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INTRODUCTION

Shannon (1) in 1948 and others who foliowed him have provided a quanti-
tive basis on which to judge communication systems. Shannon has shown thét
it is possible to communicate ovef a noisy channel at any rate less than or
equal to that indicated by Equation 1 with an arbitrarily small probability

of error if sufficiently elaborate coding schemes are used.

Cgy = W log, (1 + ) (1)

SH

In Equation 1, CSH is the channel capacity in bits per second, W is the
pandwidth of the chénnel in cycles per second, and.s2 is the channel signal-
to-noise power ratio. This formula assumes that the noise is additive,
gaussian, and white over the entire bandwidth W.

Ulstad (2) has shown that a commnication system carrying informetion
only in the phase of a narrowband signal, one with a bandwidth of W centered
at @ radians per second, permits information transmission ét an appreciable
fraction of the theoretical maximum, CSH’ over a rather large range of values
of Sa. Over most of the useful values of 52 this fraction is considerably
larger than the value of one half which might be expected from the sahpling
theorem for narrowband signals which is discussed in Appendix B. E%M s the
maximum permissible rate of information transmission by phase modulation of
a narrowbend signal which still permits an arbitrarily low error rate, and

c

-%E»are plotted in Figure 1. Note that the rates are now in bits per digit.

It will be noted that the ratio of CPM to C, does decrease at the larger

SH
signal-to-noise ratios and indeed it does reach the intuitive value of one



Figure 1. Information and error rates for digit-by-digit
decoding
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half at very ;Large signal-to-noise ratios. This latter fact was original-
1y shown by Blachman (3). The ratio is, however, still about 0.67 for 82
equal to 20 db. |

Figure 1 also shows the informetion rates possible at various signal-
to-noise ratios for digit-by-digit decoding of m equally spaced phase
symbols subjected to phase noise. Some error probabilities are also indi-
cated on the curves. These curves, whose c;alculation is discussed in Ap-;
pendix A, show that for signasl-to-noise ratios in the range of 10 to 20 d.bv
more tha.n two levels are needed to take advantage of the inherent informa-
tion handling capability.

A purely phase modulated system has many practical advantages and the
above results show that it has a relatively large informatidn handling ca-
' pacity. Thus in this paper a communication sjrstem using only phase modu-
lation of a narrowband carrier is proposed. This system is not a theo-
retically optimum system, but it has the aé.vanta.ge that all the reé_uired
subsystems, which are described only mathematically in the thesis, can
be implemented in terms of existing technology with reasonable economy.

Consider the communication system shown in Figure 2. Here the encoder
generafes sequentially waveforms xl(t) s xe(t) s 0 o oy xM(t) corresponding
to processed input data. All of the wavéfoms are assumed to be of equal
time duration, of equal power content, and individually distinct. A pos=-
sible encoder for nonbinary information is shown in Figure 3 where M= 4.
Woodward (4) showed that if time stationary, white, gaussian noise is added
to the output of this type of encoder no decoder can do better than to use

cross-correlation processing of the noisy signael. Thus the optimum decoder
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Figure 2. Block diagram of communication system
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mst store all M possible transmitted waveforms and compare the noisy sig-
nal against each. The signal with the largest cross-correlation is assumed
to be the one sent by the encoder. Using the above facts, Fano (5) pro-
posed his "Idealized Commumnication System" shown in Figure 4.

The commmication system proposed in'this paper has & basic similarity
to Fano’s system. It will, kowever, attempt to overcome some of the syn-
chronization and decoder waveform problems associated with the prototype
system.

The proposed system is very similar to the system proposed by Ulstad
(2) with the exception of the coding used. This system will use nonbinary
coding in forming the phase modulation codes rather than the binary codes
used by Ulstad. This means that the emphasis will be placed on rates
greater than one bit per digit rather than the lower rates which received
Ulstad's attention. Ulstad'!s area of attention is indicated on Figure 1.

Sanders (6) has also described a system similar to Fano's (5) which
uses digital phase modulation and & phase locked detection system. This
system does not result in & well confined spectrum which may be desiré.ble
in meny applications.

The heart of the system proposed in this thesis is the coding used.
The codes must provide both noise immnity and word synchronization for the
system to be successful.

Nonbinary coding to achieve noise immunity has been studied by many
authors. Among these are Lee (7), Ulrich (8), Helstrom (9), and Shapiro
and Slotnick (10). Nearly all the nonbinary coding work has assumed that

blocks of N nonbinary digits are related to one another in such a way that
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an error in decoding one or more of the N digits can be corrected or at
least detected. The digits are decoded one at a time and then the con-
straints are applied to detect or correct digits corrupted by noise. This-
type of decoding leads to a coding process in which the code words are
picked by the number of digit positions in which they differ from all other
allowed code words or are picked such that for any two allowed code words

s end t the sum of the circular metric,

p(si, ti)= Min (si -t,, t, - si) (mod m) - (2)

i’ i

over all N digits forming the words is equal to or greater than a given
number. The number of symbols allowed is represented by m. The former

© eriterion corresponds in coding terminology to using Hamming (11) distance
and the second to using Lee (7) distance. Neither of these distance cri-
terion for choosing the allowed code words is suitable for the detection
scheme proposed in this paper. Thus & new coding scheme with a new dis-
tance criterion will be required.

Barker (12), sherman (13), Gilbert (14), and Stiffler (15) have all
investigated methods of word synchronization which result in a reduced in-
formation rate.

Stiffler (15) very recently proi)’osed the use of certain codes to a-
chieve synchronization without reducing the informastion rate. These codes
were binary and achieved the same results as Ulstad's (2) Hadamard codes.
The proposed system will use nonbinary codes to achieve synchronization in

a similar manner.

After a discussion of the system and the type of detection to be used



& major portion of the paper will be devoted to the construction of suit-
able nonbinary codes. The remainder of the paper will deal with the per-
formance of these codes in the system and in particular with the error
and information rates that they permit.

The major contribution of this thesis is the construction and per-
formance evaluation of nonbinary codes suiteble for use in a phase modula-
tion commmnication system using word decoding. Codes'which have greeater
noise immunity than those used at the same information rate for digit-by-
digit decoding and which have inherent synchronization information are de-
veloped. These codes are chosen to meet a new distance criterion which is
developed especially for word decoding of phase modulation information.

The geometrical approach used in. the code construction is believed to be

unique.



DESCRIPTION OF PROPOSED COMMUNICATION SYSTEM

It is assumed that the input date to the proposed system is available
at a constant rate. It is further assumed that the source and receiver
have as common knowledge the code dictionary, the carrier frequency, and the
transmitter bandwidth. The receivers knowledge of the code dictionary
means that redundancy may be used to improve the relisbility of correct mes-
sage reception. The function of the channel is to transfer the input data
in as short a time, in as narrow a bandwidth, and in as reliable a manner
as possible to the user.

The system has several significant features. The encoding is doné by
e group of linear networks, the envelope amplitude is not constant with
time as in a conventional phase modulation system, the detection scheme is
not a matched filter problem in the normal sense, and synchronization in-
formation is carried in the received signel.

A block diagram of the proposed system is shown in Figure 5. It is as-
sumed that the input data can be converted into code words which consist of
N digits that may assume any of m values ai, i=1,2, ¢ « « , m, ﬁhere
-7 S(zi < x. That is a block encoder with a block length of N is used. The
code words will be given the symbol Oj vhere j=1, 2, . . +, M depending
on which word is considered. These words may be thought of an N dimensional
vectors with quantized component velues. That is the code word QJ may be
thought of as the vector 9? ="-2%L Oi ik where Oi takes on one of the

k=1

values @, i=1, 2, . . . m, and;k-ij--Oﬁk#,j. At times it will

also be comvenient to think of the code word 6Y as the sequence oY =
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Gij:, Qg, Og, o« o oy 01'% vhere the Oi’s are the same as above. The total
number of code words is given the symbol M. M is thus the size of the
code dictionaxy.

In Figure 5 it is the function of the input data processor to perform
the conversion of the data into the allowed code words. If the data is
not available at a constant rate the data processor must have some memory
capacity to smooth the data rate. The signal sl(t) is a signal which
takes on the one of the M values which corresponds to the ccde word chosen
and which changes every T seconds corresponding to the rate at which new
code words are sent.

Each of the code words has a unique waveform which corresponds to it
and the transmitted signal, x(t), consists of a continuous sequence of

‘ these waveforms. It is the function of the impulse generator and the bank
of linear networks to generate these waveforms. The signal sl(t) goes to
the impulse generator where a train of N unit impulses is generated. The
individual impulses may be either positive or negative and are separated
in time by H seconds, where p = T::-_I The exact form of the impulse train,
vhether a given impulse is positive or negative, depends on the value of
sl(t). However, there will in general be a many to one correspondence
between the values of sl(t) and impulse trains.

The signal sa(t), the impulse train, is the input to the bank of
linear networks. The signal sl(t) also goes to this bank of networks and
controls which of the networks is used. The impulse response of each of
the linear networks is chosen such that each impulse controls the phase of

the transmitted signal at a particular instant of time. At these instants
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of time, called sample points, the transmitted signal x(t) has an enve-
lope a.mi)litude of A and one of m possible phase values Oli depending on
the polarity of the impulse and the value of sl(t).

Narrowband, white, gaussian noise n(t) is assumed to be added lin-

early to the itransmitted svigna.l x(t) by the channel to form the received

signal y(t). That is,
x(t) + n(t) = y(t) . (3)

The phase detector responds only to the slowly varying phase of the
input signal y(t). It provides an output signal that is linearly propor-
tional to the phase of y(t).

The synchronization informetion processor uses the input signal y(t)
to adjust the local oscillator which provides the reference for ‘ohe~ phase
detector. It also provides sampling synchronization information to the de-
coding integrators. A memory cepacity here will smoofh out the effects of
the noise in y(t).

The decoding integrators have the job of determining which of the M
possible messages was sent. The phase function s 4:(t) is sampled at the N
unique times which were called sample points earlier. That is, N samples
it seconds apart and with appropriate synchronization are taken. These N
sample points form words similg.r to the code words. Each digit is, how-
ever, no longer quantized to m values but may have any value in the cont-
inuum from -x to n. Thus the received word ¢ may be represented as ¢ =
kal ‘?’kgkwhere -n < )’”k<:tandi._k -éj=0ifk7‘joras¢= 4/1,

542, ¢3, . v oey {/N. The decoding integrators compare the word ¢ with



13

all the M possible code words, OJ, to determine which code word ¢ resembles
most closely in a particular sense. The type of comparison is discussed in
the next section. On the basis of this coﬁparison,,a decision as to the
message most probably transmitted is formed.

The siénal ss(t) has M possible values corresponding to the possible
transmitted messages and assumes the value corresponding to the méssage con-
sidered most probable. This signal provides the input to the decoding data
processor which converts the signal into the input data that it represents
and provides this as an output. Note that in many applications this step
mey be unnecessary.

There is a word synchronization problem in the formation of ®. Namely,
it must be knowvn when the first sample point in any particular ¢ is to be
taken. ihis is particularly a problem when there are fluctuations in trans-
mission path length and hence fluctuations in transit time between the
transmitter and receiver. The essential problem in the proper operation of
the receiver is one of adjusting the phase sampling times correctly within
& range of i seconds and then dividing the samples into the proper blocks
of N samples. No provision for handling the latter problem is‘m;de on the
block diagrem. This problem will be discussed in greater detail when.the

coding is discussed.

Transmitter Operation

The transmitter is shown in greater detail in Figure 6. The input

data processor serves the purpose mentidned earlier. Its output goes to

both the impulse generator and the impulse routing logic.
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Assume that a particular code word Ol = % ’ Z—“— s f-t- s -"-Z-ﬁ is to be
sent, and that it is followed by the word 07 g—, :2-’5 » %, -EL .

corresponding impulse train is shown in Figure 7. That is, a signal sl(t»)

corresponding to the code word Ol would enter the impulse generator and its

%

The

output signal sa(t) would look like the indicated portion of Figure 7.
It is shown in Appendix B that any band-limited signal which is not

also time limited may be represented by the equation

k=w sin x W(t - £) .
z(t)=kZ=-m A TG _%) cos [¢°(t -7 -Ad ()

where W is the bandwidth in cycles per second, W the carrier frequency in
radians per second, and Ak and A x &re independent amplitude and phase val-
ues. Thus at the kth sample point corresponding to t = % any narrowband
signal is completely determined by the values of Ak and A X and the sample
points are spaced %I seconds apar;c.

If the transmitted signal could be built up from functions of the form
)

W k
o (t-3)=-A_1 5)
ﬁW(t-%) cos mo( i Kk (

sin x W (¢t =

2 () = &

then in the noiseless case sampling of the received signal at %-I interveals
would yield all the information aveilable in the waveform. It is, of
course, not feasible to suggest this course of action but it should be pos-

sible to build signals by adding together functions of the form
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k+S5

- k-l-sw cos [a)o(t - k+5) -A ]
b1 t - =

sin n W(t -

() = Ay

[u, (Wl'»---)-u]_(i':-g"-]‘(2 (s)

In Equation 6 the delsy is chosen arbitrarily as % seconds because this
results in a relatively well confined spectrum as shown in Appendix C.
The function ul(t) is the unit step function. The truncation and time
delay should meke this time function realizable. The signal zk(t) :I—.s— now
time limited and thus the resulting signal will not be limited to the
frequency band W centered at a)o. The spread in frequency caused by the
truncation will, however, normelly be quite small. The frequency spread
is discussed in more déta.il in Appendix C.

A signal formed by adding together functions like zl;(t) depends only

on A, and A, at the kth sampling point. Thus, in the noilseless case,

k
sampling this transmitted signal at the sample points would yield the in-
formation originally put into the signal. In a noisy situation the sampled
values would not agree with the original values of Ak and /\k because of
the effect of fche noise but they can be processed in dlocks of the same
length as used in the original encoding to see which of the allowed values
they most closely resemble. This method of detection is not optimal as
will be shown in the next section but its eas,e—.of implementation makes it
desirable.

Thus from the standpoint of confining the frequency band of the trans-

mitted signal and simplifying the detection it is desirable to build the
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transmitted signal by addition of functions of the form shown in Equation
6. '

In a purely phase system, such as the one under consideration, the
envelope amplitude Ak will havl'e tﬁe same value at all sample points, that
is, for all values of k. Let this value be A. Note that the envelope
amplitude between sample points is not equal to a constant but depends on
the phase values at ten sample points. A bank of filters with impulse re-

sponses of the form

S
sin ﬁW('t -w)

ehe) = a cos (@ & - &) [u(8) - u(t -3 (7)

2 Wt - )

can be used to form the desired signal. Here /\k has been replaced by Q.
If a filter with the impulse response indicated in Equation 7 is driven
with a negative impulse the envelope a.mpliﬁude is still A but the phase
angle of the carrier is Oli + 180°. Thus each filter of the above type is
cepable of yielding two of the m possible phase values Oti if m is even and

the m values are evenly spaced over the 2x range. If the a&bove is true, a

total of 2 linear filters of the form of Equation 7 must be contained in

2
the bank.
The indicated impulse response may be realized more easily if the im-
pulse response corresponding to the truncated Si:: X function
. 5
A sin =« W(t - ﬁ') 10
£(t) = A [w () - w (¢ - 7 )] (8)

T Wt - .;5;)

is realized and used to drive a balanced modulator operating at an angular



19

i
reference. Figure 8 shows fi('c) and Figure 9 shows ’f(t).

fregquency of a)o radians per second and a phase of ¢, radians relative to a

As shown in Figure 6, the signal sa(t) is routed through the impulse
routing logic by sl(t) in such a manner that thg impulses go to the proper
filters. Assuming that m = 4, the code word Ol discussed earlier illus-
trates the procedure. Two filters would be required, the first with an
angle of % and the second with an angle of 25 . The first and fourth im-
pulses would be routed to the first filter and the second and third im-
pulses would be routed to the second filter. Note the correspondence be-
tween the desired phase angles and the impulse polarities.

The outputs of all the filters are summed continuously to form the
transmitted signal, x(t).

If m is odd or if the.allowed phase values ai are not evenly spaced,
m linear filters are required. Further, the impulse train would consist
of only positive impulses separated by p seconds and the signal sl(t)

would go only to the routing logic.

Detection Theory

The encoded signal is of the form

x(t) = 2 2,(t) (9)

where z;(t) is given by Equation 6 and /\k is one of the m values @,. It is

desired to obtein the original phase information, the values of- ’\k’ from

this signal after the a,ddi'bio'n'of stationary, white, gaussian noise.

Woodward (4) has shown that the ideal statistical receiver is one that
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forms py(x) , the conditional probability that the event x has occurred
given the occurrence of the effect y, or something informationally equiv-

alent. He writes

py(X) =K p(x) 2 (v) (10)

vhere K is a normalization constant dependent on y alone, p(x) is the a
priori probability of the event x, and px(y) is the probability that the
effect y is observed if the event x occurs. If several independent events
are grouped together to form new events, X = K.L’ xe, c s e X and the
possible effects are now given the symbol Y = yl, y2, « s Y Equation
10 becomes

N
i7Z‘ . pxi(yi) (11)

py(X) = K' p(X) p (¥Y) = K* p(X)

The conditional probabilities Pxi(yi) are celled likelihood functions and
for any given effect y may be thought of as only functions of x. Thus,
Equation 11, for a given effect Y, is only a function of X.

In the case at hand the independent events are the sample point values,
A, 8nd @, used in forming x(t), the transmitted signal, and the effects are
the sample point values, B_ and %, of y(t), the received signal. The con-
ditional probability p, , gk( B, s ;ﬂk) is shown in Appendix E to be

'(Bk cos 5’1: - Ak cos Gk)e-(Bk sin{/k - Aks:i.nek)2
pAk,gk(Bk.é”k) Ce , (12)

end thus the ideal receiver would form
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1 N i 1,2
) L T E e, B cos - by cos 0))
P, .1(87) = K"p(6")e = |
y(t)

i is2
+ (13k sin 5ﬂk - A sin ok) ] (13)
where K" is a constant, p(Gi) is the a priori probability of the message Oi,
0'2 1s the variance of the noise,Alj; is the envelope' amplitude at the kth

semple point of message 6™ and Oi is the phase at the kth sample point of

k
message Gi, and Bk is the envelope amplitude and s{; is the phase at the
kth sample point of the received signal y(t). Equation 13 may be written
as follows
N
1 Z 2 1 Z i\2
(Oi) = K“P(Qi)e- ;:2- k=1 Bk e- ;é- k=1 (Ak)
Py(t)
1 N i i
- =5 > . Bkcos(gﬂk-gk)
e 20 k= (14)
The term o1 N Blf
202 k=1l

e
depends only on y(t) and can be included in the constant for a given y(t).
The envelope amplitude coefficients Ai have the same value A for all i and
all k, and thus the term
R
0’2 k=1 Ak

2
e

is a constant. The key term is thus
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N

i -

— cos (#Z - o)

e2°2 =1 ABk k k

If all the messages 91 are equally probable a priori, the most probable
N © .

. . - > _ ot
trensmitted message is the one that maximizes =1 B cos (q/k Ok).
This term does not lend itself to easy mechanization and thus the receiver
used will not be the ideal one suggested above. The amplitude information
Ek will not be used and the cosine will be approximated by the Ffirst two
terms of its Taylor series. Thus the decision as to the most probable mes-
sage sent will be made on the basis of the minimization of the sum

N .
> (F - )P (15)
k=1

where gﬂk - ltl < . This corresponds to meximizing Py( t)(Oi). This type

of detection is called meaximum likelihood detection. It should be noted
that only in gain stable systems could the above type of detection which
depends on differences be used effectively. The linear phase detector in
the receiver will provide the gain independent signal needed.

This detection scheme points out an important criterion to be used in
tlixe selection of the allowed code words. In detection the 1% l({{{-@i)a
is formed for each of the allowed messages, Qi ; the message which yields
the minimum value is assumed to be the message sent. The assumption is that
the most probable noise sequence at the sample points, namely the one that
Yields the minimum sum, is the actual noise sequence. There is, of course,

8 non-zZero probability that a noise sequence with a larger sum was the ac-

tual sequence and that the wrong message will be selected. That is, the



24

signal formed by adding largerﬂ noise sample points onto the message sample
points may be closer to another messege G‘j ’cha.n the original one ei in the
sense that ka 1 (6ﬂk - Oiz)a is smaller than k%l(gs - 9;)2. If the
allowed code words are far aspart in the sense that the sum of the squares
of their coordinate differénces is large then the probability of incor-
rect decision is reduced because the probability of a phase noise sequence

with coordinates large enough to make the received signal closer to a

message other than the original message is greatly reduced.

Nonbinary Coding Scheme

Tt is desired to generate code words which can be used to represent
various possible messages. A code word is actually a sequence of N digits
where each diglit takes on one éf m values Oti, i=12, ..., m where
-3 5 Oti < . These sequénces are used to specify the phase of the trans-
mitted signal at N sample points. The discussion of detection pointed out
the need to choose these sequences in a particular mamner to achieve the
greetest noise immunity. It is desired 'to choose the sequences such that
for any given number of code words the minimum distance separating any two
of them is as large as possible. The distance metric used will resemble the
Buclidean metric but differs from it due to the cyclic nature of phase
values. If the sequences are put in & one-to~one correspondence with the
positive integers from one f.o M and i and j are indices ranging over these
integers, the distence D( i, j) between the sequences corresponding to i and
j should be as large as possible for all i and j for wvhich i 4 3. Putting

the problem in another wey, it is desired to find all the sequences of N
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digits for which D(i, j) > C for all i and j for which i # j and some pos-
itive real constant C. This form of the problem is more Era.ctable.

The reason for wanting to find all the sequences that meet a given dis-
tance criterion is that the rate of transmission of information, if each of
the sequences has an equal probability of being transmitted and the error

rate is low, has the form
R= = log,_ M. (16)
N 2

Here M is the number of sequenées or messages and R is the rate in bits per

digit. Thus an increase in M corresponds to a rate increase.

Selection of words meeting a distance criterion

Because sequences meeting a certain distance criterion are to be chosen
a geometrical point of view will be wery useful in choosing the code words.
The seq_ﬁences may be thought of as points inside an N-dimensionsl cube of
length 27 on each side. This cube will be called the phase space. The 2x
restriction is imposed by the fact that only phase values in a 2% range are
unique and a code sultable for phase modulation is required. Distances in
this phase space are measured according to & metric which will be defined
below. ZEach digit of one of the message sequences is a coordinate of the
point corresponding to that sequence. Thus if the digits can take on any
of m values the point coordinates in any dimension can have any of m values.

It will be assumed that m = KP_g, where K is & positive integer greater
than one and g = 0, 1, 2, . . . The reason for thi.s form will become evi-

dent later. The point coordinates will be chosen originally as
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2n
aiﬂ-it'l'iﬁ- (17)

vhere 1= 0, 1, 2, . + « , m=l,  These values will later be shifted to aid
decoding. These values can be placed in & one-to-one correspondence with
the positive integers 0, 1, 2, . « « , m=1l., The phase spe;._ce may now be
thought of as corresponding to a space in which the coordinate values in
each dimension eyclically repeat. This space will be called the cyclic
space and the coordinates in it are the integers O through m-l. Addition
and subtraction of these integers is defined modulo m. That is 1 + (m-1) =
m = O. The distance between two of the integers corresponding to point co-

ordinates in this space may be defined by the ring metric.

vwhich was first introduced into coding by Lee (7). In Equation 18 i.k and

‘jk are the integers corresponding to the kth coordinates of the code points

I and J. The total distance in cyclic space between the points I and J,
corresponding to the points Bi and BJ in phase space, is

1

N 2
2 :
(L, D= | Z_ o (4, &) (19)
k=1
The actual distance, D, separating the two points in phase space can be ob-

tained by multiplying Equation 19 by 1%1‘- . That is,

1
N 2
o' B ml = o, 50| B (20)

Note that this distance is very similar to normal Euclidean distance. The
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difference is introduced by the fact that the magnitude of a phase differ-
ence may never exceed x radians. This corresponds to the integer differ-
ences never excéeding gwhich is insured by Equation 18. The metrics of
Equations 19 and 20 are Justified and indeed forced by the detection scheme
which is being used and the fact that phase is the information carrying
quantity.

The code selection problem may now be alternatively stated in terms
of the foregoing models.

A, Given the dimensionality of the space and the distance required
between code points what is the largest number of code points
allowed, or the largest rai;.e of transmission, and hov_( can the
points be determined?

B. Given the desired rate of transxlniss,ion and minimum che point
distence, what is the dimensionality of the space regquired and
how can the appropriate points be chosen?

In either of the two forms of the problem the valx::e of m, the number of
allowed coordinate values, is allowed to vary and will ordinarily be
chosen such that the rate is maximized in the first formulation and the
value of N is minimized in the second.

A possible solution to the coding problem follows. This solution will
be the best possible for certain values of the distance D under the assump-
tion of equally spaced phase values. A symmetrical evenly spaced lattice is
placed in the N-dimensionel cube which is the phase space. The lattice
spacing, D’ » 1s chosen such that it is gieater than or equal to the required

value of D but as small as possible under the constraint that -]E-‘;% mst be an
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integer. This lattice will be placed in the cube such that the point (-1!,
-, =%, « « .) is a point on the lattice. That is, each dimension of the
cube is divided into K levels wi’ch a distance D' between each level and the
first level is at -n. Note that = cannot be an allowed level because it
cannot be distinguished from -wx. If the above is impossible because D, >
the lattice should contain 2N points and the levels -x a;nd 0 will be allowed.
The lattice under discussion will be called the K-lattice where K corre-
sponds to the Kinn = k28,

If D < n then all the points of the K-lattice are allowed code points
because they meet the distance criterion. Note that a distance value of
one in the cyclic space is sufficient because for the K-lattice D= 4Dp* and
D' is greater than or equal to D. If D> x, then only some of the points
of the K-lattice may be used as code points; nawely, those that have a value
of d 2 l,?' in the corresponding cyclic space. Only two levels are allowed in
this case and thus the coorciinate integers jk and jk can assume only the |
values O and 1 for any two points I and J ;orresponding to K-lattice points.
The problem of choosing the points of the K lattice which can be used as
code points now reduces to & binary coging problem. Here p(ik, ,jk) equals
zero if i, = j_and equals ome if i # J,» The square of the distance d
now agrees with the metric suggested by Hamming (11), and extensively used
in binary coding theory. Hamming lets the distance between any two binary
sequences be the sum of the number of positions at which they differ.
Hamming's distance d.H may be written formally as

N
ap (L, = = 1 @ 3 (21)

k=1l
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vhere @ implies addition modulo 2 and i, and j_eare the k' digits of the
binary sequences I and J. Thus the selection of K-lattice points for the
case D 2 ¢t is the same as the binary problem of selecting the binary se-
quences vhich satisfy d (I, J) > (g)2 for all I and J where I # J.

Now the problem is to detefmine if more code points and thus & larger
transmission rate are possible if the number of signal levels, possible co-
ordinates in any dimension, is doubled. To do this the spacing between each
of the original K-levels is halved. This forms a lattice called the 2K-
lattice which has a lattice spacing of one half of the K-lattice spacing and
which contains the K-lattice points. If N is large enough it will be pos-
sible to find additional p'oints on this lattice which meet the distance re-
guirement with respect to themselves and also with respect to the points of
the original K-lattice already chosen. To find these points we consider the
N-cube formed by the first two levels of the K-lattice, that is, the cube
formed by the phase values -x and =-x + %‘- « The 2K-lattice has divided this
cube into EN smaller cubes of length -g—'- on a side. One of these cubes has
the point (-%, =%, =%, . . . ) as & vertex. This point, which corresponds
to the point (0, 0, 0, . . . ) in cyclic space, will always be considered a
code point. If D! > D this point is a code point because it belongs to the
K-lattice and if D! < D it will be by definition one of the points of the K-
lattice which are chosen as code points. This in no way limits the coding
scheme.

The problem now is to determine which of the vertices of the cube formed
by the 2K-lattice, which has the point (-x, =%, -1, . . . ) &s one vertex,

can be considered code points. This reduced cube will be called the 2K-cube



and the larger cube formed by the K-lattice which conteins it will be called
the K-cube. The 2K-cube is always assured of having at least one code point
as it has the vertex (-=, -, =%, . . . ). Any other vertices of this cube
vhich meet the distance criterion among themselves and with respect to the
point (-, -, =%, . . . ) will also meet the distance criterion with re-
spect to any previously chosen code points. To show that this is true con-
sider the following. The coordinates of the K-cube correspond to the inte-
gers O and 2 in the cyclic space. CL‘he'coordinates of the 2K-cube correspond
to the integers O and 1. Let a vertex of the 2K-cube be chosen and called
I. The point I will have a distance d with respect to (0, 0, 0, « « . )
equal to the square root of the number of coordinates of I which are 1.

This is true because p(0, 0) = O and p (1, 0) = 1. Assume I has z coordi-
nates which have the value 1. Then for any J which is a vertex of the K-
cube d (I, J) will be at least Vz because both p(l, 2) and p(1l, O) are
equal to one and I has z coordinates which are 1. Obviously if I meets the
distance criterion with respect to the allowed code points on the K-cube
and any other allowed code points.on the 2K-cube it will meet the criterion
for any other allowed code points outside of the K cube. Thus the problem
of choosing which of the 2K-cube vertices can be used as code points has
been reduced to the binary coding problem of choosing those binary sequences
which differ in a given number of positions from all previously chosen se-
quences assuming thet the sequence (0, 0, O, . . . ) is always chosen first.
For a vertex of the 2K-cube to meet the distance criterion with respect to
(-:r, =My =Ky o o ) in phase space its corresponding point in cyclic space

must contain at least § coordinates which have the value 1, were
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4D2

(p1)?

and E is the smallest integer larger than q. The value @ is the smallest

(22)

value that N can have if the additional phase values are to increase the
number of code words. If N < ff only the points originally chosen on the K-
lattice are allowed. Note that if D! = D, N must be at least 4 before any
of the 2K-lattice points other than those that correspond to K-lattice
points can be used as code points.

In cyclic space to obtain all the points of the 2K-lattice which mey
.be used as code points it is only necessary to add vectors which represent
the allowed vertices of the 2K-cube onto each vector which represents an
allowed K-lattice code point. The cooré.inates of the heads of the resulting
vectors are the allowed code points. These vectors have the point (O, O,. o,
« « o ) as origin. Note that the coordinates of the K-lattice points in
cyclic space now have the values O, 2, 4, . . . , 2(K-1) instead of the
velues O, 1, 2, . . . , K which they had when only the K-lattice existed.
The allowed code points found in cyclic space .can be transferred to the cor-
responding phase space by using the one-to-one integer to phase value cor-
respondence. As the 2K-cube vertex (0, 0, O, . . . ) is an allowed code
word the vector O_:i_._l + O_:I;2 + .. .4 OiN is added to all the vectors repre-
senting allowed K-lattice code points. The K-lattice code points are thus
included in the 2K-lattice code points and will from now on be considered
as 2K-lattice code points. All the points which can be represented by 2K

levels and which are mutually separated by & distance D or more according

to the metric of Equation 20 have now been obtained.
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The above process is now repeated. ZEach lattice distance of the 2K-
lattice is halved and the 4K-lattice is formed. In cyclic space the K-
lattice coordinates are now O, 4, 8, . . . , 4(K-1) and the 2K-lattice co-
ordinates are O, 2, 4, . . . , 4K-2. Attention will be focussed on the
cube formed by the 4K-lattice which has the point (-x, =%, =%, . . . ) as
e vertex. As for ‘the 21—{-cube, the vertices of this cube which satisfy the
distance requirement with respect to themselves and with respect to the
point (0, 0, O, . . . ) in eyclic space are determined. Using the same
arguments as before it can be shown that a 4K-cube vertex which satisfiés
the distance réquirement with respect to (0,‘ 0, 0, . « « ) satisfies it
with respect to all previously chosen code points. All the other allowed
4K-lattice code points can be determined ;by adding in cyclic space the vec-
tors representing the allowed vertices of the 4K-cube onto the vectors rep-
resenting the allowed 2K-lattice code points. The coordinates of the heads
of the resulting vectors are the coordinates of the allowed 4K-lattice
points in cycllic space. The correspond;i.ng points in phase space are the
allowed code points. A point on the 4K-cube is an allowed code point only
1f > 22 and thus i D = D', N st be at least 16 before the increased
number of levelé increases the number of allowed code points.

The above procedure is now repeated for an 8K-lattice and so on until
no additional code points result from the introduction of more levels.

The é.'bove coding method may be viewed as follows. A N-dimensional cube
with sides of length n or less is chosen as the starting point. The length
of' the sides is chosen as closely to the required code point separation D

as an integral division of 2n will allow if D < xt and as the value n if
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D> n., Other N-dimensional cubes that have a common vertex with the large
cube but which have sides hui. the leugth of the next larger cube are suc-
cessively inserted inside the large or K-cube.A Vertices of these N-dimen-
sional cubes which are mutually separated by an Euclidean distance D are
chosen as code points. Note that the metric defined in Equation 20 has de-
generated to the “ordinary Euclidean distance because it is not necessary to
worry sbout the ring or modularity property of phase here as all the coordi-
nate differences are less than or equel to =, the maximum difference allowed
in a phase system. First vertices of the K-cube, the la.rgest cube, are
chosen and then successively of each smaller cube until no vertex of the
next smaller .cube other than the vertex common to all the cubes is at &
distance D from all the previously chosen points. Note that vertices of a
given cube that have the desired Euclidean distance D from the common ver-
tex and from each other have the samé or a greater distance from the vertices
of any of the other cubes. The rest of the allowed code points which are
contained inside the K-cube may be obtained by adding the coordinates of the
allowed vertices of the 4K-cube onto the coordinates of the allowed vertices
of the 2K-cube and then adding the coordinates of the allowed vertices of
the 8K~-cube onto all the previously obtained code points inside the K-cube
and continuing this process until the allowed vertices of the smallest cube
have been used. As the final step all the code points can be obtained by
adding the coordinates of each of the allowed points inside the K-cube onto
the coordinates of each of the allowed points on the K-lattice described
earlier. The nonbinary coding problem when formulated in this way reduces

to a set of binary coding problems. Also a geometric interpretation which
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is useful in visualizing the effects of noise and lack of synchronization
is available. E[ﬁis method of coding will prove to be very efficient for
certain values of D.

The code points generated so far meet a certain distance criterion
vhich can be directly related to an error criterion but they have several
i‘ailings.. One of these is that the K-lattice is not symmetrically located
about the (0, 0, 0, « & » ) point in phase space. This is undesirable be-
cause digit-by-digit detection of the received words to determine the
closest K-lattice point will be carried out by the receiver. Another fail-
ing vhich is more fundamentel is that all 2N possible combinations of cer-
tain paifs of phaée levels are allowed code words. These code words hinder
word synchronizetion. These two feilings can be corrected by adding certain
sequences onto all the previously chosen code words.

To locate the K-lattice and its code points symmetrically inside the
phase space it is only necessary to add a sequence of N digits having the |
value % onto the previously determined code points. DNote that the result-
ing digit values, Q,, must be in the range -x < o, < %t. Further, note that
adding the same vector onto all the code points does not change their rela-
tive separations. The proper digit values can be obtained by adding the
corresponding sequence onto the code points in cyclic 'space a.nd then pick-
ing the points in phase space which correspénd to the resulting points in
cyclic space. K-lattice symmetry will be obtained before the addition of
the word synchronization sequence even though this latter sequence will
spoil the symmetry of the K-lattice points because the word synchronization

sequence will be subtracted from the received words before they are decoded.
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The adeptation of the above codes to codes with word synchronization proper-

ties will now be discussed.

Selection of words for word synchronization property

For the receiver to correctly decode a word it must know the time at
vhich reception of the word begins. In the section on detection theory it
was assumed that this word synchronization was available.

If it is not available the receiver would ha.ve—to assume that the mes-
sage could begin at any time over a T second interval where T is the time
length of the code word and would have to compare with the M allowed code
words all the various received messages possib;e assuning verious starting
points. This increases the number of comparisons from M :bo at least WIM
where W is the bandwidth of the channel. Fbr the system under discussion
the word synchronization problem has two facets. First the samplers must
semple the received signal at the proper time and second the samples must
be grouped into the proper blocks of N digits. This may be thought of as
a problem requiring two adjustments. The received signal may be thought of
as chopped up into lengths of T = Np seconds in such a manner such that the
largest error in the assumed starting time of a word is + % seconds. The
sampling time is then adjusted within the‘ time range + % to achieve exact
synchronization. The fact that the allowed digit values are evenly spaced
in the 2x continuum of allowed phase values will permit long time averages
over many digits to be used in the adjustment of the sampling times. This
will be discussed when the receiver is discussed. The information on which

to base the choice of which N sampled values form the received words must be

inherent in the coding if the need for ultra-stable time references is to be
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avoided. That is, the train of sampled phase velues must be partitioned
into blocks of length N. The codes should be such that the information on
where the blocks begin is inherently contained in the received information
and thus continuously aveilsble. This will remove the need for sending
special timing signals a.nd/or having ultra-stable' frequency references at
the receiver.

If the grouping or partitioning information is to be carried by the
code words an erroneous partitioning of the received digit train should re=-
sult in a word which resembles no allowed code word. Geometrically this
means that the point represex_zting the erroneously formed word must, at least
on the average, be a.t‘ a relatively large distance from all the allowed
points. Erroneous grouping, meaning lack of word synchronization, should
then have the same effect as a large nolse sequence. Large noise sequences
will occur only randomly but the lack of word synchronization should cause
the effect to persist. Thus information on a lack 6f word synchronization
can be obtalned even though the signal is corrupted by occasional large
noise bursts.

The words formed L by erroneous grouping consist, in the noiseless case,
of digits from two allowed code words. That is, either the first or last
few digits of the word formed belong to the actual word vhich preceded or
vhich will follow the word now being decoded. Thus, if the code is to sup-
ply word synchronization information none or very few code ﬁords can be
allowed which can be formed by joining the last digits of one code word
with the first digits of a second code word.

In the coding scheme discussed previously if D < x there is no redundancy
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in the words formed from certain combinations of levels even though there
may be a large redundancy in the words composed of other combinations of
levels. If D> n word synchronization is not such a problem because there -

are no combinations of levels without some redundancy. Level redundancy

is defined as

UL =
1 - number of allowed code words formed by a combination of levels
number of words possible with the same combination
(23)
Code redundancy is defined as
M

Note that a value of 1 corresponds to being very redundant or using very
few of the allowed combinations. In the coding scheme that has been dis-
cussed the code words formed by the points on the K-lattice have no re-
dundancy if D < n. That is, the phase levels which make up the K-lattice
have a level redundancy of zero. This means that a word formed from the
last N-b digits of one code word and the first b digits of another is an
allowed code word. Here b has the range, 1 <Db < N-1. This situation can-
not be allowed because a misgrouping of a long chain of these code words
would result in allowed code words and the receiver would have no word syn-
chronization information.

For a given amount of code redundancy the optimum code from a word
synchronization point of view would be one in which all the allowed digit

velues were equally probable and in which there were no probability
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constraints among the ‘digits. Thus the code redundancy is distributed un-
iformly over the allowed levels. Ulstad's (2) and Stiffler's (15) binary
codes have these properties.

The problem of supplying synchronizetion information to the nonbinary
codes obtained previously will be attacked from a slightly different point
of view than that of making all the levels equally probable. The solution
will, however, tend to distribute the probability more evenly over the
levels. The real problem is with the K-lattice points. If a method can be
found to shift the K-lattice points such that allowed code words cannot be
formed from the first N-b coordinates of one K-lattice point and the last
b coordinates of another and if the method does not affect the distance
between the code points then the word synchronization problem is effectively
solved. For code points other than those on the K-lattice sufficient level
redundancy is normally available to make the probability very small th;t one
of these code words can be formed by erroneocus grouping of the received
digits. The effort will then be concentrated on the K-lattice points.

To provide the desired word synchronization ability a vector S will be
added to 8ll the previocusly obtained code points. We may think of doing
the addition in cyclic space where the vector components will be added modu-
lo m'. Because it may be necessary to introduce some code redundancy, the
value m! may be larger than the value m. That is, more digit values may be
allowed even though they will not increase the number of code points which
meet the distance criterion. No‘;:e that the addition of the same vector to

all the code points canmnot change the distance between them and thus their

noise immmnity will not be affected.
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The vector S will be chosen such that the points S-b represented by
all the vectors §b which can be formed from S By cyclic shifts of the co-
ordinates of S by b positions where b= 1, 2, . . . , N-1 have a distance
greater than zero and less than 12)- from the point S which § represents.
Call the original code points Bi. Now the new code points are Oi = Bi +

N
roneous grouping may be thought of as ¢ = Y+ S.b vhere ¥ is a word formed

S= (3;‘. + Sl’ B; +‘Sz, e ey ﬁ;‘l + S;. A received word ¢ formed by er-

by joining together the last N-b digits of one Bi and the first b digits of

another. The decoding integrators form the distance

1 ¥ a0 L 2
7

vhere the sum (k + b) is formed modulo N + 1 with N+ 1 = 1, the Yk's are

the coordinates of ¥, and the s 's are the coordinates of S. If there ex-

k
ists a Bl =Y , then for this particular Oi, say Ql, the distance becomes

I : 2
7
kza_-l P(sr B | o7 -

The vector S was, however, chosen such that this distance is less than or
equal to 22 As all the other allowed code points have a distance of at
least D from Gl , the received word ¢ fromed by erronéous grouping is closer
to Gl than any other allowed code point. If now S is chosen so that the

distance is close or equal to D for all §b faulty grouping will result in

2
words which are on the average close to no allowed word even if only the
words formed from the original K-lattice are sent.

The distance D(S, Sb) should be & nondecreasing function for
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1<b< g and a nonincreasing function for g—< b < N-1. Preferably
(s, sb) would be equal to -lé)-:f'or all allowed values v. b. This will not
alweys be possible. The components of S are chosen from the phase values
25 :
zero and —— vwhere h= 1, 2, . . . , h . The components of S may also
2hK max =
be thought of as the integers in cyclic space corresponding to the phase
values -~ and -x + TKE The value K2h TaX is the m' discussed abové. If
2 .
D' = D for N = 4, two of the permissible forms for S are %gl + I%-:Ee +
L 7 bid T . b
2K;3+-2-K~;4and~2k—il+§ﬁie+o;3+o_i4. A graph of D(S , S ) for
either of these synchronization vectors is shown in Figure 10. A vector
. R i s '
of'theformaKil+2K_2+013+ .. .+O_:L_Nw:.llalwayswork1fD =
D but for larger values of N it is beneficial to use as many phase values
as possible in forming S. This will tend to make the various phase values
have a more nearly equal proba‘ﬁili‘cy and thus to distribute the code re-
dundancy more evenly over all the levels. Thus for N = 8 a vector like S =
e b . T, R
-2-K-ll+4Ki2 4K53+03‘-4+0—5 4K7 2K_J;imzn.ghtbeused. Note
that for this vector D(S, Sl) = Z vhile for the previous S vector D(S, Sl)=

-@{— . This is a disadvantage of the latter S.

Receiver Operation

It is the function of the decoder to decide on the basis of the re-
ceived signal y(ﬁ) vwhich of the M possible messages was sent. The ac-
curacy of the decision will depend to a great extent on the relative amount
of noise introduced by the channel. The receiver knows the constraint or
block length N of the code words and the bandwidth W of the channel. The

decoder mekes a decision every gs Np seconds of which message was most
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probably received on the basis of the N sample points of the received sig-
nal y(t) that are available in that time. The receiver must have certain
synchronization properties. It must be able to provide a signal of proper
frequency and phase as a reference for the phase detector and it must be
able to determine the starting time of the waveform associated with ee.ch
code word. The later problen; involves both the synchronization of the
sampling times and the proper grouping of the sample values to form words.
‘]h_e. grouping problem is called the word synchronization problem and was dis-
cussed under the coding problem. |

The receiver is shown in Figure 11l. Its form will be slightly dif-
ferent from that indicated in the overall system discussioh. The chenges
are mede to save on ;che numbc;i' of decoding integrators required.

The signal y(t) goes to two linear phase detectors. The upper phase
detector has its reference signal provided by a local oscillator of ap-
propriate phase and frequency. The phase of the local oscillator is con-
trolled partially by the portion of the receiver enclosed by dashed lines
and partially by a feedback signal sll(’c). FPhase synchronization will be
discussed later. The linear phase detector has the transfer characteristic
shown in Figure 12, The input phase angles are transformed to directly pro-
portional voltages or currents.

The output of the upper phase detector, the signal s 4(1:) , is thus di-
rectly proportional to the phase function of the received signal. This sig-
nal is sampled every WU seconds to form the signal ss(t). As stated above
- the time between sample points is known information but the exact time of

the start of each word in the received information must be provided to the
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decoder. This word synchronization information must either be supplied by
synchronizing waveforms or by properties of the codes used. The later
choice will be used here. Also, sampling synchronization is necessary.
That is, the samples must be taken from the received signal at times which
correspond to the original sample points of the transmitted signal. Sampl-
ing synchronization information is supplied to the sampler from the portion
of the receiver enclosed by the dashed lines.

The signal ss(t) consisting of & train of digits which are sampled
values of s4(t) goes to the block labelled memory and grouping logic. Here
the train of digits is partitioned into groups of N in three different ways.
One partition is placed at what the receiver feels is the correct position,
another is placed one digit ahead of this partition and a third is placed
one digit behind it. Thus,-three words are formed for each received word.
These words will be called @, ®', and ®", respectively and will be used to
obtain and hold word synchronization. Only the word ¢ will be used in de-
termining the word sent.

In the memory the sequence S is subtracted from each of the three
words &, ®!, and ¢", and the resulting words ¢ - S, ®' - S, and ®" - S, are
supplied one at a time to the decoding portion of the receiver. Note that
the decoder must act on three words during the time that one is received,
however, the decision as to which word was sent is based only on ® - S. The
decoder consists of essentlally three parts: K-lattice coordinate decision
logic, decoding integrators, and code word decision logic. This assumes

that all the points of the K-lattice are code words. If this is not true,



only the decoding integrators and code word decision logic are necessary.
If only K-lattice points are allowed code points then digit-by-digit de~
coding is appropriate and only the K-lattice coordinaste decision logic is
necessary for decoding. In this case decoding integretors would, however,
still be needed for word synchronization.

If all the K-lattice points are code words a noise coordinate of more
than % in any dimension will cause & decoding error regardless of the noise
coordinates in the other dimensions. This being true it is possible to
determine with which of the K-lattice points the received signal should be
associated and to achieve a savings in the number of decoding iptegra.tors
required. That is, it is possible to determine the closest K-lattice
point called the K-point by digit-by-digit decoding of the received word
and to use this information to decrease the number of decoding integrators
required without increasing the probability of a decoding error. The sub-
traction of the sequence S restores symmetry so that the K-lattice levels
are located symmetrically in the phase space. Thus a type of threshold de-
tection is adequate for the block called K-lattice coordinate decision
logic. The situation in any two dimensions is shown in Figure 13. The re-
ceived signal must correspond to a code word inside the dashed square.

Note that one and only one K-lattice point lies inside this square unless
one or more of the signal coordinates are exactly between two K-lattice co-
ordinates. If this is true, the smaller K-lattice coordinate is chosen.

As stated above, the synchronizing sequence is subtracted from each of
the three words formed. The subtraction is done such that the resulting

coordinates are in the range -n to %. The K~point is then determined. To
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determine which of the possible code points associated with this K-point
corresponds most closely to the received word the distance of the received
word from each of the code points contained in an N-dimensional Cube cen-
tered at the K-point with sides of length %E must be determined. The re-
ceived word must be decoded as one of the code words contained inside

this cube. There are only 1 + QNZ allowed code points inside this cube.
Thus, only 1 + ENZ decoding integrators are required if the K-point infor-
mation is properly used. For the situation of Figure 13 the cube enclosing
the possible received words is formed by dash-dot lines. The variable Z

is the total number of points associated with each K%lattice point in the
original coding scheme minus one, that is, the number of code points inside
what was called a K-cube. The number of decoding integrators is thus less
than the M = KN(Z + 1) required if one is used for each allowed code word.

The things that have been referred to as decoding integrators really

form

N
(@ -5, 8= 2 (4 -5 B (25)

where
r(a, B) = Ia - &l or

la-al - 2x

vhichever is smaller. The form of r is dictated by the fact that the dif-
ference between any two phase coordinates may never exceed x in magnitude.
The Bi are the code points before the addition of S. Thus, the decoding

integrator corresponding to the code word Bi forms the difference between
each received coordinate and the corresponding coordinate of the ith code

word, squares this difference, and forms the sum over all N coordinates.
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If the K-point coordinates are used to bias a set of decoding integrators
such that they represent the decoding integrators corresponding to the code
words possible with that K-point then only 1 + 2NZ decoding integrators

are needed.

To avoid modularity problems and simplify the decoding integrators
the following scheme may be used. The decoding integrators correspond to
the code words that would be possible if the point (0, 0, O, . . . ) in the
center of phase space was the K point. The word, /\-, sent to these de-
coding integrators is formed by adding to the sequence ® - S a sequence
corresponding to the vector from its K-point to the point (0, 0, 0, . . .).
Thus the point corresponding to®-S in phase space is moved so that it has
the same relative position with respect to the point (0, 0, 0, . . .) as
it had with respect to its K-point. The decoding integrators may now form
the squares of the distances from the received word to the possible code
words as simply the sum of the squares of the coordinate differences be-
cause all coordinate differences have a megnitude less than =x.

Bach decoding integrator sends its sum to the code word decision logi
after every N digits. Here a decision is made as to the most probable
transmitted word by choosing the word corresponding to the decoding inte-
grator with the smallest sum. The actual word will, of course, depend on
the K-point and this information is supplied by the signal s7(‘b) to the
decision logic as shown in Figure 11. The decision ;a,s to the most probable
word sent depends only on the word formed by the first partition. The other
two words, however, go through the same process and the minimum decoding in-

tegrator sums that they yield are obtained and compared‘ with the minimum
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sum yielded by the word corresponding to the assumed correct partition-
ing. If on the average over several received words one of these two words
yields a smaller sum than the word with the assumed correct partitioning
it is then an indication that the word synchronization is out of phase by
at least one digit and the starting point for the N samples should be ad-
vanced or retarded by a digit. - The exact use to be made of this word
synchronization information will not be discussed. The point of interest
is that the information is available. The signal sla(t) carries the word
synchronization information back to the partitioning logic.

The signal ss(t) assumes the one of its M values that corresponds to
the code word most probably trensmitted and is the input %o the output
data processor. The output data processor transforms the data into the
desired form and finally yields the output data.

As stated earlier the portion of the receiver enclosed in dashed lines
provides synchronization for the sampler. The output of the same local os-
cillator used as a reference for the linear phase detector used to generate
s 4(‘c.) is also fed to a frequency multiplier. Here the frequency of the
signal is multiplied m times where m is the number of allowed sample point
~ phase values in the transmitted signal. This signal is used as the refer-
ence for a second linear phase detector. This linear phase detector is
also supplied with the signal y(t). The signal sB(t) corresponds to the
phase of y(t) with respect to the multiple frequency signal. The signal
sé(t) is sampled every p seconds by three samplers which sample at times
differing by pn seconds where p 5 1/2. If there was no noise and the fre-

quency of the local oscillator agreed with the carrier frequency of the
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received signal and the sampling was done at the proper time all the sampled
values of se(t) would be identical. This is true because in the coding only
symmetrically spaced values of phase were used and thus all the allowed
phases differed by A (fTﬁ-) from any one arbitrarily chosen as a reference
vhere A= 1, 2, . . ., m. With respect to a reference which has a freguen-
cy m times as large as the original reference the sampled phase values
should be identical because multiplicaetion of the reference frequency by m
causes a multiplication of the pha.sé values by m and thus the resulting
phases differ by A (2x) where A is an integer. If the sampling is not done
at the proper times the phase values obtained will not all agree because
these phase values will not in general be evenly spaced with respect to the
original reference frequency. Thus by comparing the output of the three
samplers it should be possible to adjust the sampling time so that on the
average all the sampled values agree. Noise will,’ of course, cause fluc-
tuations from the single value even when the sampling times are correct.
Again, however, the effect of noise should average out in the sense that
large deviations from the expected value should occur only randomly and
most of the values should be near the average value. If the sampling times
are not correct large deviations should be common and indeed the values
should be more or les.s uniformly distributed over the 2x range. After
original synchronization the value of p would be chosen so that pu is the
largest allowed variation in sampling time synchronization. Note that the
above method of obtaining sampling time synchronization is independent of
the phase of the local oscillator. In Figure 11 the signal slo(t) carries

the sampling time synchronization information to the sampler used in
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forming &.
The decision making logic will also contain long term information on

the sampling synchronization as a lack of sampling synchronization will
tend to meke the minimum distance between the received words and all of
the allowed code words large. That is, the received words will on the
average not agree well with any of the allowed code words' for any parti-
tioning.

Information to provide phase synchronization between the transmitter
reference and the local oscillator is also available. If the sampler is
properly synchronized the sampled values of se(t) should be spread about
the average value zero. If they do not have an average value of zero the
phase of the local oscillator can be adjusted to make this true. DNote that
this method only allows adjustment over a phase range of + r%' Additional
phase synchronization information is available from the received words.
After subtraction of the sequence S the phase values +C and - where O _<_
o < 1t should be equally probeble as coordinate values of the resulting
words. This is inherent from the coding scheme used and the symmetry of
the noise. Thus, the long term average of the coordinates of ® - S should
be zZero and this fact can be used to adjust the local oscillator phase.
The range of adjustment is not limited here. Again, the exact use made of
the above criterie to maintain phase synchronization will not be discussed.
The importent point is that a means of providing phase synchronization is
available. The signals sg(t-) and sll(t) in Figure 11 carry the phase syn-

chronization information to the local oscillator.
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PERFORMANCE OF PROPOSED SYSTEM

Using the proposed codes a certain information rate, R, will corre-
spond to assumed values of D and N. It is assumed that m is chosen to

maximize R. The error probability of the code will depend on D, N, and

82-

Information Rates for the Proposed Codes

While it is possible to specify the minimum distance, D, between any
two code points as any desired value, only certain distances teke full ad-
vantage of the information handling capacity of the proposed coding scheme.
If D < xnt these distances are those than can be obtained by dividing 2x
by an integer and multiplying by 1, /E, or V3. This is reasonable in view
of Equation 20. For the K-lattice the distance between points is d}?{l
where K is an integer and 4 has the form vn where n is an integer. Tables
7 and 8 in Appendix D show the number of binary sequences of length N that
differ in n = dH places. They show the futility of choosing a K velue
larger than the value of the first integer less than or equal to %ﬁ
That is, they show the futility, if D< x, of choosiﬁg the K-lattice so
that not all of the K-lattice points are code points. Thus, the allowed
code points of the K-lattice may be chosen with distances ofﬁ—“, /2 -12{—“-,
and V3 %’l . Furthermore— , for reasonable values of N the total nuhber of
ellowed code points with a minimum spacing between two of these desired
values wﬂl‘be almost the same as the number sllowed with the larger spac-
:|.ng A graph of information rete versus distance tends to look like Fig- |

ure 14. It is of course desirable to operate at the largest distance
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permitted for a given rate as this will mean a lower error rate. Figure
14 shows that the distance may be increased to one of the values specified
above with little or no sacrifice in rate. The desired distances cor-
respond to the points marked with x's in Figure 1l4. Tables 7 and 8 also
show that for block lengths of the form N = 2' vhere v=1, 2, 3, . . .,
the distance \/3-‘ %—E is not a desira.blewéode point separation distance .be-
cause there are as many sequences that differ in 4 places as there are
that differ in 3. Unless N is large the same number of code points will
result for distances of V3 12{—“ and %é If D> x and thus K = 2, all dis-
tances of the form vn' = are good distances in the sense described above.

Due to the above considerations the effort will be concentrated on
determining the rates possible if the code points have a minimum separa-
tion equal to one of the so-called desirable distances %_g or /5_1 %‘- for
various values of N= 2'. The N values Were chosen as 2  to facilitate
the error rate calculations. Somg rates for D values of the formyn' =
will also be determined. Table 1 shows the rates possible for various
values of D and N. The rates indicated were computed from Equation 16 and
thus contein no equivocation term. If the error rate for a given D and N
is not low the actual rate will be less than that indicated. The velues
of VM for the various. values of D and N were determined by use of the
theorems and tables of Plotkin (16) given in Appendix D. Appendix D also
gives an example of a rate calculation.

Table 1 shows that it is possible to obtain the same rate with several
different distances and block léngths. Which of these is best in the sense

of least error probability per symbol will depend on the signal-to-noise
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Table 1. Information rates for proposed codes
Minimum code Information rate in bits per digit
point separation Munber of digits per word |

D NewiNe2|NealNeoly=16N =y =et
2/2'xn - - - |o0.1250.313|0.531 [0.765
2 - - lo.25 [0.5 [0.75 |L.0 [1.25
V2' « - |0.50 |0.75 |1 1.25 [L.5 [1.75
% 1 [ 125 [1.5 [1.75 [2.0 [2.25
2 - |15 [1.75 |2.0 [2.25 |2.5 [2.75
2% 1.58 [1.58 [1.84 [2.09 [2.34 [2.58 |2.84
g 2.0 |2.0 |2.25 |2.5 [2.75 |3.0 [3.25
z i - |2.00 |2.34 [2.58 [2.84 {3.00 |3.34
ég 2,32 |2.32 |2.57 |2.82 |3.07 [3.32 [3.57
2 - |2.5 |[2.75 |[3.0 |3.25 |3.5 |3.75
3 2.58 |2.58 |2.84 [3.00 |3.34 |3.58 [3.84
/2! -’5-‘- - |2.82 [3.07 |3.32 {3.57 |3.82 |4.07
g 3.0 [3.0 |3.25 |3.50 |3.75 |4.0 [4.25
Z Z - |3.00 |3.34 |3.58 |5.84 |4.00 |4.34
-5’5 3.32 |3.32 |5.57 [3.82 [4.07 |4.32 |4.57
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ratio. The next part of the paper will be concerned with determining the

error probability versus distance for various velues of N and Sa.

Error Rates for Proposed Codes

For an error to result in the decoding process it is necessary for
noise, or lack of synchronization which has the same effect as noise, to
cause the received message to lie in the decoding volume of a code word
other than the one sent. This means that the received word is closer, us-
ing the metric of Equation 20, to a code word which was not sent than it
is to the one sent.

If we think of the code points as vectors in the phase space with
components in each of the directions equal to the coordinate of the point
in that direction we may think of the effect of noise as the addition of
a noise vector onto the code point vector. The resulting vector is the
received word. If the resulting vector lies in the N-dimensional poly-
hedron formed by planes which bisect the lines joining all adjacent code
points to the code point which was sent the decoder will choose the correct
message and no error will occur. If the noise vector is too big, that is,
if the square root of the sum of the squares of its coordinates is too
large, it will cause the resultant vector to lie outside this decoding
volume and an error will occur. Note that the noise coordinates must have
values between plus and minus x. Thus a determination of the error pro‘b-
ability for given values of D, N, and 82 becomes a study of the probability
that the noise vector will exceed certain magnitudes in certain directions.

To simplify the problem the decoding volume will be assumed to be an
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Nf-dimensiona.l sphere of radius -g— centered at the code point. This sphere
certainly lies inside the actual decoding volume as the code point is at
a distance of at least ]—2)- from any of the planes bounding the actual de-
coding volume. Thus, the answers obtained will be pessimistic. Note
that as the mumber of code points increases for a given N the sphere will

become & closer approximaetion to the actual decoding volume.

With the above simplification we are interested in the probability

that
N
Y 2< D,2
kZﬂ( )< (3)

where Y. k is the noise component in the kth coordinate direction. The

probability density of )’k, the noise component at the kth sampling point,
is derived in Appendix E. To determine the probability that |
N

2 D,2
> (% )P<®

kal

it is necessary to perform an N-fold convolution of the probability density
of ( Xk)a to obtain the probability density of the sum. This density is
then integrated over the range O to (g)2 to determine the proﬁa'bility that
the sum is less than (g—)e. The probebility of error is one minus the value
of the above integral or the integral of the sum density from (-g—)2 to N:ta.
The probability density of ( a/k)a as determined in Appendix F is

2

-5 -
PLOpP ol m £ 1 2250 s art 5 con (3]
2r V3 5

2.2
o-S7sin »/E" (26)



56

As the convolutions did not lend themselves to an analytical solutioﬁ they
were performed numerically on a digital computer. Note that the probabil-
ity density of ( a/k)2 has a singularity at ( Xk)2 equal to zéro. This
makes the function very unsultable for numerical operations. To overcome
this difficulty the first convolution to obtain the probability density

of ( b’l)a + (7 2)2 was performed in the manner described in Appendix G.
The resulting probability density was finite at the origin and was more
amenable to numerical operations. This probebility density was convolved
with itself numerically to yield the probability density of kzjl( Xk)z.
The resultant probability density was convolved with itself to yield the

8

probability density of kZa:' Y, )2. This process was continued until a

l( k
sufficiently large value of N was reached. Note that the possible values
of N using this method are 2, 4, 8, 16, . . . ‘While this is a restriction
the results will demonstrate the error trends of the codes under éonsid-
eration.

Figures 15, 16, 17 are the curves of error probability per digit
versus square of the decoding sphere radius for various values of N and Sa.
These curves were obtained by numerical integration of the probability
densities determined above and division by N. The word probebility of er-
ror can be obtained by adding the distance between the value one and the
zero ordinate of the curve onto the curve. This corresponds to multiplying
by N. DNote that for a glven signal-to-noise power ratio the curves exhibit
a threshold effect. As N increases the error probability does not decrease
and approach the N = 1 curve until a certain decoding sphere radius is

reached. Thus, for a large N, gmust be greater than the threshold if
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small per digit error rates are to be obtained and the coding is to be ef-
fective. The information rate also increases with N as shown in Table 1.
If the .coding is to be effective for & given N and D the information rate
must increase more than the error probability. This means that increas-
ing the value of N will not decrease the error probability at high in-
formation rates. This is shown by the error tables which aré oﬁtained
next.

Tebles 2, 3, and 4 show the error rate per digit for various rates and
block lengths for three values of signal-to-noise power ratio. These were
obtained by using Teble 1 and Figures 15, 16, and 17. The smallgst error
rate per symbol is underlined for each information rate. Note that the
optimum block lengths for a given rate tend to be relatively small which
is ldeal from an equipment complexity viewpoint. The value of 1 for N
means diglit-by-digit decoding. Note that the proposed coding scheme al-
lows certain rates which cannot be obtained by digit-by-digit decoding.
These rates are marked with an asterisk. Their digj.t-by-digit decoding
error rate is shown for comparison purposes even though it is not obtain-
able. Note that some times at high information rates it may be necessary
to accept a higher error rate than that attainable digit-by-digit decoding
to obtain.the message synchronization properties of the proposed codes.
Table 5 shows the improvement in error rate over digit-by-digit decoding
Por three values of Sa. Table 5 shows that the largest gains occur in
middle range of rates for any given value of Sa. There are probebly larger
gains available in the lower range also if values of g greater than %are

used. Unfortunately, the computer time required to obtain the error rates
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Tadble 2. Exrror probadility per digit versus information rate
for 52 = 10 @
Information Error Probability Per Digit
Rate Wunber of Digits Per Word
Rifaic |N=1 |F=2 |Nw¢ [Fm8 |N=16 |Nms2
1.0 5.9x10°%|¢.0x20°6 |
Las® |1.exo 4.0x10°8
1.5 % [7.010°%8.8x10°3 6.5x10°°
1.58  |1.1x107*|1.ex107*
1.78%  |[s.sx10™* 1.ex10°4 8.1x10">
1.e4" |6 x107* 4.1x107% |
2.00 [l.ex10™|2,7x10™> 8.%1074 1.9x10™
2.00°  |2.6x10™ |4.4x10"> 1.9x10"°
2.25° [6.6x10™° 6.5x10™>
2.52  [8.6x10™|1.4x1072 [1.0x1072
25" [1.8x072|2.0010"2 2201072
2.58  |2.6x10"2(s.ex1072
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Table S. Error probability per digit versus information rate for
& =185 @

Informa-
tion
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Ns]
750’
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Table 4. Error probebllity versus information rate for 82 = 20 db

gg:rm- Error Probebility Per Digit
Ra::u . Number of Digits Per Woxd
R et -
Nml|Nm2|Nwe | Nwg|Nwig|hes2|nNeeotlimiz
10| 107 1/x08%
125*| g3 xid" Np2rio®
L5 *|2800> 33000 | J4r/0°
/58 |p2x015%| 16300
.75 * 6740 5500°° L670*
/84 *|2440” 200
2.0 |15062|26:6% 107 2ri0%
2.09 * | 15cF! | 2845 a230°
2.25 *|52:0" 7.506%° /07 | 3.200%
232 1200 21016\ 11205%° 43x285°7
2.5 ™| 9u0"26:5° L1 x10°¢! 272107 S0
2.59 |2xi02|q 72007 2200 |2.0200"7
2.75 * | /guo” /8x15"% a2 280
2.84 |16:40 | 41107 |350i0" | 47010™| 18210" (9x10"8|
3.0 |7zxig®|2x07 zeuo” 8/x 15"
3.09%*| 322087 106 |3x10°® 122057 (32006 " | 16210 47:10°°
3.77 | 9uigT| 34457
3.25"| 4x0° 130078 3x/0°8 24x/d°
3.34 | 13:0°%33010° | 6210°® | 71xi67 | 26007 |24240° | 66119°
346 | 6x6%| 170j0%| 22:40°
3.5 * /0% | 27.:0* 2.6400° 481/0°
3.58 |2.5:0"| 6x10° 160107 | 9410 | 69:10°5 | 2 61007 161107
37 | 1079 | 16x60° | 7axi0”| pguid?®
375 *| 13x10° 112107 1 03 g X102
382 |2200°| 29000 | 22010° | 150107 | 2. 6x10°
3.9/ |4x/0° 6:410'3
40 |6x0? 11x10% cexio? L1102
4.09%*| 8xi03 L1x10% 2.24/0%
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Table 5. Improvement of digit error probability over
aigit-by-digit decoding
Information Improvement Ratio of Digit Error Probability
Rate Over Digit-by-Digit Decoding
bits 2 2
aigit sPw10ab  |fm=15ap [P =20
1.0 1.0 1.0 x 10° 1.0
1.25 2.8 1.4 x 100 2.5 x 10%
1.5 11.4 1,0 x 10° 2 x 10°
1.58 1.0 1.0 x 10° 1.0
1,75 4.3 8.8 x 10% 4.2 x 10°°
1.84 1.5 4.9 x 10° 1.2 x 20°
2,0 1.9 3.9 x 10° 7.5 x 10>
2,09 1.4 7.9 x 10° 2.4 x 102
2,25 1,0 .72 10° .6 x 10°7
2,32 1.0 2.6 x 10° 9.2 x 10%2
2,5 0.84 _ |2.1 x 10" 1.8 x 10>
2,59 1.0 8.2 x 10° 9.5 x 10°
2,75 4.2 x 10° 6.4 x 10>
2,84 3.1 x 10° 8.4 x 10°
3.0 1.7 x 10° 8.6 x 10°
| 300 1.4 x10° 2 x10*
3,17 1.0 x 10° 1.0
3,25 1.0x10°  [1.7 x10°
| 3.34 1.0 x 10° t
3,48 1.0 x 10° 2.3
3.5 1.0 x 10° 4.0
3.58 1.0 x 10° 3.6
3.7 3.4
3,75 1.3
L 5.84 1.5
L 5.91 1.0
1.0

4.0
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for the large distances becomes excessive and thus they were not obtained
and no comparison is possible. At the high signel-to-noise ratios these
gains at low information rates are not of importance but at smaller val-
ues of 82 they may become significant.

"Ina practical commnication system error rates of interest probebly

12 and thus these are the main areas of interest

lie between 1072 and 10°
in Tebles 2, 3, and 4. These tables show the trade off possible ‘betweer.n_
information rate, error rate, signal-to-noise ratio, and coding block

length.
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SUMMARY AND CONCLUSIONS

This thesis has studied & communication system in which information
is carried only in the phase of the transmitted signal. The system has a
confined frequency spectrum and a relatively simple recéiver. The re-
ceiver does not i‘equire the generation of the transmitter waveforms at
the receiver even though a form of cross-correlation detection is used.
Nonbinary codes which are suitable for this system and which permit infor-
mation transmission at rates larger then one bit per digit have been de-
veloped. The code construction is based on a geometrical approach which
permits an easy visualization of the effects of noise and lack of synchro-
nization. This thesis thus completes for all information rates the origi-
nal study of Ulstad (2) vwhich was limited to rates less than one bit per
digit. It further adds to that study by proposing some nonbinary codes
for rates less than a bit per digit. These codes should not have the en-
coder output power problem of Ulstad?!s binary codes -- namely that the
envelope amplitude deviated considerably from the sample point value be-
tween the sample points. The envelope a.mplitude deviations will still be
presentﬂ but the large deviations will be less probable.

The rate curves of Figure 1 are to the author's best knowledge origi-
nal. They show that increasing the mumber of permissible digit values at
the transmitter increases the infémation rate, Figure 1 and Table 6 show
that the error rate at a given signel-to-nolse ratio also increases as
the mmber of allowed digit values increases. Table 1 shows tha.t- the larger
information rates can also be obtained with the coding and decoding pro-

posed in this thesis. Table 5 shows that at the same values of S2 the
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encoding-decoding procedure proposed here results in lower error rates
than those possible at the same information rate with digit-by-digit de-
coding. Tables 2, 3, and 4 show that certain informstion rates not pos- '
sible with digit-by-digit decoding are possible in the system proposed
here. These tables also show the exchange possible between information
rate, error rate, signal-to-noise ratio, and word length. Note that word
length is related to receiver complexity. Greater design flexibility is
now possible because of the additional parameter ‘== word length -- and the
additional information rates. Of equael importance are the synchronization
properties which the proposed system possesses.

The gains in reducing the decoding error probability are not as large
as had been hoped for at the rates near the chammel phase modulation ce-
pacity, CPM‘ Figures 15, 16, and 17, which show the error probability
per digit for various word lengths, provide an explanation for the above
fact. The digit error rate curves show a threshold effect at long word
lengths. Thus, for a given word length the error rate increases more than
the information rg.te until a certain code point separation is reached. As
the word length increases the threshold moves to large values of code
point separation. As either small code point separations for a given value
of word length or longer word lengths for a given code point separation
are necessary to achieve rates near the channel capacity the proposed cod-
ing is inefficient at these rates.

It should be pointed out that the coding discussed in this thesis was

used only in forming the words to be transmitted. Further coding, that
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is relationships among the code words transmitted, is possible and would
further reduce the error rates but at some cost in information rate. The

codes of Ulrich (8) could, for exemple, be used for this purpose.
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APPENDIX A: CALCULATION OF PHASE MODULATION ERROR AND
INFORMATION RATES FOR DIGIT-BY-DIGIT-DECODING

This appendix is concerned with the information rates and error prob-
abilities that result from digit-by-digit decoding of a phase modulated
signal subjected to additive, white, gaussien noisev. The transmitted phase
values are assumed to be evenly spaced over the range from -x to x. The
gaussian noise will cause the phase values to be subjected to & noise
called phase noise with the result that the received phase values have the
conditioned probability density given by Equation E-23. An error results
if the phase noise causes the received phase value to lie outside of the
range <& - 11;1- to O+ I-’-;— where @ is the transmitted phase value and m is
the number of phase values permitted at the transmitter.

If it is assumed for convenience that the phase value transmitted is

zero, Equation E-23 becomes

-82 2 2 2¢
e 1 /s -5 sin
a(¥) = 5 * 5 /“ cos Pe [1 + erf S cos ¢] (A-1)
The probability of correct reception, PA’ involves the integral of q(;ﬂ)
7 Lo
from - o to — Thus
X X
m m
P, =-f af) af = 2 auy) a¢ (a-2)
.= o
m

as q(¢) is symmetrical about zero.

X

5 and the substitution of y = S sin ¢ is made

r X<
m—-
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2 S sin
e 1
PAam +Ff dy+—
Sy

/Q (A-3)

Bl:—\
Ela

'\

The portion

Ss VS y 2

/ﬁ 4 /ﬁ az &y (a-2)
0

is the troublesome part of PA. Breaking this integral up into the inte-

gral over the two regions shown in Figure 18 yields

Slt‘-\

?—\Il\)

S ein & 2ycotl':- I s
5 m -y m _z2 m -r
Ia;t-f e / e d.zdy+ff e rdrdf
0 0 0 0
..32
2 % 1 e :
=z L *i-"% (a-5)

In Figure 18 the angle O is used in place of %
s ‘

* -
Now in the integral I, e - 1is replaced by its Taylor's series to

yield
1t L
S sin = ¥y cot =
m 2 m o i2i
T =f eV dyf > (-1)7z7 az (A-6)
0 5 i=0 i!

Interchanging the order of summation and integration and carrying out the

integration on z ylelds
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@ 1 t 2441 2
* (1)~ (cot m) -y© 21+l
' -:I_Zao T1 ~ai#l ety W (a-7)

0

Using repeated integration by parts yields

b (9
S, . «(ssm P .
-y© 21+l il e 2\2J it
eV y &y = 5- - > (Ssinx-n-) T (A-8)
2 j=0 :
)
Thus
2141 ~(8 sin 52 7423
. 2 4 (eot 2) m i (s sin =)
ST m l e m
I = 2 (-1 L.
=0 21 + 1 2 j=o 4
(a-9)

The value of I* may be obtained through the use of a digital computer
to any desired accu.?acy. I ::7 is in the ;‘ange from -g- to 2- the conyergénce
is better than for smaller angles. To get the value of I* for smaller
values of :—:1- the following scheme is employed. In Figure 19 the integral
over region 1 is equal to the same kernel integrated over region 2. This
is true because the kernel depends only on the distance .from the origin.
The integral over regions 2 and 3 can be obtained through the use of erf

*
tables. Thus the integral over region 3 which is the I of interest is

S sin S cos O

* -y2 _22 '

I = e ay f e " dz - [integral over region 1]
0 0 (A-10)
and the angle involved in the integral over region 1 is greater than or

equal to 2 Thus
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<%

Figure 18. Integration regions for Equa.ti n A=S5 -

y

Figure 19. Integration regions used to form I" for & <%
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1., 1
P =£+§e

st 2 %
\ rf (S sin E) += I (A-11)

and in the special case of m= 2

1,1
P, =5+ 3erf 8 (A-12)

If m = 4, another special case,

P mE4=erf o 4L [err 22 (A-13)

ATITET TR

Of.. course PE’ the probability of error, is

P,=1l-PF (A-14)

The value of PE for various values of m and 32 are tabulated in Teble 6.
The meximum information rate possible for narrowband phase modulation,

the channel capacity, is given by the formula
P_ P

Colog m+ P log. P + P log L4 P 1og 2
W & A 8 Ty E 872 E, ~°8 72
2
PEm-l :l.og2 PEm-l
5 —5 m odd (A-15)
2
+ L] L] L ] + PE l.og2 P
_m _Fy m even
2 2
where % is the rate in bits per digit, C is the channel capacity in bits
per second, W is the bandwidth in cycles per second, PE]_ is the probabil-

ity that noise causes the transmitted digit to be interpreted as one of

its two nearest neighbors, PE is the probability that the transmitted
2
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digit is interpreted as one of the two next nearest neighbors and so on.
As the probabilities are functions of Sa, the signal-to-noise power ratio,
the channel capacity per unit bandwidth is also a function of Sa. The
quantity % for various velues of m is plotted versus 82 in Figure 1. The
various probabilities were calculated using formula A-11l with nE@ replaced
by the appropriate angles. Thus P, was obtained as PA evaluated for the

Ej‘ 3n

angle I%minus PA evaluated for the angle o

Table 6. PE versus m with 82 as a parameter

Number Error Probability for Digit-by-Digit Decoding
of Digit 2 2 2 2 2
Values, m; S =0db S =5db S=10d S =15dp S = 20 adb
2 7.9 x 1072 5.9 x 10™° 3.9 x 10°® 7.5 x 10716 1.0 x 10™°
3 1.8 x 10 2.7 x 102 1.1 x 10* 4.0 x1071% 1.2 x 1073
4 2.9x 10t 7.4 x102 1.6 x10° 1.7x10° 1.5x 10
5 3.9 x 107% 1.4 x 107 8.6 x 107° 2.8 x 207 1.2 x 107%6
6 4.6 x 10 2,1 x 107 2.6 x 107 6.7 x 10™° 1.6 x 107
8 5.7 x 107" 3.4 x 107F 8.7 x 10 2.3 x 10™° 7.0 x 10™°
10 6.5 x 107" 4.4 x 107 1.7 x 107 1.4 x 102 1.3 x 107
12 7.1 x 207 5.1 x 10 2.5 x 107 3.9 x 102 2.5 x 107
16 7.8 x 107F 6.2 x 107 3.8 x 0™ 1.2 x 1077 5.8 x 107
24 8.5 x 10°% 7.4 x 107! 5.6 x 10 3.0 x 2077 6.5 x 1072
32 8.9 x 101 8.1 x 107 6.6 x 107 4.3 x 107F 1.7 x 107t
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APPENDIX B: COMPLEX NARROWBAND SAMPLING THEOREM

This appendix is a summary of the theory of uniform sampling of narrow-
band waveforms. It follows very closely the work of Goldman (17). A sig-
nal sr(t) has a spectrum which is 2nW radians per second wide and which is
centered at @ radians per second. There is, of course, a symmetricel
spectrum centered at -a)o radians per second. To express sr(,t) in terms of
values at sample points it is necessary to form a Fourier series expansion
of the corresponding frequency function and this requires a continuous fre-
quency spectrum. As W is assumed small with respect to 2&0 this is not

true in the present case. Therefore, a new complex function
s,(t) = 5 (t) - § 5,(%) (B-1)

is defined such that the negative frequency spectrum is removed. The real
part of sc(t) is the original function sr(t) and si(t) is chosen such that
it removes the negative frequency spectrum. Goldman shows that s i(t) is
really the Hilbert transform of sr(t).

The complex signal sc(t) and its spectrum Sc( jw) which runs from w -
2 2

< to a)o + - radians per second are assumed to be Fourier transformable.
Thus
[+ ]
1 Jwt
sc(t) = 2“'/‘sc(,jw) e at (B-2)
w0 .
And

s, (Jo) = f s,(t) ™I gt | (B-3)
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Now Sc(ja)) is expanded in a Fourier series in the frequency range @ -

W to a)o + W to obtain

- e
B(d0)= > ¢ e ¥ (B-4)

k = o0
wvhere
c.oo + W jli‘.”
C = -1 S (jw) e Vo aw (B-5)
k 2w c _
W - 1W
o

Substituting t = % in Equation B-2 yields

C, =

EENNC) (5-6)

=|-

Thus substituting Equation B-6 into Egquation B-4 and the resulting equstion

‘into Equation B-2 yields

2n

-

ko
-} ..J_...
sc(t) == kZ=.m % sc(%) e W I g (B—?)

Performing the indicated integration and taking the real part of the result

yields an sr(t) of the form

)

sinstW(t-w

K
7

s (t)= = A

k
= - cos[@o§t-ﬁ)-ﬂ ] (B-8)

k

Equation B-8 shows that sr(t) is completely specified by the two numbers
Ak and /\k at the kth sample point and that these sample points are spaced
1 seconds apart. These sample values contain all the information that can

W
be put in the nerrowband signal. The value Ak determines the amplitude of

the Si: X envelope function centered at the kth semple point and A Kk
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determines the carrier phase.
Note that the envelope function of a given sample point is zero at

all other sample points.



8l

APPENDIX C: FREQUENCY SPECTRUM OF TRANSMITTED SIGNAI:
The transmitted signal, x(t), has the form
K
x(t) = > £,(t - k) (c-1)
k=0

vhere

in x W(t - 5u)
£, (t) = : x ;;(t - slu)LL

[ul(t) - ul(t - 10un)] [cos @t cos /\k
(c-2)

+sin @t sin A ]

In the above equations W is the nominal channel bandwidth in cycles per‘
second, U = %‘I- seconds, ul(t) is the unit step function, @ is the carrier
frequency in radians per Second, and. /{k is the phase of the carrier at
the kth sample point. In Equation C-1 K will approach infinity if the
transmitter is assumed ’cd send messages continuously after it is turned
on.

It is desired to examine the frequency spectrum of the transmitted

signal. To do this the Fourier transform of x(t) is formed as

o0

K
X(jo) = = g (t-m) &% a (c-3)
k=0

Now interchanging the order of integration and summation and letting
n ‘
t=mt - 50 -k (c-4)

ylelds
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K p A |
X(jw) = A gmdukr ~Jabiy SInAWE [ (Basp)-u, (E-5u)]
.J k%Ocos k © v_{; (e Wt 1 * 1 *

A £ oA K
[cos aao(t-i-Su)] e 9% 4t & >

[+

A

sin "k e-gaku/ (e-,jaSp.) sin th
k=0 o

Wt
[u_l('%-x-su) - ul(’%-su)] [sin wo(‘éi-su)] e I gt (c-5)

If the integrals of Equation C-5 are called respectively Fl(,jw) and

Fa(ja)) the equation becomes

K . K
X(0) = > Leos A I B (j0)] +2_ lsin N e Fase)] (c-6)

The power density spectrum of x(t) is defined as

& X(30) X(-j0) (c-7)

if K is f£inite and this becomes

G(O)) =

K

K
G(w) = Iji—u 1 (J0)F, (-500) - néo kZ;o cos A, cos A_ o~Jan(k-n)

K K

+ F_(jw)F, (~jw) in A 4 emdu(k-n)
ol JOIF, (-] néo kéos  COS A e

K K
+ F(-jo) F,(jo) zéo kz= ) sin A_cos A o~Jau(k-n)
K K .
+ FE(Ja)) FE(-,jw) > 2 sin /‘n sin/‘k e'J“’A(k-n)} (c-8)

n=0 k=20

If we now take the ensemble average of G(w) , that is, average Equation C-8
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over all the possible x(t)'s, the average power spectrum will be obtained.

In the various x(t)’s the A, 's may have the values %, i=1,2, ... m

The codes are such that & and - vwhere 0 < & < x are equally probable
valuzs for the /\k's. Also if m is odd, all the Oti are equally probable
and if m is even & and (@ + n) are equally probable where 0 <@ < =.

It is also assumed that there are no probability constraints in the codes.
That is, it is assumed that in a particular x(t) the proba'bilitiés of the
various values of /\k at any value of k do not depend on the value of/\k
at any other value of k. The actual codes will normally, as mentioned in
the section on code synchronization properties, have some probability con-
straints among the digits. These constraints will vaxry from code to code

and thus computational convenience mekes the above assumption necessary.

Thus,
A_AM\/\"\-\/W\_.

cos /lk cos /\n ejau(k-n) = K cos® /\k (c-9)
n=0 k=0 '

/W\W

K K :

sin /\k cos A ejcm(k-n) =0 (c-10)

n=0 k=0 n )

M—-—\,/\W\,_\__M

K K 'Y P ity

> > sin An s:I.n/\k eaap(k-n) = K s:i.nz/\k (c-11)
n=0 k=0

PN e,

where cos2 /\k and s:l.na/\k have the same value for all k. In the above the
wevy lines indicate ensemble averages.

Fl(,ja)) may be written in the form
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jaus o~ 5(o T5uw ) 3(o T+5p0 ) A

=dJ J =j(w .

Fl(jm)=e2 f[e o CHI o 0’1 sm:t}ft
J x W%

N

[ul(%\ + 5u) - ul(/’a - 5u)l eI 48 (c-12)

Using the fact that

P -jo t -5t
/ £(t)e © e Yat=F [j(w - wo)] (c-13)
w0
it is seen that Fl(,jw) will consist of a spectrum centered at -l-a)o and a
similar one centered at -u)o. Ir g< < @ these spectrums will not overlap

gppreciably and the effort can be concentrated on the one centered at wo.

Let
- JUBK - J(w /'t\ri-5pﬂ) ) A A A A
Il(,jcn) = & f [e © °] EM;E [ul(t-l-Sp) - u, (t-5u)] e 3% st
2 Wt e
00 (C-l4-)
~jabp o SloTEBpe ) oA R ~
I(30) = S f e © o SRIy (Brsu)- u (E-50)] eI ot

*
Then if G (w) is the portion of the power spectrum centered at a)o

T iy oy
¢ (o) = SELK 1 (30) I, (-g0) + ——= Ty(30) I,(-jo) (c-16)
_ Tp(ae) I(-jw)
48
as
L (30) L (-j0) = I,(j0) I(~j0) (c-17)

2 2
and cos /\k+sin /\k=l
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Note that the middle two terms of Equation C-8 would cancel even if the
ensemble average of sin /\k cos /\n were not zero because of the j term in

Equation C-18., Also if K approaches infinity Equation C-7 becomes

G(w) = lim 1 X(jw) X(=jw) (c-17)

k—»

El

and G(w) for positive values of w will spproach G*(a)). This is true be-
ceuse for any value of (k-n) there will be many terms in the sum which will
yield that value and the average over all the terms which yield a particu-
lar value of (k-n) will equal the ensemble average for a particular k and
n vhich have this value of (k-n). The latter is true because the x(t)
generation process is assumed stationary.

Equation C-16 is the same spectrum arrived at by Ulstad and his Figure
13 is repeated here as Figure 20. The fact that the actual codes do con-
tain some probability constraints will affect the spectrum somewhat. This
actual spectrum will, of course, depend on the partiwlar constraints. The
dashed curve in Figure 20 corresponds to the theoretical spectrum of a
band limited signal of bandwidth W. Note that the assumption that the neg-
ative spectrum may be neglected in the determination of the spectrum near

wo is justified by Figure 20.
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APPENDIX D: BINARY CODING THEOREMS

A great deal of work has been done in the field of binary coding;
Most of the work has been concernéd with finding codes which were easily
decoded, that is, codes which have & very systemstic relationship among a
group of bits. The most common o:f' these codes have been the parity check
codes suggested by Harming (11) and studied in great detail by Slepian
(18). These codes are normally constructed to detect and/or correct any
number of errors up to some maximum which normally depends primerily on
the constraint length of the code. The fact that 1_:.he decoding requires a
systematic relationship among the bits tends to reduce slightly the ﬁﬁmﬁer
of code words possible for a given word length.

Plotkin (16) has studied nonsystematic codes and obtained some limits
and theorems concerning the number of words of a given length which meet a
certain distance criterion. Others have also looked at this problem but
they have not in general suggested, as has Plotkin, means of constructing
the codes which meet their coding bounds. The nonbinary codes discussed
in the body of the paper require binary codes for their formulation. As
there is no need for these codes to be systematic, due to the type of
detection used, Plotkin’s work will be reviewed here. With this informa-
tion it is possible to determine the information rates for the nonbinary
codes discussed in the paper.

Plotkin's work concerns choosing binary sequences of length N which
differ from each of the other chosen sequences in 'af. least dH Places.

Thus he uses Hamming distance and obtains many of the same results as
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Hamming. The symbol A(N,d.H) is used for the number of allowed sequences

of length N and mutual distance d‘f[ This is similar to Hamming's B(N,d.ﬂ)

except that B(N,d.ﬂ) mst be a power of 2. Thus A(N,d.ﬂ) > B(N,dH).

The following results are due to Hamming.

A(N, 1) = 2V (D-1)
AN, 2) = 21 (D-2)
A(N+ 1, 2k) = A(N, 2K - 1) K an integer (D-3)

N

2
- <

¢(N, h) = mﬁl&é—ﬁﬁ (D-4)

Plotkin has proven the following theorems.

Theorem 1:

Corollary:

Theorem 2:

Corollary:

Theorem 3:

Theorem 4:

Ir 2&H>N, then A(N,d.H) ssz% , I an integer.
A(4m - 1, 2m) < 4m and A(4m - 2, 2m) < 2m.

A(N,a) < 2a(Nw-1, d.H).

A(4m, 2m) < 8m.
If A(4m,2m) = 8m, then A(4m-1,2m) = 4m and A(4m-2,2m) = 2m,

If 4m-1 is prime, then A(4m,2m) = 8m.
Paley (20) has shown that this is also true if 4m-1 = 2&

(ph + 1) for p an odd prime andh, K integers.

A(ew,24) > A(N,24) A(N,d).
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Theorem 5: If A(4m, 2m) = 8m holds for m = x then it holds for m = 2x.

Using the above results Plotkin obtained the value of A( N,dH) shown
in Table 7. Flotkin also has a second table showing the values of B(N,d.H),
Hamming's bound, which is reproduced here as Table 8.

These tables and theorems make it possible to calculate at least the
minimmm informetion rates for the suggested nonbinary codes.

Assume D = ’a—t-a.nd N = 16. The number of messages is

M = 46 A(16,4) A(16,16) > 416 2 2 = 224 (D-5)

The 416 term is for the K-lattice points as they are all included, the

A(16,4) is the number of allowed 2K-lattice points associated with each
allowed K-lattice point, and A(16,16) is the number of allowed 4K-lattice
points associated with each allowed 2K-lattice point. As D! = D, d must
be 2 for the 2K-lattice points end 4 for the 4K-lattice points and thus
d‘H must be 4 and 16 respectively. The total number of allowed code points

212

inside the K-cube is -1l in this case.

The information rate for the code of the above example is

1 1 44
= > = . . -
R=flog, M> 7z log, 2 = 2.75 bits/digit (D-6)

All of Plotkin?’s theorems which bound A(N,d.ﬁ) from below are con-
structive in nature. Thus it is possible to construct the codes which give
the information fages indicated in Table 1 of the mein paper. The con-
struction methods are indicated in Plotkin's (16) paper and will not be

discussed here.
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Table 7. Plotkin'!s table of A(N;an)

A, a7)
4 Nl 23 M4 5 6 7 N8 9 10 11 Mei2 13 14 15 Nel6
8 5o 2 2 2 4 4 8 18 32
7 > 2 2 2 4 4 8 168 32
6 2 2 4 6 12 2
5 > 2 2 4 6 12 2
2 2 2 4 8 16 o
3 > 4 8 16 ot oY
> 2 4 8 16 32 ea 2 28 27 M0 M 2 5 4 IS
1 o 4 8 16 32 64 20 25 2 O 12 5 4 15 16

Table 8. Hamming's bound on the number of code words

10 1 12

2
2 4 8 16 32 64 2° 2° 2° 2V 2 12 .13 14 .15
8

VI \ VR )
NN
NN
NN

16 32 64 27 28 29 210 2]_1 212 13 14 15 16

B(N, d;)
d.H =12 3= 5 6 7 M=8 9 10 11 N=12 13 2.1.4- 15 N=l6'
8 2 2 2 4 4 8 l6 32
7 2 2 2 2 4 4 8 16 32
6 2 2 2 4 4 8 16
5 2 2 2 4 4 8 16
4 2 2 4 8 16 16 32 64 7 29 210 211
3 8 '
2
1

[\V]
N
n
o
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APPENDIX E: CONDITIONAL PROBABILITY OF RECEIVER
PHASE SAMPLE VALUES

The transmitted signal x(t) has the form

sin:tW(t-%-%) k 5
x(t)n%AﬂW(t-%_% cos I;mo(t-ﬁ-ﬁ)-/\k]
[o (6 -5) - u (s -5 -39 (E-1)

In this equation W is the nominal channel bandwidth in cyecles per second,
a)d is the carrier frequency in radians per second, u_l(’c) is the unit step
function, and/\k is one of m allowed phase values @, 1 =1, 2, . . ., m.

In the channel this signal is corrupted by additive, white, gaussian,
band-limited noise. Bennett (19) shows that this narrowband noise may be

expressed in the form
n(t) = u(t) cos @t + v(t) sin w 't (E-2)

where u(t) and v(t) are slowly time varying functions of the form

. _
w(t) = 2 /2w, B cos [(o, -~ ) t+ T il (E-3)
=1 i i o
I
v(t) = Z V4 2G(a.>i)Af sin [(r.oi - wo)t + -f i) (E-4)
1=l

and @ is the center frequency of the narrow band. In Equations E-3 and
E-4 G(wi) is the power spectral density in watts per cycles per second of
the white noise at the frequency o, after being passed through the narrow
band filter, the channel in this case. This power spectrum was originally

approximated by I sinusoids of uniform and independently distributed phase
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to arrive at Equation E-2. In the above equations the wi are frequencies
in the band centered at W, Af is the spacing between frequencies, and the
-??i's‘ are uniformly and independently distributed phase variables.
As T approaches infinity and &Ff approaches zero the central limit
theorem may be used to show that u(t) and v(t) have Vgaussian distributions.
Bennett (19) shows that u(t) and v(t) are independent random variables.

Thus the joint probability density of w(t) and v(t) for any given instant

of time is
- u2 + v2
2
. 20’N
p(u,v) = p(u) p(v) = —7p— (E-5)
2n o
_ N
o I
where o’N = Z G(wi) OFf is the total noise power in the channel.
i=1

The received signal y(t) has the form
y(t) = x(t) + n(t) (E-8)

A

The signal y(t) will be sampled at times corresponding to the sample

points used in forming x(t). Near a sampling point
x(t) = A cos @t cos A, + A sin @t sin /\k (E-7)
and thus
y(t) =A cos @t cos /\k + A sin a)o’c sin Ak + n(t) (E-8)

near & sampling point. The probability densitles associated with the en-
semble of functions given by Equation E-~8 are of interest.

Near & sampling point y(t) has the forms
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y(t) = [a cos./\k + u(t)] cos fnot + [A sin /\k + v(t)] sin @t (E-9)

and
y(t) = 2(t) cos [at - #(%)] (E-10)
where
r(t) =/[A cos '{k + u(t) 1%+ [a sin/lk + v(t) 12 (B-11)
and N A ( )
-1 sin k + vt
Do) = e e X, ¥ ult) (E-12)
If | |
u'(t) = A cos /\k + u(t) (E-13)
and vi(t) = & sin A+ v(t) (E-12)
the probability densities are o
_ (u' - A cos k)’
2
2 O'N .
p(ut) = £ (E-15)
/o o
_(V’ - A sin/\k)a
and 2 O'N2
p(v') = £ (B-16)
2n UN

and u?(t) and v*(t) are still independent.
The probability density of interest is that of ¢(t). To get at this

it is necessary to let

a(r, ¥ Yara ¥ = p(ut,v?) du? av! (E-17)
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that is, equate the probabilities. Thus, .
2 (r® - A T cos Peos A, - AT sins"sin/\k)

20,2 2 g2
N %y
ar, ) = £ =2 5 (E-18)

a2 O'N

To obtain the probebility density of & it is necessary to integrate Equa-

tion E-18 over all possible values of r. Thus
2 Ar cos(¢-Ak)

¥ ®»  pg? 20 2
2oy v %%
a(y) = ———-——f re e ar
210.
N (o] 2.2
. 2
o L1 / cos(gﬂ /\ 20y Acos(¥- A )
= 2 1+ er:f.’——-—-———-—-
an /20 ‘ V2 o
N
(E-19)
for -x <P< =
where
p 2
erf (x) = —-e—f e T @ (E-20)
SN

The probability density given by Equation D-19 is really the conditional
probability density of ¢ , that is, the probability density that éﬂ is the

phase sample velue given that /\k was the sample point velue of the trans-

nitted signal.

52 = ..L.. (E-Ql)

and
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A, =e)ao | (E-22)

where 91‘?__ is the kth coordinate of the jth code word and Oti is one of the m

allowed transmitter sample point phase values, then

g2 [2 2.102( o

e 1 /s - -S%sin“( ¥y - Q)
q (¢k) = S+ 5[ cos (1/1: Oti)e i

= O

i
[1+ erf S cos “ﬂk - Oti)] (B-23)

for -:tf‘/<:r.

Equation E-23 is the desired conditional probability of the sampled phase

values at the receiver.
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APPENDIX F: PROBABILITY DENSITY OF THE SQUARE
OF PHASE NOISE

A= 32 (F-1)
then

P(x</\<x+dx)sP(y<a<y+dy)+P(-y<a<-y-dy()
F-2)

for Az O where the P's are probabilities. In terms of probability densi-

ties Equation F-2 is
HA=x)ax=p(0=y)iy +p (0= -y) ay (F-3)

for all x > O. Therefore

PR=y)+p(d= -y) - (8 =Vx) + p(3d =vVx)
p(A=x)= % y=Vx 2Vx for x>0
0 for x<0
(F-4)

In Appendix E the conditional probability density of the kth sample
point phase value in a received word given the kth coordinate of the
transmitted word is derived. This is really the probability density of

the kth coordinate of any noise word and thus if the nolse sequences are

M=d, 7

12 Yo /5’ LY yN (F-5)

the probability density of Yk is

-s° 1 [ Lol f
p(Xkﬂf)=e—2ﬂ—-+-2- = cosfe sin [1 + erf S cos]] (F-6)
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for -x< [ <ax.
Using Equaetion F-4 the probability density of ( yk)a is

2

-S
P [(%:)2 =§l= Zﬂ/— z;fs,/z/_— [1+erts COSV/—] e S sin /_for O<S<1r
Y for §<0

(F-7)

and §> 3\:2
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APPENDIX G: FIRST CONVOLUTION OF THE PROBABILITY
DENSITY OF THE SQUARE OF PHASE NOISE

It is necessary in the error rate calculations to obtain the proba-
bility density of ( Xl)2 + ( a/a)2 vhere )/l and )g are the first two co-
ordinates of a noise word composed of N coordinates. The probability
density of ( ()/k)a, the square of the noise component at any sample point,
is derived in Appendix F and given by Equation F-7. The probebility den-
sity of the sum of two independent random variables is the convolution of

thelr provability densities. Therefore

p G2+ (P = el = [ ol())P =812 LRt -5las

t/2
2 pU(¥)*=8lp [(P=1t-6las
= 0 t < :r2
t/2 |
2 2 2
tf- 2 P[(bg_) = 5]1)[(3;) =t-51as
1:2 <t< 21r2
(6-1)

For © S 1t2, substitution of Equation F~7 into Equation G-l yields
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t/2 232

pl(X ()wt] 2/ 42/__/__.
214

0

t/2 _ o o
S cos ¢ -SSsinS
+ 2 1 {1 + erf(S cos/S )le as
[ g e

t/2 '
S cos /t-.{r -Sgsinaft-s
+ 2 v [1 + erf(S cos yt-5)]e as

/ ® £ 5 fs “ ,

t/2
+ af S EPEE%ESH + erf(S cosfs )] [1 + erf s cosyt-§]

e-S‘?'(sinz\/g— + sin® V- §)

as (G-2)

Equation G-2 does not lend itself to an analytical solution and the singu-
lerity of p[()ﬁ)al at (Xk)2 = 0 also makes a numerical solution of the e=
guation as it stands virtually impossible. Therefore, it will be necessary
to change the form of Equation G-2 to one more suited to a numerical solu-
tion.

If the substitution
y= V& (G-3)

is made, the probability has the form
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-28
p[(ai)a + (3/2)2,. £] = & f _2dy

5 %/2
. & / J[ 2cos t-z [l + er?(S cos 4 2 )le -S sin Vt- EY

t/2 2 o
J[_-J/‘ 2CO8 Y [1 4+ erf (S cos y)] e -878in’y dy

t/2

2 ¥ cosby® |
Y T =
0 t-y

20 in 2f 2
[1 + erf (S cosft-y?)] =5 (siny + sin Y-y zhr

(G-4)

The further substitution

7 = Sin-l . (G-S)
t

yields
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4 4
o o -252 “/ Se-82 “/
P[(Xl) + (?/2) =t] == 5 f dz + / cos[{t cos z] -
T NS

2 .2
1+ erf [S cos( V% cos z)] e > 512 (V& cos 2)3,

g2 /4

+‘/_S; - [cos({fsin z) {l + erf [S cos( yt sin Z)]}

2 .2 .
o~S"sin (/% sin z) dz

o x/4
+ :—f cos( Yt cos z) cos( Vt sin z) {l + erf
0

[S cos( Vt sin z)]} {l + erf [S cos( {t cos z)]

g2 [sina( Vt sin z) + sina( vt cos z)]
e dz (G-6)

Equation G-€ allows the calculation of the probebility density of
(Xl)2 + ()’2)2 at any desired value in the range O to 7. The integrals of
Equation G-6 do not lend themselve;s to an analytical solution but they are
well sulted to a numerical solution on a digital computer as they are defi-
nite and have well behaved integrands. Equation G-6 was used to obtain
the values of the convolved probability density function for the convolu-
tion of the probability density of the squere of phase noise with itself,
After this convolution the resulting function was of such a form that con-
volution of the function with itself could be carried out by straight-

forward numberical methods. All the subsequent convolutions required to
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form
N 2
ol 2 (%)%
1
for N of the form 2V, V=0, 1, 2y . « «, Were also carried out numerically.
The determination of PE’
the probability density functions involves an inherent accuracy problem. .

the probability of a detection error, from

The density functions have a large range and also have very large higher
order derivetives. These properties meke accurate numerical integration

very difficult. The error probability, PE’ is

§
N
Po=1-P =  1-pl > ()P a (6-7)
J k=1 »

vhere & is the square of the decoding sphere radius. Calculation of PE

by use of Equation G-7 requires the integral to be formed very accurately
because the PE values of interest are in the range from 10-_2. to 10-12.
For the reasons mentioned above, this degree of accuracy cannot be ob-

tained, p_articularly in a computer whose inherent accuracy per operation

is one part in 108. The error probability, P_, can also be written as

B
' Nzt2 N :
Py =-/ ol > (2;)21 e (G-8)
k=1
Fy

because
N 2
ol > (%)
k=1

is zero for argument values larger than N:te. Fortunately for the values

of signal-to-noise power ratio which are of primary interest, the integral,
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N:t2 N
fP[ZZ (%)° lao ,
A k=1

is very small with respect to the values of PE which are of interest.
This integral can be bounded analytically to show that it is small.

Thus, P, can be formed as

E
4
N 2
PE:fP[Z (3{{)]&9 (c-9)
kal =
£y

end the probability densities need only be formed for arguments in the
range from zero to four. The integration of Equation G-9 only has to be

performed with two or three digit accuracy to yield sufficiently accurate

values of PE.



