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ABSTRACT

Computational prediction of separated flows is an area of interest, specifically in applica-

tions to gas turbine engines, liquid pumps, and many other engineering applications. Although

these types of flows are governed by the Navier-Stokes equations, direct numerical simulation

(DNS) of practical engineering flows is currently too expensive in terms of the required com-

putational time. It is therefore a case to attempt simulation of these flows using the Reynolds-

Averaged Navier-Stokes (RANS) equations which must be closed by utilizing a turbulence

closure model.

The present study used the NASA Glenn-HT code, a compressible Navier-Stokes solver,

with two different turbulence models, the v2−f model of Durbin and the ζ−f model of Hanjalić,

to observe their abilities to predict separated flows. The elliptic relaxation turbulence models

and their implementation in Glenn-HT are described. Three cases are described to show the

ability and limitations of these turbulence models.
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CHAPTER 1. OVERVIEW

Computational prediction of separated flows is an area of interest, specifically in applica-

tions to gas turbine engines, liquid pumps, and many other engineering applications. Although

these types of flows are governed by the Navier-Stokes equations, direct numerical simulation

(DNS) of practical engineering flows is currently too expensive in terms of the required com-

putational time. It is therefore a case to attempt simulation of these flows using the Reynolds-

Averaged Navier-Stokes (RANS) equations which must be closed by utilizing a turbulence

closure model.

The objective of this study was to employ two different turbulence models, namely the

v2−f model of Durbin and the ζ−f model of Hanjalić, and to observe their abilities to predict

separated flows. Calculations were performed using the NASA Glenn-HT code, a compressible

Navier-Stokes solver. The previously implemented v2 − f model and the newly implemented

ζ − f model were both formulated in an implicit scheme which was solved using the GMRES

iterative matrix solver. Three experimental cases were considered and the computational and

experimental results were compared.

This thesis begins with a brief overview of turbulence modeling using eddy viscosity models,

followed by motivation and description of the elliptic relaxation turbulence models, specifically

v2 − f and ζ − f models. There is also a concise description of the Glenn-HT code along with

details involving the implementation of turbulence models. Finally, the three cases and their

numerical results are discussed.
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CHAPTER 2. METHODS

2.1 Turbulence Modeling

Turbulence is defined by Durbin (2004) as the highly irregular flow of fluids, and is governed

by the exact, Navier-Stokes, momentum equations. Although direct numerical simulation

(DNS) of turbulent flows is possible, it is impractical for flows of interest because of the

excessive computational requirements. In order to reduce the computational expense, the

Reynolds-averaged Navier-Stokes (RANS) equations are employed. They require the addition

of a turbulence model to achieve closure. Two eddy viscosity models, the v2 − f elliptic

relaxation model of Durbin, and a similar ζ − f model of Hanjalić, have shown very promising

results in previous cases (Ameri, Ajmani 2004, Hanjalić, et. al. 2004, Durbin 1995) and have

been shown to accurately predict heat transfer, skin friction, and boundary layer separation.

This chapter gives a brief introduction into Reynolds-Averaging of the Navier-Stokes equa-

tions, eddy viscosity modeling, specifically elliptic relaxation models, and also the equations

which constitute the v2 − f and ζ − f models. In addition, a brief overview of the Glenn-HT

code and implementation of the ζ−f model will be given; a complete description can be found

at Steinthorsson, et. al. (1999).

2.1.1 Reynolds-Averaged Navier-Stokes Equations

The momentum and continuity equations govern (Newtonian) viscous flows

∂tρũi + ∂jρũj ũi = −∂ip̃+ ∂j [µ (∂iũj + ∂j ũi)] (2.1)

∂tρ+ ∂jρũj = 0 (2.2)
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The idea of Reynolds Decomposition is that a random variable ũ can be represented as the

sum of it’s mean and fluctuating parts

ũ = U + u (2.3)

Averaging is denoted by an overbar. Then U ≡ ¯̃u and the fluctuation u is defined to be the

turbulence. At low Mach number, compressibility of the turbulence equations can be ignored,

while it is maintained in the mean flow equations.

The Reynolds Decomposition Equation 2.3 is substituted into the Navier-Stokes Equations

2.1 and 2.2 and the result is the Reynolds-averaged Navier-Stokes (RANS) equations.

ρ∂tUi + ρUj∂jUi = −∂iP + ∂j [µ (∂iUj + ∂jUi)]− ∂j(ρ ujui) (2.4)

∂tρ̄+ ∂jρUj = 0 (2.5)

The last term in the averaged momentum equation, Equation 2.4, is a derivative of the

Reynolds stress tensor, which represents the averaged turbulent convection. To further inves-

tigate this Reynolds stress term, the fluctuating velocity equation can be written by subtracting

the RANS Equations 2.4 and 2.5 from the Navier-Stokes Equations 2.1 and 2.2

∂tui + Uk∂kui + uk∂kUi + ∂k(ukui − ukui) = −1
ρ
∂ip+ ν∇2ui (2.6)

Further manipulation (described in Durbin, Reif 2001) reveals the equation for the Reynolds

stress transport

∂tuiuj + Uk∂kuiuj = Pij + ℘ij −
2
3
εδij + Tij +

1
ρ
∂k(µ∂kuiuj) (2.7)

where the terms Pij , ℘ij , ε, and Tij are named production, redistribution, dissipation, and

turbulent transport, respectively. These terms are defined as

Pij ≡ −ujuk∂kUi − uiuk∂kUj (2.8)

℘ij ≡
1
ρ

(
−uj∂ip− ui∂jp+

2
3
δijuk∂kp

)
− 2ν∂kui∂kuj +

2
3
δijε (2.9)

ε ≡ ν∂kuj∂kuj (2.10)
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Tij ≡ −
(
∂kρukuiuj +

2
3ρ
δijuk∂kp

)
(2.11)

The equation for turbulent kinetic energy is one-half the trace of Equation 2.7

∂tρk + Uj∂jρk = ρP − ρε−
[
∂j

(
ujp+

1
2
ρujuiui

)
+ ∂i(µ∂ik)

]
(2.12)

The mean rate of strain tensor is

Sij =
1
2

(∂iUj + ∂jUi) (2.13)

The rate of production of turbulent kinetic energy is

ρP = 2µtSijSji −
2
3
ρk∂iUi −

2
3
µt (∂iUi)

2 = 2µt|S|2 −
2
3
ρk (∇ · U)− 2

3
µt (∇ · U)2 (2.14)

The mean flow equations, Equations 2.4 and 2.5, are unclosed because these 4 equations

have 10 unknowns (P , Ui, and the addition of the Reynolds stress tensor components uiuj for

i = 1, 2, 3, j ≤ i). The goal of turbulence models is to provide closure to the RANS Equations

2.4 and 2.5. Turbulence models provide statistics of the complex, eddying motion to the mean

flow equations so the mean flow field can be predicted without the need to directly simulate

every detail of the flow. Using an additional set of relatively simple equations with empiricisms

for closure, an eddy viscosity µt is predicted, which is related to the mean flow equations, 2.4

and 2.5. A number of turbulence models, from simple algebraic models to more complex

Second Moment Closure (SMC) and Elliptic-Relaxation models can be found in Durbin, Reif

(2001) and Wilcox (1994).

2.1.2 v2 − f Model

The most widely used turbulence models today consist of two-equation eddy viscosity

models, commonly the k − ε and k − ω models. Elliptic relaxation models alter the near-wall

behavior of these two-equation models by solving an elliptic equation, instead of the normal

near-wall treatment.

The v2 − f model of Durbin introduces v2 as a “wall-normal” velocity scale. A transport

equation for this velocity scalar replaces the Reynolds stress tensor. Also, an elliptic relaxation



5

term, f , which is similar to a redistribution term, is used to sensitize v2 to the wall effect.

Although this model does not compute the complete stress field that is needed for flows with

secondary circulations, it is a better option than standard k − ε models, since it retains the

near-wall stress anisotropy which allows for accurate prediction of heat transfer, skin friction,

and boundary layer separation in turbulent flows (Durbin, Reif 2001).

The v2− f model is characterized by the familiar transport equations for k and ε as shown

in Equations 2.15 and 2.16.

∂t(ρk) + Uj∂j(ρk) = ρP − ρε+ ∂j

[(
µ+

µt
σk

)
∂jk

]
(2.15)

∂t(ρε) + Uj∂j(ρε) =
Cε1ρP − Cε2ρε

T
+ ∂j

[(
µ+

µt
σε

)
∂jε

]
(2.16)

The transport equation for the velocity scalar v2 is given as

∂t
(
ρv2

)
+ Uj∂j

(
ρv2

)
= ρkf − ρv2ε

k
+ ∂k

[(
µ+

µt
σ
v2

)
∂kv2

]
(2.17)

An elliptic equation for f , which brings in the effect of the walls, is given by

L2∇2f − f = −c2
P
k

+
c1
T

(
v2

k
− 2

3

)
(2.18)

Boundary conditions for no-slip walls are given for the four equations as

kw = 0, εw = lim
y→0

(
2νk
y2

)
, v2

w = 0, fw = limy→0

(
−20ν2v2

εy4

)
(2.19)

where y denotes the distance to the wall of the first cell center. The turbulent time scale, T ,

with realizability constraints, is reformulated for this model as

T = min

[
max

[
k

ε
, CT

√
ν

ε

]
,

αk√
3 v2Cµ|S|

]
(2.20)

Similarly, the turbulent length scale is

L = min

CLmax
k3/2

ε
, Cη

(
ν3

ε

)1/4
 , 1√

6
k3/2

Cµv2
√
S2

 (2.21)

Finally, the eddy viscosity, which is communicated to the mean flow equations, is computed as

µt = Cµρv2T (2.22)

One aspect of the v2 − f model is, unlike Reynolds stress models, Equations 2.15 and 2.16

can be solved uncoupled from Equations 2.17 and 2.18, which aids convergence. As with all

eddy viscosity models, empirical constants must be used. Table 2.1 gives these constants.
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c1 c2 CL CT Cη Cε1 Cε2 Cµ α σk σε σ
v2

0.4 0.3 0.3 6.0 70.0 1.3 + 1

4[1+(y/2L)2]4
1.92 0.19 0.6 1.0 1.3 1.0

Table 2.1 Constants for v2 − f Model

2.1.3 ζ − f Model

According to Hanjalić, et. al. (2004), the v2 − f model’s treatment of the wall boundary

for f , as shown in Equation 2.19, is computationally inefficient as it is sensitive to near-wall

grid clustering. Therefore, Hanjalić proposed a similar model, the ζ − f model, with the

goal of reducing the computational sensitivity by solving a transport equation for the velocity

scales ratio ζ = v2/k instead of the transport equation for v2. This model improves numerical

stability and robustness and reduces the sensitivity to near-wall grid clustering.

As in the v2 − f model, the k and ε equations are given as Equations 2.23 and 2.24

∂t(ρk) + Uj∂j(ρk) = ρP − ρε+ ∂j

[(
µ+

µt
σk

)
∂jk

]
(2.23)

∂t(ρε) + Uj∂j(ρε) =
Cε1ρP − Cε2ρε

T
+ ∂j

[(
µ+

µt
σε

)
∂jε

]
(2.24)

The transport equation for ζ is given by substituting ζ = v2/k into Equation 2.17

∂t(ρζ) + Uj∂j(ρζ) = ρf − ρζP
k

+ ∂k

[(
µ+

µt
σζ

)
∂kζ

]
+X (2.25)

Here X is the cross diffusion term caused by the transformation and can be written as

X =
2
k

(
µ+

µt
σζ

)
∂kζ∂kk (2.26)

In Hanjalić, et. al. (2004), the X is omitted in Equation 2.25 because the term is not

significant, except close to the wall. To account for this omission, some of the coefficients were

re-tuned. An elliptic equation for f is given as

L2∇2f − f =
1
T

(
c1 + c2

P
ε

)(
ζ − 2

3

)
(2.27)

Boundary conditions for the no-slip walls are given for the four equations as

kw = 0, εw = lim
y→0

(
2νk
y2

)
, ζw = 0, fw = lim

y→0

(−2νζ
εy2

)
(2.28)
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Note that the value for fw is more convenient compared with the fw of the v2− f model. The

denominator of fw is proportional to y2 instead of y4, which is larger as y → 0 and improves

numerical stability. The turbulent time scale, T , is given as

T = max

[
min

[
k

ε
,

α√
6Cµζ|S|

]
, CT

√
ν

ε

]
(2.29)

Similarly, the turbulent length scale, L, is represented by

L = CLmax

min [k3/2

ε
,

k1/2

√
6Cµζ|S|

]
, Cη

(
ν3

ε

)1/4
 (2.30)

The solution to these three transport equations and one elliptic equation leads to a field of

eddy viscosity

µt = CµρζkT (2.31)

The coefficients required by this model, which account for the omission of the cross diffusion,

X, are given in Table 2.2

c1 c2 CL CT Cη Cε1 Cε2 Cµ α σk σε σζ
0.4 0.65 0.36 6.0 85.0 1.4 (1 + 0.012/ζ) 1.9 0.22 0.6 1.0 1.3 1.2

Table 2.2 Constants for ζ − f Model

2.2 Description of Glenn-HT

The Glenn-HT code is described by Steinthorsson, et. al. (1999) to be “designed for

detailed and accurate simulations of turbomachinery flows and heat transfer that are aimed at

understanding the physical phenomena involved and evaluation of relevant physical models.”

This code will be briefly described in the present work; a much more detailed description is

found at Steinthorsson, et. al. (1999).

Three important design choices found in any CFD code are (i) structure, (ii) discretiza-

tion, and (iii) time stepping scheme. These choices, along with a brief description of the

implementation of turbulence models will be described.
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2.2.1 Grid Structure

Glenn-HT uses a locally structured but globally unstructured multiblock grid system. Struc-

tured grids are those whose gridpoints are arranged in a regular fashion, allowing the cells of

each block to be arranged in a sequential array. These structured blocks are then placed ad-

jacent to other blocks, leading to the multiblock grid system. The grid is considered to be

globally unstructured because of the ability to patch faces of adjacent blocks together but

allow for the presence of mesh singularities where, in two dimensions, three, five or more block

corners (or edges in three dimensions) come together. The resulting grid structure allows for

very complex geometries to be used.

A simple grid generator was written to generate the grids for the present study. This

grid generator used a two-surface method in the y-direction and z-direction to create smooth

grids. In addition, it allowed for clustering near no-slip walls. It also provided simple grid

decomposition for use on multi-processor computers.

2.2.2 Discretization

The continuity equation, Equation 2.5, the momentum equation, Equation 2.4, as well

as the total energy equation which is found in Steinthorsson, et. al. (1999) are solved by

Glenn-HT. These equations were discretized by finite volumes. The finite volume approach

writes the governing equations in integral form for each cell of the grid. Solutions are found

for mass, momentum, and total energy at cell centers and the fluxes through the cell faces

are computed. The solutions are integrated in time using an explicit multi-stage scheme,

constructed by Jameson, Schmidt, and Turkel. The discretized equations are marched in time

to a steady state using a fourth order Runge-Kutta time stepping scheme.

2.2.3 Nondimensionalization

The governing equations were nondimensionalized using a set of reference conditions, along

with the Prandtl number, which is taken to be constant

pref
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Tref

µref

Pr =
µcp
k

(2.32)

From the reference conditions, derived reference quantities were calculated

ρref =
pref
RTref

cref =
√
γpref
ρref

uref =
√
RTref =

cref√
γ

tref =
L

uref
(2.33)

Using the reference variables, the nondimensional quantities were defined as

p̃ = p/pref

T̃ = T/Tref

L̃ = L/Lref

ρ̃ = ρ/ρref

c̃ = c/cref

ũ = u/uref

t̃ = t/tref (2.34)

Also, a Code Reynold’s Number, Recode, is defined as

Recode ≡
urefLref
νref

(2.35)

2.2.4 Implementation of Turbulence Models

Turbulence models that were previously implemented in Glenn-HT include the Baldwin-

Lomax model , the k − ω model of Wilcox, and Durbin’s v2 − f models. The present work

implemented the ζ−f model of Hanjalić. The reason for the implementation of the v2−f and
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ζ − f models is their ability to accurately predict heat transfer, skin friction, and boundary

layer separation in turbulent flows.

The turbulence equations were decoupled from the mean flow equations and solved in an

implicit manner. In the v2 − f and ζ − f models, the k and ε equations were solved coupled

together, but uncoupled from the v2 (and ζ) and f equations, which were also solved in a

coupled manner. These two sets of coupled equations were solved with an iterative matrix

solver, GMRES, and the turbulent viscosity µt was calculated and related to the mean flow

equations.

In both the v2−f and ζ−f models, the diffusion terms were discretized with second order

central differences. The convective terms were discretized using first order upwind differences.

An explicit discretization was used for the source terms. Also, multigrid is not used for the

turbulence equations, although it can be used in the mean flow calculations.

2.2.5 Recirculating Boundary Condition

Another addition to the Glenn-HT code was the ability to recirculate flow from the exit

back into the inlet, as well as the ability to read in velocity profiles into the inlet boundary.

These additions allowed for a channel flow to be run, with recirculation, to produce a fully

turbulent velocity profile which could then be read into other cases which required this type

of inlet boundary condition.
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CHAPTER 3. CASE 1: 2-DIMENSIONAL CHANNEL FLOW

A simple channel flow was computed to validate that the implementation of the ζ−f model

was correct. This case was run with the Glenn-HT code with two turbulence models, Durbin’s

v2 − f Model, and Hanjalić’s ζ − f model. The purpose of this case was to determine if ζ − f

was properly implemented by comparing the results to separate, 1-D, solutions for channel

flow.

3.1 Description

A channel that measured 1 cm in height by 150 cm in length was run with a bulk inlet

velocity of around 1 m/s at a Reynold’s number of 10,000. The top and bottom sides were set

as no-slip walls, and the side walls were set as slipping walls, thus the flow was 2-D.

3.2 Grid

A grid was created using an in-house grid generator. This grid consisted of 8 blocks, and

each block had 17 gridpoints in the x-direction and 65 gridpoints in the y-direction. The z-

direction was kept at 5 gridpoints because the flow is two-dimensional. The side walls were

allowed to slip, while the top and bottom walls were set as a no-slip boundary. The grid was

clustered near the no-slip walls so the first cell from the wall had a y+ ≈ 1. Figures 3.1 and

3.2 show closeup 3-D and side views of the grid.

3.3 Numerical Results

The case was computed with both the v2 − f and ζ − f turbulence models. Figures 3.3

and 3.4 show the fully-developed streamwise velocity profiles from the wall to the centerline
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Figure 3.1 Case 1: Numerical Grid 3-D View

Figure 3.2 Case 1: Numerical Grid Side View

compared with the 1-D solution for the v2 − f and ζ − f models, respectively. Both models

predict the velocity profiles well.

Figure 3.3 Case 1: Streamwise Velocity Profile with v2 − f Model

3.4 Summary

The implementation of the v2 − f and ζ − f models in Glenn-HT were validated against a

separate, 1-D, solution for a simple channel flow. Both the v2− f and ζ − f models performed
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Figure 3.4 Case 1: Streamwise Velocity Profile with ζ − f Model

Figure 3.5 Case 1: Turbulence Quantities with v2 − f Model
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Figure 3.6 Case 1: Turbulence Quantities with ζ − f Model
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well and accurately predicted the velocity profile as well as the turbulence quantities.
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CHAPTER 4. CASE 2: 3-DIMENSIONAL DIFFUSER - SINGLE

SLANTING WALL

A 3-D diffuser with one sloping wall and three straight walls was simulated with Glenn-HT

to display the abilities of the v2 − f and ζ − f models to predict separated flows.

4.1 Description

A diffuser with an inlet of 1 cm x 3.33 cm was sloped along the top wall at an angle of

11.3◦. The length of the diffuser was 15 cm, and the outlet section that was 4 cm x 3.33 cm.

Upstream of the diffuser section, a straight development channel was included, as well as a

straight channel after the outlet of the diffuser, which was followed by a converging section.

The converging section was necessary because Glenn-HT cannot handle separated flow in the

outlet boundary. This case does not correspond to an experiment, but was intended to be a

simplified version of the 3-D diffuser with two slanting walls which is described in the next

chapter. Therefore, only conceptual results can be concluded for this case. The Reynold’s

number based off of the inlet height was 10,000. The inlet bulk velocity was 1 m/s.

4.2 Grid

A grid was created with approximately 1.5 million gridpoints using an in-house grid gen-

erator. This grid consisted of 20 blocks, and each block had 17 gridpoints in the x-direction

and 65 gridpoints in the y-direction and z-direction. The grid was clustered near the walls in

the y-direction and z-direction so the first cell from the wall had a y+ ≈ 1. Clustering was

also used in the x-direction to ensure the majority of gridpoints were located in the diffuser

section, which was the primary area of interest. Figures 4.1, 4.1, 4.3, and 4.4 show the 3-D
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view, side view, top view, and diffuser inlet and exit slices, respectively. The inlet section was

kept short because a separate channel flow simulation was run to be fully developed and this

fully developed velocity profile was used as the inlet boundary condition for the present case.

Figure 4.1 Case 2: Numerical Grid 3-D View

Figure 4.2 Case 2: Numerical Grid Side View

Figure 4.3 Case 2: Numerical Grid Top View

4.3 Numerical Results

The first step of this simulation was to determine the boundary conditions. The inlet

was a fully developed channel flow and the sides, top and bottom walls were all set to no-slip

boundary conditions. The non-dimensionalized parameters needed by Glenn-HT were the same
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Figure 4.4 Case 2: Numerical Grid Diffuser Inlet and Exit Slice

as the 3-D diffuser with two sloping walls and are described in the next chapter and listed in

Tables 5.1 and 5.2.

The case was run on Iowa State University’s “Lightning Cluster” with both the v2− f and

ζ − f models. Figures 4.5 and 4.6 show an isosurface of slightly negative streamwise velocity

to show the location of separation. All velocities shown were normalized by the bulk inlet

velocity.

Figure 4.5 Case 2: Isosurface of Separation with v2 − f Model

Figures 4.7 and 4.8 show slices of streamwise velocity contours at x = 0 cm, 1 cm, 2 cm, 4

cm, 8 cm, and 12 cm for the v2 − f and ζ − f models, respectively. Also, Figures 4.9 and 4.10

show a contours of streamwise velocity at the longitudinal midspan, z = 1.6667 cm, for both

turbulence models.



19

Figure 4.6 Case 2: Isosurface of Separation with ζ − f Model

unorm: -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 4.7 Case 2: Contours of Streamwise Velocity with v2 − f Model
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Figure 4.8 Case 2: Contours of Streamwise Velocity with ζ − f Model
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Figure 4.9 Case 2: Contours of Streamwise Velocity at the Longitudinal
Midspan with v2 − f Model
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unorm: -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 4.10 Case 2: Contours of Streamwise Velocity at the Longitudinal
Midspan with ζ − f Model

4.4 Summary

While experimental data was not available for this case, the conceptual results can be

described. Three concepts are concluded about this test case. First, the symmetry about the

centerline in the z-direction resulted in a flow that was symmetrical, including the separated

area. Next, since only the top wall was sloping, it was expected and also found to be true that

the separation would occur along this sloped wall. This is consistent with previous studies of

2-D diffusers. The third conclusion that was made about this diffuser was that the no-slip side

walls influenced the separation near the top edges. Both the v2−f and ζ−f models predicted

the onset of separation at the top right and left edges. The separation continued across the

top sloped wall and eventually reattached.
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CHAPTER 5. CASE 3: 3-DIMENSIONAL DIFFUSER

Separated flow in a 3-D diffuser was recently studied in an experiment conducted by Cherry

et. al. (2006). The objective of this experiment was to provide a 3-D diffuser with simple

geometry, well-specified boundary conditions, and a well-defined 3-D recirculation region which

was challenging for numerical models to predict.

5.1 Description

The experiment consisted of a 15 cm long diffuser that expanded along one side at 2.54◦,

and also expanded along the top side at 11.3◦ while the remaining side and bottom walls

remain straight. This resulted in an expansion ratio of 4.8. The inlet of the diffuser was

1 cm x 3.33 cm and the exit was a 4 cm x 4 cm square outlet. Figures 5.1, 5.2, and

5.3 show the 3-D, top, and side views of this geometry. Upstream of the diffuser section was

a long (60 cm) development channel that created a fully developed channel flow. The exit of

the diffuser was connected to a 10 cm straight outlet channel followed by a converging section.

The working fluid of the experiment was water and the diffuser had a bulk inlet velocity of

1 m/s. The Reynolds number based off of the diffuser inlet height was 10,000.

5.2 Experimental Results

The velocity data was collected using the method of magnetic resonance velocimetry (MRV)

which provided the three-component mean velocity vectors. Figure 5.4 shows an isosurface of

slightly negative u-velocity, which clearly shows separation beginning near the start of the

diffuser, at the top right corner. Separation soon moves to cover the top side. Slices of

streamwise velocity contours are shown in Figure 5.5 at x = 0 cm, 1 cm, 2 cm, 4 m, 8 cm, and
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Figure 5.1 Case 3: Geometry 3-D View

Figure 5.2 Case 3: Geometry Top View

Figure 5.3 Case 3: Geometry Side View
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12 cm. Also, a slice at z = 2 cm is shown in Figure 5.6. All velocities shown were normalized

by the bulk inlet velocity.

Figure 5.4 Case 3: Experimental Isosurface of Separation

5.3 Grid

A grid was created with approximately 1.5 million gridpoints using an in-house grid gener-

ator. This grid consisted of 20 blocks, and each block had 17 gridpoints in the x-direction and

65 gridpoints in the y-direction and z-direction. The grid was clustered near the walls in the

y-direction and z-direction so the first cell from the wall had a y+ ≈ 1. Clustering was also

used in the x-direction to ensure the majority of gridpoints were located in the diffuser section,

which was the primary area of interest. Figures 5.7, 5.7, 5.9, and 5.10 show the 3-D view,

side view, top view, and diffuser inlet and exit slices, respectively. The grid consists of a short

inlet section, a diffuser section, straight diffuser exit section, a converging nozzle, and a short

exit extension. The straight diffuser exit section, converging section, and exit extensions were

added to ensure that the exit boundary condition did not contain reversed flow, which cannot

be handled by the Glenn-HT outlet boundary. Also, the inlet section was kept short because a

separate channel flow simulation was run to be fully developed and this fully developed velocity

profile was used as the inlet boundary condition for the present case.
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Figure 5.5 Case 3: Experimental Contours of Streamwise Velocity
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Figure 5.6 Case 3: Experimental Contours of Streamwise Velocity at z =
2 cm
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Figure 5.7 Case 3: Numerical Grid 3-D View

Figure 5.8 Case 3: Numerical Grid Side View

Figure 5.9 Case 3: Numerical Grid Top View

Figure 5.10 Case 3: Numerical Grid Diffuser Inlet and Exit Slice
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5.4 Numerical Results

Using the Glenn-HT code, two separate simulations were run. The first simulation used

the v2 − f model, and the second used the ζ − f model.

The first step in setting up this case was to determine the boundary conditions. While

maintaining the same Reynold’s number as the experiment, the working fluid was changed

from water to air, which is the working fluid used by the Glenn-HT solver. To account for the

change in viscosity, the velocity, u, was increased to maintain the same Reynold’s Number.

Reexp =
uL

νwater
=

(1m/s) (0.01m)
1.004× 10−6m2/s

≈ 10, 000 (5.1)

where u is the velocity, L is the reference length chosen as the height of the channel, and ν is

the kinematic viscosity.

Recfd =
uL

νair
=

(15.1m/s) (0.01m)
1.51× 10−5m2/s

≈ 10, 000 (5.2)

The other reference variables required for non-dimensionalization are listed in Table 5.1

Reference Variable Corresponding Variable Value

Reference Pressure, pref Inlet Total Pressure, pt 101, 325Pa
Reference Temperature, Tref Inlet Total Temperature, Tt 293K

Reference Length, Lref Channel Height 0.01m
Reference Viscosity, νref Kinematic Viscosity of Air, νair 1.51× 10−5m2/s

Table 5.1 Case 3: Reference Variables

Reference Variable Corresponding Variable Value

Reference Density, ρref
pref

RTref
1.2049kg/m3

Reference Speed of Sound, cref
√

γpref

ρref
343m/s

Reference Velocity, uref
√
RrefTref 289.98m/s

Reference Time, tref
Lref

uref
3.45× 10−5s

Reference Reynold’s Number, Reref
urefLref

νref
192,039

Table 5.2 Case 3: Derived Reference Variables

Compressible codes have convergence problems at low speeds. To maintain the incompressible

nature and still allow for adequate convergence, the velocity, u, and viscosity, ν, were both
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scaled equally by a factor s, which comes into play in the Reynold’s number, Reref . This

allows the code to be run at a speed of u ≈ 100m/s, which is still incompressible.

νref = νref × s = 1.02× 10−4

Reref =
urefLref
sνref

= 28, 429 (5.3)

with s = 6.755. Note that Reref is based off of uref and not u. The value of u was scaled by

s while uref , which is used only for nondimensionalization, was not scaled.

The Glenn-HT boundary conditions were created using the non-dimensionalized values as

described in Equation 2.34, and can be seen in Table 5.3. Note that the outlet in Glenn-HT

is after the converging section, and not the outlet of the diffuser. The case was run on Iowa

Inlet:
Inlet Temperature, T̃ = 1.0

Total Pressure, p̃ = 1.0
Inlet Flow Angles = 0◦

Inlet Mach Number, Min = 0.3
Outlet:

Static Pressure, pout = .9
Outlet Mach Number, Mout = 0.3

Walls:
No-Slip Walls

Table 5.3 Case 3: Boundary Conditions

State University’s “Lightning Cluster” with both the v2 − f and ζ − f models. Figures 5.11

and 5.12 show an isosurface of slightly negative streamwise velocity to show the location of

separation.

Figures 5.13 and 5.14 show slices of streamwise velocity contours at x = 0 cm, 1 cm, 2 cm,

4 cm, 8 cm, and 12 cm for the v2 − f and ζ − f models, respectively. Also, Figures 5.15 and

5.16 show a contours of streamwise velocity at z = 2 cm for both turbulence models.

5.5 Summary

A quantitative comparison between the experimental and computational results makes

evident that the computational simulations show the onset of separation the same location, the
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Figure 5.11 Case 3: Isosurface of Separation with v2 − f Model

Figure 5.12 Case 3: Isosurface of Separation with ζ − f Model
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Figure 5.13 Case 3: Contours of Streamwise Velocity with v2 − f Model
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Figure 5.14 Case 3: Contours of Streamwise Velocity with ζ − f Model
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Figure 5.15 Case 3: Contours of Streamwise Velocity at z = 2 cm with
v2 − f Model
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Figure 5.16 Case 3: Contours of Streamwise Velocity at z = 2 cm with
ζ − f Model

top right edge. However, further down the diffuser, the separation transitions toward the right

side, opposed to the experimental data which separates on the top side. Also, the strength of

the separation is over-predicted by the computational simulations. This discrepancy between

experimental and computational results suggests a need for further study to determine the

cause of the improper location of separation.
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CHAPTER 6. SUMMARY AND DISCUSSION

The objective of this study was to employ two different turbulence models, namely the

v2 − f model of Durbin and the ζ − f model of Hanjalić, and to observe their abilities to

predict separated flows. Calculations were performed using the NASA Glenn-HT code, a

compressible Navier-Stokes solver. Three cases were run using two elliptic relaxation eddy

viscosity models, Durbin’s v2 − f model, and the ζ − f model of Hanjalić.

The first case, a simple 2-D channel flow simulation, was run using both models. This

case was used to validate the implementation of the v2 − f and ζ − f models in Glenn-HT

by comparing the results with a separate, 1-D, solution. Both models performed well and

predicted the fully developed velocity profile as well as the turbulence quantities accurately.

The second case consisted of a 3-D diffuser which was sloped on a single wall. The results

showed that both turbulence models were able to predict the onset of separation along the top

right and left edges near the diffuser inlet. The separation transitioned to cover the entire top

of the diffuser, and the flow reattached in the straight section following the diffuser.

While the first two cases showed validation and the two models have been shown to ac-

curately predict separation (Ameri, Ajmani 2004 and Durbin 1995), the third case listed in

this thesis proved to be difficult to predict using the v2− f and ζ − f turbulence models. This

case consisted of a 3-D diffuser with two sloping walls. The numerical results were compared

to the experiment conducted by Cherry et. al. (2006). The onset of separation was predicted

in the correct location, the top right edge. However, the numerical results show the separation

transition towards the right wall, while the experiments show this transition towards the top

wall.

This discrepancy between numerical and experimental results suggests a need for further
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study. It is recommended that the experiment be validated, and also that the v2 − f and

ζ − f models be studied more to determine the cause of this difference. Perhaps the empirical

model constants need to be retuned, or additional modifications to the models need to be

prescribed. Additionally, it is suggested that this case may describe a weakness in the eddy

viscosity approximation. Current research is being performed to run this case with Detached

Eddy Simulation (DES) and it is also suggested that a Large Eddy Simulation (LES) code

could be tested on this case.
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