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Abstract
In the U.S. Corn Belt, annual croplands are the primary source of nitrate loading

to waterways. Long periods of fallow cause most nitrate loss, but there is extreme

interannual variability in the magnitude of nitrate loss due to weather. Using mean

annual (2001–2018) flow-weighted nitrate-N concentration (FWNC; mg NO3
––N

L–1), load (kg NO3
––N), and yield (kg NO3

––N ha–1 cropland) for 29 watersheds,

our objectives were (a) to quantify the magnitude and interannual variability of 5-yr

moving average FWNC, load, and yield; (2) to estimate the probability of measuring

41% reductions in nitrate loss after isolating the effect of weather on nitrate loss by

quantifying the interannual variability of nitrate loss in watersheds where there was

no trend in 5-yr moving average nitrate loss (Iowa targets a 41% nitrate loss reduction

from croplands); and (c) to identify factors that, in the absence of long-term trends

in nitrate loss, best explain the interannual variability in nitrate loss. Averaged

across all watersheds, the mean probability of measuring a statistically significant

41% reduction in FWNC across 15 yr, should it occur, was 96%. However, the

probabilities of measuring 41% reductions in nitrate load and yield were only 44 and

32%. Across watersheds, soil organic matter, tile drainage, interannual variability of

precipitation, and watershed area accounted for interannual variability in these nitrate

loss indices. Our results have important implications for setting realistic timelines

to measure nitrate loss reductions against the background of interannual weather

variation and can help to target monitoring intensity across diverse watersheds.

1 INTRODUCTION

The Mississippi Atchafalaya River basin (MARB) is the third-

largest river basin in the world. Thirty-one states plus two

Canadian provinces drain into the MARB, totaling 41% of

the contiguous land area of the United States and 15% of

Abbreviations: FWNC, flow-weighted nitrate-nitrogen concentration;

MARB, Mississippi Atchafalaya River basin; SOM, soil organic matter.
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North America (Alexander et al., 2008). These lands also

play a major role in the production of various crops, such

as maize (Zea mays L.), soybean [Glycine max (L.) Merr.],

wheat (Triticum aestivum L.), rice (Oryza sativa L.), and cot-

ton (Gossypium hirsutum L.) (USDA-NASS, 2017). In this

region, the introduction of synthetic N fertilizer was coin-

cident with a 50–300% increase in crop productivity and

enabled the widespread adoption of a cropping system that

includes only two warm-season annual crops: maize and
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soybean (Hatfield et al., 2009). Together, synthetic N fertilizer

inputs and fallow periods when soil N mineralization occurs

in the absence of plant N uptake have led to a large increase

in nitrate losses that impairs local and regional waterways

(David et al., 2010; Martinez-Feria et al., 2018).

Locally, high nitrate losses cause high nitrate concentra-

tions in surface water and groundwater that harm aquatic

ecosystems and challenge water utilities by exceeding the

USEPA drinking water standard of 10 mg NO3
––N L−1

(USEPA, 2015). Regionally, nitrate losses from corn and soy-

bean croplands in the upper Midwest are the leading cause of

a hypoxic zone in the Gulf of Mexico. The size of the annually

occurring hypoxic zone, which is associated with the annual

nitrate load (kg NO3
––N yr−1) and flow-weighted nitrate con-

centration (FWNC; mg NO3
––N L−1), fluctuates from <500

to >22,730 km2 yr−1 (National Oceanic and Atmospheric

Administration, 2021). The USEPA has set a goal to reduce

the average annual size of the hypoxic zone from ∼15,000 to

∼5,000 km2 by 2035.

Recognizing that weather and discharge are large drivers of

the interannual variability in the size of the hypoxic zone (Lu

et al., 2020), the USEPA evaluates progress toward this goal

by using the 5-yr moving average of the size of the hypoxic

zone. The moving average helps to control for the large effect

of interannual weather variability on the size of the hypoxic

zone and thus allows trends in size to be more accurately

attributed to changes in MARB land use and management.

Consistent with this approach, total water flow rather than

nitrate concentration explains most variation in nitrate losses

from croplands across space and time (Martinez-Feria et al.,

2018). However, land use is the primary mechanism through

which weather influences nitrate losses. In perennial vegeta-

tion, nitrate losses are low, and the impact of weather on inter-

annual variation in nitrate losses is very small (Randall et al.,

1997). In contrast, under annual crops, nitrate losses are high,

and the impact of weather is substantial; most nitrate losses

occur during long fallows when maize or soybean water and

N demand is low or zero, but microbes are transforming soil

organic matter (SOM) N to ammonium and subsequently, via

nitrification, to nitrate (Christianson et al., 2012; Dietzel et al.,

2016; Martinez-Feria et al., 2018).

Despite little change in land use over the last 20–30 yr

in the MARB, annual nitrate loading to the Gulf of Mex-

ico has varied by ∼500%. Although annual cropping sys-

tems are the reason nitrate loads are high (Alexander et al.,

2008; David et al., 2010), much of the interannual varia-

tion in nitrate loads can be attributed to weather (Wan et al.,

2017). For example, in the month of May (which is most

predictive of the size of the hypoxic zone), dissolved nitrite

plus nitrate flux to the Gulf of Mexico during the drought

of 2012 was ∼60,000 Mg and increased by nearly 300% to

∼175,000 Mg in 2013 (Loecke et al., 2017). Across the same

two years, average FWNC across the 29 Iowa watersheds stud-

Core Ideas
∙ Nitrate losses in annual crop systems are high

owing to long periods of fallow.

∙ Interannual variability in nitrate losses is high due

to interannual variability in weather.

∙ Interannual weather variability challenges our abil-

ity to measure long-term trends in nitrate loss.

∙ Our ability to measure long-term trends is best with

flow-weighted nitrate concentration.

∙ The probability of measuring long-term trends

owing to changes in management varies across

watersheds.

ied herein increased by 83% from 5.4 to 9.9 mg NO3
––N L−1.

Moreover, the effect of weather can vary across space owing

to differences in land use and physiography. For example,

the percentage of cultivated area and hydrological features

(e.g., discharge and soil texture) can affect FWNC and loads

(David et al., 2010).

High year-to-year variability in nitrate loss can lead to

spurious conclusions about land-use–related increases or

decreases (Spijker et al., 2021). For example, the load may

significantly increase or decrease over some number of years

owing solely to interannual weather patterns (Øygarden et al.,

2014); indeed, this is why the size of the hypoxic zone is

evaluated using a 5-yr moving average. By quantifying and

explaining the interannual variation in FWNC, load, and

yield—in the absence of land-use change—we can identify

watersheds that may require more or less time to detect an

effect of land-use change on nitrate loss and set realistic time-

lines to measure changes in nitrate loss owing to land use and

management.

There is a critical need to quantify and understand inter-

annual variation in nitrate loss associated with weather

variability. The interannual variation in nitrate loss due to

weather has a direct effect on the ability to detect the effect

of changes in land use and management on nitrate loss

(Figure 1). The greater the interannual variation in nitrate

losses due to weather, the more difficult it will be to detect

trends that result from changes in land use and management.

To this end, the ability to observe non–weather-related

changes in nitrate loss is affected by three variables: the mean

and standard deviation of nitrate loss metrics (FWNC, load,

and yield) in the absence of non–weather-related changes, the

amount of non–weather-related change in mean annual nitrate

loss (increase or decrease), and the amount of time during

which that change occurs. Our objectives were (a) to quantify

the interannual variability of the average annual FWNC (mg

NO3
––N L−1), load (Gg NO3

––N watershed−1), and yield (kg

NO3
––N ha−1 cropland) across 29 watersheds in Iowa from
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F I G U R E 1 The challenge associated with

measuring reductions in nitrate loss. Squares

are the annual nitrate load; blue circles are the

5-yr moving average nitrate load. The solid line

is the mean 5-yr moving average; dashed lines

are 1 and 2 SD of the mean. The continued lines

beyond 2018 represent a simulated 41%

reduction in the mean 5-yr moving average load

over 15 yr. Data are from watershed ID 2

(Supplemental Figure S2). Given a lack of

change in watershed land use or trend in 5-yr

moving average nitrate load from 1980 to 2018,

we attribute the interannual variability in nitrate

load from 1980 to 2018 to interannual

variability in weather. If a change in land use

beginning in 2018 produces a 41% reduction in

the 5-yr moving average nitrate load over 15 yr,

in 2025 it would be possible to observe an

increase (red circle) or >41% decrease (green

circle) in load due to the random effect of

weather on load (i.e., “the luck of the draw”).

We estimate the probability of these outcomes

using Monte Carlo simulation

2006 to 2018; (b) to estimate the probability of measuring

41% reductions in FWNC, load, and yield, should they occur,

across periods of 5, 10, and 15 yr against the background of

interannual weather variation; and (c) to identify factors that

best explain the interannual variability in nitrate losses across

the watersheds. We selected a 41% reduction because this is

the target reduction for non-point source N loads in the Iowa

Nutrient Reduction Strategy (IDNR, 2017). The 41% reduc-

tion was selected by the Strategy based on a targeted reduction

in the size of the hypoxic zone of 45% and the fact that 91%

of Iowa’s contribution to nitrate load (i.e., 41 of 45%) is from

non-point sources, which in Iowa are maize and soybean

croplands.

2 MATERIALS AND METHODS

We analyzed a comprehensive long-term water quality and

quantity dataset that includes NO3
––N concentration and dis-

charge (Q) for 29 watersheds in Iowa from 2001 to 2018

(Figure 2; Supplemental Materials). The 29 watersheds cover

63.5% of Iowa’s total surface area and 64% of Iowa’s crop-

lands. They range in size from 89 to 20,155 km2.

Using monthly data and daily data when and where avail-

able, we calculated annual flow-weighted average NO3
––N

concentration (mg NO3
––N L−1), annual NO3

––N load (Gg

NO3
––N watershed−1 yr−1), and NO3

––N yield (kg NO3
––N

ha−1 cropland). Nitrate-N yields were estimated using only

maize and soybean croplands, which were the major crops

cultivated in each watershed (mean = 95% of cropland, across

all years and watersheds). The dataset includes 6,379 monthly

measurements and 10,325 daily measurements.

Next, using 5-yr moving averages of the three variables,

we analyzed each of the 29 watersheds for statistically sig-

nificant linear trends (a linear model fit to the data with

p < .05) in the three nitrate loss variables from 2006 to 2018.

We used the 5-yr moving averages to be consistent with the

established method for for evaluating causal effects (i.e., non–

weather-related) associated with the size of the Gulf of Mex-

ico Hypoxic Zone. We tested for significant linear trends in

the 5-yr moving averages of the three nitrate loss variables

from 2006 to 2018 because our objective was to determine

the interannual variation in these variables owing to inter-

annual variation in weather and the probabilities of measur-

ing temporal trends in reductions in FWNC, load, and yield,

should they occur. Hence, we eliminated watersheds with sig-

nificant changes in the nitrate loss variables from analyses

of Monte Carlo simulations (see below). After eliminating

watersheds with significant linear trends in nitrate loss vari-

ables, we retained 17 watersheds without trends in FWNC and

load and 26 watersheds without trends in yield. In an attempt

to explain why there were significant trends in FWNC and

load for 12 watersheds, we quantified the changes in land use

(percent corn and soybean croplands) and discharge for each

watershed using 5-yr moving averages from 2006 to 2018.

Neither explained the significant trends in FWNC. Although

the rate of change in land use did not explain the rate of change

in load, the rate of change in discharge explained a large pro-

portion of the across-watershed variation in the change in load

(R2 = .94; Supplemental Materials).
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F I G U R E 2 Watersheds evaluated in this study. Yellow circles indicate the sample locations. Different colors within each watershed indicate

the hydrographic network. The watershed number corresponds to Supplemental Table S1. The dataset was curated by the Iowa Department of

Natural Resources Ambient Water Monitoring Program (IDNR, 2017). Daily discharge is taken from USGS stream gauges. The NO3
––N

concentration was measured during the first week of the month in 16 watersheds from 2001 to 2018 and in 13 watersheds from 2001 to 2008. In the

13 watersheds with monthly measurements from 2001 to 2008, the installation of automatic sensors allowed daily measurements from 2012 to 2018;

the sensors are operated and maintained by the USGS and the University of Iowa. In watersheds with monthly measurements, water was sampled

during the first week of the month when the watershed outlet was not frozen or dry. In watersheds with monthly sampling, linear interpolation

between the samplings during the first week of consecutive months was used to estimate daily NO3
––N concentration such that concentration

measurements of 2 mg NO3
––N L−1 on 1 March and 4 mg NO3

––N L−1 on 1 April would result in a linear daily increase of 0.0645 mg NO3
––N L−1

d−1 across the 31 unmonitored days. In watersheds with daily measurements, sensors were removed just before freezing and installed shortly after

thawing. Most watersheds and years include measurements from April through October. We used watersheds and years with daily measurements, to

quantify how daily vs. monthly sampling affects the estimate of mean annual flow-weighted NO3
––N concentration (FWNC). Although estimates of

mean annual FWNC for individual watersheds did not significantly differ with the two sampling approaches, the difference in mean annual FWNC

ranged from −15 to 22%

Nevertheless, significant trends in nitrate loss variables

over time do not necessarily indicate that changes in land use

and management were the cause of the trend because the sig-

nificant linear trends could represent Type I statistical errors

(i.e., rejection of the null hypothesis that there is no trend

in the 5-yr moving average of the three nitrate loss variables

from 2006 to 2018 when in fact the null hpothesis was true;

there was no temporal trend [see Figure 1]). Still, we elim-

inated these watersheds from further analyses because our

main objective was to quantify the interannual variability in

FWNC, load, and yield that are associated with interannual

weather variability. We measured the interannual variation in

FWNC, load, and yield in each of the remaining watersheds as

the CV of the 5-yr moving average of each of these variables

across the 13-yr datasets.

2.1 Monte Carlo analysis

We used Monte Carlo simulations (Raychaudhuri, 2008) fol-

lowing the approach of Parkin et al. (2012) to estimate the

probability of measuring a 41% reduction in the 5-yr moving

annual average FWNC, NO3
––N loads, and NO3

––N yield,

should they occur, owing to changes in land use and manage-

ment in the context of interannual variation in these variables

that was observed from 2006 to 2018 in the absence of statis-

tically significant linear trends over time. Monte Carlo simu-

lations use the mean and distribution of a population to gener-

ate a random draw. For example, using a normally distributed

population with a mean of 100 and a standard deviation of

20, 68% of the draws will fall within 80 and 120 and 95% of

the draws will fall within 60 and 140; 2.5% of the draws will
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be <60 and 2.5% of the draws will be >140. Using Monte

Carlo simulations with five consecutive draws, one can esti-

mate the probability of drawing 30, 40, 50, 60, 70—data that

would result in a good lieanr model fit. We estimated the prob-

ability of measuring the 41% reductions in FWNC, load, and

yield, should they occur, across periods of 5, 10, and 15 yr

into the future such that the rate of reduction was greatest in

the 5-yr scenario and least in the 15-yr scenario. To do this,

we adjusted the mean and standard deviation of the popula-

tion every year into the future so that the probability of ran-

dom draws with high FWNC, load, and yield decreased every

year due to progress toward the 41% reduction but remained a

possibility due to interannual variation in weather (i.e., “back-

ground variability”; Figure 1).

The Monte Carlo simulations were conducted by generat-

ing variates from the unit normal distribution using the Box–

Muller algorithm (Box & Muller, 1958) and the Microsoft

Excel @RAND function. Our analyses assume that the CV of

our data does not change with land use–associated reductions

in FWNC, NO3
––N loads, or NO3

––N yield (i.e., the stan-

dard deviation of FWNC, NO3
––N load, and NO3

––N yield

changes in proportion to the mean FWNC, load, and yield).

We tested this assumption by exploring relationships between

CVs of FWNC, load, and yield and the percent cropland for

each watershed. The CV of FWNC was not associated with

land use. The CVs of yield and load were negatively asso-

ciated with percent cropland (see Results). Hence, our results

for load and yield may overestimate the probability of measur-

ing a reduction in nitrate load and yield, should it occur, due

to a change in land use if the reduction in croplands increases

year-to-year variation in NO3
––N load and yield. Neverthe-

less, the relationship between land use and CVs of load and

yield may not be causal; some other factor that leads to high

percent cropland within a watershed may also cause the rela-

tively low CVs of load and yield in these watersheds (e.g., soil

type); in this case the CVs of load and yield may not increase

with a decrease in croplands.

In each watershed without temporal trends in nitrate loss

indices from 2006 to 2018, we simulated a 41% reduction in

mean annual FWNC, load, and yield linearly across time for

each of the three time periods (5, 10, and 15 yr) such that in

the 10-yr scenario, 20.5% of the reduction was achieved by

Year 5 and 41% was achieved by Year 10. We simulated the

41% reductions 5,000 times [(17 watersheds for FWNC + 17

watersheds for load + 26 watersheds for NO3
––N yield) × 3

time periods = 180 scenarios and 0.9 × 106 simulations]. The

number of watersheds differed for each nitrate loss variable

because some of these variables displayed significant linear

trends in 5-yr moving average losses from 2006 to 2018 for

some variables but not others. We assessed the ability to mea-

sure a reduction as a linear model (y = mx + b) fit to the simu-

lated 5-yr moving average FWNC, loads, and NO3
––N yields

with a statistically significant negative slope (p < .05). Sub-

sequently, we calculated the proportion of the 5,000 simula-

tions that resulted in a significant negative slope for each of

the three nitrate loss variables. The proportion that was signif-

icant was equal to the probability of measuring the reduction

should it actually occur (e.g., 2,500 significant negative linear

slopes in 5,000 simulations is a 50% probability of measuring

the reduction).

The remaining simulations represented situations where the

interannual weather variability overwhelmed the ability to

detect the reduction with a linear model (Figure 1), result-

ing in a Type II statistical error (i.e., nonrejection of the null

hypothesis that there was no trend in nitrate loss when indeed

there was). We used a linear model because our goal was to

identify the clearest indicator of change that can be easily

communicated to stakeholders with limited scientific training.

There are statistical and process models that are designed to

detect trends in nitrate loss despite interannual variation (e.g.,

weighted regressions on time, discharge, and season [Hirsch

et al., 2010]); that is, situations where a reduction occurred

but a linear model could not be fit to the data because of the

probabilties of a given random draw from the population (e.g.,

Figure 1).

2.2 Explanatory variables

To understand which factors best explain the interannual vari-

ability in nitrate losses from the Iowa watersheds, we explored

a variety of weather, soil, management, and land use vari-

ables and conducted a statistical analysis to explain the across-

watershed variation in the CVs of FWNC, NO3
––N load,

and NO3
––N yield. We specifically selected variables that are

available in public databases. The dominant land use in Iowa

is agriculture, comprised primarily of the annual crops corn

and soybean. We used USDA land classification data and cal-

culated annual cropland area based on 30-m resolution rasters

for the period 2006–2018 (USDA-NASS, 2017). The percent-

age of croplands in each watershed was deterimed by sum-

ming corn and soybean croplands.

Digital soil information was obtained from the Iowa Grid-

ded Soil Survey Geographic (gSSURGO), a GIS grid cover-

age of statewide soil series available at 10-m resolution. For

each watershed we estimated mean percent SOM from 0 to

30 cm of the cultivated area by intersecting the land classifi-

cation data and soil gridded maps.

Precipitation data for the 2006–2018 period was obtained

from Daily Surface Weather and Climatological Summaries

(Oak Ridge National Library, 2020). We calculated for each

watershed annual precipitation from daily data on a 1 km by

1 km gridded surface. We calculated the interannual variabil-

ity of precipitation using the coefficient of variation.

We used tile-drained areas, based on 30-m resolution

drained lands following Valayamkunnath et al. (2020), who
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F I G U R E 3 Coefficients of variation of

5-yr moving average flow-weighted NO3
––N

concentration (FWNC, mg NO3
––N L−1),

nitrate load (kg NO3
––N watershed−1), and

nitrate yield (kg NO3
––N ha−1 cropland). Each

point represents the CV of an individual

watershed across the 13-yr monitoring period

(2006–2018). The horizontal line represents the

median; the edges of each notch represent the

upper and lower quartile

estimated the area of tile-drained lands based on four criteria:

(a) the county-level tile drainage area (ha) from USDA Cen-

sus of USDA-NASS (2017), (b) the National Land (Homer

et al., 2012) cropland mask at 30-m resolution, (c) the mean

slope from Shuttle Radar Topography Mission Digital Ele-

vation Model derived slope (%) at 30 m, and (d) the spatial

pattern of soil drainage characteristics based on the SSURGO

database at 30 m. The percentage of tile-drained areas was cal-

culated for each watershed. The analysis incorporated data on

an annual basis, and data were averaged for the 13-yr period

from 2006 to 2018.

We used linear regression to quantify acoss-watershed vari-

ation in the CVs of nitrate loss metrics that could be accounted

for by individual explanatory variables such as soil properties

and land uses. The specific variables are described in Supple-

mental Table S1. We present explanatory variables that were

not colinear. We used simple linear regressions to maximize

the utility and transferability of our analyses to other water-

sheds.

3 RESULTS

3.1 Magnitude, variability, and trends in
nitrate losses

The interannual variability in 5-yr moving average nitrate

load was greater than the interannual variability in FWNC

or nitrate yield (Figure 3). Mean annual 5-yr moving average

FWNC across the 29 watersheds ranged from 0.6 to 15.5 mg

NO3
––N L−1 (mean, 6.7; SD, 2.9). The CV of the 5-yr mov-

ing average FWNC across the 29 watersheds ranged from 4 to

23.3% (mean, 11.4; SD, 5.2). Mean annual 5-yr moving aver-

age NO3
––N load across the 29 watersheds ranged from 0.07

× 106 to 58 × 106 kg NO3
––N yr−1 (mean, 6.1; SD, 9.1). The

CV of the 5-yr moving average NO3
––N load across the 29

watersheds ranged from 17.3 to 48.2% (mean, 27.8; SD, 7.9).

Mean annual 5-yr moving average NO3
––N yields across the

29 watersheds ranged from 3.6 to 78.7 kg NO3
––N ha−1 of

maize and soybean croplands (mean, 28.6; SD, 12.15). The

CV of of the 5-yr moving average annual NO3
––N yield across

the 29 watersheds ranged from 17.6 to 52.1% (mean, 29.1; SD,

8.7).

Across the 29 watersheds, from 2006 to 2018, there were

increases and decreases in the 5-yr moving average FWNC

(−0.29 to +0.33 mg NO3
––N L−1 yr−1) and yield (−1.17 to

+1.43 kg NO3
––N ha−1 croplands yr−1). In contrast, in 28 of

the 29 watersheds over the same period, there was an increase

in the 5-yr moving average nitrate load (−0.009 to 1.43 ×
106 kg NO3

––N watershed−1 yr−1). Of these trends in the

nitrate loss variables across the 29 watersheds, 12 were sig-

nificant for FWNC, 12 were significant for load, and 3 were

signifciant for yield (Figure 4). These watersheds were elim-

inated from further analyses.

3.2 Monte Carlo simulations

The probability of measuring a 41% reduction in FWNC was

greater than the probability of measuring a 41% reduction

in load and yield, should they occur, against the background

of interannual variation (Figure 5). Across the 17 watersheds

included in our simulations of a 41% reduction in FWNC, the

probability of measuring a significant (p < .05; see Materi-

als and Methods) 41% reduction over a 5-yr period ranged

from 23.4 to 99.8% (mean, 68%; median, 71.2%; SD, 26.3).

The probabilities of measuring the same reductions in FWNC

across the 17 watersheds over periods of 10 and 15 yr ranged

from 51.7 to 100% (mean, 90; median, 100; SD, 15) and from

71.1 to 100% (mean, 95.6; median, 100; SD, 8), respectively

(Figure 5).

For the 17 watersheds included in our simulations of a 41%

reduction in NO3
––N load, the probability of measuring a

significant reduction over 5 yr was below 25.5% in all 17
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F I G U R E 4 Rate of change in 5-yr moving average annual flow-weighted nitrate concentration (FWNC, mg NO3
––N L−1), nitrate load (kg

NO3
––N watershed−1), and nitrate yield (kg NO3

––N ha−1 cropland) across the 29 watersheds calculated as the linear slope of each variable across

years (2006–2018). Blue indicates a decrease; red indicates an increase in the nitrate loss variable. Bars with bolded outlines indicate a significant

(p < .05) linear model fit to the data. The watershed ID (y axis) corresponds to Figure 2

F I G U R E 5 The probability of measuring a significant reduction in flow weighted NO3
––N concentration (FWNC; mg NO3

––N L−1), nitrate

loads (kg NO3
––N yr−1), and nitrate yields (kg NO3

–-N ha−1 cropland yr−1) should a change in land use and management produce a 41% reduction in

each of the nitrate loss variables over periods of 5, 10, and 15 yr (y axis)

watersheds (mean, 15.4; median, 13.9; SD, 7.5). The prob-

abilities of measuring the same reductions in annual NO3
––N

load over 10 and 15 yr ranged from 13.6 to 55.3% (mean, 31.1;

median, 27.5; SD, 13.5) and from 18.3 to 74% (mean, 43.8;

median, 38.9; SD, 18.4), respectively.

Across the 26 watersheds included in our simulations of

NO3
––N yield, the probability of measuring a significant

reduction over 5 yr ranged from 5.5 to 27.5% (mean, 12.1;

median, 9; SD, 6.1). The probabilities of measuring the same

reductions over 10 and 15 yr increased and ranged from 8.7

to 59.7% (mean, 23.1; median, 16.2; SD, 14.3) and from 10.9

to 78.8% (mean, 32.1; median, 23.1; SD, 19.6).

There was a strong relationship between the probability of

measuring reductions in FWNC, loads, or yields and the mean

annual CV of these variables across the time period of analy-

sis (2006–2018). The larger the CV, the lower the probability

of measuring a signinificant reduction. The shorter the time-

line to a reduction (e.g., 5 vs. 15 yr), the lower the probability
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F I G U R E 6 The relationship between the probability of measuring significant reductions in flow-weighted NO3
––N concentration (FWNC; mg

NO3
––N L−1), nitrate loads (kg NO3

––N yr−1), and nitrate yields (kg NO3
––N ha−1 cropland yr−1), and the CV of these variables calculated as in

Figure 1. Second-degree polynomial and power equations were fit to simulated data (lines) for all three scenarios and all three dependent variables

of measuring a significant reduction (Figure 6) due to lower

statistical power associated with fewer data (fewer years).

3.3 Factors that explain the variability in N
losses

The across-watershed variability in CVs of FWNC, load, and

yield was explained by dynamic and static factors. The across-

watershed variability in FWNC CVs was best explained by

the percentage of SOM from 0 to 30 cm (R2 = .46; data

not shown) (Supplemental Materials). In contrast, the across-

watershed variability in CVs of loads and yields was explained

by percentage of the watershed land use in crops, the CV

of annual precipitation, and watershed size (Figure 7). The

area of corn and soybean croplands, interannual variability

of precipitation, and watershed area did not explain across-

watershed variability in FWNC CVs.

4 DISCUSSION

Despite the use of 5-yr moving averages to evaluate changes

in nitrate loss, interannual variability in nitrate loads and

yields remains mostly explained by interannual variability

in weather (Figure 7); hence, the probabilities of measuring

large reductions in nitrate loss, should they occur, over peri-

ods of 5–15 yr remain low (Figures 5 and 6). This is a critical

finding because progress toward water quality improvement

goals is often evaluated with 5-yr moving averages of nutri-

ent loss indices (IDNR, 2017; USEPA, 2015). In the water-

sheds examined herein, background interannual variability in

FWNC, nitrate load, and nitrate yield were typically too large

to measure statistically significant 41% reductions in these

variables on management-relevant timescales; despite larger

annual reductions associated with a 41% reduction over 5

vs. 15 yr, it was more difficult to detect the detection across

the shorter monitoring period due to lower statistical power

and potentially the effects of irregular climate patterns such

as the El Niño Southern Osciliation. Hence, in addition to

water quality monitoring, which remains critical, evaluations

of progress toward water quality goals should include indi-

cators of variables that are known to reduce nutrient loss,

such as inventories of land use (e.g., percent arable crop-

lands, pasture, forest, etc.) and land management practices

(e.g., denitrification wetlands, cover crops, etc.). Estimates of

the implementation of the land use management practices that

are known to reduce nitrate loss indicate that implementation

requirements are enormous. For example, the Iowa Nutrient

Reduction Strategy identifies seven scenarios of practice

implementation that could produce the targeted 41% reduc-

tion. One scenario includes application of the university-

recommended N fertilizer rate on all corn croplands, 27%

of drained croplands treated with denitrification wetlands,

and 60% of drained croplands treated with a denitrification

bioreactors (IDNR, 2017). Winter cover crops, which are not

included in this scenario, can also reduce nitrate loss, but the

average reduction produced by cover crops is 31%, whereas

the target loss reduction is 41% (IDNR, 2017).

Nevertheless, some nitrate loss metrics were more robust

to interannual variability than others. Our results suggest

that FWNC is the most responsive indicator of changes in

nitrate loss due to land use change and management. This

is consistent with the fact that discharge, like precipitation,

accounts for much of the variability in nitrate load and none of

the variability in FWNC (Figure 7; Supplemental Materials).
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F I G U R E 7 Linear and second-degree polynomial regressions were fit to the CV of flow weighted NO3
––N concentration (FWNC; mg

NO3
––N L−1), nitrate loads (kg NO3

––N yr−1), and nitrate yields (kg NO3
––N ha−1 cropland yr−1) as calculated for each watershed in Figure 1. The

shaded area represents the 95% confidence intervals

Indeed, FWNC is weighted to control for the rate of dis-

charge. Hence, the magnitude of FWNC may be driven more

by land use, although the data we had access to, includ-

ing change in land use, could not explain changes in FWNC

when they occurred (Figure 4). Nevertheless, at the plot scale,

FWNC has been successfully used to identify management

effects (e.g., N fertilizer rate and timing, crop variety, etc.)

on nitrate loss when there was no effect or a lesser effect of

management on load (e.g., Lawlor et al., 2008; Randall et al.,

2003). Most past research has focused on annual nitrate load

because load is the main driver of the size of the hypoxic zone

(Goolsby et al., 2000; Rabalais et al., 2002); however, FWNC

does explain some variation in the size of the hypoxic zone

(Richards et al., 2021).

Future work should aim to understand if near-term changes

in FWNC are predictive of long-term changes in nitrate load

and yield. The lower CV of mean annual FWNC compared

with nitrate load and yield across all watersheds and years

(Figure 3) demonstrates that management-related changes in

FWNC can be measured more rapidly than changes in nitrate

loads and yields. However, an important question remains: Do

changes in FWNC, which can be detected relatively rapidly

owing to low year-to-year variability, foreshadow correspond-

ing changes in load and yield that take longer to detect owing

to high year-to-year variability?

Our results suggest that FWNC may serve as an early

indicator of management-related changes in nitrate loss that

is relatively robust to year-to-year variability in weather. In

a wet year following drought in 2012, the mean FWNC

increased by only 83%, in contrast with loads and yields,

which increased by 663 and 529%. Moreover, we found that

the across-watershed variability in FWNC, loads, and nitrate

yields are all explained to some extent by land use, manage-

ment, and soils (Figure 7).

Nevertheless, in our dataset, we observed inconsistent

trends in FWNC, nitrate load, and nitrate yield. In 28 of the

29 watersheds, the 5-yr moving average annual NO3
––N load

increased from 2006 to 2018, and the increase was significant

in 12 of these watersheds. In contrast, the 5-yr moving annual

average FWNC and nitrate yield from 2006 to 2018 did not
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consistently increase; in the 12 watersheds with significant

trends in FWNC, six were increasing and six were decreas-

ing (Figure 4). These results indicate there may be progress

toward nitrate loss reductions despite recent increases in loads

because FWNC and NO3
––N yields reduce the interannual

variability of weather and are more closely associated with

land use and management within each watershed (Schilling

& Libra, 2000, 2004). Indeed, 5-yr moving average discharge

from 2006 to 2018 increased in all 29 waterhseds (Supple-

mental Materials).

We explored watershed-scale properties that are associated

with relatively fast or slow timelines to measuring reductions

in nitrate loss (i.e., high or low CVs over the 2006–2018

dataset; Figure 6), purposefully selecting variables from pub-

licly available databases to demonstrate the potential to trans-

fer our concepts to other states and watersheds. The FWNC

CV was primarily explained by the positive relationship with

SOM, indicating that interannual variability in soil N miner-

alization may explain some of the interannual variability in

FWNC. Indeed, isotope tracer studies demonstrate that most

N uptake by the crop and N loss to the environment is derived

from SOM rather than N fertilizer (Castellano & David, 2014;

Gardner & Drinkwater, 2009). Consistent with this concept,

nitrate loss from fertilized corn and unfertilized soybean crops

is similar (Christianson et al., 2012), likely because most

nitrate loss occurs in the spring when N mineralization from

SOM exceeds crop N demand (Martinez-Feria et al., 2018).

In north-central Iowa, soils have large pools of SOM; hence,

there could be large interannual fluctuations in soil N min-

eralization, especially given the high interannual variability

in precipitation in this region (Knapp & Smith, 2001). In

southern Iowa, soils have relatively low SOM levels and low

FWNC CVs (Figure 5). Interestingly, soils with high SOM

also have high area of cropland and N fertilizer inputs, but

we did not find a correlation between FWNC CV and area of

corn and soybean croplands (Figure 7). In contrast to FWNC,

we observed opposite patterns for nitrate loads and yields.

For these variables, watershed properties associated with dis-

charge were the major driver. This was no surprise because

discharge is well known to be the most important control on

total nitrate load (Randall et al., 1997).

Our results are the first to quantify interannual variability

in nitrate loss in the absence of long-term directional trends.

We attribute this variability to weather and quantified the time

required to measure changes in nitrate loss due to other fac-

tors, such as changes in land use and management should they

occur. Our results can inform required monitoring intensity

to measure directional changes in water quality and identify

watersheds where we can more quickly measure changes in

nitrate loss variables owing to changes in land use (Figure 5).

Our approach differs from methods that aim to detect changes

in losses that are due to changes in land use but masked by

internnaual variability in precipitation and discharge (e.g.,

Hirsch et al., 2010). Our approach can be applied to set real-

istic goals for measuring absolute reductions in nitrate load to

the Gulf of Mexico and, alternatively, to quantify the proba-

bility of measuring spurious increases or decreases in nitrate

loss (Type II errors) due to particular weather patterns (e.g.,

several wet or dry years) rather than changes in land use and

management.
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