-GGACAAAGACCGTTTCGCGCAGAGCCTCGGTGGCCTGATCG-3′. 

D36N 5′-GATACGTCAGCAGGGAATGGCGCGCGCATTGAGCAG-3′;  

D36A 5′-GATACGTCAGCAGGGGCGGGCGCGCGCATTGAGCAG-3′ 

S33A 5′-CCGCAATGATACGGCAGCAGGGGATGGCGCGCGC-3′ 

Del30 (G35P, A38G, Δ36-37) 5′-

CGAATTCCGCAATGATACGTCAGCACCGGGCCGCATTGAGCAGTTTGATCGC

-3′ 
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A programmable thermocycler (BioRad iCycler) amplified mutant plasmids in a reaction 

volume of 50 µL.  Incubation of the reaction mixture with 20 U of DpnI for 2 hrs at 37 °C 

removed the template plasmid.  Cells were transformed into chemically competent E. coli 

DH5α cells and selected on Luria broth agar plates with kanamycin (30 μg/mL).  Plasmid 

purification employed the QIAprep Spin Miniprep kit.  Confirmation of all constructs 

was performed by sequencing of entire inserts by the Iowa State University DNA 

Synthesis and Sequencing Facility. 

Purification of E. coli SAICAR Synthetase— Single colonies of plasmid-transformed E. 

coli strain BL21 (DE3) were used as inoculants of overnight cultures of Luria broth 

containing 30 μg/mL kanamycin sulfate.  Each of 12 flasks containing 500 mL of Luria 

broth was inoculated with 5 mL of overnight culture and then grown with shaking (at 38 

°C) to an A600 of 1.0.  Cell cultures were cooled to 16 °C, induced with 0.25 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG), and allowed to grow with shaking for an 

additional 16 hours before harvesting by centrifugation. 

Harvested cell pellets were suspended in 80 mL of 20 mM KPi, 500 mM NaCl, 10 

mM imidazole, pH 8.0, and lysed with a French press at 20,000 psi.  After centrifugation 

at 15,000xg for 45 minutes, the cell-free extract was loaded onto a Ni-nitrilotriacetic acid-

agarose column and washed with 10 column volumes of lysis buffer (6).  A second wash 

with 10 column volumes of lysis buffer containing 40 mM imidazole was followed by the 

elution of SAICAR synthetase with lysis buffer containing 250 mM imidazole.  Protein 

purity and concentration was confirmed by sodium dodecylsulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and by Bradford assay, using bovine serum albumin as a 

standard (70). 
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Kinetic assays— Activity assays of each mutant used either a coupling system (5) or a 

direct assay (62).  All assays were done in triplicate at 37 °C, in a total volume of 1 mL, 

using 10, 25, 2, 5, 2, 35, 2, 10, 50, 200, and 50 µg of wild-type, S33A, D36A, D36N, 

Del30, R94A, S100A, D175A, R199A, K211A, and R215A enzyme, respectively.  1 and 

2 µg were used, respectively, to determine the Km of CAIR for the D36N and S33A 

mutants. The assay buffer contained 50 mM Tris·HCl, pH 7.8, and 6 mM MgCl2.  The 

concentration of one substrate was varied from 0.2xKm to 5xKm while holding the other 

two substrates constant at 5xKm.  Data were fit to the Michaelis-Menten equation with 

Grafit (71). 

The determination of inhibition mechanisms of analogs of L-aspartate employed 5 

concentrations of L-aspartate, varying from 0.2xKm to 5xKm, and 5 concentrations of the 

analog, varying from 1.6–16 mM (for maleate), 20–100 mM (for L-malate), and 20–100 

mM (for succinate).  Concentrations of CAIR and ATP were 5xKm.  Data were fit to 

models for competitive, noncompetitive, uncompetitive and mixed inhibition using 

Dynafit (72).  The model with the best fit and fewest adjustable parameters determined 

the kinetic mechanism of inhibition. 

Isolation of Sulfinate SAICAR Analog— Determination of mass of the product confirmed 

the enzyme-mediated reaction involving L-cysteine sulfinate.  The coupled assay system 

drove to completion a reaction of 10 mM L-cysteine sulfinate, 2 mM CAIR, 2 mM ATP, 

and 50 µg eSS in a volume of 1 mL.  After incubation with 1 U of alkaline phosphatase 

for 12 hrs at 37 °C, proteins were removed from the reaction mixture by the addition of 

100 µL of chloroform, followed by centrifugation.  Conversion of the nucleotides to their 

corresponding nucleosides by alkaline phosphatase enabled the chromatographic 
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resolution of product.  The supernatant fraction was loaded onto Tosohaus Toyopearl 

DEAE 650m resin, washed with 150 mM ammonium bicarbonate and eluted with a 

gradient of 150–300 mM ammonium bicarbonate, monitoring the eluent at a wavelength 

of 260 nm.  Pooled fractions were lyophilized, twice re-suspended in 10% ammonium 

hydroxide and lyophilized, and finally dissolved in 3 mL of de-ionized water and 

lyophilized again.  The Proteomics Facility of the Iowa State University Plant Sciences 

Institute performed mass spectroscopic analyses. 

Circular Dichroism— A Jasco J-710 spectropolarimeter provided CD spectra (190–260 

nm) for mutant and wild-type enzymes.  Proteins (5 µM) were in 5 mM KCl, 5 mM 

Tris·HCl, pH 7.8 (temperature and sample volume of 25 °C and 175 µL, respectively).  

Spectra from buffer without protein provided baseline corrections. 

Dynamic Light Scattering— Concentrations of ADP, CAIR, and/or L-aspartate were 1, 

0.5, and 5 mM, respectively, in solutions containing SAICAR synthetase (2 mg/ml), 6 

mM MgCl2, 10 mM Hepes, pH 7.8, and 1 mM dithiothreitol (DTT).  Centrifugation of 

samples and rinse water in a high-speed bench-top centrifuge for 15 minutes removed 

dust.  High baseline counts or large fluctuations over time indicated dust contamination 

and necessitated repeated washings of the cuvette with dust-free water.  Data were 

collected from sample volumes of 12 µL using a Proteins Solutions Dynapro Light 

Scattering instrument.  Acquisitions employed 100% laser power at 25 ºC with final mass 

calculations using between 113–884 scans.  Data were analyzed using Dynamics V6 

software assuming an isotropic sphere model.  Anomalous scans were excluded prior to 

the calculation of mass.  For each condition of ligation, final mass numbers came from 

triplicate runs performed on different days and from different protein preparations. 

 



 122  
 

Crystallization— Crystals were grown by the method of hanging-drop vapor diffusion in 

VDX-plates (Hampton Research).  For the maleate•CAIR•ADP•Mg2+ complex, 2 μL of 

protein solution (15 mg/mL protein, 15 mM Tris·HCl, 25 mM KCl, 100 mM MgCl2, 50 

mM ADP, 2 mM CAIR, 300 mM maleate, 5 mM dithiothreitol, and 5 mM EDTA, pH 

8.0) were mixed with 2 μL of well solution (3.4–3.8 M sodium formate and 50 mM 

Tris·HCl, pH 8.5) and allowed to equilibrate against 0.5 mL of well solution.  Single 

crystals of equal dimensions grew to 0.2–0.3 mm within 72 hrs.  For the L-

aspartate•sulfate•ADP•Mg2+ complex, 2 μL of protein solution (15 mg/mL protein, 15 

mM Tris·HCl, 25 mM KCl, 50 mM MgSO4, 25 mM ATP, 1.5 mM CAIR, 5 mM 

dithiothreitol, and 5 mM EDTA, pH 8.0) were mixed with 2 μL of well solution (24-33% 

PEG 8000, 0.7 M L-aspartate, 50 mM sodium cacodylate, pH 6.5) and allowed to 

equilibrate against 0.5 mL of well solution.  Single crystals grew within five days. 

Data Collection— Maleate•CAIR•ADP•Mg2+ Crystals were transferred to a 

cryoprotectant solution containing 4 M sodium formate, 50 mM Tris·HCl, pH 8.5, 100 

mM MgCl2, 25 mM ADP, 1 mM CAIR, 300 mM maleate and 10% (w/v) sucrose.  L-

aspartate•sulfate•ADP•Mg2+ crystals were transferred to well solution supplemented with 

10% sucrose and the ligands present in the protein solution.  After approximately 30 

seconds of equilibration, crystals were plunged into liquid nitrogen.  Data were collected 

at Iowa State University from a single crystal (temperature, 115 K) on a Rigaku R-AXIS 

IV++ rotating anode/image plate system using CuKα radiation from an Osmic confocal 

optics system.  Data were processed and reduced using the program package CrystalClear 

provided with the instrument.  The CCP4 program TRUNCATE (73) converted 

intensities to structure factors. 
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Structure Determination and Refinement— Structure determination employed the 

CAIR•ADP•Mg2+ complex (PDB ascension identifier 2GQS, less ligands and water 

molecules) in molecular replacement phasing.  Crystals of the L-

aspartate•sulfate•ADP•Mg2+ complex, maleate• CAIR•ADP•Mg2+, and CAIR•ADP•Mg2+ 

complex are isomorphous, having a complete dimer in the asymmetric unit.  Inspection 

(using XTALVIEW(74)) revealed excellent agreement between electron density and 

model.  Refinement without non-crystallographic restraints employed CNS (75) and 

simulated annealing (starting temperature of 500 K) with slow cooling in increments of 

25 K to a final temperature of 300 K, followed by 100 steps of conjugate gradient energy 

minimization.  Individual thermal parameters were refined after each cycle of simulated 

annealing and subject to the following restraints: bonded main-chain atoms, 1.5 Å2; angle 

main-chain atoms, 2.0 Å2; bonded side-chain atoms, 2.0 Å2; and angle side-chain atoms, 

2.5 Å2.  Water molecules were automatically added using CNS if a peak greater than 3.0σ 

was present in Fourier maps with coefficients (Fobs–Fcalc) eiαcalc.  Finally, a model for the 

ligands were fit to omit electron density.  Refined water sites further than 3.2 Å from a 

hydrogen-bonding partner or with thermal parameters in excess of 50 Å2 were eliminated  

The contribution of the bulk solvent to structure factors was determined using the default 

parameters of CNS.  Constants of force and geometry for the protein came from Engh 

and Huber (76) and those for ADP, CAIR, and maleate from CNS resource files with 

appropriate modification of dihedral angles of the ribosyl moiety to maintain a 2′-endo 

ring conformation.  Superposition of structures employed routines in the CCP4 suite of 

programs. 
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Results 

Purity and conformational status of enzymes— Wild-type and mutant SAICAR 

synthetases were at least 95% pure on the basis of sodium dodecylsulfate polyacrylamide 

gel electrophoresis (SDS-PAGE).  Circular dichroism spectra of the alanine mutations of 

Arg94, Ser100, Arg199, Lys211 and Arg215 are identical to that of the wild-type 

enzyme.  The D175A enzyme, although active upon elution from Ni-nitrilotriacetic acid-

agarose, precipitated during dialysis into a buffer suitable for recording a CD spectrum.  

Hence, changes in kinetic parameters due to the mutation at position 175 may be due to 

long-range perturbations in structure.  CD spectra were not recorded for the D36N, 

D36A, S33A, or Del30 enzymes, but the D36N and S33A enzymes had kcat values 

comparable to those of wild-type enzyme, and the D36A and Del30 enzymes crystallized 

under wild-type conditions and gave structures identical to the wild-type enzyme except 

in close proximity to the 30s loop3.  Apparent masses of wild-type SAICAR synthetase 

decrease significantly with addition of saturating levels of CAIR and/or ADP, with or 

without L-aspartate (Table 2). 

General Structural Features of Ligand Complexes of eSS— An eSS homodimer occupies 

the crystallographic asymmetric unit in the maleate•CAIR•ADP•Mg2+ and L-

aspartate•sulfate•ADP•Mg2+ complexes reported here (Fig. 1).  Statistics of data 

collection and refinement for the structures are in Table 1.  The subunits are identical 

within the coordinate uncertainty.  Electron density is not present for the hexahistidyl tag; 

however, observable electron density begins with M1 and continues to the C-terminal 

D237.  The protein component of the four different complexes is nearly identical to that 

of the CAIR•ADP•Mg2+ structure (2GQS) (35).  Superposition of all Cα positions of the 
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A subunit of each complex against the CAIR•ADP•Mg2+ structure gives root-mean-

squared deviations of 0.3 Å for both structures.  We focus here on the interactions of L-

aspartate and maleate, referring the reader to the published CAIR•ADP•Mg2+ complex 

for additional information (35). 

L-Aspartate•Sulfate•ADP•Mg2+ Complex— Electron density for ADP, sulfate (or 

phosphate), and Mg2+ in sites 1 and 3 are present in both subunits, but only in subunit A 

does electron density appear for L-aspartate.  Under the conditions of crystallization, 

CAIR (approximately 1.5 mM) should go quantitatively to SAICAR, but L-aspartate 

(approximately 700 mM) is in great excess and evidently exchanges with SAICAR to 

give the observed complex.  The α-carboxyl group of L-aspartate interacts with atom OG 

of Ser33 and the backbone amides of Gly35 and Asp36.  One oxygen atom of the β-

carboxyl group forms hydrogen bonds with the backbone amide of Gly35 and atom NE 

of Arg215.  The α-amino group of L-aspartate interacts with the oxygen atom of the 

sulfate and with its own α-carboxyl group. 

The superposition of the PAICAR•ADP•Mg2+ complex onto the L-

aspartate•sulfate•ADP•Mg2+ complex (Figure 1) reveals sulfate in a location and 

orientation nearly identical to that of N-phosphoryl groups of PAICAR.  PAICAR is an 

analogue of the putative phosphoryl intermediate of CAIR.  Magnesium at site 3 in the L-

aspartate complex has the same set of inner sphere ligands as in the PAICAR•ADP•Mg2+ 

complex except for a water molecule in place of the carbonyl group of PAICAR.  

Although no metal is present in site 2, the carboxyl group from Asp36 (30s loop) 

interacts with a water molecule coordinated with Mg2+ at site 3, analogous to interactions 

in the PAICAR complex.  The α-amino of L-aspartate is 3.7 Å from the exocyclic amino 
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group, 2.6 Å from the carbon atom of the phosphoramide moiety of PAICAR, and ?? Å 

from the nitrogen atom of the phosphoramidate bond.  The geometry is favorable for a 

nucleophilic attack of the α-amino group of L-aspartate on the carbon atom of a putative 

phosphoryl intermediate of CAIR. 

Maleate•ADP•CAIR•Mg2+ Complex— Maleate binds near the 4-carboxyl group of CAIR.  

Donor-acceptor interactions involve one of its carboxyl groups with Arg215, the 

backbone amide of Asp36, and two water molecules near the 4-carboxyl group of CAIR.  

The other carboxyl group interacts with the backbone amide of Gly35 (Figure 2).  

Modeling L-aspartate onto the maleate molecule puts the α-amino group of the substrate 

some 4–5 Å from the carbon atom of the 4-carboxyl group of CAIR.  Maleate in the 

crystal structure does not represent productively bound L-aspartate.  The water molecules 

in proximity to the 4-carboxyl group of CAIR and the aforementioned carboxyl group of 

maleate partially block the L-aspartate pocket.  A water-maleate complex then appears 

responsible for the competitive inhibition of SAICAR synthetase with respect to L-

aspartate. 

Kinetics of Wild-type and Mutant Synthetases— In the absence of CAIR, mutant and 

wild-type enzymes cause no significant hydrolysis of ATP; however, S33A, D36A, 

Del30, R94A, D175A, R199A, and K211A enzymes exhibit CAIR-dependent hydrolysis 

of ATP.  CAIR-dependent ATP hydrolysis proceeds in the absence of L-aspartate, hence 

SAICAR cannot be formed.  For some mutant enzymes (R94A, R199A, and K211A), the 

rate of CAIR-dependent hydrolysis of ATP is less than 5% of the rate of ATP hydrolysis 

in the presence of maximum substrate concentrations.  Hence, for these and constructs 

that exhibit no measurable CAIR-dependent ATP hydrolysis (R215A, D36N, and wild-

 



 127  
 

type enzymes), determinations of Km and kcat employ coupled assays, assuming the equal 

molar formation of ADP and SAICAR (Table 3). 

The rate of CAIR-dependent hydrolysis of ATP for the D175A enzyme is 50% of 

the rate of ATP hydrolysis in the presence of saturating substrates.  The coupled assay 

then overestimates the rate of formation of SAICAR by the D175A enzyme, particularly 

at low concentrations of L-aspartate.  Moreover, high apparent Km values for CAIR and 

ATP for the Ala175 enzyme make the direct assay unfeasible, as optically-dense 

solutions mask increases in absorbance due to the formation of SAICAR.  Hence, kinetic 

parameters in Table 3 for the Ala175 enzyme may be subject to systematic errors beyond 

those implied by their standard deviations. 

Aside from the D175A enzyme, mutant SAICAR synthetases here show little 

change in their Km values for ATP, the largest effect (3-fold increase) due to the R94A 

mutation.  On the other hand, Km values for CAIR increase 71-, 5-, and 14-fold for the 

R94A, S100A, and R199A enzymes, respectively.  Km values for L-aspartate increase 26-, 

13-, 3-, 32-fold, for alanine mutations of Ser33 Arg94, Ser100, and Arg199, respectively, 

and K211A and R215A enzyme activities exhibit no signs of saturation up to 50 mM L-

aspartate.  (In assaying enzyme activity at high concentrations of L-aspartate, the coupled 

and direct assays are within 5% agreement in values for kcat and Km values for ATP and 

CAIR).  At a concentration of 50 mM L-aspartate, the K211A and R215A enzymes show 

saturation kinetics at wild-type levels of CAIR and ATP (Table 3). 

D36A and Del30 enzymes exhibit a peculiar phenomenon.  In the direct assay, 

absorption at 282 nm increases in the presence of ATP and CAIR without L-aspartate.  

Addition of L-aspartate did not significantly alter the time-dependent increase in 
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absorption.  Additionally, the D36A and Del30 enzymes exhibit CAIR-dependent 

hydrolysis of ATP in the absence of L-aspartate.  With the addition of L-aspartate, the 

hydrolysis of ATP increases by less than 50%.  Hence, neither the direct- nor coupled-

assay could provide data free of systematic errors due to reactions that on the one hand 

consume ATP, but on the other lead to a UV-absorbing product that cannot be SAICAR. 

The effect on kcat varies significantly due to the mutations of the three side chains 

that hydrogen bond to the 5′-phosphoryl group of CAIR.  The S100A enzyme exhibits a 

slight decrease in kcat relative to the wild-type enzyme, whereas the R94A and R199A 

enzymes are less active by a 7- and 48-fold, respectively.  The K211A and R215A 

synthetases have the least activity, exhibiting pseudo first-order rate constants (obtained 

in the presence of saturating concentrations of CAIR and ATP) of 60- and 120-fold 

lower, respectively, than kcat for the wild-type enzyme.  The D36N and S33A enzymes in 

the 30s loop had little effect on kcat. 

Kinetics of wild-type synthetase with analogs of L-aspartate— E. coli SAICAR synthetase 

cannot distinguish between L-aspartate and L-alanosine (Table 4, identical Km and kcat 

values within experimental uncertainty).  L-cysteine sulfinic acid, having –SO2H in place 

of the β-carboxyl group of L-aspartate, exhibits a 12-fold increase in its Km relative to that 

of L-aspartate, and a kcat value identical (within experimental error) to that of L-aspartate.  

The reaction with L-cysteine sulfinic acid was verified by an alkaline phosphatase digest 

of the product, followed by purification and analysis by mass spectroscopy.  The 

observed mass number of the nucleoside (395 amu) agrees with the expected mass 

number of the fully protonated [MH]+ form of the nucleoside.  Maleate, L-malate and 

succinate are competitive inhibitors with respect to L-aspartate, with maleate being the 
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most potent inhibitor (Table 4).  Unlike the yeast enzyme, L-malate was not a substrate of 

the E. coli enzyme, producing no products even under prolonged incubation at 

concentrations of up to 100 mM.  Fumarate does not inhibit the E. coli enzyme at 

concentrations up to 100 mM. 

 

Discussion 

SAICAR synthetase from E. coli has a Rapid Equilibrium Random kinetic mechanism 

(6).  Under this model, the kcat values presented in Table 3 are rate constants for the 

transformation of the enzyme-substrate complex into the enzyme-product complex, and 

the Michaelis constants for CAIR, ATP and L-aspartate are dissociation constants for 

each substrate from the complete substrate-enzyme complex.  For rapid equilibrium 

mechanisms, changes in kcat and Km reflect changes in enzyme stabilization of the 

transition state and ligand affinity, respectively. 

Mutations of Arg94, Ser100, and Arg199, each of which binds the 5′-phosphoryl 

group of CAIR, increase the dissociation of CAIR from the fully ligated enzyme and 

destabilize the transition state.  Mutations at positions Arg94 and Arg199 also cause a 

relatively large increase in the Km for L-aspartate, but the effect must be indirect because 

bound aspartate does not interact directly with Arg94 or Arg199.  The binding of CAIR 

does appear to be important in the ordering the 30s loop, which interacts with L-aspartate 

extensively (35).  Alanine mutations of Lys211 or Arg215 eliminate substrate saturation 

by L-aspartate.  Mutations at five positions, then, elevate the Km for L-aspartate, and three 

(Arg94, Arg199 and Arg215) of the four residues interact directly with CAIR.  The most 

straightforward explanation is a CAIR-dependent association of L-aspartate: the 2′-
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hydroxyl group of CAIR, (which directly binds to Arg215) may position Arg215 and 

Lys211 for the productive association of L-aspartate. 

The role proposed for CAIR seems inconsistent with a Random kinetic 

mechanism for the wild-type enzyme (6).  Random mechanisms have multiple pathways 

connecting the free enzyme to the complete enzyme-substrate complex.  Flux through 

each of these pathways need not be equal.  In the case of E. coli adenylosuccinate 

synthetase, for instance, IMP and GTP bind before L-aspartate in an overwhelming 

fraction of the turnovers (77).  Hence, by analogy the binding of CAIR and ATP could 

precede the binding of L-aspartate in the vast majority of catalytic cycles.  Human 

SAICAR synthetase interestingly adopts a Steady State Ordered mechanism in which 

CAIR binds first and L-aspartate last (78).  In fact helix α5, which contains Lys211 

Arg215, is disordered in crystal structures from Thermatoga maritima and Homo sapiens 

(11,12).  This helix is a part of the CAIR binding pocket and interacts with the 30s loop 

and L-aspartate (35). 

Nelson et al. (6) suggest a critical role for the α-amino group in the recognition of 

L-aspartate.  Succinate should maintain the interactions of the carboxyl groups of the 

substrate without the steric repulsion of the α-amino group.  Given the virtual absence of 

succinate inhibition of SAICAR synthetase (Table 4), interactions contributed by the α-

amino group of L-aspartate must be critical to the stability of the ground-state complex.  

Indeed, the structure here seems rigid; the binding of succinate should create a one-atom 

void at the α-amino locus, easily sufficient to destabilize the complex (79).  Bound L-

malate would replace an amino group with a hydroxyl group, but also introduce a close 

contact involving the lone pair orbitals of that hydroxyl group and one of the Mg2+-
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coordinated water molecules.  Hadacidin (N-formyl-N-hydroxyglycine), which retains 

only the β-carboxyl group of L-aspartate, diverges from L-aspartate at the α-amino and α-

carboxyl groups.  The N-hydroxyl group of hadacidin can bind either at the α-amino 

locus, and suffer the same poor non-bonded contact as the hydroxyl group of L-malate, or 

at one of the carboxyl loci, leaving a one-atom void at the α-amino locus.  Hence, the 

lack of significant inhibition by hadacidin, succinate, and L-malate are attributable to 

improper fits to the α-amino locus. 

The binding of L-aspartate as represented in the L-aspartate•sulfate•ADP•Mg2+ 

complex reveals how the amino acid substrate interacts with the protein.  It demonstrates 

that the positioning of the α- and β-carboxyl groups is performed by the side chains of 

Ser33 and Arg215, as well as amides from the peptide linkages of the 30s loop.  A model 

has been created superimposing the PAICAR•ADP•Mg2+ structure (an analogue of the 

proposed PCAIR intermediate) and the L-aspartate•sulfate•ADP•Mg2+.  The ADP 

molecule and magnesium ions map to identical positions in the PAICAR complex.  The 

sulfate maps to the N-phosphoryl group of PAICAR.  The result is a model of the fully-

ligated SAICAR synthetase active site immediately preceding the attack by L-aspartate.  

The enzyme can enhance catalysis by pulling negative charge from the C4 atom of the 

phosphoryl intermediate of CAIR and by hydrogen bonding to the protons of the α-amino 

group of L-aspartate, positioning the lone-pair orbital for attack on the C4 atom.  Mg2+ at 

sites 2 and 3 enhance the electrophilicity of the C4 atom.  The phosphoryl group of the 

intermediate also acts to pull charge from the atom C4 through induction and provides a 

leaving group of low energy. 
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The model places the α-amino group of L-aspartate 2.6 Å away from the 

electrophilic C4 atom with a geometry favorable for the formation of a tetrahedral 

transition state.  The α-amino of L-aspartate is 2.9 Å from nitrogen atom of the N-

phosphoryl group of PAICAR, suggesting a possible path for proton transfer from the α-

amino group of l-aspartate to the ester oxygen atom of the phosphoryl intermediate of 

CAIR.  Alternatively, that same hydrogen atom from the α-amino group could participate 

in bifurcated hydrogen bond with one of the terminal oxygen atoms of the phosphoryl 

leaving group and the α-carboxyl group of L-aspartate. 

As maleate is a competitive inhibitor with respect to L-aspartate (Table 4), it 

interacts with some of the elements that recognize the natural substrate.  Its position 

overlaps the binding locus for the β-carboxyl group of L-aspartate.  Maleate appears to 

bring in several water molecules that occupy the binding locus for the α-carboxylate of L-

aspartate and interact with the C4 carboxyl group of CAIR. 

The expected mass of a hexahistidyl-tagged subunit is 29.5 kDa, and hence the 

dimer observed in crystals structures should exhibit a mass of 59 kDa.  Data from light 

scattering are consistent with a dimer in the absence of ligands, but indicate a decrease in 

apparent mass and radius of gyration in response to the addition of ligands.  These 

changes in apparent mass and size are consistent with a conformational transition from an 

expanded dimer in the absence of ligands to a more compact dimer in the presence of 

ligands.  As noted in the results section, the SAICAR-synthetase dimer of T. maritima, 

and now more recently the human bifunctional enzyme (12), is conformationally open 

relative to the ligated dimer of eSS (11,12,35).  Hence, the reduction in the radius of 
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gyration of eSS could reflect a transition from a loosely folded state much like ligand-free 

tSS to a more compact and organized structure. 

The properties of the Ala175 mutant protein suggest an important role for this 

residue in stabilizing the enzyme.  More significantly perhaps is the CAIR-dependent/L-

aspartate-independent hydrolysis of ATP exhibited by S33A, D36A, Del30, R94A, 

D175A, R199A, and K211A enzymes.  Firstly, these enzymes do not hydrolyze ATP in 

the absence of CAIR, but require CAIR to enable ATP hydrolysis.  For these mutant 

enzymes bound CAIR activates catalysis, but either allows water to compete with the 4-

carboxyl group of CAIR for the γ-phosphoryl group of ATP or allows hydroxide to attack 

the carbonyl phosphate of CAIR.  Conceivably, an analog of CAIR could activate the 

catalytic machinery of the synthetase, resulting in the unproductive hydrolysis of ATP.  

Such an analog would be harmful to cells both as an inhibitor of purine nucleotide 

biosynthesis and by depleting ATP. 

SAICAR synthetase and adenylosuccinate synthetase from E. coli have Rapid 

Equilibrium Random kinetic mechanisms (6,77).  For adenylosuccinate synthetase, L-

aspartate binds last in the preferred pathway of substrate addition (54), and quite likely 

SAICAR synthetase also favors kinetic pathways in which L-aspartate binds last.  The 

two enzymes in all likelihood catalyze the transfer of the γ-phosphoryl group of a 

nucleoside triphosphate (GTP for adenylosuccinate synthetase and ATP for SAICAR 

synthetase) to a nucleotide acceptor to form phosphoryl intermediates (6-phosphoryl-IMP 

and the carbonyl phosphate of CAIR in the former and latter systems, respectively) 

(6,48).  Crystallographic structures and directed mutations of adenylosuccinate synthetase 

indicate a significant role for the 5′-phosphoryl group of IMP in organizing the active site 
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of the enzyme (52,80-82).  Activation of the catalytic machinery by the binding of the 

nucleotide acceptor would in principle reduce unproductive hydrolysis of the nucleoside 

triphosphate.  Work here suggests that CAIR could also organize the active site of 

SAICAR synthetase.  Finally, the 2′-hydroxyl group of bound IMP interacts with an 

arginyl side chain (residue 303 in E. coli adenylosuccinate synthetase) essential to the 

recognition of L-aspartate (82,83).  Similarly, SAICAR synthetase uses the 2′-hydroxyl 

group of CAIR to localize an arginyl side chain (Arg215) that is essential for the binding 

of L-aspartate (35). 

These similarities probably have not come about through divergent evolution 

from a common primordial ancestor: the folds of the polypeptide chains for 

adenylosuccinate synthetase and SAICAR synthetase differ significantly, suggesting the 

pre-existence of a chemical mechanism that was recognized in early times by at least two 

different proteins.  Perhaps initially, these proteins did little more than bind unstable 

phosphoryl intermediates, protecting them from unproductive hydrolysis.  In these 

primordial systems, the recognition of L-aspartate may have begun through a fortuitous 

hydrogen bond with the 2′-hydroxyl group of the phosphoryl intermediate. 
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Table I. Statistics of Crystallographic Data Collection and Refinement 

Ligand Complex Maleate, CAIR, 
ADP, Mg2+  

L-aspartate, CAIR, 
ADP, Mg2+

Space Group P212121 P212121

Unit Cell Parameters a=59.29, b=67.18, 
c=145.83 

a=59.31, b=67.67, 
c=148.36 

Resolution 61.02 – 2.07  (2.18 
– 2.07) 

61.57 – 2.30     
(2.48 – 2.30) 

Reflections 201,911 189,939 

Unique Reflections 33,423 27,228 

% Completeness 92.3 (64.4) 99.9 (99.9) 

Rmerge
a 0.080 (0.243) 0.073 (0.243) 

No. of atoms 4,216 4,075 

No of solvent sites 283 194 

Rfactor
b 21.6 20.8 

Rfree
c 26.0 25.0 

Mean B for protein (Å2) 30.2 26.0 

Mean B for ligands (Å2) 27.4 30.7 

Mean B for waters (Å2) 31.7 32.0 

   Bond lengths (Å) 0.006 0.007 

   Bond angles (deg.) 1.2 1.3 

   Dihedral angles (deg.) 22.7 22.8 

   Improper angles (deg.) 0.73 1.41 

Table II. Footnotes. 
a Rmerge = ΣjΣi | Iij - <Ij> | /ΣiΣjIij, where i runs over multiple observations of the same 
intensity, and j runs over all crystallographically unique intensities. 
b Rfactor = Σ || Fobs | - | Fcalc || /Σ | Fobs |, where | Fobs | > 0. 
c Rfree based upon 10% of the data randomly culled and not used in the refinement. 
 

 

 



 140  
 

Table 2.  Variation of radius of gyration and apparent molecular weight with 
ligation of E. coli SAICAR synthetase. 

 

Ligands Radius (nm) Molecular weight (kDa) 

none 3.55±0.01 65.1±0.4 

ADP 3.43±0.02 60.2±0.6 

CAIR 3.38±0.01 58.6±0.9 

CAIR, L-aspartate 3.39±0.04 59±2 

ADP, CAIR 3.36±0.04 58.0±2 

ADP, CAIR, L-aspartate 3.38±0.04 58±2 
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Table 3.  Kinetic Parameters of wild-type and mutant SAICAR synthetases. 

Construct 
Km ATP 

(µM) 

Km CAIR 

(µM) 

Km L-aspartate 

(mM) 

kcat
c 

(s–1) 

Wild-type 50 ± 5 4.1 ± 0.8 0.72 ± 0.06 6.2 ± 0.2 

Arg94→Ala 150 ± 10 290 ± 50 9 ± 3 0.9 ± 0.1 

Ser100→Ala 46 ± 6 19 ± 2 2.06 ± 0.05 5.9 ± 0.2 

Asp175→Alaa 420 ± 20 380 ± 30 0.6 ± 0.1 3.00 ± 0.07 

Arg199→Ala 50 ± 7 58 ± 5 23 ± 3 0.13 ± 0.01 

Arg215→Alaa 26 ± 2 5.2 ± 0.5 NA 0.094 ± 0.002

Lys211→Alaa 23 ± 3 6.0 ± 0.6 NA 0.049 ± 0.002

Asp36→Asn 38 ± 4 2.3 ± 0.5 0.9 ± 0.1 3.5 ± 0.1 

Asp36→Alab NA NA NA NA 

Del30b NA NA NA NA 

Ser33→Alab 65 ± 2 4.8 ± 0.8 19 ± 6 4.4 ± 0.4 

 
Table 3.  Footnotes. 
aPsuedo first-order in L-aspartate from 1–50 mM with ATP and CAIR at concentrations 
of 260 and 50 µM, respectively.  The parameter kcat for this mutant enzyme is the slope of 
the linear variation of initial velocity vs. the concentration of L-aspartate with ATP and 
CAIR at concentrations of 260 and 50 µM, respectively.  Km values for CAIR and ATP 
are determined at an L-aspartate concentration of 50 mM.  
bΔA282 observed when in the presence of ATP and CAIR alone. 
cValues for kcat come from data taken at saturating CAIR and ATP, and varied 
concentrations of L-aspartate. 
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Table 4.  Recognition of L-aspartate analogs by wild-type SAICAR synthetase from 
E. coli. 

 

Substrate/Inhibitor Km or Ki (mM) 

L-Aspartatea 0.77±0.08 

L-Alanosinea 0.83±0.05 

L-Cysteine sulfinatea 5.6±0.3 

L-Malateb 20±1 

Maleateb 1.6±0.3 

Succinateb 64±5 
 

Table 4.  Footnotes. 
akcat value identical (within experimental error) to that of the wild-type enzyme in Table 3. 
bLinear competitive inhibitor with respect to L-aspartate. 
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Figure 1.  Structural and conformational variation in microbial SAICAR 
synthetases.  Stereoview of elements putatively involved in the binding of L-aspartate for 
the synthetases from E. coli (PDB identifier 2GQS, black trace with residues 211&215), 
S. cerevisiae (PDB identifier 1OBG, grey trace with residues 260&264), and T. maritima 
(PDB identifier 1KUT, white trace with residues 203&207) (left).  Helix α5 specifically 
exhibits significant conformational variation.  Overview of the synthetase from E. coli, 
placing regions of conformational change in the context of the ADP•CAIR-ligated dimer 
(right). 
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Figure 2.  Stereoview of the productive binding of L-aspartate to the active site of E. 
coli SAICAR synthetase.  Dashed lines indicate donor–acceptor interactions, with L-
aspartate labeled L-asp.  Mg2+ ions are grey-shaded spheres.  Magnesium site 1 is not 
labeled for clarity.  This figure was draw with MOLSCRIPT (84) 
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Figure 3.  Crystal structure of the maleate•ADP•CAIR complex of E. coli SAICAR 
synthetase.  Stereoview of maleate (labeled MAL) in the active site (left).  Mg2+ ions are 
grey-shaded spheres and water molecules open spheres.  Dashed lines indicate donor–
acceptor interactions involving maleate.  This image was draw with MOLSCRIPT (84).  
Omit electron density associated with bound maleate contoured at 1σ with a cutoff radius 
of 1 Å (right).  This image was draw by XTALVIEW (74). 

 



 146  
 

Chapter VI. General Conclusions 

 
 Studies described here mark a significant expansion of our understanding of the 

reaction of SAICAR synthetase.  Prior to this work, little was understood about the 

substrate binding of CAIR, and L-aspartate.  Some information was present for the 

binding of adenine nucleotide and Mg2+ at site 1, but there was ambiguity as to what the 

correct binding mode was.  Additionally, significant conformational differences existed 

in regions near portions of the enzyme proposed to be the active site. 

 This work was the first to demonstrate CAIR binding in the enzyme and revealed 

the interaction of two previously unknown Mg2+ ions with this substrate.  The residues 

interacting with Mg2+ ions are conserved and, along with the C7 carboxyl oxygen of 

CAIR, define two binding sites, known as sites 1 and 2.  The structure of CAIR, Mg2+, 

and ADP formed the basis for a phosphoryl transfer model.  This model presented inline 

geometry between the carboxyl carbon of CAIR and the oxygen leaving group of the β-

phosphoryl group of ATP.  Extensive metal interactions of good geometry as well as 

three lysines from the protein stabilize the charge on the modeled phosphoryl 

intermediate.  The identity of the CAIR binding site was confirmed kinetically by the 

significant increase of Km observed in mutations of residues that interacted with 5′-

phosphoryl group of CAIR in the crystal structure. 

 The co-crystallization of SAICAR synthetase with CAIR analogues, AICAR and 

IMP, and adenine nucleotides revealed the N-linked phosphoryl intermediates, PAICAR 

and 1-PIMP.  These intermediates were phosphorylated at positions structurally 

analogous to the carboxyl position of CAIR modeled in the previous phosphoryl transfer 

model.  Although a phosphoryl-CAIR intermediate could not be trapped, these 
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intermediates demonstrated that similar compounds could be formed by the enzyme.  

Perhaps their persistence in the active site is related to an intrinsically more stable N-P 

bond linkage.  The interactions of the phosphoryl group were similar to that of the 

phosphoryl intermediate that was modeled as described above, except Lys123 was not 

found to interact with the phosphoryl intermediate and the base of the phosphorylated 

intermediate was tilted relative to the substrate. 

 Evidence for the formation of a PCAIR intermediate was demonstrated using 

positional isotope exchange (PIX).  If bond cleavage happens between the β- and γ-

phosphoryl groups and a stable intermediate is formed when enzyme is mixed with γ-18O- 

ATP, PIX can be observed.  This is caused by the rotation around any of the remaining 

phosphoryl group bonds of ADP moving the bridging 18O into a non-bridging position 

and an 16O into the bridging position.  If the system is at equilibrium and the ATP is in 

significant exchange with the bulk solvent, significant isotope scrambling can be 

observed.  The two species, 18O in the bridging position or 16O in the bridging position, 

have different chemical shifts in 31P NMR.  When γ-18O-ATP or a mixture of L-aspartate 

and γ-18O- ATP are mixed with enzyme, no scrambling occurs.  When γ-18O-ATP is 

mixed with CAIR and enzyme, scrambling is observed, indicating that CAIR is necessary 

for a phosphoryl intermediate to be formed.   

 Finally, the L-aspartate binding site was observed through crystal structures as 

well as site-directed mutagenesis.  Co-crystallization of the E. coli enzyme with CAIR, 

ATP, MgSO4, and L-aspartate yielded ADP, Mg2+, sulfate, and L-aspartate in the active 

site.  The sulfate group superimposes where the phosphoryl groups of PAICAR and 1-

IMP are within coordinate uncertainty.  This revealed extensive interactions with the 30s 
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loop, as well as the contribution of binding from residues Lys211 and Arg215 of the α5 

helix.  Site directed mutations in those regions revealed a functional impact on L-

aspartate binding.  

 Prior to the commencement of this work, the kinetic mechanism of E. coli 

SAICAR synthetase was determined by members from the lab.  It was found to be 

Sequential Rapid Equilibrium Random.  Work on the kinetic mechanism of the human 

homologue commenced thereafter.  Human SAICAR synthetase activity is paired on a 

single polypeptide with AIR carboxylase activity, therefore the decomposition of CAIR 

to AIR competes for substrate when trying to characterize the SAICAR synthetase 

reaction.  In order to prevent this NAIR (a nitro analogue of CAIR) which potently and 

specifically inhibits the AIR carboxylase reaction was used.  Another strategy for 

removing AIR carboxylase activity was also explored by creating the mutant enzyme 

K304A.  Based upon homology modeling against the isozyme from E. coli, this was 

predicted to be a critical residue for binding CAIR.  Indeed, activity was reduced to the 

non-catalyzed rate of decarboxylation of CAIR.  Unlike the E. coli enzyme, human 

SAICAR synthetase was found to have a Sequential Steady State Ordered mechanism, 

with CAIR binding first, ATP second, and L-aspartate last.  The Km for CAIR was found 

to be ~10 μM for the NAIR-inhibited enzyme and ~1μM for the K304A enzyme.  None 

of the other kinetic parameters changed significantly.  Ka’s  for steady state mechanisms 

are combinations of elementary kinetics constants.  All of the k’s comprising the Km of 

CAIR are present in other kinetics terms except for k1, which is, therefore, the most likely 

cause of the difference between the two systems.  This term is associated with the binding 

rate of CAIR to the unligated enzyme.  Since NAIR is observed kinetically and 
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structurally to compete for the same site as CAIR for the AIR carboxylase domain, it is 

reasonable to conclude that the site is occupied during the measurement of the SAICAR 

synthetase reaction.  Since K304A is directed at a site that has been demonstrated to 

interact with the binding of the 5′ phosphoryl group, it is likely shutting down the enzyme 

by preventing binding and not by merely blocking catalysis.  Thus the K304A mutant 

likely represents a system where nothing is bound in the CAIR pocket of AIR 

carboxylase.  This implicates a communication between the status of ligation of the 

binding site and the on-rate of CAIR to the SAICAR synthetase active site. 

 This information represents a step forward in our basic understanding of SAICAR 

synthetase to the de novo purine biosynthesis pathway.  This fundamental enzymology 

lays the groundwork necessary for future work in drug design or protein engineering.  

Since de novo purine biosynthesis is central to cell proliferation, it can be a point of 

control for the rapidly dividing cells of tumors or microbial infections.  As computational 

methods for calculating inhibitor binding to proteins improves, it is likewise important to 

present the best beginning protein models.  The structural basis for ligand binding 

presented here can give clues as to which functional groups and what distances should be 

considered when designing scaffolds for drugs.  Additionally the various states of ligation 

can provide understanding of the volume constraints necessary to maximize Vander 

Waals interactions.  It also represents a developed and well-characterized system in 

which the effectiveness of these compounds can be tested.  Kinetic differences apparent 

between the E. coli and human homologues adds to the possibility that significant 

differences do exist between the enzymes and that this difference might be exploited to 

selectively inhibit microbial forms of the enzyme.  In the case of the human system, the 

 



 150  
 

results of studying the kinetic mechanism shows how a bifunctional enzyme can be used 

to kinetically regulate the flux through a system.  This presents an alternate line of 

explanation to that of substrate-channeling which had been suggested previously. 
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