

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

vol. 4, no. 4

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

Potentially eventually positive (PEP) sign patterns were introduced by Berman et al. (*Electron. J. Linear Algebra* **19** (2010), 108–120), where it was noted that a matrix is PEP if its positive part is primitive, and an example was given of a 3×3 PEP sign pattern with reducible positive part. We extend these results by constructing $n \times n$ PEP sign patterns with reducible positive part, for every $n \ge 3$.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in $\{+, -, 0\}$. For a real matrix A, sgn(A) is the sign pattern having entries that correspond to the signs of the entries in A. If A is an $n \times n$ sign pattern, the qualitative class of A, denoted Q(A), is the set of all $A \in \mathbb{R}^{n \times n}$ such that sgn(A) = A, where sgn(A) = [sgn(a_{ij})]; such a matrix A is called a *realization* of A. Qualitative matrix problems were introduced by Samuelson [1947] in the mathematical modeling of problems from economics. Sign pattern matrices have useful applications in economics, population biology, chemistry and sociology. If P is a property of a real matrix, then a sign pattern A is *potentially* P (or *allows* P) if there is some $A \in Q(A)$ that has property P.

The *spectrum* of a square matrix A, denoted $\sigma(A)$, is the multiset of the eigenvalues of A, and the *spectral radius* of A is defined as $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$. Matrix A has the *strong Perron–Frobenius property* if $\rho(A) > 0$ is a simple strictly dominant eigenvalue of A that has a positive eigenvector. A matrix $A \in \mathbb{R}^{n \times n}$ is *eventually positive* if there exists a $k_0 \in \mathbb{Z}^+$ such that for all $k \ge k_0$, $A^k > 0$, where the inequality is entrywise. Handelman developed the following test for eventual positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both A and A^T satisfy the strong Perron–Frobenius property. If there exists a k such

MSC2010: 15B35, 15B48, 05C50, 15A18.

Keywords: potentially eventually positive, PEP, sign pattern, matrix, digraph.

that $A^k > 0$ and $A^{k+1} > 0$, then A is eventually positive [Johnson and Tarazaga 2004]. A sign pattern \mathcal{A} is *potentially eventually positive* (PEP) if there exists an eventually positive realization $A \in Q(\mathcal{A})$.

For a sign pattern $\mathcal{A} = [\alpha_{ij}]$, define the *positive part* of \mathcal{A} to be $\mathcal{A}^+ = [\alpha_{ij}^+]$ and the *negative part* of \mathcal{A} to be $\mathcal{A}^- = [\alpha_{ij}^-]$, where

$$\alpha_{ij}^{+} = \begin{cases} + & \text{if } \alpha_{ij} = +, \\ 0 & \text{if } \alpha_{ij} = 0 \text{ or } \alpha_{ij} = -, \end{cases} \qquad \alpha_{ij}^{-} = \begin{cases} - & \text{if } \alpha_{ij} = -, \\ 0 & \text{if } \alpha_{ij} = 0 \text{ or } \alpha_{ij} = +. \end{cases}$$

Clearly $\mathcal{A} = \mathcal{A}^+ + \mathcal{A}^-$. For a matrix $A \in \mathbb{R}^{n \times n}$, the positive part A^+ of A and negative part A^- of A are defined analogously, and $A = A^+ + A^-$.

A digraph $\Gamma = (V, E)$ consists of a finite, nonempty set V of vertices, together with a set $E \subseteq V \times V$ of arcs. Note that a digraph allows loops (arcs of the form (v, v)) and may have both arcs (v, w) and (w, v) but not multiple copies of the same arc. Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. The digraph of A, denoted $\Gamma(A)$, has vertex set $\{1, \ldots, n\}$ and arc set $\{(i, j) : a_{ij} \neq 0\}$. If \mathcal{A} is a sign pattern, then $\Gamma(\mathcal{A}) = \Gamma(A)$ where $A \in Q(\mathcal{A})$. A digraph Γ is *strongly connected* if for any two distinct vertices v and w of Γ , there is a path in Γ from v to w.

A square matrix A is *reducible* if there exists a permutation matrix P such that

$$PAP^{T} = \begin{bmatrix} A_{11} & 0\\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are nonempty square matrices and 0 is a (possibly rectangular) block consisting entirely of zero entries, or A is the 1×1 zero matrix. If A is not reducible, then A is called *irreducible*. It is well known that for $n \ge 2$, A is irreducible if and only if $\Gamma(A)$ is strongly connected. For a strongly connected digraph Γ , the *index of imprimitivity* is the greatest common divisor of the lengths of the cycles in Γ . A strongly connected digraph is *primitive* if its index of imprimitivity is one; otherwise it is *imprimitive*. The *index of imprimitivity* of a nonnegative sign pattern \mathcal{A} is the index of imprimitivity of $\Gamma(\mathcal{A})$ and $\mathcal{A} \ge 0$ is *primitive* if $\Gamma(\mathcal{A})$ is primitive, or equivalently, if the index of imprimitivity of \mathcal{A} is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where it was shown that if \mathcal{A}^+ is primitive, then \mathcal{A} is PEP, and where the first example of a PEP sign pattern with reducible positive part was given: the 3 × 3 pattern

$$\mathfrak{B} = \begin{bmatrix} + & - & 0 \\ + & 0 & - \\ - & + & + \end{bmatrix}.$$

In Section 2 we extend the results of [Berman et al. 2010] by generalizing the 3×3 pattern \mathcal{B} given there to a family of PEP sign patterns having reducible positive part for every order $n \ge 3$.

In Section 3 we examine the effect of the Kronecker product on PEP sign patterns and obtain another method of constructing PEP sign patterns with reducible positive part.

2. A family of sign patterns generalizing \mathcal{B}

The sign pattern \Re from [Berman et al. 2010] was the first PEP sign pattern with a reducible positive part. This sign pattern may be generalized by defining the $n \times n$ sign pattern

$$\mathfrak{B}_{n} = \begin{bmatrix} + & - & \cdots & - & 0 \\ + & 0 & \cdots & 0 & - \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ + & 0 & \cdots & 0 & - \\ - & + & \cdots & + & + \end{bmatrix}$$

The following result, which is a special case of the *Schur–Cohn criterion* (see, e.g., [Marden 1949]), will be used in the proof that \mathcal{B}_n is PEP.

Lemma 2.1. If the polynomial $f(x) = x^2 - \beta x + \alpha$ satisfies $|\beta| < 1 + \alpha < 2$, then all zeros of f(x) lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ then $a_{n-k} = (-1)^k E_k(A)$, where $E_k(A)$ is the sum of the $k \times k$ principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For $n \ge 3$ the $n \times n$ sign pattern \mathfrak{B}_n is PEP.

Proof. For t > 0, let $B_n(t)$ be the $n \times n$ matrix

$$B_n(t) = \begin{bmatrix} 1 + (n-2)t & -t & \cdots & -t & 0\\ 1 + t & 0 & \cdots & 0 & -t\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 1 + t & 0 & \cdots & 0 & -t\\ -(n-2)t - \frac{1}{2}t^2 & t & \cdots & t & 1 + \frac{1}{2}t^2 \end{bmatrix}$$

Then $B_n(t) \in Q(\mathfrak{B}_n)$, and 1 is an eigenvalue of $B_n(t)$ with positive right eigenvector 1 (the all ones vector) and positive left eigenvector

$$\boldsymbol{w} = \left[\frac{2n-5}{t} \quad 1 \quad \cdots \quad 1 \quad \frac{2n-4}{t}\right]^T.$$

We show that for some choice of t > 0, 1 is a simple strictly dominant eigenvalue of $B_n(t)$ and hence $B_n(t)$ is eventually positive. Since $1 \in \sigma(B_n(t))$ and rank $B_n(t) \le 3$, the characteristic polynomial $p_{B_n(t)}(x)$ of $B_n(t)$ is of the form

$$p_{B_n(t)}(x) = x^{n-3}(x-1)(x^2 - \beta x + \alpha) = x^n - (1+\beta)x^{n-1} + (\alpha+\beta)x^{n-2} - \alpha x^{n-3}.$$

Computing α and β using the sums of principal minors to evaluate the characteristic polynomial gives $\beta = \frac{1}{2}t^2 + (n-2)t + 1$ and $\alpha = (n-2)t(1+2t+\frac{1}{2}t^2)$. For n > 3, setting t = 1/(2(n-2)) gives $|\beta| < 1+\alpha < 2$, which, using Lemma 2.1, guarantees that the two nonzero eigenvalues of B_n other than 1 have modulus strictly less than 1 (recall that a 3 × 3 eventually positive matrix $B_3 \in Q(\mathcal{B}_3)$ was given in [Berman et al. 2010] so we have not been concerned with this case in choosing t).

We illustrate this theorem with an example.

Example 2.3. Let n = 5. Following the proof of Theorem 2.2, we choose $t = \frac{1}{6}$ and define

$$B_5 = B_5\left(\frac{1}{6}\right) = \frac{1}{6} \begin{bmatrix} 9 & -1 & -1 & -1 & 0\\ 7 & 0 & 0 & 0 & -1\\ 7 & 0 & 0 & 0 & -1\\ 7 & 0 & 0 & 0 & -1\\ -\frac{37}{12} & 1 & 1 & 1 & \frac{73}{12} \end{bmatrix}$$

Moreover, we have

$$\sigma(B_5) = \left\{ 1, \frac{1}{144} \left(109 + i\sqrt{2087} \right), \frac{1}{144} \left(109 - i\sqrt{2087} \right), 0, 0 \right\}$$

$$\approx \left\{ 1, 0.7569 + 0.3172i, 0.7569 - 0.3172i, 0, 0 \right\},\$$

and $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} \frac{5}{6} & \frac{1}{36} & \frac{1}{36} & \frac{1}{36} & 1 \end{bmatrix}^T$ are right and left eigenvectors, respectively, corresponding to $\rho(B_5) = 1$. Therefore B_5 and B_5^T have the strong Perron–Frobenius property, so B_5 is eventually positive by Handelman's criterion.

In [Berman et al. 2010] it was shown that if the sign pattern \mathcal{A} is PEP, then any sign pattern achieved by changing one or more zero entries of \mathcal{A} to be nonzero is also PEP. Applying this to \mathcal{B}_n yields a variety of additional PEP sign patterns having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for generating larger eventually positive matrices and thus PEP sign patterns. The *Kronecker product* of $A = [a_{ij}]$ and $B = [b_{ij}]$ is defined as

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix}.$$

It is clear that if A > 0 and B > 0, then $A \otimes B > 0$. The following facts can be found in many linear algebra books; see [Reams 2006], for example. For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, $(A \otimes B)^k = A^k \otimes B^k$. For A, C, B, D of appropriate dimensions,

we have $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$. There exists a permutation matrix *P* such that $B \otimes A = P(A \otimes B)P^T$.

Proposition 3.1. *If A and B are eventually positive matrices, then* $A \otimes B$ *is eventually positive.*

Proof. Assume that *A* and *B* are eventually positive matrices. Since *A* and *B* are eventually positive, there exists some $s_0, t_0 \in \mathbb{Z}$, with $s_0, t_0 > 0$, such that for all $s \ge s_0$ and $t \ge t_0$, $A^s > 0$ and $B^t > 0$. Set $k_0 = \max\{s_0, t_0\}$. Then for all $k \ge k_0$, $(A \otimes B)^k = A^k \otimes B^k > 0$.

Corollary 3.2. If A and \mathcal{B} are PEP sign patterns, then $A \otimes \mathcal{B}$ is PEP.

If either A or B is a reducible matrix, then $A \otimes B$ is reducible since, without loss of generality, if

$$PAP^{T} = \begin{bmatrix} A_{11} & 0\\ A_{21} & A_{22} \end{bmatrix}$$

then

$$(P \otimes I)(A \otimes B)(P \otimes I)^{T} = \begin{bmatrix} A_{11} \otimes B & 0\\ A_{21} \otimes B & A_{22} \otimes B \end{bmatrix}$$

Thus Corollary 3.2 provides another way to construct PEP sign patterns having reducible positive part.

Example 3.3. Let

$$B = \frac{1}{100} \begin{bmatrix} 130 & -30 & 0\\ 130 & 0 & -30\\ -31 & 30 & 101 \end{bmatrix}.$$

In [Berman et al. 2010] it was shown that B is eventually positive, and in fact $B^k > 0$ for $k \ge 10$.

Let $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$. Then $A^k > 0$ for $k \ge 2$, hence A is eventually positive. Then

$$B \otimes A = \frac{1}{100} \begin{bmatrix} 260 & 390 & -60 & -90 & 0 & 0\\ 130 & 0 & -30 & 0 & 0 & 0\\ 260 & 390 & 0 & 0 & -60 & -90\\ 130 & 0 & 0 & 0 & -30 & 0\\ -62 & -93 & 60 & 90 & 202 & 303\\ -31 & 0 & 30 & 0 & 101 & 0 \end{bmatrix}$$

Moreover $(B \otimes A)^{10} > 0$ and $(B \otimes A)^{11} > 0$, so $B \otimes A$ is eventually positive and $sgn(B \otimes A)$ is a PEP sign pattern with reducible positive part.

Any 0 in sgn($B \otimes A$) from Example 3.3 may be changed to – to get yet another PEP sign pattern with reducible positive part.

References

- [Berman et al. 2010] A. Berman, M. Catral, L. M. DeAlba, A. Elhashash, F. J. Hall, L. Hogben, I.-J. Kim, D. D. Olesky, P. Tarazaga, M. J. Tsatsomeros, and P. van den Driessche, "Sign patterns that allow eventual positivity", *Electron. J. Linear Algebra* **19** (2010), 108–120. MR 2011c:15089 Zbl 1190.15031
- [Handelman 1981] D. Handelman, "Positive matrices and dimension groups affiliated to *C**-algebras and topological Markov chains", *J. Operator Theory* **6**:1 (1981), 55–74. MR 84i:46058 Zbl 0495. 06011

[Horn and Johnson 1985] R. A. Horn and C. R. Johnson, *Matrix analysis*, Cambridge University Press, Cambridge, 1985. MR 87e:15001 Zbl 0576.15001

- [Johnson and Tarazaga 2004] C. R. Johnson and P. Tarazaga, "On matrices with Perron–Frobenius properties and some negative entries", *Positivity* **8**:4 (2004), 327–338. MR 2005k:15020 Zbl 1078. 15018
- [Marden 1949] M. Marden, *The geometry of the zeros of a polynomial in a complex variable*, Mathematical Surveys **3**, American Mathematical Society, Providence, RI, 1949. 2nd ed. titled *Geometry of polynomials* in 1966. MR 37 #1562 Zbl 0162.37101
- [Reams 2006] R. Reams, "Partitioned matrices", Chapter 10, in *Handbook of linear algebra*, edited by L. Hogben, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2007j:15001 Zbl 1122.15001

[Samuelson 1947] P. A. Samuelson, *Foundations of economic analysis*, Harvard University Press, Cambridge, MA, 1947. MR 10,555b Zbl 0031.17401

Received: 2011-03-03	Accepted: 2011-06-10
mharcher@iastate.edu	Department of Mathematics, Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
	Department of Mathematics, Columbia College, Columbia, SC 29203, United States
catralm@xavier.edu	Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, United States
craig@iastate.edu	Department of Mathematics, Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
rhaber2010@my.fit.edu	Mathematics Department, Florida Institute of Technology, Melbourne, FL 32901, United States
lhogben@iastate.edu	Department of Mathematics, Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
	American Institute of Mathematics, 360 Portage Avenue, Palo Alto, CA 94306, United States
xavier.martinez@upr.edu	Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, P.R. 00681, United States
aochoa@csupomona.edu	California State Polytechnic University, Pomona, Pomona, CA 91768, United States

