INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

300 North Zeeb Road Ann Arbor, Michigan 48106

76-28,254

RINDSIG, Gregory Lane, 1948-USING A BULL'S PEDIGREE IN MIXED MODEL SIRE EVALUATION.

Iowa State University, Ph.D., 1976 Agriculture, animal culture

Xerox University Microfilms, Ann Arbor, Michigan 48106

Using a bull's pedigree

in mixed model sire evaluation

by

Gregory Lane Rindsig

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Department: Animal Science Major: Animal Breeding

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
Background	3
Genetic trend	8
Genetic merit of herdmates	9
Modified contemporary comparison	11
Best linear unbiased prediction (BLUP)	13
Groups	17
DATA DESCRIPTION	26
Determining groups	27
Relationships between sires	38
METHODS AND PROCEDURES	39
Background	39
Procedures for creating equations	42
Obtaining solutions to mixed model equations	51
Methods of comparing solutions	53
RESULTS AND DISCUSSION	55
Group solutions	5 5
Comparison of sire estimates by different mixed model definitions	66
Testing sire estimates	103
Rank deviations	107
Relationships between sire estimates and pedigree indexes	109

	Page
SUMMARY	116
LITERATURE CITED	118
ACKNOWLEDGEMENTS	121
APPENDIX	122
Examples of procedures	122
Augmenting the diagonal	126
Considering additive relationships among sires	127
Obtaining solutions	129

.

LIST OF TABLES

Tab	1e	Page
1.	Holstein group solutions and sire averages for milk	21
2.	Observed and expected correlations in predicting son's breeding value from various breeding value estimates on ancestors	23
3.	Pedigrees of bulls evaluated	29
4.	Means, standard deviations, and ranges for pedigrees of 201 bulls evaluated	34
5.	Stud affiliation of tested bulls	36
6.	Codes for the modified contemporary comparison and mixed model definitions	56
7.	Group solutions for milk	57
8.	Group solutions for milk	58
9.	Group solutions for fat	59
10.	Group means by time period for SMGB and SCIB	64
11.	Proportion of variation due to grouping	64
12.	Sire estimates for milk	67
13.	Sire estimates for fat	72
14.	Variances for different model definitions for milk and fat	78
15.	Ranks of sire estimates for milk	79
16.	Ranks of sire estimates for fat	84
17.	Rank and product-moment correlations between model defini- tions of all bulls evaluated for milk	89
18.	Rank and product-moment correlations between model defini- tions of all sires evaluated for fat	90
19.	Effect of number and distribution of daughters on the sire diagonal of the coefficients matrix	92

Tab.	Te	Page
20.	Cumulative classes of bulls based on magnitude of sire diagonal in C _s	94
21.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 10 for milk	95
22.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 15 for milk	96
23.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 20 for milk	97
24.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 25 for milk	98
25.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 10 for fat	99
26.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 15 for fat	100
27.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 20 for fat	101
28.	Rank and product-moment correlations between model defini- tions for bulls whose sire diagonal was less than or equal to 25 for fat	102
29.	Correlations between sire estimates by different model definitions with daughters not evaluated for milk	105
30.	Correlations between sire estimates by different model definitions with daughters not evaluated for fat	106
31.	Changes in rank for rank deviations	108
32.	Correlations between indexes and sire estimates by different model definitions for milk	110

.

.

v

.

Table		
33.	Correlations between indexes and sire estimates by different model definitions for fat	111
34.	Regressions of sire estimates on pedigree indexes for milk	114
35.	Regressions of sire estimates on pedigree indexes for fat	115
A.1.	Solutions to examples	130

·

.

INTRODUCTION

In the past half century, dairy sire evaluation has evolved from a subjective "art" to a highly sophisticated science with complex statistical formulation and requiring advanced computer technology. The equal parent index formed the basis for the daughter dam comparison used by the United States Department of Agriculture (USDA) from 1946 to 1962 to evaluate dairy sires. Then to better account for within herd environmental effects, the herdmate comparison was used. The validity of the herdmate comparison rested on the appropriateness of several assumptions. One being that the herdmates of a bull's daughters were a random sample from the population and another was that the average genetic merit of future herdmates was equal to that of daughter's first herdmates. While these assumptions may have been nearly appropriate initially, they are no longer valid.

Failure of these assumptions became very obvious to the industry. Predicted differences on bulls in A.I. tended to decline in time because later daughters of the bull tended to be compared to a different and superior generation of herdmates. It was also difficult to identify superior young sires because their daughters were competing with those of highly proven older bulls. Thus, improved methods of evaluating dairy bulls was required.

Currently, there are two methods of dairy sire evaluation being widely used. The modified contemporary comparison (MCC) method was introduced in November of 1974 by the USDA to replace the old herdmate comparison. A second method is a linear model approach which has been used in

the Northeast region of the United States since 1970. This method uses a mixed model having statistical properties of best linear unbiased prediction (BLUP). Both methods propose to account for proven weaknesses in previously used procedures; however, in somewhat different ways. Development of the MCC was due to doubts that the mixed model would be technologically possible in the near future for nationwide sire evaluation. Research has continued, however, on the linear models procedures in the anticipation that they may eventually be used nationwide.

The desirability of using the BLUP procedure is that its statistical properties are well defined. They are minimum variance of prediction errors, linearity, and unbiasedness. These properties are true if the model accurately describes the data. A feature of the mixed model is that a fixed grouping effect is included so that sire effects are regressed to an appropriate mean. This group mean becomes part of a sire's estimated transmitting ability and is $\hat{S} = \hat{g}_k + \hat{s}_{jk}$. Since it is desired that bulls within a group be as genetically alike as possible, some way of determining this must be made prior to their progeny test. In this study, several grouping strategies are compared empirically. An alternative to grouping is also considered.

REVIEW OF LITERATURE

Background

Some of the early literature speculates as to when the first progeny testing was practiced. These first tests were by some historically wellknown farmer breeders of pre-1900. Edwards (1932) points out that Bakewell and Cruikshank are known to have hired out bulls to their neighbors and then brought them back into their own herds if they did well. The progeny test was probably very subjective and simply based on a visit to the neighbor's farm to look at the progeny.

Bonnier (1936), in a review of sire indexes, indicates that Sederholm was the first to attempt a progeny test of a somewhat more objective method. He was able to demonstrate that different sires had very different effects on fat percentages of their daughters. These comparisons were based on daughter-dam differences which became very popular and remained so for a number of years.

The popular view which evolved in the early 1900's was that of "blending inheritance". In other words, the progeny would be an average of the sire and dam. Algebraically, this is:

$$P = \frac{S + D}{2}$$

where P = progeny average, S = sire breeding worth or index, and D = dam average. Solving this equation for the unknown S, an index is derived which, with various modifications, was used for many years. The index is:

S = 2P - D.

This was referred to as an equal parent or intermediate index.

Yapp (1924) was among several researchers to suggest this index, commenting that "the necessity for the use of this equation is the stimulating, or suppressing influence of the dam". Yapp realized the need to correct for certain factors giving special attention to percent fat and age. Yet, environmental factors that have major effects on production such as herds, years, season, etc., were not accounted for. Regression for imperfect heritability was not done.

Several reviews of progeny testing methods were made in the early thirties. Edwards (1932) discussed the importance of evaluating dairy sires. Lush (1933) also reviewed progeny testing methods. In discussing the equal parent index, he cites its advantages over daughter average is that it removes the errors (except the effects of random environment on the dam's records) arising from differences in the production of the cows to which each bull was bred. Lush also lists the following weaknesses.

- 1. Easily faked (select poor dam records)
- If herd environment of dams is different from that of daughters and if corrections are not entirely accurate, the effects are put down as effects of the sire's genotype

3. Does not use information where dam was not used Lush points out that most of these indexes were basically of the form:

Sire Index = Daughter Average + k(Daughter Average - Dam Average). When k equals 0 the sire index simply becomes the daughter average. When k equals 1, the aforementioned is the equal parent index. Several

researchers proposed indexes where k was between 0 and 1. Norton's index was:

Sire index = Daughter Average + 1/3(Daughter Average - Dam Average)
+ 2/3(Daughter Average - Breed Average)

where 1/3 accounts for the average amount of regression toward the mean. Lush also refers to a study by Turner which indicates that k should equal 3/17.

Goodale (Prentice, 1935) developed the Mount Hope Index based on some crossbreeding experiments. It was his belief that there was a partial dominance for high milk yield and recessiveness for fat percentage. The index was different for milk and fat and also different when daughters were below or above average.

(a) Daughters exceed dams

Milk = Daughter Average + 0.1429(Daughter Average -

Dam Average)

Fat = Daughter Average + 1.5(Daughter Average - Dam Average)

(b) Dams exceed daughters

Milk = Daughter Average - 2.333(Dam Average - Daughter Average)

Fat = Daughter Average - 0.677(Dam Average - Daughter Average)

In the 40's and 50's the USDA used a daughter dam comparison to evaluate bulls. By the mid-fifties, the need for a new and better method was apparent; thus, in 1962 the USDA instituted the use of the herdmate comparison. The weaknesses pointed out by Lush of an equal parent type index had become obvious. Bulls with good natural service proofs seldom did well when later used in A.I. Either breeders were giving preferential treatment to daughter or dam records or a positive environmental trend existed. To some extent both may have been true.

The main feature of the herdmate comparison was that herd, year, and season effects were mostly removed. Daughter records of a particular bull were deviated from the average of paternally unrelated cows freshening in a moving five month period centered on the daughter's freshening date. Initially, the USDA index was called a Predicted Average (PA). It was:

PA = Breed Average + $\frac{n}{n + 12}$ x (Adjusted Daughter Average - Breed Average) where n was a number of daughters.

A slight modification was made in 1965 (ARS, 1965). The Breed Average mean was dropped so that sire indexes were given as plus or minus and were now referred to as Predicted Difference (PD). The regression factor was changed from $\frac{n}{n+12}$ to $\frac{n}{n+20}$.

In 1967, additional changes were made to the herdmate comparison (Plowman and McDaniel, 1968). Computational adjustments for number of herds, distribution of daughters across herds, number of herdmates, and records per daughter were made. Adjustment for herds was made because within a herd a bull's progeny was not compared to a random sample of bulls in the population but only to bulls recently used in that herd. This was reflected in genetic differences between herds. Also, progeny in a single herd, because of their environmental proximity to each other, performed more similar than their genetic relationship would indicate. Thus, an environmental correlation was included for daughters in one herd. The formula for computing the Predicted Difference was as follows:

$$PD = \frac{\sum w_i h^2}{4 + (\sum w_i - 1)h^2 + \frac{4\sum n_i (n_i - 1)}{N} c^2} \times [(\overline{D} - \overline{HM}) + 0.1 \times (\overline{HM} - 1)h^2]$$

Breed Season Average)]

where

2

- - N = total number progeny of a bull,
- n, = number of progeny in the ith herd

 $(N = n_{i} \text{ if all progeny are in one herd}),$

$$C^2$$
 = residual correlations among half-sibs in the same herd
after they are expressed as deviations from herdmates,

 \overline{D} = daughter average,

 \overline{HM} = adjusted herdmate average.

The usefulness of the herdmate comparison rested on the validity of several assumptions (Lentz et al., 1969). They are:

- All herd-year seasons are random samples from a single static population.
- A.I. sires are a random sample from a single, static population.
- 3. The A.I. daughters are distributed at random among herdyear-seasons.

4. Cows are culled at random.

5. All records are adjusted for age without bias.

While more or less reasonable in the beginning, these assumptions soon lost their validity. This resulted in severe biases in sire evaluations. However, these biases would not have arisen were it not for the ability to select genetically superior sires using Predicted Difference. The resulting problems have thus been "bred out of success". These will be documented in the next two sections.

Genetic trend

An essential assumption of the old herdmate comparison method of sire evaluation is that bulls evaluated over a period of time are compared in a static population. Ironically, should this assumption be valid, it would mean that no genetic improvement was being made. However, proof of the existence of genetic trend is fairly extensive in recent literature.

Verde <u>et al</u>. (1972) used first lactation records from 4779 Holstein, Jersey, and Guernsey paternal half-sisters to estimate genetic trend in Florida. Estimates were made by least squares with herd, year, season, age (linear), and length of record (linear and quadratic), with sire included in the model or deleted. Year constants gave genetic trend estimates of: Holstein, 33 kg milk, -0.7 kg fat, and -0.034 fat percent; Jerseys, 22 kg milk, 1.3 kg fat, and 0.008 kg fat percent; Guernseys, 92 kg milk, 2.8 kg fat, and -0.048 fat percent.

Genetic change in fat corrected milk (FCM) was studied using 11,993 lactation records of 3900 Jersey cows in 12 herds in California by Arave <u>et al</u>. (1964). The genetic change for individual herds ranged from -51 ± 52 to 145 \pm 21 1b FCM per year with an average annual genetic change

for all herds of 74 1b FCM.

Burnside and Legates (1967) estimated genetic trend using 34,380 first lactation Holstein records from 1953 to 1961. Overall annual trend was estimated from all records. Environmental trend was estimated by analyzing full sisters and paternal half sisters. Comparison of the environmental and total annual trend was used to determine genetic trend. The genetic trend estimates were 45 and 55 kg milk and 0.018 and 0.016 fat percent using full sisters and paternal half sisters, respectively. Harville and Henderson (1967) estimated intraherd genetic trend of 47 \pm 17 kg of milk and 1.5 \pm 0.6 kg fat per year. Work by Hargrove and Legates (1971) showed annual genetic trend for milk of 53 kg in Holsteins and 25 kg in Jerseys.

Deb <u>et al</u>. (1974) used lactation records of Jersey cows to estimate genetic trend in Pennsylvania. The average genetic increase was 18 kg for milk but zero for fat; however, the genetic trend was not significant. Using first lactation Holstein records from Midwest Breeders Cooperative progeny test herds, Powell and Freeman's (1974) best estimate of annual intraherd genetic trend was 82 kg of milk and 1.5 kg of fat.

Genetic merit of herdmates

Another essential assumption of the herdmate comparison is that the average breeding value of herdmates is zero. If this assumption fails to hold, the herdmate deviations are biased. This bias may be quite large. If a bull's daughters are compared to herdmates of higher than average genetic merit, the deviation is smaller than it should be. The resulting predicted difference is thus biased downward. If the average breeding

value of herdmates was less than zero, the bias is upward.

Recent investigations have indicated a significant bias due to the genetic level of herdmates. Keown (1974) compared several mixed model methods of sire evaluation using data from the USDA for A.I. bulls summarized in September, 1972. The model used was that employed in the Northeastern A.I. Sire Comparison (NEAISC). It was a mixed model with fixed effects of herd-year-seasons and groups, and random sire effects using only first lactations. Three methods were compared, the first two of which ignored the off-diagonals of the sire coefficients, thus not accounting for the genetic merit of herdmates. Method 3 did consider the off-diagonal sire coefficient elements thus genetic merit of herdmates was accounted for. In comparing evaluations of bulls, the greatest differences occurred between methods not accounting for genetic merit of herdmates with Method 3 which did account for herdmate merit. These differences were even greater than evaluations based on different group definitions.

Norman <u>et al</u>. (1972) examined the effect that average genetic value of the herdmate's sires had on daughter deviation from herdmate average. Using data from the five major dairy breeds, he computed regressions of daughter yield, A.I. herdmate average and daughter deviation from A.I. herdmate average on average predicted difference for milk of herdmate's sires. The first two regressions were positive while the third was negative and not significantly different from minus one. Regressions were similar when computed on average predicted difference for contemporary sires. The authors concluded that, due to the magnitude of the

regressions, correcting the daughter herdmate deviation with the average PD of herdmate's sires should remove most of this bias.

In his dissertation, Powell (1972) examined several sire evaluation methods. Various modifications of predicted difference were compared with least squares and mixed models. The correlation between predicted difference not accounting for genetic merit of herdmates with a mixed model (considered optimum) was 0.931 for milk. Using least squares but ignoring the off diagonals of the coefficients matrix resulted in a correlation of 0.95, an increase of 0.02.

Modified contemporary comparison

The USDA-DHIA Modified Contemporary Comparison (MCC) was developed by USDA to replace the old herdmate comparison method of sire evaluations. It is a revised herdmate comparison which statistically adjusts for genetic trend, genetic merit of herdmates, and cow selection in lieu of assuming they do not exist. The first USDA Sire Summary computed was available in November of 1974.

Dickinson <u>et al</u>. (1974) has explained the features of the MCC. Improvements in accurately weighting daughter and herdmate information were described. Correction for cow selection was accomplished by deviating first lactation records from first lactation contemporaries. The non-contemporary herdmate average is still included but counts as only one additional contemporary.

Correcting for the genetic merit of contemporaries is done by replacing

[Daughter Average - Average Herdmate Average] + 0.1 x [Adjusted Herdmate Average - Breed Season Average]

Daughter Average - Modified Contemporary Average +

Average Genetic Merit of Contemporary's Sires This is the mean modified contemporary deviation (MCD). The old herdmate comparison method made an average correction for genetic level of the herd whereas the MCC attempts to correct for each individual contemporary sire. In other words, herds are now considered fixed where before they were random. The assumption now is that herdmates are random with respect to their sires rather than to all herdmates.

The adjustment for herdmate's sires must be done iteratively because initial values are biased. On the second pass, the adjustment for herdmate's sires used MCD's computed on the initial round. This continues until differences between iterations are small.

Another feature of the MCC is including pedigree information in a bull's index. Bulls are assigned to pedigree groups based on the following index:

Index = $\frac{1}{2}$ sire's PD + $\frac{1}{4}$ MGS's PD.

where

by

 $\frac{1}{2}$ and $\frac{1}{4}$ are additive relationships between a bull and his sire and maternal grandsire, respectively,

MGS is maternal grandsire.

These groups were in 50 lb increments except for the extremes where larger classes were required because of fewer bulls. Bulls with only sire PD,

only MGS PD, and natural service sires are grouped in a similar manner but separately. If no pedigree information is available, bulls are put into a zero pedigree group. Group averages are then determined by the actual average modified contemporary deviation of daughters of all bulls assigned to each pedigree group.

The final form of a sire index is:

PD74 = Group Average + Repeatability x

(Contemporary Deviation - Group Average) When repeatability is low, the group average determines a large part of a bull's estimated transmitting ability. However, when repeatability is very high, the group average has virtually no influence.

Best linear unbiased prediction (BLUP)

Henderson (1973) lists four classes of prediction relative to the information available. They are:

- 1. Best Prediction (BP)
 - (a) The form of the joint distribution of records and of the genetic values to be predicted is known.
 - (b) Numerical values of the parameters of the distribution are known.
- 2. Best Linear Prediction (BLP)
 - (a) The form of the joint distribution of records and of the genetic values to be predicted is <u>not</u> known or certain parameters are not known.
 - (b) Means of genetic values and records and variances and covariances of genetic values and records are known or

well estimated. (In other words, first and second moments are known).

- 3. Best Linear Unbiased Prediction (BLUP)
 - (a) Same as 2a
 - (b) Means are unknown but variances and covariances are known (or well estimated).
- 4. Unnamed
 - (a) Same as 2a
 - (b) Means, variances, and covariances are unknown but are estimated from the data.

A choice of which class of selection is used rests on knowledge of the joint distribution of records and genetic values to be predicted and knowledge of first and second moments. In dairy cattle, means are not known. Some of these are year, season, and means of new groups because no prior information exists for them. Variances of random effects, such as sires, are not known but are well estimated from volumes of DHI data. Thus, the class of prediction to be considered is BLUP.

Henderson (1973) shows that BLUP is a combination of selection index and generalized least squares. The predictor of w is

 $\hat{w} = P\hat{\beta} + b^{\prime}(Y-X\hat{\beta})$

where

w is a column vector of predicted genetic values (Bulls' estimated transmitting ability), P is some linear form of the fixed effects,

 $\hat{\beta}$ is same solution to $X'V^{-1}X\hat{\beta} = X'V^{-1}Y$,

Y is a column vector of daughter records,

V is the variance covariance matrix Y,

X is a known vector,

b' is a vector of solutions to regular selection index equations. Computations are such that $E(\hat{w} - w)^2$ are minimum subject to \hat{w} being unbiased. Henderson (1974) points out two additional properties of BLUP when the distribution is normal.

- (1) The prediction is the maximum likelihood estimator, the generalized least squares estimator, and the best linear unbiased estimator of the conditional mean of \hat{w} given the records, y.
- (2) If the mean of w is a null vector, of all linear unbiased predictors, BLUP maximizes the probability of a correct ranking of the elements of w.

He also cautions that some predictors may have smaller mean square error of prediction; however, they are biased.

Since solution to obtain BLUP in this form requires the inversion of V, this procedure is impractical for very large sets of data. An alternative method of obtaining solutions, but having BLUP properties was required in sire evaluation.

Henderson (1949) described a mixed model with animal breeding application. Henderson (1963) showed the equivalence of using the mixed model to the combined selection index and generalized least squares method having BLUP properties already mentioned. The mixed model method is also referred to as the Direct Comparison method. The mixed model can be written:

 $Y = X\beta + Zu + e$

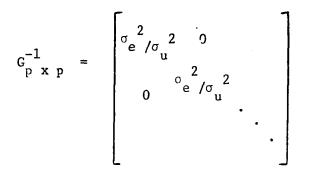
where

Y is a n x l vector of observations, X is a known fixed matrix, n x m, β is an unknown fixed vector, m x l, Z is a known fixed matrix, n x p, u is a non-observable random vector with $E(u) = \emptyset$ and $V(u) = G\sigma_e^2$, u is p x l and G is p x p, e is a non-observable random vector with $E(e) = \emptyset$ and $V(e) = R\sigma_e^2$.

The variance of y is:

$$V(Y) = V(X\beta + Zu + e)$$

= V(X\beta) + V(Zu) + V(e)
= ZV(u)Z⁺ + V(e)
= ZGZ⁺\sigma_e^2 + R\sigma_e^2
= (ZGZ⁺ + R)\sigma_e^2


Assuming G and R are known and u and e are independent, the modified normal equations for obtaining BLUP estimates of β and u are:

$$\begin{bmatrix} X^{\prime}R^{-1}X & X^{\prime}R^{-1}Z \\ Z^{\prime}R^{-1}X & Z^{\prime}R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{\alpha} \end{bmatrix} = \begin{bmatrix} X^{\prime}R^{-1}Y \\ Z^{\prime}R^{-1}Y \end{bmatrix}$$

The assumption that R = I is often made so that the mixed model can be rewritten:

$$\begin{bmatrix} X^{T}X & X^{T}Z \\ Z^{T}X & Z^{T}Z + RG^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{T}Y \\ Z^{T}Y \end{bmatrix}$$

where

Groups

The use of a fixed group effect to account for genetic trend was first introduced by Henderson in 1966 (Henderson, 1973). Two factors have generally been used to determine groups, time and stud affiliation. Bulls born in similar time periods are considered drawn from the same population. If genetic trend is as much as research has indicated, then the population of bulls to pick from in 1975 is very different than it was in 1965. The additional classification by stud is done to further refine the population from which a group of bulls is selected. It is useful because different studs apply varying intensities of selection. This is due in a large part to different goals of selection. Some studs put more emphasis on type relative to production for example. In the Northeast, where mixed model sire evaluations have been routinely computed since 1970, grouping is by stud year (Henderson, 1973).

Several research efforts have been published which compared alternative grouping strategies. Keown (1974) compared three methods of grouping including year in which sires entered service, stud year, and region-year. These comparisons were among Holstein sires which had greater than 1000 first lactation daughters. It was surprising that these sire estimates changed by as much as 60 kg even though they were based on

a large number of daughters.

Powell and Freeman (1974) used 6724 first lactation records from 187 Midwest Breeders Cooperative progeny test herds to compare the effect of different group definitions. Ninety sires were assigned to six groups in three different ways. The first definition was by bull's registration number with two grade sires being grouped separately. The two other grouping methods were such that definition three deviated more in time from definition one than did definition two. Sires were also evaluated ignoring groups. Evaluations by definitions two and three and without grouping were compared by rank correlations to evaluations by definition one. Correlations were .997, .973, and .968 for milk and .985, .985, and .976 for fat based on evaluations by definitions two, three and no grouping, respectively. They also computed average absolute differences and average squared differences between the standard and definitions two, three, and no grouping. These were 33, 40, and 43 kg and 3837, 4872, and 5851 kg², respectively. They concluded that any grouping tried was preferable to ignoring groups. As an alternative a covariate based on registration number was substituted for groups in the model and gave rank correlation with definition one of .991 and .994 for milk and fat.

Two grouping procedures were compared by Schaeffer <u>et al</u>. (1975) using 176,380 Ontario Holstein two-year-olds that freshened from 1958 to 1972. They were year in which first daughter records appeared in the data and A.I. stud ownership by years of first daughter record appearance. They detected no significant difference in group estimates by stud; however, year differences within stud were significant. Overall year

differences were not steadily increasing. Their conclusions were that year groupings are essential to account for genetic trend in their data but that stud differences in Ontario were not large enough to cause concern. It was also shown that the grouping procedures that they used had little effect on sire estimates of 20 or more progeny.

If a population of sires to be evaluated is related, estimates of sire merit by BLUP should be more accurate if the additive relationship among sires is taken into account (Henderson, 1973). Kennedy and Moxley (1975) compared mixed model sire evaluations with groups and with the relationship matrix as an alternative to grouping. Fifty-two Holstein A.I. sires having a total of 3288 first lactation milk records were used to compare sire estimates and their error variance of prediction. Eight sires were unrelated to any other in the study. Grouping was by time of entry into service. Rank correlations between methods were .879, .892, .912, .913, and .933 for milk, fat, protein, and fat and protein percent. Differences as large as 100 kg of milk occurred for some sires with few daughters. Prediction error variances were smaller for estimates of sire merit using the relationship method by an average of 18% for milk and 11% for the composition traits. Their study indicated that the relationship method tended to reduce prediction error most for sires with few daughters. This is because using relationships increases the number of possible comparisons among sires. They conclude that the relationship method should be considered as an alternative to grouping. However, in their study, groups were made up of a few sires which caused prediction errors to be larger than necessary in a large population

of sires.

Everett <u>et al</u>. (1975) combined the use of the relationship matrix and grouping for sires of the five dairy breeds. Only Holsteins had both sire and maternal grandsire information. Grouping was by sire's date of birth. Comparison of three types of means was made (see Table 1). Group solutions are the direct result of iteration where a constant addition to the sire diagonal was made. No groups are the means of \hat{s} put into identical groups but after iterating solutions. Group Averages are the sum of $\hat{g}_i + \hat{s}_{ij}$ and are different from group solutions because \hat{s}_i . is not zero when relationships are considered. According to the authors, if the relationship matrix contributed little or genetic trend was zero, the group averages and group solutions would be nearly equal. Average sire solutions by no grouping were intermediate between group solutions and group averages suggesting that grouping is still desirable (see Table 1).

The possibility of using a pedigree index as a more refined method of assigning sires to groups having predictable genetic differences has been proposed (Powell and Freeman, 1974; Keown, 1974; and Schaeffer <u>et al.</u>, 1975). Norman (1974) pointed out that grouping by pedigree could be more effective than grouping by stud-year if there are differences in the quality of bulls purchased each year by individual studs. Another advantage to pedigree grouping would be that fewer groups would be required thus group constants would be better estimated. A third advantage of pedigree grouping would be that breeders would be encouraged to sample bulls with outstanding pedigrees because their estimated transmitting ability would be influenced a great deal by the group mean especially when

GroupYearsGroup solution144-53-115254-55- 29356-57- 21458-59- 74560-61-144	No groups -11	Group average -78	No of sires
2 $54-55$ - 293 $56-57$ - 214 $58-59$ - 745 $60-61$ -144	-11	-78	·····
3 56-57 - 21 4 58-59 - 74 5 60-61 -144		10	231
4 58–59 – 74 5 60–61 –144	46	6	172
5 60-61 -144	63	30	161
	64	16	142
	115	51	153
6 62-63 -127	145	76	195
7 64-65 29	168	377	291
8 66-67 262	464	620	219
9 68-70 220	573	734	191
10	7	2	622

Table 1. Holstein group solutions and sire averages for milk

evaluated on few daughters.

The basis for pedigree grouping is the ability to predict the performance of individuals based on the performance of their parents or simply that the traits of interest are heritable. Lush (1931) pointed out that a complete pedigree is about as accurate as four to six progeny assuming a relatively constant environment during progeny testing. Probably the most extensive study of the relationship of pedigree index and son's proof was by Butcher (1973). He reported good agreement of observed and expected correlations between various pedigree estimates and son performance. Three groups of pedigree records of Holsteins were formed based on son's information. They were:

- (1) Sons that entered A.I. at less than 37 months of age
- (2) Sons that entered A.I. at more than 37 months of age or non-A.I. sons with multi-herd proofs
- (3) Non-A.I. sons with single herd proofs

The data used was as complete as it ever would be. The observed and expected correlations are given in Table 2. Correlations were generally as large as expected. It is interesting that even the third record of the dam was about as predictive as son's proof as was the dam's first record. Pedigree selection was 67% as accurate as theoretically possible and 77% of the accuracy reasonable to obtain. Butcher concluded that pedigree indexes were very useful in predicting a son's breeding value.

Son-parent regressions were computed by Vinson and Freeman (1972) from performance data supplied by seven major A.I. studs. The data used was that available at the time a selection decision was made by stud personnel. For milk yield, regressions were .40, .43, and .43 for sonsire, son-dam, and son-midparent where .87, .30, and .48 were expected. These same regressions for fat yield were .41, .39, and .34. The sireson regressions were much less than expected; however, possible biases caused by genetic trend, female culling, differences in genetic merit of herdmates may have existed. Correlations for milk yield were .20, .11, and .22 for son-sire, son-dam, and son-midparent, respectively. Correlations for fat yield were .19, .11, and .17.

Dickinson et al. (1969) computed sire-son correlations and regressions

for Ayrshires, Guernseys, Holsteins, Jerseys, and Brown Swiss. Correlations between predicted difference for milk were .22, .25, .28, .33, and .14 for the five breeds, respectively, and .23, .28, .26, .28, and .16 for fat PD. Regressions were slightly less.

More recently, McDaniel and Bell (1975) reported a study of Holstein bulls to determine whether combining pedigree and progeny information would increase the accuracy of sire summaries. Their results confirmed this especially when bulls had a limited number of daughters. Regressions of A.I. PD milk on a pedigree index identical to that used by USDA in PD74 were .46 and .38.

Ancestors used	Son group 1	Son group 2	Son Group 3
Sire	.43 (.38) ^a	.24 (.31)	.24 (.21)
Dam (first record)	.21 (.17)	.19 (.15)	.17 (.10)
Dam (second record)	.16 (.17)	.16 (.15)	.12 (.10)
Dam (third record)	.16 (.17)	.20 (.15)	.13 (.10)
Dam (Avg. first two records)	.21 (.20)	.20 (.17)	.17 (.12)
Dam (Avg. first three records)	.22 (.21)	.23 (.18)	.17 (.13)
Maternal grandsire	.24 (.18)	.13 (.14)	.12 (.09)
Dam index	.26 (.25)	.23 (.21)	.19 (.14)
Pedigree index	.47 (.45)	.34 (.37)	.30 (.25)

Table 2. Observed and expected correlations in predicting son's breeding value from various breeding value estimates on ancestors

^aExpected correlations are in parentheses.

The work reviewed has shown that pedigree selection has been fairly effective. This, in spite of the fact that pedigrees and son's proofs were based on herdmate comparisons having all the biases which made new sire evaluation methods necessary. The nature of these biases would tend to make pedigrees less predictive than theoretically possible. Thus, if new and better methods of sire evaluations are used which eliminate the biases of the herdmate comparison, the accuracy of pedigree selection may approach what is theoretically possible.

Powell <u>et al</u>. (1975) has reported the relationship between Pedigree Index (PI), Group Average (GA), and mean Modified Contemporary Deviation ($\overline{\text{MCD}}$) based on sire evaluation by MCC. Data were for Holstein, Guernsey, Jersey, Brown Swiss, Ayrshire and Milking Shorthorn. Regressions of $\overline{\text{MCD}}$ on PI and GA on PI centered around 1.0 although estimates for Jerseys tended to be larger possibly due to a higher heritability in Jerseys. Correlations of $\overline{\text{MCD}}$ and PI ranged from .16 to .40. The high correlation of .40 was for Holsteins where the PI was based on A.I. sire and maternal grandsire information. The correlations between GA and PI were nearly 1.0 except for Brown Swiss which were .83 and .82. By dividing bulls evaluated into quartiles by PI, Powell found that the probability of a bull being plus on daughter performance was about twice as great in the top compared to the bottom quartile. For example, in A.I. Holsteins the percent plus on $\overline{\text{MCD}}$ was 78 in the top quartile and 39 in the bottom quartile.

The upper limit of the accuracy of pedigree selection is $\sqrt{.5}$ = .71 assuming the trait is completely determined by additive genes and the most

perfect averaging of ancestors is used in a random bred population. Freeman (1976) points out that the attainable accuracy of pedigree selection for special matings is about .58 when the accuracy of sire estimates are 0.9 and dams are estimated with an accuracy of .75. Future sire evaluations by either mixed model or MCC would benefit by the use of unbiased pedigree information. This is extremely promising considering that old and biased methods were at least moderately effective in predicting son's proofs.

DATA DESCRIPTION

These data were obtained from the lowa State Records Processing Center with the following restrictions:

> First lactation Holstein Registered sire Official DHI Records begun between May, 1967 and May, 1974 From Iowa, Missouri, and Kansas

In addition, records were excluded according to the following criteria established by the USDA:

Those coded as complete but less than 180 days in length Those coded as incomplete but less than 15 days in length Those estimated for two or more consecutive test periods Those initiated by abortion

There were 110,112 records meeting these criteria. All records were 2X, 305 day, mature equivalent (ME). Milk and fat records were converted to kilograms (kg) for analysis. From this initial data set, sires with 40 or more daughters were chosen. Three generation pedigrees on these 450 bulls were provided by the Holstein Friesian Association of America (HFAA). There were 208 bulls whose pedigrees included the following information:

Sire's PD or MCC

Dam's USDA Cow Index

Maternal Grandsire's PD or MCC

The initial data set consisting of 110,112 first lactation records

was then reduced to 29,579 records of 208 bulls. Since breaking down environmental subclasses to herd-year-seasons would have reduced the average number of daughters per subclass to less than three, environmental subclasses were defined as herd-years instead of herd-year-seasons. Age adjustment was by factors which also standardize to an average month of freshening (Norman <u>et al.</u>, 1974). Consequently, most of the variation in lactation records due to season of calving was eliminated. Records in herd-years within which there was no direct comparison of at least one sire were deleted because they would not contribute to the evaluation of any sire. This is known as statistical disconnectedness. Seven sires no longer had any daughters in the data set leaving 23,544 daughters of 201 sires in 3871 herd-years. This data set was used to obtain sire estimates using the maximum information available meeting the specified criteria. Progeny evaluated were restricted to daughters of the 201 tested sires having the required pedigree information.

Determining groups

Several grouping strategies were compared in this study. The goal was that progeny deviations of sires would be regressed to some subpopulation mean which would be more desirable than regressing to an overall mean. Among those factors which can be considered as criteria for grouping are birth year of sire, pedigree index of sire, dam, and maternal grandsire or stud affiliation. Two pedigree indexes were computed to use as criteria for grouping. They were computed in the following way:

Index 1 = u_1 (Sire's PD) + u_2 (Maternal Grandsire's PD) where

- PD is the most recent USDA-DHI sire evaluation as of November, 1974;
- u_1 is the additive relationship between a tested sire and his sire, $u_1 = \frac{1}{2}$;
- u_2 is the additive relationship between a tested sire and his maternal grandsire, $u_2 = \frac{1}{4}$.

Index 2 =
$$u_1$$
(Sire's PD) + u_3 (CI)

where

- u, and PD are as previously defined;
- u_3 is the additive relationship between a tested sire and his dam, $u_3 = \frac{1}{2}$.

CI is the USDA-DHIA cow index computed as follows:

$$CI = w_1 \overline{X}_1 + w_2 PD$$

where

- w1 and w2 are selection index weights given to information on the cow and her sire's PD, respectively,
- \overline{X} is the cow's mean deviation from modified contemporaries adjusted for merit of herdmate's sire,
- PD is the most recent USDA-DHIA sire evaluation as of November, 1974.

The pedigrees of the 201 sires evaluated are listed in Table 3 along with indexes 1 and 2 for both milk and fat. YR stands for year of birth and ST stands for stud code. Table 4 lists simple statistics for the pedigree of the sires tested. A wide range of values were prevalent for all types of pedigrees. The mean CI was 110 kg while the mean PD for sires

Table 3. Pedigrees of bulls evaluated

 Bull	Bull	Sire	MGS	<i>د حو</i> ر جور جي		Inde		Inde	
Code	Number	Number	Number	YR	ST	Milk	Fat 	Milk	Fat
	1190953	901195	819476	52	2	43	6	87	6
2	1233487	1013415	1013415	53	4	71	2	180	5
3	1261857	1080016	1156771	54	7	53	6	194	10
4	1268290	666182	1070426	55	4	-106	-1	-70	0
5	1268294	1181068	1104276	55	8	73	5	33	2
6	1279190	1001768	1055021	54	2	-74	0	-134	-3
7	1281874	10 134 15	1089423	56	4	79	2 4	118 92	2 6
8	1284716	1191720	1024453 934577	56 56	9 6	8 8 9	4	92 18	5
9	1287090	1189870 1233487	1024596	56	5	-20 6	0	-94	4
10	1289574 1302712	9 15940	963902	57	2	-52	Ö	- 45	ò
11 12	1304384	1244845	1172396	57	5	29	ŏ	48	1
13	1305460	1152252	1005816	57	2	- 178	- 5	-151	-7
14	1315612	1079736	915940	57	8	-5	4	109	6
15	1318021	959466	1033578	57	2	60	7	112	12
16	1323989	1226862	1233487	57	9	-114	- 1	-127	-2
17	1324688	1208003	1065220	57	7	86	5	24	2
18	1331709	1262613	11 26 39 2	58	7	-98	- 1	-148	-4
1 9	1338728	1293580	1002828	58	9	- 156	0	- 39	5
20	1343798	1038118	1087035	58	3	-73	9	-15	14
21	1343995	1126392	1074603	58	2	- 108	0	-71	0 -5
22	1347112	1250992	915940	59	6 9	-215 76	-4 7	-174 115	-5
23	1347940	1104074	934577 1172396	59 58	9	29	Ó	48	1
24	1349691 1352927	1244845 1106455	886182	59	- 4	-84	0	-67	-1
25 26	1352927	1013415	1130632	59	9	44	1	62	ò
20	1357215	1303198	877660	58	7	12	2	76	2
2 P	1362410	1259074	1095002	59	8	-177	-2	-76	0
2	1365058	1305460	1190953	59	6	-47	-2	-70	-6
30	1365141	1252880	999669	59	6	-183	- 1	-204	-3
31	1365218	1192713	908810	5 9	7	96	6	199	8
32	1367055	1243697	1014754	59	4	-118	1	-102	0
3 3	1367353	1113350	1196645	59	ç	- 9	0	- 27	0
34	1367925	915940	999262	59	7	-73	0	-36	0
35	1370173	1303180	1195461	59	6	53	5	27 -40	4 - 1
36	1371216	1013415	915940	59	6	-4 -13	0 5	- 88	0
37	1372052 1375151	12 7 5412 1152252	1061147 981361	59 6C	6 7	-219	-5	-169	-4
38 39	1375151	1057739	833253	60	3	-219	5	-44	4
39 40	1377954	1181068	1099477	59	7	81	6	209	8
40	1382363	1138451	1013415	60	Ó	-64	Ō	-194	-6
42	1382580	1196645	1138451	60	9	-59	- 1	-103	- 3

.

Bull		Sire	MGS				x_1	Inde	
Code	Number	Numter	Number	YR 	ST 	Milk	Fat 	Milk	Fat
43	1386406	82 180 36	1081976	59	2	20		131	4
4 4	1388586	12839 17		60	7			-99	
45	1388721	1205185		60	7			-139	- 1 - 1
46	1390505		886162	60	4	-84		` - 67 15	5
47	1391447		1099477	60	3	98			1
48	1392858		1027992	60	1	-104 33		-85	0
щ 9	1394348	933122	975138	6C 61	7 6	272	5	265	2
50		1138441 1261857		6 C	7	121	13	213	14
51	1396740	1344345		60	8	68	-1	64	-4
52	1396885	1283917		61	8	72	ò	- 36	- 5
5 3	1399171 1399380	1196645		60	6		ŏ	140	2
5 4 55	1399500		879145	έC	7			104	2
55 56	1399824	1185870	1104074	60	9	123		228	11
50 57	1402761		1244845	60	2	- 229		-177	0
58	1404814		1024596	59	6			-94	4
59	1405530		1226862	6 C	4	105	3	171	2
60	1406938	1376(29		61	0	-6		-59	- 1
61	1408640		1071565	61	8	179	9	233	11
f2	1410387	1113350	1035164	61	2	68		119	2
63	1410733		929962	61	7	160	7	125	5
64	1412021	1271122	1196645	61	0	-171	-2	-229	- 5
€5	1414231	1305460	925394		7	- 119	- 4	- 51	-2
6 6	1415015	1196645	1013415		6		0	-10	-1
6 7	1416227	1288610	1237057		7	11	-1	120	0
68	1417192	1065220	929962	6 1	7	75	3	190	5
69	1417208		10 24 45 3	61	8	269		353	د ا
70	1417390	1189870	1252985	62	8	-33	1 7	38 70	5
71	1418050	1189870	826653	62	2	51 60	6	50	13 2 5 6
72	1418927		866178		9 6	107	8	179	8
73	1419005	1189870	1303198 1230640						-3
74		13C546C 1189870	934577	61	2	58 2	8	63	5
75 76	1420487 1421258	1169070	1113350	61	ō	71	4	22	5 2
78 77	1423320	1189870	1171453	62	2	149	7	231	10
78	1423733	1305460	1091409	62	2	-77	-4	37	0
79	1423926	1189870	852063	62	9	111	8	156	7
80	1424245	1189870	1007680	62	2	28	5	16	3
81	1426597	1092490	10 10 9 3 6	62	7	123	3	119	0
82	1427381	1383926	1292927	62	8	103	7	220	11
83	1428145	1288610	1196645	62	8	-44	-2	- 36	- 3
84	1428649	1138451	1154156	61	8	-173	-2	-63	- 1

Table 3. (Continued)

- -

•

Bu11	Bull	Sire	MGS			Inde	x 1		ex 2
Code	Number		Nurter	YR	ST	Milk	Fat	Milk	Fa t
	1428809	1169870	1265694	61	6	180	7	261	8
8.6	1429640	1382768	1 024453	62	7	-222	-6	-110	-3
٤7	1430145	1492073	8218036	62	7	19	0	104	1
83	1431678	1169870	1080990	62	8	120	9 1	179 17	10 3
89	1431977	1315612	1225191	62 62	0 7	-68 49	6	15	5
<u>60</u>	1432733	1189870	1221490 1275636	62 62	Ó	- 12	1	10	õ
91	1432960	1371548 1237057	1243697	62	6	49	1	124	1
92 02	1433269 1433567	1437235	8229512	62	2	-13	4	55	5
93 94	1433785	1181029	1000390	62	7	72	8	157	10
94 95	1435795	1342896	1329790	61	έ	43	5	316	14
95 96	1435884	1368257	915940	62	2	-160	-5	-221	-9
97	14 380 16	1239242	1297472	€2	7	20	4	15	3
ç8	1438533	1305460	925394	62	7	-119	-4	-51	-2
9 9	1442117	1341149	1303502	6 3	7	42	0	281	5
100	1443161	1189679	86 C76 8	62	0	180	5	24 7	6
101	1444368	10 134 15	8 160 32 1	62	S	10	1	91	2
10.2	1444974	1350414	1188192	62	С	- 197	- 5	-198	-7
103	1445718	824820 7	1046466	63	2	- 149	1	-44	7
104	1445725	1244845	1038509	63	8	157	3	160	3
105	1447141	1189870	1024856	62	9	10.0	10	170	12
10.6	1447395	1237057	1189870	63	8	142	5	163	4 5
107	1447414	1085978	929962	£ 3	7	160	7 -1	184 34	4
108	1447666	1368263	1167530	63	2	-102 -50	- 0	83	3
109	1448297	8218036	915940	63 63	6 2	- 50 - 19	-3	107	-1
110	1448475	1305460	963902 919383	63	2	245	-3	138	5
111	1452345	1223243 1080108	929716	63	8	-373	-6	-524	-13
112	1452497 1453732	1378594	1244845	€4	õ	- 229	2	-113	4
113 114	1453752 145480C	1071565	1189870	63	8	183	8	247	14
115	1455276	1263538	1226862	62	Ō	- 105	Ō	14	0
11(1455965	1329588	1024453		8		5	337	12
117	1457846	1347065	1171453	63	6	112	2	195	4
118	1458169	1237057	1123184	63	6	113	3	53	0
119	1459513	1410237	1144239	€4	2	-97	0.	- 19	3
120	1461530	1085978	9556 1 9	64	7	199	9	265	10
121	1461578	842876	1024453	64	7	222	7	329	10
122	1461984	1237057	956081	64	0	135	3	278	6
123	1462168	1378594	1196645	63	3	- 28 1	1	-274	0
124	1463035	1237057	1138451	64	0	53	0	96	0
125	1463216	1242221	1046466	64	2	· 300	12	406 -229	18 -4
12€	1463314	1243399	1268290	64	9	-259	-4	-229	-4

Table 3. (Continued)

ł

.

Table 3. (Continued)

 Bull	Bull	Sire	MG S		* =** *** ***	Inde		Inde	
Code	Number	Number	Number	YR	ST	Milk	Fat	Milk	Fat
1:7	1464902	1427381	1283917	64		379	16	373	14
1. 8	1464967	1323989	1289574	64	6	32	2	114	4
129	1466179	1271810	1329249	€4	ç	79	õ	70	0
130	1466180	1419755	1013415	64	0	159	5	154	3
131	1466757	1406271	1040291	64	S	156	10	181	10
1.2	1468034	8264804	1024453	64	8	-393	-3	-397	0
1.53	1468276	1271810	12 10 5 0 7	64	4	280	5	352	7
134	1468738	1440501	1364341	64	0	212	6	256	5 3
135	1468880	1397517	1148993	64	6	-111	0	17	
136	1469019	1378594	11 24 91 5	64	2	-391	0	-375	0
137	1470014	1252985	1292927	64	8	-264	- 9	-147	-5
138	1471171	1189870	1056882	64	8	84	7	142	8
139	1471473	1098656	10 134 15	64	9	- 134	-1	- 157	- 3
140	1471824	1244845	1144239	64	0	77	0	210	4
141	1472098	1492073	8 160321	60	2	-18	0	99	4 7
142	1473709	1210507	1024453	64	4	293 -220	5 1	336 -112	1
14.3	1474265	1376402	1261357 1234506	64 64	0 6	- 220 10 1	4	331	13
144	1474780	1410117	1288605	64	0	-266	- 10	-98	-4
145	1474835	1252985 82 71 846	1283309	64	2	-157	-10	-28	0
146	147617C 1476235	1237666	10 15951	64	0	- 135	Ő	-294	- 3
147 148	1476255	1189870	1239242	64	7	115	8	192	8
140	1478014	1189870	1205185	64	2	75	7	197	14
150	1478618	1282720	1251811	64	ō	-210	-4	-52	- 3
151	1479824	1223243	1185870	65	4	235	10	265	11
152	1480896	1395116	1271810	65	0	85	2	169	5
153	1480902	1271810	1395116	64	С	155	4	182	3
154	1481973	1243697	1232296	65	3	0	5	-55	4
15.5	1481989	1459996	1024453	65	8	- 111	-2	- 115	0
155	1482274	1378594	11898 70	65	7	-229	5	-119	9
157	1483048	1406271	1150470	€5	C	112	8	231	10
158	1483494	1381027	1195221	65	0	-131	0	-116	-1
159	1483720	1450228	1185870	65	9	290	11	335	9
16 0	1483844	1014925	1113350	65	3	-89	0	24	3
1 6 1	1489812	1282185	1234506	65	4	70	1	300	11 9
162	1489981	1410984	1157986	65	8	-69	2 6	87 121	9 10
163	1490427	1352968	1199324	€5 65	0 4	- 1 305	5	347	4
164	1492486	1210507	1244845 8236866	65 65	4	-63	3	- 29	3
165	1492600	14 10 984	1189870	65	0	8	4	75	6
166	1495772 1496635	1422258 1378594	1271810	€5	Ö	128	5	106	3
167		1378594	1271810	65	4	-199	3	-134	4
168	1496636	13/0394	12/10/10	05	т		2		•

Bull	Bull	Sire	MGS			Inde		Inde	
Code	Number	Number	Number	YR	ST	Milk	Fat	Milk	Fat
	میں دی ہوتے ہوتے ہیں ہیں کی مربوع								
169	1500395	127 7 6 1 9	1038509	66	4	74	0	159	2
170	1500404	1381027	1113350	66	9	- 90	0	24	5
171	1502035	1347065	1378594	66	С	-84	2	46	4
172	1505354	1315612	1225191	66	0	- 57	1	-9	1
173	1507983	1189870	8218036	66	2	90	6	93	5
174	1509612	1378594	1126534	66	2	-182	8	-41	13
175	1512625	1459996	10 50 848	66	8	- 150	- 4	-56	- 4
176	1513417	1339836	1383004	66	2	-5	3	53	5
177	1513667	1381027	1271810	67	0	-14	1	21	1
178	1514126	1410117	1210 07 8	66	6	- 27	3	72	6
173	1514953	1459996	1113350	66	2	- 14 3	- 3	-183	- 5
180	1516215	1492073	8212300	66	8	- 155	-1	78	3
181	1517948	1210507	1347065	67	8	288	4	320	5
182	1517981	1210507	1271810	66	4	336	5	391	6
183	1519406	1459996	1286091	66	0	- 16 1	- 4	-74	- 5
184	1519514	1098656	1161385	66	0	- 16 2	-2	-179	-5
185	1519754	1378594	1404456	67	0	- 369	0	-204	3
186	1523437	1459996	1292880	67	0	- 1 89	-4	-123	- 3
187	1526107	1331709	1283917	66	0	139	1	185	1
189	1527567	1492073	82038C7	67	2	36	2	184	8
189	1528129	1436907	1268134	66	0	- 83	0	-32	0
190	1529142	1402113	11283(7	67	0	- 184	- 3	-59	0
191	1530457	1369144	1261357	6 7	C	-282	- 5	-113	- 1
192	1535235	1271810	1196645	66	9	141	3	25	- 1
193	1536957	1507983	1242221	68	2	1	0	58	0
194	1537984	1381027	1130632	67	0	-92	0	-74	0
195	1538732	1355784	1244845	67	4	315	5	352	9
195	1541451	1347940	1189870	6 6	0	317	15	438	17
197	1543753	1239242	1189870	68	7	96	6	294	10
193	1547948	1410387	1242221	68	2	66	0	138	0
19.7	1549100	1237057	1189870	68	8	142	5	205	10
20.)	1550180	1271810	1189870	68	4	194	6	263	9
201	1552390	1347940	12 10 507	68	4	403	13	52 9	20

Table 3. (Continued)

.

			Mean	Standard deviation	Low	High
	PD milk		0	277	-851	655
Sire	PD fat		- 0.4	8.9	- 23.2	30.0
	Repeatab	ility	92	17	28	99
	CI milk		110	189	-417	668
	CI fat		5.9	7.4	- 13.2	26.8
Dam	Average records	number of	6.7	2.5	1	13
	Average r records	number of indexed	4.7	2.6	1	10
	Repeatabi	lity	40	4.6	23	44
	PD milk		13	218	-700	655
Maternal grandsire	PD fat		0.5	7.0	- 23.2	22.7
5	Repeatabi	lity	86	21.6	20	99
		milk	3	154	-394	403
	Index 1	fat	- 0.1	4.8	- 13.4	14.0
		milk	55	169	- 525	529
	Index 2	fat	2.8	5.8	- 14.1	19.8

Table 4. Means, standard deviations, and ranges for pedigrees of 201 bulls evaluated

and maternal grandsires was zero and 13 kg, respectively, for milk. Means for fat were 5.9, -0.4, and 0.5 for CI, sire's PD and maternal grandsire's PD. In the selection of bulls, more emphasis was placed on the quality of the dam than the sire.

Dams had an average of 6.7 records but an average of 4.7 records were included in cow indexes. The discrepancy arises because early records of old dams were made before indexing was done by USDA. The average repeatability of dams was 40 percent with a range of 23 to 44. PD's for sires and maternal grandsires had average repeatabilities of 92 and 86 percent, respectively. All pedigree index information was based on the most recent proofs as of November, 1974 and not information available when progeny tested sire's first daughters appeared in the data.

Another form of pedigree grouping which is used in the Northeast is to group by stud affiliation. Different studs may tend to select different kinds of bulls in some way that is not reflected in their pedigree indexes. These may include type, show winnings, fat test, etc. Bulls evaluated in this data set were grouped by studs; however, since most studs had relatively few bulls represented, studs were combined based on the author's opinion of similar selection philosophies. For instance, cooperatives were usually considered together. Bulls not stud identified were also grouped separately. Grouping was thus by stud type. The distribution of bulls by stud identification is given in Table 5.

The time period in which the bull was born was also a criteria for grouping along with stud affiliation or pedigree index. The following is a description of 7 groupings compared in this study where abbreviations

Stud code	Identification	Number
1	Select Sires	1
2	Carnation-Genetics	32
3	Tri-state	6
4	Kansas	18
5	Minnesota Valley	1
6	Midwest	22
7	American Breeders Service	32
8	Curtiss	29
9	Other coops	20
0	No stud identification	40

.

Table 5. Stud affiliation of tested bulls

represent model definitions where grouping was as described.

- SMG--Bulls were grouped by Index 1 into 10 groups. The range of each group was about 80 kg with groups at the extremes tending to be larger because of fewer bulls.
- SCI--Bulls were grouped by Index 2 into 10 groups of approximately 95 kg.
- STYR--Bulls were grouped by stud type within period of birth.

Assignment of stud type was as follows:

Stud type	Stud codes
I	1,2,8
II	4,7
III	0,3
IV	5,6,9

Birth periods were 1952-60, 1961-63, and 1964-68. There were 12 groups.

- 4. BRTH--Grouping was by birth year of bull. Group 1 included bulls born from 1952 through 1957, group 2 included sires born from 1958 through 1960, and 8 additional groups were by one year increments starting in 1961 and ending with 1968. There were 10 groups.
- SMGB--Index 1 was used to group bulls within periods of birth. Periods of birth were 1952-60, 1961-63, and 1964-68. There were 13 groups.
- 6. SCIB--Index 2 was used to group bulls within period of

birth. Periods of birth were 1952-60, 1961-63, and 1964-68. There were 14 groups.

 RELB--Grouping was combined with the uses of additive relationships. Bulls were assigned to groups identical to BRTH. There were 10 groups.

All 7 groupings were used for obtaining sire estimates for milk. Only group definitions SMG, BRTH, and RELB were compared for fat. Milk indexes were used for obtaining sire estimates for milk and a fat index was used when SMG was used to obtain fat estimates.

Relationships between sires

Relationships between sires was included in two evaluations for milk and fat. One method considered relationships alone and a second combined uses of the relationship matrix with grouping. Grouping was by year of birth identical to group definition 4.

All but 31 sires were related to at least one other tested sire in the data set used. The order of the coefficients matrix was increased by 62 or 31 percent over the original 201 sires. Inbreeding was not considered in creating the inverted relationship matrix.

METHODS AND PROCEDURES

Background

Several features of the mixed model for obtaining BLUP are:

- It requires just a simple modification of regular least squares. Variance ratios are added to diagonals of the sire equations.
- Nuisance variables may be absorbed by a simple algebraic process.
- 3. Solutions are easily obtained by direct inversion when the number of equations are less than approximately 200.
- When the number of equations is large, solutions may be obtained by iteration.

Henderson (1974) discussed the choice of model. He pointed out the data chosen may partially determine the model and vice versa. He also stressed that the more complete a model is the less chance for bias, but adding unimportant elements to the model results in greater computational cost and larger sampling variances. Assuming the correct model is chosen, sire estimates are best linear unbiased predictions (BLUP). As simple a model as possible which accounts for important sources of variation is desired. Such a model was incorporated into sire evaluation in the Northeast and has been used successfully for several years. It is:

$$Y_{ijkl} = \mu + h_i + g_j + s_{jk} + e_{ijkl}$$
(1)

where

Y ijkl is a first lactation, 2X, 305 day, ME record of lth daughter of the kth sire in the jth group and the

ith herd-year-season,

μ is a constant,

 h_{\star} is the ith herd-year-season,

 g_j is the jth group included to account for genetic trend by regressing sires to an appropriate group mean instead of zero or μ ,

s_{ik} is the kth sire nested in the jth group,

e_{iikl} are mutually uncorrelated random variables.

Only first lactation records are used. This eliminates bias due to non-random culling of daughters. It also considerably reduces computational problems because if multiple records of cows are included, selection must be accounted for.

The effects of the model must be assumed fixed or random. Herd-yearseasons might logically be considered random because a new sample of data would be from a new set of herds, years, and seasons. However, certain breeders tend to use better bulls than others and this is reflected in the herd-year-season means. Treating herd-year-seasons as fixed effects eliminates this bias due to sire selection. Genetic differences between herds, other than what is accounted for by sires of herdmates, are absorbed along with herd-year-seasons. An additional refinement in sire evaluation would be to correct for genetic herd differences as measured through the cow.

Sire effects are their transmitting ability relative to some base population. In the model, sires are considered random for two reasons. First, they are the result of a sampling process, the random segregation of genes. Secondly, the purpose of estimating sire effects is to predict future daughter performance. When computing sire effects under the assumption that they are random, only a simple modification of least square's normal equations is required. The variance ratio (σ_e^2/σ_s^2) is added to the diagonal of the sire equations (this will be shown later). This is often referred to as augmenting the diagonal to simultaneously regress sire means for number of daughters, distribution of daughters, and imperfect heritability.

The estimated transmitting ability of a bull from this model is $\hat{g}_j + \hat{s}_{jk}$. Sires are nested in groups and deviate about its mean. The group constant reflects the mean of a subpopulation of bulls. It is important that bulls be assigned to a group which reflects his genetic ability because \hat{g}_j is part of his estimated transmitting ability. This is most important when a bull has few daughters because they have small influence in determining his group constant. Also, \hat{g}_j contributes relatively more to estimating a sire's transmitting ability when he has few daughters than when he has many. Groups are considered fixed effects.

The mixed model was described in general in the Review of Literature. For model (1), it is:

Y = Hh + Gg + Ss + e

where

Y is a vector of daughter records, n x 1; H is a known fixed matrix, n x r; h is a column vector of environmental effects, r x 1; G is a known fixed matrix, n x q;

g is a column vector of genetic group effects, q x 1;

- S is a known fixed matrix, n x p;
- s is an unknown vector of random sire effects, $E(s) = \emptyset$,

$$V(s) = Q\sigma_e^{-}$$
, s is p x 1 and Q is p x p;

e is a n x l non-observable random vector, $E(e) = \emptyset$, $V(e) = R\sigma_e^2$, $Q^{-1} = I\sigma_e^2/\sigma_s^2$;

and assuming R = I, $RQ^{-1} = I\sigma_e^2/\sigma_s^2$.

The above equations then are:

$$\begin{bmatrix} H'H & H'G & H'S \\ G'H & G'G & G'S \\ S'H & S'G & S'S + I \frac{\sigma_e^2}{\sigma_s^2} \end{bmatrix} \begin{bmatrix} \hat{h} \\ \hat{g} \\ \hat{s} \end{bmatrix} = \begin{bmatrix} H'Y \\ G'Y \\ S'Y \end{bmatrix}$$

Solutions cannot be obtained directly from these equations because of the large order of the coefficients matrix. The procedures for creating mixed model equations and obtaining solutions are given in the following sections. Examples of these procedures are in the Appendix.

Procedures for creating equations

1. Absorbing h into s

At this point, a simplified model is considered which ignores groups. It is:

$$Y_{ikl} = h_i + s_k + e_{ikl}$$
(2)

where

the factors are identical to model (1) except that groups are ignored and h refers to a herd-year instead of herd-year-season.

Note that the mean μ is included with the herd-year effect,

 $h_i = \mu + herd-year_i$. The group equations can be created after absorption which will be shown later. They are simply combinations of the absorbed sire equations.

Absorption is an algebraic process whereby a set of effects are solved for in terms of the remaining effects of the model. For model (2), herd-years are solved for in terms of sires. Various other terms have been applied to this technique including "sweep out". It is necessary because of the impossibility of directly obtaining solutions when the number of equations is greater than several hundred. In this study several thousand herd-years are involved.

Lentz <u>et al</u>. (1969) showed by example how absorption could be accomplished as herd-years were read into the computer sequentially. The absorbed coefficients for model (2) are:

$$C_{s} = \begin{pmatrix} \sum_{i} (n_{i1} \cdot - \frac{n_{i1} \cdot 2}{n_{i \cdot \cdot}}) & -\sum_{i} \frac{n_{i1} \cdot n_{i2} \cdot 2}{n_{i \cdot \cdot}} & \cdots & -\sum_{i} \frac{n_{i1} \cdot n_{ip} \cdot 2}{n_{i \cdot \cdot}} \\ -\sum_{i} \frac{n_{i2} \cdot n_{i1} \cdot 2}{n_{i \cdot \cdot}} & \sum_{i} (n_{i2} \cdot - \frac{n_{i2} \cdot 2}{n_{i \cdot \cdot}}) & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\sum_{i} \frac{n_{ip} \cdot n_{i1} \cdot 2}{n_{i \cdot \cdot}} & \cdots & \cdots & \vdots & \vdots \\ \sum_{i} (n_{ip} \cdot - \frac{n_{ip} \cdot 2}{n_{i \cdot \cdot}}) & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i} (n_{ip} \cdot - \frac{n_{ip} \cdot 2}{n_{i \cdot \cdot}}) & \cdots & \vdots \\ \end{bmatrix}$$
(3)

where

C is the absorbed coefficients matrix or sire equations after absorption,

n_{ik}. is the number of daughters of sire k in herd-year i,

n_i. is the total number of progeny in herd-year i,

p is the total number of sires.

A characteristic of these equations is that they sum to zero by row or column. The diagonal element is equal to the sum of the off-diagonals times minus one.

The right hand sides after absorption are:

$$R_{s} = \begin{pmatrix} \Sigma(Y_{i1}, -n_{i1}, \overline{Y}_{i}, ..) \\ i \\ \Sigma(Y_{i2}, -n_{i2}, \overline{Y}_{i}, ..) \\ i \\ \cdot \\ \cdot \\ \cdot \\ \Sigma(Y_{ip}, -n_{ip}, \overline{Y}_{i}, ..) \\ i \end{pmatrix}$$
(4)

where

 ${\rm R}_{\rm c}$ are the absorbed right hand sides,

 Y_{ik} is the sum of lactation records for the daughters of the k^{th} sire in the ith herd-year,

Y_i.. is the mean of all lactation records in the ith herd-year. The computations are relatively easy. The first step is to sort daughter records by year of freshening within herd. This way, herd-years can be absorbed one at a time as they are read into the computer. In addition, sires are sorted within herd-years so that sire codes may be identified more efficiently. The second step is to identify all sires in the data set. They are then sorted by sire's registration number and coded 1 to p, the total number of sires. The registration number and code for each sire is read in and stored in the computer.

The appropriate arrays are then zeroed out. The largest of these is the coefficients matrix, C_s , whose dimensions are p x p when full stored. If double precision is used, the required core is $8p^2$ (a double precision computer word is 8 bytes long). For p equal to 200, the required core for just storing that array is 320,000. Since core time is expensive, a more economical way of handling the coefficients matrix is required. An acceptable alternative is to use direct access to a supporting disk. This reduces the required array area to just p double precision words because only one sire equation needs to be in the computer at one time. Besides reducing run cost due to core time, turn around time is reduced because less core needs to be reserved.

The next step in the absorption process is to read in the first record and initialize herd and year. Immediately, the second record is read in and a subroutine called to check whether a new herd-year has been encountered. If so, the program branches to the subroutine where the actual algebra of absorption takes place. If the herd-year does not change, a subroutine is called to match sire's registration number with his code. Following this, a counter for number of daughters of that sire in that herd-year subclass is incremented by one. Herd-year sums and total sums of squares can also be accumulated.

After all herd-years have been absorbed, each row of the coefficients matrix is checked to see that it sums to zero. Finally, the absorbed sire equations and right hand sides are written out on tape by rows. Total and herd-year sums of squares and number of records and herd-years can

also be written out.

2. Adding variance ratios

Until now, sires have been treated as if they were fixed. In the next step, after group equations are created, the ratio of the error variance to the sire variance (σ_e^2/σ_s^2) is added to the diagonal of the absorbed sire equations thus regressing for imperfect heritability, and number and distribution of daughters. By doing this, sires are treated as if they were random. The value used in this study was 15 which corresponds to a heritability of .25. Adding the variance ratios eliminates any rank deficiency so that no restriction on the sire equations are required to obtain unique solutions.

3. Creating group equations

A separate computer program creates the group equations which were previously ignored. This can be done after absorption because sires are totally nested in groups. Groups are merely combinations of the sire equations. It is not necessary to use direct access because the sire coefficients matrix, C_s , may be handled one row at a time. A p by g matrix F of 0's and 1's is constructed in the computer where p and g are the number of sires and groups, respectively.

The sire identification code from 1 to p and its predetermined group code

from 1 to g is read into the computer and the value 1 assigned to that position in F. All other values in that row of F are assigned the value 0. For example, sire number 2 is assigned to group 3. The position $F_{2,3}$ is assigned the value 1 while all other positions in row 2 of F are 0.

Matrix multiplication of C_s times F results in the p x g matrix C_g .

$$\begin{bmatrix} C_{s} \end{bmatrix} \begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} C_{g} \end{bmatrix}$$

pxp pxg

where

Cg is the group portion of the sire equations.

These equations are created one sire at a time. After each equation is created, it is checked to see that it still sums to zero. Fifteen is then added to the diagonal of each sire equation which is now one by p + gand is written out on tape.

Next, the rows and columns of C_g are interchanged to get $C_{\hat{g}}$.

$$\begin{bmatrix} c_g \end{bmatrix} \longrightarrow \begin{bmatrix} c_g \end{bmatrix}$$

A g x g matrix J is formed by multiplying C'_{g} times F.

$$\begin{bmatrix} C_{g} \end{bmatrix} \begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} J \end{bmatrix}$$

gxp pxg gxg

The group equations are:

A check is made to see that they sum to zero. They are then written out on tape.

The final step is to create the group right hand sides for milk and fat. This is done by premultiplying the absorbed right hand sides by F'.

$$\begin{bmatrix} F^{\prime} \end{bmatrix} \begin{bmatrix} R \\ R \end{bmatrix} = \begin{bmatrix} K \end{bmatrix}$$

The full right hand sides are:

They are checked to see that they sum to zero and are then written out on tape. The equations are now ready for solution. They are:

$$\begin{bmatrix} C_{s} + I15 & C_{g} \\ \hline C_{g} & J \end{bmatrix} \begin{bmatrix} \hat{s} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} R \\ \hline R \\ \hline K \end{bmatrix}$$
(5)

4. Considering relationships among sires

The accuracy of prediction of sire's transmitting ability can be increased by considering the additive relationships among sires. This is reflected in lower prediction error variances and may result in fewer groups being required. Considering relationships the resulting equations are:

$$\begin{bmatrix} C_{s} + A^{-1} \\ 15 \end{bmatrix} \begin{bmatrix} \hat{s} \\ \hat{s} \end{bmatrix} \begin{bmatrix} R \end{bmatrix}$$
(6)

or

$$\begin{bmatrix} C_{s} + A^{-1} 15 & C_{g} \\ \hline \\ C_{g} & J \end{bmatrix} \begin{bmatrix} \hat{s} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} R \\ -K \end{bmatrix}$$
(7)

when groups are considered where submatrices are as previously defined and A^{-1} is the inverse of the relationship matrix.

Until recently, it was not practical to use this procedure because obtaining the inverse of the relationship matrix (A) was difficult when the number of sires was large. However, Henderson (1975) has discovered simple methods of creating the inverse of the relationship matrix directly from a list of sires and dams of sires to be evaluated assuming the population is non-inbred. The mixed model equations required are increased by the number of identified parents. The equations now are:

$$\begin{bmatrix} C_{s} + W_{11}^{15} & W_{12}^{15} & C_{g} \\ \hline & & & \\ \hline & & & \\ \hline & W_{12}^{15} & W_{22}^{15} & 0 \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline$$

where

$$A^{-1} = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{12} & A_{22} \end{bmatrix}^{-1}$$

and f is BLUP of future progeny of untested sires and dams. Absorbing the equations for identified parents would result in equations identical to (8); however, this again is not practical if the number of equations is large. It is feasible to solve all equations iteratively simultaneously obtaining pedigree estimates for identified parents.

If all parents are known, the number of sire equations is increased by a factor of three. For the data set used in this study where all sires

and dams are known, the increase in equations would be from 201 to 603. Henderson (1975) has shown that under certain assumptions, dams may be excluded. In addition, any untested sire having only one tested son and no tested maternal grandsons, and any untested maternal grandsire having only one tested grandson may be excluded. The resulting solutions are identical to (7). The assumptions are:

- 1. Non-inbred population.
- Relationships are restricted to the sires and maternal grandsires of all males with tested progeny.
- 3. All dams of progeny tested sons have only one such son.
- 4. Records on dams are not included.

In this study, the simplified procedure was used. Pedigrees including sires and maternal grandsires for all tested bulls were listed and screened to meet the required criteria. Sires and maternal grandsires were coded so that all sires were numbered from 1 to n. Tested sires were numbered from 1 to 201 and an additional 62 individuals were numbered from 202 to 263.

The inverse of the relationship matrix was created on disk. Contributions were made to A^{-1} by the method described by Henderson (1975) where p, s, and g are the coded numbers of tested sire, his sire, and his maternal grandsire, respectively.

- 1. If s and g are both known, add:
 - 1/11 to (g,g); 2/11 to (g,s) and (s,g); -4/11 to (g,p) and (p,g);

- 4/11 to (s,s);
- -8/11 to (s,p) and (p,s);

16/11 to (p,p).

- 2. If s is known and g is unknown, add:
 - 1/3 to (s,s);
 - -2/3 to (s,p) and (p,s);

4/3 to (p,p).

- 3. If g is known and s is unknown, add:
 - 1/15 to (g,g);
 - -4/15 to (g,p) and (p,g);

16/15 to (p,p).

4. If g and s are both unknown, add:

1 to (p,p).

After completing the computation of A^{-1} , it is written out on tape and later added to the already created sire equation.

Obtaining solutions to mixed model equations

Although it is desirable to obtain solutions by the direct inverse, it is seldom practical in sire evaluation. The time and thus the expense of inverting the coefficients matrix increases more than linearly with increasing size of matrix. In this study, numerous solutions to as many as 273 equations were required, thus iteration was used.

For the modified least squares equations of interest, iteration has proven to be a practical and economical way of obtaining solutions. Characteristic of the sire equations is that they are diagonally dominant and their right hand sides sum to zero. These features make iteration extremely efficient. Experience has shown that solutions obtained by this process are very close to those by direct inversion, however, more feasible for a large number of equations.

The sire and group equations to be solved are of the form:

$$AB = K$$

where

A is the coefficients matrix,

B is the vector of unknown variables to be estimated,

K is the vector of right hand sides.

The iteration procedure can be developed as follows:

Initial values of B are estimated by dividing the right hand sides by the diagonal of the coefficients matrix. The initial values are substituted into the original equations and multiplied times the coefficients matrix to yield estimated right hand sides after one round.

$$AB_1 = K_1$$

Second and later solutions are as follows:

$$\hat{B}_{1}^{2} = (K_{1} - A_{12}\hat{B}_{2}^{1} - A_{13}\hat{B}_{3}^{1} - \cdots - A_{1n}\hat{B}_{n}^{1})/A_{11}$$

$$\hat{B}_{2}^{2} = (K_{2} - A_{21}\hat{B}_{1}^{2} - A_{23}\hat{B}_{3}^{1} - \cdots - A_{2p}\hat{B}_{p}^{1})/A_{22}$$

$$\vdots$$

$$\hat{B}_{p}^{2} = (K_{p} - A_{p1}\hat{B}_{1}^{2} - A_{p2}\hat{B}_{2}^{2} - \cdots - A_{p(p-1)}\hat{B}_{p-1}^{2})/A_{pp}$$

where

the upper subscript of B represents the number of iterations p is total number of equations.

 $Q = \sum_{i} (\hat{K}_{i} - K_{i})^{2}$ is computed and used as a criteria whether or not to terminate the iteration process. When Q is close to 0, the process is terminated.

As was pointed out earlier, there is a rank deficiency in the group equations. However, iterated solutions are obtained without making any restriction on the coefficients. The equations are consistent (a set of solutions exist) and that is all that is required. If desirable, a restriction may be applied to the final solutions which would be identical to those if that same restriction had been applied to the coefficients matrix before iteration.

The computing strategy is to read the coefficients matrix onto disk and use direct access calling on only one sire equation at a time.

Methods of comparing solutions

The purpose of sire evaluation is to predict the performance of future daughters of a bull. If genetic trend is adequately accounted for, the prediction of daughters at any point in time can be used. Correlations may be computed as measures of the predictive ability of the different grouping strategies or alternatives.

A second criteria for comparing sire evaluations is that of the rank correlations of bulls by different evaluations. Spearman rank correlations are computed between all evaluations. While these correlations are not highly sensitive, they do indicate in general how closely different evaluations rank a particular group of bulls.

A third method of comparing ranks commonly used in livestock judging contest has some appeal. Its basis is that one position switches in rank

resulting in smaller penalty than multiple switches. In livestock judging, the "true" ranking and cuts are determined by an official judge or committee of judges. The "official" for comparing ranks of sire estimates were based on the correlations between evaluations and additional daughter records. Cuts were the actual differences between adjacently ranked bulls measured in kg. An example of penalties for misrankings is given below:

> official 1 2 3 4 1 2 cuts 4 placing 1--2 1 3 4 score = -1placing 2--1 2 4 3 score = -4

> > 2

3

placing 3--4

1

score = -23

A complete reversal of ranks results in a large penalty while for single switches in rank the penalty depends on the differences between adjacently ranked bulls. To help interpret scores, they will be computed as a percent of complete reversal of ranks. The penalty will be a percent of the largest possible penalty.

RESULTS AND DISCUSSION

Estimated transmitting abilities for 201 bulls were computed for milk and fat production using different mixed model definitions. Ten model definitions for milk and six for fat were compared. Modified contemporary comparisons computed by USDA were also compared; however, they were generally based on more daughters. The model definitions and modified contemporary comparison were coded for easier reference in this section. These codes are listed in Table 6. Codes for models with grouping correspond to more detailed descriptions of grouping in the data description. Estimated transmitting abilities will simply be referred to as sire estimates.

Group solutions

Tables 7 and 8 list group solutions for milk production and Table 9 lists group solutions for fat. All information used in assigning sires to groups was what was available as of November 1974. In practice, whatever criteria is used to group sires must be information which is available when a bull's first daughters freshen. The attitude taken in this study, however, was to use the latest and most complete pedigree indexes available when data were analyzed. The resulting sire estimates, where pedigree indexes were used for grouping, are based on information which would necessarily not have been available or very complete at the time of grouping.

All grouping was done linearly with regard to the criteria for grouping. For instance, where an index was used as the only grouping

Codes	Definitions
PD74	Modified Contemporary Comparisons obtained from USDA
NGRP	No grouping
NGIO	No grouping and off-diagonals ignored
SMG	Grouping was by a pedigree index of sires' and maternal grand-
	sires' PD's
SCI	Grouping was by a pedigree index of sires' PD and dam's cow
	index
STYR	Grouping was by stud year
BRTH	Grouping was by birth year of the sire
SMGB	Same as SMG but within periods of birth
SCIB	Same as SCI but within periods of birth
RELB	Grouping was by birth year and relationships between sires
	were considered
REL	Relationships only are considered

Table 6.	Codes	for	the	modified	contemporary	comparison	and	mixed	model
	defini	ition	ns						

Group		Model def	initions	
number	SMG	SCI	BRTH	RELB ^b
<u></u>	<u></u>		· · ·	
1	-198	-283	-206	-199
2	-193	-288	- 20	- 17
3	- 49	-146	- 19	- 14
4	-130	-165	- 1	0
5	- 79	44	27	39
6	- 86	- 89	45	38
7	50	33	52	54
8	159	83	95	117
9	170	241	26	18
10	178	154	27	36

٠

Table 7. Group solutions for milk^a

.

^aSolutions are in kg.

^bGroup average.

Group number	STYR	Model definitions SMGB	SCIB
1	(-182	(-136	/ -171
2	I) - 87	-227	-192
3	-170	1 < - 62	$1 \begin{pmatrix} -123 \end{pmatrix}$
4	(- 11	69	(111
5	II / 122	(-184	-350
6	210	- 34	- 69
7	(-260	2 { 57	2 2 12
8	III)- 68	157	81
9	- 11	-147	134
10	/ -157	- 98	-393
11	IV) - 77	3 - 87	-128
12	172	193	190
13		160	3 / 18
14			204

Table 8. Group solutions for $milk^a$

^aSolutions are in kg.

Group		Model definitions		
number	SMG	BRTH	RELB	
1	-9.2	-5.4	-5.0	
2	-5.4	0.3	.3	
3	-2.1	-2.2	-2.4	
4	. 4	-1.4	-1.2	
5	-4.5	0.5	1.1	
6	1.2	2.6	3.2	
7	-1.6	2.0	2.0	
8	3.5	6.1	5.7	
9	7.8	-4.2	-5.1	
10	10.9	1.3	1.6	

Table	9.	Group	solutions	for	fat ^a
Table	2.	Group	SULULIONS	TOT	Lac

^aSolutions are in kg.

^bGroup average.

criteria, group 1 would include sires with the most negative indexes and the last group would include highest indexes. Thus, it is expected that group solutions will follow somewhat linearly in magnitude with respect to group number. This, of course, is true if the criteria for grouping does in fact separate bulls into different and predictable subpopulations. Group solutions for SMG and SCI for milk do reflect large differences as a result of grouping (Table 7). The ranges from highest group to lowest group are 376 and 529 kg for SMG and SCI, respectively. Since first lactation milk production has a heritability of about .25, it is not surprising that grouping sires using these indexes alone should result in distinct group solutions. Regressions of group solution on group number are 45 kg for SMG and 56 kg for SCI. Group solutions did not increase linearly with group number, but they were not grossly misplaced. For instance, a large negative group solution was not associated with a high group number and vica vera.

While the regressions of group solution on group number were positive and large for both SMG and SCI, there were rather large changes for adjacent groups both in magnitude and direction. There are several possible reasons for these differences. First, indexes used as grouping criteria were not based on equivalent information. While most PD's of sires were modified contemporary comparisons thus reflecting a common base, the majority of maternal grandsire's (MGS) PD's were based on the old herdmate comparison. Cow indexes were based on older PD's and usually not all of a cow's records. Secondly, the first group and last group were based on a wider range of indexes. For SCI, group solutions for the first two and

last two groups are reversed in magnitude. McGilliard (1974) found that when predicting daughter performance from dam's estimated average transmitting abilities (EATA), daughters from dam's with extreme EATA's produced closer to the mean than expected. Extremely high cow indexes may be due to exceptional feeding or other treatment relative to herdmates. Another possible explanation is that very high performance may be the result of epistatic gene action. Gene segregation may break up desirable gene combinations thus contributing to poor prediction of progeny performance. This is not true for males whose merit is measured totally through his progeny.

Bulls were also grouped by their birth year to see the extent to which genetic subpopulations could be distinguished (Table 7). Differences in group solutions are less striking for BRTH than for SMG or SCI. The very oldest bulls, those born from 1952-57, were much poorer for milk production than all others. The overall range in group solutions is 301 kg; however, the range for sires from groups 2 through 10 spanning 10 years was only 115 kg. The regression of group solution on group number was 19 kg. Just grouping by birth year of bull was not as effective in creating distinct subpopulations as grouping by pedigree index.

Four groupings were tried which combined consideration of period of birth and pedigree knowledge. What was thought to be most crude was for model STYR where sires were grouped according to type of stud (Table 8). Those thought to be natural service bulls were grouped separately as well. The four types of studs as defined in the data description had means over all years of:

I	- 146 kg
II	107 kg
111	-113 kg
IV	109 kg

Linear trends in group solutions can be seen in all stud types. This grouping strategy was effective in determining distinct subpopulations of bulls even though explicit knowledge of a bull's pedigree was not considered. It should be reiterated that studs were subjectively determined and included a selected group of sires. Inference about selection goals, aims, or success of the studs with bulls in this study is not recommended. Few bulls per stud were represented and then only bulls meeting criteria of this study. It was the author's opinion that stud year groups were defined such that their group solutions would rank II, IV, III, I. The actual rank was IV, II, I, III but top and bottom pairs were not very different.

Index 1 and 2 were used to group bulls within birth periods. These model definitions were SMGB and SCIB and their group solutions are presented in Table 8. The three birth periods are represented by numbers 1, 2, and 3 in the table. Within each birth period, group solutions increased. Group means by birth period are given in Table 10. Means for each later period are larger. Differences within birth periods are larger than between periods.

When additive relationships were included in the model along with grouping, group averages (GA) were used for comparison instead of group solutions (Table 7). This is because sires within groups no longer sum to

62

1.

zero due to variance and covariances of related bulls (i.e., $j \stackrel{i}{=} (\hat{g}_{i} + \hat{s}_{ij})/n$ no longer equals \hat{g}_{i}). The regression of group average on group number was 19. Differences in group averages for RELB and group solutions for BRTH are similar.

Three group definitions were tried for fat production (Table 9). SMG, BRTH, and RELB had regressions of 1.82, 0.50, and 0.45 kg of group solution on group number. The effect of grouping was similar to that for milk production.

Another way of examining the effect of grouping on sire estimates is using a between and within group analysis. Table 11 gives the proportion of variation between and within groups for milk and fat. F tests for groups are also presented. Grouping is highly significant (P < .01) for all definitions except BRTH and RELB which are significant (P < .05). Grouping usually accounted for about 25 percent of the variation where pedigree indexes were used and for STYR. Highest between group variation is 34 percent for SCIB and lowest is for BRTH for both milk and fat.

Keown (1974), Shaeffer <u>et al</u>. (1975), and Everett <u>et al</u>. (1975) have all shown distinct differences in group solutions. In this study, group year differences were less dramatic than the other types of groupings tried. This may be due to the way in which bulls were selected. Using data of daughters of bulls with very complete pedigrees was probably too restrictive; however, it seemed necessary to make fair comparisons of the use of pedigree indexes for grouping. The results of grouping in this study indicate that using pedigree indexes to define homogenous subpopulations is very effective. The use of pedigree indexes for grouping could

Period	SMGB	SCIB	
1	-89	-94	
2	- 1	-48	
3	4	-29	

Table 10. Group means by time period for SMGB and SCIB^a

^aGroup means are in kg.

Table 11. Proportion of variation due to grouping

	Model definitions	df	Between groups	Within groups	F
Milk	SMG	9	25	75	6.1**
	SCI	9	32	68	6.8**
	STYR	11	25	75	6.0**
	BRTH	9	5	95	2.1*
	SMGB	12	25	75	6.1**
	SCIB	13	34	66	8.5**
	RELB	9	5	95	2.1*
Fat	SMG	9	24	76	7.3**
	BRTH	9	8	92	2.7**
	RELB	9	9	91	2.5**

*Significant at .05.

**Significant at .01.

eliminate the need for more crude grouping criteria such as stud or region. Also, differences in selection criteria from stud to stud would influence groups less. The net effect would be the need for fewer groups which in turn would be larger in terms of number of bulls and daughters. Groups would be better estimated and thus less likely to change when additional daughters are evaluated.

It should again be emphasized that in practice assigning bulls to groups must be done on a priori knowledge. There will always be large variation within groups, when the best information possible is known. The smallest percent of within group variation was 66 percent in this study. A best grouping strategy would be one which resulted in maximum between group variation with the restriction that information used in grouping is available when first daughters are evaluated and differences between groups represent genetic differences. For this reason, a within group sire deviation that is large, either positive or negative, does not mean that a sire was misgrouped. He is simply different than other bulls, whose grouping criteria was the same, due to sampling of his daughters, inaccuracies of his pedigrees, or gene segregation from his sire and dam.

Another factor which affects the magnitude of \hat{s}_{ij} is the accuracy with which that bull is evaluated. Bulls whose evaluations are based on few daughters are regressed closer to their group solution. The group solution, largely determined by other bulls, has a great deal of influence on the sire estimates. Powell and Freeman (1974) derived the approximate expression (1-b)($G_w - G_r$) where G_w and G_r represent the means for "wrong" and "right" groups and b is the diagonal of the coefficients matrix. Bulls

with large numbers of daughters are little affected by whatever group to which they are assigned because 1-b approaches zero. For example, if b equals .95, $G_w - G_r$ would have to be 1000 kg for an estimate to change by as much as 50 kg. This does not mean that grouping is not important and essential for these bulls. Two factors are involved in the concept of grouping. First, the assignment of bulls with relatively few daughters to groups is important to improve accuracy. We try to estimate the genetic merit of a bull based on his pedigree. An estimate with large error means that a bull's prediction will change more than if the original pedigree estimate had been a good one. But grouping, whether right or wrong, is still essential if genetic trend exists in the population. The second factor is that all daughters of a bull, no matter when they enter production, will be regressed to the same mean. To accomplish this, identical restrictions must be used from one evaluation to another when new daughters and new groups are added. Older groups must be maintained at least until the accuracy of prediction of all bulls in the group is close to one.

Thus, nationwide use of the mixed model is difficult because vast numbers of bulls must be re-evaluated each time to maintain group solutions and comparisons. Solving these latter problems requires sophisticated computer technology, statistical methodology, or a combination of both.

Comparison of sire estimates by different mixed model definitions

Sire estimates for milk and fat are presented in Tables 12 and 13. Where different group definitions were used, the prediction of sire's transmitting ability is $(\hat{g}_i + \hat{s}_{ij}) - (\hat{g}_i + \hat{s}_{ijj})$ or

Table 12. Sir; estimates for milk

Table	12.	J I I I	esti		101						
	10 040 Um 100 Um 1										
Sire Cođe	Pn74	NGEP	NGIO	SMG	SCI	STYR	BETH	SMGB	SCIB	RELB	REL
COUC	2071										
-					~ 5 4	253	253	202	- 205	- 270	-272
1	99	-263	-203	- 302	- 251	- 353	- 353	-292	-305	- 374	-127
2	- 189	-142 421	- 35	-104	-109	-100	-192	-112	-105	- 175	- 127 408
3	351	-490	433	417	437	4.30	-573	-//81	-1181	-510	-476
4	- 520	- 49 0 92	-464	-404	- 40 1	-445	-6	134	404 45	29	134
5	212	-437	- 209	-1182	-523	-514	-515	-516	-486	-528	-446
6	- 14/	-437	- 1 1 0	-402	- 923	-514	-13/	- 88	- 84	- 120	- 96
7	-/8	- 15	-115	- 10	- 00 7	-43	-149	-55	<u>и</u> 5	-149	-8
8 9	-147	- 15	71	-04	5	-5	-33	1	- 19	- 59	-1 0
9 10	- 147	-225	-231	-239	-235	-201	-260	- 24 1	-242	-244	-213
11	-87	-146	-102	-231	-255	-269	-299	- 311	-272	- 301	-141
12	-571	-237	-244	-263	-263	-257	-322	-265	-286	-326	-229
13	-1/13	-145	-131	- 180	- 185	- 184	- 179	- 170	-168	-193	-118
14	- 145	- 85	- 41	-97	-74	-126	-119	-97	-71	-98	-58
15	-146	-2 10	-122	-234	- 20 5	-268	+255	- 208	- 191	-264	-214
16	50	-269	-263	-285	- 377	-272	-358	-321	-330	-313	-213
17	-123	-178	-111	- 149	- 154	- 162	-284	- 146	-240	-290	- 181
18	172	163	93	169	126	192	151	144	144	171	182
19	-216	-320	-297	- 387	- 371	- 3 30	-346	- 37 1	-380	- 350	-323
20	- 175	-113	-51	-154	-121	-202	-119	-191	-165	-125	-116
21	11	-195	-148	-210	-219	-250	-204	- 223	-220	-207	-195
22	- 52	0	49	-25	-32	-7	-16	-23	-27	-33	-19
23	546	341	224	364	363	348	330	36 1	375	326	334
24	-470	-158	-142	-191	-187	-164	-184	- 1 83	-195	-169	-149
25	94	67	-11	97	85	1 17	5.8	82	86	69	78
26	544	331	362	323	321	343	320	319	315	320	220
27	-218	- 55	-75	-63	-66	- 38	-78	-70	- 83	- 84	-58
23	-439	-184	- 1 52	-253	- 230	-259	-203	-232	-255	-208	- 18 3
29	256	- 92	-28	-113	- 114	- 104	-1 14	- 129	-128	- 126	-119
30	- 113	95	125	57	47	90	84	65	66	77	86
31	-205	95 2 3	-34	96	71	41	- 2	50	72	- 12	18
32	- 157	- 95	-64	-67	-82	-48	-113	-84	-83	-94	-/5
23	-88	- 89	-40	- 10 3	- 119	- 77	- 96	- 10 3	-124	- 89	-84
34		-304				-287	-331	-390	-372	-333	-312
35	177	- 38	4	-61	-28	- 56	- 56	-62	-71	- 70	-51
36		-128	-103	- 139	- 144	-130	-141	-141	-152	-14/	- 143
37	-120						- 28 /	-295	- 338	- 301	-201
38	- 202		-127	-87	-92	-48	-84	-87	-84 5	-7 9	-75
39	128	86	204	41	38	-26	72	-7	-		83 417
40	3€2	421	475	438	476	439	404	431	446	405	
41	-242	-265	-135	- 303	- 212	-394	-2/1	- 341	-320	-202	-200
42	- 269	-343	-463	-353	-301	-321	-348	-200	-202	-351	-540

67

.

.

Table 12. (Continued)

						اله هاين منهو منهو منهاو من		ه دوه حله دمن مين م			
Sire	PD74	NCED	NCTO	SMC	SCT	STVR	BRTH	SMGB	SCIB	RELB	REL
Code	2014	NGFP	NGLO	546							
				047	220	100	215	217	233	209	222
43	204	224					133	152	136		146
4 4	188	137 -361	73	- 363	- 360	- 3/1		- 376			
45 46	_			-102			-140	-125	-119	-126	-118
40 4 7	- 17 2	-235	-176	-211	-237	- 342	-250	- 253	-298	-252	-225
47	252	372	287	380	360	356	365	357	351	350	357
40	54	14				41				14	18
50		159								139	149
5 1	-7	52	61	97	116	81	44	71	86	129	111
52	-60	- 25		5	-39	-67	-34	10	-48	-37	
53	-64	198	156		151	162	196	238	184		
<u>54</u>	150	- 86	-60	-97	-74	-82	-96	- 9 7		-112	
55	177	48	-57	54	66	80		41	69		
5 6	378	466	385	538	565	455	45 7	500	512		
5 7	-250	-208					-232	-283	-287	-276	-229
58	204	152		141		166		144			
5 9	160	33 8				389					
6 0	- 155	-	-31						-105		
6 1	176		158				167				
62	- 194		0								
63	282	214	75	250	241	264	215	241			
64	- 101	-111 -306	-124	- 253	- 324	-130	- 209	-254	- 204	- 130	- 302
65	-219	-306	-308	- 290	-201	-200	- 300	- 111	-106	-126	-128
66	-44	-70	- 144	- 113	- 30	- 51	-114	- 70	- 26	- 87	-105
67	-222	- 34	-132	- / 9	10	113	-36	0	12	-22	-23
68 ()	111 342		-119		232	177	192	234	226	186	197
69 70	- 205	-279	- 333	-273	-275	-289	-275	-269			
70	- 305	-275 -257	-20.8	- 279	-275	- 292	-251	- 234	-242	-237	-251
72	-6		97	44	41	84	56	65	60	46	42
73	- 189	-203	- 195	-130	- 161	- 170	-211	- 172	- 16 1	-229	-202
74	-24	-133	- 109	- 151	-151	-155	-138	-163	-131	-133	-138
75	-147	-194	-219	- 149	- 195	-223	- 190	- 1 68	-175	- 190	-186
76	- 29	24	48	48	36	-14	21	50	-4	88	87
7 7		-152	-67	- 130	-111	- 190	-149	- 130	-129	- 152	-156
78	101	72	155	60	56	37	76	26	86	85	47
79	98	-60	-50	-21	- 39	-34	- 57	-49		-61	-71
80	- 108	-278	-215				-276	-292	-293	-266	-273
81	336	97	-79	131	125	148	100		124	113	102
82	651	704	720	731	734	692	708	724	730	700	696
8 3			-326			- 353	- 311	- 324	-338	- 299	- 329
4 9	141	8 6	104	71	75	69	87	69	94	54	56

Table 12. (Continued)

	فا هه بديم خبد علية دي	الدالي جي حي ور									
C ino	•										
Sire		NGED	NATO	CHC	CCT	COVD	មកម្ម	SMCR	SCTR	REIR	RFT.
Code	PD74	NGFP	NGIU	200	SCI	5116	DRIN	21101	JCID		
	ے جب عبد میں جس										
										-	00
85	10 0	122	159							73	90
86	159	71	-19	35	54		78	32			77
87	252	357	251	374	384	406	361	371	380	364	352
	- 37			64	38	-38	1	60	37	-8	-24
÷ -	83			236		269	309	197	279	336	240
90	1148	303	188	315	330	352	305	323	316	300	292
91	57	202	73	- 32	<u> </u>	- 29	16	- 10	- 23	32	3
	-2	_ 16	- 9	-21	-13		-22	-14	-4	-29	-30
92		340	275	225	2 2 2		- 220	- 221	- 315	- 32/1	- 325
93	-250	-319	-215	-335	- 330	- 352	- 320	- 33 1	515	J 2 4	25
94	- 10	20	-0/	49	20	00	25	44	1	- 27	-23
95	-34	-21	0	-25	5	-40	- 22	- 18	1	- 21	- 23
96	-250 -10 -34 -82 137	141	211	71	39	103	149	12	19	142	114
97	137	1(6	5	107	139	177	112	112	103	148	128
<u> (8</u>	- 22	-271	-416	-267	-299	-200	-209	-314	-211	-220	-210
00	100	-168	-311	- 166	- 110	- 102	- 159	- 16 1	- 117	-148	-166
100	309	218	105	294	317	251	227	284	284	248	225
101	-142	-47	-41	-80	-41	-21	-54	-67	-48	- 17	-47
102	- 392	- 369	- 369	-427	-465	- 372	-370	-418	-500	-351	-366
102	-297	-209	-142	- 250	- 237	-250	-208	-248	-220	-215	-215
1(4	-257	0.0	56	102	146	50	109	176	148	138	109
	242	39 2	260	425	140	122	30/1	402	407	362	355
	242	392	204	-155	17/	740	-202	-160	-179	-21/	-221
106	- 284	-212	-2/5	-100	- 174	-240	-203	-100	- 170	-214	651
107	687	647	579	6/2	670	089	040	000	111	111	-110
108	- 302	-105	3	-140	-159	-16/	-111	-213	- 1 1 1	- 1 1 1	-110
109	27 2	13 0	133	99	157	163	139	123	147	124	105
1 10	485	871	925	802	898	820	885	854	882	760	685
111	475	313	147	371	35 7	380	322	361	351	342	329
112	-927	-605	-543	-674	-711	-644	-588	-669	-743	-584	-607
113	-365	16	71	-78	-45	5	33	-58	-42	-47	-42
114	4	-46	-116	-9	-5	-65	-38	-13	-11	-37	-45
115	-88	75	125	58	119	63	80	-25	45	107	-42 -45 70 -67 -36
116	90	-7 7	-61	<u>ج</u>	<u> </u>	-149	-60	13	13	-53	-67
117	260	-10	-14	44	28	17	-7	3	24	-12	-36
			-50	62	-68	8	-17	õ	-12	-57	-81
118	278	- 39	-50 74	1	-08	-46	23	- 9	69	17	8
119	-258	11		326	353	351	260	314	331	316	296
120	357	242	182					295	308	258	242
121	421	239	123	306	304	327	250				18
1 2 2	87	49	62	127	127	48	69	135	144	29	
123		-234		- 30 3		-279					
124	-202	-1 02	-117	-147	-69	-87	-74	-153	-108	-147	-164
125	-6	-142		-130		- 183	- 144	- 134	-117	- 144	-139
126	-203	-43	81	-136	-184	125	-21	-111	- 252	-68	-110

69

رها که بارد بارد دارد مار ما بند بارد می بند به بوری بری دندگار که خان این می نود این مارد این می مواند که دو مواند که این موال

•

Table 12. (Continued) -----

Sire	PD74	NGRP	NGIO	SMG	sci	STYR	BRTH	SMGB	SCIB	RELB	REL
couc	1.2										
						0.0	•	FC	0.4	100	17 7
127	- 308	-23		71			0	-	81		173
128	191	105		84	126	230 53 7	381	82 472			387
129	228	361		406			30			34	
130			08	134	59	4	500			612	
131	473		670				17	4 2 2	~ ~ ~ ~	()	71.
132	- 164 293 294 158	-83	100	- 100	-104	- 151	285	321	326	306	311
133	293	289	109	231	222	-1/13	_110	-5	36	-130	-162
134	294	- 157	- 140	26	() C	-143	62	כ נו	155	48	24
135	- 559	31	20	-515	-525	-523	-455	-504	-549	-470	-463
136	- 559 - 243	-402	- 127	- 105	-220	-013	-117	- 179	- 167	- 106	-122
	-243	-130	12	- 155	-230	-107	- 71	24	-38	-48	-53
138	-459	-43	-336	-17	-518	- 289	- 393	- 442	-458	-425	-454
139	- 300	50	CQ	11/1	272	64	93	226	57	79	41
140 141	- 124	-51	20	- 89	-42	-115	-66	- 118	-23	-69	-48
141	236	103	-27	143	135	159	99	13.3	139	117	123
142	_ 100	-87						- 147			- 72
143	- 49	391	<u>429</u>	486	490	579				376	
145		201								150	
145			126		-7	-19				63	
140	-68	-58	-95	-205	-232	-71	-21	- 135	-289	-29	-7 6
148	229 163 -8	52	-28	118	94	151	67	123	61	59	49
149	163	15	89	17	36	- 38	13	48	10	-17	- 9
150	-8	- 56	-63	-192	-163	-33	-20	-159	-140	-27	-60
151	223	114	-28	155	152	173	113	147	1 52	132	133
152	19	-248	-212	-173	-171	-253	-184	-93	-242	-133	-206
153	192	-10	34	149	77	- 5	31	160	- 10	111	78
154	-170	- 1	19	-44	- 92	1	57	-61	-76	109	33
155	-201	-179	-198	-173	-214	-240	-145	- 19 1	-213	- 134	-178
156	- 502	-371	-301	-414	-433	-296	- 355	-405	-399	-356	-371
157	443	56 3	5 7 2	632	653	587	593	640	640	645	606
158	-68	222	228	155	175	248	261	319	178	326	273
159	288	185	19 8		265	326	224	262	289	215	170
160	-6	44	<u>9</u>	24	49	23	62	5	70	71	46
161	261	171	37	20 7	205	232	170	205	209	186	187 146
1E 2	142	16 5	176	151	189	127	188	159	227	167	146
163		-1 32			-77			- 195			-111
16.4	703	560	450	606	598	626	562	598	603	574	5 7 1
16 5					-381				- 359	- 205 - 150	-200
166		-188			-229	-180		-239	-12		-39
167	-313	-39	28	63	10	-91	14 3 7 2	93 389	-33 392	374	373
168	295	371	24 7	393	381	434	512	203	725		515

70

یی جد بند باب این ها می نبا این بند می مد عله این چن موجه بین این در این ما می باب بین این این دو به بین من این بین

Table 12. (Continued)

Sire Code	PD74	NGEP	NGIO	SMG	SCI	STYR	BRTH	SMGB	SCIB	RELB	REL
1ċ9	20 5	199	5 1	237	232	264	1 96	23 7			
170	1. 3 /	551	567	5/11	559	648	552	522	592	5 4 4	549
171	-152	57	72	36	9	-45	74	-10	234	- 37	-1 0
172	-98	189	235	36 81	188	101	213	123	26 1	210	143
173	-322	-213	-191	-208	-204	-247	-212	- 190	-208	- 179	-1/0
174	- 176	-216	-94	-283	-268	-288	-212	-268	- 258	- 26 1	-237
175	69	-52	-54	- 1 05	-94	- 115	-41	-74	- 79	- 81	-75
176	-60	-250	-207	-277	-276	-316	-246	- 28 1	-185	-263	-257
1 7 7	-166	54	71	0	120	-66	74	- 15	254	235	250
178	-166 98 -245	- 14	13	-1 15	-74	304	2	-83	177	12	20
179	98 -245 39 -5 339 -//8	-9 6	-11	- 177	-208	- 17 3	-88	- 1 39	-255	- 112	-104
1 8 0	39	1	-10	- 55	23	-57	12	- 21	80	-1	0
181	-5	-44	-83	43	35	-94	-33	33	54	1	13
182	339	161	32	202	194	218	159	194	198	178	183
184	-689	-615	-645	-689	-735	-630	-603	-652	-791	-659	-658
185	-108	14	-4	- 10 5	- 1 59	-73	27	-76	-240	- 102	-66
186	- 192	31	85	-29	-69	-33	39	-15	-17	4	8
187	254	242	255	416	341	133	258	428	245	212	204
188	- 397	- 277	- 247	- 303	-238	-337	-268	-305	-275	-249	-247
189	-178	35	23	18	-77	-65	52	-31	-52	27	33
190	-2118	- 95	-136	-148	-145	-115	-83	- 130	-140	-92	- 7 3
191	-453 247 382	-217	- 1 55	- 30 8	- 282	-293	- 194	- 282	-275	- 209	-21/
192	247	270	2 79	357	302	424	277	364	363	276	280
193	382	38 6	436	370	373	342	389	366	439	321	327
194	-60	27	10	37				21	16	81	84
19 5	383	283	147			348		322			
196	83	88	135	200	198	-4	114	191	233	183	181
197	356 51 -3	274	181	327	330	345	281	331	342	265	270
198	51	- 56	-11	-29	-11	-123	-49	19	-45	-60	-58
199	-3	- 1 37	-199	-67	-93	-185	-127	-62	- 123	- 168	-153
200	108 101	-30	- 150	45	59	72	-26	36	51	15	23
201	101	-29	-197	42	34	65	- 26	31	44	40	43

Sire Code	PD74	NGRF	NGIO	SMG	BRTH	RELB	REL
	9.2	-5.5	-4.1	-6.6	-7.7	-8.5	-5.9
2	-3.1	-5.4	-1.6	-4.5	-6.6	-6.6	-5.5
3	22.4	23.9	25.4	23.7	22.9	22.9	23.8 -7.5
4	-6.7	-7.3	-4.8	-6.6 2.2	-8.0 -C.9	-8.1 0.8	3.3
5	2.4	1.6	3.6 14.2	18.5	17.9	18.1	16.2
6	14.9 -7.2	16.C -8.3	-7.5	-7.4	-8.7	-8.7	-8.3
7 8	-4.0	-3.1	-1.5	-4.9	-6.5	-6.6	-3.1
9	7. 8	7.4	10.4	7.8	6.5	6.1	7.1
10	0.5	11.1	10.3	11.3	11.9	11.5	10.8
11	-5.4	-4.8	-3.2	-9.3	-8.7	-8.1	-4.1
12	12.2	-8.4	-9.3	-9.2	10.5	10.2	-7.8
13	13.6	12.2	12.5	13.5	13.1	13.6	11.9
14	-3.6	-2.0	-1.6	-2.5	-2.8	-2.9	-2.2
15	6.0	-0.4	1.5	-1.3	-1.7	-1.6	-0.3 -9.5
16	1.9	10.6	-8.4	10.8	12.9 -3.5	11.9 -3.4	-0.9
17	1.9	-0.8	0.7 -1.8	-0.5 1.0	0.5	-3.4	1.4
18 19	1.4 8.7	0.6 -2.3	-2.0	-4.6	-2.7	-2.9	-2.5
20	11.0	5.9	7.5	4.0	6.0	6.3	6.3
21	7,4	-0.6	0.3	-1.0	-0.7	-0.8	-0.5
22	3.3	1.7	3.8	1.2	1.5	1.0	1. 1
23	21.0	13.0	9.2	13.5	13.0	13.1	13.0
24	20.8	-3.2	-2.1	-4.2	-3.6	-3.5	-3.1
25	0.1	-1.5	-1.6	-0.7	-1.5	-1.5	-1.6
26	7.8	C.7	1.2	0.4	0.4	0.6	0.8
27	-2.6	-0.8	-1.7	-1.1	-1.0	-1.7 -0.6	-1.4
28	-5.8	-0.4	0.2	-2.7 11.7	-0.5 11.0	11.5	11.6
29	1.0 -4.5	10.7 C.8	-9.3 2.7	-0.4	0.8	0.4	0.4
30 31	-2.6	-0.5	-4.4	2.4	-0.7	-0.9	-0.7
32	-7.2	-3.2	-0.8	-2.4	-3.4	-3.1	-2.9
33	1.9	0.2	1.6	-0.2	0.0	-0.1	-0.1
34	-0.4	-8.7	11.8	11 .1	-9.0	-9.2	-9.1
35	8.7	-2.5	-1.6	-3.2	-2.6	-2.9	-2.8
36	-7.6	10.5	10.1	10.8	10.6	11.0	11.1 -7.0
37	1.0	-6.7	-4.4	-7.6	-6.8 -4.2	-7.0 -2.0	-4.0
38	-9.9	-3.8	-5.2 2.5	-3.9 -1.5	-4.2	0.3	1.2
39	6.4 16.0	0.8 15.5	17.3	15.8	15.3	15.2	15.2
40 41	-9.9	12.1	-8.4	14.4	12.8	14.0	13.6
42	-8.1	-9.0	11.7	-9.5	-9.4	-9.8	-9.4

Table 13. Sire estimates for fat

. -

.

		که هبه نبین میرد هرده میردد .	خد من مد حد حبر بيه عير دي.	ر ہیں میں جس میں جو میں جو میں			
Sire							
Code	PD74	NGRP	NGIO	SMG	BRTH	RELB	FEL
coue	5014	I OD L		• •			
				بیکی سے میں جین کی بیک میں جن	ويتبلها ويترك متبلية ميتلو بينون ويرتو مييته	مند <u>محد بدن محد بدن میں مرم ہو</u> ر	
43	10.5	11.1	13.8	10.8	10.9	10.8	11.1
44	-6.3	-5.2	-6.6	-4.6	-5.5	-5.2	-5.0
44	12.2	13.9	16.4	14.2	14.2	14.3	14.0
	-2.2	-6.0	-6.5	-5.2	-6.2	-6.2	-6.0
46 4 7	11.3	13.3	13.2	12.2	14.1	12.3	11.1
47 48	13.7	22.7	20.4	23.1	22.3	21.3	21.9
	-1.7	-2.1	-2.0	-2.0	-2.4	-2.3	-2.0
49 50	-6.3	-1.1	-0.5	0.1	-1.6	-1.9	-1.5
	8.3	10.1	10.9	11.8	9.5	12.8	12.9
5 1	-1.7	-2.9	-4.5	-2.3	-3.6	-3.7	-3.0
52	-7.6	4.0	1.3	4.8	3.5	3.0	3.1
5 3	-3.6	-7.7	-6.6	-8.0	-8.0	-8.4	-8.2
54	6.9	-0.6	-3.2	-0.5	-0.8	-0.7	-0.5
5 5	17.8	2 1. C	17.4	23.9	20.2	18.6	19.8
5 6	-5.4	-5.7	-3.4	-7.7	-7.C	-6.3	-3.8
5 7	11.9	12.3	13.6	12.2	12.3	11.5	11.3
58		7.2	7.6	8.3	7.1	7.2	7.3
59	0.5	-3.6	-1.9	-5.3	-5.0	-5.4	-4.5
60	-6.3	-3.0 5.5	4.0	7.5	5.3	5.4	5.6
61	6.9	-6.9	-4.5	-7.0	-7.2	-7.0	-6.7
62	12.6	4.8	0.6	6.1	4.7	5.2	5.3
63	9.6	-3.9	-3.8	-8.7	-5.3	-5.9	-5.1
64	-2.2		12.4	10.8	11.3	11.4	11.4
65	-9.0	11.1 -C.7	-1.7	-0.7	-0.8	-1.6	-1.7
6 6	2.4	-3.6	-5.1	-4.0	-3,5	-4.9	-5.0
6 7	-9.9	-0.6	-3.7	0.2	-1.1	-0.5	-0.2
68	4.6	7.3	6.0	8.3	7.C	6.7	7.0
69	13.3	-9.1	11.7	-9.0	-9.0	-8.8	-9.0
70	-9.9	-3.7	-2.6	-4.4	-3.6	-2.6	-2.7
71	-1.3	-3.J 6.4	7.1	6.1	6.2	6.2	6.3
72	1.9	10.4	-9.0	-7.5	11.1	-9.3	-8.4
73	15.8	14.6	13.0	15.7	15.0	15.1	15.0
74	11.7		-0.6	3.6	1.6	2.1	2.3
75	-3.6	1.7 1.7	2.6	1.9	1.1	3.3	3.5
76	3.3	2.5	4.7	3.5	2.5	2.8	2.8
7 7	6.4		2.2	-1.0	-0.7	-1.7	-2.3
78 70	0.1	- C.7 - 2.0	-2.1	-0.3	- 2. C	-1.4	-1.5
79	0.1	-2.0 13.8	12.4	14.8	13.9	12.1	12.0
80	12.6	1.9	-3.2	3.2	2.0	2.2	2.0
81	11.0	29.2	28.9	30.2	29.3	29.1	29.0
82	31.0	-9.9	10.5	12.7	-9.6	-9.7	10.4
83	3.3 -4.9	-8.3	-8.9	-8.8	-8.6	-9.3	-9.3
84	-4.7	-0.5	-0.5	V • U	0.0		

Table 13. (Continued)

.

.

•

.

73

- میں اللہ اللہ میں ملی ملہ جو کے جو کر کے بین ہے ہے ہے ہے

Sire							
Code	PD74	NGRP	NGIC	SMG	BRTH	RELB	REI.
		40.0	40.0	12 6	11.5	10.8	11.3
85	13.7	12.0	13.3	13.6	-2.2	-2.0	-2.2
86	2.8	-2.3	-4.5 9.0	-2.8 12.6	12.2	12.0	11.7
87	10.5	12.1	0.3	4.3	1.6	2.2	1.9
88	2.4	1.4	0.3	-1.9	2.1	2.8	0.7
89	-1.3	1.9	7.9	11.7	11.3	11.3	11.2
90	15.1	11.3 -1.2	1.3	-2.8	-1.2	-1.0	-1.3
91	1.0 15.4	-9.3	10.C	-9.5	-9.4	-9.7	-9.6
92 93	-9.5	16.5	16.2	17.1	16.6	16.7	16.6
93	15.5	14.3	12.2	15.1		14.7	14.4
95	10.1	6.1	6.7	6.0	5.8	5.8	6.0
9 6	-1.3	7.9	10.2	5.6	8.0	7.4	7.1
97	5.5	2.9	-0.4	2.9	3.0	3.4	3.2
9 8	-9.0	14.6	18.6	14.0	14.4	14.5	15.6
99	5.1	10.6	14.8	10.5	10.0	-9.8	10.6
100	5.1	6.8	2.6	9.8	7.1	7.4	7.0
101	12.2	-6.8	-5.8	-7.9	-7.0	-7.2	-7.8
102	-8.6	-9.0	-9.2	10.0	-8.8	-8.5	-8.8
103	-6.7	-7.6	-5.8	-9.1	-7.4	-7.5	-7.7
104	6.0	6.7	5.6	10.5	7.7	8.1	6.7
105	16.4	20.2	18.5	21.6	20.1	19.3	19.3
106	- 8.1	-4.4	-8.1	-2.1	-3.8	-4.5	-5.1
107	19.6	18.8	17.1	19.7	18.9	19.1	18.8
108	-6.7	-3.9	- C . 8	-4.9	-3.4	-3.1	-3.7
109	5 .1	3.7	4.2	2.0	4.5	4.7	3.6
110	16.4	31.8	33.2	28.0	33.1	25.6	22.7
111	17.4	14.0	9.3	15.6	14.6	15.1	14.6
112	31.3	21.7	20.0	23.0	20.6	20.4 7.9	21.7 8.0
113	-7.2	8.4	9.9	6.4	9.1 3.6	3.8	3.3
114	0.1	3.2	-0.2	4.6	-4.6	-4.5	-5.2
115	-1.3	-4.8			- 1. 2	-4.J	-1.9
116	0.5	-2.0	-2-4	1.4	2.0	1.9	0.6
117	2.8	1.0	1.4	3.7 3.0	0.2	-2.5	-3.9
118	1.0	-1.3	-1.9 9.3	7.6	8.3	8.2	7.8
119	1.0	7.8	4.6	10.1	7.4	8.8	8.1
120	11.0 18.3	6.7 14.2	10.4	16.0	14.7	14.5	14.0
121 122	-1.7	-2.9	-3.9	0.2	-2.1	-3.8	-4.3
123	1.0	-3.7	-3.6	-5.2	-2.9	-2.3	-3.C
123	-9.5	-3.9	-3.9	-5.1	-2.7	-7.3	-8.1
125	3.3	-1.8	0.0	- 1. 7	- 1. 8	-1.7	-1.5
126	14.0	-8.8	-5.7	10.7	-8.3	-8.7	-9.8
.20	• ··· • •			-			

Table 13. (Continued)

.

•

و حال میں میں میں جو	جعد عليه هند خلك علي علي بيها عن	متراجعت بين حيد مترا عي وي ديد		ی بی بی بی میں میں میں میں میں میں میں ا			
Sire							
Code	PD74	NGFP	NGIO	SMG	BRTH	RELB	REL
coue	EDIA	NOL L			_		
		مانيا مين ويلد مانيار -مان التيوسيو عليم ا		هده هندنده هبه می طور بران غرو	یکی میں بادہ ایک میں میں _ک ی ہیں ہیں		
127	-9.5	3.2	3.6	5.4	4.0	11.0	10.0
128	-3.6	2.3	3.0	1.8	2.9	0.6	-1.2
129	-6.7	6.7	9.1	7.5	7.6	8.2	7.3
130	10.4	-2.1	0.5	3.9	-0.4	-1. 5	-3.5
131	16.4	14.9	17.5	17.4	15.5	16.3	15.8
132	-4.5	-4.2	-4.3	-5.5	-3.5	-3.7	-4.2
133	2.4	1. 9	1.2	3.0	2.1	2.2	2.0
134	5.5	-5.0	-4.4	-1.2	-3.4	-3.6	-5.1
135	6.4	2.9	2.5	3.3	4.G	3.5	2.4
136	-9.5	-7.7	-6.0	-9.0	-7.5	-7.1	-6.8
137	10.4	-7.2	-9.2	-8.1	-6.5	-5.8	-6.6
138	-8.6	0.1	1.3	0.6	0.6	1.1	0.6
139	-9.9	10.6	-8.2	12.6	-9.7	11.1	12.5 2.1
140	13.1	1.8	2.3	2.5	3.3	3.3 10.3	-9.3
141	14.5	-9.6	-7.4	11.6	10.4	-2.5	-2.5
142	1.0	-2.5	-4.2	-1.5	-2.5 -2.7	-2.J -1.8	-2.J -1.7
143	-5.4	-3.1	-3.5	-4.7 14.7	11.8	10.4	9.3
144	-3.6	10.8	11.3 10.0	6.0	9.2	6.2	5.2
145	-2.6	8.2 2.9	4.4	0.2	3.6	3.5	2.9
146	-2.2 2.8	7.3	8.3	1.8	7.8	7.7	7.2
147 148	10.5	3.5	C.8	6.1	4.1	4.6	4.0
148	10.5	2.3	4.3	2.0	2.5	2.2	2.1
150	1.4	-4.0	-4.1	-6.6	-2.6	-2.7	-4.1
151	14.6	11.4	10.6	12.5	11.8	12.0	11.7
152	1.4	-4.2	-2.9	-2.4	0.2	0.9	-3.0
153	3.7	-0.9	0.2	5.8		2.6	0.9
154	-2.6	2.0	1.4	0.5	6.1	8.0	4.0
155	-2.6	-5.6	-6.7	-5.1	-3.4	-3.9	-6.5
156	12.8	5.C	7.6	4.3	6.4	6.6	5.4
157	13.3	19.1	19.8	21.9	21.2	21.7	19.7
158	1.9	12.8	13.2	10.5	15.6	17.4	14.4
159	-0.4	-0.1	0.7	1.8	2.5	2.6	0.2
160	0.1	6.4	6.8	5.8	7.7	7.8	6.6 2.0
161	2.8	1.9	0.6	2.9	2.3	2.3 11.1	2.0 9.9
162	19.2	10.5	10.1	9.4	11.9 -2.0	-1.5	-6.3
163	0.1	-7.2	-6.3	-9.0 5.2	4.5	4.4	3.9
164	6.9	4.0	2.6 -9.0	15.7	-7.7	-6.2	-9.4
165	10.4	11.6	-9.0 5.2	2.1	7.0	6.9	3.7
166	-0.4	3.5 -0.9	0.5	3.0	2.8	3.8	0.9
167 168	12.2 14.6	16.3	15.2	17.0	16.8	16.6	16.2
100	1 4 a U	1005			· - • -		

Table 13. (Continued)

.

			مناج ماني ويله فيه جهر حجو بينية بينه بينه				
Sire Code	P D74	NGFP	NGIO	SMG	BRTH	RELB	REL
		می این جو بند به دن بندی .					
1 6 9	-2.2	-2.7	-4.8	-1. 7	-2.8	-2.7	- 2.5
170	6.4	12.1	12.7	12.0	10.9	11.2	12.9
171	-5.4	1.5	2.2	1.4	-1.9	-3.8	1.6
172	-5.8	-2.1	-3.5	-7.4	-4.6	-4.5	-2.4
173	12.6	11.6	11.4	11.7	12.2	10.4	-9.1
174	-2.6	-5.7	-2.8	-8.0	-7.2	-7.4	-4.6
175	-7.6	-7.6	-9.2	-9.4	-9.2	10.4	-8.4
176	-1.3	-9.3	-8.7	10.3	10.8	11.3	-9.4
177	-4.0	1.4	1.7	-0.6	2.6	9.9	8.4
178	4.6	-0.3	C.9	-6.0	-4.2	-4.5	0.3
179	-5.4	-0.6	1.0	-3.4	-2.5	-4.6	-2.2
180	-5.8	-5.3	-6.0	-7.2	-6.8	-7.4	-5.5
181	-9.9	-5.6	-7.8	-3.5	-5.0	-5.0	-5.6
182	2.8	-3.4	-5.4	-2.4	-3.5	-3.6	-3.3
183	-3.1	-9.0	-9.0	11.7	10.9	12.3	-9.9
184	25.8	16.C	16.4	18.3	17.6	19.2	17.0
185	-0.8	0.5	-0.3	- 1.7	1.3	1.5	1.5
186	-6.3	-2.3	-1.7	-4.5	-1.9	- 2.5	-3.5
187	7.8	7.8	8.9	15.0	4.0	0.9	5.5
188	15.8	-6.2	-5.1	-7.0	- 5 .7	-5.3	-6.2
189	-6.3	1.4	1.2	1.5	-2.2	-3.1	1.4
190	-9.9	-6.8	-7.7	-8.4	-6.2	-5.9	-6.6
191	-7.2	-4.5	-3.1	-6.6	-3.2	-2.8	-4.1
192	7.8	7.7	7.7	11.3	5.7	4.3	6.8
193	13.7	13.7	15.3	13.1	13.9	12.1	11.3
194	6.0	9.1	7.7	9.6	9.5	11.1	10.5
195	13.3	10.5	9.2	11.7	10.7	10.6	10.4
196	2.8	3.2	4.7	5.8	0.4	4.1	8.4
197	4.2	4.9	1.7	7.0	5.2	5.6	5.2
198	0.1	- 4.1	-3.4	-3.7	-3.6	-4.1	-4.7
199	-4.0	-3.7	-6.9	-C.9	-3.4	-4.5	-4.6
200	9.6	4.9	2.8	7.6	5.3	6.1	5.5
201	1.4	-0.9	-4.0	0.9	-0.5	1.1	0.7

Table 13. (Continued)

٠.

 $(\hat{g}_{i} + \hat{s}_{ij}) - (\hat{g}_{i} + \hat{s}_{ij})$. Where no grouping was used, the estimate of sire's transmitting ability was $\hat{s}_i - \hat{s}_i$. All sire estimates were forced to sum to zero after solution as shown in the Appendix. To visually check how sire estimates compare, the difference between any two sires of interest should be observed and not their actual magnitude. Table 14 lists variances of sire estimates for different model definitions for milk and fat. For both milk and fat estimates, grouping has increased the variance of sire estimates. For milk, the least variance was when no grouping was used and off-diagonals were ignored (NGIO). Largest variance was for sire estimates by SCIB which is 37 percent more than NGIO. The least variance for fat estimates is for REL and the largest for PD74. Variances for all models where grouping was used are comparable except for The variances of PD74 for either milk or fat are large. This is BRTH. expected since herdmate deviations are regressed less due to large numbers of daughters.

The actual ranks of all bulls are presented in Tables 15 and 16 for milk and fat, respectively. Rankings for mixed model definitions are fairly close while PD74 tends to be most different. Among mixed model definitions, ranks by NGIO tend to be most different. Ranks by other mixed model definitions are most homogenous.

Rank and product-moment correlations were computed to examine the relationship between sire estimates by the different models. Tables 17 and 18 list these correlations for all levels for milk and fat, respectively. Overall correlations are expected to be high because most bulls were evaluated with a large number of daughters. Rank correlations among

	Model definition	Variance
Milk	PD74	68,791
	NGRP	56,060
	NGIØ	52,620
	SMG	67,434
	SCI	70,740
	STYR	69,111
	BRTH	58,646
	SMGB	67,382
	SCIB	71,824
	RELB	59,546
	REL	55,687
Fat	PD74	88.3
	NGRP	76.2
	NGIØ	75.2
	SMG	88.8
	BRTH	80.3
	RELB	76.6
	REL	74.8

•

Table 14. Variances for different model definitions for milk and fat

Table 15. Panks of sire estimates for milk.

Table 15. (Continued)

Sire Code PD74 NGRF NGIC SMG SCI STYR ERTH SMGB SCIB RELB 43 48 31 17 37 38 40 35 38 37 38 44 52 49 66 46 52 47 50 49 59 50	REL 35 48 193 140 172 13 88
Code PD74 NGRP NGIC SMG SCI STYR ERTH SMGB SCIB RELB 43 48 31 17 37 38 40 35 38 37 38 44 52 49 66 46 52 47 50 49 59 50	35 48 193 140 172 13
44 52 49 66 46 52 47 50 49 59 50	48 193 140 172 13
44 52 49 66 46 52 47 50 49 59 50	193 140 172 13
	140 172 13
45 180 193 197 190 188 189 195 192 190 194	172 13
46 100 143 180 126 135 121 146 135 136 141 47 149 173 164 162 168 190 172 169 180 172	13
	00
49 83 87 89 93 90 76 92 87 89 89 50 45 46 36 39 35 43 45 41 43 52	46
50 43 46 50 57 53 43 45 45 10 10 52 51 97 72 72 61 62 65 77 67 66 56	57
52 113 103 120 95 109 116 111 89 115 108	103
53 115 37 41 34 50 5C 38 34 46 39	37
54 61 125 121 124 120 122 133 128 121 136	134
55 53 75 119 76 70 EE 78 77 71 77	71
56 15 8 13 8 7 10 8 8 10	10
57 176 164 138 180 185 183 17C 176 176 180	174
58 47 47 38 52 49 48 48 53 53 54	53
59 58 19 19 17 16 17 19 19 18 17	15
60 143 123 108 131 150 126 127 122 129 128 61 55 43 40 38 39 55 43 39 44 47	122 45
	110
	33
	147
64 127 138 146 170 183 140 139 170 193 153 65 168 188 192 179 180 171 184 181 179 182	187
66 107 139 157 133 130 124 137 132 130 139	144
67 169 124 149 120 108 85 123 118 107 126	133
68 66 1C6 144 97 93 75 112 95 91 101	10 1
69 20 38 37 33 36 45 40 36 41 40	38
70 183 186 189 173 175 179 179 173 170 179	184
71 153 177 173 175 176 180 173 165 164 169	177
72 94 67 57 80 81 64 75 70 75 79	77
73 157 163 167 135 146 148 165 153 146 168	163
	145 161
75 138 161 176 143 155 159 158 151 150 159 76 103 81 76 78 85 93 87 73 96 64	62
	152
11 110 152 120 151 100 10	74
78 69 64 42 73 75 78 64 82 64 65 79 74 122 115 102 110 100 121 110 112 118	120
79 74 122 115 102 110 102 110 102 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 112 110 80 128 185 175 165 173 165 180 177 178 178	183
e1 22 56 129 54 59 53 57 57 60 59	60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
83 31 191 188 192 193 194 185 186 186 183	191
E4 63 62 54 69 67 69 60 68 63 76	70

.

Table 15. (Continued)

·

_

Sire Code	PD74	NGRF	NGIC	5 M G	SCI	STYP	BRTH	SMGB	SCIB	RELB	REL
85	 70		3 9	45	45	56	54				
86	59	. 65	103	83	76 13	5.4	63				68
67	37	17	22	18	13	16	17	16			17
88	105			70	84						102 32
89	79	23	15	36 28	21	21 21	22 23			27	25
90	9	22	32	28	24	- 1 C 7	23 88	24 99		83	
9 1	82	89	65 97		105	87	105		97		
92	91		183	187					182	187	190
93	175 99	83	103	77	71	67	85	76	79	80	81
94 95	104	101	۲ <u>۲</u>	105	99	104	104	105	95		
95 96	121	<u>и</u> я	95 28 90	67	82	61	47	66	87		56
÷0 97	64	53	90	59	F 3	44	55	62	62	49	54
98	101	183	196	172	179	155	177	184	174	167	185
99		450	407	140	150	120	15/1	1/10	13/1	149	155
100	23	33	53	30	29	34	32	31	30	32	34
101	135	114	113	121	111	95	117	117	116	99	109
102	190	194	19 3	195	195	196	194		198		194
103	181	165	156	168	167	166	164	168	159	166	169
104	71	59	73	43	51	73	56	45	52	53 14	58
1C 5		11	14	11	12	15	11	14	14	14	171
	179	167	184	148	149	162	161	148	101	165 3	3
107	2	3				5	3	140	120	134	
108	182	137	92	140	145	147	1.34	59	51	57	59
109	30	50	47	1	47	45	49	1	1	1	2
110 111	0 7		15	19	19	18	20	21	21	57 1 18	19
112	201	200	200	200	200	201	200	201	200	200	200
113	188	84	68	1 19			81		113		107
4 4 11	00	112	1/11	100	101	11/1	117	101	100	109	108
115	123	63	50 122	74	61	72	62	108	82	62	69
116	80	126	122	96	100	142	122	86			
117	33	100	102	81	91	81	96	92	86	97	105
118	29	1C 8	116	72	116	83	100	94	101	115	128
119	177	88	64	98	89	107	86	58	72	87	91
120	17	29	33	26	20	22	29	29	23		24
121	12	30	51	29	30	28	31	30	28	31	31
122	77	74	71	56	56	74	69	54	56	84 173	86 180
123	148	172	1 6 5	182	182	174	169	183 146	187 131	1/3	154
124	163	136	142	141	118	123	126 150	139	133	146	146
125	96	149	128	136	138 152	151 59	103	139	166	120	136
126	164	110	61	138	152	23	103	1.21	100	120	

31

_ __ __ __ __ __

14 13

15 12

15 15

Table 15. (Continued)

Table 15. (Continued)

Ci											
Sire Code	PD74	NGRP	NGIC	SMG	SCI	STYR	BRTH	SMGB	SCIB	RELB	REL
169	46		74	35	37	33	39				36
170	11	7		7	8	5		7			7
171	142	6 9	6 7	86	96	106		100	36		96
172	126	39	25	66	44	62	37	59	32	37	49
173	187	1 68	1 66	160	156	164	166	157	156		156
174	151	1 69	133	176	174	177	167	172	169	174	175
175	81	1 16	118	130	129	135	114	120	123		126
176	112	176	172	174	177	184	171	174	152		178
177	145	71	69	99	60	115	66	103	33	34	30
178	73	57	86	134	121	30	93	123	48	90	85
179	172	135	100	153	159	149	131	142	167		132
180	86 93	91	82	112	92	111	91	106	68	94	93
181	93	112	130	82	8 7	127		79		93	89
182	21	45	80	41	42	39	44	43	45	44	40
183	108	153	150	166	158	160	147	156	155		157
184	200	201	201	201	20 1	200	201	200	201		201
185	129	86	96	129	144	119	84	121	161	132	118
186	159	79	60	108	117	98	79	104	10 3	92	90
187	35	28	21	13	22	57		12	34		29
188	189	182	181	183	169	188	176	180	172	171	176
189	152	78	83	90	123	113	76	109	117	86	79
190	174	133	152	142	141	134	129	141	144		130
191	193	170	162	186	178	181	160	175	173	164	170
192	38	27	20	22	31	14	27	18	19	28	26
193	14	13	10	20	15	27	12	17	12	22	20
19 <i>4</i>	111	90	88	85	94	92	80		88		64
195	13	25	44	24	26	24	25	25	24		23
196	78	60	46	42	41	88	51	44	38		42
	18	26	34	25	25	25	26	23	22		28
198	84	119	9 9	107	104	137	116	85	114		115
199	92	146	170	116	128	15.3	143	116	137		151
200	67	105	160	79	73	68	106	78		88	83
201	68	104	168	83	83	70	107	81	83	81	76

•

83

- حلمة منة جي عدد ي							
Bull Code	PD74	NGF P	NGIC	SMG	BFT H	RELB	REL
1	35	150	138			168	
2	126	149				155	
3	2	3	3	4	3	3	2
4	154	163				165 86	63
5	76	76 198	56 19 5	73		199	
6	195 158	195 168	195	154		169	
7 8	138	125	10.3			154	
9	42	36	23	37		49	39
10	95	187			188		
11	142	144				164	
12	187	17 0		170		179	
13	192	19 2		191			
14	131	112		120			112 94
15	53	92	72		100	104 189	
16	81	185 101		97		127	99
17 18	80 85	85		85			79
19	37			134		123	
20	27	47	41	59	47	46	46
21	43	95	9 1	103		95	96
22	66	75	55	84		83	81
23	3	16		18		16	16
24	199	127				128	
25	102	108		00° 89		102 87	84
26	41	84	80 109			105	102
27 28	124 145	91		121		93	95
29	92	186		185		188	190
30	136	82	60	96	82	89	89
31	123	93	143	72	95	96	98
32	1 5 7	126	101	119	131	125	121
33	79	87	71	94	89	91	92
34	105	17 1	139	182	172 119	172 121	173 120
35	36	119	107 183	124 180	182	183	188
36	161 91	182 157	103	157	155	157	161
3 7 38	178	134	151	128	141	111	133
30 3 9	50	83	64	109	90	90	80
40	12	10	9	12	12	12	11
41	177	191	170	194	190	194	194
42	163	174	1 88	173	175	177	178

Table 16. Ranks of sire estimates for fat.

-

					حقد فعل محل اليك حجم على جين جنه		
Bull Code	PD74	NGRF	NGIO	S MG	BFTH	RFLB	REL
L 3	31	24	13	28	26	27	25
4 4	150	147	161	135		145 195	
45	186	195 155	198 159	193 142		193	
46 47	118 182	193	123	188	194	191	
48	19	4	ц Ц	5	4	5	4
49	114	114	114	114	115	112	110
50	149	10.5		93	105	109	103
5 1	38		2.0	24		17	
52	113	123 53		116	136	131 67	123
53	160	53	7 5	55		166	
54 5 5	130 46	167 94	100 125	98	97	94	97
55 56	40 7	5	12 : ب	3	6	8	5
57	141	154	127	158	157	153	131
58		18	14	22	18	21	23
5 9	24 94	18 39	40	35		42	
ń 0	148	130				147 53	
61	45	48	54	41		156	
€2 53	190 34	160 52	140	44	53	54	
n3 1,4	117	137		164		150	
÷5	167	188	190		187	186	189
56	75	-99	110	101	8 9		
-5 7	176	129	15C	129	135	143	144
o 8	60 22	97	13.2			92 44	
59 70	22	38		36 168		171	
70 71	175 111	176 132		131		117	
72	78	44	42	46		48	47
73	198	181	175	156		174	
74	183	196	193	196	197	197	196
75	129	73	100	62	77	77	6 9
76	65	74	62	77	80 70	65 68	61 6 7
77	49	64 98	49 68	63 104	94	106	114
78 79	10 1 100	98	116	95	1 1 0	99	10.4
30	189	194	191	195	193	190	192
∋ 1	26	69	126	65	75	75	74
32	1	2	2	1	2	1	1
33	64	180	185	190	177	175	184 175
34	137	. 169	173	165	168	173	175

Table 16. (Continued)

.

			دة محمد محمد محمد الحرم خرك محمد محمد محمد م				
Bull Cođe	PD74	NGRP	NGIC	SMG	B FT H	RELE	REL
н 85	18	21	1:	17	23	28	22
8 6	72					11C 20	113 20
e 7	30	20	33	20 57	19 76	20 76	20 75
<u>89</u>	74	79 71	90 94		73	69	86
୪ ୨ କ0	110 14	23	36	26	24	22	24
9 1	90	106			103		101
92	196	177		174			181
9 3	171	200			198		199
94	13	12	18	14	15	14	13
95	32	46	44	48	48	51	48
96	10.9	32	24	52	33	41	40
<u>9</u> 7	55	62	98	70	64		64
9 8	166	197		192	196		197
<u>9</u> 9	58		196		179		185 42
100	57	40	61	32 159	40 158		42
101	185	159 173		175	171		171
102	16 5 15 3		155		161		
103 104	52	43	46	30	35	35	44
105	11	6	6	7	7	6	7
105	16.2		168	115	14 C	139	147
1(7	4	8	10	8	8	7	8
108	152	136		137		124	130
10.9	56	55	53	76	54	55	60
1 10	10	1	1	2	1	2	3 12
111	8	14	29	13	14	13 201	201
112	201		20 1 27	43	201 31		34
113	156	30 60	27 96	43 56	61	61	62
1 14 1 15	99 108			139		141	148
115	93		118			<u>\$</u> 8	109
117	71	81	74	61	74	78	88
118	89	107	112	67	8 7	116	132
119	88	33	28	39	32	34	35
120	25	42	50	31	38	32	33
121	6	13	22	11	13	15	15
122	112	122	134	91 142	112	133	138 124
123	87	131	131	143 141	125 121	113 160	124
124	170	135	135 95	141	12 1	107	105
125	63 193	1C9 172	95 153	178	167	170	182
126	193	172	l L J	170	107		

Table 15. (Continued).

Bull							
Code	PD74	NGRP	NCIC	SMG	BFTH	PELB	REL
							28
127	169	58	5 7	53	57 65	26 88	100
128	128	65	58 32	80 40	37	33	37
129	151	41	32 89	40 60	91	101	129
130	181 9	11 5 11	7	9	11	11	10
131		140	140	145	133	132	137
132	135 73	70	79	66	72	74	72
133 134	54	146	142	106	130	130	145
134	48	61	65	64	58	62	68
136	168	166	156	167	162	158	160
130	180	162	179	162	152	148	1 57
138	164	88	76	87	83	82	87
139	174	183	169	189	178	184	193
140	191	72	66	71	63	66	71
141	194	179	164	184	180	180	176
142	86	120	139	108	116	114	118
143	140	124	130	136	120	108	108
144	127	25	19	16	21	30	30
145	122	31	26	47	30	47	54
146	116	63	51	92	60	63	66
147	70	37	35	78	34	39	38
148	29	57	83	45	56	56	56
149	28	66	52	75	69	73	70
150	84	138	137	149	118	119	134
151	16	22	2 1	21	22	19	19
152	83	141	122	1 18	88	84	122
153	62	103	93	51	81	71	82
154	121	67	73	88	46	36	57
155	120	151	1 62	140	129	135	156
156	23	49	39	58	44	45	52
157	21	7	5	6	5	4	6
15 8	77	17	16	29	10	9	14
159	104	89	84	79	68	70	91
160	9 8	45	43	50	36	38	45 73
161	69	68	87	69	71	72	
16 2	5	27	25	34	20	24	29 155
163	97	161	158	166	111	100 57	58
164	44	54	63	54	55	152	177
165	179	189	174	197	16.3	152	59

Table 16. (Continued)

.

6

-

.

-

Bu ll Code	PD74	NGRP	NGIC	SMG	8 FT H	RELP	REL
 1ó9	115	1 21	 148	110	124	118	110
170	47	19	17	23	25	23	18
171	139	77	67	83	10.8	134	76
172	144	113	129	155	144	140	115
173	188	190	186	187	189	182	174
174	119	153	121	160	16 C	161	141
175	159	164	178	172	174	181	169
176	107	178	172	176	183	185	179
177	133	78	69	99	67	31	31
178	59	90	82	146	142	138	90
179	138	96	81	125	117	142	111
180	143	148	157	15.3	156	162	149
181	173	152	167	126	145	144	151
182	68	128	152	117	134	129	127
183	125	175	176	186	184	192	183
184	200	199	109	199	199	200	200
185	106	86	§ 7	112	79	79	77
136	147	116	10.8	132	10 9	115	128
187	40	34	34	15	59	85	51
138	197	156	149	152	149	146	1 54
139	146	80	78	81	114	126	78
1.10	172	158	166	163	151	149	158
191	155	143	123	150	126	120	135
1)2	39	35	38	27	49	58	43
1+3	17	15	11	19	16	18	21
1 (4	51	29	37	33	28	25	26
1.15	20	26	30	25	27	29	27
196	67	59	48	49	85	59	32
197	61	50	70	42	52	52	55
198	96	139	128	127	138	136	142
199	132	133	163	102	127	137	140
200	33	5 1	59	38	51	50	50
201	82	102	136	86	93	81	85

Table 16. (Continued)

	PD74	NGRP	NGIO	SMG	SCI	STYR	BRTH	SMGB	SCIB	RELB	REL
PD4		.726	.624	.755	.758	.749	.710	.748	.750	.710	.721
NGRP	.788		.945	.965	.964	.966	.990	.965	.958	.976	.986
NGIO	.698	.959		.893	.895	.883	.934	.896	.890	.913	.924
SMG	.810	.977	.921		.985	.947	.957	.992	.967	.959	.967
SCI	.803	.97 6	.923	.989		.946	.9 57	.982	.980	.961	.966
STYR	.800	.971	.906	.960	.956		.958	.945	.941	.949	.952
BRTH	.772	.993	.951	.972	.971	.967		.960	.950	.986	.977
SMGB	.800	.977	.925	.994	.987	.960	.976		.961	.961	.966
SCIB	.800	.970	.919	.977	.985	.956	.967	.972		.954	.963
RELB	.772	.982	.933	.971	.971	.959	.990	.974	.966		.987
REL	.786	.988	.940	.978	.975	.961	.982	.976	.971	.990	

Table 17. Rank and product-moment correlations between model definitions of all bulls evaluated for milk^a

.

•

	PD74	NGRP	NGIO	SMG	BRTH	RELB	REL
PD74		.735	.695	.724	.719	.715	.729
NGRP	.791		.965	.969	.981	.968	.989
NGIO	.749	.976		.924	.946	.933	.958
S MG	.785	.978	.943		.967	.955	.961
BR TH	.776	.989	.964	.971		.990	.973
RELB	.769	.976	.949	.962	.989		.978
REL	.786	.987	.963	.971	.978	.986	

Table 18. Rank and product-moment correlations between model definitions of all sires evaluated for fat^a

mixed model definitions range from .883 to .990 for milk and .933 to .999 for fat. Product moment correlations are slightly higher. Correlations for FD74 with mixed model definitions are lower than among definitions. They range from .624 to .758 and .698 to .810 for rank and product-moment correlations, respectively, for milk. For fat, rank correlations range from .695 to .735 and product-moment correlations range from .749 to .791. Correlations tended to be highest between model definitions which were similar such as SMG and SCI or NGRP and REL. BRTH estimates are highly correlated with no grouping.

Observing rank and product-moment correlations for all bulls, it is hard to discern any large differences in ranks by any definition. As was explained in the previous section, the effect of grouping depends on the number and distribution of daughters. For this reason, correlations were computed for just those sires with limited information. The basis for this was the magnitude of the sire diagonal before augmenting by 15. This number reflects the contribution of a bull's daughters to his sire estimate and depends on the number and distribution of daughters by herd-year. For the absorbed coefficients matrix, C_s , the sire diagonal is:

$$(n_{ij} - \frac{n_{ij}^2}{n_{ij}})$$

From this, it can be shown that any one daughter of a bull can never have the full value of one. Table 19 shows the influence of various numbers of daughters and herdmates in a herd-year to the sire diagonal. When the number of daughters and herdmates are equal, the sire diagonal is equal to

Number of daughters of sire j in herd-year i	Number of daughters of other bulls herd-year i	$n_{ij} - \frac{n_{ij}}{n_{i}}$
1	1	.50
I	2	.67
1	5	.83
1	10	.91
1	100	.99
2	1	.67
5	1	.83
10	1	.91
100	1	.99
2	2	1.00
5	5	2.50
10	10	5.00
100	100	50.00

Table 19. Effect of number and distribution of daughters on the sire diagonal of the coefficients matrix

- ---

.

one-half the number of daughters in that herd-year. With 100 herdmates, the contribution of one daughter of a bull to the sire diagonal is nearly one. Also, if 100 daughters of a bull are compared to only one daughter of another bull, the contribution to its sire diagonal is still only about one.

Cumulative classes of bulls were formed whose sire diagonal from C_s was less than or equal to 10, 15, 20, and 25, respectively. Each higher class included those bulls in the lower class or classes. Of the original 201 bulls, there was a cumulative total of 24, 33, 49, and 70 bulls in each class as illustrated in Table 20.

Rank and product-moment correlations by classes are presented in Tables 21 through 24 for milk and Tables 25 through 28 for fat. Correlations among model definitions for classes of bulls were less than for all bulls. This may be due to sampling to some extent but it also seems to reflect real differences in how models were defined.

To compare the influence of grouping, correlations between NGRP and model definitions with grouping will be discussed for the classes of bulls. The lower the correlations, the greater the effect of grouping for that class of bulls. In general, correlations were lower for each class with smaller sire diagonals. For milk, BRTH is the only grouping model with ranks highly correlated (.980) with NGRP for bulls whose sire diagonal is less than or equal to 10 (Table 21). However, the rank correlations for RELB, which is a combination of birth year grouping and accounting for relationships, is only .834 with NGRP. Rank correlation for relationships alone (REL) is .916. The combination of grouping and relationships was

Class	Sire diagonal	Number of bulls
1	≤10	24
2	<u>≤</u> 15	24 + 9 = 33
3	≤20	24 + 9 + 16 = 49
4	≤25	24 + 9 + 16 + 21 = 70
·		

•

Table 20. Cumulative classes of bulls based on magnitude of sire diagonal in $\rm C_{s}$

	PD 74	NGRP	NGIO	SMG	SCI	STRR	BRTH	SMGB	SCIB	RELB	REL
PD 74		.010	.060	.143	.174	.128	.040	.139	.185	.185	.143
NGRP	.177		.957	.813	.750	.829	.980	.789	.725	.834	.916
NGIO	.173	.972		.874	.805	.839	.956	.827	.770	.882	.924
SMG	. 395	.815	.861		.896	.726	.837	.969	.801	.792	.801
SCI	.313	.804	.850	.918		.689	.808	.883	.881	.800	.765
STYR	.261	.766	.754	.609	.632		.843	.713	.691	.794	.803
BRTH	.174	.950	.920	.809	.817	.771		.817	.762	.893	.923
SMGB	. 348	.798	.836	.969	.904	.649	.824		.795	.770	.780
SCIB	.298	.726	.779	.757	.842	.655	.740	.718		.746	.756
RELB	.236	.874	.879	.793	.828	.711	.927	.794	.766		.938
REL	.242	.901	.904	.807	.802	.680	.867	.784	.775	.943	

Table 21. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 10 for milk^a

	PD74	NGR P	NGIO	SMG	SCI	STYR	BRTH	SMGB	SCIB	RELB	REL
PD74		.233	.274	.394	.402	.380	.206	.424	.409	.300	.303
NGRP	.507		.969	.863	.848	.877	.968	.843	.839	.885	.946
NGIO	.487	.9 89		.885	.881	.885	.924	.866	.853	.885	.941
SMG	.601	.9 19	.923		.932	.823	.868	.982	.858	.836	.834
SCI	.546	.9 18	.928	.959		.805	.851	.927	.918	.849	.844
STYR	.531	.927	.916	.869	.857		.869	.815	.806	.834	.853
BRTH	.478	.979	.966	.915	.914	.919		.843	.809	.935	.922
SMGB	.577	.9 14	.919	.985	.953	.881	.921		.853	.823	.819
SCIB	.544	.898	.907	.904	.932	.879	.889	.888		.793	.842
RELB	.478	.935	.932	.905	.915	.879	.965	.910	.892		.934
REL	.502	.959	.955	.917	.917	.892	.942	.911	.914	.967	

Table 22. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 15 for milk^a

	PD 74	NGRP	NGIO	SMG	SCI	STYR	BRTH	SMGB	SCIB	RELB	REL
PD74		.419	. 389	.502	.496	.489	. 391	.520	.505	.428	.424
NGRP	.587		.965	.912	.904	.912	.964	.901	.878	.910	.953
NGIO	.543	.987		.902	.886	.907	.917	.879	.852	.883	.920
SMG	.648	.941	.931		.955	.860	.903	.984	.912	.901	.910
SCI	.613	.941	.933	.971		.843	.905	.951	.946	.906	.901
STYR	.606	.936	.920	.896	.886		.898	.864	.829	.854	.858
BRTH	.568	.983	.965	.934	.937	.932		.897	.879	.950	.929
SMGB	.631	.939	.929	.985	.963	.902	.940		.901	.899	.902
SCIB	.624	.923	. 912	.934	.955	.895	.917	.918		.870	.892
RELB	.559	.946	.929	.930	.938	.894	.968	.936	.919		.954
REL	.576	.962	.947	.942	.939	.896	.947	.939	.933	.975	

Table 23. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 20 for milk^a

.

	PD74	NGRP	NGIO	SMG	SCI	STYR	BRTH	SMGB	SCIB	RELB	REL
PD74		.469	.418	.520	.526	.522	.435	.529	.541	.467	.476
NGRP	.612		.962	.918	.909	.931	.972	.918	.893	.933	.963
NGIO	.570	.982		.880	.868	.899	.934	.880	.842	.901	.921
SMG	.662	.946	.923		.962	.882	.901	.984	.920	.907	.918
SCI	.638	.948	.927	.975		.870	.901	.954	.954	.914	.915
STYR	.632	.944	.920	.909	.905		.914	.881	.856	.880	.885
BRTH	.587	.985	.967	.938	.944	.938		.907	.874	.960	.941
SMGB	.641	.947	.927	.986	.969	.914	.948		.908	.918	.922
SCIB	.653	.934	.913	.946	.964	.911	.927	.932		.886	.908
RELB	.589	.958	.940	.938	.956	.908	.974	.946	.931		.968
REL	.611	.970	.950	.948	.946	.910	.956	.948	.942	.980	
											_

Table 24. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 25 for milk^a

	PD74	NGRP	NGIO	SMG	BRTH	RELG	REL
PD 74		.135	.101	.149	.226	.279	.195
NGRP	.252		.914	.721	.799	.697	.909
NGIO	.271	.961		.781	.721	.620	.883
SMG	.268	.772	.816		.740	.651	.715
BRTH	.191	.792	.751	.663		.920	.787
RELG	.206	.687	.645	.542	.907		.792
REL	.276	.889	.858	.675	.737	.823	

Table 25. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 10 for fat^a

		-					
	PD74	NGRP	NGIO	SMG	BRTH	RELB	REL
PD 74		.168	.143	.221	.271	.289	.211
NGRP	.525		.941	.811	.854	.774	.936
NGIO	.519	.9 88		.834	.813	.748	.916
SMG	.500	.905	.906		.838	.746	.784
BRTH	.500	.942	.934	.868		.946	.836
RELB	.456	.869	.860	.799	.949		.842
REL	.482	.937	.927	.854	.882	.915	

Table 26. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 15 for fat^a

	PD74	NGRP	NGIO	SMG	BRTH	RELB	REL
PD74		.303	.280	.341	.325	.310	.292
NGRP	.576		.958	.894	.908	.860	.952
NGIO	.545	.989		.896	.873	.837	.938
SMG	.561	.935	.930		.895	.838	.863
BRTH	.542	.959	.950	.905		.963	.882
RELB	.496	.905	.894	.858	.959		.897
REL	.536	.950	.939	.900	.915	.947	

Table 27. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 20 for fat^a

^aUpper half contains rank correlations, lower half contains productmoment correlations.

	PD74	NGRP	NG10	SMG	BRTH	RELB	REL
PD74		.423	.415	.404	.409	.402	.413
NGRP	.604		.959	.913	.940	.902	.967
NGIO	.580	.981		.888	.907	.877	.949
SMG	.582	.941	.919		.918	.883	.897
BRTH	.571	.967	. 94 9	.920		.971	.922
RELB	.544	.923	.906	.888	.968		.932
REL	.580	.960	.944	.918	.935	.959	

Table 28. Rank and product-moment correlations between model definitions for bulls whose sire diagonal was less than or equal to 25 for fat^a

^aUpper half contains rank correlations, lower half contains productmoment correlations. effective in lowering the rank correlations with NGRP compared to model definitions BRTH or REL. The lowest rank correlations are for grouping models SCI and SCIB. The effect of grouping on ranks of bulls is large for this class of bulls. Rank correlations of mixed model sire estimates with those by PD74 are close to zero for NGRP, NGIO, and BRTH. Highest rank correlation with PD74 is for SCIB and RELB.

Correlations among models are higher for each class of bulls (Tables 21 through 24). For the largest class of bulls (sire diagonal \leq 25), correlations are similar to those for all bulls. Looking at correlations by classes verifies that the influence of grouping is greatest for bulls with fewer daughters.

The same overall trends in correlation were found for fat as for milk when computed by classes (Tables 25 through 28). For the first class where the sire diagonal was less than or equal to 10, BRTH was not as highly correlated with NGRP as it was for milk. The correlations for RELB were smaller than for either BRTH or REL. Grouping alone or in combination with relationships had a large influence on rankings of bulls with smaller sire diagonals. Using correlations by classes of bulls to examine changes in rank by different model definitions was effective for both milk and fat.

Testing sire estimates

The predictability of sire estimates by the different model definitions was tested by correlations with an independent set of daughter records. These records were not included in the original evaluation of sires because they had no herdmates in any herd-year. Tested records were

adjusted for average age and month of calving, twice a day milking, and 305 day length lactation but not for environmental effects. Herdmate deviations were not used because they require that the average merit of herdmate's sires is either zero or that herd averages can be adjusted for genetic merit of herdmate's sire. It did not seem reasonable to test sire estimates with deviations where estimates of herdmate's sire must be assumed. Environmental covariances will bias correlations of sire estimates with test daughters but these should be identical for each model definition. This is because environmental effects were accounted for in the same way for each model and the same records were used to test sire estimates by the different model definitions. In fact, the same basic set of sire equations after absorption were used but with modification by grouping strategy or accounting for relationships.

Correlations of test daughters with sire estimates by the different mixed model definitions are presented in Tables 29 and 30 for milk and fat, respectively. Correlations were computed by classes depending on the magnitude of the sire diagonal as was described in the previous section (Table 20).

For milk, there are differences among model definitions. These differences are most pronounced for class 1, where fewer daughters were represented. Differences among model definitions are small for class 4; however, STYR exceeds all others. In all classes STYR is most predictive. This is surprising because of the subjective way in which the model was defined compared to the more objectively determined models by pedigree index. When it was first observed, it was hypothesized that STYR being

••••••••••••••••••••••••••••••••••••••		Cla	ss ^a	
Model definition	N ^b (20)	2 (22)	3 (25)	4 (27)
NGRP	.10	.17	.22	.16
NGIO	.01	.17	.22	.18
SMG	.11	.23	.27	.19
SCI	.06	.18	.22	.16
STYR	.20	.29	.32	.24
BRTH	.01	.17	.23	.16
SMGB	.12	.24	.28	.21
SCIB	.15	.25	.26	.19
RELB	02	.16	.21	.15
REL	04	.14	.21	.14

Table 29. Correlations between sire estimates by different model definitions with daughters not evaluated for milk

^aClasses defined in Table 20.

^bAverage number of daughters tested per bull.

	Class ^a							
Model definition	N ^b	1 (20)	2 (22)	3 (25)	4 (27)			
NGRP		.11	.18	.19	.13			
NGIO		.13	.19	.20	.16			
SMG		.11	.19	.20	.14			
BRTH		.08	.18	.19	.13			
RELB		.00	.13	.15	.10			
REL		.01	.12	.14	.09			

Table 30.	Correlations between sire estimates by different model
	definitions with daughters not evaluated for fat

^aClasses defined in Table 20.

^bAverage number of daughters tested per bull.

more predictive may be due to grouping within birth periods. This was the reason for computing sire estimates by the model definition BRTH. However, test correlations for this model were very similar to NGRP. It may point out the importance of grouping natural service sires separately which was not done for models determined by pedigree indexes.

The models with grouping by pedigree indexes have the next largest correlations. SMGB and SCIB are slightly better than SMG and SCI. If the indexes used in SMG and SCI were to a common base, thus fully accounting for genetic trend, then these model definitions should be as predictive as SMGB and SCIB. They are not which may be due to sampling but may also be because sire's and MGS's PD's, and CI's used did not fully account for genetic trend.

REL and RELB are the least predictive for the set of bulls tested. It should still be desirable to use relationships in mixed model sire evaluations to lower prediction error; however, grouping is still essential. For this set of data, grouping by stud-year or pedigree index along with an accounting for relationships would be desirable.

Correlations for fat are presented in Table 30 and are not very definitive. Again, use of relationships are least predictive.

Rank deviations

The results of examining changes in rank by the number and degree of switches in rank are presented in Table 31 for milk. In one case, PD74 was considered optimum because it was computed from the most complete information. In the second case, STYR was considered optimum because it was most predictive of mixed model evaluations. Deviations are listed as

•	PD74 oj	otimum	STYR of	ptimum
	Deviation	Percent of reverse in ranks	Deviation	Percent of reverse in ranks
PD74	0	0	639707	3.57
NGRP	696560	4.13	86582	.48
NGIO	967709	5.73	296461	1.66
SMG	622581	3.69	133228	.74
SCI	618458	3.66	134750	.75
STYR	641605	3.80	0	0
BRTH	734765	4.35	103135	.58
MGB	644741	3.82	136392	.76
SCIB	639479	3.79	136563	.76
EL	741777	4.39	126438	.71
ELB	713602	4.23	118589	.66

Table 31. Changes in rank for rank deviations

a percent of a complete reversal in ranks. For instance, if 1-2-3-4 is correct, a complete reversal is 4-3-2-1. These results indicate much larger differences between any of the mixed model definitions and PD74 than among model definitions. Ignoring the off-diagonals of the coefficients matrix resulted in the largest difference from the evaluations considered optimum. This agrees with Keown (1974) who found that sire estimates varied more when the merit of herdmate's sires were ignored compared to when different methods of grouping were tried.

Relationships between sire estimates and pedigree indexes

Correlations were computed between sire estimates by different model definitions and pedigree indexes. They are presented in Tables 32 and 33 for milk and fat, respectively. Expected correlations were computed by a method similar to that of Searle (1964). The expected correlation between a progeny test of a bull and the progeny test of his sire is $\frac{1}{2}\sqrt{\beta\beta}$ where β is the expected regression of a sire's transmitting ability on his daughter deviation. Assuming one record per daughter and every daughter in a different herd, $\beta = \frac{nh^2}{4 + (n-1)h^2}$. Since PD's used were based on multiple records and daughters were distributed across herds, repeatability computed by the USDA was used for β . Repeatability is a regression which weights daughter deviations according to number of records and distribution of daughters across herds. β is the regression of the son's transmitting ability on his daughter's deviations. When computing expected correlations for PD74 (first line of Tables 32 and 33), β is the USDA repeatability. For the mixed model, where evaluations were usually based on fewer daughters, β' was $\frac{n'}{n'+15}$ where n' is the magnitude

Model definitions	Sire PD	Dam CI	MGS PD	Index 1	Index 2
PD74	.45	.24	.23	.49	.50
NGRP	.34	.23	.14	.36	.41
NGIO	.27	.21	.10	.28	.34
SMG	.47	.25	.20	.49	.53
SCI	.46	.30	.20	.48	.55
STYR	.37	.22	.13	.38	.43
BRTH	.33	.24	.14	. 35	.41
SMGB	.46	.25	.19	.48	.51
SCIB	.45	.30	.18	.47	.54
RELB	.38	.23	.16	.40	.44
REL	. 39	.22	.16	.41	.45
Expected Corre- lation PD	•44	.29	.21		
Mixed Model	.43	.29	.21		

Table 32. Correlations between indexes and sire estimates by different model definitions for milk

.

Model definitions	Sire PD	Dam CI	MGS PD	Index 1	Index 2
PD74	. 35	.29	.27	.43	.47
NGRP	.35	.21	.12	.36	.41
NGIO	.33	.20	.10	.33	.38
SMG	.43	.21	.14	.43	.46
BRTH	. 34	.23	.14	. 35	.41
RELB	.39	.23	.15	.41	.45
REL	.42	.21	.13	.42	.45
Expected Cor- relation PD	.44	.29	.21		
Mixed Model	.43	.29	.21		

Table 33. Correlations between indexes and sire estimates by different model definitions for fat

.

of the sire diagonal of the sire equations after absorption. Expected correlations are the average of each son-sire pair. Son-dam and sonmaternal grandsire expected correlations were computed similarly. Cow indexes have a repeatability computed by USDA. Expected correlations are presented at the bottoms of Tables 32 and 33 which contain observed correlations. Those labelled PD74 apply to the first line of the table while those labelled mixed model apply to the remainder of the table.

The observed correlations for PD74 are close to their expected dorrelations. Son-sire and son-maternal grandsire observed correlations are slightly higher than expected while son-dam correlations are lower. The agreement between observed and expected is much greater for this set of data than for Vinson and Freeman (1972). Indexes used in this study were the most recent available for bulls where Vinson and Freeman used indexes computed when initial selection of the bull was made. Correlations are in better agreement with Butcher (1973). His pedigree data was the most recent as of the time of his study.

For milk, highest observed correlations are for model definitions where pedigree indexes were used for grouping and PD74 (Table 32). Lowest correlations with all indexes are for NGIO. Correlations for Index 1 and Index 2 are similar with those for Index 2 being slightly higher. Correlations between pedigree indexes and REL were higher than they were with NGRP but not as high as most grouping models. This is further evidence that some combinations of grouping along with the relationship matrix is desirable. Birth year, however, appears to be a poor choice of grouping for this set of data. Correlations for STYR with pedigree indexes are

less than might be expected based on tested daughters. Son-dam correlations deviate most from expected.

Table 33 lists correlations for fat sire estimates with pedigrees indexes for fat. REL estimates are highly correlated with sire's PD. Lowest correlations are for NGIO just as for sire estimates for milk. Most correlations were lower than for milk.

Regressions of sire estimates on the pedigree indexes were also computed and are presented in Tables 34 and 35. Expected regressions are $\frac{1}{2}\beta$ where β was defined as previously described for correlations. Regressions are highest for sire estimates where pedigree indexes were used to determine groups. For instance, where sire's PD was used as a criteria for grouping, SMG and SMGB regressions are greatest. Regressions of sire estimates on dam's CI are largest when the CI was used as part of the criteria for grouping. Sire estimates do reflect the use of pedigree information whether through the use of pedigree indexes in grouping, considering relationships among tested bulls, or stud identification.

		Dep	endent variab	les	
	Sire PD	Dam CI	MGS PD	Index 1	Index 2
PD74	.47 (.07) ^a	.17 (.05)	.19 (.06)	.28 (.04)	.32 (.04)
NGRP	.40 (.08)	.18 (.06)	.13 (.06)	.23 (.04)	.29 (.05)
NGIO	.33 (.08)	.17 (.06)	.10 (.07)	.19 (.05)	.25 (.05)
SMG	.50 (.07)	.18 (.05)	.17 (.06)	.29 (.04)	.34 (.04)
SCI	.48 (.07)	.22 (.05)	.16 (.06)	.28 (.04)	.35 (.04)
STYR	.39 (.07)	.16 (.05)	.11 (.06)	.22 (.04)	.27 (.04)
BRTH	.38 (.08)	.19 (.05)	.13 (.06)	.22 (.04)	.29 (.04)
SMGB	.49 (.07)	.18 (.05)	.16 (.06)	.28 (.04)	.33 (.04)
SCIB	.47 (.07)	.21 (.05)	.15 (.06)	.27 (.04)	.34 (.04)
RELB	.43 (.07)	.18 (.05)	.14 (.06)	.25 (.04)	.30 (.04)
REL	.46 (.08)	.18 (.06)	.14 (.06)	.26 (.04)	.32 (.05)
Expected legress-	.46	.20	.21		

Table 34. Regressions of sire estimates on pedigree indexes for milk

^aStandard errors are in parentheses.

		Dep	endent variab	les	
	Sire PD	Dam CI	MGS PD	Index 1	Index 2
PD 74	.35 (.06) ^a	.23 (.05)	.20 (.05)	.20 (.03)	.27 (.04)
NGRP	.36 (.07)	.18 (.06)	.10 (.06)	.18 (.03)	.25 (.04)
NGIO	.34 (.07)	.17 (.06)	.08 (.06)	.17 (.03)	.24 (.04)
SMG	.40 (.06)	.17 (.05)	.10 (.05)	.20 (.03)	.27 (.04)
BRTH	.34 (.07)	.19 (.06)	.11 (.06)	.17 (.03)	.25 (.04)
RELB	.39 (.07)	.19 (.06)	.11 (.06)	.20 (.03)	.27 (.04)
REL	.43 (.07)	.18 (.06)	.10 (.06)	.22 (.03)	.29 (.04)
Expected Regres- sions	.46	.20	.21		

Table 35. Regressions of sire estimates on pedigree indexes for fat

^aStandard errors are in parentheses.

a.

SUMMARY

Two hundred and one Holstein bulls were evaluated for estimated transmitting ability of milk and fat using several variations of the mixed model. Variations in model definitions were in the use of knowledge of the bull's pedigree. Pedigree information used included birth year, stud identification, two pedigree indexes, and the additive relationships among bulls. Pedigrees were provided by the Holstein Friesian Association of America. Incorporating pedigree information into the mixed model was by grouping, by addition of the inverted relationship matrix to the sire equations, or a combination of both. A total of ten model definitions for milk and six for fat were compared by how they rank bulls and predict daughter records. All evaluations were based on first lactation official DHI records from Iowa, Missouri, and Kansas.

The purpose of including the group effect in the mixed model is to account for genetic trend. However, determining in what group a bull should be included is primarily for increasing accuracy of estimating his transmitting ability. This is because the random sire effect from the mixed model is regressed close to the mean of the group in which he has been placed. With few daughters, the sire's deviation is regressed close to the group mean. The ability to predict the group solutions was examined to see the extent to which genetic subpopulations could be distinguished by including a group effect in the mixed model. The greatest degree of variation due to grouping was 34 percent for an index based on sire's PD and dam's cow index within period of birth (SCIB). Grouping by

stud year (STYR) was as effective in determining distinct genetic subpopulations as an index based on sire's and maternal grandsire's PD (SMG and SMGB). The least variation due to grouping was 5 percent for milk and 8 percent for fat when birth year was the criteria for grouping. Pedigree indexes were effective in predicting distinct genetic subpopulations.

Ranks of sire estimates by the different model definitions were compared by rank and product-moment correlations. All model definitions were highly correlated with each other. Similar model definitions had highest correlations between them. Correlations for the BRTH, REL and RELB models with NGRP were high. The lowest correlations among mixed model definitions were when the off diagonals of the sire coefficients matrix were ignored thus not accounting for genetic merit of herdmates sires. When correlations were computed for classes of bulls determined by the magnitude of sire diagonals, differences in ranking were accentuated but similar model definitions were still most highly related.

Predicting ME production of daughters not previously used in obtaining group solutions was also done by classes determined by the magnitude of the sire diagonal. Of the mixed model definitions, STYR was always most predictive followed by the indexing models. REL and RELB were always poorest. Relationships cannot be used alone in place of grouping for this set of data. Birth year was a poor choice of grouping to be used alone or in combinations with relationships. An improvement would be to account for relationships among bulls in combination with grouping by a pedigree index.

LITERATURE CITED

- A.R.S. 1965. Dairy-Herd-Improvement Letter. Agriculture Research Service. ARS-44-171, Vol. 41, No. 8. 8 pp.
- Arave, C. W., R. C. Laben, and S. W. Mead. 1964. Measurement of genetic change in twelve California dairy herds. J. Dairy Sci. 47:278.
- Bonnier, G. 1936. Progeny tests of dairy sires. Hereditas 22:145.
- Burnside, E. B., and J. E. Legates. 1967. Estimation of genetic trends in dairy cattle populations. J. Dairy Sci. 50:1448.
- Butcher, K. R. 1973. Estimating son's progeny test for milk yield from information on his sire, dam, and maternal grandsire. Ph.D. Thesis. North Carolina State University, Raleigh, North Carolina.
- Deb, R. N., J. L. Gobble, G. L. Hargrove, and H. W. Thoele. 1974. Lactation records of Jersey cattle in Pennsylvania: Season of calving, phenotypic trend, heritability, and genetic trend. J. Dairy Sci. 57:884.
- Dickinson, F. N., B. T. McDaniel, R. H. Miller, and V. H. Lytton. 1969. Estimates of sire-son relationships for yield traits in the five major dairy breeds. J. Dairy Sci. 52:946 (Abstr.).
- Dickinson, F. N., H. D. Norman, J. F. Keown, and L. G. Waite. 1974. Revisions to USDA methodology for sire summaries and cow indexes. J. Dairy Sci. 57:977.
- Edwards, L. 1932. The progeny test as a method of evaluating the dairy sire. J. Agri. Sci. 22:811.
- Everett, R. W., W. D. Slanger, L. R. Schaeffer, C. R. Henderson, and R. H. Kliewer. 1975. Results from the use of the relationship matrix in sire evaluation. Unpublished mimeographed paper presented at the American Dairy Science Association meeting, Kansas State University, Manhattan, Kansas.
- Freeman, A. E. 1976. Balancing forces of limiting factors. National Workshop on Genetic Improvement of Dairy Cattle--Genetic Progress. Iowa State University, Ames, Iowa.
- Hargrove, G. L., and J. E. Legates. 1971. Biases in dairy sire evaluations attributable to genetic trend and female selection. J. Dairy Sci. 54:1041.
- Harville, D. A., and C. R. Henderson. 1967. Environmental and genetic trends in production and their effects on sire evaluation. J. Dairy Sci. 50:870.

- Henderson, C. R. 1949. Estimates of changes in herd environment. J. Dairy Sci. 32:706.
- Henderson, C. R. 1963. Selection index and expected genetic response. NAS-NRC 982.
- Henderson, C. R. 1973. Sire evaluations and genetic trends. Proceedings of the Animal Breeding and Genetics Symp. in honor of Dr. Jay L. Lush. Amer. Soc. of Anim. Sci., Amer. Dairy Sci. Ass. and Poul. Sci. Ass., Blacksburg, Virginia.
- Henderson, C. R. 1974. General flexibility of linear model techniques for sire evaluation. J. Dairy Sci. 57:963.
- Henderson, C. R. 1975. Inverse of a matrix of relationships due to sires and maternal grandsires. J. Dairy Sci. 58:1917.
- Kennedy, B. W., and J. E. Moxley. 1975. Comparison of genetic group and relationship methods for mixed model sire evaluation. J. Dairy Sci. 58:1507.
- Keown, J. F. 1974. Comparison of mixed model methods of sire evaluation. J. Dairy Sci. 57:245.
- Lentz, W. E., P. D. Miller, and C. R. Henderson. 1969. Evaluating dairy sires by direct comparison. Unpublished paper presented at the American Society of Animal Science meeting, Purdue University, Lafayette, Indiana.
- Lush, J. L. 1931. The number of daughters necessary to prove a sire. J. Dairy Sci. 14:209.
- Lush, J. L. 1933. The bull index problem in light of modern genetics. J. Dairy Sci. 16:501.
- McDaniel, B. T. 1974. Why new sire summaries are needed. J. Dairy Sci. 57:951.
- McDaniel, B. T., and B. R. Bell. 1975. Combining progeny and pedigree to improve genetic evaluation of dairy bulls. Unpublished paper presented at the American Dairy Science Association meeting, Kansas State University, Manhattan, Kansas.
- McDaniel, B. T., H. D. Norman, and F. N. Dickinson. 1974. Variation in genetic merit of sires of herdmates of first lactation cows. J. Dairy Sci. 57:1234.
- McDaniel, B. T., H. D. Norman, R. Powell, and F. N. Dickinson. 1975. Why include pedigree information in sire summaries? Hoard's Dairyman 120:9.

- McGilliard, M. L. 1974. Predicting daughter milk production from dam index. Ph.D. Thesis. Iowa State University, Ames, Iowa.
- Norman, H. D. 1974. Factors that should be considered in a national sire summary model. J. Dairy Sci. 57;955.
- Norman, H. D., B. T. McDaniel, and F. N. Dickinson. 1972. Regression of daughter and herdmate milk yield on genetic value of the herdmate's sires. J. Dairy Sci. 55:1735.
- Norman, H. D., P. D. Miller, B. T. McDaniel, F. N. Dickinson, and C. R. Henderson. 1974. USDA-DHIA factors for standardizing 305 day lactation records for age and month of calving. ARS-NE-40, USDA.
- Plowman, R. D., and B. T. McDaniel. 1968. Changes in USDA sire summary procedures. J. Dairy Sci. 51:306.
- Powell, R. L. 1972. Estimation of genetic trends and effect of genetic trends on sire evaluation. Ph.D. Thesis. Iowa State University, Ames, Iowa.
- Powell, R. L., and A. E. Freeman. 1974. Estimators of sire merit. J. Dairy Sci. 57:1228.
- Powell, R. L., H. D. Norman, and F. N. Dickinson. 1975. Relationship between pedigree index and daughter yield in the sire summary. Unpublished paper presented at the American Dairy Science Association meeting, Kansas State University, Manhattan, Kansas.
- Prentice, E. P. 1935. Breeding profitable dairy cattle. Houghton-Mifflin Co., New York, N.Y.
- Schaeffer, L. R., M. G. Freeman, and E. B. Burnside. 1975. Evaluation of Ontario Holstein dairy sires for milk and fat production. J. Dairy Sci. 58:109.
- Searle, S. R. 1964. Progeny-tests of sire and son. J. Dairy Sci. 47:414.
- Verde, O. G., C. J. Wilcox, F. G. Martin, and C. W. Reaves. 1972. Genetic trends in milk production in Florida Dairy Herd Improvement Association Herds. J. Dairy Sci. 55:1010.
- Vinson, W. E., and A. E. Freeman. 1972. Selection of Holstein bulls for future use in artificial insemination. J. Dairy Sci. 55:1621.
- Yapp, W. W. 1924. Transmitting ability of dairy sires. Amer. Soc. Anim. Prod. Proc. 1924:90.

ACKNOWLEDGEMENTS

I wish to thank Drs. A. E. Freeman, R. L. Willham, L. L. Christian, D. F. Cox, and P. N. Hinz for serving on my graduate committee. Special thanks to Dr. E. A. Kline for graciously consenting to be a substitute for my final oral.

The Holstein Friesian Association of America supplied pedigrees for this study for which I am grateful.

Special thanks to the many graduate students and their families whose friendship and assistance during my stay in Ames was very much appreciated. The assistance of Mrs. Gloria Wright and Mrs. Susan Bullis in completing this manuscript is also greatly appreciated.

This manuscript is dedicated to Dad and Mom without whose encouragement, it would not have been completed. Thank you.

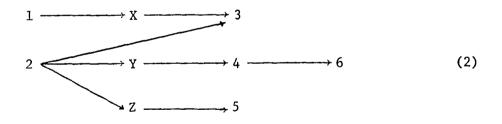
APPENDIX

Examples of procedures

A simple example will be used to demonstrate procedures used to obtain sire estimates with a mixed model, as was done in this study. Characteristics of absorption, grouping, accounting for relationships, and obtaining solutions will be illustrated. Examples are taken from Henderson (1975).

1. Model

Consider the simple model:


$$Y_{ikl} = h_i + s_k + e_{ikl}$$
(1)

where

 $h_{\underline{i}}$ is a fixed environmental effect and includes the mean $\mu,$ $s_{\underline{i}}$ is a random sire effect,

e iikl are mutually uncorrelated random variables.

The following sires with tested progeny and their known parents are represented by the following path diagram. Sires 2, 3, 4, 5, and 6 have tested offspring. X, Y, and Z are female offspring.

2. Absorption

The distribution or progeny by sire for the first 3 h 's are:

	N	h1 Sum X	N	h2- Sum Y	N	<u>h</u> 3 <u>Sum Y</u>
s ₂	2	27,000	1	13,000	3	38,000
s ₃	1	15,000	0	0	0	0
s ₄	0	0	1	12,000	0	0
s ₅	0	0	3	40,000	0	0
^s 6	2	30,000	0	0	0	0
		N 4				

N is number of progeny

At the start, the coefficients matrix is $5 \ge 5$ and all values are zero and the right hand sides vector is $5 \ge 1$ and all zero.

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

$$0s_{2} + 0s_{3} + 0s_{4} + 0s_{5} + 0s_{6} = 0$$

Using the algebra for absorption found on pages 43 and 44 of the text, the equations after absorption of h_1 are:

$$1.20s_{2} - .40s_{3} - 0s_{4} - 0s_{5} - .80s_{6} = -1800$$

-.40s_{2} + .80s_{3} - 0s_{4} - 0s_{5} - .40s_{6} = 600
- 0s_{2} - 0s_{3} + 0s_{4} - 0s_{5} - 0s_{6} = 0(4)
- 0s_{2} - 0s_{3} - 0s_{4} + 0s_{5} - 0s_{6} = 0
-.80s_{2} - .40s_{3} - 0s_{4} - 0s_{5} + 1.20s_{6} = 1200

All rows and columns sum to zero as do the right hand sides. The results of absorbing h_2 are:

$$2.00s_{2} - .40s_{3} - .20s_{4} - .60s_{5} - .80s_{6} = -1800 + 0 = -1800$$

$$-.40s_{2} + .80s_{3} - 0s_{4} - 0s_{5} - .40s_{6} = 600 + 0 = 600$$

$$-.20s_{2} - 0s_{3} + 80s_{4} - .60s_{5} - 0s_{6} = 0 - 1000 = -1000 (5)$$

$$-.60s_{2} - 0s_{3} - 60s_{4} + 1.20s_{5} - 0s_{6} = 0 + 1000 = 1000$$

$$-.80s_{2} - .40s_{3} - 0s_{4} - 0s_{5} + 1.20s_{6} = 1200 + 0 = 1200$$

All rows and columns still sum to zero as well as the right hand sides. Absorbing h_3 results in no contribution to the coefficients or right hand sides because only sire 2 has any offspring represented. This can be shown from the algebra of absorption. The diagonal for sire 2 is:

$$(n_{31}, -\frac{n_{31}}{n_{31}}) = 3 - \frac{(3)^2}{3} = 0$$
 (6)

The off-diagonals are of the form

$$-\frac{n_{31} \cdot n_{3j}}{n_{31}} = \frac{3 \times 0}{3} = 0$$
(7)

Continuing through the absorption process the following equations may result if the same six sires are used in more herds.

$$\begin{bmatrix} 18.26 & -3.51 & -2.40 & -6.32 & -6.03 \\ -3.51 & 23.21 & 0 & -11.21 & -8.49 \\ -2.40 & 0 & 33.24 & -16.23 & -14.61 \\ -6.32 & -11.21 & -16.23 & 33.76 & 0 \\ -6.03 & -8.49 & -14.61 & 0 & 29.13 \end{bmatrix} \begin{bmatrix} \hat{s}_2 \\ \hat{s}_3 \\ \hat{s}_4 \\ \hat{s}_5 \\ \hat{s}_6 \end{bmatrix} = \begin{bmatrix} -3,444 \\ 50,461 \\ 84,498 \\ -61,645 \\ -69,870 \end{bmatrix}$$
(8)

S

RA

3. Creating Group Equations

The model now becomes:

$$Y_{ijkl} = h_i + g_j + s_{jk} + e_{ijkl}$$
 (9)

where g_j is the jth group effect.

Groups will be created from the absorbed sire equations and right hand sides as was described in the text. Assigning sires 2 and 3 to group 1 and sires 4, 5 and 6 to group 2 results in the following F matrix:

$$F = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
(10)

The result of multiplying C_s times F produces C_g and the following sire equations:

$$\begin{bmatrix} 18.26 & -3.51 & -2.40 & -6.32 & -6.03 & -14.75 & 14.75 \\ -3.51 & 23.21 & 0 & -11.21 & -8.49 & -19.70 & 19.70 \\ -2.40 & 0 & 33.24 & -16.23 & -14.61 & 2.40 & -2.40 \\ -6.32 & -11.21 & -16.23 & 33.76 & 0 & 17.53 & -17.53 \\ -6.03 & -8.49 & -14.61 & 0 & 29.13 & 14.52 & -14.53 \end{bmatrix}$$
 (11)

Note that these sire equations still sum to zero.

To create the group equations, the transpose of G is multiplied times F resulting in J.

$$J = \begin{bmatrix} 34.45 & -34.45 \\ -34.45 & 34.45 \end{bmatrix}$$
(12)

The group equations are $\begin{bmatrix} C_g & |J] \end{bmatrix}$ or

$$\begin{bmatrix} -14.75 & -19.70 & 2.40 & 17.53 & 14.52 & 34.45 & -34.45 \\ 14.75 & 19.70 & -2.40 & -17.53 & -14.52 & -34.45 & 34.45 \end{bmatrix}$$
(13)

and they also sum to zerc.

The group right hand sides are the sum of sire right hand sides of the sires assigned to groups 1 and 2.

$$-3,444 + 50,461 = 47,017$$
(14)
84,498 - 61,645 - 69,870 = -47,017

Augmenting the diagonal

Ignoring the relationship among sires, the ratio of error variance to sire variance (assumed to be 15) is added to the diagonal of the sire equations. The resulting equations are:

	33.26	- 3.51	- 2.40	- 6.32	- 6.03	14.75	-14.75	\hat{s}_2	- 3,444	
	- 3.51	38.21	0	-11.21	- 8.49	19.70	-19.70	ŝ ₃	50,461	
	- 2.40	0	48.24	-16.23	-14.61	- 2.40	2.40	ŝ ₄	84,498	
ļ	- 6.32	-11.21	-16.23	48.76	0	-17.53	17.53	ŝ ₅ =	-61,645	(15)
	- 6.03	- 8.49	-14.61	0	44.13	-14.52	14.52	ŝ ₆	-69,870	
	14.75	19.70	- 2.40	-17.53	-14.52	34.45	-34.45	ĝ ₁	47,017	
	-14.75	-19.70	2.40	17.53	14.52	-34.45	34.45	$\hat{\mathbf{g}}_2$	-47,017	

Considering additive relationships among sires

The additive relationship matrix A is:

are:

	[1.0	.5	.25	.25	.125	
	.5	1.0	.25	.125	.125	
A =	.25	.25	1.0	.0625	.5	(16)
	.25	.125	.0625	1.0	.03125	
	.125	.125	.5	.03125	1.0	

Since the order is small, A^{-1} can be easily computed for this example. The result of multiplying A^{-1} times 15 is:

$$15A^{-1} = \begin{bmatrix} 21.4545 & -9.5455 & -2.7273 & -4.0 & 0 \\ -9.5455 & 20.4545 & -2.7273 & 0 & 0 \\ -2.7273 & -2.7273 & 21.3636 & 0 & -10.0 \\ -4.0 & 0 & 0 & 16.0 & 0 \\ 0 & 0 & -10.0 & 0 & 20.0 \end{bmatrix}$$
(17)

The sire equations considering relationships but ignoring groups

$$\begin{bmatrix} 39.7145 & -13.0555 & -5.1273 & -10.32 & -6.03 \\ -13.0555 & 43.6645 & -2.7273 & -11.21 & -8.49 \\ -5.1273 & -2.7273 & 54.6036 & -16.23 & -24.61 \\ -10.32 & -11.21 & -16.23 & 49.76 & 0 \\ -6.03 & -8.49 & -24.61 & 0 & 49.13 \end{bmatrix}$$
(18)

The right hand sides, of course, do not change. Several differences should be noted from equations (15) where relationships were not considered. The diagonals of (18) are always at least as large as (14) as are the offdiagonals. There will thus be more regression to the mean by the diagonals. However, adjustment for sires of herdmates will be greater because the off-diagonals are larger. Note also when considering relationships that sire 3 is adjusted by sire 4 where no adjustment was made before.

Rows and columns no longer sum to zero.

Since it is not feasible to obtain an inverse directly for large order matrices, the simple method for writing the inverse directly from a list of parents discovered by Henderson will be shown. The pedigree of known parents for this example is:

Bull	Sire	Maternal grandsire
1	0	0
2	0	0
3	2	1
4	1	2
5	0	2
6	4	0

Using the simple procedure given in the methods section, A^{-1} is:

1+1/11+4/11	2/11+2/11	-4/11	-8/11	0	0]	
2/11+2/11	1+4/11+1/11+1/15	-8/11	-4/11	-4/15	0	
-4/11	-8/11	16/11	0	0	0	(19)
-8/11	-4/11	0	16/11+1/3	0	-2/3	
0	-4/15	0	0	16/15	0	
0	0	0	-2/3	0	4/3	

which, when multiplied by 15, equals:

$$15A^{-1} = \begin{bmatrix} 21.8182 & 5.4545 & -5.4545 & -10.9091 & 0 & 0\\ 5.4545 & 22.8182 & -10.9091 & -5.4545 & -4.0 & 0\\ -5.4545 & -10.9091 & 21.8182 & 0 & 0 & 0\\ -10.9091 & -5.4545 & 0 & 26.8182 & 0 & -10.0\\ 0 & -4.0 & 0 & 0 & 26.0 & 0\\ 0 & 0 & 0 & -10.0 & 0 & 20.0 \end{bmatrix}$$
(20)

The equations ignoring groups are:

	21.8182	5.4545	- 5.4545	-10.9091	0	0	s ₁	Ō	
	5.4545	41.0782	-14.4191	- 7.8545	-10.32	- 6.03	^s 2	- 3,444	
ĺ	- 5.4545	-14.4191	45.0282	0	-11.21	- 8.49	^s 3_	50,461	21)
	-10.9091	- 7.8545	0	60.0582	-16.32	-24.61	s ₄	84,498	~ _ /
	0	-10.32	-11.21	-16.23	49.76	0	^s 5	-61,645	
	0	- 6.03	- 8.49	-24.61	0	49.13	s ₆	_69.870	

Obtaining solutions

Solutions for (8), (15), (18), and (21) are given in Table A.1. These solutions illustrate several characteristics of mixed model solutions. Solutions for coefficients (8), where 15 was added to all diagonal elements, sum to zero. This can be used as a check that the solution was correctly computed.

The estimates from (15) were computed two ways: by iteration as was done in this study and by a direct solution (Dgelg). In the latter case, a Lagrange multiplier was used so that $\Sigma\Sigma(\hat{g}_i + \hat{s}_{ij}) = 0$. Solutions obtained by Dgelg were after imposing a restriction on groups such that they summed to zero. No restrictions were applied to groups when solutions were obtained by iteration. It can be verified, however, that solutions

		Coefficient matrices						
	(8)	(15)		(18)	(21)			
		Iteration	Dgelg					
ŝ ₁					762			
ŝ ₂	- 256	- 540	- 540	94	94			
ŝ ₃	852	540	540	951	951			
ŝ ₄	1178	1341	1341	1098	1098			
ŝ ₅	- 710	- 486	- 486	- 647	- 647			
ŝ ₆	-1064	- 855	- 855	- 697	- 697			
\hat{g}_1		- 592	464					
ê ₂		-1365	- 309					

Table A.1.	Solutions	to	examples
Table V.T.	201011002	20	examples

obtained in both ways are consistent.

Iteration
$$\hat{g}_1 - \hat{g}_2 = -593 - (-1365) = 773$$

Dgelg $\hat{g}_1 - \hat{g}_2 = 464 - (-319) = 773$

To obtain group solutions by iteration identical to Dgelg, the following is done:

$$X = \sum (\hat{g}_{i} + \hat{s}_{ij})$$

ij
$$Y = X/number of sires$$

 $\hat{g}_i = \hat{g}_i - Y$

For the example:

X = [-592 + (-540)] + (-592 + 540) + (-1365 + 1341) + [-1365 + (-486)] + [-1365 + (-855)] = -5279Y = -5279/5 = -1056 $\hat{g}_1 = -592 - (-1056) = 464$ $\hat{g}_2 = -1365 - (-1056) = -309$ Sires within groups also sum to zero.

for
$$g_1 \rightarrow \hat{s}_1 + \hat{s}_2 = -540 + 540 = 0$$

for $g_2 \rightarrow \hat{s}_1 + \hat{s}_2 = 1341 - 486 - 855 = 0$

Solutions for (18) and (21) are identical; however, solutions nc longer sum to zero. For (21), there is an estimate for sire 1 who had no progeny. This is a pedigree estimate.