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Abstract

Offi cial recession figures ignore the costs associated with the loss of human life due to COVID-19.
This paper constructs "full recession" measures that take into account the death toll. Key for
the estimates are the number of dead, the individual’s willingness to accept mortality risk, and
society’s willingness to accept inequality. Our model features tractable heterogeneity, constant
relative risk aversion to mortality risk, and age-specific survival rates. Using an estimated death
toll of 400 thousand people for the US during a year, and a baseline 10% recession, we find that
the corresponding full recession is 26% on average across individuals, 17% for a median voter,
13% for a planner with mild aversion to inequality, and 19% for a planner with larger aversion.
Regarding the overall cost of the pandemic, we find that individuals would be willing to pay, on
average, 41% of one-year consumption to fully avoid the pre-lockdown 1.9 million deaths from
COVID-19. A median voter would be willing to pay 23%, a social planner with mild aversion
to inequality only 11%, while a log-planner would pay 73%.
Key words: social welfare, value of statistical life, mortality risk aversion, consumption risk
aversion, Epstein-Zin-Weil preferences, random walk, pandemics
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1 Introduction

As the COVID-19 pandemic spreads around the world, the death toll keeps increasing and economic

activity stagnates. Individuals are confronted with diffi cult choices between risking their lives and

trying to carry out normal economic and non-economic activities. The mortality risks involved are

very heterogeneous, increasing with age and certain medical conditions, and affecting disadvantaged

demographic groups at significantly higher rates. In the aggregate, societies face a trade-offbetween

the loss of human life and a non-trivial drop in living standards for an unforeseeable future. In a

situations like these, traditional measures of economic activity, such as GDP, may be misleading

indicators of the society’s well-being since they do not typically incorporate any adjustment for

the loss of human life. A more reliable indicator of well-being during pandemics, one that could

be used to guide policy, would need to include a sensible adjustment for the increased risk at the

individual level, and the death toll at the aggregate level.
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This paper constructs robust microfounded measures of well-being useful in the presence of

mortality shocks. Our indicators seek to answer two interrelated questions: (i) what is the imputed

total cost of the pandemic? and (ii) what is the full, or effective, yearly recession that takes into

account the death toll? As we show, the answers to these questions depends crucially on five

elements: the death toll, the magnitude of the mortality risk involved, the willingness of individuals

to accept mortality risk, the age-distribution of the population, and the willingness of societies to

accept inequality.

There is a literature that has estimated the aggregate consequences of changes in mortality risk,

due for example to public health interventions, the AIDS pandemic, or the end of wars. Papers

include Becker et al. (2005), Jones and Klenow (2016), Cordoba and Ripoll (2017) and Murtin et

al. (2017) among others. A common assumption in this literature, including the recent papers on

COVID-19, is that individuals are expected utility maximizers. In Cordoba and Ripoll (2017, CR

henceforth), two of us demonstrated key limitations of the expected utility model when applied

to issues of mortality risk. A fundamental issue is that while the expected utility model could

guarantee a constant coeffi cient of relative risk aversion for non-mortality risk, it may at the same

time imply strongly increasing relative aversion to mortality risk. For example, consider Hall et

al. (2020) who have recently provided welfare costs estimates of the pandemic using an expected

utility model. In their model, the value of a year of life for an average individual is five times

average consumption. But this value is only two times consumption for an individual with half the

average consumption. Individuals with 1/6 of the average consumption, or below, would not value

life at all. Such a strongly decreasing valuation of life is not supported by the existing evidence, as

argued by CR.1

This paper provides a flexible framework to evaluate individual, aggregate, and distributional

welfare effects of COVID-19 and other maladies. The paper extends CR by introducing incomplete

markets, incomplete annuities, age-dependant survival rates, and tractable heterogeneity. The dis-

tinguishing feature of our framework is the disentangling of three key preference parameters that

are otherwise embodied in a single parameter in the expected utility model. The three parameters

are: (i) the elasticity of intertemporal substitution; (ii) the coeffi cient of relative risk aversion to

non-mortality risks; and (iii) the coeffi cient of relative risk aversion to mortality risk. This dis-

entangling, an extension of the original Epstein-Zin-Weil (EZW) preferences, allows to preserve a

constant relative aversion to mortality risk for any value of the elasticity of intertemporal substitu-

tion. As a result, the valuation of life is proportional to consumption for both low and high-income

individuals.

The framework developed in CR has other advantages. First, the valuation of changes in

mortality rates depends on expected survival, which could rationalize why the elderly, who have less

expected survival, would be willing to pay non-trivial amounts to extend their shorter remaining

life span. Second, the coeffi cient of relative risk aversion to mortality risk becomes the natural

parameter to match the valuation of life. In the expected utility model, the parameter utilized to

match this target is typically a level parameter which artificially creates income effects not seen

1See Section 2.3 in Cordoba and Ripoll (2017).
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in the data. These considerations are important in evaluating the welfare costs of a pandemic

when there is inequality in consumption. In sum, the EZW utility we use has distinct quantitative

implications for the value of life for young adults, the elderly, and individuals with low consumption

levels, all of which are important in analyzing the distributional welfare implications of COVID-19.

We calibrate the model to recent US data. The age-varying parameters of the consumption

process are estimated from 1999-2017 PSID data. Survival probabilities by age are obtained from

the National Vital Statistics, and the demographic structure of the population from the US Census,

both for the most recent available year, 2017. The key parameter, the coeffi cient of relative aversion

to mortality risk, is calibrated to match plausible Values of Statistical Life commonly used in the

health literature. The age-specific decreases in survival probabilities due to COVID-19, before

interventions, are calculated from the pre-lockdown data in Menachemi et al. (2020) and Ferguson

et al. (2020). We then use the model to calculate various willingness to pay to avoid the pandemic,

which provides estimates for the overall burden of the pandemic. In addition, we use the model to

compute "full recessions", that is, consumption equivalent percentage drops in welfare due to the

combination of an economic recession, the death toll, and the increase in mortality risk. Finally, we

also characterize the trade-off between lives and consumption by tracing a frontier for the average

and median voter, as well as the planner.

Regarding the total burden of the pandemic, our analysis provides the following insights. First,

in our preferred calibration, the welfare costs of a one-year COVID-19 pandemic are high: on average

(population-weighted), individuals would be willing to reduce consumption by 41.2% during one

year to completely avoid the deaths of 1.9 million people due to the pandemic. This death toll

is computed from the pre-lockdown age-specific fatality rates of Ferguson et al. (2020) and the

aggregate death rate from Menachemi et al. (2020). Our preferred calibration features an elasticity

of intertemporal substitution equal to one, a widely used value in quantitative macro, as well as

the absence of annuity markets, a reasonable benchmark given the limited use of annuities in the

data. The average welfare costs are reduced to 35.9% if perfect annuities are introduced, since more

insurance is available in this case. Regardless of the scenario, the welfare costs of COVID-19 are

high.

We find a large dispersion of the welfare costs across ages. In our preferred calibration, while the

average 25-year old would only pay 5% of one-year consumption to avoid COVID-19, the average

45-year old would pay 23%, and the average 60-year old would pay 80%. These welfare costs parallel

the dramatic differences in the estimated survival reductions from COVID-19 by age group in the

absence of a lockdown: while the fatality rate for a 25-year old is 0.015%, it is 0.08% for a 45 year

old, and 1.16% for a 60-year old (Menachemi et al., 2020 and Ferguson et al. 2020). In fact, the

standard deviation of the age-specific welfare costs is 41.2%, capturing the substantial disagreement

across individuals in different age groups.

Third, we also find a disagreement between the average welfare cost and the median voter: the

latter is always willing to accept a lower reduction in consumption than the average. This result

is robust to different scenarios. Taking into account the US distribution of the population above

age 18, the median voter is age 46. In our preferred benchmark calibration, the median voter is

3



willing to accept 22.7% less consumption during the year of the pandemic, while the average would

reduce consumption by 41.2% during one year to avoid the pandemic. That the average is above

the median reflects the fact that the welfare costs rapidly increase with age under COVID-19. In

fact, we find a sharp increase in welfare costs after age 40 and costs above 90% for those older than

65.

Another main finding is that the extent to which the social planner cares about inequality

has sizable effects on the aggregate willingness to pay to avoid the pandemic. In our preferred

calibration, a social planner with lower aversion to inequality would be willing to pay 10.8% but

this number increases up to 72.7% for a log planner. When the planner cares less about inequality,

the utility of the young weights relatively more since they have higher continuation value. In

this case the planner is willing to pay less to avoid the pandemic because younger people face

substantially lower probability of dying from COVID-19. As the planner’s inequality aversion

increases, the relative weight of the elderly increases, resulting in a higher willingness to pay.

Fifth, in a scenario where COVID-19 lasts one year but the consumption costs extend beyond

one period, the welfare costs are still sizable. We find that if individuals pay costs for about 8

years, which simulates lingering effects from a crisis similar to the 2007-2009 Great Recession, then

the average welfare costs on the first year are 30.9% in our preferred calibration. In this case the

median voter is willing to cut consumption by 12.1% on that first year. In addition, if consumption

costs were closer to permanent, and individuals had to accept reductions in consumption for at

least 30 years, then they would on average accept a reduction of 12.2% on the first year, while the

median voter would accept a 2.9% reduction.

Our model allows us to compute measures of "full recessions." We use our model to simulate

various combinations of economic recessions, resulting from lockdown policies, and the loss of

lives due to the pandemic. We find that a 10% contraction in consumption during the year of the

pandemic combined with a lost of 300,000 lives corresponds to a 23.1% full recession for the average

individual, a 15.3% full recession for the median voter, an 11.9% full recession for a planner with a

relatively low aversion to inequality, and a 17.1% for a planner with higher aversion to inequality.

When the lives lost go up to 500,000, the corresponding full recessions are 28.5% for the average,

18.6% for the median voter, 12.3% for the planner with low inequality aversion, and 21.4% for the

planner with higher aversion.

To interpret these figures, take first the case of the planner with lower aversion to inequality and

500,000 lives lost. Since for the planner the full recession is 12.3%, the additional 2.3% corresponds

to the planner’s valuation of the lives lost. Assuming a US GDP of $22 trillion, this roughly

corresponds to a planner’s valuation of $1 million per life lost. But for the planner with higher

aversion to inequality, this valuation becomes $5 million per life lost. For the median voter, who

is age 46, the implied marginal valuation of life is roughly $3.8 million, while the implied marginal

valuation of life for the average individual is $8 million. The latter figure reflects the fact that

those above age 60 would be willing to pay more to reduce their risk exposure as they not only

face higher mortality rates already, regardless of the pandemic, but also larger death rates from the

pandemic.
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Last, we find that the consumption-lives frontier varies substantially across the average, the

median voter and the planner. While the average (population-weighted) frontier is more concave

and reflects a higher willingness to sacrifice consumption to save lives, the frontier for the median

voter tends to be less concave and reflects lower willingness to give up consumption. Starting

at 1.9 million deaths, which correspond to projections consistent with Menachemi et al.’s (2020)

(aggregate death rate of 0.58%), the average individual is initially willing to reduce consumption

sharply to save lives: the first 1.1 million lives are traded-offby a 32.9% consumption cut in the year

of the pandemic. But the trade-off is smaller for the next 800 thousand lives, adding a extra 8%

consumption cut. The concavity of the average frontier reflects the large variation in willingness

to pay across individuals of different ages. For the median voter, the frontier is less concave,

sacrificing 13.9% of consumption to save the first 1.1 million lives, an additional 8.8% for the next

800 thousand people.

Our paper complements a number of other recent papers on COVID-19, but it is most closely

related to Hall et al. (2020). Hall et al. (2020) also compute the welfare costs of COVID-19.

Relative to them our model includes incomplete markets, inequality, and a non-expected utility

representation. In this respect, we develop a rich framework that merges the traditional analysis

of the welfare costs of economic shocks, consumption inequality, and the literature on the value of

life over the life cycle. Although rich, our framework is tractable. In addition to our welfare costs

calculations, we also explore the dispersion of the welfare cost across ages and the disagreement

between the median voter and the average individual. We also explore the potential scenario in

which the consumption costs of COVID-19 extend beyond one year. Finally, we compute measures

of full recession and a consumption-lives frontier.

The remainder of the paper is organized as follows. Section 2 presents the model for the

individual, derives the solution and its properties, and discusses the notion of value of statistical

life. It also includes all the aggregation results and the theoretical derivation of the welfare costs of

COVID-19. Although the model exhibits substantial heterogeneity, in Section 2 we derive closed-

form solutions for the aggregate economy. The calibration procedure in explained in Section 3 and

all numerical results are presented in Section 4. The relationship to the literature is discussed in

Section 5. Section 6 concludes.

2 Model

The exercise of this paper is similar in spirit to Lucas (1987, 2003), Tallarini (2000), Cordoba and

Verdier (2008), Jones and Klenow (2016) and Cordoba and Ripoll (2017) among others. For a given

path of individual consumption and mortality rates over the life cycle, and for given individual and

social welfare functions, individual and social welfare is calculated for a benchmark in which a

pandemic is occurring. The burden of the pandemic and the full recession estimates for individuals

and for a planner are calculated from their willingness to pay to avoid either the risk and death toll

of the full pandemic, or the risk and death toll associated with only the first year of the pandemic.
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2.1 Consumption of the alive

Time is discrete and denoted by t. There is an initial distribution of population of ages a ≥ 0

denoted by Ma,0. Let πa,t be the probability of surviving to age a at time t conditional on having

survived to age a− 1 at t− 1. The distribution of population at t satisfies Ma,t = πa,tMa−1,t−1 for

a > 0 and M0,t = nt, where n is the birth rate.

Let I(a, t) be the set individuals of age a alive at time t and ci,a,t be the consumption of

individual i at age a and time t, where i ∈ I(a, t). Assume that (log) consumption follows a

random walk

ln ci,a,t = ln ci,a−1,t−1 + εa, (1)

where εa ∼ N
(
µa − η2

a/2, η
2
a

)
. The age-dependent drift and variance would allow us to replicate

a realistic life-cycle pattern of consumption. Assume that age-0 consumption is drawn from a

log-normal distribution,

ln ci,0,t ∼ N
(
ln c0,t − Ω2/2,Ω2

)
for i ∈ I(0, t), (2)

where Ω2 represents the initial (age-0) consumption inequality. The average consumption of cohort

t at age 0 is then E [ci,0,t|t] = eln c0,t−Ω2t /2+Ω2t /2 = c0,t. A constant rate of aggregate economic growth

is introduced by assuming that c0,t = c0,0e
gt, where g is the growth rate. We normalize c0,0 = 1.

Under these assumptions it follows that the unconditional distribution of consumption at any point

in time is log-normal,

ln ci,a,t ∼ N
(
g (t− a) + υa − Ω2/2− Φ2

a/2,Ω
2 + Φ2

a

)
for i ∈ I(a, t), (3)

where υa =
∑a

j=1 µj and Φ2
a =

∑a
j=1 η

2
j for a ≥ 1.Intuitively, g (t− a) reflects economic growth,

υa life-cycle growth, Ω2 initial inequality and Φ2
a reflects life-cycle inequality. Given that (log)

consumption is a random walk, inequality increases with age. Using the law of large numbers, (3)

also describes the distribution of consumption, or inequality, at any point in time.

Let effective consumption be defined as ci,a,t = λi,a,tci,a,t where λi,a,t is a proportional shift

parameter that will be used to calculate welfare under various scenarios. In the baseline λi,a,t = 1

for all i, a and t.

2.2 Preferences

We model individual utility by adopting an extension of the EZW framework due to CR.2 This

extension disentangles intertemporal substitution, mortality risk aversion, and aversion to con-

2See Section 5.3 in Cordoba and Ripoll (2017).
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sumption risk. The utility of individual i at age a and time t is described by

V i,a,t =
[
πa,tV

1−γ
i,a,t + (1− πa,t)D1−γ

i,a,t

] 1
1−γ

, with γ ≥ 0, γ 6= 1, (4)

where Vi,a,t ≥ 0 is the utility of being alive, Di,a,t ≥ 0 the perceived utility upon dead, and γ is

the coeffi cient of mortality aversion, a parameter describing attitudes toward mortality risk. In

addition,

Vi,a,t =


[
(1− βa) c1−σ

i,a,t + βa

(
Ea

[
V

1−θ
i,a+1,t+1

]) 1−σ
1−θ
] 1
1−σ

for σ ≥ 0, σ 6= 1,

c
1−βa
i,a,t

(
Ea

[
V

1−θ
i,a+1,t+1

]) βa
1−θ

for σ = 1,

where βa is an age-specific discount factor, 1/σ is the standard intertemporal substitution, and θ

captures overall aversion to risk.3 Parameter θ is the traditional coeffi cient of risk aversion in EZW

preferences as it will become clear shortly.

In what follows we focus on the case in which Di,a,t = 0, which ensures that being alive is always

preferred to death.4 Such normalization requires the restriction γ ∈ (0, 1) as otherwise the strong

complementarity between V and D would render V = 0 too. Preferences are thus described by

V i,a,t = π
1

1−γ
a,t Vi,a,t, with γ ∈ (0, 1) , (5)

and

Vi,a,t =


[
(1− βa) c1−σ

i,a,t + βaπ
1−σ
1−γ
a+1,t+1

((
Ea

[
V 1−θ
i,a+1,t+1

]) 1−σ
1−θ
)] 1

1−σ
for σ ≥ 0, σ 6= 1,

c
1−βa
i,a,t

(
π

1
1−γ
a+1,t+1Ea

[
V 1−θ
i,a+1,t+1

] 1
1−θ
)βa

for σ = 1.

(6)

Equation (6) is a Bellman equation for Vi,a,t alone with an "effective" discount factor on future

utility of βaπ
(1−σ)/(1−γ)
a+1,t+1 rather than the standard βaπa+1,t+1. Restriction γ ∈ [0, 1) guarantees that

higher survival results in higher utility. When π = 1 for all a, these preferences correspond to the

standard EZW preferences with θ as the only coeffi cient of relative risk aversion.

Utility function (6) accommodates preferences for early or late resolution of both mortality

and consumption uncertainty. In particular, when σ > γ individuals exhibit a preference for

late resolution of mortality uncertainty, while θ > σ implies a preference for early resolution of

consumption uncertainty. In this case individuals prefer not to know in advance when they will

3Regarding the age-specific discount factors, in the calibration we will follow the traditional approach of matching
a target for the risk-free rate. Given that consumption growth and survival rates may vary with age, hitting the
target may require age-specific discount factors as explained in Section 3.3.

4Section 4.2 considers a case with D > 0.
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die but would like to know their consumption realizations early on. CR document evidence on a

preference for late resolution of uncertainty regarding death, while the finance literature provides

evidence for early resolution of consumption uncertainty. Finally, the case σ = 1, popular in

quantitative macro, corresponds to a version of the risk-sensitive preferences in Tallarini (2000),

but generalized to include aversion to mortality risk.

The preferences above include as a special case an expected utility representation with con-

stant relative risk aversion. To see this more clearly define the monotonic transformation X =

V 1−σ/ [(1− β) (1− σ)] for σ ≥ 0, σ 6= 1 and β ∈ (0, 1), to rewrite (6) as

Xi,a,t =
c1−σ
i,a,t

1− σ + βaπ
1−σ
1−γ
a+1,t+1

((
Ea

[
(Xi,a+1,t+1)

1−θ
1−σ
]) 1−σ

1−θ
)
.

The case θ = σ is a standard expected utility model for consumption risk, but not for mortality

risk. The case σ = γ correspond to expected utility for mortality risk, but not for consumption

risk. The case θ = σ = γ is the full expected utility model for both consumption and mortality

risk. In this respect our utility representation is more flexible, allowing us to capture additional

features on individuals’attitudes toward mortality and consumption risk.

2.3 Closed-form solution of the value function

Closed-form solutions are possible given the set up of the problem, as shown in the following

proposition.

Proposition 1. The utility of individual i ∈ I(a, t) is given by

V i,a,t = π
1

1−γ
a,t Vi,a,t = π

1
1−γ
a,t Ai,a,tci,a,t for all i, t and all a, (7)

where Ai,a,t is the saddle path solution of the following first order difference equation,

Ai,a,t =



[
1− βa + βa

[
π

1
1−γ
a+1,t+1Ai,a+1,t+1

λi,a+1,t+1
λi,a,t

eµa+1−θη
2
a+1/2

]1−σ
] 1
1−σ

for σ ≥ 0, σ 6= 1,[
π

1
1−γ
a+1,t+1Ai,a+1,t+1

λi,a+1,t+1
λi,a,t

eµa+1−θη
2
a+1/2

]βa
for σ = 1.

(8)

Proof. Guess that value function of the alive has the form Vi,a,t = Ai,a,tci,a,t where Ai,a,t is a

coeffi cient to be determined. Under this guess, and using the fact that ci,a,t = λi,a,tci,a,t, it

follows that:

E
[
V 1−θ
i,a+1,t+1|a,t

]
= (Ai,a+1,t+1λa+1,t+1)1−θ E

[
c1−θ
i,a+1,t+1|a,t

]
=

[
Ai,a+1,t+1λa+1,t+1ci,a,te

µa+1−θη2a+1/2
]1−θ

.
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Substituting this expression into (6) we can write

Vi,a,t =


λi,a,tci,a,t

[
1− βa + βaπ

1−σ
1−γ
a+1,t+1

(
Ai,a+1,t+1

λi,a+1,t+1
λi,a,t

eµa+1−θη
2
a+1/2

)1−σ
] 1
1−σ

for σ ≥ 0, σ 6= 1,

λi,a,tci,a,t

[
π

1
1−γ
a+1,t+1Ai,a+1,t+1

λi,a+1,t+1
λi,a,t

eµa+1−θη
2
a+1/2

]βa
for σ = 1,

(9)

which satisfies the guess if Ai,a,t satisfies (8).

In the baseline, λi,a,t = 1 and Ai,a,t = Aa,t, so that Ai,a,t is independent of i. The linearity of

the utility in consumption is worth stressing and results from the fact that the EZW aggregator

is homogeneous of degree one. An implication is that a utilitarian planner will not be averse to

inequality, as we discuss below.

2.4 Some properties of the value function

The sequence Ai,a,t, utility per unit of consumption, is a central object because it contains all

the welfare information (rate of time preference, mortality and consumption risk aversion, and

intertemporal substitution) as well as survival rates. Intuitively, one would expect that older

individuals would derive less utility from consumption as their life span diminishes. This is in

fact the case in the calibrated exercises. To gain some intuition, consider the case in which all

parameters (µa, ηa, πa, βa) become constant after a certain age a ≥ a∗. In particular, survival is

still positive but becomes constant, arbitrarily small and equal to π. Sequence Ai,a,t then converges

to a terminal value Ā which can be written as

Ā =


(1− βa)

1
1−σ

[
1− βa

(
π1/(1−γ)eµ−θη

2/2
)1−σ

] −1
1−σ

for σ ≥ 0, σ 6= 1,[
π

1
1−γ eµ−θη

2/2
] βa
1−βa if σ = 1.

(10)

It is easy to show that starting from Ā and iterating backwards results in a sequence Ai,a,t that

decreases with age given that survival probabilities decrease with age. Consider first the case

when σ = 1. Starting from Ā and going one period backwards, Ai,a∗−1,t−1 > Ā as long as

[πa∗−1,t−1/π]βa/(1−γ) > 1, which always holds. Similarly, for the case σ < 1, it can be shown

that Ai,a∗−1,t−1 > Ā as long as π1−σ/(1−γ)
a∗−1,t−1 > π1−σ/(1−γ) which always holds. Finally, when σ > 1

we have that Ai,a∗−1,t−1 > Ā as long as π1−σ/(1−γ)
a∗−1,t−1 < π1−σ/(1−γ), which always holds when σ > 1.

We verify in our calibrated model that even for age-varying µa+1 and ηa+1, Ai,a,t decreases with

age.

2.5 Value of statistical life

Although the elderly derive lower continuation utility from consumption than the young, the will-

ingness to pay to reduce the risk of dying is not necessarily lower for the elderly. To see this we
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now compute the value of statistical life (VSL) in the model, which captures the trade-offs between

survival and consumption. The VSL corresponds to the marginal rate of substitution between

survival and consumption defined as:

V SLi,a,t =
∂V i,a,t/∂πa,t

∂V i,a,t/∂ci,a,t
=

1

1− γ
1

1− βa
1

πa,t

V 1−σ
i,a,t

c−σi,a,t
for any σ. (11)

Using (7), this expression simplifies to

V SLi,a,t =
1

1− γ
1

1− βa
A1−σ
a,t

πa,t
ci,a,t for any σ. (12)

The equation above shows the special role of γ, the coeffi cient of relative mortality aversion,

in determining the VSL. The individual willingness to pay for survival increases with γ and

limγ→1 V SLi,a,t = ∞. This expression will be used to calibrate γ below. The time preference
parameter βa plays an analogous role to that of γ but the mechanism is different. While a larger γ

represents a larger aversion to mortality risk, a larger βa represents an increase in the weight that

individuals place on the future, which increases the value of surviving.

The effect of Aa,t on the VSL depends on the value of σ, and it is only active if σ 6= 1. Since Aa,t
decreases with age, then the VSL would tend to increase with age if σ > 1, but it would decrease

it if σ < 1. The intuition for this result is that when σ > 1 there is complementary in consumption

over time, so everything else equal, those with fewer periods left to live will be willing to pay more

to extend life.

Higher survival, πa,t, reduces the willingness to pay for survival in two ways: a first-order direct

effect through term 1/πa,t, and an indirect effect through Ai,a,t. The direct effect reflects an increase

in the expected marginal utility of consumption as current consumption only takes places if the

individual survives. Finally, the VSL is linear in consumption.

2.6 Annuities and asset pricing

Given an exogenous process for consumption, an approach in the finance literature is to use first-

order conditions, or Euler equations, to price assets such as riskless bonds or equity. In this section,

we use this approach to price a one-period riskless bond. This price is used later to calibrate

preference parameters.

In the absence of mortality risk, a riskless bond pays one unit of consumption in any state of the

world. In the presence of mortality risk, an annuitized riskless bond pays one unit of consumption

only if the individual survives, while a non-annuitized riskless bond pays even if the individual dies.

Let pAa,t = πa,t/(1 + r) and pNA = 1/(1 + r) be the prices of these two bonds respectively and let

pδa,t = δpAa,t + (1− δ) pNA the price of a bond that is partly annuitized to an extent determined
by δ ∈ [0, 1]. If consumers’only savings vehicle is the semi-annuitized bond, pδa,t is the relevant

marginal rate of transformation. Focusing on the case σ 6= 1, it can be shown that the Euler
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equation corresponding to this asset market structure and (6) is given by

pδa,t (1− βa) c−σi,a,t = βaπ
1−σ
1−γ
a+1,t+1Ea,t

(Vi,a+1,t+1

Ṽi,a+1,t+1

)σ−θ (
1− βa+1

)
(ci,a+1,t+1)−σ

 , (13)

where Ṽi,a+1,t+1 =
(
Ea

(
V 1−θ
i,a+1,t+1

)) 1
1−θ

is the certainty equivalent. The left-hand side is the

marginal cost of buying the semi-annuitized bond, while the right-hand side is the marginal benefit.

This equation reduces to a traditional Euler equation for a riskless bond when π = 1, σ = θ = γ and

βa = β. In the more general case, the effective discount factor is given by β̃a ≡ βaπ
(1−σ)/(1−γ)
a+1,t+1 and

the stochastic discount factor is adjusted by term
(
Vi,a+1,t+1/Ṽi,a+1,t+1

)σ−θ
, reflecting risk-taking

behavior.

Using (7), equation (13) simplifies to

pδa,t =
1− βa+1

1− βa
βaπ

1−σ
1−γ
a+1e

−σµa+1+θ(1+σ)η2a+1/2. (14)

Below in the quantitative exercise we consider the cases of perfect annuity markets, δ = 1, and no

annuity markets, δ = 0.

2.7 Social welfare

Consider now social welfare according to a fictional benevolent social planner. For concreteness,

suppose the planner only cares about the welfare of the population alive at time 0.5 Define social

welfare as

W0 =

[∑
a

∫
i∈I(a,0)

V
1−ψ
i,a,0di

] 1
1−ψ

=

[∑
a

∫
i∈I(a,0)

(
π

1
1−γ
a,0 Ai,a,0λi,a,0ci,a,0

)1−ψ
di

] 1
1−ψ

, (15)

where curvature parameter ψ describes planner’s aversion to inequality. A classical utilitarian

planner is represented by the case ψ = 0. As mentioned above, the EZW aggregator is homogenous

of degree one, which results in the linearity of V with respect to c. Absent any curvature in

the individual value function, a classical utilitarian planner would have no aversion to inequality.6

Although it might be natural to assume ψ = σ, since σ reflects the curvature of the utility flow, this

is not obvious in the case of EZW utility which features two additional curvature parameters: γ

and θ. We leave ψ as a separate curvature parameter for the planner and report results for several

values of ψ in the quantitative section.

5A more general social welfare function will include the welfare of all potential individuals, present and future.
Implicitly, we are assuming a social discount factor of zero.

6The EZW preferences could be modified to introduced an extra parameter of risk aversion to atemporal time-0
risk, or aversion to wealth gambles. However, such parameter is not an inequality aversion parameter and it would
be unclear how to calibrate it.
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The expression above can be simplified whenever λi,a,0 = λa,0, which happens to hold in this

model due to the homotheticity of utility. In this case Ai,a,0 = Aa,0 as well. Thus,

W0 =

[∑
a

(
π

1
1−γ
a,0 Aa,0λa,0

)1−ψ ∫
i∈I(a,0)

c1−ψ
i,a,0di

] 1
1−ψ

.

Furthermore, since ci,a,0 is distributed log-normal according to (3), then by the law of large numbers

∫
i∈I(a,0)

c1−ψ
i,a,0di = Ma,0E

[
c1−ψ
i,a,0

]
= Ma,0e

(1−ψ)
(
υa−ga−Ω

2
a/2

)
+(1−ψ)2Ω

2
a/2

= Ma,0e
(1−ψ)

(
υa−ga−ψΩ

2
a/2

)

where Ω
2
a = Ω2 + Φ2

a. Therefore, social welfare can be written as

W0 =

[∑
a

Ma,0

(
π

1
1−γ
a,0 Aa,0λa,0e

υa−ga−ψΩ
2
a/2

)1−ψ
] 1
1−ψ

. (16)

Social welfare can be seen as a weighted composite of cohort-specific average utilities defined as V̂a ≡
π

1/(1−γ)
a,0 Aa,0λa,0e

υa−ga−ψΩ
2
a/2. V̂a tends to increase with age due to life-cycle consumption growth

(va), but tends to decrease with age due to lower survival, lower Aa,0, lower initial consumption

(if g > 0), and larger inequality. If both Ma,0 and V̂a decrease with age, then social welfare would

reflect to a larger extent the welfare of the young rather than the old. A larger ψ, however, could

counteract a declining role of the old on social welfare unless life-cycle inequality is relatively large.

2.8 Willingness to pay to avoid COVID-19

In this section we derive consumption equivalent measures or the willingness to pay (WTP) to avoid

COVID-19. We calculate measures for individuals and for the social planner. It is convenient to

make explicit two sequences of parameters determining individual welfare at time 0: survival rates,

πa,0 = {πa+s,s}s≥0 , and consumption shifter parameters λi,a,0 = {λi,a+s,s}s≥0. While λi,a,0 = 1 in

the baseline, in this section we use λi,a,0 to calculate the WTP. Using this notation, express (7) as:

V i,a,0 ≡ V (πa,0,λi,a,0, ci,a,0) = π
1

1−γ
a,0 ·A (πa+1,1,λi,a,0) · λi,a,0 · ci,a,0. (17)

where A (πa+1,1,λi,a,0) is defined by the recursion in (8). Let π∗a,0 denote baseline survival rates in

the absence of the pandemic. Baseline time-0 utility is given by V
∗
i,a,0 = V

(
π∗a,0,1, ci,a,0

)
.

A pandemic could be described as a sharp drop in survival rates, from π∗a,0 to πa,0. We will

model the COVID-19 pandemic as a drop in survival probabilities for only one period, t = 0.

Survival rates remain at their baseline level for other periods. In our calibration, a period will be a
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year. This description of the pandemic assumes that a treatment or a vaccine is discovered during

the initial year. Let ∆πa,0 = πa,0 − π∗a,0 ≤ 0 for all a while ∆πa,t = 0 for all a ≥ 0 and all t > 0.

Initial utility, V i,a,0 = π
1/(1−γ)
a,0 Vi,a,0, is thus affected by the pandemic while the utility of surviving

individuals, Vi,a,0, is not affected because it depends only on future survival rates.

To calculate equivalent variation measures, we compare two economies: one in which individuals

face the pandemic but keep the baseline consumption levels, and one in which individuals enjoy

baseline survival probabilities but lower consumption. The welfare cost calculation computes the

consumption shift, λi,a,0≤ 1, that would make individuals indifferent between these two economies.

The WTP can then be defined as WTPi,a,0 = 1 − λi,a,0. We calculate the required sequence

λi,a,0 under two scenarios. In the first scenario, the cost is fully paid at t = 0 so that λi,a,0 =

{λi,a,0, 1, 1, ..}. In a second scenario, the cost is paid gradually over time according to λi,a,0 ={
λi,a,0, λ

ρ
i,a,0, λ

ρ2

i,a,0, ..
}
, where ρ ∈ [0, 1) is a persistence parameter. The first scenario is a special

case of the second one when ρ = 0. The case ρ > 0 seeks to describe to a situation in which avoiding

the pandemic could trigger a long-lasting recession. Sequence λi,a,0 is fully characterized its first

element λi,a,0.

2.8.1 Individual WTP with ρ = 0

Let λi,a,0 be implicitly defined by the equation:

V
(
π∗a,0 + ∆πa,0,1, ci,a,0

)
= V

(
π∗a,0, [λi,a,0,1] , ci,a,0

)
. (18)

The left-hand side is the expected utility of individual i under the pandemic. The right hand side

is the utility without the pandemic but with a level of effective initial consumption just low enough

to deliver the same utility as the one obtained under the pandemic. Using equations (17) and (8),

this expression simplifies to

(
π∗a,0 + ∆πa,0

) 1
1−γ A∗a,0 =

(
π∗a,0

) 1
1−γ Aa,0λi,a,0,

where

Aa,0λi,a,0 =


[(
A∗a,0

)1−σ
+ (1− βa)

(
λ1−σ
i,a,0 − 1

)] 1
1−σ

for σ ≥ 0, σ 6= 1,

λ
1−βa
a,0 A∗a,0 for σ = 1,

(19)

and A∗a,0 = A
(
π∗a+1,1,1

)
is the baseline level of Aa,0. A closed-form solution for λi,a,0 is then given

by

λi,a,0 = λa,0 =


[
1 +

[(
π∗a,0+∆πa,0

π∗a,0

) 1−σ
1−γ − 1

]
(A∗a,0)

1−σ

1−βa

] 1
1−σ

for σ ≥ 0, σ 6= 1,(
π∗a,0+∆πa,0

π∗a,0

) 1
1−γ

1
1−βa for σ = 1.

(20)

Notice that the WTP is independent of i but depends on age: individuals of the same age are

willing to pay the same fraction of their initial consumption to avoid the pandemic. According to

13



(20), for the case σ = 1, λa,0 is mostly determined by the extent to which survival drops due to

the pandemic (∆πa,0 < 0), a magnitude affected by exponent 1/(1 − γ) × 1/(1 − βa). In the case
of COVID-19, survival decreases by much more for older individuals and therefore they are more

willing to pay. Notice also the link between the WTP in (20) and the VSL-to-consumption ratio

in (12). For the case σ = 1, exponent 1/(1− γ)× 1/(1− βa) equals V SLa,0/ca,0 × π∗a,0. Therefore
for σ = 1,

λa,0 =

(
π∗a,0 + ∆πa,0

π∗a,0

)V SLa,0
ca,0

π∗a,0

,

which provides a link between the WTP and the VSL-to-consumption ratio. As we explain below,

we calibrate γ to match V SLa,0/ca,0 at age a = 40. The larger this ratio, the larger the calibrated

γ and the WTP.

When σ 6= 1 there is an additional effect that comes from A∗a,0, and a first-order effect from βa.

Focusing on the case σ > 1, which is more relevant in quantitative macro, recall that since A∗a,0
decreases with age, this effect tends to make the WTP higher for older individuals. The intuition

here is again related to the complementarity in consumption across ages for the case σ > 1, which

makes life relatively more value for those who have less periods left. An additional effect occurs

if βa decreases with age, as it would be the case in the calibrated model with σ > 1. This effect

tends to decrease the WTP for older individuals.

The average WTP is calculated as the population-weighted average

WTP 0 = 1−
∑

a
Ma,0λa,0.

2.8.2 Social WTP with ρ = 0

Consider now the social WTP measured by single proportional shift, λi,a,0 = λa,0 = λ0, for everyone

in the economy. Let W pandemic
0 denote social welfare under the COVID-19 pandemic at time t = 0,

and W ∗0 the social welfare in the economy with the baseline survival but lower consumption. The

one equation in one unknown defining λ0 is W
pandemic
0 = W ∗0 . Using (16), this expression becomes

∑
a
Ma,0

[(
π∗a,0 + ∆πa,0

) 1
1−γ A∗a,0e

υa−ga−ψΩ
2
a/2
]1−ψ

=
∑

a
Ma,0

[(
π∗a,0

) 1
1−γ Aa,0λ0e

υa−ga−ψΩ
2
a/2
]1−ψ

where

Aa,0λ0 =


[(
A∗a,0

)1−σ
+ (1− βa)

(
λ1−σ

0 − 1
)] 1

1−σ
for σ ≥ 0, σ 6= 1,

λ
1−βa
0 A∗a,0 for σ = 1,

(21)

and A∗a,0 is the baseline computed from the recursion in (8) with λa,t = 1 for all t. Substituting

this expression into the previous equation, and cancelling the common component Ω2 in Ω
2
a, gives
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an implicit solution for the case σ ≥ 0, σ 6= 1,

∑
a
Ma,0

(
π∗a,0 + ∆πa,0

) 1−ψ
1−γ

(
A∗a,0e

υa−ga−ψΦ2a/2
)1−ψ

(22)

=
∑

a
Ma,0

(
π∗a,0

) 1−ψ
1−γ

[(
A∗a,0

)1−σ
+ (1− βa)

(
λ1−σ

0 − 1
)] 1−ψ1−σ

(
eυa−ga−ψΦ2a/2

)1−ψ
.

In order to better understand the role of the inequality aversion parameter ψ on the social WTP,

and to also see the relationship between the social and age-specific WTP, notice that for the case

σ = 1 and βa = β for all a, there is a closed-form solution for λ0 given by

λ0 =


∑

aMa,0

(
π∗a,0 + ∆πa,0

) 1−ψ
1−γ

(
A∗a,0e

υa−ga−ψΦ2a/2
)1−ψ

∑
aMa,0

(
π∗a,0

) 1−ψ
1−γ

(
A∗a,0e

υa−ga−ψΦ2a/2
)1−ψ


1

(1−β)(1−ψ)

. (23)

The following proposition derives some results for this special case.

Proposition 2. For the case σ = 1 and βa = β for all a, the λ0 for a planner with aversion to

inequality parameter ψ can be written as

λ0 =
[∑

a
fa,0(ψ) (λa,0)(1−β)(1−ψ)

] 1
(1−β)(1−ψ)

(24)

where λa,0 is the age-specific WTP as defined in equation (20), and fa,0 (ψ) is a density

function given by

fa,0 (ψ) =
Ma,0

((
π∗a,0

) 1
1−γ A∗a,0e

υa−ga−ψΦ2a/2
)1−ψ

∑
aMa,0

((
π∗a,0

) 1
1−γ

A∗a,0e
υa−ga−ψΦ2a/2

)1−ψ . (25)

In addition, the marginal rate of substitution between consumption and survival for the

planner is given by

MRS (ψ) = − 1

1− γ
1

1− β
∑

a
fa,0(ψ)

(
π∗a,0

) 1−ψ
1−γ

π∗a,0
. (26)

Proof. Density (25) and equation (24) follow from (23). In order to derive (26), notice that the

WTP of the planner is given by

α (∆π) = 1− λ0 = 1−

∑
a
fa,0(ψ)

(
π∗a,0 + ∆πa,0

π∗a,0

) 1−ψ
1−γ


1
(1−β)(1−ψ)
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where we have used equation (20) for the case σ = 1 to substitute for λa,0. The marginal rate of

substitution consumption and survival can be calculated as MRS (ψ) = lim∆π→0
α(∆π)

∆π ,and

using L’Hopital’s rule

MRS (ψ) = lim
∆π→0

1

∆π

1−

∑
a
fa,0(ψ)

(
π∗a,0 + ∆πa,0

π∗a,0

) 1−ψ
1−γ


1
(1−β)(1−ψ)

 ,
which results in (26).

Proposition 2 provides three main insights. First, equation (24) suggests that the social costs

of the pandemic λ0 can be expressed as a CES function of the age-specific social costs (λa,0). In

fact, since β is close to 1, equation (24) is close to a Cobb-Douglas of the form

λ0 ≈
∏

a
λ
fa,0(ψ)
a,0 ,

so social welfare is approximately a geometric average of age-specific welfare, where the weights are

given by densities fa,0 (ψ). Consider the cases with ψ = 1 (log planner) and ψ = 0 (linear planner,

no aversion to inequality), with

fa,0 (1) =
Ma,0∑
aMa,0

and fa,0 (0) =
Ma,0

(
π∗a,0

) 1
1−γ A∗a,0e

υa−ga∑
aMa,0

(
π∗a,0

) 1
1−γ

A∗a,0e
υa−ga

.

When ψ = 1, the planner weights the age-specific welfare costs just using population weights. When

ψ = 0, weights depend not only on population, but also on survival probabilities (π∗a,0) and utilities

(A∗a,0). Since both survival and continuation utility are larger for the young, then the young weight

relatively more when ψ = 0 than when ψ = 1. Since younger individuals are relatively less affected

by the pandemic, their WTP (1 − λa,0) is lower, resulting in the planner exhibiting a lower WTP
(1− λ0) when ψ = 0 than when ψ = 1, as we verify in the calibrated exercise. Notice also that in

the intermediate case in which ψ = γ the weights fa,0 (ψ) are given by

fa,0 (γ) =
Ma,0π

∗
a,0

(
A∗a,0e

υa−ga−γΦ2a/2
)1−γ

∑
aMa,0π∗a,0

(
A∗a,0e

υa−ga−γΦ2a/2
)1−γ ,

which closely resemble an utilitarian planner in the expected utility case: utilities are weighted by

population and the expression is linear in survival probabilities. We will consider this case below

in the calibration, as it provides an intuitive benchmark for the planner’s curvature parameter.

Second, in addition to providing insights on the role of parameter ψ, Proposition 2 also shows the

role of cross-sectional inequality on the value of λ0. Notice first from (25) that weights the weights
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fa,0 (ψ) are only affected by life-cycle inequality, Φ2
a. Since Φ2

a is increasing in age, the effective

weight of each term in the summation gets smaller for higher a. Therefore for given 0 < ψ < 1,

the weight on the elderly, who are the ones most affected by the pandemic, gets downplayed in

the computation of social welfare. In other words, the fact that inequality increases during the

life-cycle tends to reduce the aggregate WTP to avoid the pandemic.

Third, the planner’s MRS (ψ) in (26) is computed using the notion that the WTP for a change

in survival ∆π is equal to the marginal rate of substitution between consumption and survival

times change in survival. Notice that equation (26) resembles a weighted average of the VSL-

to-consumption ratio in equation (12). In this respect, MRS (ψ) corresponds to a "social" VSL.

Consider again the cases ψ = 1 and ψ = 0, for which the MRS (ψ) is given by

MRS (1) = − 1

1− γ
1

1− β

∑
aMa,0/π

∗
a,0∑

aMa,0

MRS (0) = − 1

1− γ
1

1− β

∑
a

(
Ma,0

(
π∗a,0

) 1
1−γ A∗a,0e

υa−ga
)
/π∗a,0∑

aMa,0

(
π∗a,0

) 1
1−γ

A∗a,0e
υa−ga

.

As mentioned above, again in this case when ψ = 0 the planner weights the young relatively more

than when ψ = 1. Therefore for a given distribution of population shares, a linear planner (ψ = 0)

is less willing to transfer resources from the elderly to the young than the log planner (ψ = 1).

2.8.3 The case of persistent consumption costs

In this section we consider the case in which the consumption costs are paid gradually over time,

although the drop in survival from COVID-19 only happens in period t = 0. This case captures

what in reality could be the prolonged costs of the pandemic in terms of income and consumption.

Specifically, assume that

lnλa,t+1 = ρ lnλa,t (27)

for t ≥ 0, where ρ ∈ [0, 1) characterizes the persistence of consumption costs. The scenario we

considered so far, where welfare costs are computed for one period, corresponds to the case ρ = 0.

When ρ > 0 the welfare costs are paid gradually, up to some period t = t∗ whose length is increasing

in ρ. By construction, the WTP when ρ > 0 will be gradually declining over time, and the WTP

at t = 0 will be smaller the larger the ρ is. In other words, the WTP at time t = 0 is smaller the

larger t∗ is.

The computation of the individual and the aggregate welfare costs from t = 0 to t = t∗ is more

complicated than what was shown above for the case ρ = 0. The reason is that the Aa,0λa,0 in

equation (19) and the Aa,0λ0 in (21) cannot longer be expressed as functions of the baseline A∗a,0
because consumption goes back to the baseline in t = t∗, not in t = 1. For the case ρ > 0 we have
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that

Aa,0 =



[
(1− βa) + βa

[
π

1
1−γ
a+1,1Aa+1,1λ

ρ−1
a,0 e

µa+1−θη2a+1/2
]1−σ

] 1
1−σ

for σ ≥ 0, σ 6= 1,[
π

1
1−γ
a+1,1Aa+1,1λ

ρ−1
a,0 e

µa+1−θη2a+1/2
]βa

for σ = 1.

In this case one needs to compute separate sequences to obtain each Aa,0, as older individuals will

reach terminal age a∗ before time t = t∗, while younger individuals will reach this terminal age

after period t = t∗. These different Aa,0 sequences reflect the fact that individuals experience the

"transition" from t = 0 to t = t∗ at different ages over their life cycle.7 Notice that by construction

λa,t∗ = λt∗ = 1.

3 Calibration

We now calibrate the model to recent US data. The following parameters need to be calibrated:

the inverse of intertemporal substitution (σ), mortality risk aversion (γ), consumption risk aversion

(θ), the means and variances of the individual age-specific consumption shocks (µa− η2
a/2 and η

2
a),

the mean and variance of the lognormal distribution for age-0 consumption (ln c0,t−Ω2
t /2 and Ω2

t ),

the distribution of population by age (Ma), the conditional survival probabilities by age (πa), and

the age-specific discount factors (βa).

The first step of our calibration involves computing and estimating exogenous parameters.

First, we compute the conditional survival probabilities πa using the CDC 2017 life tables for the

US (National Vital Statistics, 2019). This is the most recent year available. Second, the distribution

of population by age is obtained from the US Census for 2017. Both of these variables are displayed

in Figure 1. Last, we use PSID data to estimate the means and variances of the individual age-

specific consumption shocks (µa− η2
a/2 and η

2
a), as well as the mean and variance of the lognormal

distribution for age-0 consumption (ln c0,t−Ω2
t /2 and Ω2

t ). Details for this step are provided below.

We also set g = 0 to consider a stationary state.

Once we compute these exogenous parameters, our calibration strategy proceeds as follows.

Since we would like to illustrate the role of σ in evaluating the distributional welfare effects of

COVID-19, we choose different values of σ and report results for each. In the benchmark calibration

we set σ = 1, but we also report a calibration with σ = 2, since these are commonly used values of

σ in quantitative macro. In the benchmark calibration, we also set θ = 1, so that σ = θ = 1 and

there is no separate role for aversion to consumption risk. We also report alternative calibrations

with θ = 10 and θ = 20, which are commonly used values in the finance literature. We set r = 2%

and back out the age-specific discount factors (βa) so that the Euler equation holds for every age,

as we explain in more detail below. Since βa depends on all the exogenous parameters and σ, we

recalibrate this age-specific discount factors for every σ we report. Last, we calibrate the mortality

7A technical appendix for this computation is available upon request.
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risk aversion parameter γ to match the ratio of the value of statistical life to consumption at age

40. We now provide additional details on the calibration.

3.1 Consumption process

We use 1999-2017 PSID biennial consumption data in order to compute cross-sectional means and

variances by age. The PSID has measured consumption since 1999, accounting for about 70%

of the consumption measured in the CEX, and has been found to provide cross-sectional life-

cycle estimates of consumption that are very similar across surveys (Charles et al., 2007). As it is

standard practice, we omit the SEO component of the PSID. We measure non-durable consumption

as the sum of the following categories: food (home, away and delivery), utilities, transportation

(gasoline, auto insurance, vehicle repair, parking, bus, cab and other, and excluding vehicle loan

and down payment), housing expenditures (rent and house insurance, excluding mortgages and

property taxes), childcare, education and health. We impute homeowners rent as 6% of the home

value reported by households.

We use the full sample of households observed during 1999-2017, whose heads of household’s

birth cohorts are between 1934 and 1991, and whose ages are between 23 and 77. Birth cohort

and age restrictions are imposed so we have enough observations in each. We have a total of

45,290 observations over the ten PSID waves, or 4,529 households per wave. Although the PSID

is longitudinal, the fact that it is biennial posses challenges in using individual-level consumption

growth rates to directly estimate the mean (µa) and variance of the shock (ηa). Therefore we use

cross-sectional consumption data in the estimation and back up the corresponding values for µa
and ηa.

In order to construct cross-sectional means and variances of consumption by age, we first remove

the effects of differences in family size across households by regressing log consumption on a full

set of family size dummies. As it is standard in the literature, we construct 5-year overlapping age

groups, and use the middle age in the bracket to name each age group. Since we restrict the sample

to those ages 23 to 77, we have age groups between 25 and 75. Due to the biennial nature of the

PSID data, we also construct non-overlapping 2-year cohort groups. In particular, every odd year

cohort group is merged with the previous even cohort. Cohort groups are named with the even

cohort. We then have cohort groups from 1934 to 1990 (even years).

Using the residuals of the regression on family size dummies, we compute the mean and the

variance (with appropriate PSID weights) for each age-group and cohort-group cell. Finally, we

separately regress the mean and the variance of each cell on a full set of age-group dummies (age

group 25 omitted). We call the coeffi cients of these dummies the "raw" age profile of means and

variances of consumption. As it is standard in the literature, we also run two additional regressions

to separately control for time (year 1999 omitted) and cohort effects (1934 cohort omitted).

Figure 2 displays the three estimated age profiles of the (cross-sectional) mean of log consump-

tion for ages 25 to 75: raw, cohort effects removed, and time effects removed. All estimates show

an increasing mean that starts flattening around age 50 and slightly decreases after age 70. This
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pattern is consistent with what Aguiar and Hurst (2013) document using 1980-2003 CEX data. In

fact, what explains the flattening around age 50 is the inclusion of housing services in the measure

of non-durable consumption (see their Figure 1).8 Although the levels of the profile when time

or cohort effects are removed are sensitive to the omitted year or cohort, this does not affect the

calibration of the mean and variance of the individual consumption shock, which only depend on

the changes age by age.

Figure 3 displays the estimated age profiles of the (cross-sectional) variance of log consumption.

For the model’s calibration we follow the literature and use the age profile when cohort effects

are removed. For this case Figure 3 shows that the variance initially decreases, but then starts

increasing rapidly between ages 40 and 55, after which it increases as a slower rate. Except for the

initially decreasing portion, our estimates are consistent with those obtained by others using the

CEX (see Heathcote et al. 2010 and Aguiar and Hurst, 2013). We find that the initially decreasing

variance is driven by two factors: the inclusion of the very recent cohorts, particularly those born

in the 1980s (Millennials); and the inclusion of childcare, education and health expenditures in the

definition of non-durable consumption.9

In order to calibrate the model we use a Hodrick-Prescott filter to smooth out the estimates

of the mean and variance of consumption by age as reported in Figures 2 and 3. We use the

estimates when cohort effects are removed. We set age-0 in the model to be age 25 in the data.

Figure 4 displays the calibrated mean and standard deviation of the individual consumption shock

(εa). In particular it displays the age-varying mean (µa) and standard deviation (ηa), as well as

constant values for these variables (constant µ and η). The constant µa = µ and ηa = η are used

as robustness checks and are computed using a larger Hodrick-Prescott parameter.

For ages older than 75 we set µa = µ75 and ηa = η75. Therefore, we assume mean consumption

continues to decrease slightly after age 75. Since we are interested in comparing the average WTP,

WTP 0, with the WTP of the median voter, and since those older than 18 years of age can vote, we

need to extrapolate µa and ηa for ages between 18 and 24. Since we do not have enough observations

to estimate µa and ηa before age 24, we assume that µa = µ26 and ηa = η26 for ages 19 through

25, and then use the estimated µ25 and η25 to construct µ18 and η18 so as to preserve the mean

and variance of the lognormal distribution for age-0 consumption. We check that our results are

not sensitive to this extrapolation.

3.2 Time horizon

The model so far has been specified with age-specific survival rates in infinite horizon. As discussed

in Cordoba and Ripoll (2017), if horizon is finite so that dying becomes a sure state in finite time,

and the utility upon dying is zero, then the utility of the alive is also zero whenever σ ≥ 1. This

8When housing services are excluded mean log consumption starts declining at age 50 as in the standard con-
sumption hump. Results available upon request.

9We are able to obtain the same increasing pattern of the variance of consumption starting at age 25 reported by
Aguiar and Hurst (their Figure 1B) when we follow their definition of non-durable consumption and exclude childcare,
education and health expenditures. In fact, we are also able to confirm with our data that food consumption is the
main category driving the increasing variance of consumption by age.
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result arises due to the implied strong complementary of consumption overtime. This implication

of the model is not present when 0 < σ < 1. A tractable way to close the model for any σ, while still

maintaining homotheticity, is to assume that after age a∗ the survival probability is constant but

strictly positive, even if close to zero, a sort of "perpetual old" assumption. We use this approach

in our benchmark calibration. We check the robustness of our results to an alternative formulation

in which the utility upon dead is positive once death becomes a sure state: Di,a,t > 0 for ages above

a∗. Under this alternative, the horizon is strictly finite and non-homothetic.

The benchmark calibration implements the perpetual old assumption by assuming that after

certain age a∗ all parameters are age invariant. Suppose that for a ≥ a∗ = 99, µa = µ, η2
a = η2,

and πa,t = π. In this case Aa,t in equation (8) is constant and given by the terminal value of Ā

specified in (10). Given Ā we compute the sequence of Aa,t going backwards from age a∗ and using

equation (8).

3.3 Age-specific discount factors

We follow the standard practice of calibrating the discount factor to match a given target for the risk

free interest of rate according to the Euler equation. In our life-cycle model Euler equations (14) are

age specific due to the age-specific survival rates and a potentially age-specific consumption growth

process. As a result, age-specific discount factors are needed to match the risk free interest target

for every age group.10 We set r = 2% and use Equation (14) to calibrate βa given an assumption on

annuity markets (δ). We present results for the case with no annuity markets (δ = 0) and perfect

annuities (δ = 1). To back out βa, solve for βa as a function of βa+1,

1− βa
βa

=
1 + r

δπa + 1− δ
(
1− βa+1

)
π
1−σ
1−γ
a+1e

−σµa+1+θ(1+σ)η2a+1/2. (28)

This equation suggests that βa typically depends on age. A constant β would result only in specific

cases such as: (i) δ = 0 (no annuities), σ = 1 and σµa+1 = θ (1 + σ) η2
a+1/2; (ii) δ = 0, σ = 1,

µa+1 = µ and ηa+1 = η; or (iii) δ = 1 (perfect annuity markets), σ = γ (expected utility case for

mortality risk), µa+1 = µ and ηa+1 = η. But in general, for arbitrary δ and σ 6= 1, an age-dependent

βa has to be backed-out for the Euler equation of this model to hold at every age.

Like before, assume that for a ≥ a∗ = 99 parameters are constant so that µa = µ, η2
a = η2, and

πa,t = π. In this case a terminal β̄ is given by

β̄ =
1

1 + r

δπ + 1− δ
π
1−σ
1−γ e−σµ+θ(1+σ)η2/2

. (29)

The sequence of β′as can be then computed backwards from age a∗ using equation (28) for any σ

and δ. Equation (28) provides some insights into the profile of βa. First, since the estimated µa
and ηa in Figure 4 are small in magnitude, the quantitative role of term e−σµa+1+θ(1+σ)η2a+1/2 will

10Murphy and Topel (2006) and Cordoba and Ripoll (2017) use age-specific health indexes to match the target.
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be second order. If δ = 0, then βa mostly counteracts π
(1−σ)/(1−γ)
a+1 , which is the only age-varying

term, or βa ≈ π
(σ−1)/(1−γ)
a+1 . For the most relevant case with σ > 1, since γ < 1 then we have that

βa is decreasing in age. If δ = 1, then βa counteracts π
(γ−σ)/(1−γ)
a+1 or βa ≈ π

(σ−γ)/(1−γ)
a+1 . Here

again, for σ > 1 we have that βa is decreasing in age more strongly than in the no-annuity case,

δ = 0. Although βa varies with age in our model , it is important to remember that the effective

discount factor is not βa but it is β̃a ≡ βaπ
(1−σ)/(1−γ)
a+1,t+1 . From this perspective, allowing βa to vary

with age does not imply that individuals effectively become more patient or impatient as they age.

We verify this property in our calibrated model.

3.4 Aversion to mortality risk

We follow Cordoba and Ripoll (2017) and calibrate the mortality risk aversion parameter γ to

match the average ratio of the value of statistical life (VSL) to consumption at age 40.11 From

equation (12) above, this ratio is given by

V SLi,a,t
ci,a,t

=
1

1− βa
1

1− γ
A1−σ
a,t

πa,t
.

We calibrate γ so that the average ratio V SLi,a,t/ci,a,t at age 40 is 150, a number similar to the

one in Cordoba and Ripoll (2017) and Murphy and Topel (2006). With a level of consumption

of $45,000, this corresponds to a VSL of $6.75 million. We also report results for the case of a

VSL-to-consumption of 200, which corresponds to a VSL of $9 million. This value is closer in

magnitude to the one used by Hall et al. (2020).

Given our calibration strategy for βa, it is instructive to discuss how it interacts with other

determinants of the VSL in the equation above. Consider first the case in which σ = 1, there are

no annuities (δ = 0) and the parameters of the consumption shock process are constant across ages

(µa+1 = µ and ηa+1 = η). In this case, equation (14) implies that βa is constant across ages, so that

the VSL is only affected by πa,t and ci,a,t. Therefore unless there is a strong drop in consumption

at older ages, the VSL tends to increase in age.

Next, continue to assume σ = 1 and constant µ and η, but now assume there are perfect annuity

markets (δ = 1). In this case, βa is decreasing with age since βa curbs the effect of π
(γ−σ)/(1−γ)
a+1,t+1 to

satisfy the Euler equation (14). Therefore with perfect annuity markets the effect of βa counteracts

the effect of all πa,t and ci,a,t on the VSL. It turns out that in our calibrated model the effect of βa
dominates, making the VSL decreasing in age. This analysis illustrates how the presence of annuity

markets influences the profile of the VSL through its effect on βa.

Last, consider the case of σ > 1, a commonly used case in quantitative macro. In this case it is

easy to see that, regardless of the annuity market structure, βa decreases with age, which tends to

make the VSL decrease with age. However, we find that in the calibrated model the effects from

A1−σ
a,t , 1/πa,t and ci,a,t dominate, making the VSL increase with age.

11We calibrate the model to match the VSL-to-consumption ratio rather than the VSL level because the PSID data
we use in our calibration includes about 70% of the consumption categories of the CEX.
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3.5 Benchmark calibration

The benchmark with σ = θ = 1 and δ = 0 features two additional characteristics, both of which can

be seen in equation (28). First, in the benchmark parameter γ does not affect the Euler equation

and therefore does not affect the calibrated βa. This implies that γ is completely identified from

the targeted V SL/c ratio in equation (12). Second, with σ = 1 and δ = 0, discount factor βa only

reflects the variations in µa and ηa. Since these variations are quantitatively small, βa would be

almost constant across ages. These multiple desirable features make the benchmark our preferred

calibration.

For the benchmark calibration we obtain a mortality risk aversion parameter of γ = 0.675. Since

σ > γ, the benchmark calibration implies a preference for late resolution of uncertainty regarding

mortality. Similar results were found in Cordoba and Ripoll (2017). Figure 5 displays additional

features of the benchmark calibration. The top two panels show the estimated cross-sectional

mean and variance of log consumption from the PSID. Our age-varying µa allows us to estimate a

reasonable consumption profile, with mean consumption falling slowly after age 70. As implied by

the random walk process, the cross-section variance of consumption increases with age, a feature

documented by others in the literature (Aguiar and Hurst, 2013).

The bottom-left panel of Figure 5 shows the implied Gini coeffi cients of consumption. As shown

in Cowell (1995), the Gini coeffi cient for the lognormal distribution is given by

Ginia,t = 2Θ

(
2

√(
Ω2
t + Φ2

a

)
/2

)
− 1

where Θ(.) is the cumulative density of a standard normal distribution. Recall from equation (3)

that the variance of the lognormal cross-sectional distribution of consumption at age a is given by

Ω2
t + Φ2

a. As shown in Figure 5, while the Gini of consumption starts at around 0.26 at age 18, it

goes up to 0.33 at age 60, suggesting our estimates from the PSID are a good representation of US

consumption inequality.

Finally, the bottom-right panel of Figure 5 displays the calibrated age-varying βa. As expected

for the benchmark calibration with σ = 1 and δ = 0, βa varies very little across ages, between 0.984

and 0.974.

4 Results

4.1 Distributional welfare costs of COVID-19

In order to simulate the effect of COVID-19 we follow Ferguson et al. (2020) and Menachemi et al.

(2020). From Ferguson et al. (2020) we take the age-specific pre-lockdown fatality rates, but we

adjust them to obtain the aggregate fatality rate from Menachemi et al. (2020). While Ferguson

et al. (2020) predict an age-adjusted fatality rate of 1.1%, Menachemi et al. (2020) estimate it to

be 0.58%, a more reasonable number. Since the log of age-specific fatality rates from Ferguson et
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al. (2020) are linear in age, we can easily adjust them to be consistent with the aggregate fatality

rate of Menachemi et al. (2020). We use (log) interpolation to compute the decrease of survival

probabilities for each age using the following fatality rates by age bracket from: 0.001% for ages

0-9; 0.003% for ages 10-19; 0.015% for ages 20-29; 0.04% for ages 30-39; 0.08% for 40-49; 0.3% for

50-59; 1.2% for 60-69; 2.7% for 70-79; and 4.9% for ages 80+. Both Ferguson et al. (2020) and

Menachemi et al. (2020) provide estimates before the implementation of a lockdown, allowing us

to compute the WTP to avoid COVID-19 absent any additional policy that would alter the death

rates.

Table 1 summarizes the welfare costs of COVID-19 for different assumptions regarding annuity

markets, σ, and the VSL-to-consumption ratio. The results on the table refer to the one-time WTP

to avoid the pandemic (ρ = 0). The table reports the following three statistics: the average WTP

(WTP 0), which corresponds to the population-weighted average of age-specific WTP (1 − λa,0);
the WTP of the median voter who is 46 years old (median age of population above 18); and the

standard deviation of the age-specific WTP.

For our benchmark calibration with no annuity markets, σ = 1 and V SL/c = 150, we find that

the costs of COVID-19 are high: the average WTP to avoid the pandemic is 41.2% of one-year

consumption. More interestingly, we find that the median voter is willing to pay much less, 22.7%.

In addition, we find substantial disagreement across individuals: the standard deviation of the

distribution of age-specific WTP is 41.2% of one-year consumption.

Figure 6 displays some relevant variables for the benchmark calibration. The top-left panel

reports V SL/c, which is calibrated to 150 at age 40. As shown, the calibrated V SL/c is U-shape

in age. Recall from equation (12) that when σ = 1 the V SL/c is independent of Aa,t. Since πa
decreases with age, but βa also decreases with age, there are two competing forces: for younger

ages the effect of βa dominates, making the V SL/c decrease with age, but at older ages the V SL/c

increases with age because the effect of lower πa is stronger. Notice in particular that V SL/c

increases after age 75 because βa becomes constant after that age: with δ = 0 and σ = 1, the

calibrated βa only captures the changes in µa and ηa, but these are assumed to be constant after

age 75. The top-right panel of Figure 6 displays the percentage change of continuation utility due

to the COVID-19 pandemic. Although a one-year event, the welfare change is large for the oldest

who face relatively large survival losses, much larger than those due to influenza.

The bottom-left panel of Figure 6 displays the distribution of age-specific WTP (1 − λa,0),

which sharply increases with age and is close to 100% after age 80. Recall from the formula of the

one-time age-specific WTP (20), that when σ = 1 and δ = 0, since βa is almost constant across

ages, the WTP is mostly driven by the age-specific change in survival ∆πa,0 < 0. As the change in

the survival probability is substantially different across ages, going from almost zero at age 20, to

0.003 at age 50, to 0.049 at ages 80+, the dispersion of the WTP across ages is also substantial.

Finally, the bottom-right panel of Figure 6 shows the contribution of the age-specific WTP

to the average WTP (WTP 0): although the oldest are willing to pay a large percentage of their

consumption to avoid COVID, they represent a lower percentage of the population (Figure 1),

contributing less to the 41.2% average in Table 1. At the opposite end, although the youngest
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represent a larger share of the population, they are willing to pay the least, contributing less to the

average WTP. It is those around age 60 the ones who contribute the most to the average WTP.

As shown in Table 1, for the case of no annuity markets, when σ = 2 the WTP are lower: the

average WTP is 34.3% of one-year consumption, the median voter’s WTP is 20.5% and the standard

deviation of the WTP is 35.2%. Although lower, these numbers still indicate larger welfare costs

of COVID-19. The top-left panel of Figure 7 illustrates this point by comparing the distribution of

age-specific WTP when σ = 1 and σ = 2 for the case of no annuities. As seen in the figure, when

σ = 2 the WTP is lower after age 40. The reason can be traced to asset pricing and the calibration

of βa: for the Euler equation to hold at older ages with the given consumption process, the elder

would have to become less patient, or βa has to be lower. This effect decreases the WTP of the

elder.

Table 1 also reports the WTP for the case of perfect annuity markets. The main observation

for this case is that relative to the case with no annuities, the average WTP, the WTP of the

median voter and the standard deviation of the WTP are lower. These lower statistics can again

be attributed to the WTP of the elder. This is shown on the top-right panel of Figure 7 for the case

σ = 1: with perfect annuity markets, the WTP is lower starting at age 40, but particularly so after

age 75 when the WTP declines with age. Recall from equation (14), that with σ = 1 and δ = 1, the

effective discount factor is β̃a ≡ βa/πa+1. Therefore, the βa that satisfies the Euler equation almost

exactly cancels the effect of decreasing πa+1, or βa ≈ πa+1. The intuition here is that with perfect

annuities the return from saving, for the survivors, is higher than with no annuities which would

induce higher consumption growth. For the assumed consumption process to continue satisfy Euler

Equations, individuals would need to be more impatient, at every age, in the model with annuities.

As seen in Figure 1, πa is almost one at age 18, but it goes down to about 0.71 at age 100. This

implies that βa differs more across ages when σ = 1 and δ = 1. This lower βa for the elder reduces

the WTP relative to the case with no annuities.

Finally, Table 1 also shows the corresponding WTP for the case V SL/c = 200. Naturally, the

higher the V SL/c the larger the average WTP as well as the WTP for the median voter. This

scenario also displays substantial dispersion of the distribution of age-specific WTP. The scenario

with V SL/c = 200 more closely resembles the calibration in Hall et al. (2020). The most relevant

comparison corresponds to the case with perfect annuity markets and σ = 2. In this case we obtain

an average WTP of 34.3%. They obtain a comparable value of 27.7%, although their is lower

because they simulate a lower aggregate fatality rate (0.44%).

4.2 Robustness checks to alternative parameters

We check the robustness of our results to alternative parameter values. Table 2 summarizes the

results when we change certain parameter values, one at a time. In particular, we report results for

alternative values of θ, for a calibration of the model that assumes constant µa = µ and ηa = η, and

for a finite-horizon calibration that considers Di,a,t 6= 0. Table 2 includes the benchmark calibration

with σ = θ = 1.
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Table 2 shows that alternative values of θ have little effects on the WTP results. For both

θ = 10 and θ = 20 the average and the median voter WTP are higher than in the calibrated

benchmark (σ = θ = 1) with or without annuity markets, but the differences are quantitatively

small. Recall from equation (20) that when σ = 1 the age-specific WTP depends on ∆πa,0, the

calibrated βa, and the calibrated γ. As seen in equation (28), parameter θ affects the calibrated βa
only through term e−σµa+1+θ(1+σ)η2a+1/2: a larger θ results in a lower βa. However, since η

2
a is very

small in magnitude, the overall quantitative effect of θ on βa is small. For the case of no annuity

markets, with θ = 10 we obtain a calibrated γ = 0.877, while for θ = 20 we obtain γ = 0.894.

In this respect, higher consumption risk aversion results in a higher mortality risk aversion in the

calibration. The bottom-left panel of Figure 7 displays the full distribution of age-specific WTP

for θ = 1 and θ = 10. As shown, there is little difference, although those between ages 50 and 60

have slightly higher WTP when θ = 10. This is the case because the standard deviation of the

consumption shock (ηa) is higher at those ages (Figure 4).

Table 2 also shows that for the case of constant µa = µ and ηa = η (but still maintaining

σ = θ = 1), the WTP results only change slightly for both the no annuities and the perfect annuity

cases. The bottom-right panel of Figure 7 displays the full distribution of age-specific WTP for

constant and age-varying µa and ηa for the case of no annuities. This is not surprising since the age-

varying estimated values of µa and ηa only affect the results through term e−σµa+1+θ(1+σ)η2a+1/2,

which tends to have a quantitatively second-order effect. The bottom-right panel of Figure 7

displays the full distribution of age-specific WTP for constant and age-varying µa and ηa. Having

said this, it is important to notice that the decrease in survival rates from COVID-19 are so large,

particularly for the elder, that the WTP results are mostly driven by ∆πa,0. This is specially true

in the case of σ = 1. If we were to use our model to compute the WTP to avoid pandemics with

smaller effects in survival probabilities, other features of our model like age-varying µa and ηa would

play a larger role.

In the benchmark calibration we closed the model by assuming that the horizon is infinite, but

that after certain age a ≥ a∗ = 99, the survival probability is constant and very low, but positive

(πa,t = π). This "perpetual old" assumption avoids that lifetime utility becomes zero when σ ≥ 1.

Table 2 reports the robustness of the WTP results to an alternative way of closing the model,

namely one in which the horizon is finite. In this case, rather than assuming that the utility upon

death Di,a,t = 0, we impute a positive value of consumption in the dead state for ages after which

the survival probability is zero. In particular, a non-homotheticity in utility (Di,a,t > 0) is assumed

for ages over a∗ = 99.

The main diffi culty of solving this case is that with the non-homotheticity after age 99, utility

is no longer linear in consumption. In this finite-horizon model, utility in period a∗ is given by

V a∗ = Da∗ while utility in period a∗ − 1 is given by

Va∗−1 = (ca∗−1)1−βa∗−1 (Da∗)
βa∗−1 .
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It can be shown that in this case utility is of the form

Vi,a,t = Aa,t (λa,tci,a,t)
φa

where φa = 1− βa + βaφa+1 and

Aa,t =

(
π

1
1−γ
a+1,t+1Aa+1,t+1

(
λa+1,t+1

λa,t
eµa+1+(φa+1(1−θ)−1)η2a+1/2

)φa+1)βa
.

The last two recursions can be solved using the following terminal conditions φa∗−1 = 1 − βa∗−1,

and Aa∗−1,t∗−1 = (Da∗)
βa∗−1 where Da∗ > 0.

As shown in Table 2, our results are robust to this alternative way of closing the model. We

set Da∗ = 0.001 and find that for the benchmark calibration with σ = θ = 1, the average and the

median voter’s WTP are virtually identical to the benchmark for both the cases with no annuities

and annuities. These results are robust to other values of Da∗ , but we set Da∗ = 0.001 to guarantee

a decreasing profile for Aa,t with age.

4.3 Persistent consumption costs

In this section we extend the computations to consider the case in which the consumption costs are

persistent (ρ > 0). In this case, although the pandemic decreases the survival probabilities only

in year t = 0, the consumption costs persist up to time t = t∗. We compute the WTP each year

from 0 to t∗. Table 3 presents the results for this extension, in particular for the cases ρ = 0.5

and ρ = 0.9. Value ρ = 0.5 implies t∗ ≈ 8, while ρ = 0.9 implies t∗ ≈ 30. The former illustrates

lingering effects of a crisis similar to the 2007-2009 Great Recession, while the latter illustrates the

limiting case as ρ→ 1.

Table 3 reports the WTP statistics for t = 0, while Figure 8 includes plots for the full transition

of WTP from t = 0 to t∗. As seen in Table 3, the WTP during period t = 0 falls as the persistence

increases: individuals are willing to pay less to avoid the pandemic if they will be paying a percentage

of consumption for a longer period of time. For instance, for the case with no annuities, the average

WTP at t = 0 falls from 41.2% when all costs are paid in one period (ρ = 0), to 30.9% when ρ = 0.5

and to 12.2% when ρ = 0.9. As seen in the table, a similar pattern is observed for the WTP of the

median voter. Finally, the disagreement among individuals of different ages still persists as seen on

the standard deviation of the WTP across ages.

The overall message of Table 3 is that even when the consumption costs are persistent, the av-

erage WTP to eliminate a one-year COVID-19 pandemic is still large. For the benchmark economy

with σ = θ = 1 and no annuity markets, simulating a ρ = 0.5 as a potentially realistic scenario for

a lengthy recovery results in an average WTP of 30.9% of time-0 consumption. In the presence of

annuity markets this number falls to 23.4%, still a large welfare cost.

The top-left panel in Figure 8 shows the distribution of the WTP by age at time t = 0. As ρ
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increases, the WTP falls for all ages. In the limit, with ρ = 0.9, those above age 80 are willing to

pay much less than when ρ = 0, between 55 and 65% of time-0 consumption. The top-right panel

in Figure 8 displays the average WTP from period t = 0 to t = t∗ for different values of ρ. Notice

that by construction the WTP falls over time. The bottom-left panel shows how the WTP for the

median voter evolves over time, while the bottom-right displays the case of the average 65-year old

individual.

4.4 Social welfare costs

Table 4 presents the aggregate costs of COVID-19 from the perspective of the planner. All exercises

on the table use the benchmark calibration with σ = θ = 1 and V SL/c = 150. Recall from section

2.7 that the planner’s curvature parameter is given by ψ. When ψ = 0 the planner has linear

preferences and is indifferent to the inequality across individuals of different ages. We also consider

other cases with more curvature, including one in which ψ = γ and one in which ψ = σ = θ = 1.

Recall that the EZW utility representation we have three curvature parameters: σ, γ and θ, making

it reasonable to explore how the aggregate costs of the pandemic change when ψ equal each of these

values.

As seen in Table 4, the aggregate costs of the pandemic are quite different across various values

of ψ. As ψ goes from ψ = 0 to ψ = 1, the aggregate WTP increases. As mentioned in the discussion

of equation (23) and Proposition 2, when ψ = 0 the planner gives the highest relative weight to the

young and is willing to pay less to avoid the pandemic. In contrast, as ψ increases towards one, the

planner gives relatively less weight to the young and is willing to pay more to avoid COVID-19.

Table 4 also shows a difference between the cases with and without annuities. Overall, the

aggregate WTP is higher when annuities are perfect. This result emerges because the calibrated

profiles of Aa are different in these two cases. Specifically, in the absence of annuities Aa rapidly

declines with age, while the decline is much slower when annuities are perfect.

Our preferred scenario is that with no annuities, since annuities are rarely used in practice. In

this case, a social planner who does not care about inequality (ψ = 0) would be willing to pay only

4.1% to avoid COVID-19. However, this number changes rapidly as inequality aversion increases:

when ψ = γ = 0.675, the aggregate WTP more than doubles to 10.8%. The WTP of the median

voter, 22.7%, roughly coincides with that of the planner when ψ = 0.81. In addition, the average

WTP, 41.2%, coincides with that of the planner when ψ = 0.9. As we continue to increase ψ up

to the log-planner with ψ = σ = θ = 1, the aggregate WTP becomes 72.7%. In sum, in the case of

no annuities the aggregate WTP is sensitive to the planner’s inequality aversion, spanning a wide

range of values, including the average WTP and the WTP of the median voter.

As mentioned before, the case ψ = γ = 0.675 is interesting because the planner’s weight on

age-specific WTP is linear in both the population share and the survival probability, getting closer

to the case of a utilitarian planner with expected utility. Although the planner is willing to pay

relatively little in this case, it is important to emphasize that higher levels of inequality aversion

can also rationalize a planner who is willing to pay as much as the median voter and as much as
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the average.

4.5 Full recessions

All our computations so far have been made using the pre-lockdown fatality rates from Ferguson

et al. (2020) and Menachemi et al. (2020). These are the appropriate fatality rates to compute the

WTP to fully avoid the pandemic. In practice, pandemics cannot be fully avoided and in the case of

COVID-19 lockdown policies have been implemented to avoid the loss of lives, which have resulted

in contraction of economic activity. In this section we use our model to calculate "full recessions",

which correspond to a combined measure of consumption loss and lives lost. Our notion of full

recession is analogous to that of full income, which has been used in cross-country literature to

compute a measure of welfare that augments income with life expectancy (Jones and Klenow, 2016;

Cordoba and Ripoll, 2017).

We compute full recessions using the following version of individual utility in equation (18) for

the case ρ = 0

V
(
π∗a,0 + ∆πa,0,

[
λri,a,0,1

]
, ci,a,0

)
= V

(
π∗a,0,

[
λfri,a,0,1

]
, ci,a,0

)
,

where λri,a,0 corresponds to the time-0 change in consumption due to the associated lockdown

recession. The left-hand side is the expected utility of individual i under the one-year lockdown

recession and the change in survival probabilities from the pandemic. The right-hand side is the

utility without the pandemic but with a level of effective initial consumption adjusted by λfri,a,0 and

that delivers the same utility as the left-hand side. We assume λri,a,0 = λr0, so that the lockdown

recession is the same for all individuals and all ages. Similar to what we found before, λfri,a,0 only

depends on age. We refer to αfra,0 = (1−λfra,0) as the full recession in the sense that it is the drop in

consumption that would reflect both the change in survival due to the pandemic and the economic

contraction from the lockdown.

Table 5 presents the value of the full recessions in terms of the percentage of consumption lost.

We consider three possible recession scenarios, with drops of 10%, 15% and 20% of consumption

during the year of the pandemic. We also consider different death rates, with 300, 400 and 500

thousand lives lost. Table 5 includes the computation of full recessions from the perspective of

the average individual (population weighted), the median voter, the planner with ψ = γ and the

planner with ψ = 0.9. The table uses our preferred calibration with no annuity markets, σ = θ = 1

and age-varying discount factors.

As shown in Table 5, a 10% contraction in consumption during the year of the pandemic

combined with a lost of 300,000 lives corresponds to a 23.1% full recession for the average individual,

a 15.3% full recession for the median voter, an 11.9% full recession for a planner with a relatively

low aversion to inequality, and 17.1% for the planner with higher inequality aversion. When the

lives lost go up to 500,000, the corresponding full recessions are 28.5% for the average, 18.6% for

the median voter, 12.3% for the lower-inequality aversion planner, and 21.4% for the planner with
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higher aversion. In order to interpret these findings, first notice that for the planner with lower

inequality aversion, a 10% recession becomes a 12.3% full recession when 500,000 lives are lost:

the additional 2.3% corresponds to the planner’s valuation of 500,000 lives lost. Using a back-of-

the-envelope computation where US GDP is $22 trillion, this roughly corresponds to a planner’s

valuation of $1 million per life lost. Pindyck (2020) has suggested $1 million as a reasonable

VSL in evaluating social preferences. But for the planner with higher aversion to inequality, this

valuation becomes $5 million per life lost. On the other hand, the median voter, who is age 46,

values each life at roughly $3.8 million, while on average each life lost is valued at $8 million. The

reason why the average individual values life much more than the low inequality aversion planner

is that those above age 75 would be willing to pay a sizeable amount to save their lives, since the

pandemic reduces their already shorter life spans. Since the planner has a relatively low inequality

aversion (ψ = γ = 0.675), the planner places an effectively lower weight on older individuals, whose

continuation utility is lower. In this sense the planner’s valuation of life aligns with that of younger

individuals whose survival is affected little by the pandemic. Alternatively, the planner with higher

inequality aversion places a higher weight on older individuals and is willing to pay more.

4.6 Consumption-lives frontier

In this section we use our model to compute the trade-off between consumption and lives along a

frontier. We compute this frontier by using the following version of equation (18)

V
(
π∗a,0 + ∆πa,0, ci,a,0

)
= V

(
π∗a,0 + ϕ∆πa,0, [λi,a,0,1] , ci,a,0

)
. (30)

The left-hand side is the expected utility of individual i under the COVID-19 death rates at pre-

lockdown levels from Ferguson et al. (2020). The right-hand side is the utility under a milder

pandemic, with ϕ ∈ [0, 1], but with a level of initial consumption adjusted by λi,a,0 that delivers

the same utility as the left-hand side. At one extreme, when ϕ = 0, we obtain the WTP (1−λi,a,0)
to avoid all COVID deaths, which are the same ones reported in Table 1. At the other extreme,

with ϕ = 1, by definition we obtain λi,a,0 = 1 or a WTP of zero: if no deaths can be avoided, then

no consumption would be traded off.

It can easily be shown that the solution for λi,a,0 in (30) is then given by the following version

of equation (20)

λi,a,0 = λa,0 =


[
1 +

[(
π∗a,0+∆πa,0
π∗a,0+ϕ∆πa,0

) 1−σ
1−γ − 1

]
(A∗a,0)

1−σ

1−βa

] 1
1−σ

for σ ≥ 0, σ 6= 1,(
π∗a,0+∆πa,0
π∗a,0+ϕ∆πa,0

) 1
1−γ

1
1−βa for σ = 1.

Table 6 and Figure 9 present our computation of the consumption-lives frontier. The table uses

our preferred calibration with no annuity markets, σ = θ = 1 and age-varying discount factors. As

mentioned, the average individual is willing to trade off 41.2% of one-year consumption to avoid
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all COVID deaths, while the median voter would pay 22.7%, the low inequality aversion planner

(ψ = γ) 10.8%, and the high inequality aversion planner 41.0%. These are the same values reported

for our preferred calibration in Tables 1 and 4. At the other end, if no COVID deaths can possibly

be avoided, 1.9 million people would die according to the fatality rates of Menachemi et al. (2020),

a 0.58% death rate. In this case the WTP would be zero, as shown in the last row of Table 6.

As can seen in Figure 9, the frontier for the average individual is relatively more concave than

that of the median voter or the planners. Starting at 1.9 million deaths, the average individual is

initially willing to reduce consumption sharply to save lives: the first 1.1 million lives are traded-off

by a 32.9% consumption cut in the year of the pandemic. But the trade-off is smaller for the next

800 thousand lives, adding a extra 8% consumption cut. The concavity of the average frontier

reflects the large variation in willingness to pay across individuals of different ages. For the median

voter, the frontier is less concave, sacrificing 13.9% of consumption to save the first 1.1 million lives,

an additional 8.8% for the next 800 thousand people.

Figure 9 also shows how, although the consumption-lives frontier for the high inequality aversion

planner starts and ends at the same point as the average, the planner’s is more linear and falls faster.

This reflects the fact that the planner is weighting individuals differently than with just population

weights: the planner also takes into account the survival probability and the continuation utility

of individuals.

5 Discussion and relationship to the literature

In this section we further discuss the properties of our model, in particular its predictions regarding

the VSL, and we also relate our results to the literature on the costs of the COVID-19 pandemic.

For this purpose, we consider a version of the model with only mortality risk but no heterogeneity

or consumption risk. We can drop the i subscripts, and for simplicity we also drop subscript t in

this section.

5.1 VSL and the value of a year-life

Focusing on the case σ 6= 1, utility is given by

V a = π
1

1−γ
a Va where Va =

[
(1− βa) c1−σ

a + βaπ
1−σ
1−γ
a+1V

1−σ
a+1

] 1
1−σ

.

Iterating forward on the last equation above the following extensive form for Va can be obtained:

Va =
[∑∞

s=a
Sa,s (1− βs) c1−σ

s

] 1
1−σ

(31)
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where Sa,a = 1 and Sa,s =
∏s−1
j=a βjπ

(1−σ)/(1−γ)
j+1 for s > a. The budget constraint is given by

ba =
∑∞

s=a
Pa,s [cs − ys] (32)

where Pa,a = 1 and Pa,s =
∏s
j=a+1 pj = (1 + r)a−s

∏s
j=a+1 (δπj + 1− δ) for s > a. Using the Euler

equation from maximizing Va subject to lifetime budget constraint (32) results in

V 1−σ
a = (1− βa) c−σa

∑∞

s=a
Pa,scs. (33)

The expression above can be used to express the VSL in equation (11) as

V SLa =
1

1− γ
1

πa

[∑∞

s=a
Pa,scs

]
, (34)

and defining the value of a year-life as va = ca/(1 − γ) we can express the VSL as the discounted

sum of the values of year-life

V SLa =
1

πa

[∑∞

s=a
Pa,svs

]
,

which is a standard expression in the literature (see Murphy and Topel, 2006; and Cordoba and

Ripoll, 2017). In order to see how the assumptions about annuities affect the VSL, assume mo-

mentarily that vs = v. In this case, if there are no annuity markets (δ = 0) we have that

V SLa =
v

πa

1 + r

r
,

which implies that the VSL strictly increases with age, a novel insight. Most papers in the literature

consider the case of perfect annuity markets, even though the use of annuities is quite limited in

practice.

In the case of perfect annuity markets (δ = 1), we have that

V SLa =
v

πa

∑∞

s=a

(∏s
j=a πj

)
≡ v

πa
LEa, (35)

where LEa is the remaining life expectancy at age a. In this case, the VSL could fall with age if

LEa falls faster than πa.

5.2 Relationship to the literature

Our welfare computation is most related to Hall et al. (2020) and complements their analysis. We

now show how we can obtain their framework and their main formulas for the costs of the pandemic

from ours. For this purpose, in addition to eliminating consumption risk and assuming θ = σ, we

add the assumption that γ = σ to obtain expected utility. As in Hall et al. we also assume that
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βa = β and that consumption is constant so that ca = c. In this case, equation (31) reads

V 1−σ
a = (1− β) c1−σ

∑∞

s=a

(∏s−1
j=a βjπj+1

)
≡ (1− β) c1−σELEa (36)

which allows us to write the VSL in equation (11) as

V SLa =
c

1− σ
ELEa
πa

(37)

where ELEa stands for "effective" life expectancy. Equation (36) states that continuation utility

equals the utility flow (1− β) c1−σ times the effective life expectancy. This equation is almost the

same as in Hall et al. (2020), except that theirs is simplified by assuming β = 1, so that instead of

obtaining ELEa they directly obtain remaining life expectancy LEa as follows

V SLa =
c

1− σ
LEa
πa

. (38)

Our EZW framework does not allow for the β = 1 simplification because due to the CES nature of

our utility function, (1− β) is the weight of the current utility flow. However, notice from equation

(35) that if we make v = c/(1 − σ), then with perfect annuity markets we can obtain the same

expression as in (38). Therefore, when there are perfect annuity markets, no consumption risk, and

θ = γ = σ, we obtain similar expressions for the VSL as in Hall et al.

We now compare the costs of a one-year COVID-19 pandemic with Hall et al. (2020). Recall

that the pandemic takes place at time t = 0. Referring back to equation (20), which we rewrite

here in logs for the case σ 6= 1 and γ = σ

lnλa,0 =
1

1− σ ln

[
1 +

[
π∗a,0 + ∆πa,0

π∗a,0
− 1

] (
A∗a,0

)1−σ
1− β

]
,

define the WTP as αa,0 = 1−λa,0 and notice that for small αa,0, lnλa,0 ' −αa,0. Linearizing lnλa,0

around ∆πa,0 = 0 we have that

lnλa,0 '
1

1− β
1

1− σ

(
A∗a,0

)1−σ
π∗a,0

∆πa,0

which using (12) can be written as

αa,0 ' − lnλa,0 ' −
V SLa,0
ca,0

∆πa,0
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and using (37) we obtain

αa,0 ' − lnλa,0 ' −
∆πa,0
1− σ

1

πa,0
ELEa,0,

an expression similar to Hall et al. (2020) for the cost of the pandemic. Since they assume β = 1

they directly obtain LEa,0 instead of ELEa,0. The other difference is that term (1/πa,0) is present

in our formula but not in Hall et al. (2020) due to the timing of our model, where the pandemic

hits at time t = 0 and directly affects the survival probability that period.

In terms of quantitative results, Hall et al. (2020) obtain welfare costs of 27.7% for their

preferred calibration with σ = 2, although for a lower aggregate fatality rate (0.44%). Our model

and theirs differ in many dimensions, but as shown in Table 1 for the case of σ = 2, we obtain

average welfare costs between 29.7% and 34.3% depending on the target V SL/c. Although these

results are overall similar, the main differences can be traced to the distributional welfare effects.

Our analysis here has emphasized the WTP of the mean voter and the standard deviation of the

WTP across ages. We have also modeled the planner’s social welfare function to include aversion

to inequality. Because of the nature of our preferences, in our model the average WTP across ages

does not coincide with the aggregate WTP by the planner, even when the planner does not care

about inequality.

A fundamental underlying difference between our framework and that of Hall et al. (2020) is

that our utility is homothetic while theirs is not. An implication of this difference is that in our

homothetic framework the young, who enjoy lower levels of consumption, do not value survival

relatively less than individuals enjoying higher consumption. The income effects of non-homothetic

utility are eliminated. Finally, our framework exhibits a preference for late resolution of mortality

uncertainty and a preference for early resolution of consumption uncertainty, while in Hall et al.

individuals are indifferent in both regards. An implication of this difference is that the elderly in

our framework have a relatively higher WTP to avoid the pandemic because the marginal valuation

of survival decreases with the level of survival, and theirs is particularly reduced by COVID-19. It

is on these distributional effects of COVID-19 where our framework has distinct implications.

6 Concluding comments

The COVID-19 pandemic has brought back to light the diffi cult trade-offs between consumption

and survival, as well as the inherent conflicts among individuals who bear very different costs from

a rare but potentially fatal shock. Our analysis provides a framework to study these trade-offs as

well as the distributional welfare effects of pandemics. We find that the welfare costs of COVID-19

are large; that the differences in the willingness to pay to avoid the pandemic across individuals of

different ages is substantial; and that the willingness to pay of the median voter is less than the

average. Our framework can also rationalize planners with very different perspectives about the

pandemic.

We hope our framework is useful to analyze the trade-offs between consumption and survival

from other mortality shocks. We think it provides a meaningful and rigorous integration of tra-
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ditional models of economic shocks, with models of mortality shocks. In future work we plan to

extend our model to include other aspects that may affect the value of life, such as leisure. We also

plan to further explore the value of life from the perspective of the social planner.
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TABLE 1 

Welfare costs of COVID-19 

Willingness to pay to avoid a one-year pandemic (% of consumption) 
  

VSL/c = 150    VSL/c = 200 

 Average  Median 

voter  

Standard 

deviation  

  Average  Median 

voter  

Standard 

deviation  

         

No annuity markets         

     σ = 1 41.2% 22.7% 41.2%   45.5% 29.0% 40.5% 

     σ = 2 34.3% 20.5% 35.2%   38.3% 25.6% 35.6% 

         

Perfect annuity markets         

     σ = 1 35.9% 21.1% 32.9%   41.6% 27.1% 35.2% 

     σ = 2 29.7% 19.2% 25.9%   34.3% 24.2% 28.0% 

         

 

Notes: Table displays the willingness to pay (WTP) for different values of σ and different VSL-to-consumption ratios at age 40 (VSL/c). COVID-19 age-specific 

death rates are fitted from Ferguson et al. (2020) in combination with Menachemi et al. (2020).  As in the benchmark calibration, discount values are age-

dependent and θ = 1. Average WTP corresponds to the weighted average of age-specific WTP using population weights. Median voter WTP is that of individuals 

age 46, which corresponds to the median of the population above age 18. Standard deviation is computed over the age-specific WTP.  

 

 

 

 

  



TABLE 2 
Robustness checks to alternative parameters 

Willingness to pay to avoid a one-year pandemic (% of consumption) 

 

Alternative parameters Average 

age-specific  

Median 

voter  

Standard 

deviation  

    

No annuity markets    

     Benchmark calibration 41.2% 22.7% 41.2% 

     θ = 10 42.9% 23.7% 41.4% 

     θ = 20 43.9% 24.0% 41.5% 

     Constant μ and η 42.3% 23.9% 41.6% 

     Non-homothetic finite horizon 41.4% 22.8% 41.3% 

    

Perfect annuity markets    

     Benchmark calibration 35.9% 21.1% 32.9% 

     θ = 10 40.2% 22.7% 38.1% 

     θ = 20 42.5% 23.4% 40.2% 

     Constant μ and η 36.5% 21.7% 33.3% 

     Non-homothetic finite horizon 35.9% 21.1% 33.1% 

    

 
Notes: Benchmark calibration refers to the case σ = 1, VSL/c = 150,  θ = 1 and age-varying discount factors. Each robustness check is introduced 

separately. Average WTP corresponds to the weighted average of age-specific WTP using population weights. Median voter WTP is that of 

individuals age 46, which corresponds to the median of the population above age 18. Standard deviation is computed over the age-specific WTP.  

  



TABLE 3 
Persistent consumption costs 

Willingness to pay during year of pandemic (% of consumption) 

  
Average 

age-specific  

Median 

voter  

Standard 

deviation  

    

No annuity markets    

     Benchmark calibration (ρ = 0) 41.2% 22.7% 41.2% 

     ρ = 0.5 30.9% 12.1% 40.8% 

     ρ = 0.9 12.2% 2.9% 25.0% 

    

Perfect annuity markets    

     Benchmark calibration (ρ = 0) 35.9% 21.1% 32.9% 

     ρ = 0.5 23.4% 11.1% 25.3% 

     ρ = 0.9 8.2% 2.6% 13.7% 

    

 
Notes: Same as in Table 2. In the benchmark calibration consumption costs are not persistent (ρ = 0) and are all paid in one period. For the 

cases with persistent consumption shocks (ρ > 0) the table displays the WTP on the first year (year of the COVID-19 pandemic). 

  



 
 

TABLE 4 
Aggregate willingness to pay according to social planner (% of consumption)  

Alternative social welfare functions 

  
Aggregate  WTP 

  

No annuity markets  

     Ψ = 0 4.1% 

     Ψ = γ = 0.675 10.8% 

     Ψ = 0.81 22.0% 

     Ψ = 0.90  41.0% 

     Ψ = σ = θ =1 72.7% 

  

Perfect annuity markets  

     Ψ = 0 40.1% 

     Ψ = γ = 0.81 58.2% 

     Ψ = σ = θ =1 63.1% 

  

 
Notes: All exercises on the table use the benchmark calibration with σ = 1, VSL/c = 150,  θ = 1 and age-varying 

discount factors. Ψ = 0 represents the case in which the planner has linear preferences or is indifferent to inequality 

across ages. The rest of the scenarios introduce some curvature in the planner’s utility (Ψ > 0).  

  



TABLE 5 

Full recessions: COVID-19 with concurrent economic contraction 
 (% of consumption) 

 

Total number  

COVID deaths  

Death rate 10% 

recession  

15% 

recession  

20% 

recession 

     

Average     

     300,000 0.09% 23.1% 27.4% 31.7% 

     400,000 0.12% 25.9% 30.1% 34.2% 

     500,000 0.15% 28.5% 32.4% 36.4% 

     

Median voter     

     300,000 0.09% 15.3% 19.9% 24.7% 

     400,000 0.12% 16.9% 21.6% 26.2% 

     500,000 0.15% 18.6% 23.1% 27.7% 

     

Planner (ψ = γ = 0.675)     

     300,000 0.09% 11.9% 16.8% 21.7% 

     400,000 0.12% 12.6% 17.4% 22.3% 

     500,000 0.15% 12.3% 18.0% 22.9% 

     

Planner (ψ = 0.9)     

     300,000 0.09% 17.1% 21.7% 26.3% 

     400,000 0.12% 19.3% 23.8% 28.2% 

     500,000 0.15% 21.4% 25.8% 30.2% 

     

 
Notes: All exercises on the table use the benchmark calibration with no annuity markets, σ = 1, VSL/c = 150, θ = 1 and age-

varying discount factors. For the planner we consider two different scenarios of inequality aversion: ψ = γ = 0.675 and ψ = 0.9. 

  



 

TABLE 6 

The consumption - lives frontier 
 (% of consumption) 

 

Total number 

of COVID 

deaths 

Death rate Average 

age-specific  

Median 

voter  

Planner  

(ψ = γ = 0.675) 

Planner  

(ψ = 0.9) 

      

0 0% 41.2% 22.7% 10.8% 41.0% 

200,000 0.06% 39.5% 20.6% 9.7% 37.6% 

400,000 0.12% 37.6% 18.4% 8.6% 34.1% 

600,000 0.18% 35.5% 16.2% 7.5% 30.4% 

800,000 0.24% 32.9% 13.9% 6.4% 26.4% 

1,000,000 0.30% 30.0% 11.5% 5.3% 22.2% 

1,200,000 0.36% 26.3% 9.1% 4.1% 17.8% 

1,400,000 0.42% 21.6% 6.6% 2.9% 13.1% 

1,600,000 0.48% 15.3% 4.0% 1.8% 8.1% 

1,800,000 0.54% 6.3% 1.4% 0.6% 2.9% 

1,900,000 0.58% 0.0% 0.0% 0.0% 0.0% 

      

 
Notes: Same as Table 5. The largest number of deaths, 1.9 million people, correspond to the fatality rate estimated in Menachemi 

et al. (2020). 
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Figure 2. Age-profile of mean log consumption
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Figure 3. Age-profile of variance log consumption
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