
Topics in recurrent event prediction with generalized non-homogeneous Poisson

process (NHPP) and electronic circuit troubleshooting with Bayesian inference

by

Qianqian Shan

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Statistics

Program of Study Committee:
William Q. Meeker, Major Professor

Stephen D. Holland
Jarad Niemi
Lily Wang

Huaiqing Wu

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© Qianqian Shan, 2019. All rights reserved.

ii

DEDICATION

I dedicate this work to my advisor for his guidance and my family for their support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. SEASONAL WARRANTY PREDICTION BASED ON RECURRENT EVENT
DATA . 3
2.1 Abstract . 3
2.2 Introduction . 4

2.2.1 Background . 4
2.2.2 Related Literature and Our Work . 4
2.2.3 Motivating Examples . 6
2.2.4 Overview . 7

2.3 Exploratory Analysis . 7
2.3.1 The Mean Cumulative Function . 7
2.3.2 Data Clustering and Seasonality . 9

2.4 General Models for Recurrence Rates . 13
2.4.1 Notation . 15
2.4.2 The Simple NHPP Model . 16
2.4.3 NHPP Model with Common Seasonal Effects 16
2.4.4 NHPP Model with Seasonal and Cluster Effects 17
2.4.5 NHPP Model with Seasonal, Cluster and Random Effects 17
2.4.6 Comparison of Different Models . 18

2.5 Maximum Likelihood Estimation . 19
2.5.1 Likelihood Function . 19
2.5.2 The EM Algorithm . 20

2.6 Point Predictions for the Number of Future Events 22
2.7 Prediction Intervals . 25

2.7.1 Prediction Interval Basics . 25
2.7.2 Plug-in Prediction Intervals . 27
2.7.3 Normal Approximate Prediction Intervals . 28
2.7.4 Calibrated Prediction Intervals . 28

2.8 Models and Predictions for Product B . 30

iv

2.8.1 Exploratory Analysis . 30
2.8.2 Clustering for the Seasonal Models . 31
2.8.3 NHPP Model Fitting . 31
2.8.4 Prediction Intervals . 34

2.9 Simulation to Study Larger Amounts of Missing Data 36
2.10 Concluding Remarks . 41
2.11 References . 42
2.12 Supplemental Materials for Chapter 2 . 46

CHAPTER 3. ELECTRONIC CIRCUIT TROUBLESHOOTING USING SIMULATION
AND BAYESIAN INFERENCE . 54
3.1 Abstract . 54
3.2 Introduction . 54

3.2.1 Background and Motivation . 54
3.2.2 Model-based Troubleshooting . 55
3.2.3 Literature Review . 56
3.2.4 Overview . 57

3.3 Electronic Circuit Simulation and Ngspice . 57
3.4 Electronic Circuit Troubleshooting: The Basic Ideas 58

3.4.1 Forward Model . 58
3.4.2 Inverse Problem . 58
3.4.3 A Virtual Population of Devices . 59

3.5 Illustrative Application: Class A Power Amplifier . 59
3.5.1 Class A Power Amplifier Background . 59
3.5.2 Virtual Population of Devices and Failure Definition 59
3.5.3 Data Pre-processing . 61
3.5.4 Forward Model . 62
3.5.5 Likelihood and Weakly Informative Prior Distribution 63
3.5.6 Posterior Distribution . 64

3.6 Use of Adaptive MCMC to Solve the Inverse Problem 65
3.6.1 Adaptive Metropolis Algorithm . 65
3.6.2 Application of Adaptive MCMC to A Failed Class A Power Amplifier 67

3.7 A Second Example: 741 Op-Amp Circuit . 68
3.7.1 741 Op-Amp Background . 69
3.7.2 Application of the Adaptive MCMC Algorithm 70

3.8 Concluding Remarks . 73
3.9 References . 75

CHAPTER 4. RSPICE: A PACKAGE FOR USING NGSPICE FROM R 77
4.1 Abstract . 77
4.2 Introduction . 77
4.3 Implementation of RSpice . 78

4.3.1 Implementation . 78
4.3.2 Toy Example . 80

4.4 More Complicated Examples . 85
4.4.1 Linear Regulator . 85

v

4.4.2 741 Operational Amplifier . 89
4.5 Summary and discussion . 96
4.6 References . 103

CHAPTER 5. FUTURE WORK SUMMARY AND DISCUSSION 104
5.1 Summary and Discussion . 104
5.2 Future Work . 105

vi

LIST OF TABLES

Page

Table 2.1 Summary results of different models for the Product A data. The smallest
AIC and BIC values are marked in bold. 23

Table 2.2 Summary results of point predictions on different models for the Product A
hold-out data. The superscript 6 and 12 indicate the RMSE/MAE/MAPE
of the first 6 and 12 months, respectively. The model with smallest RM-
SE/MAE/MAPE values is marked in bold. 25

Table 2.3 Summary results of different models for the Product B data. The smallest
AIC and BIC values are marked in bold. 34

Table 2.4 Summary results of point predictions on different models for the Product
B hold-out data. The model with smallest RMSE/MAE/MAPE values is
marked in bold. 35

Table 2.5 Summary results of point predictions on Model 7 for the Product A hold-
out data with 20 repeated times of random assignment experiment. The
superscript 6 and 12 indicate the RMSE/MAE/MAPE of the first 6 and 12
months, respectively. 49

Table 3.1 Parameter values of the mixture of truncated normal distributions for class
A amplifier. 61

Table 3.2 Parameter values of the mixture of truncated normal distributions. 70

vii

LIST OF FIGURES

Page

Figure 2.1 MCF versus age of systems in different countries of Product A with 95%
pointwise CIs. 9

Figure 2.2 Dendrogram of correlation-based hierarchical clustering of Product A. The
horizontal line indicates the cutoff location to divide the locations into dif-
ferent clusters. Denote the clusters from left to right as cluster 4, 3, 2 and
1, respectively. 13

Figure 2.3 Observed event counts versus date for the different clusters of Product A. . 14

Figure 2.4 Number of systems at risk versus date for the different clusters of Product A. 14

Figure 2.5 Empirical monthly recurrence rate by clusters of Product A systems since
year 2014. 15

Figure 2.6 Monthly prediction of the event counts for Product A based on Model 7. . . 26

Figure 2.7 Cumulative prediction of the event counts for Product A based on Model 7. 26

Figure 2.8 Monthly prediction of the event counts for Product A on the hold-out data
based on Model 7. 29

Figure 2.9 Cumulative prediction of the event counts for Product A on the hold-out
data based on Model 7. 30

Figure 2.10 MCF versus system age for systems in model years 2015 and 2016 of Product
B with 95% pointwise CIs. 31

Figure 2.11 Dendrogram of hierarchical clustering for Product B. The horizontal line
indicates the cutoff location to split the observations into different clusters.
From left to right, the cluster numbers are 1 and 2, respectively. 32

Figure 2.12 Observed event counts as a function of date for the two different clusters of
Product B systems. 32

Figure 2.13 Number of systems at risk as a function of date for the two different Product
B clusters. 33

Figure 2.14 Empirical monthly recurrence rate for Product B since year 2015. 33

Figure 2.15 Monthly prediction of the event counts for Product B based on Model 9. . . 35

Figure 2.16 Cumulative prediction of the event counts for Product B based on Model 9. 36

Figure 2.17 Monthly prediction of the event counts on the hold-out data based on Model
9 for Product B. 37

Figure 2.18 Cumulative prediction of the event counts on the hold-out data based on
Model 9 for Product B. 37

viii

Figure 2.19 Scatter plots of 20 experimental prediction results with weighted random
assignment and separate categories for RMSE6. The cross marks indicate
the prediction metrics in Model 7 of Section 2.6. 39

Figure 2.20 Scatter plots of 20 experimental prediction results with weighted random
assignment and separate categories for RMSE12. The cross marks indicate
the prediction metrics in Model 7 of Section 2.6. 40

Figure 2.21 Histogram of 20 experimental prediction results with weighted random as-
signment of missing locations (Dotted lines shows the corresponding pre-
diction values by grouping the missing locations into new categories, and
dashed lines show the mean prediction values of the 20 experiments based
on weighted random assignment for missing locations). 48

Figure 2.22 Scatter plots of 20 experimental prediction results with weighted random
assignment and separate categories for MAE6. The cross marks indicate the
prediction metrics in Model 7 of Section 2.6. 50

Figure 2.23 Scatter plots of 20 experimental prediction results with weighted random
assignment and separate categories for MAE12. The cross marks indicate
the prediction metrics in Model 7 of Section 2.6. 51

Figure 2.24 Scatter plots of 20 experimental prediction results with weighted random
assignment and separate categories for MAPE6. The cross marks indicate
the prediction metrics in Model 7 of Section 2.6. 52

Figure 2.25 Scatter plots of 20 experimental prediction results with weighted random
assignment and separate categories for MAPE12. The cross marks indicate
the prediction metrics in Model 7 of Section 2.6. 53

Figure 3.1 Schematic of a class-A amplifier. 60

Figure 3.2 Class-A power amplifier gain as a function of resistance of RL and gain of
transistor Q1. 63

Figure 3.3 Prior distributions of RL and Q1. 68

Figure 3.4 Marginal posterior distributions of RL and Q1. 68

Figure 3.5 Negative feedback amplifier circuit. 69

Figure 3.6 741 op-amp schematic with numbered circuit nodes (Redrawn based on the
circuit on page 812 of Adel S. Sedra (1998)). 70

Figure 3.7 741 op-amp circuit likelihood values as a function of Q16 and Q17 gains. . . 71

Figure 3.8 Prior distribution of transistor gains. 72

Figure 3.9 Posterior gain distribution of Q3, Q5, Q16, Q13B and Q17. 74

Figure 4.1 A simple circuit with one voltage source and two resistors. 80

Figure 4.2 Voltage at node 2 as a function of the resistance of R1. 86

Figure 4.3 Linear regulator schematic (modified example from Chapter 1 of Basso (2008)). 87

Figure 4.4 Input (solid line) vs output (dashed line) of the linear regulator. 88

Figure 4.5 Output voltage versus the resistance of load for the linear regular. 90

Figure 4.6 Internal structure of 741 op-amp. 91

ix

Figure 4.7 Pin-out diagram of 741 op-amp. 92

Figure 4.8 Op-amp in a negative feedback circuit. 93

Figure 4.9 Histogram of the 1000 voltage outputs for a negative feedback loop from
1000 simulated 741 op-amps. 95

x

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this dissertation. First and foremost, Dr. William

Q. Meeker for his guidance, patience and support throughout this research and the writing of this

dissertation. His insights and words of encouragement have often inspired me and renewed my

hopes for completing my graduate education. I would also like to thank my committee members

for their efforts and contributions to this work: Dr. Stephen D. Holland, Dr. Jarad Niemi, Dr.

Lily Wang and Dr. Huaiqing Wu.

I’m also very thankful to Dr. Yili Hong from Virginia Tech, the Chapter 2 of this dissertation

would not have come to a successful completion without his help.

xi

ABSTRACT

This dissertation consists of three projects focused on seasonal recurrent event prediction, elec-

tronic circuit troubleshooting and the development of an open source software, RSpice, respectively.

Big challenges when making recurrent event prediction include (1) the recurrent event rate

may show a seasonal pattern and the pattern may also be affected by locations; (2) individual level

variabilities can also affect the recurrent event rate. We present a general methodology to solve these

challenges by using hierarchical clustering for the seasonal patterns and introducing random effects

into our models. These help us in improving both the model fitting and prediction performance.

This work is illustrated with two motivating product warranty applications in Chapter 2.

Electronic circuits are widely used in industry, and the troubleshooting process of an electronic

circuit based on previous experience may suggest a replacement of the whole circuit or some com-

ponents, however, the failure of the circuit may just due to a less number of specific electronic

components. The unnecessary removal of components can increase the costs significantly. Moti-

vated by finding a more precise and faster troubleshooting procedure based on limited data, we

propose the use of data simulation and Bayesian inference in circuit troubleshooting in Chapter 3.

In the third project (Chapter 4), we address challenges that arise when doing data simulation

and Bayesian inference in the second project (Chapter 3). In order to do exploratory analysis of an

electronic circuit and make inference on which specific electronic components cause the failure of

a circuit, we need to use a circuit simulator, ngspice, to generate the response (e.g., voltage values

at specified nodes of a circuit) given the circuit setup. We also need to ensure that the component

values generated by Bayesian inference algorithm can be passed to the circuit simulator and the

output from the circuit simulator can be passed back to the algorithm for evaluation interactively.

We present our work of writing an R package called RSpice to accomplish the above tasks.

1

CHAPTER 1. INTRODUCTION

Recurrent event data exist in a variety of fields such as the automobile warranty, cancer recur-

rences, the visits to doctors of patients, bull and bear markets in stock prices, recurrences of crime

of previous offenders and so on. Accurate predictions on future events can be very useful in terms of

saving lives, making profits, reducing the number of crimes and so on. For example, all companies

that offer a warranty for their products are required, by law, to put into reserves a sufficient amount

of cash so that they will be able to pay their warranty claims. Warranty predictions are important

because good predictions can help the companies to maximize their profits and help adjusting their

marking strategies. In Chapter 2, we consider a generalized way to make warranty prediction with

two examples on product warranty returns. We cluster the warranty contracts hierarchically based

on their locations and the seasonality of each location’s empirical monthly recurrent event rate.

Non-homogeneous Poisson process (NHPP) models are applied together with the covarites, cluster

information and individual level random effects to model the monthly recurrent event rate. Pre-

dictions and prediction intervals on number of events for each warranty over a specific time period

are obtained by integrating the predicted recurrent event rate.

Electronics has become a crucial part of a lot of commonly seen industrial systems, and quick

troubleshooting of a failed electronic circuits plays an important role in ensuring the industrial

systems working properly and preventing potential losses due to the breakdown of the systems.

The troubleshooting of electronic circuits gets harder when the failures are soft failures (out-of-

specification of components). With the limited measured voltage data from several testing points

of a failed electronic circuit, we propose an efficient approach to make inference on which exact

component(s) within the circuit is causing the circuit failure in Chapter 3. We apply adaptive

Monte Carlo Markov Chain (MCMC) to map out the posterior distributions each circuit component

2

parameter with the help of the circuit simulator software, ngspice. Then the results allow one to

locate the out-of-specification components conveniently.

In Chapter 4, we illustrate how we integrate the open source circuit simulator software, ngspice,

into R with an R package called RSpice. The electronic circuit setup can be passed to ngspice

from R by calling the RSpice package, the commands to alter circuit component parameters can

also be sent to ngspice with one line of command, which is a crucial step to run adaptive MCMC.

After running the circuit simulations, the results (e.g., the voltage values at specified test points of

a circuit given the component values) can be exported from ngspice to R directly for analysis.

Finally, our main findings and potential future work or improvements to what we have done are

summarized in Chapter 5.

3

CHAPTER 2. SEASONAL WARRANTY PREDICTION BASED ON

RECURRENT EVENT DATA

Qianqian Shan, Yili Hong and William Q. Meeker

2.1 Abstract

Warranty return data from repairable systems, such as home appliances, lawn mowers, com-

puters, and automobiles, result in recurrent event data. The non-homogeneous Poisson process

(NHPP) model is used widely to describe such data. Seasonality in the repair frequencies and

other variabilities, however, complicate the modeling of recurrent event data. Not much work has

been done to address the seasonality, and this paper provides a general approach for the application

of NHPP models with dynamic covariates to predict seasonal warranty returns that motivated our

work. The methods presented here, however, can be applied to other applications resulting in sea-

sonal recurrent-event data. A hierarchical clustering method is used to stratify the population into

groups that are more homogeneous than the overall population. The stratification facilitates model-

ing the recurrent event data with both time-varying and time-constant covariates. We demonstrate

and validate the models using warranty claims data for two different types of products. The re-

sults show that our approach provides important improvements in the predictive power of monthly

events compared with models that do not take the seasonality into account.

Keywords: EM algorithm, Hierarchical clustering, Missing data, NHPP, Random effects, Seasonal

dynamic covariates

4

2.2 Introduction

2.2.1 Background

Predictions of warranty returns, based on recurrent event data from repairable systems are

often needed by manufacturing companies so they can help to make decisions on the supply of

replacement parts, warranty reserves, pricing of the warranty plans and so on. Monthly predictions

of warranty returns are particularly helpful when repairable systems have recurrence rates affected

by the month of a year and geographical locations. For example, some products may have a higher

recurrence rate in warmer months and in a warmer location due to higher average usage rate. The

predictions could be more accurate and useful when the variabilities in seasonality and locations are

taken into consideration. Meeker and Escobar (1998)[Chapter 16], without giving details, describe

how one might use a non-homogeneous Poisson process (NHPP) to make such predictions on the

repairable systems, with the restrictive assumptions that all systems are independent and have the

same failure recurrence rate function, ν(t). The assumptions of the simple NHPP model tend to be

too strong for realistic complicated data structures, when products have staggered entry, different

failure patterns and other system-to-system sources of variability. The purpose of this paper is to

develop a general prediction methodology for applications with these complications. In addition

to applications in warranty prediction, the methods are also applicable to many other applications

such as the prediction of number of recurrent visits to hospitals of patients in health care industry.

We use hierarchical clustering to partition the available data into groups within which there are

similar seasonal patterns, and then use the NHPP model with time-varying covariates and random

effects to describe the recurrent event warranty data. We illustrate the methods with two different

warranty prediction applications.

2.2.2 Related Literature and Our Work

Application of NHPP models to warranty prediction has been discussed extensively in many

places in the literature. Rigdon and Basu (2000) present a general review of NHPP models and their

applications including the power law process and kinds of tests for the validity of the models. Ross

5

(2014) describes the NHPP model and shows how to simulate data from an NHPP model based on

homogeneous Poisson process (HPP). Fredette and Lawless (2007) describe mixed Poisson models

for the prediction of the aggregated number of events at specified calendar times across a population

of processes. Koutsellis et al. (2017) present a modified generalized renewal process model for

warranty prediction of repairable systems with effects of production dates and replacement of

defective components/subsystems.

In other related literature, Hamada et al. (2008)[Section 6.4] and Ryan et al. (2011) apply NHPP

models without covariates under a hierarchical Bayesian framework to describe the recurrent events

on 48 shared-memory computer processors. Rai (2009) presents a warranty forecasting model with

the monthly seasonality modeled by multiplicative seasonal indices based on data from a single

representative production month. Wu (2012)[Section 3.5] gives a brief review of different types of

coarse warranty data and methods to analyze such data. Xiao et al. (2015) develop nonparametric

Bayesian methodology using a seasonal marked point process to predict hurricane occurrences.

Cifuentes-Amado and Cepeda-Cuervo (2015) and Ngailo et al. (2016) use NHPP models with

seasonality described by trigonometric functions of time in health diseases and seasonal rainfall

events, respectively. Slimacek and Lindqvist (2016) add a piecewise constant rate of occurrence

of failures (ROCOF) model with both observable and unobservable differences between repairable

systems are taken into account. Therneau et al. (2003) show that fitting survival models with

random effects can be done efficiently via penalized likelihood estimation. Klein (1992) presents

an expectation maximization (EM) algorithm based on a profile likelihood for the semiparametric

Cox model.

This paper focuses on developing a flexible warranty event prediction methodology by using the

following.

• We develop a parametric recurrent event model to incorporate seasonal effects on the recur-

rence rates, which can improve the monthly warranty prediction significantly.

• We propose hierarchical clustering on the locations of the systems under warranty to differ-

entiate among different seasonal patterns in the recurrent event processes.

6

• We take other available fixed covariates effects into consideration to further improve the

predictive power of our model.

• We incorporate random effects into our model to describe heterogeneity not accounted for by

the covariates.

2.2.3 Motivating Examples

All companies that offer a warranty for their products are required, by law, to put into reserves

a sufficient amount of cash so that they will be able to pay their warranty claims. Warranty

predictions are extremely important because there are penalties for not having enough cash in

reserve and, of course, for holding too much in reserve. While it is common to use simple methods

like percentage of sales to predict warranty needs, it is now recognized that there is valuable

information in warranty databases that can be used to predict warranty returns more accurately.

We apply our models to two product warranty applications. These data sets differ in terms of

the number of systems, number of years of data, recurrence rates, and available covariates. For

both applications, we hold out the last 12 months of data for model checking and use the rest of

the data to do exploratory analysis and model fitting.

For Product A, warranty/production information for 63,191 systems with 8,406 events from

year 2011 to year 2016 is available for modeling. The Product A database contains variables such

as in-service date of the systems, start and expiration date of the warranty contracts, country,

model year, retail location, warranty price, model type, event date and cost. The warranty price

can vary with different levels of coverage. Approximately 10% of the systems have had at least one

warranty-return event.

For Product B, warranty/production information for 33,645 systems with 18,972 events from

year 2014 to year 2016 is available for modeling. Each record in the data set contains the start

and expiration date of the warranty contracts, product model year, retail location, warranty price,

event date, and event cost (if any). All of the Product B systems have a 24-month warranty term.

Approximately 19% of the systems had at least one warranty-return event.

7

In both examples, the main objective is to generate point predictions and prediction intervals

of future warranty returns.

2.2.4 Overview

The remainder of the paper is organized as follows. Section 2.3 provides general ways to do

exploratory analysis of warranty data to help suggest the form of an appropriate model and a clus-

tering methodology to identify different seasonal recurrence rate patterns. Section 2.4 describes the

NHPP-based models to be used in this paper. Section 2.5 presents maximum likelihood estimation

of the model parameters with and without random effects. Section 2.6 discusses point predictions

for the number of future events and compare the point predictions results for different models

of Product A. Prediction intervals of the number of future events are presented in Section 2.7.

Section 2.8 describes the application of the methodology to the warranty return predictions for

Product B. Section 2.9 studies the effects of missing data on clustering and explores two different

ways to deal with the missing data. Section 3.8 discusses our conclusions and ideas for future work.

2.3 Exploratory Analysis

Exploratory analysis is often useful for providing insight into the structure of a dataset and as

an aid for model building. In this section, we explore the effects of the covariates on recurrence rate

by examining the mean cumulative number of system recurrences for different levels of covariates,

and apply clustering analysis for identifying different seasonal recurrence rate patterns based on

warranty locations.

2.3.1 The Mean Cumulative Function

Nonparametric methods provide useful tools to explore data without making strong assump-

tions. Kaplan and Meier (1958) introduced the nonparametric estimator of a survival function

based on censored time-to-event data. Similar to the survival function for time-to-event data, the

mean cumulative function (MCF), giving the mean number of events across a population of sys-

8

tems as a function of system age, provides a useful baseline model for recurrence data. Nelson

(1988) describes how to compute a nonparametric estimate using recurrent event data. For more

details see Lawless and Nadeau (1995), Meeker and Escobar (1998)[Chapter 16] and Nelson (2003).

The sample MCF can, for example, be used to compare the behavior of subpopulations defined by

different levels of discrete covariates.

• If the different levels of a covariate have similar MCF curves, then the levels can be combined

together for analysis.

• If the different levels of a covariate have importantly different MCF curves, then the terms

could be added to the model to take account of the difference. This can be done by either

adding the level information as a covariate of the model or by modeling the different levels

separately.

Example 1. Exploratory Analysis for Product A Data

Exploratory analysis based on MCF curves of different subpopulations defined by the covariate

levels can help to check if the subpopulations have significantly different behavior. For example,

by checking the MCF curves for different countries with confidence intervals (CIs) computed by

following Meeker and Escobar (1998)[Chapter 16], we can gain insights about how the recurrent

event process behaves, as illustrated in Figure 2.1. There are few reported events for the first 180

days in both countries because of the nature of the warranty contracts and the MCF curve for

Canadian systems is higher than that for US systems. The MCF curves suggest that the warranty

process in the two countries are importantly different. The confidence intervals for the Canadian

warranty process are wider because the number of recurrences are smaller.

�

The exploratory analysis using MCF curves provides information about the recurrence rate

behaviors of different covariate levels on the system age scale. Other tools are needed if the

behavior of the recurrence rate is also affected by factors on the calendar time scale, for example,

the clustering analysis tool as introduced in Section 2.3.2.

9

Figure 2.1: MCF versus age of systems in different countries of Product A with 95% pointwise CIs.

2.3.2 Data Clustering and Seasonality

2.3.2.1 Data for Clustering Analysis

The combination of climate differences and geographical locations can affect the usage of prod-

ucts and certain failure mechanisms, resulting in different seasonal patterns in different regions.

For example, the usage rate of certain products could be higher during summer than in the winter

in the northern US, while the seasonal pattern may be less pronounced in the southern US. Here we

describe a data-based approach to group different locations across the US (or other geographical

regions) into several clusters so locations within a cluster are, with respect to warranty report sea-

sonality, more homogeneous. The variable to be clustered is the observed overall empirical monthly

recurrence rate (the ratio of the number of claims in each month to the corresponding total number

of repairable systems at risk) for each location, and we ignore the age effects on the number of

events.

10

The following steps are used to construct the data to be used for clustering. For each location

(for each state or province in our applications),

1. Select data that have at least one event and compute the number of events for each calendar

month.

2. Compute the number of systems at risk for each calendar month.

3. Compute the empirical monthly recurrence rate as the ratio of the number of events to the

number of systems at risk.

4. If the empirical monthly recurrence rates are computed for calendar months across multiple

years, average the rates for each of the 12 months of the year.

5. For each location (e.g., US state and Canadian province), there will be 12 empirical recurrence

rates for months from January to December. Use the rates as covariates (or features) to cluster

the locations.

Note that if there are locations that have few events, we could observe their behavior and merge

them to the locations with not dissimilar behavior until there is a substantial number of events in

each location to do the clustering analysis.

2.3.2.2 Data with Missing Location Variables

It’s common to have missing values in warranty (and other) databases. For our Product A data,

6.6% of the location variables are missing. This will affect our location-based clustering analysis.

Every application is different, and there is no general approach for handling missing data that

works for all applications. Three commonly used approaches are:

1. Group the missing values with a new category.

2. Impute the missing values based on information that is available.

3. Do a random assignment to replace missing values.

11

One can choose any one or a combination of the above methods depending on the specific

available data, the missing mechanism, the missing percentage and so on. See Example 2 in

Section 2.3.2.3 for an example of how we deal with the missing locations for Product A data.

2.3.2.3 Hierarchical Clustering Analysis

In unsupervised clustering of different locations, the empirical recurrence rates for each month

of a year per location are the observations. We need to specify a clustering method in order to

identify clusters of similar location groups. Popular clustering methods include the K-means algo-

rithm Lloyd (1982); Hartigan (1975); Hartigan and Wong (1979), K-medoid, hierarchical clustering

Rousseeuw and Kaufman (1990) and so on. K-means and K-medoid methods require specifying

the number of clusters and initial centers of each cluster. In contrast, hierarchical clustering only

requires a measure of the similarity (or equivalently, dissimilarity) among observations and a def-

inition of how the dissimilarity of clusters is measured (Hastie et al. 2009 and James et al. 2013).

We adopt hierarchical clustering analysis to take advantage of its convenience.

As there are no response variables to characterize each observation, a clear measure of the degree

of similarity among the monthly recurrence rates in different locations needs also to be specified

(e.g., see James et al. 2013). Possible choices of similarity measures include,

• Euclidean distance: compute the Euclidean distance for each pair of observations, and use it

as the measure standard for clustering.

• Correlation-based distance: compute the correlation between each pair of the observations

and group locations with highly correlated observations together.

The choice of a similarity measure depends on the data and the prior physical knowledge on the

data. In the clustering analysis for different seasonal patterns of recurrent event data, a measure

based on correlation performs better when the empirical recurrence rates are low (generally less

than 0.01) and the recurrence rate differences are not obvious. A measure based on Euclidean

distance performs better when the there exists obvious differences in recurrence rates across different

12

locations. The largest dissimilarity of all the pairwise observations between two clusters is used to

compare the dissimilarity of clusters.

The hierarchical clustering produces a dendrogram, a tree-based diagram in which each leaf

represents one observation and the height (y-axis) is the specified distance metric. Cutting the

dendrogram at different heights can split the observations into different clusters naturally. The

selection of where to cut can be affected by factors such as the desired number of clusters, the

minimum number of observations within each cluster, how many seasonal patterns exist in the

data, and the expected degree of dissimilarity in the seasonal patterns after clustering analysis.

The following example shows how the number of clusters can affect the prediction performance of

models.

Example 2. Clustering of Product A Seasonal Patterns

Because 4142 systems (approximately 6.6% of Product A data) have missing location variable with

no obvious missing patterns, we group these systems together by country and assign new location

variables, NA.US and NA.CAN, for US and Canada systems, respectively. For the purpose of

comparison, we also use the random assignment method for the missing locations, and the detailed

explanation and results are in A.3 of supplemental materials. We use event data after year 2014

to do clustering analysis as there are more events with more repairable systems at risk for most

of the locations after 2014. Figure 2.2 shows the dendrogram of the hierarchical clustering results

for Product A using correlation distance. Cutting the dendrogram horizontally at around 1.55

naturally separates the data into four clusters with balanced number of locations and event counts

in each cluster. The observed events and number of systems at risk by clusters as a function

of calendar date are shown in Figure 2.3 and Figure 2.4. Figure 2.5 shows the overall monthly

empirical recurrence rates for the four clusters, and it indicates that the seasonal patterns vary

considerably.

A sensitivity analysis on the choice of number of clusters shows that cutting the dendrogram

such that there are more than four clusters gives approximately the same results as using four

clusters. But the amount of computing time required for model fitting can increase dramatically

13

Figure 2.2: Dendrogram of correlation-based hierarchical clustering of Product A. The horizontal

line indicates the cutoff location to divide the locations into different clusters. Denote the clusters

from left to right as cluster 4, 3, 2 and 1, respectively.

(e.g., there are 50 parameters to be estimated with four clusters in Equation 18.7, however, there

will be 122 parameters in the same model in the case of ten clusters). It will take even longer

for more models with random effects involved, which requires more complicated algorithm to find

the parameter estimates. Given that more clusters does not improve the prediction performance

substantially and that it will take significantly longer time to find the model parameter estimates,

we choose the number of clusters that provides a good trade-off between model performance and

computation costs.

�

2.4 General Models for Recurrence Rates

The Poisson process is commonly used for modeling of repairable systems, but it has the as-

sumption that the number of events in non-overlapping time intervals are statistically independent.

For such situations, it’s natural to model event counts with an NHPP model with nonconstant

14

Figure 2.3: Observed event counts versus date for the different clusters of Product A.

Figure 2.4: Number of systems at risk versus date for the different clusters of Product A.

15

Figure 2.5: Empirical monthly recurrence rate by clusters of Product A systems since year 2014.

recurrence rate as described by Meeker and Escobar (1998)[Chapter 16]. We employ and adapt the

widely used NHPP model for our analysis of warranty recurrent event data.

2.4.1 Notation

Let Ni(t) = Ni(0, t) denote the observed total number of events up to system age t for repairable

system i, where t is the number of days since the system is put into service. Then the process

recurrence rate function for system i is

νi(t) = lim
∆t→0

E[∆Ni(t)]

∆t
, (2.1)

where ∆Ni(t) = Ni(t + ∆t−) − Ni(t
−) is the number of events in [t, t + ∆t). The process history

at age t of system i, is defined as Hi(t) = {Ni(c), 0 ≤ c < t}. We denote the parameter vector of a

model as θ.

16

2.4.2 The Simple NHPP Model

The simple NHPP model assumes that all K systems have the same recurrence rate function

and the rate function is defined as

νi(t;θ) = ν0(t;θ), i = 1, · · · ,K, (2.2)

where ν0(t;θ) is a function depending only on system age t and parameters θ. Here we use the

power law process

ν0(t;θ) =
β

η

(
t

η

)β−1

, (2.3)

with θ = (β, η)T and β without a subscript is the power law parameter. Subsequently we will

use β with a subscript to denote regression parameters. The simple NHPP model has strong

assumptions that are rarely appropriate for modeling complicated recurrence data structures such

as the recurrences in a warranty database.

2.4.3 NHPP Model with Common Seasonal Effects

The NHPP model with simple seasonality assumes that the rate function of each system has

the same seasonal behavior over M = 12 months of each year,

νi(t;θ) = ν0(t;β, η) exp

(
M∑
m=1

βmIm,i(t)

)
, (2.4)

where ν0(t;β, η) is as defined in (2.3), θ = (β, η, β1, · · · , βM)T and

Im,i(t) =

 1 if system i is in calendar month m at age t

0 otherwise.
(2.5)

We set one of the βm values to be zero in order to have a full rank indicator matrix with its

elements defined in (2.5). And the same rule applies to the rest of the models. Because the indicator

Im,i(·) is obtained based on the number of days in service and the calendar date when the system

is first put into service, it allows for systems to have staggered entry, as seen in typical warranty

databases.

17

2.4.4 NHPP Model with Seasonal and Cluster Effects

As described in Section 2.3.2, for some applications, the seasonal behavior will depend on the

geographical location. We account for this by generalizing the seasonal time-varying covariates. In

particular, by assuming that the seasonal recurrence rate patterns vary in both shapes and levels

among the clusters, the recurrence rate function of system i is

νi(t;θ) = ν0(t;β, η) exp

(
M∑
m=1

N∑
n=1

βm,nIm,n,i(t)

)
, (2.6)

where N is the number of clusters, θ = (β, η, β1,1, β1,2, · · · , βM,N)T and

Im,n,i(t) =

 1 if system i is in calendar month m at age t and from cluster n

0 otherwise.
(2.7)

The model in (2.6) can be simplified if only the levels of the seasonal patterns change across

different clusters. In this case,

νi(t;θ) = ν0(t;β, η) exp

(
M∑
m=1

βmIm,i(t) +
N∑
n=1

β′nIn,i

)
, (2.8)

where Im,i(·) is as defined in (2.5), θ = (β, η, β1, · · · , βM , β′1, · · · , β′N)T and the time independent

cluster indicator is

In,i =

 1 if system i is in cluster n

0 otherwise.
(2.9)

2.4.5 NHPP Model with Seasonal, Cluster and Random Effects

If heterogeneity among systems cannot be completely explained by the Poisson process model

with the adjustment of covariates, the incorporation of random effects of the repairable systems can

be helpful to explain the system-to-system variation. A model for the recurrence rate for system

i conditional on the random effects is introduced in a manner that is similar to the use of frailty

models in the survival analysis (Aalen 1988, Therneau et al. 2003 and Cook and Lawless 2007).

Then the intensity is

18

νi(t;θ, ui) = ui ν0(t;β, η) exp

(
M∑
m=1

N∑
n=1

βm,nIm,n,i(t) + xTi,fixβfix

)
. (2.10)

Here,

• ui denotes the i.i.d. random effects for system i. Because the ui values are unknown and not

observed, we assume that the random effects have an independent gamma distribution with

mean 1 and variance φ, so the random effects are always positive and the distribution of the

heterogeneity for individual systems can be reflected by the magnitude of the variance. The

density function of ui is

g(ui;φ) =
uφ

−1−1
i exp(−ui/φ)

φφ−1Γ(φ−1)
. (2.11)

• xi,fix is a vector of fixed covariates that can help explain additional variability in the recur-

rence process, and βfix is the corresponding column vector of regression coefficients. The fixed

covariates can be identified in the exploratory analysis phase as described in Section 2.3.1 or

by diagnostics based on model fitting and prediction performance.

In particular, θ =
(
β, η, β1,1, · · · , βM,N ,β

T
fix, φ

)T
is the parameter vector to be estimated.

2.4.6 Comparison of Different Models

The NHPP model in (2.10) can be treated as a general model from the perspective that all of

the other models listed above can be viewed as a special case of it:

• Set φ = 0, βi,j = 0 for i = 1, 2, · · · ,M and any j = 1, 2, · · · , N and βTfix = 0, (2.10) reduces

to the simple NHPP model in (2.2).

• Set φ = 0, βi,j = βi,k for i = 1, · · · ,M and any j, k ∈ {1, 2, · · · , N} and βTfix = 0, (2.10)

reduces to the NHPP model with simple seasonality in (2.4).

• Set φ = 0 and βTfix = 0, (2.10) reduces the NHPP model with seasonal and cluster covariates

in (2.6). Further set βi,j = cj−k + βi,k with cj−k a constant related to (j − k) for i =

1, 2, · · · ,M and 1 ≤ k < j ≤ N , (2.10) reduces to (2.8).

19

2.5 Maximum Likelihood Estimation

2.5.1 Likelihood Function

By extending the approach in maximum likelihood estimation of the superimposed Poisson

process likelihood which is used for the parameter estimation in Meeker and Escobar (1998), the

total likelihood with the random effects ui for system i = 1, · · · ,K is

L (θ|DATA) =

K∏
i=1

∫
 ri∏
j=1

νi(tij ;θ)

δij exp [−µi(0, tai ;θ)]

 g(ui;φ)dui, (2.12)

where g(·) is defined in (2.11), δij is an indicator of the jth out of ri observed event(s) for system

i up to time tij , and tai is the end-of-observation time or the end of warranty time for system i,

whichever comes first.

We can re-write (2.10) as the multiplication of the random and non-random parts, νi(tij ;θ) =

uiνb,i(tij ;β), where νb,i(t;β) = ν0(t) exp
(∑M

m=1

∑N
n=1 βm,nIm,n,i(t) + xTfixβfix

)
and β = (β, η,

β1,1, · · · , βM,N ,β
T
fix)T . Similar to what is done in Lawless (1987), integrating over ui for each

system i in (2.12) gives the likelihood

L(θ|DATA) =

K∏
i=1

 ri∏
j=1

νb,i(tij ;β)

δij Γ(ζi)

κζii
, (2.13)

where θ = (βT , φ)T , ζi = ri + 1/φ and κi = µb,i(tai ;β) + 1/φ and µb,i(tai ;β) is short for

µb,i(0, tai ;β) =
∫ tai

0 νb,i(x;β)dx. Details of the derivation are given in Section A.1 of the sup-

plemental materials.

Note that when there are no random effects (i.e., φ = 0), the likelihood function in (2.12)

reduces to

L(θ|DATA) =
K∏
i=1

 ri∏
j=1

νi(tij ;θ)

δij exp [−µi(0, tai ;θ)]

 . (2.14)

20

2.5.2 The EM Algorithm

For the model with random effects, we apply the EM algorithm based on the complete-data like-

lihood. The derivation of the formulas is based on the work of Klein (1992) for the semiparametric

Cox model. If we could observe the random effects, u = (u1, . . . , ui, . . . , uK)T , the complete-data

log-likelihood of θ = (βT , φ)T up to a constant is,

L(φ,β|DATA,u)

=
K∑
i=1

ri∑
j=1

{log(ui) + log [νb,i(tij ;β)]} −
K∑
i=1

uiµb,i(tai ;β) +
K∑
i=1

log [g(ui;φ)]

=
K∑
i=1

{rilog(ui)− log [g(ui;φ)]}+
K∑
i=1

ri∑
j=1

log [νb,i(tij ;β)]− uiµb,i(tai ;β)

= L1(φ|DATA,u) + L2(β|DATA,u) (2.15)

where

L1(φ|DATA,u) = −K
{

1

φ
log(φ) + log

[
Γ

(
1

φ

)]}
+

K∑
i=1

[(
ri +

1

φ
− 1

)
log(ui)−

ui
φ

]
,

is the part of the likelihood that is related to the parameter φ and

L2(β|DATA,u) =

K∑
i=1

ri∑
j=1

log[νb,i(tij ;β)]− uiµb,i(tai ;β)

 ,

is the part of the likelihood that is related to the parameters in β.

Simple calculations show that the distribution of ui, conditional on the observed event process

history H(tai), has a Gamma(ζi, κi) distribution, where ζi and κi are the same as in (2.13) and

are shape and rate parameters, respectively. The expected complete-data log-likelihood in (2.15)

is obtained by replacing the ui values in L1(·) and L2(·) with their expected values given H(tai),

L̂1(φ|DATA, û) = −K
{

1

φ
log(φ) + log

[
Γ

(
1

φ

)]}
+

K∑
i=1

{(
ri +

1

φ
− 1

)
[ψ(ζi)− log(κi)]−

ζi/κi
φ

}
, (2.16)

21

where ψ(·) is the digamma function derived from E[log(ui)|H(tai)] = ψ(ζi)− log(κi). And,

L̂2(β|DATA, û) =
K∑
i=1

ri∑
j=1

log [νb,i(tij ;β)]−
(
ζi
κi

)
µb,i(tai ;β)

 . (2.17)

In the maximization step, we maximize (2.16) and (2.17) with respect to the parameters φ and

β, and in the expectation step, we update the expected values of ui. The EM algorithm proceeds

as follows,

1. Obtain initial estimates of β by setting ui = 1 for all systems (or equivalently, φ = 0) and

pick a nonzero initial value of φ to avoid infinite values of ζi and κi.

2. Update ζi and κi using the current values of β, φ and ui = (ζi/κi).

3. Update the estimates of φ and β by maximizing (2.16) and (2.17), respectively.

4. Repeat Step 2 and 3 until convergence.

Example 3. Model Fitting Performance for Product A We fit the following thirteen models

labeled from (2.18.1) to (2.18.13) to the Product A data, and check the model fitting performance

of different combinations of the seasonal effects, cluster effects, fixed covariates and random effects:

νi(t;θ) = ν0(t;θ) =
β

η

(
t

η

)β−1

(2.18.1)

νi(t;θ) = ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t)

)
(2.18.2)

νi(t;θ) = ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t) + xTi,fixβfix

)
(2.18.3)

νi(t;θ) = ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t) +

N∑
n=1

In,iβn

)
(2.18.4)

νi(t;θ) = ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t) +

N∑
n=1

In,iβn + xTi,fixβfix

)
(2.18.5)

νi(t;θ) = ν0(t;θ) exp

(
M∑
m=1

N∑
n=1

βm,nIm,n,i(t)

)
(2.18.6)

22

νi(t;θ) = ν0(t;θ) exp

(
M∑
m=1

N∑
n=1

βm,nIm,n,i(t) + xTi,fixβfix

)
(2.18.7)

νi(t;θ) = ui ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t)

)
(2.18.8)

νi(t;θ) = ui ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t) + xTi,fixβfix

)
(2.18.9)

νi(t;θ) = ui ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t) +

N∑
n=1

In,iβn,i

)
(2.18.10)

νi(t;θ) = ui ν0(t;θ) exp

(
M∑
m=1

βmIm,i(t) +

N∑
n=1

In,iβn,i + xTi,fixβfix

)
(2.18.11)

νi(t;θ) = ui ν0(t;θ) exp

(
M∑
m=1

N∑
n=1

βm,nIm,n,i(t)

)
(2.18.12)

νi(t;θ) = ui ν0(t;θ) exp

(
M∑
m=1

N∑
n=1

βm,nIm,n,i(t) + xTi,fixβfix

)
, (2.18.13)

where xi,fix denotes the fixed product country effects of Product A and βfix is the correspond-

ing regression coefficient vector. We use the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) based on likelihood functions in (2.13) or (2.14) for model fitting eval-

uation. The model summarization in Table 2.1 shows that there are improvements in the model

fitting as the model incorporates terms for the clusters, seasonality, fixed covariates and random

effects. �

2.6 Point Predictions for the Number of Future Events

Predictions for the number of recurrences for a system in a future time-in-service interval, [t1, t2)

are based on the estimated expected value of the random variable Ni(t1, t2).

• When there are no random effects, Ni(t1, t2) has a Poisson distribution with mean µb,i(t1, t2;β) =∫ t2
t1
νi(x;β)dx.

23

Table 2.1: Summary results of different models for the Product A data. The smallest AIC and BIC values are marked
in bold.

No. Model Components AIC BIC

1 Simple NHPP 152974 152992

2 NHPP with Common Seasonal Effects 152824 152942

3 NHPP with Country and Common Seasonal Effects 152776 152903

4 NHPP with Cluster and Common Seasonal Effects 152629 152774

5 NHPP with Cluster, Common Season and Country Effects 152625 152779

6 NHPP with Cluster and Seasonal Interactions 152568 153012

7
NHPP with Cluster and Seasonal Interactions and Country Ef-
fects

152563 153015

8 NHPP with Common Season and Random Effects 149997 150124

9 NHPP with Common Season, Country and Random Effects 149954 150090

10 NHPP with Cluster, Common Season and Random Effects 149833 149987

11
NHPP with Cluster, Common Season, Country and Random
Effects

149830 149993

12
NHPP with Cluster and Seasonal Interactions and Random Ef-
fects

149772 150225

13
NHPP with Cluster and Seasonal Interactions, Coun-
try and Random Effects

149768 150230

• When there are random effects in the model, Ni(t1, t2) has a negative binomial distribution

with mean [ζi/κi]µb,i(t1, t2;β) and probability function

Pr[Ni(t1, t2) = n|DATA,θ]

=
Γ(n+ ζi)

Γ(ζi)n!

[
µb,i(t1, t2;β)

µb,i(t1, t2;β) + κi

]n [κi
µb,i(t1, t2;β) + κi

]ζi
. (2.19)

That is, Ni(t1, t2) has a NB(ζi, κi/ [µb,i(t1, t2;β) + κi]) distribution (see Section A.2 of the

supplemental materials for more details).

Although the recurrence rate function contains time-dependent covariates, month-by-month in-

tegration is possible because the time dependent covariates remain unchanged within each calendar

month. The total expected number of events in a future month is the sum of the expected number

of events for each system at risk. Similarly, the total expected cumulative number of events for

all systems up to a specified future month is the sum of cumulative number of events for each

system at risk. A point prediction for these quantities can be made by replacing θ = (βT , φ)T by

the maximum likelihood estimator θ̂. A Monte Carlo simulation based procedure to produce point

predictions (and prediction intervals) can also be applied as described in Xu et al. (2017).

24

In order to compare the prediction accuracy of different models, we compute the root mean

square error (RMSE), mean absolute error (MAE), and mean absolute percent error (MAPE) of

prediction errors for the hold-out data. Denote the non-negative observed and predicted monthly

number of events as Yi and Ŷi, i = 1, 2, · · · , n, respectively, then

RMSE =

√∑n
i=1(Yi − Ŷi)2

n

MAE =
1

n

n∑
i=1

|Yi − Ŷi|

MAPE =
1

n

n∑
i=1

|Yi − Ŷi|
Yi

× 100 (2.20)

Example 4. Comparisons of point predictions on Product A

Table 2.2 gives a comparison of the prediction performances of different models on the hold-out

data. By incorporating the cluster information and assuming different seasonal effects for different

clusters, the prediction power and the model fitting performance can be improved with smaller

prediction errors and smaller AIC/BIC values. Although the model fitting performance improves

with the more complicated model including cluster, season information, and random effects, Model

7 has the best prediction performance, especially for the first 6 months of the hold-out data. This

model assumes both the shapes and levels of the seasonal patterns in the recurrence rates are

different across clusters and that the recurrence rates vary in different countries. The incorporation

of the random effects does not improve the prediction performance for this specific example. Figures

2.6 and 2.7 show the fitted Model 7 of the monthly and cumulative event counts respectively. The

fitted model deviates from the observed counts between January 2013 and January 2015. Agreement

is better after January 2015.

In order to select an appropriate model, one should take our business goal, data size, model

fitting performance, model prediction performance, computation costs, and many other factors into

consideration. For example, if our goal is to find a model with reasonably good prediction perfor-

mance with as little computation costs as possible, Model 7 (sometimes even Model 3) could be a

good trade-off between a complicated model and computation time. As we will see in the Product

B example in Section 2.8, more complicated models can sometimes lead to a better performance

25

Table 2.2: Summary results of point predictions on different models for the Product A hold-out

data. The superscript 6 and 12 indicate the RMSE/MAE/MAPE of the first 6 and 12 months,

respectively. The model with smallest RMSE/MAE/MAPE values is marked in bold.

No. RMSE6 RMSE12 MAE6 MAE12 MAPE6 MAPE12

1 58.2 46.2 46.5 38.7 16.4 15.3

2 45.7 38.8 39.9 33.6 15.0 14.1

3 39.4 31.8 33.1 28.0 12.6 11.8

4 41.2 34.9 34.5 29.5 13.1 12.5

5 38.9 32.8 32.9 27.8 12.5 11.8

6 39.7 34.1 34.0 29.6 12.8 12.4

7 37.0 31.9 30.9 27.2 11.6 11.5

8 50.0 39.9 41.3 34.7 15.6 14.6

9 40.8 34.3 34.2 29.0 13.0 12.3

10 42.7 36.1 36.2 30.8 13.7 13.0

11 40.6 34.2 34.1 29.0 13.0 12.3

12 41.4 35.7 35.9 31.1 13.6 13.1

13 38.9 33.4 32.9 28.8 12.5 12.2

(Model 9 has the best prediction performance), however, it will also take longer time for model

fitting due to the need to estimate the random effects. As is usually the case, the modeling process

requires judgment combined with experimentation and sensitivity analysis.

�

2.7 Prediction Intervals

2.7.1 Prediction Interval Basics

Prediction intervals (PIs) for random variables and the calibration of PIs are introduced in

literature such as Beran (1990), Meeker and Escobar (1998), Lawless and Fredette (2005), Fredette

and Lawless (2007), and Fonseca et al. (2014). In our applications, the random variable of interest,

Y , is the total number of monthly events or the cumulative number of events at up to a specified

month across all systems at risk.

26

Figure 2.6: Monthly prediction of the event counts for Product A based on Model 7.

Figure 2.7: Cumulative prediction of the event counts for Product A based on Model 7.

27

Producing prediction intervals requires the distribution of the sum of the number of events across

systems within specified intervals. Under the NHPP model without random effects, the number of

events in non-overlapping intervals has a Poisson distribution and the sum of independent Poisson

random variables has a Poisson distribution. In contrast, when assuming random effects u for the

model, the total sum is a convolution of K negative binomial distributions, which does not have

closed form.

Teerapabolarn (2014) shows that, when {ζi · µb,i(· ;β)/ [µb,i(· ;β) + κi]} is small for each i, the

distribution of the sum of independent negative binomial random variables can be approximated

by Poisson distribution with mean,
∑

i [(ζi/κi)µb,i(·;β)], where the sum is across all systems at

risk. We use this approximation for the distribution function of random variables when there are

random effects in the model.

Here we compare plug-in prediction intervals, simple normal-approximation prediction inter-

vals, and calibrated prediction intervals procedures for a random variable Y with the distribution

function G(Y ;θ).

2.7.2 Plug-in Prediction Intervals

The simple plug-in prediction interval is obtained by simply using the quantiles of G(Y ;θ).

Specifically, a two-sided 100 (1− α) % plug-in prediction interval of a random variable Y is [L, U]

so that,

G
[
L < Y ≤ U ; θ̂

]
= 1− α. (2.21)

The actual coverage probability of this procedure will generally be less than (1−α) because plug-in

method ignores the uncertainty in θ. It is generally good practice to choose L and U such that

L = Yα/2 and U = Y1−α/2.

28

2.7.3 Normal Approximate Prediction Intervals

A normal approximate 100(1 − α)% prediction interval based on Z
Ŷ

=
(
Ŷ − Y

)
/ŝe

Ŷ

·∼

NORM(0, 1) is,

[L, U] = Ŷ ± z1−α/2ŝeŶ , (2.22)

where z1−α/2 is the (1− α/2) quantile of the standard normal distribution, Ŷ is the point prediction,

and ŝe
Ŷ

=

√
V̂ar(Ŷ), where V̂ar(Ŷ) is computed from the sum of variance of the independent

random variables that are summed to obtain Y .

2.7.4 Calibrated Prediction Intervals

Bootstrap procedures to calibrate prediction intervals have been described by literature such as

Beran (1990), Meeker and Escobar (1998), Lawless and Fredette (2005), and Fredette and Lawless

(2007). Xu et al. (2015) give the following algorithm which is a simulation implementation of the

general prediction calibration method described in Section 3 of Lawless and Fredette (2005).

1. Simulate the model estimates θ∗i with i = 1, · · · , B using a parametric bootstrap method.

2. Sample Y ∗i from the distribution function of the random variable, G(Y ; θ̂), where θ̂ is the

ML estimate of the parameters from the original data.

3. Compute wi = G(Y ∗i ;θ∗i) for i = 1, · · · , B.

4. Let wL and wU be the α/2 and (1− α/2) quantiles of the empirical distribution of (w1, · · · , wB).

5. Solve L and U from wL = G(L; θ̂) and wU = G(U ; θ̂).

In Step 1, the parameters θ∗i are estimated from the simulated data sets based on θ̂, which would

require a huge amount of computation time in our application. We approximate this procedure by

simulating the model estimates θ∗ from the asymptotic multivariate normal distribution of the ML

estimates. That is, let L(θ) denote the total log likelihood of a specified model from K independent

systems. Then,

Î
θ̂

= − ∂2L(θ)

∂θ∂θT

∣∣∣∣
θ̂

(2.23)

29

Figure 2.8: Monthly prediction of the event counts for Product A on the hold-out data based on

Model 7.

is the observed Fisher information matrix for θ evaluated at the ML estimate θ̂. Then draws from

the multivariate normal distribution MVN
(
θ̂, Î

−1

θ̂

)
can be used in the calibration process. Because

of the large amount of data, the approximation will be good.

Example 5. Prediction Intervals for Product A

The monthly and cumulative event predictions from Model 7 for Product A are shown in Figures

2.8 and 2.9, respectively. The calibrated prediction intervals are based on B = 5,000 simulations.

Asymptotic theory (e.g. Beran 1990) suggests that the calibrated prediction interval procedure

has coverage probabilities that will be close to the nominal (1 − α) confidence interval. For this

example, 9 out of 12 observed event counts are within the calibrated prediction intervals and all

observed cumulative event counts are within the calibrated prediction intervals. The plug-in and

normal approximate predictions intervals are narrower when compared with the calibrated ones.

�

30

Figure 2.9: Cumulative prediction of the event counts for Product A on the hold-out data based

on Model 7.

2.8 Models and Predictions for Product B

In this section, we present an example based on warranty data from Product B, initially de-

scribed in Section 2.2.3. The models used in this section are similar to those that were applied to

Product A, while the seasonal patterns and fixed covariates differ.

2.8.1 Exploratory Analysis

Similar to what we did for Product A, Figure 2.10 gives the MCF for different model years with

95% pointwise confidence intervals. Although we observed only the mean cumulative number of

recurrences per system up to the first year for data of model year 2016, we could tell that the curves

of the two different model years behave differently, which indicates that the model year information

should be taken into account for modeling.

31

Figure 2.10: MCF versus system age for systems in model years 2015 and 2016 of Product B with

95% pointwise CIs.

2.8.2 Clustering for the Seasonal Models

Figure 2.11 shows the dendrogram of the hierarchical clustering results for Product B based

on warranty information of the most recent year. The observed events and number of systems at

risk by clusters as a function of calendar time are shown in Figure 2.12 and 2.13. The empirical

monthly recurrence rates of the two clusters have the similar shape but different levels as shown in

Figure 2.14.

2.8.3 NHPP Model Fitting

In this subsection, we fit the thirteen models in (2.18), and Tables 2.3 and 2.4 show the model

fitting on training data and prediction performance hold-out data, respectively. Similar to the

results for Product A, model fitting improves by adding cluster, season, fixed and random effects

to the model. But the model with cluster factors does not improve the predictions because we

only have two years of data for clustering and model fitting. When doing prediction, we implicitly

32

Figure 2.11: Dendrogram of hierarchical clustering for Product B. The horizontal line indicates

the cutoff location to split the observations into different clusters. From left to right, the cluster

numbers are 1 and 2, respectively.

Figure 2.12: Observed event counts as a function of date for the two different clusters of Product

B systems.

33

Figure 2.13: Number of systems at risk as a function of date for the two different Product B clusters.

Figure 2.14: Empirical monthly recurrence rate for Product B since year 2015.

34

Table 2.3: Summary results of different models for the Product B data. The smallest AIC and BIC values are marked
in bold.

No. Model AIC BIC

1 Simple NHPP 282526 282543

2 NHPP with Common Seasonal Effects 280634 280743

3 NHPP with Model Year and Common Seasonal Effects 280561 280679

4 NHPP with Cluster and Common Seasonal Effects 279646 279764

5 NHPP with Cluster, Common Season and Model Year Effects 279598 279724

6 NHPP with Cluster and Seasonal Interactions 279540 279759

7
NHPP with Cluster and Seasonal Interactions and Model Year Ef-
fects

279490 279718

8 NHPP with Common Season and Random Effects 278007 278125

9 NHPP with Common Season, Model Year and Random Effects 279485 279612

10 NHPP with Cluster, Common Season and Random Effects 277410 277537

11
NHPP with Cluster, Common Season, Model Year and Random
Effects

277372 277507

12 NHPP with Cluster and Seasonal Interaction and Random Effects 277296 277515

13
NHPP with Cluster and Seasonal Interactions, Model Year
and Random Effects

277259 277486

assume that the seasonal patterns in the future behave like the past. Prediction accuracy may suffer

if the future seasonal patterns behave in a different manner. Model 9 with the common seasonal

covariates, model year effects, and random effects provides the best predictions among all of the

models. The model fitting of monthly and cumulative event counts based on Model 9 are shown

Figures 2.15 and 2.16, respectively.

2.8.4 Prediction Intervals

Figures 2.17 and 2.18 give the prediction intervals of the monthly events and cumulative events,

respectively, while the calibrated prediction intervals are based on B = 5,000 simulations. Six out

of eight observed counts fall within the calibrated prediction intervals for the first eight months of

hold-out data. The number of events for three of the last four months, however, falls outside of

the prediction intervals. Delayed event reports could be a reason why the monthly predictions are

much higher than the observed events for June and July of 2017. The higher number of observed

events for April and May could be because more of the product warranties expire in these two

35

Table 2.4: Summary results of point predictions on different models for the Product B hold-out

data. The model with smallest RMSE/MAE/MAPE values is marked in bold.

No. RMSE6 RMSE12 MAE6 MAE12 MAPE6 MAPE12

1 606.5 454.5 547.1 369.7 43.0 31.2

2 226.2 235.1 194.4 197.7 12.1 17.2

3 101.9 194.7 94.0 146.4 6.9 15.3

4 225.1 236.9 193.9 200.2 12.1 17.5

5 121.8 199.0 112.0 155.2 7.9 15.6

6 224.2 236.6 193.1 200.2 12.1 17.6

7 120.4 198.9 110.9 155.2 7.9 15.6

8 210.2 229.1 182.0 192.8 11.5 17.1

9 84.2 192.4 76.1 137.5 6.4 15.1

10 206.5 228.9 179.3 193.1 11.4 17.2

11 120.6 198.1 110.9 154.3 7.9 15.5

12 204.5 227.7 177.4 192.0 11.3 17.1

13 115.3 196.4 106.0 151.9 7.5 15.3

Figure 2.15: Monthly prediction of the event counts for Product B based on Model 9.

36

Figure 2.16: Cumulative prediction of the event counts for Product B based on Model 9.

months compared with previous years, which encourages people to use the warranty shortly before

the expiration dates.

2.9 Simulation to Study Larger Amounts of Missing Data

In this section, we study the effects of missing data on the prediction performance of new data:

we randomly erase 10% − 30% of location variables from the original data of Product A, and use

these data to fit the models based on two different ways to handle missing locations data when

clustering:

1. Assign all the missing locations to a new location category.

2. Make random weighted assignment for the missing locations.

In order to compare the prediction metrics such as the RMSE on the hold-out data, we keep

using four clusters and compare Model 7 for different missing percentages. Figures 2.19 and 2.20

show the scatter plots of the 6-month and 12-month RMSE values based on the above two ways

of handling the missing locations. We experiment with 10%, 15%, 20%, 25% and 30% missing

locations. The random assignment methods shown in Section A.3 of the supplemental materials

are used to fill the missing locations. We repeated the experiment 20 times by doing both the

random erasing and assignment of the location data 20 times. Scatter plots of other prediction

37

Figure 2.17: Monthly prediction of the event counts on the hold-out data based on Model 9 for

Product B.

Figure 2.18: Cumulative prediction of the event counts on the hold-out data based on Model 9 for

Product B.

38

metrics such as MAE and MAPE are presented in the supplemental materials in Figures 2.22,

2.23, 2.24, and 2.25. The results of this simulation study can be summarized as:

1. The model using the original data with the 6.6% missing locations assigned to separate

categories by their country information has better prediction performance than the models

with higher missing percentages.

2. When the missing percentage is relatively small (e.g., less than 15%), the average prediction

metrics from two different ways to handle the missing data are close to each other. The

random assignment of missing data gives prediction metrics with less variation over the 20

experiments. When the missing percentage is larger, there is no best way to handle the

missing data.

3. When the missing percentage increases to around 30%, all of performance metrics have values

close to the prediction performance of Model 3 in Section 2.6. An explanation for this is that:

when we randomly erase 30% location variables and randomly assign a location to each of

the missing values, we introduce noise for the seasonality clustering as the actual seasonality

pattern in the data may be corrupted by the random assignment or the separate categories

of missing locations. The clustering may not help anymore, and the model will behave more

like Model 3, where all repairable systems have the same seasonality pattern.

4. In general, the model with 10% missing has better prediction performance in terms of the

6-month prediction metrics. The differences of 12-month prediction metrics among different

missing percentages are relatively small.

5. When the missing percentage increases from 20% to 30%, the prediction performance de-

grades. For example, the MAPE12 values for the 25% missing data are slightly smaller than

that of 20%, while the RMSE6 values for 25% are larger than that of 20%.

39

●
●

●●

●

●●●

●
● ●

● ●
●

●

●
●

●

●
●

36 38 40 42 44

36

38

40

42

44

RMSE6 With 10% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●● ●● ●

● ●

●

●

●
●

●
● ●

●

●

●

●

36 38 40 42 44

36

38

40

42

44

RMSE6 With 15% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●
● ●

●

●●

●
● ●

● ●
●

●

●

●

●

36 38 40 42 44

36

38

40

42

44

RMSE6 With 20% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

36 38 40 42 44

36

38

40

42

44

RMSE6 With 25% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●
●

●

●
●

●
●

●●● ●
●

●

●

●
●

36 38 40 42 44

36

38

40

42

44

RMSE6 With 30% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

Figure 2.19: Scatter plots of 20 experimental prediction results with weighted random assignment

and separate categories for RMSE6. The cross marks indicate the prediction metrics in Model 7 of

Section 2.6.

40

●●
●●

●

●●●
●

● ●

●
●

●

●

●
●

●

●

●

30 31 32 33 34 35 36

30

31

32

33

34

35

36
RMSE12 With 10% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●●

●● ●
● ●

●

●

●
●

●
● ●

●

●

●
●

30 31 32 33 34 35 36

30

31

32

33

34

35

36
RMSE12 With 15% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●

●
●

●

●
●

●

●

●

●● ●

● ● ●

●

●

●

●

30 31 32 33 34 35 36

30

31

32

33

34

35

36
RMSE12 With 20% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

30 31 32 33 34 35 36

30

31

32

33

34

35

36
RMSE12 With 25% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●●

●

●

●

●

●●

●
●

●●● ●

● ● ●

●

●

30 31 32 33 34 35 36

30

31

32

33

34

35

36
RMSE12 With 30% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

Figure 2.20: Scatter plots of 20 experimental prediction results with weighted random assignment

and separate categories for RMSE12. The cross marks indicate the prediction metrics in Model 7

of Section 2.6.

41

2.10 Concluding Remarks

In this paper, we introduce a general model for the recurrence rate of repairable systems that can

be used to predict the number of future events. The model can be applied to various applications

depending on the characteristics of the recurrent event processes. Our approach allows the use of

covariates that may affect the recurrence rate (for example, the different seasonal trends for different

locations), and provides better prediction results than the simple NHPP models. In particular, the

use of the cluster and seasonality information improves the predictions of future monthly events

for more useful decisions in industry.

Possible extensions of our current work include:

1. In this paper, we model the seasonal trends in the recurrence rate based on the calendar

month and we assume implicitly that each month has the same number of business days. The

number of business days varies from month to month because of holidays and the number of

weekends in the month. Taking the number of business days of each month into the model

could lead to more accurate modeling and prediction of events.

2. In some applications, claims are not reported immediately after the system failure. This

introduces extra variability in the time-dependent seasonal patterns in the model and can

lead to inaccuracies for data near the data-freeze date. Also, there can be spikes of warranty

claims near to the end-of-warranty date. Such factors might be included in the prediction

model.

3. Our paper focused on the prediction of future events. Sometimes it is important to predict

future costs as well. Our model can be extended to a compound mixed Poisson process like

that described in Grandell (1997). Marked point processes can also be used for claim cost

prediction, as described in Brémaud (1981) and Karyagina et al. (1998). Information about

failure modes could be helpful for the future claim cost prediction.

4. Two-dimensional warranty policies are widely used (e.g., in the North American automobile

market). For example, the observation of a warranty contract will end when the mileage of

42

a product reaches 36 thousand miles or three years after the purchase date, whichever comes

first. A model based on both system age and usage would be more appropriate. However,

usage data are often not complete as the usage information may not be available until there

is a claim and some of the systems may not have claims before the end of the warranty. Also,

automobiles with claims may not be a representative sample of the entire population. Lawless

and Crowder (2010) proposed joint models on the age and usage dimensions for the warranty

data for dependence assessment and model parameter estimation. Some work has also been

done on using a synthesized scale based on both age and usage as described in Ahn et al.

(1998) and Duchesne and Lawless (2000).

5. The investigation of NHPP models with time-varying covariates and random effects under

the Bayesian framework would be useful. The hierarchical modeling together with tools such

as Markov Chain Monte Carlo (MCMC) can then be used conveniently for estimating model

parameters and producing prediction intervals.

Acknowledgments

The authors gratefully acknowledge the help of After, Inc. for supporting and assisting in the

work presented in this paper. We appreciate the insightful comments from the editor, associate

editor and reviewers very much.

2.11 References

Aalen, O. O. (1988). Heterogeneity in survival analysis. Statistics in medicine, 7(11):1121–1137.

Ahn, C.-W., Chae, K.-C., and Clark, G. M. (1998). Estimating parameters of the power law process
with two measures of failure time. Journal of Quality Technology, 30:127–132.

Beran, R. (1990). Calibrating prediction regions. Journal of the American Statistical Association,
85:715–723.

Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics, volume 50. Springer.

43

Cifuentes-Amado, M. V. and Cepeda-Cuervo, E. (2015). Non-homogeneous Poisson process to
model seasonal events: Application to the health diseases. International Journal of Statistics in
Medical Research, 4:337–346.

Cook, R. J. and Lawless, J. (2007). The Statistical Analysis of Recurrent Events. Springer.

Duchesne, T. and Lawless, J. (2000). Alternative time scales and failure time models. Lifetime
Data Analysis, 6:157–179.

Fonseca, G., Giummole, F., and Vidoni, P. (2014). Calibrating predictive distributions. Journal of
Statistical Computation and Simulation, 84:373–383.

Fredette, M. and Lawless, J. F. (2007). Finite-horizon prediction of recurrent events, with applica-
tion to forecasts of warranty claims. Technometrics, 49:66–80.

Grandell, J. (1997). Mixed Poisson Processes, volume 77. CRC Press.

Hamada, M. S., Wilson, A., Reese, C. S., and Martz, H. (2008). Bayesian Reliability. Springer
Science & Business Media.

Hartigan, J. A. (1975). Clustering Algorithms. Wiley.

Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28:100–108.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning. Springer.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learn-
ing, volume 112. Springer.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations.
Journal of the American Statistical Association, 53:457–481.

Karyagina, M., Wong, W., and Vlacic, L. (1998). Life cycle cost modeling using marked point
processes. Reliability Engineering & System Safety, 59:291–298.

Klein, J. P. (1992). Semiparametric estimation of random effects using the cox model based on the
EM algorithm. Biometrics, 48:795–806.

Koutsellis, T., Mourelatos, Z., Hijawi, M., Guo, H., and Castanier, M. (2017). Warranty forecasting
of repairable systems for different production patterns. SAE International Journal of Materials
and Manufacturing, 10(2017-01-0209):264–273.

Lawless, J. and Fredette, M. (2005). Frequentist prediction intervals and predictive distributions.
Biometrika, 92:529–542.

44

Lawless, J. F. (1987). Regression methods for Poisson process data. Journal of the American
Statistical Association, 82:808–815.

Lawless, J. F. and Crowder, M. J. (2010). Models and estimation for systems with recurrent events
and usage processes. Lifetime Data Analysis, 16:547–570.

Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent
events. Technometrics, 37:158–168.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory,
28:129–137.

Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data. John Wiley &
Sons.

Nelson, W. (1988). Analysis of repair data. In 1988. Proceedings., Annual Reliability and Main-
tainability Symposium, IEEE.

Nelson, W. B. (2003). Recurrent Events Data Analysis for Product Repairs, Disease Recurrences,
and Other Applications, volume 10. SIAM.

Ngailo, T., Shaban, N., Reuder, J., Rutalebwa, E., and Mugume, I. (2016). Non homogeneous
Poisson process modelling of seasonal extreme rainfall events in Tanzania. International Journal
of Science and Research (IJSR), 5:1858–1868.

Rai, B. K. (2009). Warranty spend forecasting for subsystem failures influenced by calendar month
seasonality. IEEE Transactions on Reliability, 58:649–657.

Rigdon, S. E. and Basu, A. P. (2000). Statistical Methods for The Reliability of Repairable Systems.
Wiley.

Ross, S. M. (2014). Introduction to Probability Models. Academic Press.

Rousseeuw, P. J. and Kaufman, L. (1990). Finding groups in data. Series in Probability & Mathe-
matical Statistics, 34:111–112.

Ryan, K. J., Hamada, M. S., and Reese, C. S. (2011). A Bayesian hierarchical power law process
model for multiple repairable systems with an application to supercomputer reliability. Journal
of Quality Technology, 43:209–223.

Slimacek, V. and Lindqvist, B. (2016). Reliability of wind turbines modeled by a poisson process
with covariates, unobserved heterogeneity and seasonality. Wind energy, 19:1991–2002.

Teerapabolarn, K. (2014). Poisson approximation for independent negative binomial random vari-
ables. International Journal of Pure and Applied Mathematics, 93:779–781.

45

Therneau, T. M., Grambsch, P. M., and Pankratz, V. S. (2003). Penalized survival models and
frailty. Journal of Computational and Graphical Statistics, 12:156–175.

Wu, S. (2012). Warranty data analysis: A review. Quality and Reliability Engineering International,
28:795–805.

Xiao, S., Kottas, A., Sansó, B., et al. (2015). Modeling for seasonal marked point processes: An
analysis of evolving hurricane occurrences. The Annals of Applied Statistics, 9:353–382.

Xu, Z., Hong, Y., and Meeker, W. Q. (2015). Assessing risk of a serious failure mode based on
limited field data. IEEE Transactions on Reliability, 64:51–62.

Xu, Z., Hong, Y., Meeker, W. Q., Osborn, B. E., and Illouz, K. (2017). A multi-level trend-renewal
process for modeling systems with recurrence data. Technometrics, 59:225–236.

46

2.12 Supplemental Materials for Chapter 2

A.1 Likelihood Function with Random Effects Term.
Given that the random effects for the recurrence rate of each system follow independent
Gamma(1/φ, 1/φ), the integration over ui for (2.12) is,∫

 ri∏
j=1

uiνb,i(tij ;β)

δij exp [−uiµb,i(0, tai ;β)]

 u
1/φ−1
i exp(−ui/φ)

φ1/φΓ(1/φ)
dui

=
1

φ1/φΓ(1/φ)

∫ ri∏
j=1

uiνb,i(tij ;β)

δij exp [−uiµb,i(0, tai ;β)]u
1/φ−1
i exp(−ui/φ)dui

=
1

φ1/φΓ(1/φ)

 ri∏
j=1

νb,i(tij ;β)

δij
∫

u
ri+1/φ−1
i exp {−ui [µb,i(0, tai ;β) + 1/φ]} dui

=

 ri∏
j=1

νb,i(tij ;β)

δij Γ(ζi)

φ1/φΓ(1/φ)κζii
,

where ζi = ri + 1/φ and κi = µb,i(tai) + 1/φ.

A.2 Probability Function of Monthly or Cumulative Event Counts

Suppose a random variable Yi(t) is the number of events to be predicted at calendar time
t, and it can be re-written as Ni(t1, t2), where (t1, t2) is the time period in terms of system
age. Because the random effect ui has a Gamma distribution with density given in (2.11),
the probability mass function for Ni(t1, t2) is,

Pr[Ni(t1, t2) = n|DATA,θ]

=

∫ ∞
0

P (Ni(t1, t2) = n|ui)g(ui|DATA, φ)dui

=

∫ ∞
0

exp[−uiµb,i(t1, t2;β)] [uiµb,i(t1, t2;β)]n

n!

κζii
Γ(ζi)

uζi−1
i exp(−uiκi)dui

=
κζii [µb,i(t1, t2;β)]n

Γ(ζi)n!

∫ ∞
0

un+ζi−1
i exp [−uiµb,i(t1, t2;β) + κi] dui

=
κζii [µb,i(t1, t2;β)]n

Γ(ζi)n!

Γ(n+ ζi)

[µb,i(t1, t2;β) + κi]
n+ζi

=
Γ(n+ ζi)

Γ(ζi)n!

[
µb,i(t1, t2;β)

µb,i(t1, t2;β) + κi

]n [κi
µb,i(t1, t2;β) + κi

]ζi
, (2.24)

which is a negative binomial distribution. Also, when φ = 0, the probability function reduces
to a Poisson distribution with mean µb,i(t1, t2;β).

47

A.3 Random Assignment of Missing Locations for Product A Clustering.

For each repairable system i with missing location variable, we randomly assign a location to
it with the following procedure.

(a) Find all systems that have non-missing locations that have the same effective month as
system i. Denote the systems set as {S}.

(b) Compute the percentage of each distinct location for systems in {S}.
(c) Do a simple moving average smoothing of order 5 for the above percentages of each

location with percentages computed from the previous and later months.

(d) Apply random weighted sampling of the locations with the above percentages as weights
and assign the sampled location to system i.

The prediction results of Model 7 based on random assignment of missing locations were
repeated 20 times. The results are shown in Table 2.5. Figure 2.21 shows the histogram of
all 20 experiments, and their comparisons with the prediction results by grouping the missing
location values into new categories. It can be seen that the latter shows consistently better
prediction results.

A.4 Scatter plots of MAE and MAPE for the simulation study on missing data in
Section 2.9.

48

RMSE6

F
re

qu
en

cy

37 38 39 40 41

0

2

4

6

8

RMSE12

F
re

qu
en

cy

31 32 33 34

0

1

2

3

4

5

6

MAE6

F
re

qu
en

cy

31 32 33 34

0
1
2
3
4
5
6
7

MAE12

F
re

qu
en

cy

25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0

0

2

4

6

8

MAPE6

F
re

qu
en

cy

11.5 12.0 12.5 13.0

0
1
2
3
4
5
6
7

MAPE12

F
re

qu
en

cy

11.0 11.5 12.0

0
1
2
3
4
5
6
7

Figure 2.21: Histogram of 20 experimental prediction results with weighted random assignment of

missing locations (Dotted lines shows the corresponding prediction values by grouping the miss-

ing locations into new categories, and dashed lines show the mean prediction values of the 20

experiments based on weighted random assignment for missing locations).

49

Table 2.5: Summary results of point predictions on Model 7 for the Product A hold-out data

with 20 repeated times of random assignment experiment. The superscript 6 and 12 indicate the

RMSE/MAE/MAPE of the first 6 and 12 months, respectively.

Repeat

No.
RMSE6 RMSE12 MAE6 MAE12 MAPE6 MAPE12

1 38.8 32.4 32.0 27.1 12.1 11.5

2 39.4 32.9 32.5 27.4 12.3 11.6

3 37.6 31.9 31.2 27.2 12.0 11.6

4 37.3 31.7 31.2 26.8 11.9 11.4

5 39.8 32.8 34.0 28.0 12.9 11.8

6 39.6 33.2 33.1 28.0 12.6 11.9

7 40.3 33.8 33.3 28.3 12.7 12.0

8 39.9 33.2 33.2 27.9 12.7 11.9

9 39.4 33.0 32.9 27.9 12.6 11.9

10 39.7 33.2 33.2 28.1 12.7 12.0

11 39.2 33.1 32.7 27.9 12.4 11.8

12 39.6 33.0 32.7 27.6 12.4 11.7

13 38.4 32.2 31.9 27.0 12.1 11.4

14 36.9 30.7 30.6 25.7 11.5 10.8

15 41.0 34.2 34.4 28.8 13.0 12.1

16 40.6 33.7 33.5 28.0 12.7 11.8

17 39.9 33.3 33.3 28.1 12.7 11.9

18 40.8 33.9 34.2 28.7 13.0 12.2

19 39.9 33.4 33.3 28.1 12.7 11.9

20 39.7 32.8 33.7 27.9 12.8 11.8

Average 39.4 32.9 32.8 27.7 12.5 11.7

50

●
●

●
●

●

●
●●

●
● ●

● ●

●
●

●
●●

●●

30 32 34 36 38 40

30

32

34

36

38

40
MAE6 With 10% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●
●

●

●

●

●

●

●

● ●

●●
●

●

●
● ●

30 32 34 36 38 40

30

32

34

36

38

40
MAE6 With 15% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●
●

●
●

●
●

●●
●●

●●

●
● ● ●

●

●

●

●

30 32 34 36 38 40

30

32

34

36

38

40
MAE6 With 20% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

30 32 34 36 38 40

30

32

34

36

38

40
MAE6 With 25% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

● ●
●

●●
●●

●
●

● ●
●

● ●
●

●

30 32 34 36 38 40

30

32

34

36

38

40
MAE6 With 30% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

Figure 2.22: Scatter plots of 20 experimental prediction results with weighted random assignment

and separate categories for MAE6. The cross marks indicate the prediction metrics in Model 7 of

Section 2.6.

51

●●

●●

●

●
●

●
●● ●

●

●

● ●
●

●●
●●

25 27 29 31

25

26

27

28

29

30

31

32
MAE12 With 10% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

● ●
●

●

●

●

●

●

●
●

●●
●

●

●● ●

25 27 29 31

25

26

27

28

29

30

31

32
MAE12 With 15% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●

●

●

●●

●

● ●

●

●
●

●

●
● ●

●

●

●

●

25 27 29 31

25

26

27

28

29

30

31

32
MAE12 With 20% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

25 27 29 31

25

26

27

28

29

30

31

32
MAE12 With 25% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●●
●

25 27 29 31

25

26

27

28

29

30

31

32
MAE12 With 30% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

Figure 2.23: Scatter plots of 20 experimental prediction results with weighted random assignment

and separate categories for MAE12. The cross marks indicate the prediction metrics in Model 7 of

Section 2.6.

52

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●●●●

11.0 12.0 13.0 14.0

11.0

11.5

12.0

12.5

13.0

13.5

14.0
MAPE6 With 10% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●● ●

11.0 12.0 13.0 14.0

11.0

11.5

12.0

12.5

13.0

13.5

14.0
MAPE6 With 15% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●
●

●
●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●

●

11.0 12.0 13.0 14.0

11.0

11.5

12.0

12.5

13.0

13.5

14.0
MAPE6 With 20% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

11.0 12.0 13.0 14.0

11.0

11.5

12.0

12.5

13.0

13.5

14.0
MAPE6 With 25% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

●
●

11.0 12.0 13.0 14.0

11.0

11.5

12.0

12.5

13.0

13.5

14.0
MAPE6 With 30% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

Figure 2.24: Scatter plots of 20 experimental prediction results with weighted random assignment

and separate categories for MAPE6. The cross marks indicate the prediction metrics in Model 7 of

Section 2.6.

53

●● ●●
●

●
●●

●
● ●
●

●

● ●●
●●●●

10 11 12 13 14

10

11

12

13

14
MAPE12 With 10% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●
●

●
●

●
●

●

●
●

●
●

●
●

●●
●

●

●
● ●

10 11 12 13 14

10

11

12

13

14
MAPE12 With 15% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●
● ●

● ●

●

●●

●

●
● ●

●

●

●

●

10 11 12 13 14

10

11

12

13

14
MAPE12 With 20% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

10 11 12 13 14

10

11

12

13

14
MAPE12 With 25% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

●

●
●

●

●
●

●

● ●
●●

●
●

●
●

●
●

●●
●

10 11 12 13 14

10

11

12

13

14
MAPE12 With 30% Missing Data

Separate Category

R
an

do
m

 A
ss

ig
nm

en
t

Figure 2.25: Scatter plots of 20 experimental prediction results with weighted random assignment

and separate categories for MAPE12. The cross marks indicate the prediction metrics in Model 7

of Section 2.6.

54

CHAPTER 3. ELECTRONIC CIRCUIT TROUBLESHOOTING USING

SIMULATION AND BAYESIAN INFERENCE

Qianqian Shan, Stephen D. Holland and William Q. Meeker

3.1 Abstract

Electronics is an integral part of almost all industrial systems such as computers that control the

systems and sensors that monitor and control systems. Electronic circuit component characteristics

exhibit manufacturing variability just like mechanical parts, and this variability can lead to elec-

tronic circuit malfunctions or failures. The repair history for a particular kind of equipment may

not be able to suggest which specific component(s) will fix a particular problem and costs could go

up if we replace more components then needed. This paper focuses on developing an algorithm to

automate electronic circuit troubleshooting. With the help of electronic circuit simulator, ngspice,

we propose to apply a Bayesian approach with adaptive Markov Chain Monte Carlo (MCMC) to

estimate the circuit system component values and to diagnose malfunctions in electronic systems.

We demonstrate the methods using two simulated electronic circuits. The results show that the

failed components of electronic circuits can be accurately and efficiently isolated.

Keywords: Adaptive MCMC, Bayesian inference,circuit simulation, circuit troubleshooting,

forward model, inverse model.

3.2 Introduction

3.2.1 Background and Motivation

Electronic circuits are a crucial part of many industrial systems, and the troubleshooting a

malfunctioned electronic circuit can be very useful to keep the systems working and save costs.

Electronic circuit designs are based on nominal values of component parameters. Tolerances stack

55

up and variability in physical properties of the components can have a major effect on the reliability

of electronics. There has been much work on the use of simulation during the circuit design process.

For example, Tuinenga (1991) introduces how to do electronic circuit simulation and analysis such

as tolerancing problems with Pspice. However, little has been done to apply simulation-based

methods to help troubleshoot electronic systems. Automation of assembly labor has been extensive,

and automatic test equipment on circuit failure detection is used by almost all manufactures. What

is missing is the automation of the circuit troubleshooting and repair process. Tests upon discovery

of a problem will not be able to identify the exact component problem because many failures,

especially in analog circuits, are not hard failures, but only out-of-specification failures. While

hard failures are relatively easy to identify, soft failures, where one or more unusual parameter

values combine to make the circuit malfunction are more difficult to locate. The repair history for

a particular kind of equipment may suggest to a technician that replacing four specific components

will usually fix the problem. If it is only one of the four components that is out of specification,

then three good components are either thrown away or damaged by the removal and cost goes up.

Across manufacturing, billions of dollars are spent to fix such problems and the dollars can be saved

by having a more specific, faster, and less costly solutions for circuit troubleshooting.

3.2.2 Model-based Troubleshooting

Electronic component characteristics exhibit manufacturing variability just like mechanical

parts, and this variability can lead to malfunctions. Moreover, relative variation can be quite

large and parameter values can shift over time as the part degrades. The variation in electronic

part properties comes from tolerances in photolithographic masking, layer thickness, presence of

contaminants, and other variables, leading to variations in electronic parameters and part perfor-

mance. Oftentimes, these variations are hidden through the use of feedback loops (e.g, negative

feedback loops in an operational amplifier), but even so, extreme variation can exceed the ability

of the feedback system to compensate.

56

With performance dependent on a large number of interacting variables and because electronic

systems generally do not provide visual, tactile feedback like mechanical systems, the troubleshoot-

ing process that determines the root cause and feeds the knowledge back to the designers and

component suppliers can be difficult. The process can be simplified by taking advantage of the

circuit-simulation models to investigate the likely causes of measured symptoms from a failed cir-

cuit. For example, ngspice can be used to simulate a circuit’s characteristics for given inputs of

specified component parameter values.

We propose to apply adaptive MCMC to track and update estimates of the circuit components,

and to diagnose malfunctions in electronic circuits. Given measured voltages of a failed circuit as

observations, MCMC will help to detect which component parameters are out of specification, and

thus help to identify the components that cause failures. For example, this process could be used

to estimate the gains of several critical transistors, and determine which one or ones might have

malfunctioned based on how the estimated values compare with their nominal values.

We assume weakly informative prior knowledge of a failed circuit, and the posterior distribution

of each circuit component value is obtained for more accurate troubleshooting.

3.2.3 Literature Review

Bandler and Salama (1985) describes the theory and algorithms of four fault location approaches

of analog circuits: the fault dictionary approach, the parameter identification approach, the fault

verification approach and the approximation approach. Tadeusiewicz et al. (2002) proposes an

approach using the linear programming and the simplex method for soft-fault diagnosis of linear

and nonlinear circuits, and the approach assumes that any circuit element is specified by its nominal

value and a tolerance. Alippi et al. (2002) introduces a sensitivity approach to select the most

effective testing nodes and inputs. Aminian and Aminian (2001) provides analog circuit fault

diagnosis methods with Bayesian neural networks and preprocessors such as wavelet transform and

normalization, and assumes that the fault modes are known. Vasan et al. (2013) develops methods

for detection of circuit fault conditions, fault troubleshooting, and prediction of remaining useful

57

performance of analog circuits, and a one-against-one (OAO) multiclass least squares support vector

machine (LS-SVM) algorithm for the training of a classifier. Other literature such as Cui and Wang

(2011) and Vasan et al. (2014) also discuss circuit fault analysis with SVM.

In this paper, we propose a general methodology for electronic circuit troubleshooting, especially

for the following cases:

• When there is not enough data to develop data-driven models.

• When there are multiple unknown failure modes.

• When the purpose is to isolate the malfunctioned components as accurately as possible (i.e.,

to identify the values of all component parameters for a failed circuit device).

3.2.4 Overview

The remainder of the paper is organized as follows. Section 3.3 describes the an electronic circuit

simulation tool, ngspice and a related R package, RSpice. Section 3.4 provides the general ideas of

electronic circuit troubleshooting with the help of simulated circuits. Section 3.5 describes the ideas

in Section 3.4 in more detail with an illustrative power amplifier example. Section 3.6 presents the

adaptive MCMC algorithm to solve the Bayesian inverse problem for troubleshooting. Section 3.7

applies the algorithm to another more complicated high dimensional application. Section 3.8 gives

some concluding remarks.

3.3 Electronic Circuit Simulation and Ngspice

Ngspice is a mixed-level/mixed-signal electronic circuit simulator developed from three open

source software packages: Spice3f5, Cider1b1, and Xspice, where SPICE is the acronym of Simula-

tion Program with Integrated Circuit Emphasis. Ngspice can conveniently simulate different kinds

of electronic circuits and provide voltage or current values at any specified circuit node. Circuit

simulation is generally used to explore the properties of circuits as a function of circuit component

values. In our application, we use ngspice in conjunction with statistical methods to make inference

58

on the circuit component values which may be hard to measure, based on measured values of a

circuit such as voltage observations.

R is a language providing a highly extensible environment for statistical computing and graphics.

RSpice is an R package that makes it possible to run ngspice seamlessly from R via a shared library

(or a dynamic linked library for a Windows operating system). The combination of ngspice and R

can greatly simplify the simulation and analysis of electronic circuits in applications where statistical

methods are needed.

3.4 Electronic Circuit Troubleshooting: The Basic Ideas

The aim of our approach is to estimate the parameter values of the hidden (not directly ob-

servable) parameters of an electronic circuit given its malfunction symptoms. We solve this inverse

problem with the help of the forward model and a virtual population of the electronic circuit

devices.

3.4.1 Forward Model

The forward model explores outputs of a given circuit with specified components values (e.g.,

transistor gains). With the help of the circuit simulation models, one can investigate the behaviors

of a circuit that has variation in its component values. The behaviors may include the circuit

voltages or currents at circuit nodes, the correlations among component values and so on. The

forward model can help us to learn about the internal properties of the circuits and obtain insights

about how the component’s parameters affect the overall behavior of the circuit.

3.4.2 Inverse Problem

Troubleshooting diagnosis is done by estimating the posterior distributions of the failure causal

factors (e.g., out of specification components) given the measured symptoms (e.g., voltages at test

points) of a failed circuit. That is, voltage measurements at selected circuit nodes are used as

59

observed data. Inferences about circuit component values are then performed to identify malfunc-

tioned components of the failed circuit.

3.4.3 A Virtual Population of Devices

We use a simulated virtual population of circuit devices to mimic an actual population. We

define a circuit device as failed when its output voltage is more than 5% different from the output

voltage when all component values are equal to their nominal values.

3.5 Illustrative Application: Class A Power Amplifier

We illustrate data preprocessing and analysis with a simple single-stage Class A power amplifier.

3.5.1 Class A Power Amplifier Background

An amplifier takes a signal (usually small) as input and amplifies the signal as output. The class

A amplifier features a full 360◦ of the input signal (Boylestad and Nashelsky (2012)). Figure 3.1

shows the circuit schematic of the amplifier, where R1 and R2 are biasing resistors, RL is the load

resistor, RE is the emitter resistor, and Q1 is a type 2N3055 NPN transistor. For the purpose of

demonstration, we assume that the failure of the amplifier is caused by only low transistor gains of

Q1 or high resistance of RL.

3.5.2 Virtual Population of Devices and Failure Definition

To illustrate our troubleshooting methodology, we use a simulated population of virtual class A

amplifier devices to mimic an actual population of such devices. An amplifier is considered as failed

if the amplitude of its output voltage (voltage across resistor RL) is more than 5% different from

its nominal value. We built 1,000 simulated power amplifier devices with a nominal theoretical

circuit output gain of 10. Even with modern manufacturing tolerances, transistor gains can be

highly variable. The change of the load resistance can also affect the output voltage directly. For

simplicity, we restrict our investigation of failed devices to these two components but could be

60

Figure 3.1: Schematic of a class-A amplifier.

easily extended to all circuit components. We assume that the distributions of the RL resistance

and Q1 transistor gain are independent and follow a mixture of two truncated normal distributions

(truncated because both the RL resistance and transistor Q1 gain must be non-negative).

• Sub-population of non-defective components: Component values have truncated nor-

mal distributions. The mean of the corresponding untruncated normal distributions of non-

defective components, µND, is set to equal nominal component values and the standard de-

viation, σND, is determined such that 99.99% of the component values are from a population

is in the interval [0.9µND, 1.1µND].

• Sub-population of malfunctioned (defective) components: Component values also

have truncated normal distributions. The mean of the corresponding untruncated normal

distribution, µD, and standard deviation, σD, are based on physical knowledge of the com-

ponents in the defective devices.

• The overall population of component values is a mixture of the non-defective and defective

devices with the weights chosen to control the proportion of devices that would be defective

in practice. Denote a vector of parameter values as θ = (θ1, θ2), then the cdf of θi is

F (θi;µD,i, σD,i, µND,i, σND,i) = pF (θi;µD,i, σD,i) + (1− p)F (θi;µND,i, σND,i), (3.1)

61

where p is the proportion of defective devices, F (θ;µD,i, σD,i) and F (θ;µND,i, σND,i) are

cdfs of components parameter i from defective and non-defective devices, respectively. For

example, suppose that there are 1% of 1000 devices are defective, then p = 0.01. Table 3.1

shows the values of other parameters.

Table 3.1: Parameter values of the mixture of truncated normal distributions for class A amplifier.

Component

Number

Name µND σND µD σD

1 RL(Ω) 1000 10 1100 10

2 Q1 129 5.49 7 5

3.5.3 Data Pre-processing

Because the simulated results from ngspice are based on the circuit parameter specification,

and the solutions of a set of equations based on physical laws (for example, equations based on

Kirchhoff’s Laws at each node) provide deterministic voltage values, y∗, with,

y∗ = g (θ) , (3.2)

where y∗ is a vector of raw voltage values from ngspice at the specified circuit nodes, g(·) is the

function computed by ngspice for a given vector of parameter values in θ. Our goal is to estimate

the joint posterior distribution of θ.

We can obtain voltage values for all nodes from ngspice. There may, however, be voltages at

certain nodes that are insensitive to the change of component parameters. These nodes have the

same voltage values for all the population devices up to the third decimal, (i.e., the differences of

voltages at a node for all devices in a population would not be detectable if they were measured

by a real voltmeter). As we are trying to mimic the real measurement process and no information

can be obtained from these nodes, their voltages need not be obtained. Although currents can also

be computed from ngspice at given nodes, we do not to use them because currents are harder to

measure in practice. Suppose the data consist of J voltage values from J circuit nodes as our raw

62

“observations”, that is, y∗i = (y∗i,1, · · · , y∗i,J)T represents J raw voltage values obtained from ngspice

for device i. The preprocessing of the raw voltage values is performed as follows,

• Rounding: Ngspice returns float voltage/current values with more than 8 decimal places.

With a real voltmeter, however, one can usually measure up to three digits of precision. In

order to have the simulated data mimic the real data as much as possible, we round the J

selected raw voltage values for each device from ngspice to three significant digits.

• Standardization: When characterizing the population with ngspice, there are 1,000 voltage

values for each node from the 1,000 devices, however, the ranges for these values for different

test points vary. For example, the 1,000 values ranges from 0.221 to 0.342 for one node, while

another node has values ranging from 1.0 to 9.0. Moreover, the distributions of the 1000

voltage values for different nodes also vary: some distributions are symmetric while others

are either left or right skewed. We propose a robust standardization method to re-scale the

voltages so that all standardized “observations” will have approximately a variance of 1 and

median of 0:

For j = 1, · · · J ,

1. With the 1,000 voltage values at node j from the population, (y∗1,j , · · · , y∗1000,j), find

median mj and interquartile range IQRj .

2. Compute the standardized voltage values for node j of device i as yi,j = [y∗i,j−mj]/IQRj .

3.5.4 Forward Model

The behaviors of voltages at any of the circuit nodes as a function of component values can be

studied with ngspice. In the class A power amplifier example, by using different values of resistance

RL and transistor gains of Q1 as inputs, ngspice will return the corresponding voltage values,

which can be used to compute the overall circuit gain (the ratio of output and input). If we only

change one component value within a certain range and keep the others fixed at their nominal

values, the effect of this specific component on output voltage can be studied. Similarly, if we

63

Figure 3.2: Class-A power amplifier gain as a function of resistance of RL and gain of transistor

Q1.

change the values of the two components systematically and keep the others fixed at nominal, we

can obtain the contour plots of output voltages (amplitude) for these two components. These kinds

of explorations provide information about the forward model. Figure 3.2 shows contours of circuit

gains as a function of RL and Q1. The plot indicates that circuit gains are sensitive to low Q1 and

RL values. Similar contour plots can be done with different ranges of Q1 and RL for a detailed

exploration of how the component values affect the behavior of the circuits.

3.5.5 Likelihood and Weakly Informative Prior Distribution

Prior distribution: A weakly informative prior distribution on the component values, p(θ)

with support Θ, is used. By using a weakly informative prior (e.g., a heavy tailed t-distribution),

64

we place more weight on more reasonable component values while affecting the information in

likelihood as little as possible (Gelman et al. (2017)).

Likelihood function: Let h(θ) denote the standardized voltage data following steps in Section

3.5.3 with component values θ. Denote y as the standardized “observations” from a defective device,

y = h(θ) + ε, (3.3)

where ε = (ε1, · · · , εj , · · · , εJ)T with εj
iid∼ N

(
0, σ2

εj

)
is the error term for the observations. The

error term arises from the measurement variability and rounding to simulate field observations.

In the ngspice simulation, the error term arises from a combination of rounding and convergence

accuracy of ngspice computations. The likelihood function for the observations from one device is,

p(y|θ) = p(y|h(θ)) = φnor

[y − h(θ)

σ

]
, (3.4)

where φnor(·) is the probability density function (pdf) of the standard normal distribution.

3.5.6 Posterior Distribution

With the above prior and likelihood functions, the posterior likelihood function can be described

according to Bayes theorem as,

p(θ|y) =
p(y|θ) · p(θ)∫

Θ p(y|θ) · p(θ)d(θ)
, (3.5)

where the denominator is a normalizing constant. Then the posterior distribution can also be

expressed as,

p(θ|y) ∝ p(y|θ) · p(θ). (3.6)

The corresponding log-posterior for each device with support Θ after substituting p(θ|y) and

p(θ) can be expressed as

L(θ|y) = log [p(θ|y)] = −
J∑
j=1

[
yj − hj(θ)

σεj

]2

+ log[p(θ)], (3.7)

where yj is the corresponding standardized voltage at circuit node j with j = 1, · · · , J .

65

3.6 Use of Adaptive MCMC to Solve the Inverse Problem

Various MCMC methodologies have been developed to sample from complex probability distri-

butions such as a joint posterior distribution in Bayesian inference. One of the simplest approaches

is to use the random-walk Metropolis (RWM) algorithm as illustrated in Gilks et al. (1995). To

speed up the convergence of the Markov chain and increase the acceptance rate, Haario et al. (2001)

introduce an adaptive Metropolis algorithm to adapt the covariance matrix of the proposal distribu-

tion empirically according to the historical Markov chain values. Many other adaptive algorithms

have been developed such as Andrieu and Robert (2001), Sahu et al. (2003), Haario et al. (2005),

and Andrieu and Thoms (2008). Vrugt et al. (2009) proposed a self-adaptive MCMC algorithm

based on differential evolution to deal with cases when inappropriate initial proposal distributions

are used. RWM generates new Markov chain values from a symmetric proposal distribution with a

specified covariance matrix, however, has a low acceptance rate when the proposal distribution is

not similar to the (unknown) true joint distribution of the parameters or when there exist strong

correlations among parameters to be estimated. In this section, we propose a modified adaptive

RWM algorithm that can tune the covariance matrix of the proposal distribution and determine

the number of tuning iterations automatically.

3.6.1 Adaptive Metropolis Algorithm

The general idea of an adaptive Metropolis algorithm is to use the historical Markov chain values

to tune the covariance matrix of the proposal distribution, so the acceptance rate will increase

because the covariance matrix is reflecting more information about the true joint distribution of

the parameters. In case of high dimensional parameters, we first reduce the dimension by doing

an initial sensitivity analysis to find out how each component parameter can affect the output. To

run the MCMC in an efficient way, we tune the covariance matrix of the proposal distribution of

parameters, which can be used to characterize the covariance matrix of joint posterior distribution

of the parameters. We develop a tunning algorithm based on methods described in Haario et al.

66

(2001) and Andrieu and Thoms (2008). At the end, we apply the standard MCMC to ensure

ergodicity of the Markov chain values. Our proposed algorithm is as follows,

1. Initial stage.

• For each of the circuit component, i = 1, · · · , n, do a component-wise sensitivity analysis

of the component’s effect on the overall posterior function p(θ|y). Record the maximum

observed log posterior value that each transistor has as Li.

• Split the components to be estimated into two groups: one group that has large posterior

values, which will be more strongly influenced by changes in the parameter values. The

other group of components will not be influential to the posterior distribution. Denote

the groups of components that have large log posterior values by G1 and the other group

by G2.

2. Training stage. To speed up the movement towards the posterior mode and avoid degeneracy

problems so we can tune the covariance matrix of the proposal distribution efficiently, we first

run Ntrain iterations with a fixed initial covariance matrix. Initialize the starting component

values, Xtrain,0 ∈ Rn and the positive definite covariance matrix, Ctrain,0. Propose new

component values with RWM algorithm and only accept the proposed values when the log

posterior value is increasing.

3. Tuning stage on components in G1: Keep all other components in G2 at their nominal values,

initialize the starting values of components in G1 with the last training stage chain values,

XG1,0 = XG1,Ntrain , and take the empirical covariance matrix of components in G1 of training

stage, CG1,0 as the starting covariance matrix for the proposal distribution. At each step t:

• Update the values of Markov chain values, XG1,t using the acceptance rules from RWM

algorithm, (i.e., acceptance rate determined by the ratio of the posterior distribution of

the proposed values and XG1,t−1).

67

• Drop the older chain values to avoid excessive chain values far from the mode and use

only the newer ones to further update the covariance matrix.

For every nbatch step:

• Update the proposal covariance matrix as CG1,t and propose new component values with

the updated covariance matrix.

• Keep track of the value of each element in the covariance matrix CG1,t after each update,

compute the quartile coefficient of dispersion for each element separately every n1 iter-

ations (i.e., check the value of [(Q3 −Q1)/(Q3 +Q1)]). As the magnitude of dispersion

reflects the variation of the historical update, smaller quartile dispersion values indicate

that the specific element is relatively stable and a further update will not change it

much. The proposal covariance matrix becomes stable when the quartile coefficient of

each element of the matrix is close to zero.

4. Tunning stage on all components: Expand the tuning to the whole parameter space. Obtain

a final covariance matrix for all parameters.

5. Metropolis stage: Use the final tuned covariance matrix obtained from the tuning stage as

the covariance matrix of the proposal distribution. Apply the standard Metropolis algorithm

and save Markov chain values for inference.

3.6.2 Application of Adaptive MCMC to A Failed Class A Power Amplifier

We pick one failed device from the virtual population and apply the above adaptive MCMC

algorithm to find the posterior distributions of resistor RL and transistor Q1, and determine which

components cause the failure. We use a heavy tail scaled t distribution as a weakly informative

prior for the component values based on suggestions on Gelman et al. (2017). Figure 3.3 shows

the prior distributions of RL and Q1. The prior distributions indicate our knowledge that these

component values for a failed device: resistors tend to have a higher resistance and transistors tend

to have lower gains for failed devices.

68

Figure 3.3: Prior distributions of RL and Q1.

Figure 3.4: Marginal posterior distributions of RL and Q1.

The posterior distributions based on 10,000 iterations of MCMC of RL and Q1 are shown in

Figure 3.4. The marginal posterior distribution of Q1 has mode at around 7.51, which is far from

its nominal value (129). We can conclude that Q1 is causing the circuit to fail.

3.7 A Second Example: 741 Op-Amp Circuit

The integrated-circuit (IC) operational amplifier (op-amp) was first introduced in mid-1960s and

became popular due to its versatility and low prices. We use a virtual version of the well-known

op-amp to illustrate our failure-detection methodology with an example of a failed operational

69

Figure 3.5: Negative feedback amplifier circuit.

amplifier. We consider two different kinds of gains. The overall gain of an op-amp circuit (the ratio

of output and input voltage) is used to determine if the device is failed. The gain of the individual

transistors that comprise the op-amp are the component values to be estimated.

3.7.1 741 Op-Amp Background

An op-amp is usually composed of a number of transistors, resistors, and capacitors, and the

overall op-amp gain can be less than its nominal value when certain transistors malfunction (e.g.,

when transistor gains are far lower than their nominal values). In this example, we use a negative

feedback amplifier circuit based on a 741 op-amp and employ ngspice to simulate the circuit as shown

in Figure 3.5. There are 25 transistors in the op-amp as shown in Figure 3.6. More specifically,

we used 15 NPN-type 2N3904 bipolar transistors and 10 PNP-type 2N3906 bipolar transistors to

simulate this 741 op-amp. Nominal specifications of the transistors are given in data sheets such

as Fairchild (2001). Failures of the op-amp circuit are usually caused by one or more transistors

with gains out of specification (generally gain values that are too low).

70

Figure 3.6: 741 op-amp schematic with numbered circuit nodes (Redrawn based on the circuit on

page 812 of Adel S. Sedra (1998)).

3.7.2 Application of the Adaptive MCMC Algorithm

Using the same standard as in the previous class A power amplifier example, we also define an op-

amp as failed if its output voltage is more than 5% different from its nominal value. We built 1,000

simulated op-amp devices with a theoretical op-amp circuit gain equals to 1001 (determined by the

fixed negative feedback loop set up in Figure 3.5) and the 25 transistor gains for each device were

drawn from truncated normal distributions. We assume that the distributions of all transistor gains

are independent and the gains follow a mixture of two truncated normal distributions. Table 3.2

shows the values of other parameters.

Table 3.2: Parameter values of the mixture of truncated normal distributions.

Transistor

Type

µND σND µD σD

NPN 416.4 12.65 50 10

PNP 180.7 5.49 50 10

71

Figure 3.7: 741 op-amp circuit likelihood values as a function of Q16 and Q17 gains.

Before applying adaptive MCMC algorithm, we explore the op-amp circuit behavior as a func-

tion of the gains of the different transistors (part of the forward model). We find that there are

several pairs of transistors that are strongly correlated with each other. For example, Figure 3.7

shows the relative likelihood ratio (original likelihood function divided by the maximum of the

likelihood function) as a function of the transistors Q16 and Q17 gains. The contour plot shows

that the estimated gains of Q16 and Q17 have a strong correlation because the gain of the cascaded

Q16 and Q17 is approximately equal to the product of the individual gains of Q16 and Q17. Thus

it would take the standard MCMC algorithm very long to converge and find the posterior distribu-

tions of component values if the covariance matrix of the proposal distribution does not take the

correlation into account. Our adaptive MCMC can help to characterize these kinds of correlations

automatically and thus improve the sampling efficiency of the MCMC algorithm and significantly

speed up convergence.

72

0 200 400 600 800 1000 1200

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Transistor Gain

De
ns

ity

Figure 3.8: Prior distribution of transistor gains.

We select one failed device from the virtual population and apply the above adaptive MCMC

algorithm to find the posterior distribution of the 25 transistor gains, and isolate the one or ones

that caused the failure. We use a scaled t distribution with heavy tails as the weakly informative

prior distribution for the component parameter values, as suggested by Gelman et al. (2017).

Figure 3.8 shows the prior distribution on the original gain scale. The prior distribution indicates

our knowledge that the gain values for a failed device could have small values, but there are still

significant weights around their nominal values (416.4 and 180.7 for NPN- and PNP-type transistors,

respectively) with heavy tails.

The algorithm estimates the gain values of the failed device well for all of the transistors. Plots

in Figure 3.9 show the representative marginal posterior gain distributions for Q3, Q5, Q13B, Q16,

and Q17, respectively. The posterior gain distribution of Q17 has the narrowest credible interval

with the mode located at around 29.2, which is significantly lower than its nominal value (416.4).

Even with the strong negative correlation between Q16 and Q17, our algorithm can estimate the

transistor gains of Q16 and Q17 with reasonable precision. The posterior distributions of Q3,

73

Q5, Q13B, and Q16 have modes close to their nominal values (416.4 for Q5 and Q16, and 180.7

for Q3 and Q13B) with wider credible intervals, which indicate that our algorithm can effectively

discriminate between defective and non-defective components. The algorithm can deal with the

higher dimensional problems as well.

Depending on the starting Markov chain values and the proposal distribution, the standard

MCMC will take hours or longer to obtain converged Markov chains and stable posterior estimates

of component values. It will, however, take only a few minutes to achieve the same results with

adaptive MCMC, and our proposed algorithm is especially efficient if some of the circuit components

have complicated correlations with each other.

3.8 Concluding Remarks

In this paper, we introduce a general methodology for electronic circuit troubleshooting that can

be used when knowledge of failure modes is unavailable. It can be applied to various applications

flexibly. The methodology works well even when the electronic circuit has many components. The

methodology makes inferences on the electronic circuit component values with the help of circuit

simulation and Bayesian inference methods. Then the information about the component values can

be used to identify the possible causes of failure. In the examples of two relatively simple simulated

electronic circuits, voltages from the circuit nodes are required to make inverse Bayesian inference.

In practice, this kind of data need to be available to apply our methodology.

74

Figure 3.9: Posterior gain distribution of Q3, Q5, Q16, Q13B and Q17.

75

3.9 References

Adel S. Sedra, K. C. S. (1998). Microelectronic circuits.

Alippi, C., Catelani, M., Fort, A., and Mugnaini, M. (2002). SBT soft fault diagnosis in analog
electronic circuits: a sensitivity-based approach by randomized algorithms. IEEE Transactions
on Instrumentation and Measurement, 51:1116–1125.

Aminian, F. and Aminian, M. (2001). Fault diagnosis of analog circuits using bayesian neural
networks with wavelet transform as preprocessor. Journal of Electronic Testing, 17:29–36.

Andrieu, C. and Robert, C. P. (2001). Controlled MCMC for optimal sampling. National Institute
of Statistics and Economic Studies.

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Computing,
18:343–373.

Bandler, J. W. and Salama, A. E. (1985). Fault diagnosis of analog circuits. Proceedings of the
IEEE, 73:1279–1325.

Cui, J. and Wang, Y. (2011). A novel approach of analog circuit fault diagnosis using support
vector machines classifier. Measurement, 44:281–289.

Fairchild (2001). Fairchild Transistors. https://www.fairchildsemi.com/datasheets/2N/

,https://www.onsemi.com/PowerSolutions/supportDoc.do?type=models&rpn=2N3055.
[Online; accessed 30-December-2018].

Gelman, A., Simpson, D., and Betancourt, M. (2017). The prior can often only be understood in
the context of the likelihood. Entropy, 19(10):555.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice.
CRC press.

Haario, H., Saksman, E., and Tamminen, J. (2005). Componentwise adaptation for high dimen-
sional MCMC. Computational Statistics, 20(2):265–273.

Haario, H., Saksman, E., Tamminen, J., et al. (2001). An adaptive Metropolis algorithm. Bernoulli,
7:223–242.

Sahu, S. K., Zhigljavsky, A. A., et al. (2003). Self-regenerative Markov chain Monte Carlo with
adaptation. Bernoulli, 9:395–422.

Tadeusiewicz, M., Halgas, S., and Korzybski, M. (2002). An algorithm for soft-fault diagnosis of
linear and nonlinear circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 49:1648–1653.

https://www.fairchildsemi.com/datasheets/2N/, https://www.onsemi.com/PowerSolutions/supportDoc.do?type=models&rpn=2N3055
https://www.fairchildsemi.com/datasheets/2N/, https://www.onsemi.com/PowerSolutions/supportDoc.do?type=models&rpn=2N3055

76

Tuinenga, P. W. (1991). SPICE: A guide to circuit simulation and analysis using Pspice. Prentice
Hall PTR.

Vasan, A., Long, B., and Pecht, M. (2014). Experimental validation of ls-svm based fault identifi-
cation in analog circuits using frequency features. Engineering Asset Management 2011, pages
629–641.

Vasan, A. S. S., Long, B., and Pecht, M. (2013). Diagnostics and prognostics method for analog
electronic circuits. IEEE Transactions on Industrial Electronics, 60:5277–5291.

Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M., and Higdon, D. (2009).
Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive
randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical
Simulation, 10:273–290.

77

CHAPTER 4. RSPICE: A PACKAGE FOR USING NGSPICE FROM R

Qianqian Shan, Stephen D. Holland, William Q. Meeker

4.1 Abstract

The RSpice package provides functions to call ngspice, an open source electronic circuit sim-

ulator, from R. The circuit setup can be passed to the circuit simulator, ngspice, through R. R

functions can then start/stop the simulation, alter device or model paramters, read the simulation

output back to R and so on. It is a friendly and easy to use interface to combine the flexible R

tools and the ngspice circuit analysis. This article illustrates how to conveniently use the package

to run ngspice in R.

Keywords: Electronic circuit simulator, ngspice, interface, R.

4.2 Introduction

Electronics devices have become ubiquitous in industry, home, and our personal lives. Elec-

tronic circuit simulation softwares are used widely by product designer and manufacturers to solve

design and manufacturing problems such as exploring the effect of tolerance levels of equipment

components and optimization. Ngspice1 is an open source mixed-level/mixed-signal circuit simu-

lator which allows the simulation of kinds of circuits. It has been developed based on three open

source software packages that are used for circuit simulation: Spice3f5, Cider1b1 and Spice. It is a

fast and reliable tool for circuit simulation (Vogt et al., 2018). There are numerous applications of

circuit simulation where statistical analysis of the results is needed.

Although ngspice provides built-in basic user interfaces, it would be complicated to visualize,

compare and analyze multiple results at the same time. See Chapter 18 of Vogt et al. (2018) for more

1http://ngspice.sourceforge.net/

http://ngspice.sourceforge.net/

78

details on existing ngspice interfaces. R is a software system with highly extensible environment for

statistical computing and graphics. RSpice is an R package that makes it possible to run ngspice

in R directly by loading an ngspice shared library. The combination of ngspice and R can greatly

simplify the simulation and post-processing analysis of electronic circuits properties in applications

where statistical methods (e.g., Monte Carlo Markov Chain) are needed.

In this article, three examples are presented to demonstrate the usage and advantages of RSpice.

Section 4.3 describes the implementation details of RSpice functions and demonstrates the basic

usage of the functions with a toy example. Section 4.4 introduces two more complicated examples

to show more ways to take advantage of RSpice. Section 4.5 briefly summarizes the RSpice package

and examples.

4.3 Implementation of RSpice

In this section, we first introduce the functions in RSpice and then demonstrate the use of

RSpice with a toy example.

4.3.1 Implementation

Running ngspice in R is implemented by calling the shared library (or dynamic linked library

in Windows) of ngspice within R. The shared library provides exported functions and callback

functions to control ngspice and return results from ngspice, respectively. RSpice provides an

interactive interface to send commands to ngspice and receive results from ngspice interactively

within R.

The RSpice package includes R wrapper functions to interact with ngspice via R functions that

call a C interface library through R’s “.C” interfacing functions. The R and C wrappers initialize

ngspice by calling the exported function ngSpice Init from the shared library, send commands

to ngspice by ngSpice Command, including sending a circuit, reading output names and length via

their corresponding exported functions and so on. A brief illustration of the R functions is as

follows:

79

1. The circuitLoad(circarray, dylibpath, dylibname, listing) function is used to:

(a) Locate the path of ngspice shared library and initialize ngspice if it’s not initialized. The

function will search the default paths and default names for the ngspice shared library

if dylibpath and dylibname are not specified.

(b) Send the circarray file to ngspice via exported function ngSpice Circ in the shared

library, where circarray should be an array of strings representing the lines of an

ngspice netlist file that defines a circuit and the operations to be simulated on the

circuit. Examples of netlists are given in Section 4.3.2 and 4.4.

2. The runSpice() function sends a “run” command to ngspice to start the simulation specified

in the netlist passed to ngspice.

3. The exportResults(location) function reads the simulation results from ngspice and makes

the results available in R. The function first calls the exported function ngSpice CurPlot to

find out the name of the current circuit output, then calls ngGet Vec Info for all circuit node

names in the current circuit output, and finally calls ngSpice AllVecs to visit the simulation

results for the specified node names by their location among all node names. The location

information can be obtained by running getPlotNames(). getLength() is called within

exportResults(location) to determine the length of output for each specified node (e.g.,

if we specify a linear scan of input voltage for a circuit, then the length of the output for a

specified node will be corresponding to the different number of input voltages scanned).

4. The spiceCommand(cmd) function allows a valid command, cmd, to be sent to ngspice via

ngSpice Command. The commands include control and interactive commands introduced in

Vogt et al. (2018).

5. The unloadSpice() function will unload the ngspice shared library.

80

4.3.2 Toy Example

A simple circuit with one voltage source and two resistors is shown in Figure 4.1, the voltage

source has a constant voltage of 10V and is connected between node 1 and ground node (node 0).

The two 5kΩ resistors are connected in series. We use this circuit to demonstrate how to use the

functions of RSpice to run the simulation and use the results in R.

Figure 4.1: A simple circuit with one voltage source and two resistors.

The toyexample is a built-in RSpice object which contains a vector of character strings to define

the above simple circuit (a netlist). Ngspice uses the character strings to set up a circuit, and it

can be read from RSpice and is displayed below:

R> data("toyexample", package = "RSpice")

R> toyexample

[1] ".title toyexample "

81

[2] "R1 1 2 5k"

[3] "R2 2 0 5k"

[4] "VDD 1 0 DC 10V"

[5] ".op"

[6] ".end"

The netlist starts with a title line, and the following lines define that resistor R1 is placed in

between node 1 and node 2 with resistance 5kΩ, R2 is in between node 2 and node 0, also with

resistance 5kΩ, VDD is a direct current (DC) voltage source between node 0 and node 1 with 10V

and node 1 is the positive node (anode). The .op command specifies a operating point analysis

of the current circuit, so voltages for all nodes and currents in voltage sources are computed. The

netlist should be ended with “.end”.

An important note about the naming rules of the circuit components in ngspice is that, the

component type is determined by the first letter of its name, for example, the ”R” in ”R1” stands

for a resistor and the following number 1 together with ”R” specifies a customized name of the

particular resistor between node 1 and node 2 (Vogt et al., 2018, Chapter 2). Also, when the circuit

is loaded, the names of circuit components will be converted to lower cases and it is necessary to

specify the converted lowercase names in the spiceCommand() function if further modifications

on the circuit components are needed. One can use function spiceCommand("listing") to print

the current circuit from ngspice to check the names of the circuit components (Vogt et al., 2018,

Chapter 17.5.39).

We first analyze the original circuit and then vary the value of R1 to check the relationship

between the voltage at node 2 and the resistance of R1. Before sending any circuit information to

ngspice, we need to make sure that the ngspice shared library exists and initialize it with the code:

R> circ <- circuitLoad(toyexample, dylibpath = NULL, dylibname = NULL)

The circuitLoad() function will first call initializeSpice() to search the ngspice shared

library. If dylibpath and dylibname are not specified, the function will search the pre-specified

82

default path and name for the ngspice shared library. One can specify the ngspice path and name

explicitly using these two arguments if the ngspice shared library are not stored in the default

path with its default name. It’s not required to give the exact path of the shared library as

initializeSpice() will search the specified dylibpath and its subdirectories recursively for the

shared library. The more complete the path is, however, the faster the searching process will be.

For example, if the shared library is located in “C:/Spice/bin”, the dylibpath can be specified

as “C:”, “C:/Spice”, or “C:/Spice/bin” and the last one cost the least amount of time to find the

shared library.

The argument dylibname is the name of the ngspice shared library, and depending on the oper-

ating systems, the default name could be “ngspice”, “libngspice”, or “libngspice-0” when installing

the ngspice shared library. It is also possible to rename the shared library with a customized name

and specify it by argument dylibname to overwrite the default name. The shared library extension

is automatically added by R, and it will be .so or .dll, depending on the operating systems.

In particular,

1. The default paths for ngspice shared library when installing ngspice shared library are

• “/usr/local/bin” for unix-like systems.

• “C:/Spice64/bin” for 64-bit Windows systems.

• “C:/Spice/bin” for 32-bit Windows systems.

2. Ngspice will read its standard configuration file, spinit, everytime it starts. The default

location of the spinit file is “/usr/local/share/ngspice/scripts” for unix-like systems,

“C:/Spice/share/ngspice/scripts” for 32-bit Windows systems, or “C:/Spice64/share/ngspice/scripts”

for 64-bit Windows systems. If the standard configuration file is not found when initializ-

ing ngspice, a warning message will be issued but ngspice continues. For more details, see

Chapter 16.5 of Vogt et al. (2018).

3. If ngspice shared library was downloaded directly from online websites such as the ngspice

official website, and it was not compiled directly by users on their own computers, error

83

may raise because of the setup in spinit file. Ngspice predefines six “Code Models” with

the extension .cm as library files that can be used to model different kinds of electronic

circuits in a way that is similar to the standard device models. The default path to search for

these files is “/usr/local/lib/ngspice/” for Unix/Linux systems, and “C:/Spice/lib/ngspice”

or “C:/Spice64/lib/ngspice” for Windows systems. The spinit file will load these libraries

by default and the initializeSpice() function will return an error if these libraries can not

be found. One could comment out the commands to load the code models in spinit if they

are not needed for the electronic circuits to be specified. For example, here are the commands

in spinit to load the code models for a Linux system,

codemodel /usr/local/lib/ngspice/spice2poly.cm

codemodel /usr/local/lib/ngspice/analog.cm

codemodel /usr/local/lib/ngspice/digital.cm

codemodel /usr/local/lib/ngspice/xtradev.cm

codemodel /usr/local/lib/ngspice/xtraevt.cm

codemodel /usr/local/lib/ngspice/table.cm

One could either comment out the lines with an asterisk (∗) when the code models are not

needed, or edit the path to locate the code models.

When the ngspice shared library is loaded successfully, the circuit netlist can be passed to

ngspice for simulation. The runSpice() function is used to start the simulation. The argument

bgrun = FALSE specifies that the simulation should be done in the same thread as the calling pro-

cess; the simulation will otherwise run in a background thread. Plot is a type of SPICE terminology

that implies a group of vectors containing ngspice outputs (Vogt et al., 2018, Chapter 17.3). The

getPlotNames() function reads the vector names and their corresponding storage indices (location)

from ngspice. The location is important as we may not be interested in exporting all simulated

outputs from ngspice, and we usually would only export interesting results by specifying the cor-

responding locations. In this example, the outputs are stored with an order of vdd#branch, V(2)

84

and V(1), where vdd#branch is the current through the voltage source VDD, V(2) is the voltage

at node 2 and V(1) is the voltage at node 1:

R> PlotNames <- getPlotNames()

R> PlotNames

location Name

1 vdd#branch

2 V(2)

3 V(1)

Suppose that our goal is to investigate the relationship between the resistance of R1 and the

voltage at node 2. We can do this by sending commands to alter the R1 value to ngspice and collect

the corresponding voltage values of V(2). The commands to alter the resistance of R1 from 1KΩ

to 10KΩ with an increment of 1KΩ are:

R> r1.values <- paste0(seq(1, 10, 1), "k")

R> cmds <- paste0("alter r1=", r1.values)

R> print(cmds)

[1] "alter r1=1k" "alter r1=2k"

[3] "alter r1=3k" "alter r1=4k"

[5] "alter r1=5k" "alter r1=6k"

[7] "alter r1=7k" "alter r1=8k"

[9] "alter r1=9k" "alter r1=10k"

The voltage values at node 2 can be obtained from ngspice with exportResults(2) each

time after running the circuit with the new resistance value of R1, where the argument 2 for

exportResults() indicates the location of voltage at node 2.

85

R> v2 <- double(length(cmds))

R> for (i in 1:length(r1.values)) {

R>spiceCommand(cmds[i])

R>runSpice(bgrun= FALSE)

R>v2[i] <- exportResults(2)

R> }

R> print(v2)

[1] 8.333333 7.142857 6.250000 5.555556

[5] 5.000000 4.545455 4.166667 3.846154

[9] 3.571429 3.333333

Figure 4.2 shows the above relationship of voltage at node 2 and the resistance of R1.

R> plot(seq(1, 10, 1), v2, xlab = expression(paste(R[1], " (k", Omega,")")),

+ ylab = "Voltage at Node 2", pch = 16, las = 1)

In this example, we show that ngspice can interact with R via RSpice and display the results

conveniently. The real advantage of using RSpice arises when the circuit is much more complicated

that there is no analytical solution for the voltages and currents at the circuit nodes of interest.

4.4 More Complicated Examples

In this section, we demonstrate two more examples to show the versatility of RSpice to do

different kinds of statistical analysis.

4.4.1 Linear Regulator

In electronics, it is often necessary to keep the output voltage independent of fluctuations in

the input and the load. A linear regulator is a system that provides constant voltage output by

observing the output power demand and adjusting a series resistor. Figure 4.3 is a schematic

86

Figure 4.2: Voltage at node 2 as a function of the resistance of R1.

diagram for one type of linear regulators. The circuit is composed of a reference voltage Vref , an

NPN bipolar junction transistor Q1, a voltage-controlled voltage source E1 and a resistive divider

with Rupper and Rlower. More details on how the circuit works can be found in Basso (2008)[Chapter

1]. The linear regulator is used as an example to present how the combination of ngspice and R

can help the visualization and exploration of circuits.

This example performs a transient analysis of a linear regulator from time 0 to 0.06s with an

increment of 0.1ms to investigate that if the linear regulator is functioning well by checking the

relationship between the input and output voltages and to see how the output voltage changes with

varied load Rload.

R> data("linearregulator", package = "RSpice")

R> circuitLoad(linearregulator)

87

Figure 4.3: Linear regulator schematic (modified example from Chapter 1 of Basso (2008)).

R> linearregular

[1] ".title Linear Regular, modified from Basso: Switched-Mode Power Supplies"

[2] "Q1 2 1 5 QN2222"

[3] ".MODEL QN2222 NPN BF=105 BR=4 CJC=12.2P CJE=35.5P IKF=.5"

[4] "+ IKR=.225 IS=15.2F ISE=8.2P NE=2 NF=1 NR=1 RB=1.49 RC=.149"

[5] "+ RE=.373 TF=500P TR=85N VAF=98.5 VAR=20 XTB=1.5"

[6] "Vin 2 0 sin(0 12 60 0 0)"

[7] "E1 1 0 3 4 10k"

[8] "Vref 3 0 DC=2.5"

[9] "Rlower 4 0 10k"

[10] "Rupper 5 4 10k"

[11] "Rload 5 0 100"

[12] ".tran 0.1m 0.06"

[13] ".END "

88

0 100 200 300 400 500 600

−10

−5

0

5

10

Time (ms)

Vo
lta

ge
 (V

)

Figure 4.4: Input (solid line) vs output (dashed line) of the linear regulator.

We apply an alternating current (AC) voltage source as input with magnitude of 12V and

frequency of 60Hz. Output and input voltage values are exported from locations 8 and 6 of

the ngspice simulation results, respectively. Figure 4.4 shows that the output voltage is nearly a

constant around 5V even though the input is a sine wave with amplitude as 12V .

R> runSpice(bgrun= FALSE)

R> PlotNames <- getPlotNames()

R> results <- exportResults(c(8, 6))

R> plot(c(1, data.length), c(min(results), max(results)), type = "n",

+ xlab = "Time (ms)", ylab = "Voltage (V)", las = 1)

R> for (i in 1:2) {

R>lines(results[i,], col = i)

R> }

89

Next we alter the values of the load resistor from 10Ω to 200Ω to see how its value affects the

output voltage (voltage at node 5 with location = 6) at time 0 of the transient analysis of the

circuit. The results are shown in Figure 4.5.

R> rload.values <- paste0(seq(10, 200, 10))

R> cmds <- paste0("alter rload=", rload.values)

R> v5 <- double(length(cmds))

R> for (i in 1:length(rload.values)) {

R>spiceCommand(cmds[i])

R>runSpice() # run the simulation

R>v5[i] <- exportResults(6)[, 1]

R> }

R> plot(rload.values, v5, xlab = expression(paste("R"[load]," (", Omega,")")),

R> ylab = "Output Voltage", type = "l")

It can be seen that the value of the output remains a constant up to the fourth decimal even

when the linear regulator has AC input and the resistance of the load changes from 10Ω to 200Ω.

4.4.2 741 Operational Amplifier

Integrated-circuit (IC) operational amplifiers (op-amp) were first introduced in mid-1960s and

became popular due to their versatility and low price. We use a simulation of the well-known

741 op-amp to illustrate the usage of statistical methods on ngspice results. Figure 4.6 shows the

internal structure of a 741 op-amp. The op-amp is composed of transistors, resistors and capacitors,

and Figure 4.7 gives the pin-out diagram on how the op-amp can be connected to other electronic

devices. The op-amp usually operates close to its expected performance level even with substantial

variance in the component values due to its robustness (Adel S. Sedra, 1998). The overall op-amp

output can, however, be far from its nominal value when certain transistors malfunction (e.g., when

a transistor’s gain is far lower than the nominal value). We study the behavior of a 741 op-amp in a

90

Figure 4.5: Output voltage versus the resistance of load for the linear regular.

negative feedback circuit loop as shown in Figure 4.8 (i.e., a circuit with its output node connected

to its inverting input node).

In this example, we use the interaction between ngspice and R more extensively: We check the

effects of the variations of the transistor gains on the voltage output of op-amp circuit. We only test

the effects of transistor gains on the output for the sake of simplicity in description. One could also

check the effects of variability in the resistors and capacitor characteristics on the output in a similar

way. Denote the gain values of the 25 transistors as β = (β1, · · · , β25)T . Suppose that 99.9% of the

transistors gain values are within 10% of their corresponding nominal values and each transistor

gain value follows a normal distribution centered at its nominal value βi,0 for each i = 1, 2, · · · , 25.

The corresponding standard deviation σi is derived so that Pr(βi ∈ [0.9βi,0, 1.1βi,0]) = 0.999. The

steps used to test the effects of transistors gains within their tolerance intervals on the circuit

output are as follows:

For i = 1, · · · , 1000,

91

1. Simulate the 25 transistor gain values, xi = (xi1, · · · , xi25), independently from their corre-

sponding normal distributions.

2. Re-run the circuit analysis with the simulated transistor gain values, xi.

3. Export the output voltage value from ngspice.

Figure 4.6: Internal structure of 741 op-amp.

R> circuitLoad(opAmp)

R> runSpice()

R> PlotNames <- getPlotNames()

R> location <- c(which(PlotNames\$Name == "output"))

92

Figure 4.7: Pin-out diagram of 741 op-amp.

R> nominal.output <- exportResults(location)

R> head(PlotNames, 11)

location Name

1 vplus#branch

2 vminus#branch

3 vinp#branch

4 xun.19

5 xun.24

6 xun.22

7 xun.21

8 xun.18

9 xun.16

10 output

11 xun.23

R> nominal.output

0.4845526

93

Figure 4.8: Op-amp in a negative feedback circuit.

It is straightforward to show that the standard deviations for NPN and PNP type transistors

are sd.npn = 12.65 and sd.pnp = 5.49, respectively. Then a 1000 by 25 matrix in which each

row is a set of simulated gains, gain.mat, is generated:

R> gain.mat <- matrix(NA, nrow = n, ncol = 25)

R> npn.vector <- c(1, 2, 5, 6, 7, 10, 11, 15, 16, 17, 18, 19, 20, 23, 25)

R> for(i in 1:n){

R>gain.mat[i,] <- sapply(1:25, function(i) ifelse(i %in% npn.vector, 416.4, 180.7))

R>for(j in 1:25) {

R>if (j %in% npn.vector) {

R>mus <- c(416.4)

R>sds <- c(sd.npn)

R>} else {

R>mus <- c(180.7)

R>sds <- c(sd.pnp)

R>}

94

R>gain.mat[i, j] <- rnorm(1, mean = mus, sd = sds)

R> }

R> }

All the commands to be sent to ngspice are altercmd:

R> tem <- c("q2n3904q1", "q2n3904q2", "q2n3906q3", "q2n3906q4","q2n3904q5",

R>"q2n3904q6", "q2n3904q7", "q2n3906q8", "q2n3906q9", "q2n3904q10",

R>"q2n3904q11", "q2n3906q12", "q2n3906q13a", "q2n3906q13b","q2n3904q14",

R>"q2n3904q15", "q2n3904q16", "q2n3904q17", "q2n3904q18", "q2n3904q19",

R>"q2n3906q20", "q2n3906q21", "q2n3904q22", "q2n3906q23", "q2n3904q24")

R> altercmd <- paste("altermod @", tem, "[bf]=", as.vector(t(gain.mat)),

R> sep = "")

The output voltage values can then be exported and plotted:

R> results.voutput <- matrix(NA, nrow = n, ncol = getLength())

R> for (m in 1:n){

R> # Initialize the commands vector to be passed to ngspice

R> commands <- character(25)

R> # Assign to be sent to ngspice

R> for (q in 1:25){

R> commands[q] <- altercmd[(m-1)*(25) + q]

R> }

R> # Send alter commands down

R> spiceCommand(commands)

R> runSpice()

R> # Export the output voltage from ngspice

R> results.voutput[m,] <- as.vector(exportResults(location))

R> }

95

Figure 4.9: Histogram of the 1000 voltage outputs for a negative feedback loop from 1000 simulated

741 op-amps.

R> # Plot the all output voltages

R> hist(results.voutput, main = "", border = "grey", col = "black", las = 1,

R> xlab = "Output Voltage")

R> abline(v = res, lwd = 3, col = "red", lty = 2)

R> abline(v = tolerance.int, lwd = 2, col = "grey", lty = 3)

R> box()

R> legend("topright", c("Nominal Output", "95% Approximate Interval"),

R> col = c("red", "grey"), lwd = 2 , lty = c(2, 3), bty = "n",

R> cex = 0.7)

Figure 4.9 shows the distribution of the output voltage from the simulated population. The use

of RSpice makes it easy to show how the tolerance levels of the circuit components are affecting

the distribution of the output.

96

4.5 Summary and discussion

We introduce the RSpice package for running ngpsice in R with three examples. Various kinds

of analysis of electronic circuits such as the tolerance analysis and setup checking of circuits can be

done and visualized in R directly and interactively.

Help Page for the R Functions

1. circuitLoad: Load Specified Circuit to Ngspice

Description:

Initialize ngspice by linking to its shared library, load the specified circuit and send

the circuit netlist to ngspice. If the ngspice shared library has been linked, only the

function will only load the specified circuit.

Usage:

circuitLoad(circarray, dylibpath = NULL, dylibname = NULL,

listing = TRUE, verbose = TRUE)

Arguments:

circarray a list of character strings which are used to define

dylibpath the path of the ngspice shared library file. If dylibpath = NULL, the program will search

the default path for the shared library.

dylibname the name of the ngspice shared library without extensions. If dylibpath = NULL, the

program will search the shared library with its default name.

listing logical; if TRUE, print a listing of the current circuit after loading the circuit.

verbose logical; if TRUE, print the stdout, stderr etc information exported from ngspice.

Value:

97

The outputs from printf, fprintf and fputs of ngspice simulator if verbose = TRUE.

The listing of the current circuit will be returned if listing = TRUE.

Examples:

Load a simple circtui with name test, the resistor R1 is 5k Ohm and

connected to node 1 and 2, R2 is 1k Ohm and connected to node 2 and

0, and a voltage source VDD with 10V between node 0 and 1. A point

analysis is performed.

circuitload(c(’.title test’, ’R1 1 2 5k’, ’R2 2 0 1k’,

’VDD 0 1 DC 10’, ’.op’, ’.end’))

2. initializeSpice: Initialize Ngspice

Description:

Load the ngspice shared library and initialize Ngspice with the exported functions.

See Chapter 19 of the ngspice manual for more details.

Usage:

initializeSpice(dylibpath, dylibname, verbose)

Arguments:

dylibpath the path of the ngspice shared library file.

dylibname the name of the ngspice shared library without extensions such as .so or .dll.

verbose logical; if TRUE, print the stdout, stderr etc information exported from ngspice.

Value:

NULL.

98

Initialize Ngspice.

initializeSpice(dylibpath = "/usr/local/bin", dylibname = ’libngspice’)

3. findSpice: Find The Path of The Ngspice Shared Library

Description:

Find if the specified Ngspice shared library exists and return the first path if there

the shared library exists in multiple paths.

Usage:

findSpice(dylibpath, dylibname)

Arguments:

dylibpath a character string with the general path of the Ngspice shared library. If NULL, the

function will search across the computer, which is not recommended as it may search

some directories that requires root/admin authorization. If a path is specified, the search

will be conducted under the path recursively with a faster speed.

dylibname a character string with the name of the Ngspice shared library.

Value:

The function will stop if no shared library is found, and the first available file path

containing the shared library will be returned.

Examples:

under windows os

99

findSpice(dylibpath = ’C:/Users/bin’, dylibname = ’ngspice.so’)

under *unix os

findSpice(dylibpath = ’/usr/local/lib’, dylibname = ’libngspice.so’)

4. runSpice: Send Command to Ngspice to Run the Circuit Simulation

Description:

Send command to ngspice to run the simulation of the circuit.

Usage:

runSpice(bgrun = FALSE, verbose = FALSE)

Arguments:

bgrun logical; indicator of if the simulation is run in main thread or background thread.

verbose logical; if TRUE, print the stdout, stderr etc information exported from ngspice.

Value:

Simulation status obtained from Ngspice is printed.

Examples:

Run the simulation in main thread

runSpice()

Run the simulation in background thread

runSpice()

100

5. getLength: Extract the Length of the Output

Description:

Extract the length of the output from Ngspice.

Usage:

getLength()

Value:

An integer showing the length of the ouput after running a simulation of a circuit

in ngspice.

Examples:

getLength()

6. getPlotNames: Read All Output Names from Ngspice

Description:

Read the available output names with their corresponding order from ngspice after

the simulation of a circuit.

Usage:

getPlotNames()

Value:

The output names from ngspice after running a circuit simulation. A data frame

with two columns: location and Name. The location column shows the order of

101

output names retuned from Ngspice and the Name column shows the corresponding

output names returned from ngspice.

7. exportResults: Export the Output Values from NgspiceexportResults

Description:

Export the specified output values from Ngspice.

Usage:

exportResults(location)

Arguments:

location a vector of the location(s) of the outputs we want to export, i.e. the location-th output

from the getPlotNames().

Value:

A matrix containing the output values with the ouputs for each location stored

in one row. The number of rows of the matrix equals length(location) and the

number of columns equals the length of each output value.

Examples:

obtain the location and Name information by running getPlotNames()

getPlotNames()

Export the output values for location 1, 2 and 4.

exportResults(c(1, 2, 4))

8. spiceCommand: Send Command to NgspicespiceCommand

Description:

102

Send a valid command from caller to ngspice. See more control or interactive

commands details in http://ngspice.sourceforge.net/docs/ngspice-manual.

pdf

Usage:

spiceCommand(cmd)

Arguments:

cmd a vector of commands which to be sent to ngspice for one time change.

Examples:

To print a listing of the current circuit

spiceCommand("listing")

9. unloadSpice: Unload NgSpice

Description:

Unload the ngspice shared library.

Usage:

unloadSpice()

Value:

A message ”Ngspice shared library unloaded.” or ”Ngspice shared library already

unloaded.” dependening on if the unloadSpice() function is run for the first time

or not.

http://ngspice.sourceforge.net/docs/ngspice-manual.pdf
http://ngspice.sourceforge.net/docs/ngspice-manual.pdf

103

4.6 References

Adel S. Sedra, K. C. S. (1998). Microelectronic circuits.

Basso, C. (2008). Switch-mode power supplies SPICE simulations and practical designs. McGraw-
Hill, Inc.

Vogt, H., Hendrix, M., and Nenzi, P. (2018). Ngspice Users Manual.

104

CHAPTER 5. FUTURE WORK SUMMARY AND DISCUSSION

5.1 Summary and Discussion

We have developed several generalized NHPP models for recurrent event data with two product

warranty examples in Chapter 2, and demonstrate the fitting and prediction performance of these

models. Our general model incorporates the effects of different seasonality trends for different

locations, the covariates and the individual level random effects, and is well suited for predictions

in various recurrent event situations. The clustering of locations provides guidance not only for

model fitting as shown in Chapter 2, but can also be helpful to provide data-driven insights on

strategic planning for the future by indicating what locations are similar or dissimilar. The general

model also gives practitioners the flexibility to compare and choose different models based on their

own needs. For example, although the use of random effects for Product A can improve the model

fitting performance in terms of AIC and BIC, it doesn’t help to improve the prediction metrics on

the hold-out data. Then we may prefer to choose Model 7 as our final model for prediction if we

take the computation costs into account: Model 7 takes much shorter model fitting time than the

models with random effects, as no parameters on random effects are needed and thus no iterations

from the EM algorithm are needed.

In Chapter 3, we present a convenient implementation of electronic circuit trobleshooting by

adaptive MCMC with the help of the electronic circuit simulator, ngspice. As all the data we

need are the observed voltage values from several testing points of the failed electronic circuit, it’s

especially useful when we do not have a lot of the same kind of electronic circuits to experiment for

possible failure modes or patterns. The adaptive MCMC algorithm works well for high dimension

problems, and it can also provide us the marginal posterior distributions of each electronic circuit

component, which can help to identify the components that are out-of-specification, and can also

105

alert on some components that are close to be out-of-specification by checking if the modes of the

posterior distributions are still in the manufactured tolerance limit.

5.2 Future Work

Potential directions to improve our current work include:

1. Seasonal warranty prediction based on recurrent event data:

(a) In addition to the predictions of monthly and cumulative event counts of the recurrent

event data, the predictions on the event costs are also very important, the costs include

monthly, cumulative costs and costs by time and locations.

(b) When we consider the random effect for each repairable system, we take the factor of

heavy users vs. light users into our account. This factor may be modeled better if the

product usage information of users is available as well. It’s also common to have two-

dimension product warranty, for example, a warranty may state that its term is either

36 months or 36,000 miles, which ever comes first. The usage information will not only

affect the recurrent rate of events, but also the length of the warrany term.

(c) The clustering of locations on seasonal effects is based on calendar months, and we

use the monthly empirical recurrent rate values for the clustering. In practice, the

recurrence rate for Decembers and Januaries (or similarly, July and August) are usually

very similar to each other, models may be further simplified by studying how to group

neighbor months together.

2. Electronic circuit troubleshooting using simulation and Bayesian inference

(a) In Chapter 4, we illustrate a data-drive strategy to conduct electronic circuit trou-

bleshooting. In practice, we may also use a hybrid model that uses both data and

physical properties of the circuit information for modeling.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	2. SEASONAL WARRANTY PREDICTION BASED ON RECURRENT EVENT DATA
	2.1 Abstract
	2.2 Introduction
	2.2.1 Background
	2.2.2 Related Literature and Our Work
	2.2.3 Motivating Examples
	2.2.4 Overview

	2.3 Exploratory Analysis
	2.3.1 The Mean Cumulative Function
	2.3.2 Data Clustering and Seasonality

	2.4 General Models for Recurrence Rates
	2.4.1 Notation
	2.4.2 The Simple NHPP Model
	2.4.3 NHPP Model with Common Seasonal Effects
	2.4.4 NHPP Model with Seasonal and Cluster Effects
	2.4.5 NHPP Model with Seasonal, Cluster and Random Effects
	2.4.6 Comparison of Different Models

	2.5 Maximum Likelihood Estimation
	2.5.1 Likelihood Function
	2.5.2 The EM Algorithm

	2.6 Point Predictions for the Number of Future Events
	2.7 Prediction Intervals
	2.7.1 Prediction Interval Basics
	2.7.2 Plug-in Prediction Intervals
	2.7.3 Normal Approximate Prediction Intervals
	2.7.4 Calibrated Prediction Intervals

	2.8 Models and Predictions for Product B
	2.8.1 Exploratory Analysis
	2.8.2 Clustering for the Seasonal Models
	2.8.3 NHPP Model Fitting
	2.8.4 Prediction Intervals

	2.9 Simulation to Study Larger Amounts of Missing Data
	2.10 Concluding Remarks
	2.11 References
	2.12 Supplemental Materials for Chapter 2

	3. ELECTRONIC CIRCUIT TROUBLESHOOTING USING SIMULATION AND BAYESIAN INFERENCE
	3.1 Abstract
	3.2 Introduction
	3.2.1 Background and Motivation
	3.2.2 Model-based Troubleshooting
	3.2.3 Literature Review
	3.2.4 Overview

	3.3 Electronic Circuit Simulation and Ngspice
	3.4 Electronic Circuit Troubleshooting: The Basic Ideas
	3.4.1 Forward Model
	3.4.2 Inverse Problem
	3.4.3 A Virtual Population of Devices

	3.5 Illustrative Application: Class A Power Amplifier
	3.5.1 Class A Power Amplifier Background
	3.5.2 Virtual Population of Devices and Failure Definition
	3.5.3 Data Pre-processing
	3.5.4 Forward Model
	3.5.5 Likelihood and Weakly Informative Prior Distribution
	3.5.6 Posterior Distribution

	3.6 Use of Adaptive MCMC to Solve the Inverse Problem
	3.6.1 Adaptive Metropolis Algorithm
	3.6.2 Application of Adaptive MCMC to A Failed Class A Power Amplifier

	3.7 A Second Example: 741 Op-Amp Circuit
	3.7.1 741 Op-Amp Background
	3.7.2 Application of the Adaptive MCMC Algorithm

	3.8 Concluding Remarks
	3.9 References

	4. RSPICE: A PACKAGE FOR USING NGSPICE FROM R
	4.1 Abstract
	4.2 Introduction
	4.3 Implementation of RSpice
	4.3.1 Implementation
	4.3.2 Toy Example

	4.4 More Complicated Examples
	4.4.1 Linear Regulator
	4.4.2 741 Operational Amplifier

	4.5 Summary and discussion
	4.6 References

	5. FUTURE WORK SUMMARY AND DISCUSSION
	5.1 Summary and Discussion
	5.2 Future Work

