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Abstract 

 

Plant Steroid hormones, Brassinosteroids (BRs), play important roles in plant growth, 

development and responses to various stresses. BR signal through receptor BRI1 and BAK1 and 

a series signaling intermediates to control the activities of BES1/BZR1 family transcription 

factors that control the expression of thousands of genes, half of which are induced and the 

other half repressed by BR. While BES1 is known to activate BR-induced genes by itself or 

cooperating with co-activators, such as transcription factors, histone modification enzymes and 

transcription elongation factors, how BES1 mediates the BR-repressed gene expression is not 

known. In chapter Ⅱ, MYBL2, a small MYB family transcription repressor, was found to 

interact with BES1 to down-regulate BR-repressed gene expression. The loss-of-function mybl2 

mutant enhances the phenotype of a weak allele of bri1 and suppresses the constitutive BR-

response phenotype of bes1-D, suggesting that suppression of BR-repressed gene expression is 

required for optimal BR response. Moreover, MYBL2 is a substrate of GSK3-like kinase BIN2, 

a negative regulator functioning in inhibiting the activities of BES1/BZR1 through its 

phosphorylation in BR pathway. Unlike BIN2 phosphorylation of BES1/BZR1 leading to 

protein degradation, BIN2 phosphorylation stabilizes MYBL2, which demonstrated a dual role 

of BIN2 phosphorylation in BR pathway, similar to the function of GSK3 in WNT signaling 

pathway. Our results thus establish the mechanisms for BR-repressed gene expression and the 

integration of BR signaling and BR transcriptional network. 

In addition to promote the growth, BRs are known to be involved in drought response, but 

the mechanism of interactions between these two pathways remains to be established. In 

chapter Ⅲ, the NAC family transcription factor RD26 and its close homologs mediate crosstalk 

between drought and BR signaling pathway. RD26 is a direct target of BES1 and functions to 

inhibit BR-regulated growth as overexpression of RD26 leads to decreased plant growth and 

knockout of RD26 and its close homologs results in increased BR response. Global gene 

expression analysis revealed that RD26 modulates BR-regulated gene expression in a complex 

way. RD26 represses many BR-induced genes including BR-activated cell elongation genes and 

activates many BR-repressed genes, thereby inhibiting BR functions. On the other hand, BR 

signaling also inhibits drought responses through repressing the expression of RD26, its 

homologs and RD26-mediated drought-induced genes. The reciprocal inhibitory effects of BES1 

and RD26 are mediated by their interactions on different promoter elements. This mechanism 

ensures that BR-induced plant growth is inhibited under drought condition that induced RD26 
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expression, while this mechanism also prevents unnecessary activation of drought response 

when plants undergo BR-induced growth, during which BES1 accumulates. Our results thus 

revealed a previously unknown mechanism coordinating plant growth and drought tolerance. 

 

 

Organization of the thesis and author contributions: 

Introduction (Chapter I): A comprehensive review of the BR field, largely based on a published 

invited review, is firstly presented as introduction (Chapter I). Myself, a former graduate student in 

the lab, Lei Li, and my supervisor Dr. Yanhai Yin all contributed to the writing of the review. 

 

The characterization of MYBL2 (Chapter II) is accepted for publication in PNAS. Myself, and 

my supervisor Dr. Yanhai Yin designed research; I performed most of the research; Lei Li 

contributed new reagents/analytic tools; Myself, Lei Li and Hongqing analyzed data; and myself., 

Hongqing Guo and my supervisor wrote the paper. 

 

The characterization of RD26 (Chapter III) will be submitted to Nature Genetics for 

consideration of publication soon. 

Myself, and my supervisor Dr. Yanhai Yin designed research; I performed most of the molecular and 

genetic studies; Dr. Sanzhen Liu in Dr. Patrick Schnable’s lab analyzed the RNA-seq data; Dr. 

Maneesha and Dr. Srinivas Aluru constructed the gene regulatory network; myself, and my supervisor 

wrote the paper. 
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Abstract 

Brassinosteroids (BRs) play important roles in plant growth, development and responses to 

environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor 

BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) 

regulators to control the activities of BES1 and BZR1 family transcription factors, which 

regulate the expression of hundreds to thousands of genes for various BR responses. Recent 

studies identified novel signaling components in the BR pathways and started to establish the 

detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism 

and transcriptional network through which BES1 and BZR1 control gene expression and 

various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 

and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. 

Identification of BES1 and BZR1 target genes established a transcriptional network for BR 

response and crosstalk with other signaling pathways. Recent studies also revealed regulatory 

mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here 

we provide an overview and discuss some of the most recent progress in the regulation of BR 

signaling and biosynthesis pathways. 

 

Introduction 

A group of plant steroid hormones, named Brassinosteroids (BRs), regulate many processes in 

plant growth and development, including cell elongation, cell division, senescence, vascular 

differentiation, reproduction, photomorphogenesis ，  responses to various stresses (Mandava 1988; 

Clouse and Sasse 1998; Li and Chory 1999; Divi and Krishna 2009). Loss-of-function mutants, 

deficient in BR biosynthesis or perception, display dwarf phenotypes with reduced cell elongation, 

dark-green and epinastic leaves, reduced apical dominance, delayed flowering and senescence, altered 

vascular patterning and male sterility (Clouse et al. 1996; Li et al. 1996; Szekeres et al. 1996). 

Genetic and molecular studies in Arabidopsis have greatly advanced our understanding of the BR 

signaling pathway (Fig 1) (Kim and Wang 2010; Li 2010b; Clouse 2011; Yang et al. 2011). BRs are 

perceived by a membrane-bound receptor called BRI1 (BRASSINOSTEROID INSENSITIVE 1), a 

leucine rich repeat (LRR) receptor like kinase (Li and Chory 1997; He et al. 2000; Wang et al. 2001; 

Kinoshita et al. 2005). Many alleles of BRI1 have been identified through various genetic 

screens(Clouse et al. 1996; Li and Chory 1997; Noguchi et al. 1999; Friedrichsen et al. 2000; Zhao et 

al. 2009). In the absence of BRs, BRI1’s activity is inhibited by the negative regulator, BKI1 (BRI1 
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KINASE INHIBITOR 1), which exerts its effect by binding the C-terminal tail of BRI1 (Wang and 

Chory 2006). However, binding of BRs to BRI1 relieves this repression and results in BRI1 

association with the co-receptor BAK1 (BRI1-Associated Receptor Kinase 1) and a series of 

phosphorylation events (Li et al. 2002; Nam and Li 2002; Wang et al. 2005a; Wang et al. 2005b; 

Wang et al. 2008; Oh et al. 2009b). BRI1 signals through BSK1 (BR SIGNALING KINASE 1) and 

CDG1 kinases as well as BSU1 (BRI1-SUPPRESSOR 1) to regulate a negative regulator BIN2 

(BRASSINOSTEROID INSENSITIVE 2), a GSK3/Shaggy-like kinase (Choe et al. 2002; Li and 

Nam 2002; Pérez-Pérez et al. 2002; Mora-Garcia et al. 2004; Tang et al. 2008b; Kim et al. 2009; Kim 

et al., 2011).  Other BRI1 substrates such as Arabidopsis TRIP-1 ( -

INTERACTING PROTEIN-1) and TTL (TRANSTHYRETIN-LIKE PROTEIN) may function to 

regulate BR signaling as well (Nam and Li 2004; Ehsan et al. 2005). The dephosphoryaltion of BIN2 

by BSU1 inhibits BIN2 function, which allows the nuclear accumulation of two transcription factors 

BES1 (BRI1-EMS SUPPRESSOR 1) and BZR1 (BRASSINAZOLE RESISTANT 1), two bHLH 

(BASIC HELIX-LOOP-HELIX)-like transcription factors that play major roles in regulating BR 

target gene expression (Wang et al. 2002; Yin et al. 2002b; Zhao et al. 2002; He et al. 2005; Yin et al. 

2005).  

Significant progress has been made in the past few years. After the biochemical confirmation 

that BRI1 is indeed BR receptor, proteomics and functional studies revealed a sequential 

phosphorylation model for the activation and signaling mechanisms of BRI1 and its coreceptor BAK1 

(Wang et al. 2005a; Wang et al. 2008). In the process, BRI1 and BAK1 have been discovered to have 

both serine/threonine (S/T) and tyrosine (Y) phophorylation activities, which are important for kinase 

activation, substrate modification and specific BR responses (Oh et al. 2009a; Oh et al. 2009b; Oh et 

al. 2010; Jaillais et al. 2011; Oh et al. 2011).  Several important signaling components that function 

between BRI1 and BIN2 have been identified by proteomics and genetic approaches; and the 

mechanisms of signal transduction have been revealed (Kim and Wang 2010; Tang et al. 2010). The 

regulatory mechanisms of BES1 and BZR1 by BIN2 phosphorylation appear to be much more 

complex than originally thought and PP2A phosphatase that dephophorylates BZR1 has been 

identified (Li and Jin 2007; Ryu et al. 2010a; Ryu et al. 2010b; Tang et al. 2011). In addition, the 

mechanisms and transcriptional network through which BES1 and BZR1 control BR responses have 

been revealed by identification and characterization of BES1 and BZR1 target genes by ChIP-chip 

and BES1 partners by protein-protein interaction and genetic screens (Yu et al. 2008; Li et al. 2009; 

Li et al. 2010b; Luo et al. 2010; Sun et al. 2010; Yu et al. 2011). Additional transcriptional factors 

involved in BR signaling have been identified in both Arabidopsis and rice (Li 2010b). BR functions 
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in various developmental processes are covered in details in two recent reviews (Clouse 2011; Yang et 

al. 2011). The molecular mechanisms of BR function in pollen and root have been revealed (Ye et al. 

2010; Gonzalez-Garcia et al. 2011; Hacham et al. 2011). The studies confirm BR function in cell 

division (Hu et al. 2000) and BR action from epidermis to control root meristem cell division and 

expansion, similar to that found in shoots (Savaldi-Goldstein et al. 2007). Finally, several regulators 

for BR biosynthesis have been identified (Guo et al. 2010; Je and Han 2010; Je et al. 2010; Chung et 

al. 2011; Poppenberger et al. 2011). In this review, we will discuss the progress and provide some 

perspectives on the future directions in this fast-evolving field. 

 

BR receptor BRI1 and its regulation  

BRI1 is a membrane-localized receptor kinase that contains 25 LRRs (leucine-rich repeat) with 

an island domain between 21st and 22nd repeat in the extracellular region, a single transmembrane 

domain, a juxtamembrane region, a kinase domain and a C-terminal regulatory region (Li and Chory 

1997). BRI1 has been established as the BR receptor by several biochemical and molecular 

experiments, including domain-swapping analysis with Xa21 receptor kinase, binding of 

immunoprecipitated BRI1 with radio-labeled brassinolide (BL, the most active BR), and binding 

assays with recombinant BRI1 protein (He et al. 2000; Wang et al. 2001; Kinoshita et al. 2005). In 

addition to BRI1, two of three BRI1 homologs were also shown the ability to bind BRs, and genetic 

studies showed that they played a major role in vascular development and are partially redundant with 

BRI1 (Caño-Delgado et al. 2004; Zhou et al. 2004).The identification and functional characterizations 

of BRI1 phosphorylation sites, its cellular localizations as well as identification and characterization 

of BRI1 partners have greatly increased our understanding of BRI1 kinase activation and signaling 

outputs (Kim and Wang 2010). Homo-dimerization of BRI1 was detected in plasma membrane by 

fluorescence resonance energy transfer analysis, and was confirmed by co-immunoprecipitation 

experiment with BRI1-GFP and BRI1-FLAG transgenic plants (Russinova et al. 2004; Wang et al. 

2005b; Hink et al. 2008). It was further found that this homo-dimerization of BRI1 was promoted or 

stabilized by BRs (Wang et al. 2005b). In the absence of BRs, two mechanisms operate to inhibit the 

basal BRI1’s activation. The C-terminal domain of BRI1 can function to inhibit BRI1 kinase activity. 

In addition, BKI1 can bind BRI1 at the plasma membrane and inhibit BRI1 function. BR binding 

leads to the release of the auto-inhibition by the C-terminal and releasing of BKI1 into cytosol, 

allowing BRI1 association with its coreceptor BAK1 (Wang and Chory 2006). BAK1, a small LRR-

RLK with 5 LRRs, was identified as BRI1’ coreceptor by activation tagging screen of bri1-5 

suppressor and yeast two hybrid screen (Li et al. 2002; Nam and Li 2002). Based on careful mapping 
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of BRI1 and BAK1 phosphorlation sites both in vitro and in vivo as well as their functional studies, a 

sequential transphorylation model was proposed for the activation of BR signaling (Wang et al. 2005a; 

Wang et al. 2008). In this model, BR binding to BRI1 leads to autophosphorylation on many of the 

phosphorylation sites to activate its kinase activity, which then phosporylates and activates BAK1 

kinase activity. Activated BAK1 can in return phosphorylate BRI1 at the juxtamembrane and C-

terminus to fully activate BRI1 function. The model suggests that BAK1 is involved in the fully 

activation of BRI1 kinase activity, but not required for ligand binding. Recent studies demonstrated 

that in addition to functioning in BR signaling, BAK1 and its homologs also have roles in cell death 

and plant defense responses by acting as a coreceptor for flagellin receptor FLS2 (Chinchilla et al. 

2007; He et al. 2007; Heese et al. 2007; Kemmerling et al. 2007; Albrecht et al. 2008; He et al. 2008; 

Kemmerling and Nurnberger 2008; Shan et al. 2008; Chinchilla et al. 2009; Gao et al. 2009; Jeong et 

al. 2010; Li 2010a). The phosphorylation site mapping and functional studies also revealed that BRI1 

and BAK1 are kinases with dual specificity. Interestingly, while both S/T and Y phosphorylations are 

important for kinase functions in both BRI1 and BAK1, Y phosphorylation appears to be important 

for specific BR responses and for the regulation of BKI1 activity.  

Unlike several tyrosine residues that are required for BRI1 kinase activity, Y-831 

phosphorylation in the juxtamembrane appears to account for some specific BR responses (Oh et al. 

2009a; Oh et al. 2009b). Expression of BRI1Y831F rescued bri1 mutant phenotype, but displayed a 

larger leaf and early flowering phenotypes compared with the expression of wild-type (WT) BRI1. 

The results imply that Y831 control some specific BR responses, likely by altering BR signaling 

specificity by interacting with specific proteins.  

Similarly, a recent study showed that BAK1 Y610 at the C-terminal was a major site for BAK1 

tyrosine autophosphorylation (Oh et al. 2010; Oh et al. 2011). Interestingly, functional studies 

demonstrated that Y610 is required for BAK1 function in BR signaling as the BAK1Y610F 

transgenic plants in bak1 bkk1 mutant background displayed BR insensitive phenotype including 

reduced growth, accumulation of unphosphorylated BES1 and reduction of BR-regulated genes. 

Similarly, Flagellin signaling in defense response is also impaired. However, other BAK1 responses, 

such as Flagellin-mediated inhibition of plant growth and BAK1-mediated cell death are not affected. 

It will be interesting to determine how specific tyrosine phosphorylation events differentially affect 

various responses mediated by BRI1 and BAK1. 

Tyrosine phosphorylation also plays an important role regulating the cellular localization of the 

BRI1 inhibitor BKI1 (Jaillais et al. 2011). The N-terminal lysine-arginine-rich (KR) motif targets 

BKI1 to the plasma membrane and a C-terminal 20-residue conserved domain mediates the 
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interaction between BKI1 and BRI1. Deletion analysis showed that the KR repeats around motif-3 

(amino acids 200-221) was sufficient for BKI1 localization to plasma membrane. Phosphorylation of 

a conserved tyrosine (Y211) in motif-3 of BKI1 was essential for the dissociation of BAK1 from 

plasma membrane. Mutation in this tyrosine (Y211F) constitutively targeted BKI1 protein to plasma 

membrane and overexpression of BKI1Y211F resulting in the plants with dwarf phenotype. In 

contrast, a phosphorylation-mimicking mutant of BKI1 (Y211D) leads to constitutive cytoplasmic 

localization of the mutant protein and lost ability in inhibiting BR signaling. Taken together, BR-

activated BRI1 phosphorylates BKI1 at Y211, which lads to its disassociation from BRI at the plasma 

membrane and allows BRI1 association with BAK1.  

BRI1 also phosphorylates other positive-acting substrates to transduce BR signal to downstream 

targets. By proteomic analysis of two-dimensional difference gel electrophoresis, several early BR-

response proteins, BSKs, were identified (Tang et al. 2008b). These BSKs are the members of 

cytoplasmic receptor-like kinases (RLCKs) that are likely associated with plasma membrane through 

N-myrisylation. BSKs are positive regulators of BR response as overexpression of several members 

in the family suppressed bri1 phenotype and knockout of one of the members, BSK3, shown a weak 

BR insensitive phenotype likely due to functional redundancy among BSKs. BSK1 was 

phosphorylated on Serine residue 230 (S230) by BRI1 in vitro and co-immunoprecipitaion 

experiments indicated that BSK1 interacted with BRI1 in vivo. BRI1 and BSK1 interaction is reduced 

upon BR treatment, suggesting that BSKs are disassociated from BRI1 after being phosphorylated. As 

we’ll discuss in the next section, BSKs play an important role in transducing BR signal to 

downstream components.   

BRI1 likely has additional substrates in the regulation of various BR responses. Arabidopsis 

TRIP-1, an essential subunit of the eIF3 eukaryotic translation initiation factor, is phosphorylated by 

BRI1 at several amino acids in vitro and interacts with BRI1 in vivo (Ehsan et al. 2005). As expected 

for an essential component in translation initiation, RNAi knock-down of TRIP-1 lead to pleiotropic 

phenotype with some resemblance to BR loss-of-function mutants (Jiang and Clouse 2001). It 

remains to be determined if TRIP-1 functions in both translation and transcription, as its mammalian 

homolog does, and if so, how BRI1 phosphorylation affects its activities. Arabidopsis TTL interacts 

with BRI1 kinase domain in yeast two-hybrid assays and is phosphorylated by BRI1 in vitro (Nam 

and Li 2004). Genetic studies indicated that TTL function as a negative regulator for BR-regulated 

plant growth and the mechanisms by which TTL modulate BR regulated plant growth remain to be 

determined. It was recently found that BRI-GFP is associated with a plasma-membrane Proton 

ATPase (P-ATPase) in a BR and BRI1 kinase dependant manner, which accompanies BR-induced cell 
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expansion (Caesar et al. 2011). Since phosphorylation of P-ATPase is known to activate the enzyme 

activity, it would be interesting to determine if BRI1 can directly phosphorylate P-ATPase (Fig 1).  

 

Regulation of negative-acting kinase BIN2 

In addition to the large number of BRI1 loss-of-function alleles, screens for BR-insensitive 

mutants identified a negative regulator, BIN2 (Choe et al. 2002; Li and Nam 2002; Pérez-Pérez et al. 

2002). While gain-of-function in BIN2 displayed bri1-like dwarf phenotype, loss-of-function of BIN2 

and its homologs displayed a constitutive BR response phenotype (Yan et al. 2009).  BIN2 is 

homologous to GSK3/Shaggy kinase that plays an essential role in WNT signaling pathway that is 

essential for animal development and is affected in many cancers (Cadigan and Nusse 1997; Polakis 

2000). Recent studies suggest that BIN2 is regulated by targeted protein degradation in response to 

BR signaling as well as by BSK kinase and CDG1 kinase through protein phosphatase BSU1. The 

initial evidence that BIN2 is regulated at protein degradation comes from the observation that several 

gain-of-function mutations of BIN2, localized in a “TREE” domain, stabilizes BIN2 protein (Peng et 

al. 2008). Further studies clearly indicated that BIN2 protein accumulation is decreased by BR 

treatment. The decrease of BIN2 is apparently mediated by proteasome-mediated degradation 

pathway, as treatment with 26S proteasome inhibitor (MG132) reversed the BR-mediated decrease of 

BIN2 protein.   

Although how BR signaling promotes BIN2 degradation remain to be established, a Kelch-

repeat containing protein phosphatase, BSU1, has been shown to directly dephosphorylates and 

regulate BIN2 function (Kim et al. 2009). BSU1 phosphatase, identified by activation tagging with 

bri1-5, plays a positive role in BR signaling pathway and was found to act downstream of BIN2 

(Mora-Garcia et al. 2004). However, recent genetic experiments suggest that BSU1 acts downstream 

of BRI1 but upstream of BIN2 (Kim et al. 2009).  BIN2 can autophosphorylate at Y200, which is 

required for BIN2 function. BSU1 binds and dephosphorylates BIN2 at Y200, thereby inhibiting 

BIN2 function. Co-immunoprecipitation and BiFC assay suggested that BSK1 and BSU1 interact 

with each other in vivo and the phosphorylation of BSK1 at serine 230 (S230) by BRI1 promotes this 

interaction. In addition to BSK1, a receptor-like cytoplasmic kinase, CDG1, may also play an 

important role in BR signal transduction (Kim et al. 2011). Transgenic studies indicated that CDG1 

was a positive regulator, which functioned upstream of BIN2 and downstream of BRI1, in the BR 

pathway. BiFC and co-immunoprecipitated experiments indicated that CDG1 interacted with BRI1 in 

vivo and CDG1 was phosphorylated by BRI1 in vitro. Ser234 of CDG1 phosphorylated by BRI1 is a 

major mechanism to activate the function of CDG1. Yeast two hybrid experiment, BiFC and co-
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immunoprecipitated experiments indicated that CDG1 also interacted with BSU1. In vitro kinase 

assay and substitution experiments showed that CDG1 phosphorylated Ser764 of BSU1 to enhance 

the interaction between BSU1 and BIN2 to promote BSU1 dephosphorylation of BIN2. These studies 

therefore connected all the components between BRI1, its substrate BSK1, CDG1, BSU1 and BIN2 in 

a linear pathway. It remains to be determined if BIN2 is also regulated by additional mechanisms and 

how different mechanisms coordinate to control this important regulator in the BR pathway. 

 

Regulation of BES1 and BZR1  

BES1 and BZR1 are two major transcription factors that are regulated by BIN2 and mediate BR-

regulated gene expression (Wang et al. 2002; Yin et al. 2002a; Zhao et al. 2002; He et al. 2005; Yin et 

al. 2005). BES1 and BZR1 are 88% identical and are composed of DNA binding domain (DBD), 

BIN2 phsophorylation domain with more than 20 putative BIN2 phosphorylation sites (S/TxxxS/T), 

and a C-terminal domain (CTD) (Fig. 2). BES1 and BZR1 DBDs are predicated to form a bHLH 

structure although they are not classified as typical bHLH transcription factors. The CTD is required 

for BES1 function as deletion of this domain leads to accumulation of inactive BES1 that acts as a 

dominant-negative form (Yin et al. 2005). The C-terminal domain mostly likely acts as a transcription 

activation domain as it activates reporter gene expression in yeast when fused with GAL4 activation 

domain. In addition, the C-terminal domain also contains a 12 amino acid docking motif (DM) that 

binds BIN2, allowing BIN2 to phosphorylate BZR1 (Peng et al. 2010). Since the same domain is 

conserved in BES1, it’s likely that BIN2 interacts with DM to phosphorylate BES1 as well. BIN2 

phosphosphorylates BES1 and BZR1 at their central phosphorylation domain and inhibits their 

function likely through several different but non-exclusive mechanisms, including targeted protein 

degradation, nuclear export and cytoplasmic retention by 14-3-3s and decreased DNA binding of the 

BIN2-phosphorylated protein (He et al. 2002; Yin et al. 2002b; Vert and Chory 2006; Bai et al. 2007; 

Gampala et al. 2007; Ryu et al. 2007; Ryu et al. 2008; Ryu et al. 2010a).  

BIN2 phosphorylates BES1 and BZR1 at many of putative phosphorylation sites (Fig 2). 

Phosphorylation of different sites could affect different aspects of BES1 and BZR1 functions. For 

example, phosphorylation at T177 of BZR1 and T175 of BES1 is required to interact with 14-3-3 for 

cytoplasmic retention (de Vries 2007; Ryu et al. 2010a). Recent studies also suggest that BSU1 and 

BIN2 preferably act at different locations to regulate BES1 functions. While the cytoplasmic location 

is more important for BSU1, BIN2 likely phosphorylate BES1 and BZR1 in the nucleus to trigger its 

nuclear export (Ryu et al. 2010b). 

A phosphatase that dephosphorylates BZR1 has been identified by looking for BZR1-interacting 
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proteins through tandem affinity purification (Tang et al. 2011). Protein phosphates 2A (PP2A) is a 

heterotrimeric serine/threonine phosphatase, which contains as scaffolding subunit A, catalytic 

subunit C, and a regulatory B subunit that interacts with substrates (Janssens et al. 2008). In vitro and 

in vivo experiments showed that BZR1 was indeed able to interact with several PP2A B′ isoforms, 

such as B′α, β and η through the PEST domain of BZR1. While the loss-of-function PP2A mutant 

accumulated more phosphorylated BZR1, overexpression of B′ components increased both 

phosphortylated and unphosphorylated BZR1, suggesting that PP2A affects both BZR1 

dephosphorylation and protein degradation.  Pharmacological studies with GSK3 kinase inhibitor 

bikinin and PP2A inhibitor okadaic acid also support a role of PP2A in BZR1 dephosphorylation. 

Immunoprecipitated PP2A can dephosphorylate BZR1 in vitro, which likely affects the inhibitory 

effects of phosphorylation on BZR1 including the binding of 14-3-3 protein. Finally, deletion of 

PEST motif in BZR1 leads to the accumulation of phosphorylated protein and a dwarf phenotype, 

consistent with a negative role of PEST in protein degradation and positive function in recruiting 

PP2A. Yeast two-hybrid experiments showed that PP2A B′α and β also interacted with BES1, 

implying that PP2A regulated the function of BES1 as well.  

 

Network and mechanism for BES1 and BZR1 regulated gene expression  

BRs affect many growth and developmental processes and much of them are likely due to BR-

mediated changes in gene expression. Several genome-wide microarray experiments in Arabidopsis 

have demonstrated that BRs regulate hundreds to thousands of genes (Goda et al. 2004; Nemhauser et 

al. 2004; Nemhauser et al. 2006; Guo et al. 2009). Proteomics study also identified many proteins in 

response to BRs in both Arabidopsis and rice (Tang et al. 2008a; Wang et al. 2010). Understanding 

how BES1 and BZR1 coordinate with other proteins to control the expression of the large number of 

genes in a transcriptional network is important to understand how BRs regulate various biological 

processes at different stages of growth and development under various environmental conditions. 

Identification and characterization of BES1 and BZR1 partners and target genes can help address this 

question. 

BES1 and BZR1 direct target genes have been recently identified by Chromatin 

immunoprecipitation followed by genomic tiling array (ChIP-chip) (Sun et al. 2010; Yu et al. 2011). 

In total, 1609 BES1 targets were identified with 2-week-old bes1-D seedlings and an ant-BES1 

antibody, at least 250 of them are regulated by BRs (Yu et al. 2011). On the other hand, 3410 BZR1 

target genes were identified with 4-week-old transgenic BZR1-CFP plants treated with BL with an 

anti-CFP antibody, 953 of them are regulated by BRs (Sun et al. 2010). The different plant ages used 
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(seedlings vs. adult plants) probably account for some of the differences in numbers of target genes 

identified for BES1 and BZR1. Nevertheless, about half of BES1 target genes are also BZR1 targets, 

which is consistent with the fact that these two factors function redundantly with distinctive functions 

(Wang et al. 2002; Yin et al. 2002b). Several important conclusions can be drawn from the 

characterization of BES1 and BZR1 target genes. 

The analysis of enriched promoter elements in BR-regulated BES1 and BZR1 target genes 

confirmed previously identified BES1 and BZR1 DNA binding sites and changed previous perception 

about the activation and repression of these two transcription factors.  It was previously shown that 

BES1 binds to E-box sequences to activate a BR-induced gene expression and BZR1 binds to BRRE 

on CPD (CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM) promoter to repress its 

expression (He et al. 2005; Yin et al. 2005). However, promoter elements analysis indicated that both 

BES1 and BZR1 can bind both BRRE and E-boxes (particularly CATGTG and CACGTG that is also 

termed G-box) in vivo with BRRE mostly enriched in BR-repressed genes and E-boxes are mostly 

enriched in BR-induced genes (Sun et al. 2010; Yu et al. 2011). Since E-box and BRRE are also 

enriched in both BR-induced and BR-repressed genes, additional promoter sequence elements and/or 

BES1 and BZR1 interacting proteins likely determine if these transcription factors either activate or 

repress gene expression.   

BES1 and BZR1 can bind and induce its own expression, probably in a positive feedback loop 

(Yu et al. 2011). At the same time, BES1 and BZR1 inhibit many genes involved in BR biosynthesis 

and signaling, likely as a feedback inhibition mechanism (Sun et al. 2010).  These observations also 

point out that at least several regulators in the BR pathway, such as BES1, BZR1, BRI1 and BIN2, 

can be regulated by BRs at both transcription and post-transcriptional levels. Both BES1 and BZR1 

target gens suggest interactions between BR and other signaling pathways (Clouse 2011). In particular, 

the genes involved in light and other hormones responses including auxin, gibberellin (GA), abscisic 

acid (ABA), ethylene, jasmonic acid (JA) and cytokinin are enriched in both BES1 and BZR1 targets. 

The crosstalk between auxin ABA and BRs have been determined at molecular levels (Hardtke 2007; 

Zhang et al. 2009b).  

BR actions are closely regulated by light, which is directly demonstrated by the constitutive 

photomorphogenesis/deetiolation phenotype of BR mutants (Chory et al. 1991; Li et al. 1996; 

Szekeres et al. 1996). Microarray studies with det2 mutant indicated that BRs negatively regulate 

genes involved in photomorphogenesis (Song et al. 2009). The interaction between BZR1 and light 

signaling was further confirmed by the finding that BZR1 represses light signaling components (Sun 

et al. 2010). The comparison between targets between BZR1 and regulated transcription factors 
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indicated that about 1/3 of target genes are in common between BZR1 and HY5, a transcription factor 

mediating light regulated gene expression (Oyama et al. 1997; Lee et al. 2007). The crosstalk is 

further confirmed with one of BZR1 targets (Luo et al. 2010). Genetic studies indicated that GATA2 

is a negative regulator in the BR pathway. The protein level of GATA2 was regulated by light through 

COP1-dependent proteasome degradation. GATA2 is therefore inhibited by BRs at transcription level 

and promoted by light at protein level, providing a link between BR and light signaling pathways. 

Finally, BES1 and BZR1 repress the expression of two related transcription factors, GLK1 and GLK2, 

which function redundantly to promote chloroplast development (Waters et al. 2008; Waters et al. 

2009; Sun et al. 2010; Yu et al. 2011). It’s well known that BR loss-of-function mutants have 

premature chloroplast development but the mechanisms are not known (Chory et al. 1991). It’s 

conceivable that BRs function through BES1 and BZR1 to repress GLK1 and GLK2 expression and 

thus chloroplast development in the dark. Consistent with the hypothesis, bes1-D mutant, in which 

BES1 accumulated to high level, have reduced expression of GLK1 and GLK2, reduced expression of 

GLK target genes and altered chloroplast function (Waters et al. 2008; Waters et al. 2009; Sun et al. 

2010; Yu et al. 2011). The connection between BR signaling and chloroplast development is further 

supported by characterization of BPG2 (BRZ-INSENSITIVE-PALE GREEN 2), a chloroplast protein 

involved in BR response (Komatsu et al. 2009).  Taken together, the identification and 

characterization of BES1 and BZR1 target genes provided more evidence that light and BR pathways 

have extensive crosstalk in the regulation of plant growth, photomorphogenesis and chloroplast 

development.  

Some of the BES1 and BZR1 target genes were further confirmed by functional studies to 

mediate BR response or BR-regulated plant growth. In the case of BES1, knockout mutants for 15 

BES1-targeted Transcription Factors (BTFs) were tested and 12 of them shown BR response defects 

in hypocotyl elongation assays (Yu et al. 2011). Interestingly all of these 12 BTFs are also BZR1 

targets. With a few exceptions, BES1 and BZR1 in general promote the expression of BTFs that are 

positive regulators of BR response and repress BTFs that are negative regulators of BR response. In 

the case of BZR1 targets, overexpression of DREPP, one of BR-regulated BZR1 targets, increased the 

cell length of det2 mutant (Sun et al. 2010). On the other hand, the transgenic plants overexpressing 

BZS1, another BZR1-repressed transcription factor gene, were hypersensitive to BRZ, while co-

suppressed lines of BZS1 showed longer hypocotyls grown on BRZ medium compared with wild type 

plants. Several BES1 and BZR1-targeted receptor-kinases mediate vegetative plant growth in adult 

plants (Guo et al. 2009; Sun et al. 2010). Apparently, BES1 and BZR1 target genes depend on 

developmental stages and tissue specificity. BRs are known to regulate male fertility, but the 
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mechanisms were not well defined. A recent study indicated that BR mutants are defective in several 

aspects of anther and pollen development, including reduced filament length, fewer numbers of pollen 

grains, and defects in tapetal development, pollen wall formation and pollen release (Ye et al. 2010).  

Consistent with the mutant phenotype, several key genes involved in the process, including SPL/NZZ 

required for microspore mother cell development, TDF1, AMS and AyMYB103 involved in 

microspore development, MS1/MS2 required for tapetal development and pollen wall formation are 

reduced in BR mutants. ChIP experiment with chromatin isolated from flower tissues indicated that 

most of these genes are direct BES1 targets. Since most of these genes are not detected as BES1 

targets with 2-week-old seedlings, these results clearly indicated that BES1 targets different genes in 

different tissues and developmental stages.  

Besides BES1 and BZR1 targets, BES1 interacting proteins provide additional dimension to 

modulate BR-regulated gene expression in response to developmental and environmental cues. The 

first identified partner of BES1 in BR pathway was BIM1, a basic helix-loop-helix protein, which was 

found from yeast two hybrid screen by using BES1-C domain as bait (Yin et al, 2005). Further protein 

interaction analysis indicated that there were two different interaction domains: BES1 N-terminal 

domain and bHLH domain of BIM1 as well as BES1 C-terminal domain and BIM1. Genetic 

evidences indicated that bim1 bim2 bim3 triple mutant showed more resistance to BRZ, while 

BIM1OX plant displayed reduced resistance to BRZ. Combining with the fact that overexpression of 

BIM1 in bri1 background partially suppressed the dwarf phenotype of bri1, the genetic results 

demonstrated that BIM1 was a positive regulator in BR pathway. EMSA experiment, transient 

experiments and ChIP assay indicated that BES1 and BIM1 synergistically bound to E-box to 

promote BR-induced genes expression. 

Then BES1 was found to interact with its direct target to amplify the BR signal transduction. 

From microarray data and chromatin immunoprecipitation experiment results, MYB30, a BR-induced 

transcription factor belonging to MYB family, was identified as a direct target of BES1 (Li et al, 

2009). Loss-of-function mutant myb30 displayed insensitive to BL and enhanced the phenotype of 

bri1-5, suggesting that MYB30 was a positive regulator in BR pathway. GST pull-down experiment 

and BiFC experiment indicated that MYB30 and BES1 interacted with each other in vitro and in vivo. 

DNA binding and gene expression analysis showed that MYB30 and BES1 bound to MYB binding 

site and E-box, respectively, to cooperatively amplify and promote the expression of a subset of BR 

targets.  

BES1 recruits two related histone demethylases, ELF6 and REF6, to modulate BR-regulated 

gene expression and BR responses (Yu et al. 2008).  ELF6 and REF6 were originally identified as two 
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genes that regulate flowering time (Noh et al. 2004). It was found that ELF6 and REL6 interact with 

BES1 both in vitro and in vivo through the basic region in the bHLH DNA binding domain (Fig 2). 

ELF6 and REF6 belong to JHDM3 subfamily of Jumonji family histone demethylases that function 

by removing methyl groups from various histone residues (Klose et al. 2006). ChIP assay indeed 

suggest that histone methylation is elevated at the promoter of BR-induced gene TCH4 in elf6 and 

ref6 mutants. The study demonstrated that BES1 recruited ELF6 and REF6 to change chromatin 

structure and regulate genes expression. BRs are known to modulate flowering time as loss-of-

function BR mutants have delayed flowering, which is accompanied by increased expression of FLC 

(Domagalska et al. 2007; Li et al. 2010a). ELF6 and REF6 therefore provide a molecular link 

between plant growth and reproduction (Clouse 2008). 

 In addition to histone modifying enzymes, BES1 also recruits IWS1 (INTERACTING-WITH-

SPT6-1), a conserved protein implicated in transcription elongation, to regulate BR target genes. 

IWS1 was identified in a genetic screen for genes required for BES1 function by looking for 

suppressors for constitutive BR response mutant bes1-D (Li et al. 2010b). The iws1 mutants suppress 

bes1-D phenotypes, displayed a semidwarf phenotype and reduced BR response in hypocotyl 

elongation assays. Gene expression studies indicated that about 1/3 of BR-induced genes are 

compromised in the iws1 mutants. IWS1 interacts with BES1 in vitro and in vivo through the central 

domain of BES1 (aa 140-271, Fig. 2). AtIWS1 is a homolog of IWS1 in the yeast/human and interacts 

with histone chaperone and transcription elongation factor Spt6. Yeast IWS1, also termed SPN1, is 

implicated in inducible gene expression in yeast and it’s function involves histone remodeling 

complex SWI/SNF (Fischbeck et al. 2002; Zhang et al. 2008). In human cells, IWS1 is required for 

splicing of HIV gene and global RNA export (Yoh et al. 2007; Yoh et al. 2008). Recent structure 

studies revealed that IWS1 has structure feature similar to transcription elongation factor TFIIS 

(Pujari et al. 2010). Genomic studies suggest that the expression of up to 30% genes can be regulated 

at steps after transcription initiation (Kim et al. 2005; Guenther et al. 2007); but the mechanisms for 

such regulation are not well defined. The study established IWS1 as a target for BR signaling, 

providing a potential new mechanism for the regulation of gene expression. 

 

Other transcription factors involved in BR signaling 

Other family transcription factors have been found to be involved in BR signaling in Arabidopsis 

and rice (Li 2010b; Clouse 2011). Several small and atypical HLH (helix-loop-helix) proteins, ATBS1 

(ACTIVATION TAGGED BRI1 SUPPRESSOR 1), its Arabidopsis homologs including KIDARI and 

PRE1 (PACLOBUTRAZOL RESISTANT 1), and rice orthologs, ILI1 (INCREASED LAMINA 
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INCLINATION 1) and BU1 (BRASSINOSTEROID UPREGULATED 1), were identified as positive 

regulators for BR response as overexpression of these genes display increased BR responses (Tanaka 

et al. 2009; Wang et al. 2009a; Zhang et al. 2009a). ATBS1/PRE/ILI cannot bind DNA and therefore 

likely function by blocking the DNA binding activity of AIF (ATBS1-INTERACTING 

FACTOR)/IBH1 (ILI1–BINDING bHLH) bHLH proteins that function as negative regulators of the 

BR pathway. Overexpression of AIF1/IBH1 resulted in the plants with BR-like dwarf phenotype. 

Interestingly, AIF1/IBH1 and PRE1 are BZR1 targets that are repressed and induced by BZR1, 

respectively. These results suggest AtBS1/PRE/ILI1/BU family proteins are positive factors for BR 

pathway by sequestering AIFs/IBH1, the negative regulators of the BR pathway. How AIFs/IBH1 

inhibits BR response remain to be established. AtBS1/PRE/ILI1/BU family proteins appear to be 

involved in other signaling processes as well (Clouse 2011).  

In rice, BES1 and BZR1 homolog, OsBZR1, functions as a positive regulator of BR response 

(Bai et al. 2007). Interestingly, rice DLT (DWARF AND LOW TILLERING), a member of unique 

GRAS family transcription factors, also acts as a positive regulators of BR response as loss-of-

function mutants display BR-like dwarf phenotype and have increased expression of BR biosynthesis 

genes (Tong et al. 2009). Several MADS box proteins, OsMDP1, OsMADS22 and OsMADS55 are 

negatively regulated by BRs and function as negative regulators in the BR pathway (Duan et al. 2006; 

Lee et al. 2008).  

 

Regulation of BR biosynthesis 

BR biosynthesis pathway is well established (Fujioka and Yokota 2003; Asami et al. 2005). It’s 

well known that BR signaling inhibits BR biosynthesis through BES1 and BZR1 inhibition of the 

expression of DWF4, CPD and other biosynthesis genes (Noguchi et al. 1999; Choe et al. 2002; 

Mora-Garcia et al. 2004; Sun et al. 2010). Recent studies expanded our understanding how BR 

biosynthesis is positively regulated (Fig 3). BRX (BREVIS RADIX) was identified as a gene required 

for optimal root growth by promoting the expression of CPD gene expression; and was later found to 

promote shoot growth as well (Mouchel et al. 2004; Mouchel et al. 2006; Beuchat et al. 2010a; 

Beuchat et al. 2010b). Since BRX expression is induced by auxin and feedback inhibited by BR 

signaling, BRX apparently regulates BR level by coordinating auxin signaling and BR feedback 

pathway in the regulation of root growth (Mouchel et al. 2006). Interestingly, BRX protein also 

translocates from membrane to nucleus in the presence of auxin, suggesting that auxin regulate BRX 

activity through multiple mechanisms (Scacchi et al. 2009).  Auxin signaling was recently found to 

induce the expression of DWF4, possibly through an Auxin Responsive Element (AuxRE) and its 
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interacting protein, which may reduce BZR1/BZR1 binding to DWF4 promoter (Chung et al. 2011).  

T-DNA activation tagging identified two bHLH transcription factors, TCP1 and CTSTA (CES), 

both of which positively regulate BR biosynthetic gene expression. The T-activation tagged allele of 

TCP1, tcp1-D, suppresses the dwarf phenotype of weak allele of BRI1, bri1-5, but not bri1-4, a null 

BRI1 allele, suggesting that TCP1 functions upstream of BRI (Guo et al. 2010). Loss-of-function of 

TCP1 created by TCP1 fusing with EAR transcription repressor domain (SRDX) resulted in a dwarf 

phenotype in adult plant and short hypocotyls that can be recovered by exogenous BL. BR 

measurement in the TCP1 mutants suggest that DWF4 was the target of TCP1. Gene expression and 

ChIP assay confirmed that that DWF4, but not other biosynthetic genes, was directly regulated by 

TCP1. TCP1 is a member of a unique family of bHLH proteins that have an additional conserved 

region (R-domain) (Cubas et al. 1999).  The characterization of TCP1 binding sites will be crucial to 

understand how exactly it regulates DWF4 expression.   

Similarly, overexpression of CESTA (CES) leads to increased plant growth that resembling BR 

gain-of-function mutants (Poppenberger et al. 2011). In contrast, loss-of-function mutant created by 

CES-SRDX caused a BR-related dwarf phenotype. BR levels are increased, and BR biosynthesis 

genes, DWF4 and CPD, are increased in ces-D. In addition, CES protein was shown to bind CPD 

promoter in vitro and in vivo likely through G-box (CACGTG). Interestingly, CES appears to interact 

with BEE1, BEE2 and BEE3, which were previously shown to be induced BR and play positive role 

in BR-regulated growth (Friedrichsen et al. 2002). Although CES gene is not regulated by BRs, CES-

YFP protein accumulates as distinct nuclear bodies in response to R treatment. These results raise a 

possibility that CES protein is regulated by BR signaling. It would be interesting to determine how 

BES1 and BZR1, TCP1, and CES/BEEs function together in the regulation of BR biosynthesis. 

In rice, B3-domain containing transcription factor, RAVL1 (RELATED TO ABI3/VP1, ABA 

INSENSITIVE 3/VIVAPARIOUS 1), was identified as a positive regulator of BR response in rice (Je 

and Han 2010; Je et al. 2010). RAVL1 regulates the expression of BR receptor OsBRI1 and several 

BR biosynthesis genes, including D2, D11 and BRD1 through E-box sequences (Yamamuro et al. 

2000; Hong et al. 2002; Hong et al. 2003; Tanabe et al. 2005).  

In addition to the regulation of BR biosynthesis genes at transcription level, regulatory proteins 

can directly regulate a couple of BR-biosynthesis enzymes. A small G-protein from Pea, Pra2, is 

expressed in the dark and interacts with BR biosynthesis enzyme DDAWF1 to promote BR level in 

the dark (Kang et al. 2001). GSR1 (GA STIMULATED TRANSCRIPT IN RICE 1, a small cystein-

rich protein) binds to DIM1/DWF1 to regulate its enzyme activity and BR level in rice, providing 

another mechanism for the regulation of BR biosynthesis (Wang et al. 2009b). OsGSR1 is regulated 



 16 

by GA and thus provide a link between BR and GA pathways. 

In addition to the regulation of biosynthesis, BRs such as castasterone and BL can be inactivated 

by conserved P450 moonooxygenases, CYP734A1/BAS1 and CYP72C1/SOB7/CHI2/SHK1, through 

C26 or C22 oxidations (Neff et al. 1999; Nakamura et al. 2005; Takahashi et al. 2005; Turk et al. 

2005; Ohnishi et al. 2006; Thornton et al. 2010; Sakamoto et al. 2011).  

 

Hypotheses 

Although much is known about how BES1 activates gene expression, how BRs repress gene 

expression is largely unknown. MYBL2 is a small MYB protein containing only one R3-MYB 

(SANT) domain and a transcription repression domain. Previous data showed that MYBL2 was 

involved in the repression of anthocyanin biosynthesis genes expression by interacting with TT8, a 

bHLH protein (Dubos et al. 2008; Matsui et al. 2008). The finding that MYBL2 is a BES1 target gene 

raises the possibility that MYBL2 plays a role in BR-repressed gene expression. I used genetic, 

genomic, and biochemical approaches to test the hypothesis. 

Another BR-repressed transcription factor, RD26, was also studied in this thesis. RD26, 

belonging to NAC (petunia NAM and Arabidopsis ATAF1, ATAF2 and CUC2) transcription factor 

family, is involved in drought responses (Fujita et al. 2004; Tran et al. 2004; Tran et al. 2010). We 

hypothesize that RD26 plays an important role in mediating crosstalk between BR and drought 

pathways. Multidisciplinary approaches are used to test the hypothesis. 

 

Conclusion 

Many new regulatory components have been identified in the BR signaling or biosynthesis 

pathways. Identification of these components is just the beginning for the understanding how 

BRs function to regulate a large number of biological processes at different stage, tissues and 

environmental conditions. Identifications of interacting proteins for many of the BR signaling 

components have provided important insight into the functions and regulation in BR signaling and 

will continue to do so in the future. As we lean from some of the components, regulation for each 

protein can be very complex involving multiple mechanisms. Identifications of both in vitro and in 

vivo phosphorylation sites and mapping the functional domains in combination with genetic studies 

will reveal new mechanisms in the regulation of BR pathways. Although a large number of BES1 and 

BZR1 target genes have been identified, it’s still a daunting task to figure out how all these genes are 

regulated and more importantly how they function together to control specific processes. BES1 and 

BZR1 activate and repress about equal number of genes, how they interact with different partners to 
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perform the opposite functions in transcription remain to be defined. An initial focus on BES1 and 

BZR1 targeted transcription factors and their transcriptional partners seem to be reasonable to move 

forward. Eventually, computational modeling, in combination with genetic and genomic studies, are 

needed to put hundreds to thousands of BR target genes in order to fully understand how a simple 

hormone can lead to fundamental changes in plant growth and development, not only by itself, but 

also with many other hormonal and environmental pathways.    

  

References 
Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries SC (2008) Arabidopsis SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent 

signaling pathways. Plant Physiol 148, 611-619. 

Asami T, Nakano T, Fujioka S (2005) Plant brassinosteroid hormones. Vitam Horm 72, 479-504. 

Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 

14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 104, 13839-13844. 

Beuchat J, Li S, Ragni L, Shindo C, Kohn MH, Hardtke CS (2010a) A hyperactive quantitative trait locus 

allele of Arabidopsis BRX contributes to natural variation in root growth vigor. Proc Natl Acad Sci U S A 107, 

8475-8480. 

Beuchat J, Scacchi E, Tarkowska D, Ragni L, Strnad M, Hardtke CS (2010b) BRX promotes Arabidopsis 

shoot growth. New Phytol 188, 23-29. 

Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11, 3286-

3305. 

Caesar K, Elgass K, Chen Z, Huppenberger P, Witthoft J, Schleifenbaum F, Blatt MR, Oecking C, Harter 

K (2011) A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana. Plant 

J. 

Caño-Delgado A, Yin  Y, C. Y, Vafeados D, Mora-García S, Cheng J-C, Nam KH, Li J, Chory J (2004) 

BRL1 and BRL3 are novel Brassinosteroid receptors that function in vascular differentiation in Arabidopsis. 

Development 131, 5341-5351. 

Chinchilla D, Shan L, He P, de Vries S, Kemmerling B (2009) One for all: the receptor-associated kinase 

BAK1. Trends Plant Sci 14, 535-541. 

Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A 

flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. 

Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) 

Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen 

synthase kinase 3beta-like kinase. Plant Physiol 130, 1506-1515. 

Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light 

regulated seedling development in Arabidopsis. Plant Cell 3, 445-459. 

Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, 

Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid 

biosynthesis in Arabidopsis. Plant J. 

Clouse S, Sasse J (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. 

Plant Physiol. Plant Mol. Biol. 49, 427-451. 

Clouse SD (2008) The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. 

Proc Natl Acad Sci U S A 105, 7345-7346. 

Clouse SD (2011) Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional 

Networks Regulating Plant Development. Plant Cell 23, 1219-1230. 

Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana 

exhibits multiple defects in growth and development. Plant Physiol 111, 671-678. 

Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant 

growth and development. Plant J 18, 215-222. 



 18 

de Vries SC (2007) 14-3-3 proteins in plant brassinosteroid signaling. Dev Cell 13, 162-164. 

Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress 

tolerance. N Biotechnol 26, 131-136. 

Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of 

brassinosteroid signaling enhances FLC expression and delays flowering. Development 134, 2841-2850. 

Duan K, Li L, Hu P, Xu SP, Xu ZH, Xue HW (2006) A brassinolide-suppressed rice MADS-box transcription 

factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J 47, 519-531. 

Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, 

Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. 

Plant J 55, 940-953. 

Ehsan H, Ray WK, Phinney B, Wang X, Huber SC, Clouse SD (2005) Interaction of Arabidopsis 

BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-beta receptor 

interacting protein. Plant J 43, 251-261. 

Fischbeck JA, Kraemer SM, Stargell LA (2002) SPN1, a conserved gene identified by suppression of a 

postrecruitment-defective yeast TATA-binding protein mutant. Genetics 162, 1605-1616. 

Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a 

ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123, 1247-1256. 

Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) 

Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for 

normal growth. Genetics 162, 144-156. 

Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54, 137-164. 

Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, 

Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-

signaling pathway. Plant J 39, 863-876. 

Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen 

H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY (2007) An essential role for 14-

3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13, 177-189. 

Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X, Zhang Y (2009) 

Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6, 

34-44. 

Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-

regulated and brassinosteroid regulated genes in Arabidopsis. Plant Physiol 134, 1555-1573. 

Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-

Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis 

roots. Development 138, 849-859. 

Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription 

initiation at most promoters in human cells. Cell 130, 77-88. 

Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal 

cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 106, 7648-7653. 

Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J (2010) TCP1 modulates brassinosteroid biosynthesis 

by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22, 

1161-1173. 

Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) 

Brassinosteroid perception in the epidermis controls root meristem size. Development 138, 839-848. 

Hardtke CS (2007) Transcriptional auxin-brassinosteroid crosstalk: who's talking? Bioessays 29, 1115-1123. 

He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional 

repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634-1638. 

He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and 

destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad 

Sci U S A 99, 10185-10190. 

He K, Gou X, Powell RA, Yang H, Yuan T, Guo Z, Li J (2008) Receptor-like protein kinases, BAK1 and 

BKK1, regulate a light-dependent cell-death control pathway. Plant Signal Behav 3, 813-815. 

He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate 

brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17, 1109-



 19 

1115. 

He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the 

extracellular domain of the receptor kinase BRI1. Science 288, 2360-2363. 

Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) 

The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci 

U S A 104, 12217-12222. 

Hink MA, Shah K, Russinova E, de Vries SC, Visser AJ (2008) Fluorescence fluctuation analysis of 

Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor 

oligomerization. Biophys J 94, 1052-1062. 

Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, 

Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice 

brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of 

cells in the leaves and stem. Plant J 32, 495-508. 

Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano 

H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of 

function of a new member of cytochrome P450. Plant Cell 15, 2900-2910. 

Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-

induction pathway in Arabidopsis. Plant J 24, 693-701. 

Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J (2011) Tyrosine 

phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase 

inhibitor. Genes Dev 25, 232-237. 

Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). 

Trends Biochem Sci 33, 113-121. 

Je BI, Han CD (2010) Brassinosteroid homeostasis via coordinate regulation of signaling and synthetic 

pathways. Plant Signal Behav 5, 115-117. 

Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Huang J, Do Choi Y, An G, Wong HL, Fujioka S, 

Kim MC, Shimamoto K, Han CD (2010) RAV-Like1 maintains brassinosteroid homeostasis via the 

coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22, 1777-1791. 

Jeong YJ, Shang Y, Kim BH, Kim SY, Song JH, Lee JS, Lee MM, Li J, Nam KH (2010) BAK7 displays 

unequal genetic redundancy with BAK1 in brassinosteroid signaling and early senescence in Arabidopsis. Mol 

Cells 29, 259-266. 

Jiang J, Clouse SD (2001) Expression of a plant gene with sequence similarity to animal TGF-beta receptor 

interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J 26, 35-

45. 

Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park 

CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated 

seedling growth. Cell 105, 625-636. 

Kemmerling B, Nurnberger T (2008) Brassinosteroid-independent functions of the BRI1-associated kinase 

BAK1/SERK3. Plant Signal Behav 3, 116-118. 

Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, 

Parker JE, Mussig C, Thomma BP, Albrecht C, de Vries SC, Hirt H, Nurnberger T (2007) The BRI1-

associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17, 1116-

1122. 

Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A 

high-resolution map of active promoters in the human genome. Nature 436, 876-880. 

Kim TW, Guan S, Burlingame AL, Wang ZY (2011) The CDG1 kinase mediates brassinosteroid signal 

transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43, 561-

571. 

Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Burlingame AL, Wang ZY (2009) Brassinosteroid 

signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11, 1254-

1260. 

Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. 

Annu Rev Plant Biol 61, 681-704. 

Kinoshita T, Cañ0-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of 



 20 

brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171. 

Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) The 

transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312-

316. 

Komatsu T, Kawaide H, Saito C, Yamagami A, Shimada S, Nakazawa M, Matsui M, Nakano A, 

Tsujimoto M, Natsume M, Abe H, Asami T, Nakano T (2009) The chloroplast protein BPG2 functions in 

brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. Plant J 61, 409-422. 

Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of 

transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. 

Plant Cell 19, 731-749. 

Lee S, Choi SC, An G (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are 

negative regulators of brassinosteroid responses. Plant J 54, 93-105. 

Li J (2010a) Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol 13, 

509-514. 

Li J (2010b) Regulation of the nuclear activities of brassinosteroid signaling. Curr Opin Plant Biol 13, 540-547. 

Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal 

transduction. Cell 90, 929-938. 

Li J, Chory J (1999) Brassinosteroid actions in plants. J. Exp. Botany 50, 332-340. 

Li J, Jin H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12, 37-41. 

Li J, Li Y, Chen S, An L (2010a) Involvement of brassinosteroid signals in the floral-induction network of 

Arabidopsis. J Exp Bot 61, 4221-4230. 

Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent 

development of Arabidopsis. Science 272, 398-401. 

Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 

1299-1301. 

Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like 

protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222. 

Li L, Ye H, Guo H, Yin Y (2010b) Arabidopsis IWS1 interacts with transcription factor BES1 and is involved 

in plant steroid hormone brassinosteroid regulated gene expression. Proc Natl Acad Sci U S A 107, 3918-3923. 

Li L, Yu X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y (2009) Arabidopsis MYB30 is a 

direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58, 

275-286. 

Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, Cheng M, Hao Y, Oh E, Tian M, Liu L, Zhang M, Xie 

Q, Chong K, Wang ZY (2010) Integration of light- and brassinosteroid-signaling pathways by a GATA 

transcription factor in Arabidopsis. Dev Cell 19, 872-883. 

Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 

23-52. 

Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a 

negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55, 954-967. 

Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases 

with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18, 448-460. 

Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS 

RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18, 700-714. 

Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and 

auxin signalling in root growth. Nature 443, 458-461. 

Nakamura M, Satoh T, Tanaka S, Mochizuki N, Yokota T, Nagatani A (2005) Activation of the cytochrome 

P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. J Exp Bot 56, 833-840. 

Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203-

212. 

Nam KH, Li J (2004) The Arabidopsis transthyretin-like protein is a potential substrate of 

BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16, 2406-2417. 

Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto 

S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness in 

Arabidopsis. Proc Natl Acad Sci U S A 96, 15316-15323. 



 21 

Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely 

nonoverlapping transcriptional responses. Cell 126, 467-475. 

Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in 

Arabidopsis. PLoS Biol 2, E258. 

Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) 

Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121, 743-

752. 

Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS (2004) 

Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation 

of Arabidopsis flowering time. Plant Cell 16, 2601-2613. 

Oh MH, Clouse SD, Huber SC (2009a) Tyrosine phosphorylation in brassinosteroid signaling. Plant Signal 

Behav 4, 1182-1185. 

Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2009b) Tyrosine phosphorylation of the BRI1 

receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci U S A 

106, 658-663. 

Oh MH, Wang X, Wu X, Zhao Y, Clouse SD, Huber SC (2010) Autophosphorylation of Tyr-610 in the 

receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl 

Acad Sci U S A 107, 17827-17832. 

Oh MH, Wu X, Clouse SD, Huber SC (2011) Functional importance of BAK1 tyrosine phosphorylation in 

vivo. Plant Signal Behav 6. 

Ohnishi T, Nomura T, Watanabe B, Ohta D, Yokota T, Miyagawa H, Sakata K, Mizutani M (2006) Tomato 

cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry 67, 1895-1906. 

Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates 

stimulus- induced development of root and hypocotyl. Genes Dev 11, 2983-2995. 

Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-

INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1, 338-346. 

Peng P, Zhao J, Zhu Y, Asami T, Li J (2010) A direct docking mechanism for a plant GSK3-like kinase to 

phosphorylate its substrates. J Biol Chem 285, 24646–24653. 

Pérez-Pérez JM, Ponce MR, Micol JL (2002) The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like 

kinase required for cell expansion along the proximodistal axis. Devel Biol 242, 161-173. 

Polakis P (2000) Wnt signaling and cancer. Genes Dev 14, 1837-1851. 

Poppenberger B, Rozhon W, Khan M, Husar S, Adam G, Luschnig C, Fujioka S, Sieberer T (2011) 

CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J 30, 1149-1161. 

Pujari V, Radebaugh CA, Chodaparambil JV, Muthurajan UM, Almeida AR, Fischbeck JA, Luger K, 

Stargell LA (2010) The transcription factor Spn1 regulates gene expression via a highly conserved novel 

structural motif. J Mol Biol 404, 1-15. 

Russinova E, Borst JW, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, de Vries SC (2004) 

Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). 

Plant Cell 16, 3216-3229. 

Ryu H, Cho H, Kim K, Hwang I (2010a) Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a 

key regulatory event in brassinosteroid signaling. Mol Cells 29, 283-290. 

Ryu H, Kim K, Cho H, Hwang I (2010b) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate 

subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29, 291-296. 

Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by 

phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749-2762. 

Ryu H, Kim K, Hwang I (2008) Spatial redistribution of key transcriptional regulators in brassinosteroid 

signaling. Plant Signal Behav 3, 278-280. 

Sakamoto T, Kawabe A, Tokida-Segawa A, Shimizu BI, Takatsuto S, Shimada Y, Fujioka S, Mizutani M 

(2011) Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism. 

Plant J. 

Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. 

Nature 446, 199-202. 

Scacchi E, Osmont KS, Beuchat J, Salinas P, Navarrete-Gomez M, Trigueros M, Ferrandiz C, Hardtke 

CS (2009) Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. 



 22 

Development 136, 2059-2067. 

Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J (2008) Bacterial effectors target 

the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant 

immunity. Cell Host Microbe 4, 17-27. 

Song L, Zhou XY, Li L, Xue LJ, Yang X, Xue HW (2009) Genome-wide analysis revealed the complex 

regulatory network of brassinosteroid effects in photomorphogenesis. Mol Plant 2, 755-772. 

Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, 

Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription 

network for plant growth regulation in Arabidopsis. Dev Cell 19, 765-777. 

Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, 

Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling 

cell elongation and de-etiolation in Arabidopsis. Cell 85, 171-182. 

Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, 

Shimada H, Matsui M (2005) shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, 

has altered brassinosteroid levels. Plant J 42, 13-22. 

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, 

Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis 

via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17, 776-790. 

Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi 

S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, 

encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending 

of the lamina joint in rice. Plant Physiol 151, 669-680. 

Tang W, Deng Z, Oses-Prieto JA, Suzuki N, Zhu S, Zhang X, Burlingame AL, Wang ZY (2008a) 

Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. 

Mol Cell Proteomics 7, 728-738. 

Tang W, Deng Z, Wang ZY (2010) Proteomics shed light on the brassinosteroid signaling mechanisms. Curr 

Opin Plant Biol 13, 27-33. 

Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008b) 

BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557-560. 

Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, 

Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY (2011) PP2A activates 

brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13, 

124-131. 

Thornton LE, Rupasinghe SG, Peng H, Schuler MA, Neff MM (2010) Arabidopsis CYP72C1 is an atypical 

cytochrome P450 that inactivates brassinosteroids. Plant Mol Biol 74, 167-181. 

Tong H, Jin Y, Liu W, Li F, Y. Y, Qian Q, Zhu L, Chu C (2009) Dwarf and low-tillering, a new member of 

the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58, 803-816. 

Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, 

Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC 

transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 

promoter. Plant Cell 16, 2481-2498. 

Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC 

transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1, 32-

39. 

Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy 

G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis 

photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42, 23-34. 

Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441, 96-100. 

Wang F, Bai MY, Deng Z, Oses-Prieto JA, Burlingame AL, Lu T, Chong K, Wang ZY (2010) Proteomic 

study identifies proteins involved in brassinosteroid regulation of rice growth. J Integr Plant Biol 52, 1075-1085. 

Wang H, Zhu Y, Fujioka S, Asami T, Li J (2009a) Regulation of Arabidopsis Brassinosteroid Signaling by 

Atypical Basic Helix-Loop-Helix Proteins. Plant Cell 21, 3781-3791. 

Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Chong K (2009b) OsGSR1 is involved in crosstalk 

between gibberellins and brassinosteroids in rice. Plant J 57, 498-510. 



 23 

Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 

signaling, from the plasma membrane. Science 313, 1118-1122. 

Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse 

SD (2005a) Identification and Functional Analysis of in Vivo Phosphorylation Sites of the Arabidopsis 

BRASSINOSTEROID-INSENSITIVE1 Receptor Kinase. Plant Cell 17, 1685-1703. 

Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008) Sequential 

transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid 

signaling. Dev Cell 15, 220-235. 

Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005b) Autoregulation and 

homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8, 855-865. 

Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, 

Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of 

brassinosteroid biosynthesis. Dev Cell 2, 505-513. 

Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane 

receptor for plant steroids. Nature 410, 380-383. 

Waters MT, Moylan EC, Langdale JA (2008) GLK transcription factors regulate chloroplast development in 

a cell-autonomous manner. Plant J 56, 432-444. 

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors 

coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21, 1109-1128. 

Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M 

(2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and 

bending of the lamina joint. Plant Cell 12, 1591-1606. 

Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-

like kinases to regulate brassinosteroid signaling. Plant Physiol 150, 710-721. 

Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The Mechanisms of Brassinosteroids' Action: From 

Signal Transduction to Plant Development. Mol Plant. 

Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by 

regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad 

Sci U S A 107, 6100-6105. 

Yin Y, Cheong H, Friedrichsen D, Zhao Y, Hu J, Mora-Garcia S, Chory J (2002a) A crucial role for the 

putative Arabidopsis topoisomerase VI in plant growth and development. Proc Natl Acad Sci U S A 99, 10191-

10196. 

Yin Y, Vafeados D, Tao Y, Yokoda T, Asami T, Chory J (2005) A  new class of transcription factors mediate 

brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249-259. 

Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002b) BES1 accumulates in the 

nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181-

191. 

Yoh SM, Cho H, Pickle L, Evans RM, Jones KA (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct 

Iws1-dependent mRNA splicing and export. Genes Dev 21, 160-174. 

Yoh SM, Lucas JS, Jones KA (2008) The Iws1:Spt6:CTD complex controls cotranscriptional mRNA 

biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev 22, 3422-3434. 

Yu X, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by 

Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105, 7618-7623. 

Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y 

(2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes 

in Arabidopsis thaliana. Plant J 65, 634-646. 

Zhang L, Fletcher AG, Cheung V, Winston F, Stargell LA (2008) Spn1 regulates the recruitment of Spt6 and 

the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol 28, 1393-1403. 

Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X, Yang H, Xu Y, 

Kim SH, Fujioka S, Lin WH, Chong K, Lu T, Wang ZY (2009a) Antagonistic HLH/bHLH Transcription 

Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. 

Plant Cell 21, 3767-3780. 

Zhang S, Cai Z, Wang X (2009b) The primary signaling outputs of brassinosteroids are regulated by abscisic 

acid signaling. Proc Natl Acad Sci U S A 106, 4543-4548. 



 24 

Zhao J, Peng P, Schmitz RJ, Decker AD, Tax FE, Li J (2002) Two putative BIN2 substrates are nuclear 

components of brassinosteroid signaling. Plant Physiol 130, 1221-1229. 

Zhao Z, Zhu Y, Erhardt M, Ruan Y, Shen WH (2009) A Non-canonical Transferred DNA Insertion at the 

BRI1 Locus in Arabidopsis thaliana. J Integr Plant Biol 51, 367-373. 

Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is 

functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40, 399-409. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

 

 

Fig.1: A model for Brassinosteroid (BR) signaling. BRs are perceived by membrane localized BRI1 

receptor kinase. In the absence of BRs, BKI1 binds and inhibits BRI1 function; at the same time, 

GSK3-like kinase BIN2 phosphorylates BES1 and BZR1 family transcription factors and inhibits 

their functions by several mechanisms including protein degradation, reduced DNA binding, and/or 

cytoplasmic retention by 14-3-3 proteins. In the presence of BRs, activated BRI1 phosphorylates 

BKI1, which leads to dissociation of BKI1 from the plasma membrane and association of BRI1 with 

its coreceptor BAK1. BRI1 phosphorylates and activates BAK1, which in return phosphorylates and 

further activates BRI1. Activated BRI1 phosphorylates several substrates such as BSKs, TRIP-1, TTL 

and potentially a proton-ATPase  (P-ATPase) to transduce the BR signal to downstream targets.  

While the targets for TRIP-1 and TTL remain to be identified, BRI1 phosphorylation of BSK1 leads 

to its association with BSU1 phosphatase, which can function to inhibit BIN2 kinase. At the same 

time, PP2A phosphatase can dephophorylate BZR1 and likely BES1 as well. These signaling events 

result in accumulation of unphophorylated BES1 AND BZR1 in the nucleus, where they can interact 

with other transcription regulators such as BIM1, histone demethylases ELF6/REF6 and transcription 

elongation factor IWS1 to regulate genes for various BR responses. BES1 and BZR1 may interact 

with additional factors to repress gene expression. 
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Fig.2: BES1 AND BZR1 protein structure and their interacting proteins. BES1 and BZR1, highly 

related to each other, have bHLH DNA binding domain (DBD), a BIN2 phosphorylation domain that 

contains 22 BIN2 phosphorylation sites (indicated by *), a PEST motif that is implicated in protein 

degradation, and a 14-3-3 binding motif that interacts with 14-3-3 when BES1 AND BZR1 are 

phophorylated. The C-terminal domain (CTD) includes a docking motif (DM) for BIN2 binding and a 

transcription activation function. Histone demethylases ELF6/REF6 and bHLH protein BIM1 interact 

with BES1 through their basic region and HLH dimerization domain of DBD, respectively. 

Phosphorylation of T175 for BES1 and T177 for BZR1 are important for interaction with 14-3-3s.  

While PEST domain is also required for interaction with PP2A, IWS1 and MYB30 interacts with 

BES1 through a region that contains part of the phosphorylation sites and PEST motif. The amino 

acid numbers are based on BES1. 
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Fig. 3: Regulation of BR biosynthesis. BR biosynthesis pathway is shown from cycloartenol to 

brassinolide (BL). The enzymes catalyze most of the steps are shown (see text for references). 

Different color indicates enzymes/proteins from different species (black: Arabidopsis; red: rice and 

green: pea).  BES1 AND BZR1, OsBZR1, and DLT function to inhibit many of the BR biosynthetic 

genes. In Arabidopsis, DWF4 is induced by TCP1; CES and auxin (likely through an unidentified 

ARF protein) and CPD expression is promoted by BRX and CES. In rice, RAVL1 promotes the 

expression of D2, D11 and BRD1 as well as BR receptor gene OsBRI1. BL and its precursor, 

castasterone, can be inactivated by cytochrome P450 enzymes BAS1 and its homolog SOB7/CHI2 

/SHK1. 
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Abstract 

Plant Steroid hormones, Brassinosteroids (BRs), play important roles in plant growth, 

development and responses to various stresses. BRs regulate the expression of several thousand 

genes, half of which are induced and the other half repressed by the hormone. BRs signal 

through plasma membrane-localized receptor kinase BRI1, BAK1 and several intermediates to 

regulate the protein levels, cellular localizations and/or DNA binding of BES1/BZR1 family 

transcription factors. While BES1 is known to interact with other transcription factors, histone 

modifying enzymes and transcription elongation factors to activate BR-induced genes, how 

BES1 mediates the BR-repressed gene expression is not known. Here we show that BES1 

interacts with MYBL2, a small MYB family transcription repressor, to down-regulate BR-

repressed gene expression. The loss-of-function mybl2 mutant enhances the phenotype of a weak 

allele of bri1 and suppresses the constitutive BR-response phenotype of bes1-D. The results 

suggest that suppression of BR-repressed gene expression is required for optimal BR response. 

Moreover, MYBL2 is a substrate of GSK3-like kinase BIN2, which has been well established as 

a negative regulator in the BR pathway by phosphorylating and inhibiting the functions of 

BES1/BZR1. Unlike BIN2 phosphorylation of BES1/BZR1 leading to protein degradation, BIN2 

phosphorylation stabilizes MYBL2. Such dual role of phosphorylation has also been reported in 

WNT signaling pathway in which GSK3 phosphorylation destabilizes β-catenin and stabilizes 

Axin, a scaffolding protein facilitating the phosphorylation of β-catenin by GSK3. Our results 

thus establish the mechanisms for BR-repressed gene expression and the integration of BR 

signaling and BR transcriptional network. 

 

Introduction 

A group of plant steroid hormones, named Brassinosteroids (BRs), regulate many processes in 

plant growth, development and responses to biotic and abiotic stresses. Loss-of-function mutants 

display dwarf phenotypes with reduced cell elongation, dark-green and epinastic leaves, reduced 

apical dominance, altered vascular patterning, delayed senescence, male sterility, and late flowering 

(1-3). By contrast, gain-of-function mutants such as bes1-D have long hypocotyls, leaf petioles, curly 

leaves and early leaf senescence (4).  

       Genetic and molecular studies in Arabidopsis have greatly advanced our understanding of the BR 

signaling pathway (5-8). BRs are perceived by a plasma membrane-bound receptor BRI1 (9-11). BR 

signaling leads to the dephosphorylation of a family of plant-specific transcription factors, defined by 

their founding members BES1 and BZR1 with an atypical basic helix-loop-helix (bHLH) DNA 
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binding domain (12, 13).  In the absence of BR, the negative regulator BKI1 binds to BRI1 and 

inhibits its function (14, 15). BR binding to BRI1 leads to the release of BKI1, which in turn 

sequesters 14-3-3 proteins that inhibit BES1/BZR1 function (16). At the same time, BR also promotes 

the association of BRI1 with co-receptor BAK1 and a series of phosphorylation events (17-20). 

Activated BRI1 likely signals through BSK1 and CDG1 kinases as well as BSU1 phosphatase to 

inhibit BIN2 kinase (21-24). The inhibition of BIN2 and dephosphorylation by PP2A phosphatase 

allow accumulation of BES1/BZR1 in the nucleus (25). LCMT, a Leucine C-terminal 

Methyltransferase, activates PP2A, which dephosphorylates BRI1 and appears to turn off the BR 

signaling (26). BRI1 autophosphorylation can also lead to self deactivation (27). 

In the absence of BRs, BIN2 phosphorylates BES1/BZR1 and their homologs to inhibit their 

function (28, 29). In the presence of BRs, BIN2’s kinase activity is inhibited, leading to the 

accumulation of dephosphorylated BES1 and BZR1 in the nucleus and subsequent regulation of gene 

expression.  

Several genome-wide microarray experiments in Arabidopsis have demonstrated that BRs 

regulate thousands of target genes, activating and repressing about equal numbers of them (4, 30-35). 

BES1 and BZR1 target genes have been identified using ChIP-chip (Chromatin Immunoprecipitation 

followed by genomic tiling arrays) methods (36, 37). The genome-wide analysis suggests that both 

BR Responsive Element (BRRE) and E-box sequences are enriched in BES1 and BZR1 targets with 

BRRE site preferred in BR-repressed genes and E-boxes more predominant in BR-induced genes. 

Both BES1 and BZR1 target many transcription factors, some of which have been functionally 

characterized (38-43).  

BES1 interacts with transcription regulators to activate BR target gene expression (12, 34, 43, 

44). However, how BES1/BZR1 act to repress gene expression remains largely unknown. In this 

paper, we demonstrate that MYBL2, previously shown to be involved in anthocyanin biosynthesis 

gene expression (45, 46), is a substrate of BIN2 and is stabilized by BIN2 phosphorylation.  We show 

that MYBL2 interacts with BES1 to repress BR-repressed genes. Our study thus identified a 

previously unknown substrate of BIN2 in the BR pathway and established a mechanism by which 

BES1 represses target genes expression. 

 

Results 

MYBL2 is a direct target of BES1 and its expression is repressed by BR and BES1 

Recent ChIP-chip and gene expression studies indicated that MYBL2 was a direct target of BES1 and 

BZR1 (36, 37). We performed an independent ChIP PCR experiment to confirm the results (Fig 1A). 
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Anti-BES1 antibody and a control antibody were used to perform the ChIP assay. There are two 

putative BES1 binding sites in MYBL2 promoter: an BRRE at -9 bp relative to transcription start site 

and an E-box at-500 bp. ChIP-qPCR results indicated that BES1 was enriched significantly at BRRE 

site, but not at the E-box or at 3’-untranslated region (3’UTR). The preference of BES1 binding to 

BRRE on MYBL2 promoter suggests that BES1 represses MYBL2 expression. To test the hypothesis, 

MYBL2 expression was examined in wild type (WT) and bes1-D seedling plants with or without BL 

(Brassinolide, the most active BR) treatment (Fig 1B). The expression of MYBL2 is reduced by BL to 

about 60% in WT and to less than 20% in bes1-D mutant. These results confirm that MYBL2 is a 

direct target of BES1 and is repressed by BR through BES1. 

 

MYBL2 is a positive regulator in the BR pathway 

To determine the function of MYBL2 in BR responses, we obtained a T-DNA insertion line 

(SALK_126807) at 3’UTR of MYBL2 (Fig.S1). RT-PCR analysis indicated that there is no detectable 

transcript in the mutant (Fig. S1A), as reported previously (45). We created double mutants of mybl2 

with bri1-5, a weak loss-of-function allele of BR receptor BRI1 (47) and bes1-D, a gain-of-function 

mutant in the BR pathway (4). Although the single mutant mybl2 did not display obvious growth 

phenotype in either seedling or adult stage, double mutant analysis indicated that mybl2 enhanced 

bri1-5 phenotype and suppressed bes1-D phenotype (Fig. 1C-D, Fig. S1B). The bri1-5 mybl2 double 

mutant showed more severe reduced growth or dwarf phenotype than bri1-5 either in vegetative or 

inflorescent stage (Fig. 1C, D). The bes1-D mybl2 double mutant had shorter petioles in adult plants 

and shorter hypocotyls at seedling stage compared with bes1-D (Fig. 1E and Fig. S1C). These genetic 

studies demonstrate that MYBL2 plays a positive role in the BR pathway. 

 

MYBL2 interacts with BES1 in vitro and in vivo 

We have previously showed that BES1-induced MYB30 interacts with BES1 to activate BR-

induced genes and thus amplify the BR signaling (43). We hypothesize that BES1-repressed MYBL2 

may interact with BES1 in the down-regulation of BR-repressed genes. Yeast two-hybrid experiments 

indicated an interaction between full-length BES1 and MYBL2 (Fig. S2A). GST pull-down 

experiment confirmed this interaction (Fig. 2A). GST-MYBL2, but not GST alone, pulled down 

significant amount of MBP-BES1 protein, demonstrating a direct interaction between MYBL2 and 

BES1. Several truncated GST-BES1 were used to map the domain in BES1 required for the 

interaction with MYBL2. While BES1 with deletion to amino acid (aa) 89 still interacts with MYBL2, 

BES1 with deletion to aa 140 lost the interaction, suggesting that aa 89-140 in BES1 are important for 
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the interaction (Fig. S2B). Indeed, yeast two-hybrid experiment confirms that aa 89-140 in BES1 was 

sufficient for the interaction with MYBL2 (Fig. 2B). To map the specific domain in MYBL2 for the 

interaction, a series of truncated-MYBL2 constructs were generated for yeast two-hybrid experiments. 

Fig. 2C showed that the SANT domain of MYBL2, aa 34-82, is both necessary and sufficient to 

interact with BES1. These results indicate that part of the BIN2-phosphorylation domain of BES1 (aa 

89-140) and the SANT domain (aa 34-82) of MYBL2 are required for the interaction between these 

two proteins (Fig. 2D). 

We further tested in vivo interaction between MYBL2 and BES1 by Bimolecular Fluorescence 

Complementation (BiFC) experiment with MYBL2 fused to N-terminal YFP (MYBL2-nYFP) and 

BES1 fused to C-terminal YFP (BES1-cYFP). When MYBL2-nYFP and BES1-cYFP were co-

transformed into Arabidopsis protoplasts, strong fluorescence signal was observed in the nucleus (Fig. 

2E-F). In contrast, there was no fluorescence observed when MYBL2-nYFP and cYFP were co-

transfected (Fig. 2G-H). Taken together, these results demonstrate that MYBL2 and BES1 interact 

with each other in vitro and in vivo.  

 

MYBL2 facilitates BES1 in down-regulating BR-repressed gene expression 

It has been shown previously that MYBL2 represses gene expression by interacting with bHLH 

transcription factor TT8 (45). Based on the interaction between BES1 and MYBL2, we hypothesize 

that MYBL2 is recruited by BES1 to down-regulate BR-repressed genes. The expression of seven 

BR-repressed genes, which are direct targets of BES1, were examined in bri1-5 mybl2 and bri1-5 

mutants. The expression of five of the seven tested genes increased significantly in bri1-5 mybl2 

compared to bri1-5 (Fig. 3A), suggesting that MYBL2 is responsible for the repression of a portion of 

the BR-repressed genes. To confirm that MYBL2 indeed are targeted to these genes, we performed 

ChIP PCR assays with MYBL2-GFP transgenic plants using anti-GFP, anti-BES1 antibodies and 

normal IgG as control.  Both MYBL2 and BES1 binding were enriched on all 5 target gene promoters 

(Fig. 3B, Fig. S3). To further confirm that BES1 and MYBL2 cooperate in the down-regulation of the 

BR-repressed genes, we constructed promoter-luciferase (LUC) reporter constructs with At2g45210 

and DWF4 genes and assayed their regulation by BES1 and MYBL2 in tobacco leaves by a transient 

expression experiment (Fig. 3C). While BES1 led to reduced gene expression on both reporter genes, 

MYBL2 alone showed no effect. However, when MYBL2 and BES1 were co-expressed, the 

expression of the reporter genes was further reduced compared to BES1. We also tested the repression 

effect of BES1 with truncated MYBL2 protein that lacked interaction domain (SANT domain), there 

was no synergistic repression effect on these two reporter constructs (Fig. S4). All the results 
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demonstrated that MYBL2 forms a complex with BES1 to inhibit BR-repressed genes expression.  

 

MYBL2 is a novel substrate of BIN2 and is stabilized by BIN2 phosphorylation 

BIN2 is a negative regulator in the BR pathway, which phosphorylates and inhibits BES1 and 

BZR1 (4, 48-50). BIN2 belongs to glycogen synthase kinase 3 (GSK3) family, whose substrates 

contain repeats of a short consensus sequence S/TxxxS/T (x corresponds to any amino acid residues). 

There are 19 potential phosphorylation sites for BIN2 in the predicted MYBL2 protein (Fig. 4A), 

which promoted us to test if MYBL2 was a substrate of BIN2. We first tested the interaction between 

BIN2 and MYBL2 by GST pull-down experiment. Fig. 4B showed that there was a direct interaction 

between MYBL2 and BIN2 in vitro. We then performed an in vitro kinase assay with MBP-BIN2 and 

MBP-MYBL2. BIN2 indeed phosphorylated MYBL2, but not MBP (Fig. 4C). Bikinin, a small 

molecule, and lithium chloride (LiCl) have been found to inhibit the kinase activities of BIN2 and its 

close homologs (48, 51). Both Bikinin and Li+ can inhibit BIN2 phosphorylation of MYBL2 as well 

as BIN2 autophosphorylation (Fig. 4D-E).  

To test if MYBL2 exists as phosphorylated form in plants, MYBL2-GFP protein was 

immunoprecipitated from MYBL2-GFP transgenic plants and subjected to phosphatase (CIP) 

treatment (Fig. 4F). CIP treatment leads to several fast-migrating bands on a SDS-PAGE gel 

containing Phos-tag reagent that binds to phosphorylation groups and reduce protein mobility (see 

Materials and Methods), indicating that the MYBL2-GFP exists as phosphorylated form in plants.  

To further investigate the function of the BIN2 phosphorylation on MYBL2, MYBL2-GFP 

protein level in transgenic plants was examined by Western blotting. Fig. 5A showed that in the 

absence of BL, MYBL2-GFP protein level remains mostly constant. However, in the presence of BL, 

MYBL2-GFP protein decreased more than 10 folds after 4 hours of treatment while its mRNA level 

only decreased by about 40%. As previously demonstrated, BL treatment leads to the accumulation of 

unphosphorylated BES1 (Fig. 5A, middle panels). Since BL treatment is well established to reduce 

BIN2 activity, we conclude that BIN2 phosphorylated MYBL2 is stable in the absence of BL and is 

unstable as unphosphorylated form in the presence of BL.  

To test the hypothesis, BIN2 inhibitors Bikinin was also applied to plants to test the effect of 

BIN2 phosphorylation on MYBL2. MYBL2 protein decreased significantly after 2h with Bikinin 

treatment (Fig. 5B top panels), while the dephosphorylated form BES1 accumulated at the same time 

(Fig. 5B middle panels). We further examined MYBL2 accumulation in bri1-5, in which BR 

signaling is blocked and BIN2 is thus constitutively active.  The protein level of MYBL2 significantly 

accumulated compared to WT (3.9X, Fig. S5),  which is more than the MYBL2-GFP transcript 
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accumulation (2.3X) in the bri1-5.   

Proteasome inhibitor MG132 was used to test whether BL-induced decrease of MYBL2 protein 

was due to proteasome-mediated degradation. When the plant samples were treated by BL together 

with MG132, the MYBL2 protein is significantly accumulated (Fig. S6). This result indicated that 

MYBL2 degradation by BL is dependent on the proteasome-mediated pathway. Taken together, all 

the results demonstrate that MYBL2 is regulated by BIN2.  

 

Discussion 

Recent studies indicated that BRs activate and repress about equal number of genes and 

BES1/BZR1 transcription factors play an essential role in mediating BR-regulated gene expression 

(36, 37). BES1/BZR1 interacts with other transcription factors (BIM1, MYB30 and PIF4), chromatin-

modifying enzymes (REF6/ELF6 histone demethylase) and transcription elongation factor (IWS1) to 

regulate BR-induced gene expression. However, how BES1 and its homologs repress gene expression 

is not well established. In this study, we found that BES1 interacts with one of its targeted 

transcription factors, MYBL2, to repress the BR-repressed gene expression. This MYBL2-mediated 

repression is required for BR-regulated plant growth, as mybl2 knockout mutant enhances the weak 

loss-of-function BR mutant (bri1-5) and suppresses gain-of-function BR mutant (bes1-D). We further 

found that MYBL2 is a substrate of BIN2 kinase, and BIN2 phosphorylation of MYBL2 stabilizes the 

protein. The regulation of MYBL2 by BIN2 is opposite of BIN2 phosphorylation of BES1, which 

destabilizes BES1. The study thus provides new insights into the regulation of BR transcriptional 

network by BR signaling. 

MYBL2 is a small MYB protein that has only one R3-MYB (SANT) domain. MYBL2 interacts 

with TT8, a bHLH protein, to repress anthocyanin biosynthesis gene expression (45, 46). MYBL2 has 

a novel repression motif (TLLLFR) at its carboxyl terminus (45), which might interact with 

TOPLESS family co-repressors (52). Several lines of evidence support the role of MYBL2 as a 

transcription corepressor for BES1. First, BES1 interacts with MYBL2 both in vitro and in vivo, 

through the SANT domain of MYBL2 and a specific region of BES1 (aa 89-140). It was proposed 

that the SANT domain of MYBL2 does not interact with DNA directly due to the replacement of 

several critical residues required for DNA binding (45). Our findings that the SANT domain of 

MYBL2 doesn’t bind to DNA and is involved in interaction with BES1 corroborate this conclusion. 

Second, MYBL2 and BES1 act cooperatively to repress BR-repressed gene expression in a transient 

expression assay. Lastly, several BR-repressed genes are up-regulated in mybl2 mutant in bri1-5 

background.  
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In addition to the regulation by BES1 at transcription level, MYBL2 is regulated by BR 

signaling through BIN2 kinase. BIN2 phosphorylates and inhibits BES1 and its homolog, BZR1, 

through several mechanisms, including targeted protein degradation, cytoplasmic retension by 14-3-3 

proteins and reduced DNA binding (6, 29, 53).  Recent studies suggest that BIN2 can also 

phosphorylate and regulate other factors involved in BR-regulated processes. For example, it was 

recently reported that BIN2 phosphorylates and inhibits MAP kinase kinase YODA and transcription 

factor SPCH to regulate stomatal development (54, 55). BIN2 was also reported to phosphorylate and 

inhibit ARF2 DNA binding (56). AIF, a BES1/BZR1 target bHLH protein involved in BR-responses 

and CESTA implicated in BR biosynthesis are both reported to be phosphorylated by BIN2 in vitro 

(41, 57). Rice transcription factor DLT is a BIN2 kinase substrate and mediate BR signaling in rice 

(58). BIN2 phosphorylation of MYBL2, like that of DLT, is not as effective as BIN2 phosphorylation 

of BES1/BZR1, which may explain the higher concentrations of bikinin and LiCl required to observe 

their effects on MYBL2 phosphorylation and protein accumulation.  

In contrast to BES1/BZR1 and SPCH that are destabilized by BIN2 phosphorylation, BIN2 

phosphorylation of MYBL2 stabilizes the protein. Our results thus suggest that BIN2 phosphorylation 

can have different functional consequences. The dual role of GSK-like kinase phosphorylation has 

been observed in WNT pathway. In the WNT signaling pathway, GSK3 kinase phosphorylates 

positive regulator β-catenin in a protein complex including scaffolding protein Axin, leading to β-

catenin degradation (59). Interestingly, Axin is also phosphorylated by GSK3 kinase and such 

phosphorylation stabilizes Axin (60), much like the effect of BIN2 phosphorylation on MYBL2 (Fig. 

S7).  

Although MYBL2 acts as a transcriptional repressor, it functions as a positive regulator in the 

BR pathway, as mybl2 mutant enhances and suppresses the phenotype of bri1-5 and bes1-D, 

respectively. Why the positive regulator MYBL2 is repressed by BRs and in bes1-D? One possibility 

is that this regulation represents a feedback regulation mechanism in which excessive BRs or BR 

signaling down-regulates the pathway through MYBL2. We therefore propose that MYBL2 function 

as a “buffer” to fine-tune BR responses (Fig. S8). Global gene expression studies with mybl2 mutants 

and functional studies of BIN2 regulation of MYBL2 phosphorylation are needed to further test the 

model.   

In conclusion, our studies showed that MYBL2 formed a complex with BES1 to down-regulate 

BR-repressed genes and BIN2 phosphorylates and stabilizes MYBL2 protein. Like BES1-mediated 

gene activation, BES1-MYBL2 complex likely interacts with additional cofactors in the regulation of 

the BR-repressed genes. Identification of these factors and elucidation of the transcriptional network 
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through which BES1 and its corepressors act to repress gene expression are important steps to 

understand how BRs regulate plant growth and various responses. 

 

Materials and Methods 

Plant materials and growth condition 

T-DNA insertion mutant, mybl2, was obtained from ABRC (Arabidopsis Biological Resource 

Center), corresponding to line SALK_126807 (61). All the plants were grown on 1/2MS plates and/or 

in soil under long day conditions (16h light/ 8h dark) at 22°C. 

 

Plasmid constructs 

For GFP-tagged transgenic plants, MYBL2 genomic sequence including its native promoter was 

cloned from wild type and fused with GFP tag into pZP211 vector (62). For recombinant protein 

purification and GST pull-down assay, MYBL2 coding region was cloned into pETMALc-H vector, 

while BIN2, BES1 and truncated BES1 fragments were incorporated into pET42a(+) (Novagen) 

respectively. For yeast two-hybrid assays, BES1, the DNA binding domain of BES1 and 

phosphorylation domain of BES1 were cloned into pGBKT7, while MYBL2 as well as its deletion 

mutation were clone into pGADT7 (Clontech). For BiFC assay, the constructs of N or C-terminus of 

EYFP used were previously reported (44). The coding region of MYBL2 and BES1 were inserted 

into YFP-N construct and YFP-C construct, respectively.  

 

Transgenic plants 

The construct of MYBL2-GFP driven by its native promoter was transformed into 

Agrobacterium tumefaciens (stain GV3101) which were used to transform plants by the floral dip 

method (63). Transgenic lines were selected on 1/2 MS medium plus 50ug/ml kanamycin. Transgene 

expression was analyzed by western blotting. 

 

Gene expression analysis 

Total RNA was extracted and purified from 4-week-old plants of different genotypes using 

RNeasy Mini Kit (Qiagen). Mx4000 multiplex quantitative PCR system (Stratagene) and SYBR 

GREEN PCR Master Mix (Applied Biosystems) were used in quantitative real-time PCR analysis. 

At2g45210 promoter (1021bp including 5’UTR) and DWF4 promoter (972bp including 5’UTR) were 

cloned and used to drive luciferase reporter gene expression. MYBL2, MYBL2△SANT and BES1 

coding region driven by CaMV 35S promoter were cloned into pZP211 vector respectively. Tobacco 
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leaf transient assay (64) was used to examine the repression effect of MYBL2 on reporter gene 

expression in the presence or absence of BES1 and/or MYBL2. Equal amount of Agrobacterium cells 

(measured by O.D., adjusted to same with vector-containing strain) were injected to tobacco leaves. 

The luciferase activities were measured from protein extracts from triplicate samples and measured 

using Berthold Centro LB960 luminometer with luciferase assay system (Promega). The luciferase 

levels were normalized by the total protein from each sample. 

 

Chromatin Immunoprecipitation (ChIP) 

Chromatin immunoprecipitation was performed as previously described (36). GFP antibody was 

used to precipitate chromatin from MYBL2-GFP overexpression plants, while antibody against BES1 

and normal IgG (Sigma) were used as control. 

 

In vitro Kinase assay and detection of in vivo MYBL2 phosphorylation 

The in vitro kinase assay was performed as described (4). MYBL2 protein was 

immunoprecipitated from transgenic plants and treated with or without calf alkaline phosphatase (CIP) 

as described (4). The in vivo phosphorylated-MYBL2 was examined by Phos-tag reagent (NARD 

Institute) with or without CIP treatment as described (65).  
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Fig. 1. MYBL2 is repressed by BES1 and acts as a positive regulator in the BR pathway. 

(A) BES1 targets the BRRE site on MYBL2 promoter. ChIP was performed with anti-BES1 antibody 

in WT seedlings. The bindings of BES1 at BRRE site (-9bp), E-box (-500bp) and 3’ region of the 

MYBL2 gene were examined by qPCR. The 5s rRNA was used as internal control. (B) The expression 

of MYBL2 was examined by quantitative RT-PCR in 2-week-old WT and bes1-D seedlings with or 

without 1,000 nM BL treatment for 2.5 hr. (C, D) The phenotypes of bril-5 mutants and bril-5 mybl2 

double mutants at different growth stages. Bars represent 2.5 cm (C)  and 1 cm (D), respectively. (E) 

The phenotype of 4-week-old bes1-D mutant and bes1-D mybl2 double mutant. Bar represents 5 cm. 

The average petiole lengths of the longest (fifth) leaf for each genotype are indicated (C and E). The 

average and standard deviations were from 10 plants. The difference was significant as analyzed by 

Student’s t-Test (*<0.05). 
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Fig. 2 BES1 interacts with MYBL2 in vitro and in vivo. (A) GST pull-down using GST, GST-

MYBL2 and MBP-BES1. BES1 was detected by Western Blotting with anti-MBP antibody. (B) 

MYBL2 interacts with BES1 (aa 89-140) in yeast as detected by β-galactosidase (LacZ) activity. (C) 

MYBL2 interacts with the phosphorylation domain of BES1 (aa 89-140) through its SANT domain 

(aa 34-82). (D) A model shows BES1 protein structure and MYBL2’s corresponding domain 

involved in the interaction. DBD: BES1 DNA binding domain; CTD: BES1 C-terminal domain. CRD: 

MYBL2 C-terminal Repression Domain. The “*” indicate BIN2 phosphorylation sites. (E-H) 

MYBL2 interacts with BES1 in vivo by BiFC. Cotransformation of MYBL2-nYFP and BES1-cYFP 

led to the reconstitution of YFP activity in Arabidopsis protoplasts (E, under YFP filter and F, merged 

microscopic images from YFP and white light), while co-expression of MYBL2-nYFP and cYFP did 

not produce any positive YFP signal (G and H). 
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Fig. 3. MYBL2 cooperates with BES1 to inhibit BR-repressed gene expression. (A) BR-repressed 

genes were increased in bri1-5 mybl2 double mutant compared to bri1-5. Quantitative RT-PCR was 

performed with RNA from 4-week-old plants. (B) MYBL2 is targeted to BR-repressed genes in vivo. 

ChIP using MYBL2-GFP transgenic plants with anti-GFP antibody, anti-BES1 antibody and normal 

IgG control. The bindings of MYBL2 and BES1 to indicated gene promoters are detected by qRT-

PCR flanking the BRRE sites. The 5s rRNA was used as internal control. (C) Transient gene 

expression assays were performed in tobacco leaves with At2g45210-LUC and DWF4-LUC reporter 

genes co-transfected with BES1 and/or MYBL2 via Agrobacterium. The relative expression levels 

were normalized with total protein. The average and standard deviations were from three biological 

repeats. The significant difference was analyzed by Student’s t-Test (*<0.05, **<0.01). 
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Fig. 4. MYBL2 is a substrate of BIN2 kinase in BR signaling. (A) The structure of MYBL2. The * 

indicates potential BIN2 phosphorylation sites. The SANT domain, putative PEST domain and C-

terminal repression domain (CRD) in MYBL2 are indicated. (B) GST pull-down experiments using 

GST, GST-BIN2 and MBP-MYBL2. MYBL2 was detected by Western Blotting with anti-MBP 

antibody. (C) BIN2 phosphorylates MBP-MYBL2 but not MBP in the in vitro kinase assay. Arrows 

indicate phosphorylated-MYBL2 or autophosphorylated-BIN2. (D) BIN2 phosphorylation of MYBL2 

is inhibited by Bikinin in kinase assay in vitro. (E) The phosphorylation of MYBL2 by BIN2 was 

inhibited by LiCl in kinase assay in vitro. (F) MYBL2 is phosphorylated in vivo. MYBL2 

immunoprecipitated from transgenic plants was treated with calf alkaline phosphatase (CIP), and 

separated on SDS-PAGE gel containing Phos-tag reagent (NARD Institute). CIP treatment produced 

several fast-migrating bands. Arrows indicate the phosphorylated- or unphosphorylated- MYBL2. 
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Fig. 5: BL and BIN2 inhibitors destabilize MYBL2 protein. (A) BL treatment destabilizes MYBL2 

protein. Four-week-old MYBL2-GFP transgenic plants were treated with or without 1 mM BL for 

indicated periods of time and used to prepare protein to detect MYBL2 (top), BES1 (middle) and a 

control protein (bottom). MYBL2 protein levels were quantified using Alphalmger 3400 and MYBL2 

mRNA levels were quantified by qRT-PCR. (B) Bikinin treatment induces the degradation of MYBL2 

protein. MYBL2-GFP transgenic plants were treated with or without 100 mM Bikinin for indicated 

periods of time and used to prepare protein to detect MYBL2 (top), BES1 (middle) and a control 

protein (bottom). 
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Fig. S1. MYBL2 T-DNA insertion mutant. 

A. Schematic representation of T-DNA knockout allele of MYBL2 gene. MYBL2 expression is not 

detected by RT-PCR in the T-DNA mutant. 

B. mybl2 suppressed bes1-D phenotype at seedling stage. 

Two-week-old seedlings of bes1-D and bes1-D mybl2 double mutants are shown. The average 

hypocotyl length and standard deviations are indicated (n=10). 
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Fig. S2. BES1 interacts with MYBL2 in yeast and in vitro. 

A: β-galactosidase(LacZ) activity was detected with ONPG in a quantitative liquid-culture assay to 

test the protein-protein interaction in yeast two-hybrid experiment. 

B: GST pull-down experiments using MBP-MYBL2 and GST tagged full-length or different 

truncated BES1. MYBL2 was detected by Western Blotting with anti-MBP antibody. 
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Fig. S3. BRRE or G-box in BR-repressed BES1 target gene promoters.  

The BRRE and G-box, both are enriched in BR-repressed BES1/BZR1 target genes, are shown in the 

promoters used for ChIP-PCR analysis with BES1 and MYBL2. The numbers indicate nucleotide 

positions relative to transcription start sites. 
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Fig.S4: BES1 and MYBL2△SANT did not have synergistic repression effect on BR-repressed 

genes. 

Transient gene expression assays were performed in tobacco leaves with At2g45210-LUC and 

DWF4-LUC reporter genes co-transfected with BES1 and/or MYBL2△SANT via Agrobacterium. 

The relative expression levels were normalized with total protein. The average and standard 

deviations were from three biological repeats. The significant difference was analyzed by Student’s t-

Test (*<0.05, **<0.01). 
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Fig. S5: MYBL2 protein accumulated in bri1-5 background. 

MYBL2-GFP protein and mRNA level were examined in WT and bri1-5 background. The numbers 

indicated the amount of MYBL2-GFP protein or transcripts quantified using Alphalmger 3400. 
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Fig. S6: The reduced MYBL2 protein level caused by BL was reversed by proteasome inhibitor 

MG132. 

The plant samples were treated without BL, with 1 mM BL and with both BL and MG132 (30 μM) 

for 4 hours and used to prepare protein to detect MYBL2 (top) and a control protein (bottom).  
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Fig. S7. BR and WNT signaling pathways.  

The regulation of BES1 and MYBL2 by BIN2 phosphorylation in the BR pathway is similar to the 

regulation of b-catenin and Axin by GSK3 kinase in the WNT pathway, despite the fact that the 

substrates in each pathway do not have any similarities in protein sequences.   
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Fig. S8: A model for MYBL2 function in the BR pathway. 

Under optimal conditions, the plants respond to BR signaling and maintain balanced levels of BES1 

and MYBL2 to regulate BR-repressed genes (middle). However, when BR level and signaling is 

reduced, BES1 function will be reduced by increased BIN2 phosphorylation (left). In the meantime, 

MYBL2 protein level is increased due to the increased MYBL2 transcript by reduced BES1 and 

stabilization of MYBL2 by BIN2 phosphorylation. The increased MYBL2 protein likely compensates 

for the reduced BES1 in BR-repressed gene expression. On the other hand, if the concentration of BR 

is increased in plants (right), BES1 protein will accumulate and MYBL2 will be reduced to balance 

the BR-repressed gene expression. The increased BES1 leads to decreased MYBL2 transcript level 

and dephosphorylation of MYBL2 destabilizes the protein. The reduced MYBL2 protein level will 

alleviate the transcription repression caused by increased BES1. 
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Table S1: Primer sequences used in the study. 

 

mybl2LP GAGATGTCGATTGAGAGGTCG Genotyping 

mybl2RP GCTGTATTAGCTATAATTTCTTACAG 

gMYBL2NAsp718 CGCGGTACCTCTTATATGATTTTGGAGTA

GATGGTAAGTGAG 

Transgenic 

plant 

gMYBL2CSalI CGCGTCGACTCGGAATAGAAGAAGCGTT

TCTTGACCTG 

MYBL2AD7NEcoR1 GCGGAATTCATGAACAAAACCCGCCTTC

GTGC 

Yeast two 

hybrid 

MYBL2AD7CXho1 GCGCTCGAGTCATCGGAATAGAAGAAGC

GT 

MYBL2AD7D1NEcoR1 GCGGAATTCAAGATTATTAGTGATCAATC 

MYBL2AD7D2NEcoR1 GCGGAATTCAGTCATTTGCCTGACCTAAA

CA 

MYBL2BDNEcoR1 CGCGAATTCAAACAACGCAACTTCTCAA

AAGATG 

MYBL2BDCSal1 CGCGTCGACTCACCTTTTTAGGTAAGTTT

CCCAAT 

MYBL2MBPNEcoR1 GCCGAATTCGATGAACAAAACCCGCCTT

CGTGC 

Protein 

expression 

MYBL2MBPMBPCAsp718 CGCGGTACCTCATCGGAATAGAAGAAGC

GT 

cMYBL2NAsp718 CGCGGTACCTCAACCCACCAGTCCAAGT

CAAACCTCCTC 

BiFC 

gMYBL2CSalI CGCGTCGACTCGGAATAGAAGAAGCGTT

TCTTGACCTG 

MYBL2RTF ATAGTACTAGTACCGGACGAAGTC Gene 

expression 
MYBL2RTR CAAACATCGTTATACCATCTCTCTAGTG 

2G45210RTF CTGTCATAGAGTTTTGGTACCCATC 

2G45210RTR CGAAATCTGAATACAGACAAGGAAT 

4G01870RTF CATGTGAGTTTCAATAAAGATGGTG 

4G01870RTR CGTCTAATTTCACAACGTACAAATC 

4G17460RTF AGAAGCTAGGTTTAACAGCAAGACA 

4G17460RTR CTTCCGTTAATTTCTCAACACATCT 

5G09440RTF ATTATAAACATCGCGACTCTTCTTG 

5G09440RTR CACTCGTCTTGTCTACGAGAACC 

DWF4RTF GAAATGTAGTTAGGTTTTTGCATCG 

DWF4RTR GAGATTAGGTTGGTCATAACGAGAA 

MYBL2Chip1F TGTGGGACCAATTAACAAGG ChIP qPCR 

MYBL2Chip1R GATGGCTTGAGGAGGTTTGA 

MYBL2Chip2F ATGGTAAGTGAGATAGGGAAGTGG 

MYBL2Chip2R GGTTCAGGAACAGATAAGGGAGA 

MYBL2Chip3F CGATAACCGCTGCTTATTTGA 

MYBL2Chip3R TGTAGTTTGGAGGAAAATGAACA 
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2g45210PFBamH1 CGCGGATCCtcatcaacgtacacaagtaacgcaactag Transient 

expression 
2g45210PRHind3 CGCAAGCTTCTTCTTATAGCTAACTTTAA

AAAACAG 

DWF4FBamH1 CGCGGATCCtggaatggaagtagtaatatacattaagc 

DWF4REcoR1 CGCGAATTCGGAGCTAGTTTCTCTCTCTC

TCTCACTCAC 

MYBL2DENAsp CGCGGTACCatgAAGATTATTAGTGATCAA

TC 

MYBL2DECSal CGCGTCGACTCATCGGAATAGAAGAAGC

GT 
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Abstract 

Brassinosteroids (BRs) play important roles in plant growth, development and plant 

responses to both abiotic and biotic stresses. BR signal through receptor BRI1 and BAK1 as 

well as  a series signaling intermediates to control the activities of BES1/BZR1 family 

transcription factors, which control the expression of thousands of genes for various BR 

responses. BRs are known to be involved in drought response, but the mechanism of 

interactions between these two pathways remains to be established. Here we show that NAC 

family transcription factor RD26 and its close homologs mediate crosstalk between drought and 

BR signaling pathways. We found that RD26 is a BES1 target genes and functions to inhibit BR-

regulated growth as overexpression of RD26 gene leads to decreased plant growth and knockout 

of RD26 and its close homologs results in increased BR response. Gene expression studies 

revealed that RD26 modulates BR-regulated gene expression in a complex way. RD26 represses 

many BR-induced genes including those implicated in cell elongation and activates many BR-

repressed genes, thereby inhibiting BR functions. On the other hand, BR signaling also inhibits 

drought responses. The reciprocal inhibitory effects of BES1 and RD26 are mediated by their 

interactions on different promoter elements. This mechanism ensures that BR-induced plant 

growth is inhibited under drought condition, which induces RD26 expression. The mechanism 

also prevents unnecessary activation of drought response when plants undergo BR-induced 

growth, during which BES1 accumulates. Our results thus revealed a previously unknown 

mechanism coordinating plant growth and drought tolerance.  

   

Introduction 

Brassinosteroids is a group of plant steroid hormones regulating plant growth, development, and 

responses to abiotic stresses 1-3.  Recently the main components in BR signaling pathway have been 

identified and characterized 4-7. BR signaling leads to the accumulation of BES1/BZR1 in nucleus to 

control the expression of targets for growth and other BR responses 8-13. Several studies indicated that 

treatment of exogenous BR could enhance the tolerance of plants to drought 1,14,15. BR-deficient 

mutants not only display strong dwarf phenotype, but also has an enhanced tolerance to drought 16,17. 

Several transcription factors, including drought-induced transcription factor RD26 and several of its 

close homologs have been identified as the direct targets of BES1 and BZR1 8,9. These studies 

indicate that BR pathway have a strong relationship with drought tolerance. 

RD26 belongs to NAC (petunia NAM and Arabidopsis ATAF1, ATAF2 and CUC2) family 

transcription factors, which are induced by drought, abscisic acid (ABA), NaCl and jasmonic acid (JA) 
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18-20. RD26 and its homologs function to promote drought responsive gene expression and increase 

plant drought tolerance 19. Recent results showed that RD26 and two of its homologs, ANAC019 and 

ANAC055 are involved in plant bacterial pathogenesis 21. These three genes function to promote 

bacterial infection as they down-regulate salicylic acid (SA) level by repressing SA biosynthesis and 

activating SA degradation pathways. Yeast-one-hybrid and DNA binding experiments showed that 

RD26 could bind to CATGTG and CACG core sequence 19, which are either an E-box (CANNTG) or 

partial sequence of BRRE site (CGTGT/CG), well established binding sites for BES1/BZR18,9. The 

potential overlapping binding sites of RD26 and BES1/BZR1 indicates that there might be a crosstalk 

between drought and BR signaling pathways through BES1/BZR1 and RD26.  

In this paper, we confirmed that RD26 is a direct target of BES1 and negatively regulates BR 

signaling pathway. RD26 and BES1 bind to the same DNA-binding site to block each other’s function. 

RNA-Seq data confirmed that RD26 could function as both activator and repressor on the different 

genes. Drought stress experiment showed that the loss-of-function mutants in BR signaling pathway 

had higher drought tolerance, while gain-of-function mutant in the BR pathway (bes1-D) exhibited 

lower drought tolerance compared to wild type control. These results suggest that RD26 inhibits BR 

pathway and BR pathway also negatively regulates drought tolerance, establishing a mechanism for 

crosstalk between these two important pathways for plant growth and stress responses. 

 

Results 

RD26 is a direct target of BES1 and is a negative regulator of the BR signaling pathway. 

Our previous data indicated that RD26 was a direct target of BES1 and was repressed by BL 

(brassinolide, the most active BR) and/or BES1 and BZR1 8,9. Since, BES1 and BZR1 can bind to 

BRRE to repress gene expression, we examined RD26 gene promoter and revealed a BRRE site 

around -851 relative to transcriptional start site. ChIP experiments with anti-BES1 antibody showed 

that BES1 was more enriched at BRRE site compared to control site (Fig. 1A), suggesting BES1 

binds to this site to repress the expression of RD26. Indeed, RD26 expression was reduced by BL in 

WT (Wild-Type) (Fig 1B). Moreover, RD26 expression was repressed significantly in bes1-D, in 

which BES1 protein accumulates and RD26 was further reduced by BL treatment. These results 

confirm that RD26 is a direct target of BES1 and is repressed by BL through BES1. 

Our previous result indicated that loss-of-function RD26 mutant has a small increase in BR 

response8, suggesting that RD26 functions with its homologs to inhibit BR response. To confirm this 

hypothesis, we generated RD26 overexpression lines. RD26 overexpressing plants (RD26OX) 

displayed a stunted growth phenotype, the severities of which correspond well with RD26 protein 
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levels (Fig 2A). Moreover, RD26OX transgenic line could suppress the phenotype of bes1-D, a gain-

of-function mutant in the BR pathway (Fig 2B). Western blot result indicated that the BES1 protein 

levels and forms (phosphorylated and unphosphorylated) did not change significantly in bes1-D 

RD26OX double mutant. The results suggest that RD26 functions downstream of BES1. To confirm 

that RD26OX phenotype is due to reduced BR response, we determined the mutant responses to BR 

biosynthesis inhibitor brassinazole (BRZ), which reduces endogenous BR levels. RD26OX seedlings 

had shorter hypocotyls and were more sensitive to BRZ compared to WT (Fig 2C). Several RD26 

homologous genes, ANAC019, ANAC055 and ANAC102, are also regulated by BR and likely function 

redundantly in BR responses 8,9. We generated quadruple mutant of rd26 anac019 anac055 anac102. 

The quadruple mutant showed more resistant to BRZ compared to WT, although they did not exhibit 

any obvious growth phenotype under normal condition (Fig. 2A). All the genetic evidences 

demonstrate that RD26 plays a negative role in the BR signaling pathway. 

 

RD26 negatively regulates the expression of BR-responsive genes. 

To understand how RD26 negatively regulate BR response, we performed gene expression 

studies with RD26 mutants in the absence or presence of BR by RNA-seq. We used 4-week-old adult 

plants for gene expression studies because the RD26OX plants display clearest phenotype at this stage. 

In WT, 2678 genes are induced and 2376 genes are repressed by BR, among around 22,000 genes 

analyzed (Fig3, Fig S1, S2). Consistent with the strong phenotype of RD26OX plants, 3246 genes are 

up-regulated and 5479 genes are down-regulated in the transgenic plants, respectively (Fig3, Fig S1, 

& FigS2). RD26 and its homologs modulate BR-responsive genes in complex ways (Fig 3, Fig S1 & 

Fig S2). Consistent with the negative role of RD26 in BR response, 43% (1141, Group I) BR-induced 

genes are down-regulated in RD26OX mutant and their induction by BRs are reduced but not 

abolished (Fig 3A and B). In contrast, only 20% (539, Group III) of BR-induced genes are up-

regulated in RD26OX. We examined the expression of 95 Arabidopsis genes implicated in cell 

elongation, including those encoding expansin, xyloglucan endotransglycosylases (XTHs) and 

pectinlyase. Thirty-five of these cell wall-modifying genes were induced by BL, and 30 of them (86%) 

are down-regulated in RD26OX plant, while only 1 gene was up-regulated in the mutant (Table S1). 

The reduced expression of these genes may account for the reduced growth and BR response of 

RD26OX transgenic plants.  

On the other hand, among 2376 BR-repressed genes, 595 (25%, Group II) are up-regulated and 

823 (35%, Group IV) are down-regulated and in RD26OX (Fig 3C, D and Fig S1-2). While Group III 

and Group VI genes suggest positive role of RD26 in BR response (i.e. BR-induced genes are up-
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regulated and BR-repressed genes are down-regulated in RD26OX), Group I and Group II genes 

demonstrated a negative role of RD26 in BR response (BR-induced genes are down-regulated and 

BR-repressed genes are up-regulated in RD26OX). Since RD26OX displayed a negative role in BR 

response (Fig 2), we focus on the Group I and Group II genes to determine the mechanisms by which 

RD26 regulates BR responses.  

Consistent with the relative weaker BR-response phenotype of the rd26 anac019 anac055 

anac102 mutant, only 405 genes are up-regulated and 378 are down-regulated in rd26 anac019 

anac055 anac102 quadruple mutant (Fig S3A and B). BR-induced genes that are down-regulated in 

RD26OX and up-regulated in the quadruple mutant (Group C), BR-induced genes that are up-

regulated in RD26OX and down-regulated in the quadruple mutant (Group E), BR-repressed genes 

that are up-regulated in RD26OX and down-regulated in the quadruple mutant (Group D), and BR-

repressed genes that are down-regulated in RD26OX and up-regulated in the quadruple mutant 

(Group F) are listed in Table S2.  Clustering analysis indicated that most of the genes are affected in 

opposite ways in the RD26 and rd26 anac019 anac055 anac102 mutant and RD26OX (Fig S3). The 

results support the conclusion that RD26 and its homologs act to modulate BR responses. 

 

RD26 and BES1 bind to E-box and BRRE site simultaneously and cancel each other’s 

transcriptional activities 

To reveal how RD26 inhibits Group I BR-induced genes and activates Group II BR-repressed 

genes, we chose promoter of one representative gene from each group for mechanistic studies.  A BR-

induced gene At4G00360 was chosen to represent Group I gene as it is down-regulated in RD26OX 

and its promoter contains a CATGTG E-box known to be BES1 binding site.  Likewise, a BR-

repressed gene, AT4G18010, was chosen to represent Group II genes because it is up-regulated in 

RD26OX and its promoter contains BRRE site, a well established promoter element enriched in BR-

repressed genes.  

First, the promoter of AT4G00360 and AT4G18010 were fused with luciferase (LUC) gene, to 

generate reporter constructs. BES1, RD26 and BES1+RD26 were expressed together with the reporter 

construct and the reporter gene expression was determined. While BES1 activated and RD26 

repressed the expression of AT4G00360P-LUC, the reporter gene expression was in between when 

both BES1 and RD26 were co-expressed (Fig. 4A).   In contrast, BES1 activated and RD26 repressed 

AT4G18010P-LUC reporter gene and the expression was in the middle when both RD26 and BES1, 

are coexpressed (Fig. 4B). These results indicated BES1 and RD26 act antagonistically to regulate BR 

regulated gene expression.  



 61 

To confirm if such antagonistic interactions happen in vivo, we then examined the expression of 

these two genes in bes1-D, RD26OX and bes1-D RD26OX, in which BES1, RD26 or both of them are 

increased, respectively. As shown in Fig.4 C, the expression of AT4G00360 was much higher in bes1-

D compared to bes1-D RD26OX, while its expression was significantly repressed in RD26OX. In 

contrast, expression of AT4G18010 was down-regulated and up-regulated in bes1-D mutant and 

RD26OX transgenic plant, respectively, but this gene’s expression level was between bes1-D mutant 

and RD26OX in bes1-D RD26OX double mutant (Fig. 4D).  

Previous DNA binding experiments with RD26 indicated that RD26 can bind sequences with a 

CACG core as well as CATGTG E-box sequence 19. Interestingly, CACG core overlaps with 

BES1/BZR1 BRRE (CACGT/CG) enriched in BR-repressed genes and E-boxes including CACTTG 

enriched in BR-induced genes 8,9. These results suggest that BES1 and RD26 could bind to the same 

site to modulate BR-regulated gene expression. To reveal the biochemical interaction between BES1 

and RD26, Electrophoretic Mobility Shift Assay (EMSA) experiments were performed with 

recombinant BES1 and RD26 proteins using DNA probes containing BRRE and CATGTG E-box (Fig. 

4E-F). While either RD26 or BES1 can each bind to E-box (CATGTG), they together can bind to the 

probe more strongly, which is greatly reduced when the E-box is mutated (Fig. 4E). These results 

suggest that BES1 and RD26 can bind to E-box synergistically, presumably as heterodimer. Similar 

results were obtained with probe containing BRRE sites. While either RD26 or BES1 can bind BRRE 

site separately, RD26 and BES1 synergistically bind to WT but not mutant probe in which BRRE site 

is mutated (Fig. 4F). These binding results suggest that RD26 and BES1 inhibit each other function 

likely by forming inactive heterdimers on either E-box or BRRE site.  

 

BR signaling pathway inhibits drought response  

Since BES1 and RD26 appear to inhibit each other’s activities, we determined if BR pathway 

affects plant drought response mediated by RD26 and its homologs. Previous data showed that the 

expression of RD26 was induced by drought 14,15,19. Drought induces 2503 and represses 2862 genes 

(combination of 2-day and 3-day drought treatment data) 22. Analysis of genes affected in RD26OX 

and Drought-regulated genes revealed that RD26 mediated 38% (963) of drought-induced genes and 

45% (1299) of drought-repressed genes (Fig. S5), indicating that RD26 is a major regulator of plant 

drought tolerance.  

If BR signaling indeed inhibits drought response, we expect that loss-of-function BR mutants 

have increased and gain-of-function mutants have decreased drought tolerance. BR loss-of-function 

mutant, bri1-5, a BR receptor mutant, was exposed to drought stress. After drought stress and 
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recovery, 50% of bri1-5 mutants survived compared to 16% for WT. On the other hand, gain-of-

function mutant in BR pathway, bes1-D, showed less drought tolerance. Only 22% of bes1-D mutants 

survived, but all of WT controls survived in the drought stress experiment (Fig. 5B). To confirm our 

hypothesis that BR signaling pathway inhibits drought response through repressing RD26, the 

expression of several RD26-mediated drought-induced or drought-related genes were examined in 

bri1-5 mutant and bes1-D mutant. Transgenic plants overexpressing RD26/ANAC072, ANAC019 or 

ANAC055 could enhance the tolerance to drought stress, suggesting that RD26 and its homologs 

ANAC019 and ANAC055 are definitely involved in drought response19. RT-qPCR results showed that 

the expression of all the three genes are increased in bri1-5 mutant and decreased in bes1-D mutant. 

We also examined 5 other genes involved in drought tolerance 23 . All 5 genes are up-regulated in 

bri1-5 and down-regulated in bes1-D. The gene expression results are consistent with drought stress 

phenotype of BR mutants, confirming that BR signaling pathway inhibits drought response, likely by 

repressing the expression of RD26 and its homologs as well as by forming BES1/RD26 heterodimer, 

which interferes with drought response gene expression. 

 

Discussion 

In this paper, we found that drought responsive transcription factor RD26 is a target of BES1 and 

functions to inhibit BR responses. Gene expression studies revealed that RD26 and BES1 act 

antagonistically in the regulation of a majority of BR response genes. The antagonistic interactions 

happen at multiple levels: BES1 and RD26 inhibit the expression of each other (BES1 is down-

regulated in RD26OX by about 20%) and the corresponding proteins appear to form inactive 

heterodimers on some of the target genes. Our results thus established a molecular link between BR 

and drought response pathways (Fig S6). 

RD26 is induced by drought, promotes drought regulated gene expression and confers drought 

tolerance when overexpressed19,20. Our genetic studies demonstrate that RD26 is a negative regulator 

of BR pathway as overexpression of RD26 leads to reduced plant growth and BR response and 

knockout of RD26 and three of its homologs have increased BR response. Several possibilities can 

explain the relative weak phenotype of rd26 anac019 anac055 anac102 mutant. First, additional 

family members likely function redundantly in the inhibition of BR response. The existence of 

additional family members supports the hypothesis (Fig S7). Second, other family members may be 

up-regulated in the rd26 anac019 anac055 anac102 mutant. We have established a transcriptional 

network with RD26 and its close homologs and found that many of the homologous genes can 

regulate each other 24 (Fig S8). Indeed, while some of the homologs are down-regulated, others are 
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up-regulated in the rd26 anac019 anac055 anac102 mutant (Table S3). The result suggests that RD26 

and its homologs have evolved to be a highly redundant and complex network to confer drought 

tolerance and to inhibit plant growth during drought stress. The fact that a fewer number of genes 

affected in rd26 anac019 anac055 anac102 mutant compared to RD26OX transgenic plants supports 

this hypothesis. 

RD26 is able to both activate and repress gene expression as a large number of genes are either 

up- or down-regulated in RD26OX transgenic plants. Comparison of genes affected in RD26OX plants 

and BR-regulated genes revealed that RD26 function to modulate BR response gene expression in a 

complex way, i.e. RD26 can either activate or repress both BR-induced and BR-repressed genes.  A 

large number of BR-induced genes (1141 or 43% of BR-induced genes identified in the experiment) 

are significantly down-regulated in RD26 OX (Group I, Fig3A and B). The Group I genes include 

many genes involved in cell elongation, which explains the reduced growth phenotype of the 

RD26OX plants. Our molecular and biochemical studies suggest that RD26 affects Group I gene 

expression by binding to the BES1 target site (E-box) and neutralizing BES1’s activation function, 

likely by forming inactive heterodimer, Likewise, 595 (or 25%) BR-repressed genes are up-regulated 

in RD26 OX, suggesting that BR and RD26 have opposite function on these genes. Indeed, the 

molecular and biochemical evidence suggest that while BES1 binds to BRRE to repress gene 

expression, RD26 binds to the same site to neutralize BES1’s repression function. A common theme 

from Group I and Group II gene is that RD26 and BES1 can bind to same site (E-box or BRRE), have 

opposite transcriptional activities and therefore cancel each other’s functions. Our findings reveal a 

novel mechanism that two signaling pathways converge on the same promoter element and thus 

differentially regulate two biological processes.  

First, the antagonistic interaction between BES1 and RD26 likely ensure that plant growth is 

reduced when plants are under drought stress, under which RD26 and its homologs are up-regulated 

to inhibit BR-induced growth thus allowing more resources to deal with drought stress. The reduced 

growth phenotype of RD26OX plants supports the hypothesis. Second, under normal growth 

condition when there is no drought stress, BR signaling pathway keeps basal expression of RD26 and 

its homologs at low level. The increased drought tolerance and expression of drought-related genes in 

BR-loss-of-function mutant and decreased drought tolerance in gain-of-function BR mutant (Fig 5) 

provided strong support for the possibility. 

It’s worthy noting that RD26 and BES1 don’t seem to act antagonistically all the time. For 

example, 539 BR-induced genes (20%, Group III) are up-regulated, and 823 BR-repressed genes 

(35%, Group IV) are down-regulated genes in RD26OX transgenic plants (Fig S2), indicating that 
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RD26 and BES1 act in a similar way on these two group of genes. It’s possible that RD26 and BES1 

target to different promoter elements to achieve the positive interactions between RD26 and BES1. It 

has been suggested that at least under some conditions, exogenously applied BR can improve plant 

drought tolerance 25. It’s possible that under certain circumstances, the Group II and Group IV genes 

play dominant roles over Group I and Group II genes, which can potentially make BR to activate 

some drought-induced genes and repress BR-repressed genes and thus promote drought tolerance. 

Full understanding the interaction between RD26 and BES1 on Group III and IV genes is needed to 

test the possibilities.  

 

Materials and Methods 

Plant materials and growth condition 

T-DNA insertion mutants, rd26 (AT4G27410, SALK_063576), anac019 (AT1G52890, 

SALK_096295), anac055 (AT3G15500, SALK_014331), and anac102 (AT5G63790, SALK_030702) 

were obtained from ABRC (Arabidopsis Biological Resource Center). All plants were grown on 

1/2MS plates and/or in soil under long day conditions (16h light/ 8h dark) at 22°C. BRZ response 

experiments were carried out as previous described 26.  

 

Plasmid constructs 

For MYC-tagged transgenic plants, RD26 genomic sequence including its 5’ UTR was cloned 

from wild type and fused with MYC tag into pZP211 vector 27. For recombinant protein purification, 

RD26 and BES1 coding region were cloned into pETMALc-H vector, respectively.  

 

Transgenic plants 

The construct of RD26-MYC driven by 35S promoter was transformed into Agrobacterium 

tumefaciens (stain GV3101) which were used to transform plants by the floral dip method 28. 

Transgenic lines were selected on 1/2 MS medium plus 60ug/ml gentamycin. Transgene expression 

was analyzed by western blotting. 

 

Gene expression analysis and Chromatin Immunoprecipitation (ChIP) 

For RD26, 4G00360 and AT4G18010 gene expression, total RNA was extracted and purified 

from 2-week-old plants of different genotypes using RNeasy Mini Kit (Qiagen). Mx4000 multiplex 

quantitative PCR system (Stratagene) and SYBR GREEN PCR Master Mix (Applied Biosystems) 

were used in quantitative real-time PCR analysis. For transient expression, AT4G00360 

http://www.arabidopsis.org/servlets/TairObject?id=127878&type=locus
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promoer(1552 inculding 5’UTR) and AT4G18010 promoter (1515bp including 5’UTR) were cloned 

and used to drive luciferase reporter gene expression. BES1 coding region driven by CaMV 35S 

promoter were cloned into pZP211 vector, while RD26-MYC construct used in transgenic plant 

generation was also used in transient experiment. Tobacco leaf transient assay 29 was used to examine 

the effect of RD26 and BES1 on reporter gene expression either in individual protein or in 

combination of BES1 and RD26. Equal amount of Agrobacterium cells(measured by O.D600, adjusted 

to the same with vector-containing strain) were injected to the leaves of tobacco. The activities of 

luciferase were measured from total protein extracts from triplicate sample and measured using 

Berthold Centro LB960 luminometer with luciferase assay system followed by instruction (Promega). 

The relative levels of luciferase were normalized by the total protein from each sample. 

For global gene expression, total RNA were extracted and purified from 4-week-old plants of 

different genotypes using RNeasy Mini Kit (Qiagen). RNA samples were analyzed by RNA-seq 

method in facility of Iowa state university. Raw RNA-seq reads were subjected to quality checking 

and trimming and then aligned to the Arabidopsis reference genome (TAIR10) using Genomic Short-

read Nucleotide Alignment Program (GSNAP) 30. The alignment coordinates of uniquely aligned 

reads for each sample were used to independently calculate the read depth of each annotated gene. 

These values were compared between WT and mutant samples treated with or without BR using the 

Poisson generalized linear model (GLM) 
31

 and controlling the false discovery rate (FDR) 
32

. For 

heatmap plotting, average reads per million (RPM) for each gene were used and RPM data were 

scaled to the same level between genes. 

Chromatin immunoprecipitation was performed as previously described 8. BES1 antibody was 

used to precipitate chromatin from WT plant. BES1 enrichment was examined at BRRE site (-851) 

and control site (-115), respectively. 

 

EMSA experiment 

EMS experiments were carried out as described previously 10. After synthesize and annealed, 

Oligonucleotide probes were labeled with P32-γ-ATP by using T4 nucleotide kinase. About 0.2ng 

probe and indicated amount of proteins purified from E. coli were reacted in 20μl binding buffer (25 

mM HEPES-KOH [pH 8.0], 1 mM DTT, 50 mM KCL, and 10% glycerol). After 40min incubation on 

ice, the reactions were resolved by 5% native polyacrylamide gels with 1× TGE buffer (6.6 g/l Tris, 

28.6g/l glycine, 0.78 g/l EDTA [pH 8.7]). 
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Drought stress tolerance of BR signaling mutants 

Drought stress tolerance experiments were carried out as described previously 19  with minor 

modification: different genotype plants were grown on 1/2 MS medium in Petri dishes for 2 weeks, 

then transferred to soil, and grown for one more week in growth chamber ( 22℃, 60% relative 

humidity, long day conditions) before exposure to drought stress. Drought stress was imposed by 

withholding water until the lethal effect of dehydration was observed on wild type control or bes1D 

plants. The number of plants, which survived and continued to grow were counted, was counted after 

rewatering for 7 d. 
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Fig. 1. RD26 is direct target of BES1 and is repressed by BL and/or BES1. 

(A) BES1 targets the BRRE site on RD26 promoter. ChIP was performed with anti-BES1 antibody in 

WT seedlings. The bindings of BES1 at BRRE site (-851) and control site (-115) of the RD26 gene 

promoter were examined by qPCR. The 5s rRNA was used as internal control. 

(B) The expression of RD26 was examined by quantitative RT-PCR in 2-week-old WT and  

bes1-D seedlings with or without 1,000 nM BL treatment for 2.5 hr. 
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Fig. 2. RD26 functions as a negative regulator in BR signaling pathway. 

(A) The phenotype of 4-week-old RD26 overexpression plants. The stunted growth phenotype of 

RD26OX plant (upper) is correlated with the protein level of RD26 trangene (lower panel) examined 

by Western blot.  

(B) RD26OX suppressed bes1-D phenotype. 4-week-old plants of bes1-D and bes1-D RD26OX 

double mutants are shown. The average petiole length and standard deviations are indicated (n=10). 

BES1 protein levles and forms (phosphorylated and unphosphorylated) did not change in bes1-D 

RD26OX double mutant in Western blot test (middle panel) and RD26-MYC gene only expressed in 

bes1-D RD26OX double mutant (lower panel).  

(C) The hypocotyl lengths of 5-day-old dark-grown seedlings in the absence or presence of different 

concentration (0uM, 1uM and 2uM) BRZ. Averages and standard deviations were calculated from 15-

20 seedlings. The difference was significant as analyzed by Student’s t-Test (**<0.01).  
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Fig. 3. RD26 negatively regulatesd the expression of some BR-responsive genes. 

(A) Venn diagram shows the overlap genes between BR-induced genes and RD26OX-regualted genes. 

(B) Clustering analysis of Group I genes. 1141 BR-induced genes are down-regulated in RD26OX 

plants.  

(C) Venn diagram shows the overlap between BR-repressed genes and genes affected in RD26OX. 

(D) Clustering analysis of Group II genes. 595 BR-repressed genes are up-regulated in RD26OX plant.  
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Fig.4 BES1 and RD26 bind to E-box and BRRE site simultaneously and block each other’s 

transcriptional activities. 

(A,B) Transient gene expression assays were performed in tobacco leaves with At4g00360-LUC and 

At4g18010-LUC reporter genes co-transfected with BES1 and/or RD26 via Agrobacterium. The 

relative expression levels were normalized with total protein. The average and standard deviations 

were from three biological repeats.  

(C,D) The expression of At4g00360 and At4g18010 were examined in bes1-D, bes1-D RD26OX 

double mutant and RD26OX mutant, by qPCR. 

(E,F) BES1 or RD26 individually binds to E-box and BRRE site, respectively, but displayed strong 

synergistic binding abilities on both of these two sites. WT and mutant (MU) probes containing E-box 

or BRRE were labeled with 32P-ATP and used in binding with indicated amount of recombinant 

proteins.   
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Fig. 5. BR signaling pathway inhibits drought response. 

(A) Survival rates of WS (wild-type), bri1-5 mutant, EN2 (wild-type) and bes1-D mutant plants after 

withholding water for 14-20 d (drought stress) and rehydration for 7 d (Rehydration). The survival 

rate is indicated in the picture. This experiment was repeated three times with similar results. 

(B) Gene expression of drought-induced genes was examined by RT-qPCR. 
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Fig. S1. Overlap between BR-regulated genes and genes affected in RD26OX transgenic plants.  

Overlapped genes were divided into four groups: (I) BR-induced and down-regulated in RD26OX 

mutant; (II) BR-repressed and up-regulated in RD26OX mutant; (III) BR-induced and up-regulated in 

RD26OX mutant; (IV) BR-repressed and down-regulated in RD26OX mutant.  
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Fig. S2. Clustering analysis of Group III and Group IV genes. 

(A) Group III genes expression in WT with or without BL treatment (lane 1 and lane 2) and in 

RD26OX transgenic plant with or without BL treatment (lane 3 and lane 4). 

(B) Group IV genes expression in WT with or without BL treatment (lane1 and lane 2) and in 

RD26OX transgenic plant with or without BL treatment (lane 3 and lane 4). 
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Fig. S3. Overlap between BR-regulated genes and genes affected in rd26 anac019 anac055 

anac102 quadruple mutant. 

(A, B) Venn diagram shows the overlap genes between BR-regulated genes and rd26 anac019 

anac055 anac102 quadruple mutant-regulated genes. 

(C, D, E, F) Clustering analysis of BR-regulated genes affected in opposite ways in RD26OX and 

rd26 anac019 anac055 anac102 quadruple mutant.  
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Fig. S4. BES1 and RD26 individually binds to E-box and BRRE site, respectively, but displayed 

strong synergistic binding abilities on both of these two sites. The full images for Fig.4 E-F are 

shown. 
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Fig. S5. RD26 mediates large portions of drought-responsive genes expression.  
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Fig. S6. A model of crosstalk between BR and drought response pathways.  

Drought stress induces the expression of RD26 to mediate the response of plant to drought. Upon the 

increase expression, RD26 not only inhibits the expression of BES1 on mRNA level, but also binds to 

E-box and BRRE site to inhibit BES1’s functions in mediating BR-regulated gene expression (Group 

I and II genes), which results in the inhibition of BR regulated growth. On the other hand, BR 

signaling represses the expression of RD26 through BES1 and also directly inhibits the expression of 

other drought-related genes to inhibit drought response.  
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Fig. S7. Phylogenetic tree of RD26 and its homologs. The protein sequence of all family members 

was downloaded from NCBI and put into Cluster software to generate phylogenetic tree. 
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Fig. S8. GRN (Gene Regulatory Network) between RD26 and its homologs-regulated genes and 

BR-regulated genes. The GRN was inferred by ARACNe(Algorithm for the Reconstruction of 

Accurate Cellular Networks) algorithm.  
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Table S1. The expression of 35 cell elongation genes in WT and RD26OX plant with or without 

BL treatment.  
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Table S2. Expression of genes in Fig S3 in WT, RD26OX and rd26 anac019 anac055 anac102 

quadruple mutant with or without BL treatment.  

 
 WT-BL WT+BL RD26OX-BL RD26OX+BL rd26q-BL rd26q+BL 

GroupA (36)       

AT1G13650 23.09725 28.85945 14.15135 17.3653 38.6383 27.43585 

AT1G14250 166.6151 194.00215 65.18615 72.79095 208.9811 205.36595 

AT1G30360 255.0864 350.8197 168.55605 196.3652 308.2065 352.6094 

AT1G35230 20.56295 42.0358 16.01865 17.78275 27.57505 44.12355 

AT1G56510 35.76665 42.05585 25.15355 20.52375 46.95615 47.6455 

AT1G60950 716.9099 923.94735 492.71435 571.84265 939.8871 840.47925 

AT1G61340 15.1847 28.085 9.92035 23.81795 26.8278 35.4707 

AT1G65490 45.2857 80.4395 14.80125 12.9503 57.22575 77.75055 

AT1G77450 16.29695 26.2864 12.49175 12.7667 28.71705 32.2811 

AT2G17880 10.96815 17.458 6.31685 9.20825 18.1397 18.56445 

AT2G20880 43.683 119.07375 28.01465 42.75135 73.7454 129.4358 

AT2G21790 55.30795 77.48275 40.2374 72.1414 68.67635 76.38615 

AT2G37170 213.4747 422.69585 133.53435 258.4417 290.2612 549.48565 

AT3G19720 84.55195 115.8625 47.55195 64.01595 100.825 125.95825 

AT3G22310 36.092 49.54185 28.3818 41.82695 44.86805 48.39895 

AT3G24518 18.13405 28.71695 6.1269 11.4038 29.4009 32.9105 

AT3G24520 18.1711 29.7442 6.0016 11.3038 29.0404 32.915 

AT3G28740 10.29175 20.6498 4.39015 4.54595 29.5511 24.3906 

AT3G48460 27.66305 47.25865 21.40755 26.74605 37.7181 46.99795 

AT4G00360 305.3788 515.2095 193.7143 265.9568 375.67105 497.5998 

AT4G14365 125.7212 186.36405 66.68225 46.2431 157.2402 255.1737 

AT4G17340 307.0009 689.30175 134.46665 303.58155 392.8377 745.77495 

AT4G27520 210.2423 269.3349 166.8826 192.03385 269.87825 265.11655 

AT4G29740 24.94345 42.4492 8.71045 10.4461 34.94745 47.7664 

AT4G38770 323.1254 428.70975 161.2939 227.7022 401.03265 375.112 

AT4G39330 201.8816 422.37535 170.72275 389.0989 245.23865 409.3909 

AT5G02490 82.56045 126.25165 29.895 34.2833 106.4945 138.4249 

AT5G15970 126.3341 174.84505 83.1332 123.4281 219.8792 218.2869 

AT5G17300 44.1949 60.6481 16.9134 25.5299 62.93165 58.8049 

AT5G22390 42.2034 52.59005 7.66755 8.6745 56.1679 53.265 

AT5G28030 14.3147 24.07455 9.27675 13.42275 22.0298 27.45515 

AT5G37260 30.58275 46.49445 21.15535 25.88185 39.44695 51.2774 

AT5G48490 5.52735 9.0351 1.35125 1.581 13.9246 6.99835 

AT5G49630 67.4041 103.6471 29.49155 33.7296 88.21985 92.6924 

AT5G51720 19.4384 25.90565 4.7139 5.2084 32.44795 23.78535 
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Table S2 continued 

 
AT5G52310 177.486 353.91265 69.1172 106.89715 370.9196 432.148 

 

 

      

Group B (44)       

AT1G02850 14.145 10.8913 110.4668 149.376 8.77705 5.8264 

AT1G12780 103.8864 77.3277 196.59325 189.3167 85.27235 78.004 

AT1G14520 7.3184 4.29425 12.6273 7.66005 3.71705 3.9879 

AT1G22400 62.97735 41.5616 220.23395 171.044 42.6289 35.5143 

AT1G44100 51.9614 45.3014 72.7958 63.93055 36.27805 42.4114 

AT1G53570 61.5957 53.99855 110.08945 115.15585 47.4416 49.54845 

AT1G59700 32.22065 27.3441 83.6537 83.2838 22.93745 19.71385 

AT1G79110 33.69215 27.18385 43.05995 29.5175 22.6023 18.814 

AT2G23170 56.3798 21.47795 257.4839 90.9052 37.88165 17.6107 

AT2G30140 48.8382 40.6907 210.41155 156.83545 36.68685 28.94345 

AT2G38240 40.7815 26.6069 71.4781 38.20305 30.7938 27.96135 

AT2G39970 66.71595 52.8367 103.87275 98.9038 52.52565 56.6648 

AT3G01420 10.68895 7.6144 58.0988 40.07055 1.44215 0.74885 

AT3G03470 55.14885 43.24495 250.3425 211.45315 38.66425 32.845 

AT3G04000 10.58425 6.10725 36.9394 27.1302 6.1663 4.7741 

AT3G09260 70.1968 34.53795 161.8094 96.1616 56.69075 41.1186 

AT3G21690 103.4795 89.1742 150.3803 133.7993 80.7841 71.85265 

AT3G47420 68.80045 52.8204 86.9726 65.17425 43.8483 37.8941 

AT3G51860 18.9786 12.99845 31.10935 19.70405 11.8099 7.97425 

AT3G56310 87.98905 67.74525 120.47375 100.13165 72.7904 72.09615 

AT3G60130 44.1692 29.5497 139.9902 118.35935 30.14805 26.47755 

AT3G60690 33.69535 16.81835 63.34695 31.80775 24.87675 13.4197 

AT3G63380 31.35325 10.4707 47.32835 10.404 21.10915 9.442 

AT4G12290 161.8283 80.8355 358.6627 252.77725 120.86775 66.48715 

AT4G15530 119.1553 100.71495 336.26435 297.91005 99.0729 90.05545 

AT4G16260 40.70915 32.09765 81.8287 40.6722 26.8778 25.80135 

AT4G18010 54.6719 30.20245 90.167 60.8832 44.4949 28.32655 

AT4G21680 19.9087 8.31335 32.0643 20.89095 13.377 4.8459 

AT4G30270 136.8270 52.72215 594.0671 223.4223 86.6755 41.24805 

AT4G37520 90.75255 54.0323 328.0711 245.64985 66.38665 47.59505 

AT4G37530 35.91655 23.48295 51.70825 41.79365 24.44135 23.6358 

AT4G37980 62.4763 28.9009 536.65365 286.39525 47.35405 21.3818 

AT5G07010 32.7024 10.4309 175.39105 107.6497 18.49955 6.6066 

AT5G13180 65.0979 53.66345 420.52295 313.1494 49.6042 37.31735 
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Table S2 continued 

 
AT5G13330 10.3486 5.99875 150.29035 96.9258 6.89975 3.9281 

AT5G13550 58.62975 31.94225 106.31835 68.6888 44.4693 36.537 

AT5G13740 91.74205 19.69885 116.78865 38.8111 68.16355 29.3696 

AT5G17860 33.22175 17.78805 102.08685 57.7311 22.96175 12.2597 

AT5G20250 362.6615 125.0508 532.96465 296.3969 298.0346 179.52905 

AT5G47370 52.7844 22.5558 104.5691 48.0112 35.64325 23.07555 

AT5G55930 92.04095 56.97515 197.2187 83.29145 70.5647 57.7581 

AT5G64370 68.49965 49.00855 84.36955 63.5219 54.98735 50.09985 

AT5G64570 278.1016 167.0494 532.53105 316.38745 203.4692 131.11295 

AT5G64572 180.0868 108.552 341.61885 209.526 133.5989 87.482 

       

Group C (14)       

AT1G13360 54.39665 67.23655 105.3281 104.59515 41.2874 46.4246 

AT1G47510 9.06995 15.5016 104.12305 118.8581 5.2091 8.2627 

AT1G51780 12.3373 25.97625 40.42865 91.87355 4.56265 9.01725 

AT1G71880 274.5567 324.4686 501.65005 378.99775 217.5256 287.6734 

AT1G78230 29.47715 42.38355 45.997 78.1543 21.09705 32.00055 

AT2G02990 13.3936 21.08755 107.9196 131.947 6.6388 10.67375 

AT2G17500 8.8797 14.303 45.82445 40.71025 5.2835 9.3718 

AT2G29350 62.9913 78.4611 1178.66505 887.43195 43.03995 43.65275 

AT3G11480 10.033 13.84995 246.12295 308.22055 2.08885 4.62915 

AT3G48520 16.11485 21.53675 53.29795 40.4524 7.38445 5.92645 

AT3G51670 86.36045 99.862 159.4063 194.82745 67.1469 85.30665 

AT4G03400 104.6444 148.53325 136.2703 187.73345 81.21965 117.6537 

AT4G37990 43.2109 76.9383 309.2599 313.9178 18.2379 17.9409 

AT5G41400 18.94645 31.02795 26.8561 30.69155 12.09695 20.4195 

       

Group D (19)       

AT1G01470 140.0829 102.6991 107.07845 82.39745 190.11995 107.9534 

AT1G13260 72.16335 42.1623 40.28545 23.4958 105.1514 54.04115 

AT1G15125 249.8335 190.71875 66.4088 27.5032 307.2472 198.36895 

AT1G24145 21.43295 13.84815 16.91225 5.4125 28.91725 18.0799 

AT1G25560 130.8327 114.23485 104.0547 76.854 194.89915 148.9607 

AT1G68840 70.1039 41.2577 48.00675 29.14445 116.24085 70.54965 

AT1G69490 45.1965 37.65655 27.00765 17.04485 64.75965 54.24485 

AT1G71030 103.8781 45.89525 92.56005 34.0997 147.71955 57.91165 

AT2G15080 120.195 102.99435 39.15855 23.6583 142.3865 116.08735 
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Table S2 continued 
 

AT2G26190 63.1404 47.8205 52.31795 28.26215 96.7473 65.54915 

AT2G34430 1086.803 804.54285 249.3455 233.7147 1403.9932 1113.5056 

AT2G34620 44.8309 35.31575 36.9736 31.4528 57.6234 39.42315 

AT3G27690 367.7227 304.4575 130.56095 108.60675 490.56435 315.3156 

AT3G61060 28.50005 20.32545 20.29035 14.3986 50.05195 31.93795 

AT4G26530 147.062 89.0123 49.5151 20.9816 174.4479 90.65965 

AT5G01900 6.55635 3.76885 0.9033 0.2327 9.90845 5.44675 

AT5G14120 350.9463 229.904 287.99695 184.21185 453.3459 294.5224 

AT5G19190 54.08205 40.35595 31.93135 26.2374 70.428 44.3752 

AT5G59080 39.1931 27.07125 24.80745 17.056 52.1026 34.26215 
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Table S3. The expression levels of other RD26 homologs in WT, rd26 anac019 anac055 anac102 

quadruple mutant and RD26OX transgenic plants with and without BL treatment.  
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Table S4 The primers used in this study 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD26LP AGTGATCGAGTGCTTCAGGAC GENOTYPING 

RD26RP ACTCGTGCATAATCCAGTTGG 

ANAC019LP TCAATGAACTCAAGGGATTGC 

ANAC019RP ATGCGGTTTGGGTTAGAAAAC 

ANAC055LP TAAACGATGAGCGATAGCGAG 

ANAC055RP AAAGGAACCAAAACCAATTGG 

ANAC102LP TAATCGTATGACCCGACTTGG 

ANAC102RP TCTATCTTTGCCGGAGATGTG 

RD26NBAMH1 CGCGGATCCATGGGTGTTAGAGAGAAAGATCCGTTAG PROTEIN 

EXPRESSION RD26CSAC1 GCCGAGCTCTCATTGCCTAAACTCGAATGTTTGACCCG 

gRD26NASP718 CGCGGTACCATCTCTCTGTGAACAAGAATTCTCCACGTTC

AC 
TRANSGENIC 

PLANT 
gRD26CSAL1 CGCGTCGACTTGCCTAAACTCGAATGTTTGACCCGAAACA

CC 

RD26CHIP1F TCCCAACACGTGTACAATTCA ChIP ASSAY 

RD26CHIP1R AAAACAAATGGCACTAAGACGTT 

RD26CHIPCF TTGTCCAAAAGATCGACGAA 

RD26CHIPCR CTTCGATTCCTCAGCAACCA 

RD26RTF GGCACTAAAACCAACTGGATTATGCACGAG GENE 

EXPRESSION RD26RTR GGAGTAACAGCTTGTCTCTGAGATCCAG 

ANACO19RTF GCTCCTAAAGGTACTAAAACCAATTGGATC 

ANAC019RTR CCATTATCGTAAACTTGTTTTTGTGCAC 

ANAC055RTF TTGGATTATGCATGAGTACCGTCTCATCG 

ANAC055RTR CCATTGTTGCTGTATTCACGACCACTCG 

ANAC102RTF CGAGTATCGTCTCGCTAATGTCGATCGATC 

ANAC102RTR ACGTACTCATCTTTTCCGTCGGTTTCTCAG 

BOS1RTF TTCATGAATTACGACTACAACAACAA 

BOS1RTR AGAACCAGAATTCTTCATCAGTTTCT 

ERD1RTF ATTGATCATAATGACCTCTAATGTCG 

ERD1RTR ATCTTCAACAATCTCTGTGACAGTTC 

AT1G29395RTF CAGAAACCATTCCTCTCTCTTAAACT 

AT1G29395RTR ATACACCATACTCTCCCTTAATCCAG 

AT3G62650RTF GGAGAGGATACGAGAAGCTTGAT 

AT3G62650RTR CACCATCAGTATCGACTTGTAAATCT 

AT1G10070RTF GTCTATGCATCTCCAGTTGGTAACTA 

AT1G10070RTR GCCTTCTCTACTACCTGATAACCTTG 

4G18010FBH1 CGCGGATCCTTGTGAATCAAACTAATTTATTTAAGTAGC TRANSIENT 

EXPRESSION 4G18010RHD3 CGCAAGCTTCTTCTTAGATCTCAGAAAAAGATTTTGTTTC 

4G00360FBH1 CGCGGATCCTCTCTTGATACAATGCATATAGAAACTGAC 

4G00360RHD3 CGCAAGCTTATCAATGAATATGAAATGATACTAAAATGG 

4G18010BDF AAACCGAAAACACGTGTGAGAAAGAAGAAA EMSA 

EXPERIMENT 4G18010BDR TTTCTTCTTTCTCACACGTGTTTTCGGTTT 

4G18010BDMF AAACCGAAAACATTTTTTAGAAAGAAGAAA 

4G18010BDMR TTTCTTCTTTCTAAAAAATGTTTTCGGTTT 

4G00360BDF ATTACCTAACTATACATGTGTAATGTGTTC 

4G00360BDR GAACACATTACACATGTATAGTTAGGTAAT 

4G00360BDMF ATTACCTAACTATAAAAAAATAATGTGTTC 

4G00360BDMR GAACACATTATTTTTTTATAGTTAGGTAAT 
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CHAPTER IV 

CONCLUSION AND PROSPECTIVE 

 

In this thesis, two transcription factors with novel functions in BR signaling pathway have been 

identified and characterized. Major components from receptor of BR to downstream targets in BR 

signaling pathway have been well studied in the past few years. Gene expression analysis indicated 

that BRs could activate and repress about equal number of genes expression and BES1/BZR1 play a 

major role in mediating the expression of BR-targets. Previous data showed that BES1 could bind to 

E-box (CANNTG) and BRRE (CGTGT/CG) promoter elements, to activate and repress target genes, 

respectively. On E-box, BES1 could activate the expression of BR-induced targets by itself or in 

cooperation with its coactivators, such as transcription factors (BIM1, MYB30), chromatin-

modification enzymes (REF6/ELF6 histone demethylase) and transcription elongation factor (IWS1). 

However, how BES1 represses the gene expression at BRRE site is not well understood.. The 

proposed model is that BES1 recruits one or more corepressors to repress the expression of BR-

repressed targets. In chapter I of this thesis, the first corepressor of BES1, MYBL2, was identified 

from ChIP-chip assay and microarray data. Our genetic evidences that mybl2 mutant could enhance 

the dwarf phenotype of bri1-5 and suppress the phenotype of bes1-D indicated that MYBL2 

functioned as a positive regulator in BR signaling pathway. Yeast two hybrid experiment and BiFC 

experiment demonstrated that MYBL2 and BES1 could interact with each other in vivo. Further 

analysis by GST pull-down deletion experiment showed that “SANT” domain of MYBL2 interact the 

phosphorylation domain of BES1. Gene expression studies, ChIP-qPCR and transient experiment 

results demonstrated that BES1 and MYBL2 could form a complex to inhibit the expression of BR-

repressed genes, indicating that MYBL2 was a corepressor of BES1. Moreover, MYBL2 is 

phosphorylated by BIN2 kinase, a negative regulator in BR pathway. Interestingly, BIN2 

phosphorylation of  MYBL2 stabilizes the protein. In this section, our studies identified the first 

corepressor of BES1 and revealed a novel function of BIN2 phosphorylation in BR signaling pathway. 

Although several studies about MYBL2 have been finished and a preliminary model was also 

presented, there are many work need to be done in the future.  

1) mybl2 bri1-5 double mutant and mybl2 bes1-D double mutant displayed obvious phenotypes 

compared to bri1-5 and bes1-D, but mybl2 single mutant did not exhibit any clear growth phenotype. 

There are two possible explanations: A) there are other MYBL2 homologs playing similar role as 

MYBL2 in plants. Previous studies showed that MYBL2 was a small MYB transcription factor in 

Arabidopsis and there was no close homologs in Arabidopsis. B) MYBL2 is responsible for only a 
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branch of BR-repressed genes, there must be other co-repressors. So future work about how BES1 

represses BR-repressed targets should focus on the transcription factors which contains repression 

domain. The phenotype of loss-of-function mutants of these repressor candidates should be dwarf 

(loss-of-function BR mutant phenotype) and the gain-of-function mutant of these candidates should 

display long hypocotyl, long petiole lengths or curl leaves (gain-of-function BR mutant phenotype).  

2) In this thesis, we proposed that MYBL2 acted as corepressor of BES1 and examined several 

BR-repressed genes expression in bri1-5 mybl2 double mutant and bri1-5 single mutant. However, 

global gene expression in mybl2 single mutant, bri1-5 single mutant and bri1-5 mybl2 double mutant 

should be performed to confirm our hypothesis and to determine how many BR-repressed targets are 

regulated through the repression effect of MYBL2. 

3) Our data strongly indicated that MYBL2 and BES1 interacted with each other in vitro and in 

vivo and both of them were regulated by BR signaling. However, we have not tested if BR treatment 

could affect the interaction between MYBL2 and BES1, so co-immunoprecipitation experiment after 

BL treatment should be performed or protein-protein interaction between MYBL2 and 

unphosphorylated- or phosphorylated- BES1 should be investigated. 

In addition to MYBL2, RD26, another transcription factor, was identified as a negative regulator 

in BR signaling pathway. Similar to MYBL2, RD26 was also found to be direct target of BES1 from 

our ChIP-chip data and microarray data. ChIP-qPCR and gene expression analysis confirmed that 

RD26 was direct target of BES1 and was repressed by BL and/or BES1. While rd26 anac019 

anac055 anac102 quadruple mutant showed increased BR responses,  RD26OX transgenic plants led 

to dwarf plants that are hypersensitive to BRZ. In addition, RD26OX plant could suppress the long 

petiole length phenotype of bes1-D. These genetic evidences strongly indicated that RD26 was a 

negative regulator in BR signaling pathway. Further global gene expression analysis demonstrated 

that many BR-induced genes including 30 cell elongation genes were down-regulated and many BR-

repressed genes were up-regulated in RD26OX plants, which is consistent with the negative function 

of RD26 in the BR pathway. Like the negative regulation of BR signaling by RD26, BR signaling 

also poses negative regulation on drought response. The loss-of-function mutant, bri1-5, in BR 

pathway had higher tolerance to drought stress, while gain-of-function mutant, bes1-D displayed less 

tolerance to drought stress. Gene expression studies suggested that RD26 and BES1 regulated the 

expression of target in opposite ways. DNA binding experiments indicated that RD26 and BES1 

could bind to the same binding sites (E-box and BRRE site) likely as inactive heterodimer. Our results 

thus identified a molecular link between drought response and BR signaling. Through the antagonistic 

interaction between BES1 and RD26, plants could adjust growth processes under normal condition or 
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drought stress. In the future, there are several experiments need to be done to clearly understand how 

RD26 negatively regulated BR signaling pathway and how BR signaling pathway and Drought 

response affected each other. 

1) rd26 ana019 anac055 anac102 quadruple mutant does not display any clear growth 

phenotype, suggesting that there are other function redundant homologs. There are six close 

homologs of RD26 in the same branch (Fig S7), it is likely that all of them are involved in BR 

signaling pathway. Knocking out all the seven genes may generate the mutant with obvious growth 

phenotype.. 

2) In addition to two groups (Group I and II) of common targets oppositely regulated by BR and 

RD26, there are other two overlapped groups (Group III and VI) of genes on which BES1 and RD26 

act in the similar ways. How BR and RD26 regulate these genes need to be further analyzed. 

3) Our drought stress experiments showed that loss-of-function mutants of BR signaling 

pathway could enhance the drought tolerance, while gain-of-function mutant of BR signaling pathway 

decreased the drought tolerance, which might be used in crops, to enhance their tolerance to drought. 

The loss-of-function BR mutants displayed higher drought tolerance, but the growth of these mutant 

are reduced, which might affect the yield production. Manipulating the level of BR signaling in plant 

should be deeply studied to generate the best crops with highest tolerance to drought with maximum 

yield production.  
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