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Abstract
We used the Agricultural Production Systems sIMulator (APSIM) to predict and

explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynam-

ics during the growing season in Iowa, USA. Historical, current and forecasted

weather data were used to drive simulations, which were released in public four weeks

after planting. In this paper, we (1) describe the methodology used to perform fore-

casts; (2) evaluate model prediction accuracy against data collected from 10 locations

over four years; and (3) identify inputs that are key in forecasting yields and soil N

dynamics. We found that the predicted median yield at planting was a very good indi-

cator of end-of-season yields (relative root mean square error [RRMSE] of∼20%). For

reference, the prediction at maturity, when all the weather was known, had a RRMSE

of 14%. The good prediction at planting time was explained by the existence of shal-

low water tables, which decreased model sensitivity to unknown summer precipita-

tion by 50–64%. Model initial conditions and management information accounted for

Abbreviations: APSIM, Agricultural Production Systems sIMulator; RRMSE, relative root mean square error.
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one-fourth of the variation in maize yield. End of season model evaluations indicated

that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83),

biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87),

soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77),

and water table depth (R2 = 0.41). We concluded that model set-up by the user

(e.g. inclusion of water table), initial conditions, and early season measurements

are very important for accurate predictions of soil water, N and crop yields in

this environment.

1 INTRODUCTION

Predicting crop growth and soil processes has the potential

to provide timely information for management recommenda-

tions (Hansen & Indeje, 2004). Such information can improve

profitability, environmental quality and marketing decisions

(Brandes et al., 2016; Johnson et al., 2016). Current efforts

to forecast seasonal crop yields include field surveys, expert

judgement, remote sensing, statistical models, and process-

based simulation models (Basso et al., 2013; Feng et al,

2019; Hammer et al., 1996; Prasad et al., 2006; Ines et al.,

2013). There are trade-offs among approaches in terms of

accuracy, explanatory power, and desired scale and resolu-

tion (Basso & Liu, 2019). Farmer-based surveys are help-

ful but rely on voluntary participation and their informa-

tion is restricted to events of the past. Remote sensing and

statistical models are descriptive (Atzberger, 2013; Lobell

et al., 2015) and offer limited insight on belowground pro-

cesses that are key to environmental performance. In con-

trast, process-based models offer a way to understand and

explain the underlying crop and soil processes driving yield

and environmental outcomes, but this comes at the cost

of extensive input data requirements (Basso et al., 2012;

Puntel et al., 2018). Successful yield forecasting approaches

using crop models in the United States (Morell et al., 2016;

Togliatti et al., 2017) and Australia (Carberry et al., 2009),

have shown potential to couple explanatory with predictive

power to evaluate adaptive management strategies (Jones

et al., 2017).

Predicting yield and soil-crop dynamics during the growing

season faces the challenge of capturing weather-related uncer-

tainty and its interaction with the variability of soil properties,

crop genetics, and management practices (Tollenaar et al.,

2017). Therefore, the success in forecasting yields via crop

simulation methods depends on the capability of the model to

accurately represent dynamic processes (van der Velde et al.,

2012), and the quality and availability of data inputs (Hansen

et al., 2004).

Although the algorithms behind crop models continue to

be refined to improve the representation of biophysical pro-

cesses, knowledge gaps still limit their use (Keating et al.,

2003; Li et al., 2019; Rötter et al., 2018). This is particularly

evident when predictions are made under extreme weather

scenarios or in environments with specific characteristics such

as shallow water tables or soil constraints (Wang & Smith,

2004). Crop models are generally capable of accurately sim-

ulating the effect of water deficits on soil-crop-atmospheric

processes, but less accurate when simulating excessive water

impacts (Rosenzweig et al., 2002; Shaw & Meyer, 2015;

Warren et al., 2015). For example, Li et al. (2019) showed

that many maize (Zea mays L.) models overestimated yields

in situations with excessive precipitation due to the lack of

excess moisture yield loss mechanisms. Others have shown

that inclusion of waterlogging routines improved the over-

all model capability to predict production and environmen-

tal outcomes (Ebrahimi-Mollabashi et al., 2019). Excessive

moisture is most damaging in poorly drained soils with

shallow water tables, which are present in a large portion

of cropland in the US Midwest (Fan et al., 2013; Rizzo

et al., 2018).

Continuous development and testing of field-scale agro-

nomic crop models with experimental data can improve our

understanding of fundamental science, identify gaps in model

function, and improve current forecasting methods to better

account for extreme events (Peng et al., 2018). To this end, we

used a multi-location-year dataset that included many mea-

surements of the crop-soil system. Data were collected during

the first four years of the Forecast and Assessment of Crop-

ping sysTemS (FACTS) project (Archontoulis & Licht, 2016).

This project aimed to develop and test a methodology to per-

form in-season forecasts of maize and soybean [Glycine max
(L.) Merr.] yields and other important aspects of the system,

related to crop management and environmental performance

such as soil N availability and crop N uptake at 10 locations

in Iowa, USA. In this paper, we: (1) describe the methodology

used to perform forecasts of yield and crop-soil dynamics and

improvements made to the model; (2) evaluate model predic-

tion accuracy, error and uncertainty; and (3) identify inputs

that are key in forecasting yields, soil water and N dynamics,

and discuss lessons learned over four years.
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2 MATERIALS AND METHODS

2.1 Field experiments, management,
and weather conditions

We set up 10 experimental locations with maize and soy-

bean crops across Iowa, USA (Figure 1). Experiments cov-

ered a range of weather conditions, management practices,

soil drainage systems, and soil properties. Over a 4-yr period,

2015–2018, we collected data from 94 unique site-year-crop-

management combinations (hereafter test plots; 56 test plots

with maize and 38 with soybean; Supplemental Table S1).

Each test plot was replicated three times and the size of each

replication ranged from 300 to 4,000 m2, depending on loca-

tion and treatments. Crops were grown under typical man-

agement practices at each location. In some locations, we

added treatments to study cropping system response to plant-

ing date, N-fertilization rate, and subsurface drainage (Sup-

plemental Table S1). Maize and soybean crops were grown in

rotation and both crop phases were present in each year with

one exception of a central Iowa location, in which maize was

grown in monoculture. Eight of the ten locations had shal-

low water tables that fluctuated from 30 to 300 cm below the

soil surface (Ebrahimi-Mollabashi et al., 2019; Nichols et al.,

2019). The existence of shallow water tables is very common

in the US Corn Belt. For reference, 55%, 61% and 56% of

the land in Iowa, Illinois, and Indiana, respectively, has shal-

low water tables (Supplemental Figure S1). Three locations

had subsurface tile drainage at 1.1 m depth (Figure 1; Sup-

plemental Table S1). Irrigation was applied in one location

(Muscatine, very sandy soil; Supplemental Table S2). In all

other locations, crops were rainfed. Soil organic matter and

plant available water differed across locations (Figure 1; Sup-

plemental Table S2).

Planting dates and cultivars across the test plots varied

among locations (Figure 1b). On average, maize was planted

on May 5 and soybean a week later. We used seven maize

hybrids (range 101–115 day maturity) and 12 soybean vari-

eties (range 1.8–3.6 maturity group) across the 94 test plots

(Figure 1b; Supplemental Table S1). Each cultivar was used

for two years and in at least two locations. Target plant den-

sities averaged 8.6 plants m−2 for maize and 36 plants m−2

for soybean (Figure 1b). Row spacing was 76 cm with the

exception of two soybean test plots, which was 38 cm. N-

fertilization for maize was 166 kg N ha−1 in most of the tri-

als following Iowa State University recommendations for a

maize-soybean rotation (Sawyer et al., 2006). In four loca-

tions we studied variable N-rates to maize, including zero and

excessive (336 kg N ha−1; Supplemental Table S1). No N

fertilizer was applied to soybean except few test plots (see

Supplemental Table S1) in which we experimented with a

high-input management system. The timing of N fertilizer

application to maize varied by location, from two weeks

before planting to two weeks after planting. N fertilizer

was either broadcasted (urea-N) or injected (urea ammonium

nitrate). Phosphorus, potassium, and sulfur fertilizers were

applied in the fall or spring following Iowa State University

recommendations and annual 15 cm soil sampling (Mallarino

et al., 2013). The target was to maintain Mehlich 3 soil test

P and K levels in the higher end of the optimal soil test cate-

gory (P, 16–20 ppm; K, 86–120 ppm). Sulfur applied at a rate

of 34 kg S ha−1 as ammonium sulfate. Tillage operations var-

ied by location and crop. Typically, a disc tillage system was

used to incorporate maize stover in the fall and field cultiva-

tors were used for seedbed preparation and to incorporate fer-

tilizers in the spring. Herbicides, insecticides, fungicide and

manual weeding were applied as needed to keep the plots free

of weeds, pests, and diseases.

Field trials were set up next to fully automated weather

stations (Iowa Environmental Mesonet, 2019). Crops experi-

enced a range of weather conditions across locations and years

(Figure 1a). The average summer temperature (June, July, and

August) varied from 18–24 ◦C while the summer precipitation

varied from 146–630 mm (Figure 1a). Compared to 35-year

weather record, the 2015 summer was wet and cool, the 2016

summer was dry and warm in the first half and wet and cool

in the second half, the 2017 summer was warm and dry, while

the 2018 summer was warm and wet. Additional weather

information by location and year is provided in Supplemental

Table S3.

2.2 Soil and crop measurements

All of the replicated test plots were outfitted with 5TM soil

moisture and temperature sensors (METER Group Inc., Pull-

man, WA, USA) at two depths (15 and 45 cm), except few

test plots in Kanawha and NcNay. In addition, water tables

monitoring wells were installed in all sites except Muscatine.

Wells consisted of 5-cm diameter slatted polyvinyl chloride

(PVC) pipes, outfitted with CTD-10 sensors (METER Group

Inc., Pullman, WA, USA). Initially, two water table wells were

installed to a depth of 1.8 m at the borders of each experiment.

In 2017, wells were re-installed inside the plots to a deeper

depth (2.8 m) and we also increased the number of wells to a

total of 38 across all test plots. Data were recorded hourly dur-

ing the growing season and in some cases during the fallow

period using EM50 dataloggers.

Soil nitrate and ammonium were measured in all test plots

(1370 with 3 replications for 4,110 samples). In 2015, mea-

surements were taken every week from April to November at

0–30 cm depth. In 2016 and 2017, we added a second depth

(30–60 cm) and decreased the frequency of measurements

to every other week. In 2018, the same two-depth protocol

was maintained but fewer samples were collected compared

to 2017. Each time, eight soil cores were taken from every
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F I G U R E 1 (a) Weather conditions including precipitation, temperature, and radiation during two periods (June, July, August versus May and

September). (b) Crop management including planting and harvesting dates, cultivars life cycle and plant populations for 56 maize and 38 soybean

trials. (c) Soil properties including soil organic matter and available water from SSURGO. Colored symbols in (c) indicate experimental locations;

red refers to soils with subsurface tile drainage and blue to soils without. Additional weather, management, and soil data are provided in

Supplemental Tables S1–S3
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replication and soil samples were homogenized into one sam-

ple. Then, the sample was extracted in 2 M potassium chloride

(5:1 solution/soil ratio) and passed through a Whatman filter

paper #1. Nitrate plus nitrite and ammonium concentrations

in the filtrate were measured in microplates using the Griess–

Ilosvay reaction with vanadium (III) chloride as a reducing

agent and the Berthelot reaction, respectively (Hood-Nowotny

et al., 2010). Gravimetric soil moisture was determined from

these samples to scale the N concentrations to mass N dry soil

and test the moisture sensors.

Crop growth and development were measured in all test

plots approximately every two weeks. Crop measurements

included destructive plant sampling (1 m2 each time) and non-

destructive assessments of crop staging and population den-

sity. In total, we collected 1,922 (644 with 3 replications)

biomass samples. In each sample, we measured dry biomass

and partitioning to different organs (green and yellow leaves,

stems, cobs, husk, shank and kernels for maize; and green

and yellow leaves, stems, pod walls and seeds for soybean),

organ N and C concentration, green leaf area, and number

of kernels per ear. Leaf area index, specific leaf area index,

and tissue N uptake were calculated from these data. During

biomass sampling, we also measured root depth in years 2016

and 2017 from all test plots and in year 2018 from central

Iowa test plots (Ordóñez, Castellano, Hatfield, Helmers et al.,

2018; Ebrahimi-Mollabashi et al., 2019). Crop staging was

assessed using the V/R system for maize and soybean (Fehr

& Caviness, 1977; Ritchie & Hanway, 1982). In addition to

staging, total and actual maize leaf number and soybean node

and pod numbers were counted. Combine grain yields were

determined by harvesting 4–8 middle rows from each repli-

cated test plot using the Harvest Master weight bucket.

Additional measurements included N2O and CO2 emis-

sions from the soil surface (12 test plots), residue decompo-

sition (8 test plots), evapotranspiration (4 test plots), soybean

N-fixation (8 test plots; Córdova et al., 2019), leaf area pro-

files along the main stem (8 test plots), water flow and N

leaching to tile drainage (15 test plots), vertical root mass

and length distributions and root C and N concentrations

in 36 test plots (Ordóñez, Castellano, Hatfield, Licht et al.,

2018; Nichols et al., 2019). Measurements were used to check,

improve and calibrate various APSIM routines (see below). In

this manuscript, we present model performance against sen-

sors, soil and crop data.

2.3 General description of the APSIM
software platform

We used the Agricultural Production Systems sIMulator

(APSIM; Holzworth et al., 2014) version 7.7 in the first year

and version 7.8 in subsequent years. The following mod-

ules were used: maize and soybean crop models (Keating

et al., 2003), SWIM soil water model (Huth et al., 2012),

soil N and carbon model (Probert et al., 1998), residue model

(Probert et al., 1998; Thorburn et al., 2001), soil temperature

2 (Campbell, 1985) and various management rules to account

for tillage and other management operations. The crop mod-

els simulate biomass production based on a combined radia-

tion and water use efficiency concept. The SWIM soil water

model uses the Richards equation to simulate water balance

processes including simulation of shallow water tables and

tile drainage (Malone et al., 2007). The soil N model simulates

soil organic carbon mineralization, immobilization, and inor-

ganic N fluxes including nitrification, denitrification, nitrous

oxide emissions, N leaching, and urea fertilizer hydrolysis.

The decomposition of crop residue influences soil-water-N-

temperatures modules in APSIM. Information flow passes

from one module to another on a daily basis to account for

feedbacks among various soil, crop, and atmospheric pro-

cesses (for additional information, see www.apsim.info).

2.4 APSIM model set up and calibration

We set up the model to simulate a water- and N-limited pro-

duction situation. Each simulation started on January 1 to

allow time for the soil water balance to reach an equilib-

rium. Starting values for surface residue (amount and carbon

to nitrogen, C to N, ratio), root mass in the soil and C to N

ratio, soil nitrate, and water by layer were derived by simu-

lating the previous cropping year and extracting the values on

December 31 in the first year and by field measurements in

subsequent years or combination of both. Soil organic mat-

ter values by layer to 1.2-m depth were derived from base-

line measurements taken in every location (6 replications per

location) and then SSURGO (Soil Survey Staff, 2019) data

was used to develop a 2.5-m soil profile per location (Supple-

mental Table S2). The model uses three soil organic matter

pools, a fast decomposing, a slow decomposing and an inert

pool that does not decompose. Because the size of each pool

depends on carbon inputs (crop, management, soil properties,

and weather conditions interactions), a 10-yr spin-up simula-

tion was run to derive these fractions in a manner similar to

that used by Dietzel et al. (2016). The values are shown in

Supplemental Table S2.

Soil hydrological parameters including drained upper limit,

drained lower limit, and saturation by layer were initially taken

from SSURGO and subsequently calibrated using data from

moisture and water table sensors (see values in Supplemen-

tal Table S2). The air-dry lower limit and runoff parameters

were estimated similar to Archontoulis et al. (2014). The XF

parameter, which reflects soil constraints to root growth, was

set to 1 (no limitation) in all sites except McNay, which has a

clay pan from 30–80 cm soil depth and XF was set to 0.7 to

constrain root penetration in these soil layers. The 0.7 value
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better matched root depth observations over time in this loca-

tion. The KL parameter that reflects the ability of the crop

to extract water was set to 0.08 day−1 from 0 to 0.8 m and

then decreased exponentially to 0.03 at 1.5-m depth, similar

to Hammer et al. (2009). Saturated hydraulic conductivity by

layer was estimated using Saxton and Rawls (2006) equations

that use the inputs soil organic matter and texture (Supple-

mental Table S2).

Knowing that the experimental locations have a shallow

water table (Supplemental Figure S1), we used the SWIM

model, which has the capacity to simulate fluctuating water

tables (Huth et al., 2012). The simulation of the water table

was implemented by using a constant head bottom boundary

condition that reflected the average water table depth by loca-

tion (see values in Supplemental Table S4 and implementation

details in Ebrahimi-Mollabashi et al., 2019). SWIM model

hydraulic conductivity and matric potential at field capacity

parameters were calibrated using water table and moisture

data and values ranged from 0.1 to 0.3 mm per day and −100

to −300 cm, respectively.

In the crop models, we made changes to the crop param-

eter files and source code, which were guided by measure-

ments and literature. The changes are listed in Supplemen-

tal Tables S4 and S5, including default and new values per

crop. In brief, in the maize crop model, we increased the

radiation use efficiency parameter (Soufizadeh et al., 2018),

decreased the root front velocity (Ordóñez, Castellano, Hat-

field, Helmers et al., 2018), decreased the leaf appearance

rates, and decreased the critical maize grain N concentra-

tion (Ciampitti & Vyn, 2012). In the soybean model, we

increased the node senescence parameter to slow down senes-

cence (Archontoulis et al., 2014b; Wu et al., 2019), decreased

the potential fixation rate (Córdova et al., 2019), decreased the

root front velocity (Ordóñez, Castellano, Hatfield, Helmers

et al., 2018), decreased the critical grain N concentration (Bal-

boa et al., 2018) and the pod N concentration. In addition, we

decreased the fraction of dry matter allocated to pods at the

early reproductive stages and decreased stem and leaf N con-

centrations at late reproductive stages. In both crop models,

we added a new function in the source code to inhibit root

front velocity when a layer is nearly saturated with water (see

Ebrahimi-Mollabashi et al., 2019). This new function is incor-

porated into release version 7.9.

In the soil N model, we added a new function in the source

code to constrain denitrification beyond a certain depth (user-

defined; 1-m depth was used). This modification was neces-

sary because the inclusion of water table stimulated unreal-

istically high denitrification rates from the subsoil. That was

due to the way that the denitrification equation was previously

programmed in APSIM (see details in Martinez-Feria et al.,

2018). This change improved simulation of the N leaching

to tile drainage. In the residue model, we used the default

settings with the exception of one change in the soybean

F I G U R E 2 (a) In-season prediction of soil nitrate on 26 June

2016, that includes measured data, simulated data using actual weather,

predicted data using 7-day forecasted weather, predicted using a range

of historical data and the median value that was used as the predictor.

(b) In-season yield prediction showing 90%, 50% (median) and 10%

probabilities of yield being above as well as measured yield. This

information was publicly available via https://crops.extension.ia

state.edu/facts/ and was updated every two weeks. Data from the central

Iowa, Kelley location, maize crop, year 2016 are displayed in the above

panels (see also Supplemental Table S1, ID #10)

residue surface cover (from 0.0002 to 0.0004 ha kg−1). This

change was supported by field measurements (residue cover

and soil moisture) and resulted in better simulation of soil

water dynamics.

2.5 Prediction protocol

To predict yields and soil water-N dynamics during the

growing season we used a synthetic weather file that

included: observed weather data up to a certain date, fore-

casted weather data for 7 days, and historical weather data

from then on (Figure 2a; see also Togliatti et al., 2017).

In 2015 we used the Weather Research and Forecasting

model (Skamarock et al., 2008) for forecasted weather data

while in subsequent years NDFD (National Digital Fore-

cast Database) and CFS (Climate Forecast System) fore-

casted weather data. Starting at planting time, we run the

models every other week to predict yields, soil nitrate and

https://crops.extension.iastate.edu/facts/
https://crops.extension.iastate.edu/facts/
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water, crop staging, and crop water and N uptake. Por-

tions of the results (measurements and simulations) were dis-

played in a publicly available website (Archontoulis & Licht,

2016; https://crops.extension.iastate.edu/facts/). Both actual

and benchmarking predictions (e.g. percent yield or soil N

above or below normal with normal being a 35-yr average)

were provided in the website. The overall workflow is illus-

trated in Supplemental Figure S2. At the end of each forecast

season, we used the modeling framework to answer what-if
farmers’ questions, e.g. what-if I had planted a week earlier

or used a higher seeding rate or N-rate.

Early in the growing season (June) we adjusted the model,

if needed, to ensure leaf number, leaf area index, crop

biomass, soil water, and soil N followed the measurements

(Figure 2a; Supplemental Figure S3). In most cases, when

the model simulations did not follow the measurements, the

errors were due to the incorrect simulation of emergence or

incorrect initial N or residue amount inputs. When we imple-

mented a fix in the initial conditions, we re-run the simula-

tions from planting time. No changes to model source code or

crop parameter values were made during the forecast period

except some ad-hoc modifications as needed to account for

herbicide damage to leaf canopy in soybeans or hail damage to

both crops. In these cases, we decreased photosynthesis for a

few days via modifying radiation amount for the period of the

event. After each growing season, we used all the measured

data for a comprehensive systems evaluation of the modules.

As new information became available, we improved the mod-

ules year-by-year to better represent the system. The process

of improvement is still in progress.

2.6 Statistical indices to assess model
performance

To evaluate in-season yield predictions we calculated the rela-

tive root mean square error (RRMSE) and created y= ax (mea-

sured versus simulated) graphs from which we determined

the R2 and the slope of the plot. The RRMSE is a measure

of the error, R2 is a measure of predictive ability, while the

slope is useful to identify systematic bias in predictions. The

above indices were calculated for each yield prediction during

the season, from planting to harvesting. As explained above,

in each forecast a synthetic weather file consisting of 35 years

was used, which resulted in 35 yield predictions. The median

yield was used as the predicted yield and the actual yield at

harvest time as the measured yield (Figure 2; Supplemental

Figure S2).

To estimate the uncertainty that is associated with the

unknown weather during the season (Figure 2b), we calcu-

lated the standard deviation of the median prediction. The

standard deviation was divided by the mean yield to create

a normalized index to compare the two crops.

To evaluate end-of-season model performance we calcu-

lated RRMSE, R2, root mean square error (RMSE), and mod-

eling efficiency (ME). Equations can be found in Archontoulis

and Miguez (2015).

2.7 Sensitivity analysis

To gain a deeper understanding of the factors determining

yield prediction at planting time as well as other important

variables we performed a sensitivity analysis of APSIM inputs

including weather, management, crop cultivar parameters, ini-

tial conditions, and soil conditions. This analysis reflects all

the decisions that a user has to make while performing in-

season predictions (see Supplemental Table S7).

We classified the factors into known (e.g. weather from

January 1 to April 30), partially known (e.g. cultivar life

cycle duration), and unknown (e.g. growing season weather).

Within each category, we defined factors (e.g. rain) and

different levels within each factor. In total 28 factors were

defined per crop (Supplemental Table S7). We used different

ranges per factor to best represent reality. For example, the

range of precipitation from January to April was from 83

to 393 mm and derived from analysis of 35-yr data from

central Iowa. This range reflects a ±65% variation from the

median value that was 241 mm. Then we defined different

levels within that range (−65, −35, −15, +15, +30, +65%)

and by using the climate control script available in APSIM

we ran 35 years of simulation for each level. All other inputs

were held constant. A second example is the maize thermal

time parameter from silking to physiological maturity. This

information is available in ‘seed bag tags’ but is not precise.

Therefore, we included a ±10% variation in this parameter.

For a maize hybrid with a grain fill period thermal time of

800 ◦C-d, a 10% variation (720 to 880 ◦C-d) is approximately

5–8 d deviation in this region.

We performed a one-factor-at-a-time sensitivity analysis

(Lenhart et al., 2002). A baseline scenario was constructed for

central Iowa using average values for each parameter (Sup-

plemental Table S7). A single parameter was varied from a

feasible minimum and maximum value (Supplemental Table

S7). Sensitivity of grain yield, soil nitrate and other vari-

ables were assessed using a relative sensitivity index (Hamby,

1994). Data analysis and visualization were conducted in R

version 3.5.1 (R Core Team, 2013), which was expanded with

the packages readxl (Wickham & Bryan, 2018) and tidyverse

(Wickham, 2017).

2.8 Sensibility analysis of yield response
to summer precipitation

In addition to model testing against in-season data, a robust

model should also predict known yield response to external

factors such as management practices or soil and weather
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F I G U R E 3 (a) Weather uncertainty during the growing season expressed as normalized standard deviation of 35 weather-year predictions.

Data are averages across 56 (maize) and 38 (soybean) predictions that encompass different management, years, and locations (Supplemental Table

S1). Standard deviations are shown with error bars. (b) Relative root mean square error (RRMSE) during the growing season for 56 maize and 38

soybean predictions. (c) Measured versus median predicted yield in May and September. (d) Correlations between season average RRMSE and

normalized average measured yield or measured error across the 10 locations. In (d), the 100% maize and soybean yields are 15.2 and 4.4 Mg/ha

respectively, and the 100% measured error for maize and soybean is 4.2 and 1.2 Mg/ha, respectively. Measured error reflects the variability from

replication to replication

factors. We tested yield response to summer precipitation,

with and without water table influence. We enabled simula-

tion of water table and impacts on yields, by appropriately

setting subsoil parameters (Supplemental Table S2), bottom

boundary conditions (Supplemental Table S4), and adding a

new function into the model to inhibit root growth in soil lay-

ers saturated with water (Supplemental Tables S5 and S6). For

the analysis, we used a central Iowa location, typical manage-

ment, and cultivars for this region, and we ran the model for

38 historical years. Simulated yields were compared to county

yield data for the Boone County, Iowa (NASS, 2019). In this

comparison, we removed the effect of management and genet-

ics from the historical crop NASS yield increase.

3 RESULTS

3.1 Yield prediction during the growing
season

Across locations, the weather uncertainty in yield pre-

diction (standard deviation of the median prediction)

was highest early in the season (∼20%) and decreased

towards physiological maturity to 0% (Figure 3a). Within

locations, the growing season weather uncertainty was

highest in the southern locations, particularly in the

south-central location for both crops (Supplemental

Figure S4).
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F I G U R E 4 Sensitivity analysis of different variables and parameters associated with grain yield and soil N prediction at planting time. The

ranges of values explored are provided in Supplemental Table S6. Variables and parameters were separated into known, partially known and unknown

The RRMSE (error between median prediction and mea-

sured yield) decreased much less compared to the uncertainty

during the growing season, from 20% at planting to 14% at

physiological maturity (Figure 3b). In general, the RRMSE

slightly increased during June and July and then decreased

during August. We observed variability in these trends from

location to location as indicated by the error bars in Figure 3b.

The variability in RRMSE across locations was explained by

the yield of each location and also by the yield measure-

ment error. The higher the yield or the lower the measure-

ment error, the lower the RRMSE for both crops (Figure 3d-e).

This shows better model performance in high yielding envi-

ronments and uniform field experiments (less within field

variability). For reference, across years and management, the

highest maize yield was obtained in the irrigated Muscatine

location (southeast Iowa) and the highest soybean yield in

the rainfed Sutherland location (northwest Iowa). The high-

est measurement error was obtained in McNay (southcentral

Iowa) for both crops.

The yield prediction accuracy in May (planting time) was

only surpassed by the yield prediction accuracy in Septem-

ber (physiological maturity; Figure 3d). To understand this,

we performed a sensitivity analysis to determine the factors

contributing to yield prediction at planting time (Figure 4).

Results indicated that 32% of the maize yield variability was

explained by known factors, 48% by partially known factors,

and only 20% by unknown factors at planting time (Figure 4;

Supplemental Table S7). Summer temperature (weather fac-

tor), equilibrium water table depth (soil factor), and thermal

time during reproductive phase (crop-factor) explained most
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T A B L E 1 Summary analysis of APSIM model performance against in-season experimental data. The corresponding graphs are provided in

Supplemental Figures S7–S26. N, number of replicated data; Slope, the “a” from the y = ax regression; R2, from the y = ax regression; ME,

modeling efficiency (∞ to 1; 1 is best); RMSE, root mean square error (a measure of model error with unit); RRMSE, relative root mean square error

(0 to ∞; 0 is best; values are presented as %)

Variable name Unit Range n Slope R2 ME RMSE RRMSE Figure
Maize
Root depth cm 15–170 151 1.14 0.847 0.720 23.2 22.9 S7

Leaf number – 3–21 565 1.00 0.897 0.920 1.69 11.5 S8

Leaf area index m2/m2 0–7 326 0.84 0.667 0.674 1.07 39.7 S9

Biomass accumulation Mg/ha 0–34 380 1.02 0.940 0.956 1.98 16.8 S10

Grain accumulation Mg/ha 0–16 238 0.94 0.845 0.867 1.73 22.6 S11

Leaf N concentration % 0.6–5.5 358 0.90 0.590 0.759 0.68 21.9 S12

Plant N uptake kg N/ha 0–321 373 1.04 0.846 0.830 3.55 24.1 S13

Grain N uptake kg N/ha 0–220 184 0.88 0.821 0.793 2.42 27.8 S14

Soybean
Root depth cm 0–160 135 1.04 0.759 0.701 22.9 25.5 S15

Node number – 2–22 200 0.91 0.855 0.852 2.20 20.9 S16

Leaf area index m2/m2 0–7.5 219 1.09 0.793 0.737 1.02 32.7 S17

Biomass accumulation Mg/ha 0–11.5 270 0.97 0.923 0.931 0.85 21.2 S18

Seed + pod accumulation Mg/ha 0–7.9 185 0.93 0.942 0.869 0.16 28.3 S19

Leaf N concentration % 1–7 234 0.98 0.330 0.516 0.78 18.0 S20

Plant N uptake kg N/ha 0–350 255 0.99 0.900 0.910 2.95 22.5 S21

Seed + pod N uptake kg N/ha 0–345 162 0.99 0.873 0.870 36.9 28.4 S22

Both crops
Soil moisture @ 15 cm mm/mm 0.1–0.55 22500 0.98 0.425 0.33 0.04 16.6 S23

Soil temperature @ 15 cm oC 0–30 22500 0.93 0.934 0.890 2.34 13.9 S24

Soil nitrate (0-30,30-60 cm) kg N/ha 0–345 1370 0.85 0.773 0.775 19.6 70.8 S25

Water table depth cm 0–250 3245 0.99 0.416 0.479 32.8 23.7 S26

of the variability in maize yield at planting time. Manage-

ment and initial conditions together accounted for nearly one-

fourth of the variation in maize yield. Among these, only the

weather is unknown at planting. Soil and crop factors at plant-

ing are known or partially known. Thus, the low RRMSE of

maize yield at planting is explained by the low share of the

unknown factors to the total yield variability. Similar results

were obtained for the soybean yield prediction at planting time

(Figures 3 and 4).

In the case of soil nitrate prediction in maize (0–30 cm

depth; average of multiple predictions during summer time),

we found that the contribution of unknown factors was only

8%. This shows that the model is even less sensitive than

maize yield to the unknown weather during the season, which

is an encouraging result for model use to assist in-season N

management decisions. For soil N prediction, the model was

most sensitive to initial conditions, namely initial soil nitrate,

initial soil water, and previous crop roots CN ratio, which are

all partially known factors (Figure 4; Supplemental Table S7).

The sensitivity analysis revealed four additional major

results. First, different model output variables have different

sensitivities to model input variables or parameters (see also

Supplemental Figure S5 for phenology and crop N uptake

results). Second, depth to water table was more important

than summer precipitation for prediction of crop yield and N

uptake. Third, model initial conditions on 1 January (water

and nitrate in the soil profile, residue amount and CN ratio,

and previous crop roots amount and CN) accounted for 13,

37, and 25% of the total sensitivity in maize yield, soil nitrate

and N uptake predictions, respectively. The soybean model

predictions were less sensitive to initial conditions than maize.

Fourth, management information such as N-rate, N-timing,

N-application depth, planting depth, plant density, and tillage

accounted for 10, 22, and 16% of the total sensitivity in maize

yield, soil nitrate, and N uptake predictions, respectively.

3.2 Evaluating model performance
in simulating soil and crop variables

The model performed well in simultaneously simulating many

crop and soil variables as indicated by the slope of the y = ax
regression that averaged at 0.98 ± 0.07 and other statistical

indices presented in Table 1. The corresponding graphs are
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F I G U R E 5 Measured (points) versus simulated (lines) leaf number and leaf area index (a), total aboveground biomass and grain yield

accumulation (b), leaf and stem nitrogen concentration (c), total, stem and grain N uptake (d), depth to the water table and root depth (e), soil

temperature (f), soil nitrate (g) and soil moisture (h) for one of the 94 datasets. This example refers to Boone location, year 2016, maize crop, early

planted treatment (see ID #8 in Supplemental Table S1)

provided in supplementary materials (Supplemental Figures

S7–S26), while for one of the 94 test plots the time series

results are presented in Figure 5. Across all test plots, the mean

RRMSE was 25% and it was lowest in leaf number prediction

and highest in soil N prediction (Table 1). The leaf number is

simple to predict because it is mainly driven by temperature

and crop parameters. On the other hand, soil N is complex to

predict because it depends on many soil-crop processes, and

measurements have large uncertainty and error. In terms of

R2 and ME, the simulation of soil moisture and water table

depth had the lowest values compared to crop variables such

as biomass production (Table 1). Note that we ran the model

assuming uniformity among replications.

Our systems analysis revealed that an over- or under-

estimation of one crop variable had cascading effects on

other variables. For example, Figure 5 shows that APSIM

overestimated maize leaf number on 7 July 2016. This

resulted in an overestimation in leaf area index, biomass

production, and total N uptake on that date. Either the model

did not capture well a phenomenon that occurred prior to that

date or there was a measurement error. This example shows

how such multi-faceted data can stimulate systems thinking

and further improvements to the model and detection of

measurement errors.

3.3 The impact of water table on yield
prediction

The inclusion of the water table in the simulation process

coupled with waterlogging functions provided a yield credit

in dry years (precipitation <300 mm) and a yield penalty in

wet years (precipitation >500 mm; Figure 6). Overall simula-

tions including the water table improved maize and soybean

yield response to summer precipitation compared to the sim-

ulations without the water table (Figure 6). In wet years, the

yield penalty caused by the inhibition of root depth and also

by increased N loss from the system (see Supplemental Figure
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F I G U R E 6 Simulated maize and soybean yield response to summer precipitation in central Iowa with and without including water table

impacts on the simulation process. Black line refers to the normalized NASS yield data for this county, which were used as benchmark

T A B L E 2 Simulated yields (0% moisture) with and without water table in central Iowa, Boone county

Average yield (1980-2018) Coefficient of variation
Simulation Maize Soybean Maize Soybean

Mg/ha %

With water table 13.02 3.87 13 12.1

Without water table 11.70 3.43 26 19.6

S6). In dry years, the yield credit caused by the water uptake

from the deep soil layers (data not shown). On average, the

simulations including the water table increased mean simu-

lated yields over 38-yr period by 12% and decreased year-by-

year yield variability by 50% in both crops (Table 2).

4 DISCUSSION

4.1 Ten lessons learned by performing
in-season yield and soil N predictions

First, it is critical that crop models include waterlogging

functions and being able to simulate shallow water table in

Iowa and similar temperate humid regions with shallow water

tables, which account for >100 million ha of the global arable

land (Fan et al., 2013; Schultz et al., 2007; Supplemental Fig-

ure S1); otherwise, predictions will be mostly accurate in aver-

age weather years (Figure 6). This was particularly notice-

able in years 2016 and 2017 in central Iowa in which crops

did not receive precipitation for almost 30 days during crit-

ical growth periods (Supplemental Table S3) and still pro-

duced high yields. Previous simulation analysis indicated that

the water table provided a yield benefit of 26% in maize and

17% in soybean (see details in Archontoulis et al., 2017).

Rizzo et al. (2018) reached a similar conclusion about the

contribution of water table to yield and yield stability across

the Corn Belt. In this study, we made significant progress to

improve understanding and simulation of water table fluctua-

tions across different soil types. The inclusion of water table

improved yield response to precipitation (Figure 6; Supple-

mental Figure S5); something that was recently found to be a

limitation in many crop models (Li et al., 2019; Kimball et al.,

2019). In general, the simulation of water table in crop models

has not received attention in the past, but current results sug-

gest that it should be prioritized for even better prediction of
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soil-crop processes in the US Corn Belt. Yet, several knowl-

edge gaps still remain. For example, how do we set up sub-

soil hydrological parameters across the landscape? How deep

should a soil profile be defined to enable accurate simulation

of a water table? Besides root growth, what other processes are

affected by the water table and in which direction? Answers to

the above questions can help guide improvements to the pre-

diction accuracy and scalability of crop models to simulate

regional scale impacts.

Second, many different factors affect yield and soil-plant

N predictions (see sensitivity analysis; Figure 4; Supplemen-

tal Figure S5). Some of these factors, especially initial con-

ditions, are typically ignored in data collection protocols, but

are important and, once integrated with other model inputs,

account for a large share of the total variance. By quan-

tifying more inputs to the model, prediction accuracy will

increase. Future measurement protocols should consider a

systems approach like the one we followed in this project

(and not just measuring one trait, e.g. yield or leaf N) towards

developing datasets that can support enhancements or devel-

opment of better prediction models.

Third, the accuracy of the management information is very

important for accurate model predictions as it accounted for

10–26% of the total sensitivity in maize yield, soil nitrate

and crop N uptake predictions at planting. For reference, we

found a 3% and 14% deviation between target plant population

(used as model inputs to predict yields at planting) and measu-

red plant counts later in the season for maize and soybean

crops, respectively (Figure 1). Lowering this deviation is ben-

eficial for modeling (Figure 4a; Supplemental Figure S4).

Fourth, if the model accurately predicts early-season tra-

jectories (Figure 2a; Supplemental Figure S3), the chances

for an accurate end-of-season prediction are high. If not, the

chances for an accurate prediction are very low. Thus, atten-

tion should be placed early in the season on how the model is

performing in terms of biomass and leaf area index simulation

as well as soil nitrogen and water. Coupling simulation models

with remote sensing, soil-plant sensors or field observations,

can improve predictive ability (Anderson et al., 2019; Lawes

et al., 2019).

Fifth, although we expected the RRMSE to decrease dur-

ing the season as more weather information became available,

this was not the case; in contrast, the median yield prediction

at planting was the second most accurate prediction after the

prediction at physiological maturity (Figure 3). Similar results

were found by Puntel et al. (2018) in central Iowa who ran

the APSIM model without reset for 20 years. The June and

July yield predictions were sensitive to short-term weather

variability and were, in general less accurate (Figure 2b). We

believe the relatively low RRMSE and thus high prediction

accuracy in May is due to the low share of the unknown factors

(summer weather) to the total yield sensitivity in this region

(Figure 4). Of particular note is the ranking of the summer pre-

cipitation in the sensitivity analysis (Figure 4; Supplemental

Figure S5); it was below the ranking of the water table depth.

This suggests that the water table depth is a more important

determinant of grain yield than the summer precipitation in

this environment. This agrees with Williams et al. (2008) who

analyzed 12 county-level climatic, edaphic, and topographic

environmental characteristics and found the depth to the water

table and soil organic matter to explain most of the yield vari-

ability in Iowa. However, in environments without water table

influence, we believe the yield will be more sensitive to the

growing season precipitation, and perhaps the uncertainty and

RRMSE of the yield prediction at planting time will be higher

than that observed in this study (Hammer et al., 1996; Nosetto

et al., 2009). To test this, we reran the sensitivity analysis but

without including water tables (data not shown). We found

that water tables decrease model’s sensitivity to summer pre-

cipitation by 50% in maize yield prediction (sensitivity index

decreased from 0.12 to 0.06) and by 64% in soybean yield

prediction (sensitivity index decreased from 0.17 to 0.06).

Thus, the water table buffers the crop to variation in sum-

mer precipitation and reduces model sensitivity to unknown

summer weather.

Sixth, in addition to existing model algorithm enhance-

ments (e.g. maize N dynamics, Soufizadeh et al., 2018;

grain growth dynamics, Messina et al., 2019) equal emphasis

should be placed on adding new functions into the models to

account for non-biophysical factors such as herbicide or hail

damage. In this study, we had issues with temporal foliage

damage caused by herbicides applied to soybeans. Once we

implemented an ad-hoc fix, the model matched experimen-

tal observations and increased accuracy. More universal rules

and specific measured data are needed to better model such

phenomena. Inclusion of such small modifications to simu-

lation platforms will greatly increase applicability of today’s

crop models to real-world conditions.

Seventh, we noticed that model prediction accuracy

increased in high-yielding locations and also in locations with

low measurement error (less yield variability from replica-

tion to replication; Figure 3). This is because APSIM can

capture weather and soil water/nitrogen related growth lim-

iting factors but not all of the limiting factors that are prob-

ably evident in low yielding locations, and thus the obtained

gradient in prediction accuracy across yielding environments.

To address the yield variability from plot to plot (note that

some plots were big, i.e. >1,000 m2), running the model for

every replication or by including sub-field variability may

be a better approach towards increasing prediction accuracy.

Of course, this comes with additional computation cost and

need for more precise inputs and better characterization of

the environments.

Eighth, consistent with Togliatti et al. (2017), the short-

term weather forecast (Supplemental Figure S2) added little

value to end-of-season yield predictions but did add value in
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planning short-term field operations. The long-term weather

forecast from the CFS model (6-month) was quite vari-

able with rapid changes from day to day (data not shown),

and thus its use was constrained to represent one of the

35 weather historical years used in the ensemble approach

(Figure 2). Recently Puntel et al. (2018) found that the

more historical weather years included in the ensemble, the

higher the prediction accuracy, with a minimum of 20 years

for accurate yield predictions in this region. Similar results

have been reported for different environments (Grassini

et al., 2015).

Ninth, the dissemination of yield, phenology, soil water

and N predictions in a publicly available website during the

growing season indicated two times more web visits in June

than in August. Thus, early-season crop model predictions are

the most valuable for US farmers because this time period

coincides with important management decisions and also

with high market prices due to weather uncertainty. Between,

actual predictions and benchmarking predictions (e.g. per-

cent yield or soil N above or below normal with normal

being a 35-yr average), the benchmarking approach was eas-

ier for the users to interpret and extrapolate results to their

own operations. The what-if model scenario analysis (after

crop harvest), which was presented at extension conferences,

generated significant discussion and interest by the farmers

(Archontoulis et al., 2016). Over the 4-yr period, we learned

that the what-if questions and interests that farmers had after

crop harvest were different every year and driven by the main

yield limiting factors that occurred during the growing sea-

son. For instance, in 2016, the scenarios were around crop

management. In 2017, a dry year, the scenarios were around

water stress. In 2018, a wet year, the scenarios were around N

rate, timing and leaching.

Tenth, the APSIM software platform was found to account

for and simulate well the most important soil and crop pro-

cesses (Table 1; Supplemental Figures S7–S26). Presumably,

that is because of the evolution of crop models over the

past decades to be more soil-centric and thus broader in the

science they contain and the problems to which they can

be applied (Keating & Thorburn, 2018). Of particular note

is the flexibility that this platform offers to set up various

management options and simulate water tables. We made

improvements to APSIM models and identified other pro-

cesses that may benefit from further improvements (see above

section on water tables). We found that the model simulated

biomass and yields more accurately (R2 = 0.84–0.94) than

leaf area index and leaf N concentration (R2 = 0.33–0.79;

Table 1). The latter could be evidence that both model pro-

cesses may require further improvements, although it should

be noted that the measurement error is high because is dif-

ficult to accurately separate senesced from green portions

within leaves.

4.2 How does our approach compare with
those of others?

We simulated a water- and N-limited production situation and

accounted for water table impacts. Thus, our approach is very

complex but also comprehensive as it accounts for many dif-

ferent aspects of the cropping system. For reference, previous

maize yield predictions in the US Corn Belt using the Hybrid-

maize model considered only water-limited situations without

accounting for water tables (Morell et al., 2016). Compared

to Australia’s wheat yield predictions (Carberry et al., 2009)

using the APSIM model, our approach was similar, but had

two key differences: (1) we started the model approximately

four months prior to planting (1 January) and not at plant-

ing time; and (2) we included a weather forecast component

in addition to the current and historical weather. Our choice

to start the model on 1 January and not at planting was to

reduce the model sensitivity to initial conditions. Initializing

the model at previous crop harvest (approximately 15 Octo-

ber) or even running the model sequentially without initial-

ization are other options to explore in the future.

Compared to remote sensing and machine learning yield

prediction approaches, the benefit of our approach is that in

addition to crop yields, the model can provide actual data on

soil water and N (for different soils depths) that cannot be pre-

dicted by remote sensing. Most importantly, simulation mod-

els can be used to conduct what-if scenario analyses to learn

from the past (see ninth lesson in Section 4.1 above) to better

design the future. In contrast to commercial N decision tools

such as Adapt-N (Sela et al., 2016) and others (FieldView,

Encirca), our aim was not to make specific input recommen-

dations but instead to provide useful data to stakeholders to

make informed decisions.

In the future, the whole system can be re-designed to

address specific management questions, provide scenarios for

preplant decisions, and regional scale forecasts. For the pre-

plant decisions, a recent study found that coupling APSIM

with machine learning (creation of a meta-model) to be a

more cost-, time-, and scale-effective approach than using

crop modeling alone (Shahhoseini et al., 2019). Lastly, in

the future the destructive measurements can be replaced with

real-time sensing of soil and crop conditions to inform model

initial conditions.

5 CONCLUSIONS

This manuscript laid the groundwork for future forecasting

and research applications of the APSIM model in the US Corn

Belt by providing a comprehensive evaluation of many crop

and soil processes included in the model and by developing

prediction protocols. Of importance was the good prediction
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of grain yield at planting time and of soil N dynamics through-

out the growing season. Together these two aspects can assist

growers with N management decisions. More accurate pre-

dictions will likely result from improving the quality of data

inputs to the model (especially initial conditions and preci-

sion of management data as together accounted for nearly

one-fourth of the variation in maize yield), further enhancing

model algorithms, and including sub-field variability. Links

between crop modeling and remote sensing and soil-plant sen-

sors can assist in this direction. Lastly, in this region, the

existence of a shallow water table had a substantial influ-

ence on yield and soil N predictions, and more research is

needed in this area to fully understand and predict water

table impacts. Thus, model set up becomes very critical to

accurately predict crop and environmental aspects in the US

Corn Belt.

ACKNOWLEDGEMENTS
This work was sponsored by Iowa Soybean Association,

Foundation for Food and Agricultural Research (Grant

#534264), Iowa Crop Improvement Association, NSF

(#1830478, #1842097), USDA (2019-67019-29404), USDA

Hatch projects (IOW10480, IOW04414), Iowa Nutrient

Reduction Center, Iowa State University Plant Sciences

Institute, Department of Agronomy, and Agriculture and

Natural Resources Extension. We thank Dean Holzworth and

Neil Huth from CSIRO for their support with the APSIM

model, Iowa State University students (Alyssa Waldschmidt,

Gretchen Kooyenga, Ben Ng, Oluwakorede Olugbenle, Emily

Marrs, Jenny Jensen, Jake Smith, Caitlin Cervac) and farm

managers (Josh Sievers, Ryan Rusk, Terry Tuttle, Matt Schn-

abel, Ken Pecinovsky, Mike Fiscus, Nathan Meyer, Myron

Rees, Cody Schneider, Dominic Snyder, Gary Thompson,

John Beckman) for assistance with data collection and

managing the field experiments. We also thank the APSIM

Initiative for making the software publicly available and for

ensuring software quality.

ORCID
Sotirios V. Archontoulis
https://orcid.org/0000-0001-7595-8107

Mark A. Licht https://orcid.org/0000-0001-6640-7856

Kendall R. Lamkey
https://orcid.org/0000-0001-8510-8798

R E F E R E N C E S
Anderson, II, S. L., Murray, S. C., Malambo, L., Ratcliff, C., Popescu,

S., Cope, D., … Thomasson, J. A. (2019). Prediction of maize grain

yield before maturity using improved temporal height estimates of

unmanned aerial systems. The Plant Phenome Journal, 2, 190004.

https://doi.org/10.2135/tppj2019.02.0004

Archontoulis, S. V., & Miguez, F. E. (2015). Nonlinear regression mod-

els and applications in agricultural research. Agronomy Journal, 107,

786–798. https://doi.org/10.2134/agronj2012.0506

Archontoulis, S. V., & Licht, M. (2016). A web platform for Fore-

casting and Assessment of Cropping sysTems (FACTS). Integrated

Crop Management Newsletter, Iowa State University. Retrieved from

http://crops.extension.iastate.edu/facts/

Archontoulis, S.V., Licht, M., Castellano, M., Dietzel, R., VanLoocke,

A., Ordonez, R., … Helmers, M. (2016). Understanding the 2016

yields and interactions between soils, crops, climate and manage-

ment. In Proceedings of the 28th ICM conference (pp. 13–17).

November 30–December 1, 2016. Ames, IA: ICM.

Archontoulis, S. V., Miguez, F. E., & Moore, K. J. (2014b). A method-

ology and an optimization tool to calibrate phenology of short-

day species included in the APSIM PLNAT model: Application

to soybean. Environmental Modeling and Software, 62, 465–477.

https://doi.org/10.1016/j.envsoft.2014.04.009

Archontoulis, S. V., Miguez, F. E., & Moore, K. J. (2014). Evaluating

APSIM maize, soil water, soil nitrogen, manure and soil temperature

modules in the Midwestern United States. Agronomy Journal, 106,

1025–1040. https://doi.org/10.2134/agronj2013.0421

Archontoulis, S. V., Licht, M., Castellano, M., Ordóñez, R. A., Iqbal, J.,

Martinez-Feria, R., … Helmers, M. (2017). Water availability, root

depths and 2017 crop yields. In Proceedings of the 29th ICM confer-

ence (pp. 25–33). November 29-30, 2017. Ames, IA: ICM.

Atzberger, C. (2013). Advances in remote sensing of agricul-

ture: Context description, existing operational monitoring sys-

tems and major information needs. Remote Sensing, 5, 949–981.

https://doi.org/10.3390/rs5020949

Balboa, G. R., Sandras, V., & Ciampitti, I. (2018). Shifts in soy-

bean yield, nutrient uptake and nutrient stoichiometry: A histori-

cal systems-analysis. Crop Science, 58, 43–54. https://doi.org/10.

2135/cropsci2017.06.0349

Basso, B., & Liu, L. (2019). Seasonal crop yield forecast: Methods,

applications, and accuracies. Advances in Agronomy, 154, 201–255.

https://doi.org/10.1016/bs.agron.2018.11.002

Basso, B., Cammarano, D., & Carfagna, E. (2013). Review of crop yield

forecasting methods and early warning systems. In Proceedings of the

First Meeting of the Scientific Advisory Committee of the Global

Strategy to Improve Agricultural and Rural Statistics. Rome, Italy:

FAO.

Basso, B., Chou, T. Y., Chihyuan, C., & Meiling, Y. (2012). i-Salus: New

web based spatial systems for simulating crop yield and environmen-

tal impact. In Proc. Inter. Conf. Precision Agriculture. Indianapolis:

International Society of Precision Agriculture.

Brandes, E., McNunn, G. S., Schulte, L. A., Bonner, I. J., Muth,

D. J., Babcock, B. A., … Heaton, E. A. (2016). Subfield

profitability analysis reveals an economic case for cropland

diversification. Environmental Research Letters, 11, 014009.

https://doi.org/10.1088/1748-9326/11/1/014009

Campbell, G. S. (1985). Soil physics with BASIC. Transport models for
soil-plant systems. Vol. 14. Amsterdam, The Netherlands: Elsevier

Science Publishers B.V.

Carberry, P. S., Hochman, Z., Hunt, J. R., Dalgliesh, N. P., McCown,

R. L., & Whish, J. P. M. (2009). Re-inventing model-based deci-

sion support with Australian dryland farmers. 3. Relevance of

APSIMto commercial crops. Crop and Pasture Science, 60, 1044–

1056. https://doi.org/10.1071/CP09052

https://orcid.org/0000-0001-7595-8107
https://orcid.org/0000-0001-7595-8107
https://orcid.org/0000-0001-6640-7856
https://orcid.org/0000-0001-6640-7856
https://orcid.org/0000-0001-8510-8798
https://orcid.org/0000-0001-8510-8798
https://doi.org/10.2135/tppj2019.02.0004
https://doi.org/10.2134/agronj2012.0506
http://crops.extension.iastate.edu/facts/
https://doi.org/10.1016/j.envsoft.2014.04.009
https://doi.org/10.2134/agronj2013.0421
https://doi.org/10.3390/rs5020949
https://doi.org/10.2135/cropsci2017.06.0349
https://doi.org/10.2135/cropsci2017.06.0349
https://doi.org/10.1016/bs.agron.2018.11.002
https://doi.org/10.1088/1748-9326/11/1/014009
https://doi.org/10.1071/CP09052


16 ARCHONTOULIS ET AL.Crop Science

Ciampitti, I. A., & Vyn, T. J. (2012). Physiological perspectives of

changes over time in maize yield dependency on nitrogen uptake

and associated nitrogen efficiencies: A review. Field Crops Research,

133, 48–67. https://doi.org/10.1016/j.fcr.2012.03.008

Córdova, S. C., Castellano, M. J., Dietzel, R., Licht, M., Togliatti, K.,

Martinez-Feria, R., & Archontoulis, S. V. (2019). Soybean nitrogen

fixation dynamics in Iowa. Field Crops Research, 236, 165–176.

Dietzel, R., Liebman, M., Ewing, R., Helmers, M., Horton, R., Jar-

chow, M., & Archontoulis, S.V. (2016). How efficiently do corn-

and soybean-based cropping systems use water? A systems model-

ing analysis. Global Change Biology, 22, 666–681.

Ebrahimi-Mollabashi, E., Huth, N. I., Holzwoth, D. P., Ordóñez, R. A.,

Hatfield, J. L., Huber, I., … Archontoulis, S. V. (2019). Enhancing

APSIM to simulate excessive moisture effects on root growth. Field
Crops Research, 236, 58–67.

Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global patterns of ground-

water. Science, 339, 940–943.

Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean devel-

opment. Special Report 87. Retrieved from http://lib.dr.

iastate.edu/specialreports/87

Feng, P., Wang, B., Liu, D. L., Waters, C., & Yue, Q. (2019). Incor-

porating machine learning with biophysical model can improve the

evaluation of climate extremes impacts on wheat yield in south-

eastern Australia. Agricultural and Forest Meteorology, 275, 100–

113. https://doi.org/10.1016/j.agrformet.2019.05.018

Grassini, P., van Bussel, L. G. J., Van Wart, J., Wolf, J., Claessens, L.,

H. Yang, … van Ittersum, M. K., & Cassman, K.G. (2015). How

good is good enough? Data requirements for reliable crop yield sim-

ulations and yield-gap analysis. Field Crops Research, 177, 49–63.

https://doi.org/10.1016/j.fcr.2015.03.004

Hamby, D. M. (1994). A review of techniques for parameter sensitiv-

ity analysis of environmental models. Environmental Monitoring and
Assessment, 32, 135–154. https://doi.org/10.1007/BF00547132

Hammer, G. L., Holzworth, D. P., & Stone, R. C. (1996). The value of

skill in seasonal climate forecasting to wheat crop management in a

region with high climatic variability. Australian Journal of Agricul-
tural Research, 47, 717–737. https://doi.org/10.1071/ar9960717

Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C.,

Schussler, J., … Cooper, M. (2009). Can changes in canopy

and/or root system architecture explain historical maize yield

trends in the US Corn Belt? Crop Science, 49, 299–312.

https://doi.org/10.2135/cropsci2008.03.0152

Hansen, J. W., Potgieter, A., & Tippett, M. (2004). Using a gen-

eral circulation model to forecast regional wheat yields in North-

east Australia. Agricultural and Forest Meteorology, 127, 77–92.

https://doi.org/10.1016/j.agrformet.2004.07.005

Hansen, J. W., & Indeje, M. (2004). Linking dynamic seasonal climate

forecasts with crop simulation for maize yield prediction in semi-

arid Kenya. Agricultural and Forest Meteorology, 125, 143–157.

https://doi.org/10.1016/j.agrformet.2004.02.006

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N.

I., McLean, G., … Keating, B. A. (2014). APSIM-evolution towards

a new generation of agricultural systems simulation. Environmental
Modelling & Software, 62, 327–350.

Hood-Nowotny, R., Umana, N. H. N., Inselbacher, E., Oswald-

Lachouani, P., & Wanek, W. (2010). Alternative methods for

measuring inorganic, organic, and total dissolved nitrogen in

soil. Soil Science Society of America Journal, 74, 1018–1027.

https://doi.org/10.2136/sssaj2009.0389

Huth, N. I., Bristow, K. L., & Verburg, K. (2012). SWIM3: Model

use, calibration, and validation. Transactions of the Amer-
ican Society of Agricultural Engineers, 55, 1303–1313.

https://doi.org/10.13031/2013.42243

Ines, A. V., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013). Assim-

ilation of remotely sensed soil moisture and vegetation with a

crop simulation model for maize yield prediction. Remote Sensing
of Environment, 138, 149–164. https://doi.org/10.1016/j.rse.2013.

07.018

Iowa Environmental Mesonet. (2019). Iowa Ag Climate Network.

Ames, IA: Iowa State University. https://mesonet.agron.iastate.

edu/agclimate/

Johnson, M. D., Hsieh, W. W., Cannon, A. J., & Davidson,

A. (2016). Crop yield forecasting on the Canadian prairies

by remotely sensed vegetation indices and machine learning

methods. Agricultural and Forest Meteorology, 218–219, 74–84.

https://doi.org/10.1016/j.agformet.2015.11.003

Jones, J. W., Antle, J. M., & Basso, B. (2017). Toward a new generation

of agricultural system data, models, and knowledge products: State

of agricultural systems science. Agricultural Systems, 155, 269–288.

https://doi.org/10.1016/j.agsy.2016.09.021

Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M.

E., Robertson, M. J., Holzworth, D., … Smith, C. J. (2003).

An overview of APSIM, a model designed for farming sys-

tems simulation. European Journal of Agronomy, 18, 267–288.

https://doi.org/10.1016/s1161-0301(02)00108-9

Keating, B. A., & Thorburn, P. J. (2018). Modeling crops and

cropping systems – Evolving purpose, practice and prospects.

European Journal of Agronomy, 100, 163–176. https://doi.org/10.

1016/j.eja.2018.04.007

Kimball, B. A., Boote, K. J., Hatfield, J. L., Ahuja, L. R., Stockle,

C., Archontoulis, S., … Williams, K. (2019). Simulation of

maize evapotranspiration: An inter-comparison among 29 maize

models. Agricultural and Forest Meteorology, 271, 264–284.

https://doi.org/10.1016/j.agrformet.2019.02.037

Lawes, R. A., Oliver, Y. M., & Huth, N. I. (2019). Optimal nitrogen rate

can be predicted using average yield and estimates of soil water and

leaf nitrogen with infield experimentation. Agronomy Journal, 111,

1–10.

Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. G. (2002).

Comparison of two different approaches of sensitivity analysis.

Physics and Chemistry of the Earth, Parts A/B/C, 27, 645–654.

https://doi.org/10.1016/S1474-7065(02)00049-9

Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E., & Peng, B. (2019).

Excessive rainfall leads to maize yield loss of a comparable magni-

tude to extreme drought in the United States. Global Change Biology,

25, 2325–2337. https://doi.org/10.1111/gcb.14628

Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015).

A scalable satellite-based crop yield mapper. Remote Sensing of
Environment, 164, 324–333. https://doi.org/10.1016/j.rse.2015.04.

021

Mallarino, A. P., Sawyer, J. E., & Barnhart, S. K. (2013). A general guide
for crop nutrient and limestone recommendations in Iowa. PM 1688.

Ames, IA: Iowa State Univ. Ext. and Outreach.

Malone, R. W., Huth, N., Carberry, P. S., Ma, L., Kaspar,

T. C., Karlen, D. L., … Heilman, P. (2007). Evaluating

and predicting agricultural management effects under tile

drainage using modified APSIM. Geoderma, 140, 310–322.

https://doi.org/10.1016/j.geoderma.2007.04.014

https://doi.org/10.1016/j.fcr.2012.03.008
http://lib.dr.iastate.edu/specialreports/87
http://lib.dr.iastate.edu/specialreports/87
https://doi.org/10.1016/j.agrformet.2019.05.018
https://doi.org/10.1016/j.fcr.2015.03.004
https://doi.org/10.1007/BF00547132
https://doi.org/10.1071/ar9960717
https://doi.org/10.2135/cropsci2008.03.0152
https://doi.org/10.1016/j.agrformet.2004.07.005
https://doi.org/10.1016/j.agrformet.2004.02.006
https://doi.org/10.2136/sssaj2009.0389
https://doi.org/10.13031/2013.42243
https://doi.org/10.1016/j.rse.2013.07.018
https://doi.org/10.1016/j.rse.2013.07.018
https://mesonet.agron.iastate.edu/agclimate/
https://mesonet.agron.iastate.edu/agclimate/
https://doi.org/10.1016/j.agformet.2015.11.003
https://doi.org/10.1016/j.agsy.2016.09.021
https://doi.org/10.1016/s1161-0301\05002\05100108-9
https://doi.org/10.1016/j.eja.2018.04.007
https://doi.org/10.1016/j.eja.2018.04.007
https://doi.org/10.1016/j.agrformet.2019.02.037
https://doi.org/10.1016/S1474-7065\05002\05100049-9
https://doi.org/10.1016/j.rse.2015.04.021
https://doi.org/10.1016/j.rse.2015.04.021
https://doi.org/10.1016/j.geoderma.2007.04.014


ARCHONTOULIS ET AL. 17Crop Science

Martinez-Feria, R., Castellano, M., Dietzel, R., Helmers, M., Liebman,

M., Huber, I., & Archontoulis, S. V. (2018). Linking crop- and soil-

based approaches to evaluate system nitrogen-use efficiency and

tradeoffs. Agriculture, Ecosystems & Environment, 256, 131–143.

https://doi.org/10.1016/j.agee.2018.01.002

Messina, C., Hammer, G., McLean, G., Cooper, M., van Oosterom,

E., Tardieu, F., … Gho, C. (2019). On the dynamic determinants

of reproductive failure under drought in maize. In Silico Plants, 1.

https://doi.org/10.1093/insilicoplants/diz003

Morell, F. J., Yang, H. S., Cassman, K. G., Wart, J. V., Elmore,

R. W., & Licht, M. (2016). Can crop simulation models

be used to predict local to regional maize yields and total

production in the US Corn Belt? Field Crops Research, 192,

1–12. https://doi.org/10.1016/j.fcr.2016.04.004

NASS. (2019). Surveys. National Agricultural Statistics Service, USDA.

https://www.nass.usda.gov/Surveys/

Nichols, V., Ordóñez, R. A., Castellano, M. J., Liebman, M., Hatfield,

J. L., Helmers, M., … Archontoulis, S. V. (2019). Vertical distribu-

tion of maize and soybean roots in Iowa, USA. Plant and Soil, 444,

225–238.

Nosetto, M. D., Jobbágy, E. G., Jackson, R. B., & Sznaider, G. A. (2009).

Reciprocal influence of crops and shallow ground water in sandy

landscapes of the Inland Pampas. Field Crops Research, 113, 138–

148. https://doi.org/10.1016/j.fcr.2009.04.016

Ordóñez, R. A., Castellano, M., Hatfield, J., Helmers, M., Licht, M.,

Liebman, M., … Archontoulis, S. V. (2018). Corn and soybean

root front velocity and maximum depth in Iowa, USA. Field Crops
Research, 215, 122–131. https://doi.org/10.1016/j.fcr.2017.09.003

Ordóñez, R. A., Castellano, M., Hatfield, J., Licht, M., Wright, E., &

Archontoulis, S. V. (2018). A solution for sampling position errors in

maize and soybean root mass and length estimates. European Journal
of Agronomy, 96, 156–162. https://doi.org/10.1016/j.eja.2018.04.002

Peng, B., Guan, K., Chen, M., Lawrence, D. M., Pokhrel, Y.,

Suyker, A., & Lu, Y. (2018). Improving maize growth pro-

cesses in the community land model: Implementation and eval-

uation. Agricultural and Forest Meteorology, 250–251, 64–89.

https://doi.org/10.1016/j.agrformet.2017.11.012

Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield

estimation model for Iowa using remote sensing and surface parame-

ters. International Journal of Applied Earth Observation and Geoin-
formation, 8, 26–33. https://doi.org/10.1016/j.jag.2005.06.002

Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C., & Strong, W.

M. (1998). APSIM’s water and nitrogen modules and simulation of

the dynamics of water and nitrogen in fallow systems. Agricultural
Systems, 56, 1–28. https://doi.org/10.1016/s0308-521x(97)00028-0

Puntel, L. A., Sawyer, J. E., Barker, D. W., Thorburn, P. J., Castellano,

M., Moore, K. J., … Archontoulis, S. V. (2018). A systems modeling

approach to forecast corn economic optimum nitrogen rate. Frontiers
in Plant Science, 9, 436. https://doi.org/10.3389/fpls.2018.00436

R Core Team. (2013). R: A language and environment for statisti-
cal computing. Vienna: R Foundation for Statistical Computing.

http://www.R-project.org.

Rizzo, G., Edreira, J. R., Archontoulis, S. V., Yang, H., & Grassini,

P. (2018). Do shallow water tables contribute to high and stable

maize yields in the US Corn Belt? Global Food Security, 18, 27–34.

https://doi.org/10.1016/j.gfs.2018.07.002

Ritchie, S. W., & Hanway, J. J. (1982). How a Corn Plant Develops. Spe-

cial Report No. 48. Ames, IA: Iowa State University of Science and

Technology, Cooperative Extension Service.

Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., & Bloomfield,

J. (2002). Increased crop damage in the US from excess precipitation

under climate change. Global Environmental Change, 12, 197–202.

https://doi.org/10.1016/s0959-3780(02)00008-0

Rötter, R. P., Appiah, M., Fichtler, E., Kersebaum, K. C., Trnka,

M., & Hoffmann, M. P. (2018). Linking modelling and exper-

imentation to better capture crop impacts of agroclimatic

extremes—A review. Field Crops Research, 221, 142–156.

https://doi.org/10.1016/j.fcr.2018.02.023

Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., & Joern, B.

(2006). Concepts and rationale for regional nitrogen guidelines for
corn, PM2015. Ames, IA: Iowa State University Extension.

Saxton, K. E., & Rawls, W. J. (2006). Soil water characteris-

tic estimates by texture and organic matter for hydrologic solu-

tions. Soil Science Society of America Journal, 70, 1569–1578.

https://doi.org/10.2136/sssaj2005.0117

Sela, S., Van Es, H. M., Moebius-Clune, B. N., Marjerison, R., Melko-

nian, J., Moebius-Clune, D., … Gomes, S. (2016). Adapt-N out-

performs grower-selected nitrogen rates in northeast and midwest-

ern United States strip trials. Agronomy Journal, 108, 1726–1734.

https://doi.org/10.2134/agronj2015.0606

Shahhoseini, M., Martinez-Feria, R., Hu, G., & Archontoulis, S.

V. (2019). Maize yield and nitrate loss prediction with machine

learning algorithms. Environmental Research Letters, 14, 1240

26.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,

Wang, W., & Powers, J. G. (2008). A description of the Advanced
Research WRF version 3. NCAR Technical Note. Boulder, CO: Uni-

versity Corporation for Atmospheric Research.

Shaw, R. E., & Meyer, W. S. (2015). Improved empirical rep-

resentation of plant responses to waterlogging for simulating

crop yield. Agronomy Journal, 107, 1711–1723. https://doi.org/

10.2134/agronj14.0625

Soil Survey Staff. (2019). Soil survey geographic (SSURGO) database.

Washington, DC: USDA Natural Resources Conservation Service.

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=
nrcs142p2_053627

Soufizadeh, S., Munaro, E., McLean, G., Massignam, A., van Oos-

terom, E. J., Chapman, S. C., … Hammer, G. L. (2018). Mod-

elling the nitrogen dynamics of maize crops – enhancing the

APSIM maize model. European Journal of Agronomy, 100, 118–131.

https://doi.org/10.1016/j.eja.2017.12.007

Schultz, B., Zimmer, D., & Vlotman, W. (2007). Drainage under increas-

ing and changing requirements. Irrigation and Drainage, 56, 3–22.

https://doi.org/10.1002/ird.372

Thorburn, P. J., Probert, M. E., & Robertson, F. A. (2001). Modelling

decomposition of sugarcane surface residues with APSIM-Residue.

Field Crops Research, 70, 223–232.

Togliatti, K., Archontoulis, V. S., Dietzel, R., Puntel, L. A., & Van-

Loocke, A. (2017). How does inclusion of weather forecasting impact

in-season crop model predictions? Field Crops Research, 214, 261–

272. https://doi.org/10.1016/j.fcr.2017.09.008

Tollenaar, M., Fridgen, J., Tyagi, P., Stackhouse, P. W. Jr., &

Kumudini, K. (2017). The contribution of solar brightening to

the US maize yield trend. Nature Climate Change, 7, 275–278.

https://doi.org/10.1038/NCLIMATE3234

van der Velde, M., Tubiello, F. N., Vrieling, A., & Bouraoui, F. (2012).

Impacts of extreme weather on wheat and maize in France: Eval-

uating regional crop simulations against observed data. Climatic

https://doi.org/10.1016/j.agee.2018.01.002
https://doi.org/10.1093/insilicoplants/diz003
https://doi.org/10.1016/j.fcr.2016.04.004
https://www.nass.usda.gov/Surveys/
https://doi.org/10.1016/j.fcr.2009.04.016
https://doi.org/10.1016/j.fcr.2017.09.003
https://doi.org/10.1016/j.eja.2018.04.002
https://doi.org/10.1016/j.agrformet.2017.11.012
https://doi.org/10.1016/j.jag.2005.06.002
https://doi.org/10.1016/s0308-521x\05097\05100028-0
https://doi.org/10.3389/fpls.2018.00436
http://www.R-project.org
https://doi.org/10.1016/j.gfs.2018.07.002
https://doi.org/10.1016/s0959-3780\05002\05100008-0
https://doi.org/10.1016/j.fcr.2018.02.023
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.2134/agronj2015.0606
https://doi.org/10.2134/agronj14.0625
https://doi.org/10.2134/agronj14.0625
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627
https://doi.org/10.1016/j.eja.2017.12.007
https://doi.org/10.1002/ird.372
https://doi.org/10.1016/j.fcr.2017.09.008
https://doi.org/10.1038/NCLIMATE3234


18 ARCHONTOULIS ET AL.Crop Science

Change, 113, 751–765. https://doi.org/10.1007/s10584-011-036

8-2

Wang, E., & Smith, C. J. (2004). Modelling the growth and water uptake

function of plant root systems: A review. Crop Pasture Science, 55,

501–523.

Warren, J. M., Hanson, P. J., Iversen, C. M., Kumar, J., Walker, A. P., &

Wullschleger, S. D. (2015). Root structural and functional dynam-

ics in terrestrial biosphere models evaluation and recommenda-

tions. New Phytologist, 205, 59–78. https://doi.org/10.1111/nph.130

34

Wickham, H. (2017). tidyverse: Easily install and load the ‘Tidyverse’.

R package (Version 1.2.1).

Wickham, H., & Bryan, J. (2018). readxl: Read excel files. R package

(Version 1.1.0).

Williams, C. L., Liebman, M., Edwards, J. W., James, D. E., Singer, J. W.,

Arritt, R., & Herzmann, D. (2008). Patterns of regional yield stabil-

ity in association with regional environmental characteristics. Crop
Science, 48, 1545–1559. https://doi.org/10.2135/cropsci2006.12.

0837

Wu, Y., Wang, E., He, D., Liu, X., Archontoulis, S., Huth, N.,

… Yang, W. (2019). Combine observation data and modeling

to quantify cultivar differences of soybean. European Journal
of Agronomy, 111, 125940. https://doi.org/10.1016/j.eja.2019.12

5940

SUPPORTING INFORMATION
Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Archontoulis SV, Castellano

MJ, Licht MA, et al. Predicting crop yields and

soil-plant nitrogen dynamics in the US Corn Belt.

Crop Science. 2020;1–18.

https://doi.org/10.1002/csc2.20039

https://doi.org/10.1007/s10584-011-0368-2
https://doi.org/10.1007/s10584-011-0368-2
https://doi.org/10.1111/nph.13034
https://doi.org/10.1111/nph.13034
https://doi.org/10.2135/cropsci2006.12.0837
https://doi.org/10.2135/cropsci2006.12.0837
https://doi.org/10.1016/j.eja.2019.125940
https://doi.org/10.1016/j.eja.2019.125940
https://doi.org/10.1002/csc2.20039

