0
 involve a journal of mathematics

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

Abstract

Potentially eventually positive (PEP) sign patterns were introduced by Berman et al. (Electron. J. Linear Algebra 19 (2010), 108-120), where it was noted that a matrix is PEP if its positive part is primitive, and an example was given of a $3 \times 3 \mathrm{PEP}$ sign pattern with reducible positive part. We extend these results by constructing $n \times n$ PEP sign patterns with reducible positive part, for every $n \geq 3$.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in $\{+,-, 0\}$. For a real matrix $A, \operatorname{sgn}(A)$ is the sign pattern having entries that correspond to the signs of the entries in A. If \mathscr{A} is an $n \times n$ sign pattern, the qualitative class of \mathscr{A}, denoted $Q(\mathscr{A})$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\operatorname{sgn}(A)=\mathscr{A}$, where $\operatorname{sgn}(A)=$ $\left[\operatorname{sgn}\left(a_{i j}\right)\right]$; such a matrix A is called a realization of \mathscr{A}. Qualitative matrix problems were introduced by Samuelson [1947] in the mathematical modeling of problems from economics. Sign pattern matrices have useful applications in economics, population biology, chemistry and sociology. If P is a property of a real matrix, then a sign pattern \mathscr{A} is potentially P (or allows P) if there is some $A \in Q(\mathscr{A})$ that has property P.

The spectrum of a square matrix A, denoted $\sigma(A)$, is the multiset of the eigenvalues of A, and the spectral radius of A is defined as $\rho(A)=\max \{|\lambda|: \lambda \in \sigma(A)\}$. Matrix A has the strong Perron-Frobenius property if $\rho(A)>0$ is a simple strictly dominant eigenvalue of A that has a positive eigenvector. A matrix $A \in \mathbb{R}^{n \times n}$ is eventually positive if there exists a $k_{0} \in \mathbb{Z}^{+}$such that for all $k \geq k_{0}, A^{k}>0$, where the inequality is entrywise. Handelman developed the following test for eventual positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both A and A^{T} satisfy the strong Perron-Frobenius property. If there exists a k such

[^0]that $A^{k}>0$ and $A^{k+1}>0$, then A is eventually positive [Johnson and Tarazaga 2004]. A sign pattern \mathscr{A} is potentially eventually positive (PEP) if there exists an eventually positive realization $A \in Q(\mathscr{A})$.

For a sign pattern $\mathscr{A}=\left[\alpha_{i j}\right]$, define the positive part of \mathscr{A} to be $\mathscr{A}^{+}=\left[\alpha_{i j}^{+}\right]$and the negative part of \mathscr{A} to be $\mathscr{A}^{-}=\left[\alpha_{i j}^{-}\right]$, where

$$
\alpha_{i j}^{+}=\left\{\begin{array}{ll}
+ & \text { if } \alpha_{i j}=+, \\
0 & \text { if } \alpha_{i j}=0 \text { or } \alpha_{i j}=-,
\end{array} \quad \alpha_{i j}^{-}= \begin{cases}- & \text {if } \alpha_{i j}=-, \\
0 & \text { if } \alpha_{i j}=0 \text { or } \alpha_{i j}=+.\end{cases}\right.
$$

Clearly $\mathscr{A}=\mathscr{A}^{+}+\mathscr{A}^{-}$. For a matrix $A \in \mathbb{R}^{n \times n}$, the positive part A^{+}of A and negative part A^{-}of A are defined analogously, and $A=A^{+}+A^{-}$.

A digraph $\Gamma=(V, E)$ consists of a finite, nonempty set V of vertices, together with a set $E \subseteq V \times V$ of arcs. Note that a digraph allows loops (arcs of the form (v, v)) and may have both $\operatorname{arcs}(v, w)$ and (w, v) but not multiple copies of the same arc. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$. The digraph of A, denoted $\Gamma(A)$, has vertex set $\{1, \ldots, n\}$ and arc set $\left\{(i, j): a_{i j} \neq 0\right\}$. If \mathscr{A} is a sign pattern, then $\Gamma(\mathscr{A})=\Gamma(A)$ where $A \in Q(\mathscr{A})$. A digraph Γ is strongly connected if for any two distinct vertices v and w of Γ, there is a path in Γ from v to w.

A square matrix A is reducible if there exists a permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} and A_{22} are nonempty square matrices and 0 is a (possibly rectangular) block consisting entirely of zero entries, or A is the 1×1 zero matrix. If A is not reducible, then A is called irreducible. It is well known that for $n \geq 2, A$ is irreducible if and only if $\Gamma(A)$ is strongly connected. For a strongly connected digraph Γ, the index of imprimitivity is the greatest common divisor of the lengths of the cycles in Γ. A strongly connected digraph is primitive if its index of imprimitivity is one; otherwise it is imprimitive. The index of imprimitivity of a nonnegative sign pattern \mathscr{A} is the index of imprimitivity of $\Gamma(\mathscr{A})$ and $\mathscr{A} \geq 0$ is primitive if $\Gamma(\mathscr{A})$ is primitive, or equivalently, if the index of imprimitivity of \mathscr{A} is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where it was shown that if \mathscr{A}^{+}is primitive, then \mathscr{A} is PEP, and where the first example of a PEP sign pattern with reducible positive part was given: the 3×3 pattern

$$
\mathscr{B}=\left[\begin{array}{ccc}
+ & - & 0 \\
+ & 0 & - \\
- & + & +
\end{array}\right] .
$$

In Section 2 we extend the results of [Berman et al. 2010] by generalizing the 3×3 pattern \mathscr{B} given there to a family of PEP sign patterns having reducible positive part for every order $n \geq 3$.

In Section 3 we examine the effect of the Kronecker product on PEP sign patterns and obtain another method of constructing PEP sign patterns with reducible positive part.

2. A family of sign patterns generalizing \mathscr{B}

The sign pattern \mathscr{B} from [Berman et al. 2010] was the first PEP sign pattern with a reducible positive part. This sign pattern may be generalized by defining the $n \times n$ sign pattern

$$
\mathscr{B}_{n}=\left[\begin{array}{ccccc}
+ & - & \cdots & - & 0 \\
+ & 0 & \cdots & 0 & - \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
+ & 0 & \cdots & 0 & - \\
- & + & \cdots & + & +
\end{array}\right]
$$

The following result, which is a special case of the Schur-Cohn criterion (see, e.g., [Marden 1949]), will be used in the proof that \mathscr{B}_{n} is PEP.

Lemma 2.1. If the polynomial $f(x)=x^{2}-\beta x+\alpha$ satisfies $|\beta|<1+\alpha<2$, then all zeros of $f(x)$ lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is $p(x)=x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ then $a_{n-k}=(-1)^{k} E_{k}(A)$, where $E_{k}(A)$ is the sum of the $k \times k$ principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For $n \geq 3$ the $n \times n$ sign pattern \mathscr{B}_{n} is PEP.
Proof. For $t>0$, let $B_{n}(t)$ be the $n \times n$ matrix

$$
B_{n}(t)=\left[\begin{array}{ccccc}
1+(n-2) t & -t & \cdots & -t & 0 \\
1+t & 0 & \cdots & 0 & -t \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1+t & 0 & \cdots & 0 & -t \\
-(n-2) t-\frac{1}{2} t^{2} & t & \cdots & t & 1+\frac{1}{2} t^{2}
\end{array}\right]
$$

Then $B_{n}(t) \in Q\left(\mathscr{B}_{n}\right)$, and 1 is an eigenvalue of $B_{n}(t)$ with positive right eigenvector $\mathbb{1}$ (the all ones vector) and positive left eigenvector

$$
w=\left[\begin{array}{lllll}
\frac{2 n-5}{t} & 1 & \cdots & 1 & \frac{2 n-4}{t}
\end{array}\right]^{T}
$$

We show that for some choice of $t>0,1$ is a simple strictly dominant eigenvalue of $B_{n}(t)$ and hence $B_{n}(t)$ is eventually positive. Since $1 \in \sigma\left(B_{n}(t)\right)$ and rank $B_{n}(t) \leq 3$, the characteristic polynomial $p_{B_{n}(t)}(x)$ of $B_{n}(t)$ is of the form $p_{B_{n}(t)}(x)=x^{n-3}(x-1)\left(x^{2}-\beta x+\alpha\right)=x^{n}-(1+\beta) x^{n-1}+(\alpha+\beta) x^{n-2}-\alpha x^{n-3}$.

Computing α and β using the sums of principal minors to evaluate the characteristic polynomial gives $\beta=\frac{1}{2} t^{2}+(n-2) t+1$ and $\alpha=(n-2) t\left(1+2 t+\frac{1}{2} t^{2}\right)$. For $n>3$, setting $t=1 /(2(n-2))$ gives $|\beta|<1+\alpha<2$, which, using Lemma 2.1, guarantees that the two nonzero eigenvalues of B_{n} other than 1 have modulus strictly less than 1 (recall that a 3×3 eventually positive matrix $B_{3} \in Q\left(\mathscr{F}_{3}\right)$ was given in [Berman et al. 2010] so we have not been concerned with this case in choosing t).

We illustrate this theorem with an example.
Example 2.3. Let $n=5$. Following the proof of Theorem 2.2, we choose $t=\frac{1}{6}$ and define

$$
B_{5}=B_{5}\left(\frac{1}{6}\right)=\frac{1}{6}\left[\begin{array}{rrrrr}
9 & -1 & -1 & -1 & 0 \\
7 & 0 & 0 & 0 & -1 \\
7 & 0 & 0 & 0 & -1 \\
7 & 0 & 0 & 0 & -1 \\
-\frac{37}{12} & 1 & 1 & 1 & \frac{73}{12}
\end{array}\right]
$$

Moreover, we have

$$
\begin{aligned}
\sigma\left(B_{5}\right) & =\left\{1, \frac{1}{144}(109+i \sqrt{2087}), \frac{1}{144}(109-i \sqrt{2087}), 0,0\right\} \\
& \approx\{1,0.7569+0.3172 i, 0.7569-0.3172 i, 0,0\},
\end{aligned}
$$

and $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{ccccc}\frac{5}{6} & \frac{1}{36} & \frac{1}{36} & \frac{1}{36} & 1\end{array}\right]^{T}$ are right and left eigenvectors, respectively, corresponding to $\rho\left(B_{5}\right)=1$. Therefore B_{5} and B_{5}^{T} have the strong PerronFrobenius property, so B_{5} is eventually positive by Handelman's criterion.

In [Berman et al. 2010] it was shown that if the sign pattern \mathscr{A} is PEP, then any sign pattern achieved by changing one or more zero entries of \mathscr{A} to be nonzero is also PEP. Applying this to \mathscr{B}_{n} yields a variety of additional PEP sign patterns having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for generating larger eventually positive matrices and thus PEP sign patterns. The Kronecker product of $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ is defined as

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{n 1} B & \cdots & a_{n n} B
\end{array}\right] .
$$

It is clear that if $A>0$ and $B>0$, then $A \otimes B>0$. The following facts can be found in many linear algebra books; see [Reams 2006], for example. For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m},(A \otimes B)^{k}=A^{k} \otimes B^{k}$. For A, C, B, D of appropriate dimensions,
we have $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$. There exists a permutation matrix P such that $B \otimes A=P(A \otimes B) P^{T}$.

Proposition 3.1. If A and B are eventually positive matrices, then $A \otimes B$ is eventually positive.

Proof. Assume that A and B are eventually positive matrices. Since A and B are eventually positive, there exists some $s_{0}, t_{0} \in \mathbb{Z}$, with $s_{0}, t_{0}>0$, such that for all $s \geq s_{0}$ and $t \geq t_{0}, A^{s}>0$ and $B^{t}>0$. Set $k_{0}=\max \left\{s_{0}, t_{0}\right\}$. Then for all $k \geq k_{0}$, $(A \otimes B)^{k}=A^{k} \otimes B^{k}>0$.

Corollary 3.2. If \mathscr{A} and \mathscr{B} are PEP sign patterns, then $\mathscr{A} \otimes \mathscr{B}$ is PEP.
If either A or B is a reducible matrix, then $A \otimes B$ is reducible since, without loss of generality, if

$$
P A P^{T}=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]
$$

then

$$
(P \otimes I)(A \otimes B)(P \otimes I)^{T}=\left[\begin{array}{cc}
A_{11} \otimes B & 0 \\
A_{21} \otimes B & A_{22} \otimes B
\end{array}\right] .
$$

Thus Corollary 3.2 provides another way to construct PEP sign patterns having reducible positive part.
Example 3.3. Let

$$
B=\frac{1}{100}\left[\begin{array}{ccc}
130 & -30 & 0 \\
130 & 0 & -30 \\
-31 & 30 & 101
\end{array}\right] .
$$

In [Berman et al. 2010] it was shown that B is eventually positive, and in fact $B^{k}>0$ for $k \geq 10$.

Let $A=\left[\begin{array}{l}23 \\ 10\end{array}\right]$. Then $A^{k}>0$ for $k \geq 2$, hence A is eventually positive.
Then

$$
B \otimes A=\frac{1}{100}\left[\begin{array}{cccccc}
260 & 390 & -60 & -90 & 0 & 0 \\
130 & 0 & -30 & 0 & 0 & 0 \\
260 & 390 & 0 & 0 & -60 & -90 \\
130 & 0 & 0 & 0 & -30 & 0 \\
-62 & -93 & 60 & 90 & 202 & 303 \\
-31 & 0 & 30 & 0 & 101 & 0
\end{array}\right] .
$$

Moreover $(B \otimes A)^{10}>0$ and $(B \otimes A)^{11}>0$, so $B \otimes A$ is eventually positive and $\operatorname{sgn}(B \otimes A)$ is a PEP sign pattern with reducible positive part.

Any 0 in $\operatorname{sgn}(B \otimes A)$ from Example 3.3 may be changed to - to get yet another PEP sign pattern with reducible positive part.

References

[Berman et al. 2010] A. Berman, M. Catral, L. M. DeAlba, A. Elhashash, F. J. Hall, L. Hogben, I.-J. Kim, D. D. Olesky, P. Tarazaga, M. J. Tsatsomeros, and P. van den Driessche, "Sign patterns that allow eventual positivity", Electron. J. Linear Algebra 19 (2010), 108-120. MR 2011c:15089 Zbl 1190.15031
[Handelman 1981] D. Handelman, "Positive matrices and dimension groups affiliated to C^{*}-algebras and topological Markov chains", J. Operator Theory 6:1 (1981), 55-74. MR 84i:46058 Zbl 0495. 06011
[Horn and Johnson 1985] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 87e:15001 Zbl 0576.15001
[Johnson and Tarazaga 2004] C. R. Johnson and P. Tarazaga, "On matrices with Perron-Frobenius properties and some negative entries", Positivity 8:4 (2004), 327-338. MR 2005k:15020 Zbl 1078. 15018
[Marden 1949] M. Marden, The geometry of the zeros of a polynomial in a complex variable, Mathematical Surveys 3, American Mathematical Society, Providence, RI, 1949. 2nd ed. titled Geometry of polynomials in 1966. MR 37 \#1562 Zbl 0162.37101
[Reams 2006] R. Reams, "Partitioned matrices", Chapter 10, in Handbook of linear algebra, edited by L. Hogben, Chapman \& Hall/CRC, Boca Raton, FL, 2006. MR 2007j:15001 Zbl 1122.15001
[Samuelson 1947] P. A. Samuelson, Foundations of economic analysis, Harvard University Press, Cambridge, MA, 1947. MR $10,555 \mathrm{~b}$ Zbl 0031.17401

Received: 2011-03-03	Accepted: 2011-06-10
mharcher@iastate.edu	Department of Mathematics, lowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
	Department of Mathematics, Columbia College, Columbia, SC 29203, United States
catralm@xavier.edu	Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, United States
craig@iastate.edu	Department of Mathematics, lowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
rhaber2010@my.fit.edu	Mathematics Department, Florida Institute of Technology, Melbourne, FL 32901, United States
Ihogben@iastate.edu	Department of Mathematics, lowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
	American Institute of Mathematics, 360 Portage Avenue, Palo Alto, CA 94306, United States
xavier.martinez@upr.edu	Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, P.R. 00681, United States
aochoa@csupomona.edu	California State Polytechnic University, Pomona, Pomona, CA 91768, United States

[^0]: MSC2010: 15B35, 15B48, 05C50, 15A18.
 Keywords: potentially eventually positive, PEP, sign pattern, matrix, digraph.

