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ABSTRACT 

Our changing world needs many more mathematically literate individuals. 

Mathematical literacy can be defined, parallel to reading and writing literacy, as not only 

being able to understand the fundamental notions of mathematics, develop sophisticated 

mathematical models and evaluate someone else’s use of numbers and mathematical 

models but also being able to represent quantitative relations using algebraic reasoning 

and interpret and reflect on mathematical language patterns. In order to help students 

become mathematically literate, the National Council of Teachers of Mathematics 

(NCTM) has focused attention on students’ conceptual understanding of mathematics 

suggesting students need to be actively involved in the learning process using their 

experiences and prior knowledge. Along with this view on learning, understanding of 

teaching has also been revised in mathematics classrooms. Teachers now need to provide 

students with a challenging and supportive classroom environment in which they can 

build new knowledge by engaging in exploration of mathematical ideas by themselves. 

Since the publication of Curriculum and Evaluation Standards for School Mathematics in 

1989, the National Council of Teachers of Mathematics (NCTM) has paid special 

attention on teacher change, problem solving, and, more recently, using writing in 

mathematics classrooms for helping students develop thorough mathematical 

understanding and to becoming more mathematically literate.  

This change in the views of learning and teaching has placed students in the 

center of learning occurring in the classroom by altering students’ roles and requiring 

them to be actively involved in talking and writing in mathematics classrooms. The 

NCTM mandated that students at all levels should be able to use mathematical ideas in a 



 xi

variety of situations. For this purpose, students must have the opportunity to discuss their 

ideas publicly, to reflect on their thoughts and problem solving processes, and to 

communicate their ideas using various modes of representation (graphical, pictorial, oral, 

written, etc.). Writing in mathematics was emphasized in The Principles and Standards 

for School Mathematics (NCTM, 2000, p. 61), which said, “Writing in mathematics can 

…help students consolidate their thinking…” because it requires an active involvement 

of learners such that they use writing as a vehicle for learning and become the center of 

their own learning processes by engaging in reflection on mathematical experiences. 

This study focused on examining the changes in pedagogical practices when three 

high school algebra teachers shift from their traditional teaching to more student-centered 

practices through the use of the Mathematics Reasoning Heuristic (MRH) approach.  The 

study also looked at the performance differences on the Iowa Test of Educational 

Development (ITED) between the students in the control classes where the teachers 

engaged in their traditional instructional routines and the students in the treatment classes 

where the teachers used the MRH approach. The goal of the MRH approach is to help 

teachers improve their pedagogical practices to scaffold students’ understanding of 

mathematical concepts and their problem solving skills. 

The major findings of this study are that teachers’ adoption of the required 

pedagogical practices varied as they attempted to move away from their traditional 

practices and that implementing a student-oriented approach such as the MRH approach 

which includes embedded writing-to-learn strategies does have an impact on student 

performance. The student performance on the standardized test was significantly 

enhanced for those students in the MRH classrooms compared to students who engaged 
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in the more traditional approaches. The results from the analysis of the teachers’ 

pedagogical practices in their treatment and control classes indicate to us the importance 

of pedagogical skills to promote dialogical interaction during problem solving. In 

examining the results the researcher would suggest that there are two critical elements of 

the MRH approach. The first is the pedagogical approach needed and the second is the 

consistent use of the heuristic concept through the scaffolded writing component of the 

MRH approach.
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CHAPTER ONE 

Introduction 

General Overview 

 The first chapter begins with a brief review of three areas of research: problem 

solving in mathematics; writing to learn; and writing as problem solving. This review 

provides a backdrop for the major research questions and the context of the study. The 

dissertation contains a chapter of extended literature review, one research journal article, 

and a general conclusion chapter. The journal article investigates the relationships 

between implementation of the mathematics reasoning heuristic (MRH) approach, which 

is a student-centered, writing-embedded pedagogical tool, and students’ performances on 

a standardized test. This research article provides evidence of the impact of the MRH 

approach on students’ test scores, derived from the results of a quasi-experiment, mixed-

method study. The final chapter discusses the results from the research paper, attempts to 

theorize further about the impact of the MRH approach on students’ learning, suggests 

implications of the study, and presents the limitations of the study. 

Theoretical Background 

Problem Solving in Mathematics 

Problem solving in mathematics has been studied extensively by scholars (Artzt 

& Armour-Thomas, 1992, 1998; Garofalo & Lester, 1985; Mayer, 1982, 1998; Pape & 

Wang, 2003; Schoenfeld, 1983) since Polya (1945) first introduced his structure of a 

four-phase mathematical problem solving process (understanding, planning, carrying out 

the plan, and looking back). Since then, Polya’s framework has been used for developing 

new problem solving heuristics. For example, Schoenfeld (1983, 1985), incorporating an 
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information-processing perspective into Polya’s structure, developed a model that 

explained mathematical problem solving in five phases: analysis, design, exploration, 

implementation, and verification. The analysis and design phases correspond to the 

understanding and planning processes, respectively, in Polya’s heuristic. Schoenfeld 

(1985), however, included one more phase, exploration, that creates a bridge between the 

analysis and design phases. According to Schoenfeld, during the exploration phase, in 

which the problem solver uses his/her schema knowledge (a cluster of knowledge that 

describes the typical properties of the concept it represents
1
) the problem solver may 

return to the design stage to structure an argument about the solution, or he or she may go 

back to analysis and try to simplify or reformulate the problem, which can allow the 

problem solver to approach the problem differently. The last two phases of problem 

solving in Schoenfeld’s model, implementation and verification, respectively, refer to the 

last two processes, carrying out the plan and looking back, in Polya’s structure. 

Garofalo and Lester (1985) also developed a framework based on the work of 

Polya (1957), Schoenfeld (1983), Sternberg (1980, 1982), and to some extent Luria 

(1973), which represents the cognitive and metacognitive aspects of problem solving. 

The framework has four categories–orientation, organization, execution, and verification 

–each of which is associated with metacognitive behaviors. Unlike Polya’s four-phased 

problem solving heuristic, the categories of Garafalo and Lester’s framework are broadly 

defined, yet are related to Polya’s structure. Another distinctive feature of the framework 

is that at the verification phase the problem solver evaluates the decisions made at the 

earlier three stages, which is a metacognitive action as indicated by the authors. 
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Problem solving involves a complex set of cognitive actions requiring many 

connections to cognitive structure and to the context of the situation (Nesher, 

Hershkovitz, & Novotna, 2003). According to Polya (1981), problem solving is a process 

of making conjecture among the data (known) and the unknowns on one hand and the 

condition, which represents the connection between the unknowns and the data, on the 

other hand. Furthermore, problem solving is a process that can include multiple 

possibilities for a solution (NCTM, 2000). When solving problems, students are engaged 

in cognitive activities that have the potential to enhance their mathematical thinking and 

reasoning through examining and discussing all different possible solutions. In the course 

of problem solving, the learner is required to make logical argument(s) in his/her attempt 

to find the unknown of the problem or proving or disproving a possible answer (Polya, 

1981). 

Every problem solving heuristic (or structure or model or framework) involves to 

some extent understanding the problem, planning, carrying out the plan, and evaluation 

or verification. Each episode of problem solving requires, to some degree, cognitive and 

metacognitive behaviors inherent in mathematical problem solving. As indicated by 

several researchers (e.g., Artzt & Armour-Thomas, 1992; Garofalo & Lester, 1985; 

Mayer, 1982, Schoenfeld, 1983, 1985), some problem-solving heuristics put more 

emphasis on the cognitive aspect than on the metacognitive aspect of problem solving, or 

vice versa. 

Students often struggle to solve mathematical problems, especially word 

problems, not because they cannot execute the algorithm but because they do not know 

how to analyze a problem and plan for a solution (Lorenzo, 2005). Many researchers 
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studying problem solving from a cognitive perspective propose that the main difficulty in 

problem solving may be related to students’ lack of monitoring of the cognitive processes 

during problem solving (Artzt & Armour-Thomas, 1992; Dow & Mayer, 2004; Mayer, 

1982, 1998; Silver, 1982). 

Cognitive and Metacognitive Aspects of Problem Solving 

The concepts of cognition and metacognition are often confused and it is difficult 

to observe related behaviors. However, cognition and metacognition have been of interest 

to both mathematics educators and psychologists, and scholars in both disciplines have 

contributed to the area of research on such processes through exploratory studies. 

Garofalo and Lester (1985), taking Flavell’s (1976) description of metacognition, tried to 

clear up confusion by indicating the fact that there are two facets of metacognition, 

knowledge about cognition and monitoring cognition. Flavell described metacognition as 

…one’s knowledge concerning one’s own cognitive processes and products or 

anything related to them, e.g., the learning-relevant properties of 

information or data.…Metacognition refers, among other things, to the active 

monitoring and consequent regulation and orchestration of these processes in 

relation to the cognitive objects on which they bear, usually in the service of some 

concrete goal or objective. (p. 232)  

To distinguish metacognition from cognition, knowledge of cognition involves 

domain-specific tasks and one’s abilities and resources to accomplish these tasks – doing, 

whereas metacognitive knowledge is about monitoring, planning, and regulating the 

cognitive processes or what is being done (Artzt & Armour-Thomas, 1992; Garofalo & 

Lester, 1985; Mayer, 1998). With Flavell’s (1981) later definition, metacognition is 



 5 

“knowledge or cognition that takes as its object or regulates any aspect of cognitive 

endeavor. Its name derives from this ‘cognition about cognition’ quality” (p. 37). Thus, 

during any given cognitive enterprise, the role of cognition is to search for paths within 

the knowledge structure and perform the procedures to achieve the goals. On the other 

hand, metacognition regulates the cognitive progress in relation to the phenomenon that 

is being acted on. Flavell stated, “We develop cognitive actions or strategies for making 

cognitive progress and we also develop cognitive actions or strategies for monitoring 

cognitive progress. The two might be thought of as cognitive strategies and 

metacognitive strategies” (p. 53). Considering these two concepts in a hierarchical 

relationship, the objects of metacognition are the cognitive activities such as reading a 

text or performing a mathematical task. 

Metacognition involves not only controlling and monitoring cognitive processes 

but also being aware of how one learns, deciding when one does and does not understand, 

and evaluating cognitive progress. An effective mathematical problem-solving process 

requires both cognitive and metacognitive knowledge and the ability to develop cognitive 

and metacognitive strategies. Lester (1982, p. 59), stressing the role of metacognitive 

actions in problem solving, confirmed that successful problem solving in mathematics is 

a function of, among others, “… knowledge about one’s own cognitions before, during, 

and after a problem-solving episode, and the ability to maintain executive control (i.e., to 

monitor and regulate) of the procedures being employed during problem solving.” In a 

similar vein, Mayer (1982, 1998) and others emphasized the importance of metaskills, the 

ability to monitor and control cognitive actions: “Students need to know not only what to 

do, but also when to do it” (1998, p. 50). 
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Using Garofalo and Lester’s (1985) four-category framework–orientation, 

organization, execution, and verification–as an example, the verification phase (e.g., the 

looking back phase in Polya’s model) is the stage where most of the metacognitive 

behaviors, depending upon a given task, are most likely to occur because the problem 

solver returns back to the prior stages in solving the problem and evaluates the validity of 

the steps within each phase. This process is not only for checking the outcome of the 

problem but also for evaluating the progress of problem solving as accomplishing the 

mathematical tasks. Artzt and Armour-Thomas (1992) found that students rotated several 

times among different problem-solving episodes such as reading, understanding, 

exploring, analyzing, planning, implementing, and verifying. Verbal or nonverbal actions 

that signify actual processing of information demonstrate cognitive behaviors. For 

example, reading is classified as cognitive; understanding, analyzing, and planning as 

metacognitive; and exploring, implementing, and verifying as either cognitive or 

metacognitive depending on the type of the problem solver’s action (Artzt & Armour-

Thomas, 1992). 

Process of Mathematical Problem Solving 

Several problem-solving heuristics that have been developed try to explain to 

some extent the process of solving mathematical problems. Yet, most of the frameworks 

can be attributed to Polya’s (1945) problem-solving heuristic: understanding the problem, 

making a plan, carrying out the plan, and looking back. The purpose of a framework is to 

break down the processes that problem solvers go through (Schoenfeld, 1985). For 

instance, to solve a problem, one must first understand what the problem is. 

Understanding the problem is an important ingredient of solving the problem and is 
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related to multiple factors (e.g., problem solver’s mathematical background). Greeno 

(1977) suggested that understanding is an active process of constructing internal 

representation that is developed for the object that is understood. Greeno stated that the 

difference between understanding and not understanding is in the nature of the 

representation: “When a sentence is understood, its internal representation shows what 

the sentence means. The meaning corresponds to a pattern of relations among concepts 

that are mentioned in the sentence, and understanding is the act of constructing such a 

pattern” (p. 44). Such a metacognitive process is related to one’s cognitive strategies such 

as reading the sentences of the text and extracting related information from the text by 

means of language, and constructing a representation of the problem using newly 

extracted information. Of course, the representation must include the conditions of the 

problem and the goals. 

Greeno (1977) suggested three criteria for good understanding: 1) achievement of 

a coherent representation, 2) close correspondence between the internal representation 

and the object to be understood, and 3) connectedness of the representation to other 

components of the person’s knowledge structure. Mayer (1982), who analyzed problem 

solving in two stages—representation and solution—provided a perspective from 

cognitive psychology that views problem solving as a series of cognitive operations that 

transform knowledge representations. In this view, representation, corresponding to 

understanding the problem, is translation of problem statements into an internal 

representation “…that includes the given state, goal state, and allowable operators. The 

problem space can be built upon the subject’s understanding of the problem” (p. 4). 
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Good understanding therefore requires particular types of knowledge, for 

example, linguistic, factual, and schema knowledge. As stated by Greeno (1977), Lester 

(1982), and Mayer (1982), a problem solver reads the problem by means of linguistic 

knowledge to encode the information in the text for construction of internal 

representation that is connected to one’s schema knowledge. When the problem solver 

reads the problem, he or she relates it to the relevant problem type in his or her schema 

knowledge, which later helps the problem solver to activate “the units of knowledge 

structure” relevant to that problem type (Pape & Wang, 2003). During problem solving, 

not all the units of schematic knowledge are activated; instead, only the ones related to 

the problem and the ones with strong connections to the input problem are activated. To 

summarize, understanding a problem is a process of constructing internal representation 

of the object to be understood (Greeno, 1977) through interpretation of the language of 

the problem text, which is a process of translation of the text to a set of problem solving 

operators in order to construct a problem space (Lester, 1982; Mayer, 1982). 

Having understood the problem, the problem solver moves to the next phase in 

solving the problem, making a plan. Planning is inherently involved in understanding. 

Planning (knowledge) helps the problem solver form a symbolic construction that 

connects the new information to the old, already-known information (Silver, 1982) and 

“get a feel” for what needs to be done (Lester, 1982). During planning, students use their 

strategic knowledge to synthesize their factual and schema knowledge and develop 

models (sequence of actions that might lead to a solution) for a solution (Artzt & 

Armour-Thomas, 1992; Lester, 1982; Mayer, 1982; Silver, 1982). Garofalo and Lester 

(1985), Lester (1982), Mayer (1998), and Silver (1982) emphasized that the problem 
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solver uses his or her metacognitive knowledge structure to organize the information 

extracted from the problem text, direct the processes of understanding the problem, and 

create an accurate diagram for the action to be taken to achieve the goal statement in the 

problem. Furthermore, Silver pointed out that such metacognitive endeavors during 

planning might influence understanding of the problem and retrieval of information. It 

seems a reasonable hypothesis that understanding the problem and planning are not 

separate from each other; on the contrary, both processes evolve into each other. 

Writing-to-learn in Mathematics 

With the Writing Across the Curriculum (WAC) movement in 1970s, whose roots 

were based on the work of James Britton on language and writing about content areas in 

1960s in UK, the emphasis in the teaching and using of writing has shifted from its 

mechanical features towards a process of writing and making meaning through writing. 

According to Britton and his colleagues, there are three functional types of (written) 

language: transactional, poetic, and expressive (Britton, 1970; Britton, Burgess, Martin, 

McLeod, & Rosen, 1975). We are not only using language to communicate or say what 

we want to say (instrumental function-transactional writing) but we are also using 

language to reflect on the meaning of our actions (self-reflection-expressive writing). 

Transactional, poetic, and expressive writing are distinguished from each other in 

terms of the actions a writer takes and the purpose of writing. In the transactional writing, 

the purpose is to transfer or exchange information, ideas, and meanings. In other words, 

transactional writing is for the delivery of information to others and tests previously 

learned knowledge (Miller, 1997). The purpose of poetic writing, however, is to express 

one’s experiences and emotions by detaching oneself from the action. On the other hand, 
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in the expressive writing the intent of writing is for the writer’s own use to explore the 

current ideas and feelings or the ideas about a problem and reflect on them, and the 

writing promotes one’s personal understanding. These three approaches to writing, 

especially expressive writing, have been the roots of the knowledge on understanding the 

process of writing and its function in learning. 

Among the models that explain the writing process and its role in learning are the 

models by Hayes and Flower (1980), Bereiter and Scardamalia (1987), and Galbraith 

(1999). The common view among them is, by looking at writing from a cognitive 

perspective, that writing is a discovery process of what to say in the course of action and 

a tool for learning (Alamargot & Chanquoy, 2001). Within this common view, it is 

reasonable to say that the writer produces the text due to a problem (e.g., writing 

assignment) that will be resolved through a series of activation of knowledge structures 

and interaction of rhetorical goals with the problem statements (Galbraith, 1999). 

Another viewpoint that these models share is about the difference between expert and 

novice writers. This major difference is, as Galbraith stated, that “experts develop an 

elaborate set of goals for their text and generate ideas to satisfy these goals, whereas 

novices simply retrieve ideas prompted spontaneously by the topic and translate them 

directly into text” (p. 139). 

This pervasive idea about writing was reshaped around the idea of “writing-to-

learn” that suggests the role of language and writing in constituting, as well as 

representing, knowledge and thought (Connolly, 1989). Writing-to-learn is not only about 

language, which is a tool to form ideas via internal and external representations. Rather, 

writing is also about self-negotiation of meaning through metacognitive actions such as 
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planning, monitoring, reviewing, and revising—constituting knowledge in the course of 

dispositional dialectic (Galbraith, 1999). That is, during dispositional dialectic, the writer 

engages in a series of re-cyclic process of sorting (and reorganizing) the knowledge 

structure through what he or she knows. 

Furthermore, having students write and then revise the written product gives them 

opportunities to constitute new meaning and generate new knowledge (Galbraith, 1999; 

Powell & Lopez, 1989). Writing is a tool not only for extracting what one knows about 

the content but also for developing/constructing thoughts but also for reflecting on this 

process and the ideas themselves. One of the functions of writing is to augment 

understanding through the cognitive and metacognitive actions that it demands. In 

addition, during writing, one negotiates meaning, and in negotiation one is generating 

knowledge and augmenting learning (Powell & Lopez, 1989). Using Vygotsky’s (1962, 

p. 100) elegant phrase, the writer must engage in “deliberate structuring of the web of 

meaning.” Writing, as a thinking device, helps the writers organize their thoughts, 

activate relevant knowledge networks aroused by the topic, and make logical connections 

between knowledge networks and rhetorical goals via linguistic networks in a 

dispositional dialectic. 

Emig (1977), pointing out the unique function of writing in learning, argued that 

due to its demanding functional cognitive action, writing is a powerful source of thought 

through immediate connections, by means of lexical, syntactic, rhetorical devices, and 

between what has been written (product) and what is still to be said (process). 

Furthermore, she speculated that the process component of writing (as process-and-

product) that with the fullest possible functioning of the brain, in writing process, “the 
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symbolic transformation of experience through the specific symbol system of verbal 

language is shaped into an icon (the graphic product) by the enactive hand” (p. 124). This 

process of writing inherently gives the writer the opportunity to integrate the information 

in the prose passage into his/her own knowledge structure—Emig’s notion of the 

connective nature of writing. 

People interact and share knowledge via the use of language, which is one of the 

communication heuristics that communities have in common. Pimm (1987, p. 7) 

expressed that one of the functions of language is that it allows people “access to and 

control over [their] thoughts.” As forms of language, writing, and, Pimm stated, talking, 

help students to communicate with others—to make “someone else understand something 

or pass on some piece of information”—and to communicate with themselves —“to help 

organize [and reflect on] their thoughts” (pp. 23-24). One powerful role of writing is to 

help the writer associate concepts with language (Keys, 1999). 

Galbraith (1999) argued that the writer engages in a dispositional dialectic where 

he or she is constantly involved in an ongoing negotiation of meaning through dialogue 

with oneself. In the process of writing, the quality of text (utterance), and thus dialectic, 

is constrained by audience, the writer’s content knowledge, and linguistic knowledge. 

Bereiter and Scardamalia (1987) also speculated that writing empowers the use of human 

language and social skills attained through experience, but it is also limited by them. 

Through this interactive course of action, the writer communicates with his or her reader 

by considering the reader’s understanding of the text produced. 

Galbraith’s model (1999), writing as a knowledge-constituting process, explains 

the writing process in detail. According to Galbraith, the writer’s conceptual network is 
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activated by the input task (new sensory information). The new information is connected 

with the activated knowledge network units through linguistic symbols. The newly 

generated utterance (message) within the linguistic network, in turn, enters the 

knowledge network units as a new input as a result of ongoing feedback from the output 

of the linguistic network. However, the new information does not have to become a 

statement (message); instead, it can activate different units to produce new ideas on a 

successive cycle. The final statement (utterance) is created within the linguistic network 

in which the utterance is evaluated to find “the ‘best fit’ to what the writer has to say 

about the topic” (p. 146).  

As a form of language, mathematics has its own symbol system, which is 

composed of numbers, letters, computational signs, comparative signs, the equal sign, 

and so on (Connolly, 1989; Morgan, 1998; Pimm, 1987; Tobias, 1989). Therefore, a 

“written sentence” in mathematics would be a logical combination of its own symbols 

(e.g., x ∈ Z; x + 4 < 5). However, the meaning of this sentence may not be explicit to 

someone who has not been exposed to such a language. The internal representation of 

this sentence might be, for example, the literal meaning of it in words (e.g., x being an 

element of integer numbers, x plus four less than five). Someone else who has a pictorial 

sense can picture this sentence on the number line representing the numbers that satisfy 

this condition. As can be seen, translation of any mathematical language into the 

“English” language might require the writer to have enough knowledge and practice in 

both forms of language, the ability to understand the meaning of the mathematical 

sentence, and lexical knowledge to translate it into words. This difference between a 

prose sentence and a mathematical sentence is what Emig (1977) called the distinction 
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between composing in words and composing in a graphic symbol system of mathematical 

equations. Morgan (1998) pointed out that students in mathematics classrooms are often 

expected to learn “the mathematical language” without making connection to their own 

everyday language. She suggested that writing can actually help students investigate 

mathematical language through exploration of the language they more commonly use. 

People make/form meaning via the natural language. The unique structure of 

mathematical language is understood with the meaning corresponding to specific 

mathematical symbols. Therefore, if students have the opportunity to express their 

mathematical understanding in words through either orally or in written format, they are 

more likely to make connections between concepts (Meier & Rishel, 1998; Morgan, 

1998; Pimm, 1987). Meier and Rishel (p. 90) further stated that “mathematics is 

embedded in language” and we use that language first to form the meaning of 

mathematics symbols (concepts) and then to express our understanding to the outside 

audience orally or in a written text. 

As opposed to authors (e.g., Gries & Schneider, 1995 in Meier & Rishel) who 

defend first teaching rigorous proofs using a formal logic, Meier and Rishel (1998), 

Morgan (1998), and Ernest (1998) argued that students should build their mathematical 

language on their everyday language, which helps them attain the nature of mathematical 

symbols and special vocabulary of mathematics. This feature of mathematics language is 

called a “mathematical register” (Halliday, 1974; Pimm, 1987). Consequently, through 

constant use of mathematical concepts in classrooms by speaking or writing, students 

create their own comfortable mathematical register. 
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Mathematics Reasoning Heuristic for Mathematical Problem Solving 

In light of the literature review above, incorporating writing into mathematical 

problem solving created the mathematics reasoning heuristic (MRH) approach for 

teachers to use in classrooms to promote students’ problem solving abilities (Akkus & 

Hand, 2005). The MRH approach is a conceptual framework that focuses on the 

relationships among students’ knowledge of mathematics, the teacher’s knowledge of 

mathematics, interaction among students and the teacher, negotiation of ideas, writing, 

and the process of students’ problem solving. The MRH consists of two essential 

components. The first is the teacher template, which is a pedagogical tool for teachers to 

use before and during implementation (Figure 1). According to the MRH, the teachers 

both need to define the big ideas of the topic, which are the essential themes of a unit, and 

anticipate students’ prior knowledge. This planning phase for learning goals and activities 

is crucial in implementing the MRH approach. 

Teacher Template 

Preparation: 
- Identify the big ideas of the unit.  

- Make a concept map that relates sub-concepts to the big ideas. 

- Consider students’ prior knowledge 

- Consider students’ alternative conceptions during the lesson as they 

connect the prior knowledge to the big ideas 

During the unit: 

• Students’ knowledge of mathematics 
- Give students opportunity to discuss their ideas. 

- Have students put their ideas on the board for exploration. 

• Teacher’s knowledge of mathematics 
- Use your knowledge to identify students’ alternative conceptions. 

- Guide students to the big ideas identified earlier during the preparation. 

• Negotiation of ideas 
- Create small-group and whole-class discussion. 

- Encourage students to reflect on each other’s ideas. 

• Writing 
- Have students write about what they have learned in the unit to real audiences 
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(teacher, parents, classmates, lower grades, etc.). 

 

Figure 1. The mathematics reasoning heuristic teacher template. 

 

The second component of the MRH is for students and is intended to help them 

scaffold their problem solving abilities (Figure 2). It consists of a series of questions for 

students to consider when they are engaged in the problem solving process. The template 

allows students to clarify their thoughts, through writing, about how they will approach 

the problem. The MRH also gives students multiple opportunities to engage in problem 

solving activities by comparing and contrasting their solutions and writing explanation 

for different audiences. Kenyon (1989) emphasized the importance of writing on the 

thinking process during problem solving and the importance of the metacognitive skills 

that students use to reflect on their thoughts by declaring that within a “writing process, 

students begin to gather, formulate, and organize old and new knowledge, concepts, and 

strategies, and to synthesize this information as a new structure that becomes a part of 

their own knowledge network” (p. 77). 

Student Template 

• What is my question (problem)? 
 - Specify what you are asked (What is (are) the question(s) being asked?) 

 - Outline the information/data given (What information is/are given?) 

• What can I claim about the solution? 
 - Use complete sentences to explain how you will solve the problem. 

 - Tell what procedures you can follow. 

• What did I do? 

 - What steps did I take to solve the problem? 

 - Does my method (procedure) make sense? Why? 

• What are my reasons? 
 - Why did I choose the way I did? 

 - How can I connect my findings to the information given in the problem? 

 - How do I know that my method works? 

• What do others say? 
 - How do my ideas/solutions compared with others? 

 a. My classmates 

 b. Textbooks/Mathematicians 
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• Reflection  
    - How have my ideas changed? 

 - Am I convinced with my solution? Why? 

 

Figure 2. The mathematics reasoning heuristic student template. 

 

Purpose 

The purpose of this dissertation is to look at the impact of implementing student-

centered, writing-embedded pedagogy on students’ mathematics performances on a 

standardized test, the Iowa Test of Educational Development (ITED). 

To this end, I analyzed the link between group (treatment vs. control), writing 

tasks, and students’ performances on the ITED. This goal involves the investigation of 

any differences between test scores of students of the three teachers. In order to explore 

the effect of the implementation level of the MRH approach on students’ test scores, each 

teacher was observed and videotaped during the teaching of their both control and 

treatment (MRH) classes. 

Research Questions 

This study investigated the following two questions: 

• Is there a difference in students’ mathematical performance on a 

standardized test, the Iowa Test of Educational Development (ITED), 

between the students in the control classes where the teachers are engaged 

in their traditional instructional routines and the students in the treatment 

classes where the teachers used the MRH approach to improve their 

pedagogical practices and to scaffold students’ problem solving skills? 

• How do the teachers change their pedagogical practices through the use of 

the MRH approach? 
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Investigation of each research question was presented in a journal article format. 

Outline of the Dissertation 

Chapter 1: Introduction 

The research proposal was presented as the introduction chapter. 

Chapter 2: Literature Review 

In the literature review, relevant readings that lead this research was analyzed as 

outlined below: 

I – Problem Solving in Mathematics 

a. Nature of mathematics (learning) 

i. Subjective and objective aspects of mathematical knowledge 

b. Problem solving in mathematics 

i. Process of problem solving 

c. Algebraic problem solving 

II – Writing-to-learn 

a. Process of writing and writing models 

b. Writing as a learning tool 

c. Writing-to-learn in mathematics education 

III – Writing as problem solving and the mathematics reasoning heuristic 

a. Writing as problem solving: Connections between writing and problem 

solving 

b. An innovative pedagogical approach to teaching mathematics: The 

mathematics reasoning heuristic (MRH) 

i. Development of the MRH 
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ii. The science writing heuristic as a deriving model for the MRH 

Chapter 3: Journal Article 

This paper examines the relationship among teachers’ implementation of a 

student-centered, writing-embedded pedagogy and students’ performances on a 

standardized test, the Iowa Test of Educational Development (ITED). In order to 

scrutinize the relationship, the teachers were observed and videotaped during the 

implementation of the MRH and during their control teaching and students’ Iowa Test of 

Basic Skills (ITBS) (taken at grade 8) and ITED scores (taken at grade 9) were obtained. 

The intent is to include the journal article for publication in the middle of the full 

dissertation. 

Research setting and participants 

This study was conducted in a high school with three algebra teachers, two males 

and one female. Pseudonyms (Mike, John, and Amy) will be used for the male and 

female teachers, respectively. The school is located in a rural area of Iowa with a low 

percentage of minorities (Hispanic or African-American). The teachers have a total of ten 

classroom sections for an Algebra I course. The data were collected at two different 

times. Mike was the first teacher implementing the MRH during the 2004-2005 school 

year. He had three classes, one control (21 students) and two MRHs (44 students). After 

Mike left the school district for the following school year due to his personal reasons, 

Amy was placed in his position and she started to teach the Algebra I course. Therefore, 

the study continued with Amy and John in the 2005-2006 school year. Amy taught three 

classes, two of which were treatment groups (25 MRH and 24 control students). John 

taught four Algebra I classes, two of which were treatment groups (45 MRH and 43 
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control students). Therefore, of the ten classes there were four control and six treatment 

classrooms. 

Mike had 20 years of mathematics teaching experience in different schools in 

Iowa, the last five years of which had been at the high school featured in this study. Mike 

also taught an Applied Mathematics course. During his career he has taught different 

levels of high school mathematics. He also coached football as an extracurricular activity 

in the school. John had 33 years of teaching experience, 28 years of which have been at 

his current school. He was the head of the mathematics department in the school and 

taught Probability and Statistics and Algebra I courses for ninth grade students. He also 

had a master’s degree in English and Guidance Counseling. Amy had been teaching for 

five years and this was her first year in the school district. She taught Algebra I (ninth 

grade) and Applied Math II (tenth grade) courses. 

Research framework 

In this study, a mixed-research approach (qualitative and quantitative) was used to 

provide empirical evidence and to add more robustness to the results of the study for 

generalization of its findings. Fraser and Tobin (1992), Reichardt and Rallis (1994), and 

Smith and Heshusius (1986) argued that even though the qualitative and quantitative 

research traditions differ, using a mixed-method may enrich the practice of research by 

informing each other and overcoming each one’s weaknesses. Therefore, it is reasonable 

to use combined research traditions in this study in order to explore the relationship 

between the implementation of the MRH and students’ performances on the tests. 

Qualitative research design 
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A qualitative research approach was appropriate to use in order to explore the 

characteristics of implementation and identify teacher’s level of implementation. The 

practice of each teacher was analyzed individually using an interpretative case study 

design, and the analysis informed the implementation level. To this end, each teacher was 

observed and videotaped during their implementation and interviewed to add richness to 

the researcher’s characterizing of their level of teaching in both MRH and control 

classrooms. To document the level of teaching, we adapted an observation protocol called 

the Reformed Teaching Observation Protocol (RTOP) used to measure “reformed” 

teaching in mathematics and science classrooms (Sawada, Piburn, Falconer, Turley, 

Benford, & Bloom, 2000). The focus of the observation was to identify how teachers 

promoted dialogical interaction by means of questioning, encouraging students to 

participate in the process of problem solving in the classroom, and requiring students to 

find different ways of solving a problem and connecting them to other problems that have 

been studied. 

Level of Teaching 

The RTOP is an observational instrument that can be used to assess the degree to 

which mathematics or science instruction is reformed. The instrument draws on the 

recommendations and standards for the teaching of mathematics and science that have 

been promulgated by NCTM (1989, 1991, 1995, 2000) and National Science Education 

Standards (NRC, 1995). The instrument consists of 25 items, with each rated on a scale 

from 0 (not observed) to 4 (very descriptive). The RTOP Cronbach’ Alpha is 0.954 for 

math and science classes (Sawada et al., 2000). However, we modified the RTOP and 

chose 14 items (Cronbach’ Alpha was 0.976) according to the following criteria. 
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First, creating dialogical interaction is important for implementing the MRH. In 

other words, types of questions asked by teacher and students, teacher’s response to 

students’ answer and questions, and the direction of communication (e.g., from teacher to 

student) are of the importance for creating dialogical interaction. The questions teachers 

ask in classrooms can either promote or limit classroom conversation. Second, focus of 

learning is crucial to reflecting an important step away from traditional mathematics 

classroom practice. The main point of this criterion is “allowing students to take the 

responsibility of thinking process and problem solving process and moderating the 

conversation.” Teacher domination of classroom discussion affects not only students’ 

sharing ideas and reflection on other students’ ideas but also the participation of students 

in classroom discussion. Finally, teachers are expected to allow students to discover their 

own problem solving methods either as groups or individually rather than to provide an 

explanation of their own method. Moreover, students should be encouraged to find 

different ways of solving a problem and provide justification for their solution methods. 

The comparison of the fourteen RTOP items and the MRH implementation criteria can be 

seen in the Appendix. 

Quantitative research design 

A quasi-experimental design will be used as the quantitative research method. 

Quasi-experimental designs are often used in educational research due to the lack of 

randomization, the limited control of variables, and/or sometimes the lack of a control 

group (Campbell & Stanley, 1996; McMillan & Schumacher, 1997; Merriam, 1988). 

Such a design is confounded by the fact that control and treatment groups are not 
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random; yet, pre- and post-tests were administered in this study to both groups as 

assuming they were random. 

The results of the qualitative analysis were used in the quantitative analysis as 

independent variables: teacher’s level of teaching. The outcome variable was students’ 

ITED mathematics scores. To account for possible differences prior to the study, 

students’ previous ITBS mathematics scores were used as a covariate in the analysis. 

Statistical Analysis 

For social sciences, especially for education, it is hard to attribute any differences 

in groups to one single variable (e.g., treatment effect). Therefore, analysis of covariance 

(ANCOVA) was chosen as the statistical method to examine the effects of the variables 

on students’ performance and the possible interaction of those variables as well as to 

control for students’ prior knowledge differences (Agresti & Finlay, 1997). Possible 

group differences were reported as “effect sizes” (Cohen d index), which is widely used 

in social science, because it enabled us to measure “the difference between two means 

expressed in standard deviation units” (Sheskin, 2000, p. 835). 

There are three advantages of reporting effect sizes (Wilkinson & Task Force on 

Statistical Inference, 1999). First, reporting effect size makes meta-analyses possible for a 

given report. Second, effect size reporting allows a researcher to determine more 

appropriate study expectations in future studies. Third, reporting and interpreting effect 

sizes facilitates assessment and comparison of a study’s results across existing related 

studies. 
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Chapter 4: General Conclusion, Implications, and Limitations 

The last chapter of the dissertation presents a general conclusion, implications, 

and limitations based on the literature review. Emerging themes of the literature on 

mathematical problem solving, writing-to-learn, and the impact of the level of teaching 

on students’ learning outcomes are outlined. Second, findings of the study, their 

implications to practice, and their relation to current literature are discussed. Then, 

surrounding limitations of the study are delineated. 
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CHAPTER TWO 

Literature Review 

This literature review will address the literature to provide a theoretical 

framework for the research questions. This chapter is organized in sections. In the first 

part of the review, the theoretical underpinnings of the mathematics reasoning heuristic 

(MRH) are discussed. Particular attention is given to problem solving in mathematics, 

writing-to-learn, and the relationship between the writing process and the problem-

solving process. The literature review finally describes the MRH approach as a means to 

assist teachers and students in their journey to develop robust mathematical problem 

solving capabilities through writing. 

Problem Solving in Mathematics Education 

The National Council of Teachers of Mathematics (NCTM) places a strong 

emphasis on problem solving in the Principles and Standards for School Mathematics 

(NCTM, 2000). The NCTM states that problem solving is a crucial part of mathematics 

learning; therefore, problem solving should be fully integrated into mathematics 

programs. Because problem solving requires high cognitive and metacognitive actions, 

students develop thorough understanding of the mathematical concepts in the problem 

when engaged in the problem solving process. Thus, challenging students with well-

chosen problems that support their learning of mathematics, that enhance their 

understanding of the nature of mathematical knowledge, and that require them to work 

collaboratively in order to reach the solutions is essential in math classrooms. In this way, 

students not only become aware of the nature of mathematics but also develop an 

understanding of the subjective and objective aspects of mathematical knowledge. The 
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NCTM states that students should be able to construct their mathematical knowledge 

through problem solving and monitor and reflect on the process of problem solving. 

Consequently, this section of the literature review focuses not only on 

mathematical problem solving, but also on the nature of mathematical knowledge and 

learning, as well as the construction of mathematical knowledge by individuals and the 

mathematical community including teachers and students. Taking a social constructivist 

perspective, I indicate how mathematical knowledge is constructed through negotiation 

within the mathematical community and the implications in classrooms. I later discuss 

the major problem-solving heuristics on which the MRH approach is based, the cognitive 

and metacognitive aspects of problem solving, and algebraic problem solving. Finally, 

the implications of problem solving in this study are discussed. 

The Nature of Mathematics 

Mathematics, by its nature, is perceived differently by different communities. For 

example, for mathematicians, mathematics is a process of creation and exploration which 

they are constantly studying to expand their repertoire of mathematical knowledge by 

engaging in mathematical activities (i.e., proof, refutation, counterargument) (Khait, 

2005); whereas, for ordinary people or students, or even for some mathematics teachers, 

mathematics is “a collection of preestablished facts, rules, and techniques essentially 

having to do with numbers and (at best) geometric shapes” (Borasi, 1992, p. 158). When 

math teachers see school mathematics as nothing but a set of rules, their belief shapes 

their “instructional decisions about curriculum choices, teaching strategies, and 

classroom organization and management” (p. 157). Such beliefs isolate human factors 

from the creation of knowledge. 
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Borasi (1992) and Ernest (1998) argued that the construction of mathematical 

knowledge, as with any other knowledge, inherently involves the human mind. Both 

authors emphasized the fact that mathematical knowledge is socially and historically 

constructed; that is, it is “the result of one of the forms of human knowing” (Ernest, 1998, 

p. 47-48) and mathematics is “a humanistic discipline” (Borasi, 1992, p. 159, original 

emphasis). The humanistic view of mathematics states that culturally constructed 

knowledge is based on culturally situated, shared foundation, human agreement. 

Therefore, as Ernest pointed out, mathematical objects are the consequences of 

communication among mathematicians over time, based on the previously created set of 

knowledge. As in science (see Norris, 1992), mathematical knowledge passes through a 

series of iterative processes before its acceptance by the mathematical community. As I 

will discuss in the following section, when an individual mathematician or a group of 

mathematicians propose a mathematical knowledge claim via publication or conference, 

it has been made public for an extensive review process by other mathematicians in the 

field. This process mandates the owner(s) of the proposal to defend their arguments and 

provide logical justification for any counterarguments raised by the community. In short, 

since the mathematical knowledge is inherently conversational and dialectical (Ernest, 

1998), it is based on a shared and agreed upon foundation. 

This dialogical aspect of the mathematical knowledge is based on a coherent set 

of argumentation patterns supported with logical reasoning within problem solving. 

Through problem solving, one is engaged in setting a knowledge structure using prior 

schematic knowledge and the problem context. Therefore, the nature of mathematics can 

then be simply described as problem solving, which is an endeavor of human minds. 
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Borasi (1992) suggested that since the nature of mathematics is humanistic, students 

should be encouraged to appreciate its humanistic aspect. She further points out that 

school mathematics should strive to make students aware of the unique characteristics of 

mathematics and mathematical modes of thoughts. Moreover, students should also be 

encouraged to see that mathematics and mathematical thinking is not apart from their 

everyday activities. In order for students to understand the nature of mathematics and its 

humanistic aspects, they should be engaged in activities in which they can work together 

as communities of learners and thinkers who create original mathematical knowledge. 

Within such an environment, “mathematical communication becomes an essential way of 

sharing guesses and ideas, providing and using feedback constructively, and ultimately 

building the consensus that sanctions new knowledge” (Borasi, 1992, p. 170). 

But, school mathematics, as a discipline, typically hides the dialogical aspect of 

mathematics under its “monological appearance” (Ernest, 1998, p. 173). Mathematics is 

seen as a concrete body of knowledge created by people called mathematicians and it 

includes no personal view or subjective knowledge. As a result, the dialogical nature of 

mathematics comes as a surprise to some students. Most students think that such a 

superhuman knowledge structure must be taught by teachers rather than created by the 

students themselves. Cobb, Yackel, and Wood (1993) argued that students sometimes 

expect the teacher to simply give instructions for them to follow. Such expectations 

indicate that the student believes his or her only role is to follow the procedural 

instructions. Students in classrooms where such situations often occur conceive a passive 

role in learning of mathematics and see the teacher as the active donor of the 

mathematical knowledge, rather than a source of knowledge among many sources. And 
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students’ conceptions of mathematics play an important role. As Teppo (1998) stated, 

students’ success in learning mathematics is significantly affected by their understanding 

(or misunderstanding) of the nature of mathematics. 

Misunderstandings about mathematics might come from teachers’ teaching styles, 

beliefs about the nature of mathematics learning and teaching, and behaviors in the 

classroom (Hart, 1989). In mathematics classrooms, students are typically expected to 

follow the teacher’s instructions and to work on routine problems individually. They are 

not encouraged to create their own problem solving methods; rather, they are expected to 

memorize the teacher-transmitted knowledge without attempting to understand the 

reasons behind a method. This learning and teaching style continues during learners’ 

school career; that is, “learners work on textual or symbolically presented teacher-set 

tasks” (Ernest, 1998, p. 223). Doing mathematics in school is associated with solving 

word problems whose solution method is shown by the teacher before students attempt a 

solution. Barnes and Todd (1995) discussed that the structure of schooling (lectures, 

lessons, textbooks, exams, quizzes, questioning, etc.) implies “that knowledge is made up 

primarily of information (facts) to be memorized [and]… that all that is needed is to 

produce the right answer, …[which] misleads some students about what kind of learning 

is required of them” (p. 14, original emphasis). Such an approach exemplifies the 

misunderstanding of the nature of learning. 

Taking into account the humanistic nature of mathematics and mathematical 

knowledge, Borasi (1992) suggested that we should rethink learning and teaching 

mathematics. From a constructivist point of view, learning is associated with personal 

meaning making based on the already existing knowledge structure and the social 
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interaction with environment. Therefore, learning mathematics should no longer be 

considered an accumulation of teacher-set knowledge by means of listening, memorizing, 

and practicing. Rather, learning mathematics should be considered an active process of 

personal construction of mathematical understanding through use of natural language in a 

socially situated conversation by students. Thus, as Borasi (p. 176) pointed out, “…in the 

context of schooling, learning mathematics should include activities such as articulating 

and sharing results and interpretations, … examining collectively the soundness of 

arguments and explanations, and trying to reach consensus.” Students should also be 

aware that mathematics, as a humanistic inquiry approach, involves uncertainty and, to 

some degree, confusion. 

Consequently, teaching mathematics should be restructured around how students 

best learn mathematics. Borasi explained the whole notion of teaching and learning in the 

following: 

Good mathematics teaching should be conceived not as the “clear and efficient” 

transmission of established mathematical results but as the creation of a 

community of learners engaged collaboratively in the construction of 

mathematical knowledge in order to increase their understanding of the world, to 

solve specific problems, and to come to appreciate and expand their mathematical 

ability. This, in turn, will involve the development of a “rich” classroom 

environment, which can stimulate students to engage in humanistic inquiries 

about mathematics and provide the necessary support for pursuing such inquiries 

(Borasi, 1992, p. 181). 
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Indeed, teaching should provide opportunities for students to participate in dialogical 

interaction in which they can negotiate their meanings of mathematical concepts. Watson 

and Mason (2005) pointed to the fact that mathematics is a constructive activity, and, 

thus, learners should be actively involved in the process of the construction of 

mathematical objects, relations, questions, problems, and meanings. 

Another key point that affects students’ understanding of the nature of 

mathematics is that the “same” words have “different” meanings in mathematics and 

everyday practice. For example, the word “difference” has distinct uses. While, in one 

case, it refers to comparison of two objects in terms of their physical characteristics (i.e., 

a square table vs. a round table), in mathematics, it refers to the “quantity” between two 

numbers. Thus, a small child, when asked what is the difference between 10 and 5, might 

say “there are two numbers [digits] in 10 and one in 5.” As Gee (1999) stated, the 

meanings of words are associated with different contexts and form a pattern specific to 

those contexts. In our example, the child has experienced the meaning of the word 

“difference” within various situations. His or her parents might have said, “What is the 

difference between this teddy bear and that one?” In a series of experiences with the word 

“difference,” Gee argues, the child created a pattern associated with the word. Sierpinska 

(1998) argued that since the child practices the concepts in social settings, he or she has 

to discriminate the different uses of the concepts in different contexts when he or she is at 

school. 

During everyday interactions, children are often exposed to informal ways of 

dealing with mathematics. Unfortunately, however, school mathematics seems isolated 

from both everyday spontaneous use of mathematics and the activity of mathematicians; 
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whereas, the everyday use of mathematics, to some extent, is similar to activity of 

professional mathematicians (Borasi, 1992). Yet, by focusing on the humanistic notion of 

mathematics and of the inquiry approach, students can be encouraged to see that what 

they do in learning mathematics is not different than what “real” mathematicians do. This 

will also help them “[internalize] the set of beliefs and values that belong to mathematics 

as a ‘culture’” (Borasi, 1992, p. 170). Artzt and Thomas-Armour (1992) have found that 

when students work in small groups to solve mathematical problems, they approach 

problems like expert problem solvers (Artzt & Yaloz-Femia, 1999). 

Subjective and Objective Aspects of Mathematical Knowledge 

The central strand of the nature of knowledge is that knowledge is a socially 

constructed endeavor within a community through negotiated meaning of experiences, 

not static or stable, but inconstant (Ernest, 1998; Connolly, 1989). As Cobb, Yackel, and 

Wood (1993) and Ernest (1998) pointed out, we, as people, construct our knowledge, 

contextually and historically, based on our interaction with other people (or their 

artifacts). Therefore, knowledge is socially and historically constructed within a 

community through the very act of communication via different discourse tools (e.g., 

oral, written, etc.). Yet, even though knowledge is constructed by individuals, the 

collective objective knowledge lies on the shared language, experiences, and 

understanding, which are embedded in a social structure of community (Atweh, Bleicher, 

& Cooper, 1998; Cobb, Boufi, McClain, & Whiteneck, 1997; Ernest, 1998; Krummheuer, 

2000). Thus, the objective knowledge and subjective knowledge are interrelated. Ernest 

attributed to Harding (1991) that the “concept of ‘strong objectivity’ [is] based on the 

recognition that all knowledge is thus socially constituted and that knowledge increases 
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in objectivity when its social roots and presuppositions are laid bare and acknowledged” 

(p. 147). 

Yet, the question “how is objective knowledge warranted by the community?” 

emerges. Ernest offered an answer to the question about how mathematical knowledge is 

accepted within the mathematical community. Considering the fact that knowledge is 

socially and historically constituted, negotiation and renegotiation is the center of such a 

knowledge construction process. Ernest claimed that once knowledge has been externally 

represented, it becomes a candidate of objective knowledge. In other words, the proposed 

knowledge is present in public for a possible revision.  Sfard (2000) also argued that 

mathematical objects (theorems, proofs, examples, etc.) become accessible to the 

mathematical community by means of communication, which might be publication or a 

speech at a conference. Yet, the dialectical feature of mathematical knowledge is what 

determines the objectivity of the knowledge. This warranting process is based on the 

previous knowledge structure in the community and “dialectical, socially situated 

interpersonal ‘conversations’” (Ernest, 1998, p. 136). The relationship between the “past” 

and “present” knowledge structures in the mathematical community is in a cyclic 

revolution such that mathematicians join or participate in an already-existing 

mathematical discourse where they study mathematical objects created by previous 

mathematicians before them; thus in turn, they recreate the past mathematical knowledge 

and develop their own knowledge based on the existing structure. This cycle of 

development of mathematical knowledge helps not only to preserve the existing 

knowledge but also to expand it further. However, in order to be a part of mathematical 
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knowledge, the existing knowledge and the new knowledge emerging from it has to be 

negotiated and warranted within the mathematical community. 

Mathematical knowledge, by its nature, needs proof to persuade the mathematical 

community, so publications are necessary for the knowledge claims to be warranted. 

Once the mathematical knowledge claim is published, the owner of the claim has the 

opportunity to defend his or her claim against the mathematical community. This process 

is, either written form or orally or both, through “formal dialectical conversational 

exchanges” (Ernest, 1998, p. 148). The participants of the mathematical community, 

using their subjective (personal) mathematical knowledge, make the decision on the 

acceptance or rejection of the proposed claim to be warranted. From a constructivist 

view, the formal dialectical conversational exchanges are the “genesis and warranting of 

objective mathematical knowledge” (p. 149). 

However, Ernest (1998) also argued that the members of the community might 

suggest revisions in the proposal by providing a refutation, a counterexample, or a 

counterargument. After the modified proposal is submitted, depending on the structure of 

extension or modification, it is either accepted with minor or major revisions, or accepted 

with no revision, or fully rejected. These revisions might be the mathematical content of 

the proposal and might also be its sublanguage or examples. Ernest focused on the very 

dialectical conversational nature of the warranting process. He further argued that the 

objectivity of the mathematical knowledge relies on the dialectical process explained 

above and on the social acceptance of the knowledge. Valid mathematical knowledge is 

the knowledge that has survived in this dialectical process. I believe that it would be 

“false” to consider the objectivity discussed above as an “absolute objectivity” since the 
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acceptance of the mathematical knowledge involves the perspectives of the individuals in 

the community, who have subjective perspectives on any particular topic given. 

Moreover, Ernest pointed out that the positioning and relationships of mathematicians 

within the social institution of mathematics influence the acceptance of new 

mathematical knowledge since there might be personal interests or institutionalized 

effects on the decisions. Yet, to a large extent, decision-making depends on a logical 

argumentation structure in a conversational manner. 

In relation to the concept of conversation or “conversational,” even though there 

might be different definitions or interpretations for this concept, Ernest’s definition 

appears to be a comprehensive treatment of most, if not all, of the aspects of the concept. 

The intended meaning of conversation is as follows: 

A conversation is a sequence of linguistic utterances or texts in a common 

language (or languages) made by a number of speakers or authors, who take it in 

turn to “speak” (contribute) and who respond with further relevant contributions 

to the conversation (Ernest, 1998, p. 163, emphasis added). 

Thus conversation, as defined above, plays an important role in the construction of 

mathematical knowledge because the interlocutors involved in the act of conversation 

negotiate the explicated utterances through their perspectives. This negotiation is the 

result of the dialectical, persuasive reasoning and the social exchange aspects of the 

conversation (Ernest, 1998; Russell, 1983; Sfard, 2000). As Ernest (1998, p. 166) 

discussed, during conversation, genesis, acquisition, or justification of objective 

mathematical knowledge is in relation to the personal (subjective) characteristic of 

knowledge such that “without conversation and its feedback mechanisms, the individual 
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appropriation of collective knowledge cannot be conducted or validated. Likewise, the 

social construction and acceptance of objective mathematical knowledge cannot take 

place.” 

Cobb, Boufi, McClain, and Whitenack (1997) also argued that individuals 

actively construct their mathematical understandings as they participate in a collective 

discourse. Similarly, Krummheuer (2000) emphasized the importance of social 

interaction in the construction of mathematical knowledge and stated that participants of 

conversation (defined as above) make sense of mathematical objects created within the 

community by means of their individual interpretations. Ernest (1998) attributed to Mead 

(1964a, 1964b) that individuals take the conversation of the group into account and 

debate with themselves accordingly. Ernest further argued that “socially situated 

conversation between persons” plays an important role in the construction of the 

knowledge of individuals (p. 211). Thus, individuals make meaning through prolonged 

participation in many socially situated conversations in different contexts with different 

people. Personal meaning making is an individual act; therefore, individuals engage in 

thinking even after a long collective or public conversation. The individual private 

thinking is now free of collective public conversation, yet it is based on the previously 

socially situated conversation. 

The individual appreciation and the construction of the collective mathematical 

knowledge,
2
 and their mutual use are irrevocably interwoven because students are 

presented sets of the mathematical knowledge created previously, on the one hand, and 

yet they have to participate in the recreation of the mathematical knowledge to interiorize 

the collective knowledge (Ernest, 1998; Schwarz, Neuman, Gil, & Ilya, 2003). However, 
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Schwarz et al. (2003) also showed that individual students partly internalized the 

collectively constructed arguments. This study suggests that the “appropriation” from a 

socially constructed knowledge is constrained by (a) the individual’s own perspective on 

the topic and the individual’s interpretation of what has been discussed, (b) the social 

relationships between group members (i.e., peer effect), and (c) the counter-examples 

created in the argumentative activities (Yackel, 2002). Analyzing the roles of the teacher 

in collective argumentation, Yackel suggested that argumentation is crucial to students’ 

learning of mathematical concepts both as a collective and an individual act. The teacher 

plays an important role in initiating such an argument, supporting students’ arguments as 

they interact, and supplying supports (data, warrant, and backing) that are omitted or left 

implicit in arguments (Yackel, 2002). 

In addition to the local construction of mathematical knowledge, we should also 

analyze how different “locals” or people (e.g., school mathematics or academic 

mathematics) are related to each other. For example, school mathematics is part of, in 

fact a site of, academic mathematics, mathematics constructed by mathematicians, 

mostly, at universities. In other words, school mathematics uses the product of the 

academic mathematics. Consider a mathematical knowledge claim made by a 

mathematician. This knowledge passes through the processes I mentioned above to be 

accepted as an objective knowledge. That is, individual or subjective knowledge becomes 

public or objective knowledge. This new mathematical knowledge created in the 

academic domain of mathematics is selected and recontextualized in the domain of 

schooling by teachers. Then, newly constructed objective knowledge is internalized and 

personalized by individual students by means of conversation and interaction with others 
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(mostly teachers) (Ernest, 1998). However, the process is not finished yet, since the 

individual students will reproduce the knowledge in order to be certified as being in 

possession of that knowledge. At the end of the cycle, there is a possibility that an 

individual from the school context pursues an advanced mathematics degree and becomes 

a member of the academic mathematics community and thus contributes to the field of 

mathematics using the acquired knowledge. 

Implications of socially constructed individual knowledge 

One of the intents of schooling is to transfer the sets of mathematical knowledge 

to students through classroom activities and to teach students to communicate the 

knowledge back to the teacher. However, as students enter into formalized educational 

settings, they are presented, somewhat, specific institutionally sanctioned mathematical 

knowledge. Therefore, which mathematical knowledge is presented and how it is 

represented is determined by the social context (e.g., school, classroom). Ernest (1998) 

argued that the classroom (or school) discourse (discourse of teaching) dominates and 

controls the discourse of learning mathematics as well as students’ production of text. In 

the classroom, mathematical knowledge passes through a series of iterations of 

transformation as a result of student participation, as it does in the community of 

professional mathematicians—the iterative process of proofs and refutations (Borasi, 

1992). In other words, the certification of students’ personal knowledge of mathematics is 

analogous to the justification of objective knowledge in the domain of research 

mathematics. Yet, the teacher, as the authority of the knowledge in the classroom, mostly 

determines whether students’ construction of mathematical knowledge is “acceptable.” 

Learning of mathematics in schools is partly based on mathematical conversations 
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structured by teachers based on their own mathematical knowledge and on institutionally 

determined texts. 

The role of the teacher in such a context, from a social constructivist point of 

view, is to provide opportunities for students to discuss their alternative ideas to the 

problems, while individual responses may not be conventional but may be valid and 

indicative of students’ own thinking (Marshall, 2004; NCTM, 2000), so that the class as a 

whole community can determine which opinion(s) or solution(s) should be accepted. 

Yackel (2002) pointed out that the teacher’s understanding of mathematical concepts and 

of students’ mathematical perspective is important for the teacher to step into the 

classroom conversation to push the argumentation forward. She further suggested that by 

understanding “how students make sense of mathematical ideas” and “what [they] are 

and are not capable of making sense of,” teachers can better help students build 

mathematical knowledge on their own (p. 439). 

On the other hand, the study by Fried and Amit (2003) showed that traditional 

teachers sometimes emphasize the public aspect of the knowledge, which leaves the 

students with little room for their own exploration of mathematical ideas. They analyzed 

two teachers’ classrooms in terms of their use of notebooks in the classroom. They found 

that the teachers wanted “their students’ notebook to look like their own” (Fried & Amit, 

2003, p. 100). They argued that such an approach constrains students’ ability to reflect on 

mathematical concepts. Even though the authors did not mention it specifically, I argue 

that when students are not involved in the recreation of the mathematical knowledge, 

they have very little opportunity to internalize much, if any, of the knowledge presented 

by the teacher. As stated previously, the objective and subjective aspects of knowledge 
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by its nature are intertwined; therefore, individuals have to participate in the construction 

or reconstruction of the knowledge in order to appropriate the collectively constructed 

knowledge. 

Classroom discussion and the negotiation process play an important role in 

individual appropriation of collective knowledge. Such opportunities can be made 

possible by having students argue for their perspectives publicly so that they can engage 

in mathematical conversations as mathematicians do in warranting their mathematical 

knowledge. The individual’s knowledge of mathematics and that of others are blended in 

a deliberately structured mathematical conversation, which has a life as long as individual 

contribution and shared participation continues. Ernest (1998, p. 221) argued that for 

school mathematics, such “continual participation in dialogue … is necessary for the 

personal appropriation and internalization of mathematical knowledge,” which is a 

transition of “individual’s personal knowledge of mathematics to be regarded as an 

interiorization of collective knowledge.” 

Cobb, Yackel, and Wood (1993) stated that these social interactions in the 

classroom can create contradictions and conflicts in children, and, in the process of 

resolving these conflicts, students in turn reorganize their mathematical ways of knowing. 

The relationship between individual students’ learning and mutually constructed social 

norms is reflexive. They inform each other such that classroom social norms are the 

results of negotiation of individual perspectives (teacher’s own role, students’ roles, and 

the nature of mathematical activity), and in turn, the individual interpretations are 

constrained by the social norms collectively created by the individuals. This negotiation 

process is needed to communicate effectively; that is, individual interpretations of social 
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situations are compatible for the purposes. This compatibility refers to “taken-as-shared” 

meaning (p. 26). In sum, Layzer (1989, p. 129) argued that conventional methods of 

teaching do not provide “a meaningful context for what is being learned” and suggested 

that “[mathematics] should be learned and taught not as a collection of facts, formulas, 

and rules but as a living language, or, more precisely, a family of living languages.” 

Problem Solving in Mathematics 

As described in the preceding section, the nature of mathematics is simply 

problem solving, which is one of the major goals in mathematics education. There has 

been a great deal of interest in mathematics education on mathematical problem solving 

(Cai, Mamona-Downs, & Weber, 2005) since Polya (1945) first introduced his four-stage 

problem-solving heuristic, which has been the cornerstone of the heuristics thereafter 

(Artzt & Armour-Thomas, 1992; Garofalo & Lester, 1985; Mayer, 1992; Schoenfeld, 

1983, 1985). Polya’s heuristic has influenced a wide variety of mathematics 

communities. For example, the National Council of Teachers of Mathematics (NCTM) 

has placed problem solving at the center of school mathematics and its role in learning 

and doing mathematics. The NCTM (2000) stated that the effectiveness of school 

mathematics in work, school, and life “lies at the heart of problem solving” (NCTM, 

2000, p. 334). Through problem solving, students can create mathematical thinking skills 

that will serve for them in and out of school. Similarly, Hiebert and Wearne (2003) 

argued that problem solving leads to deep understanding. Through problem solving, 

students are engaged in organizing and reorganizing their knowledge of mathematical 

concepts, and therefore, developing and enhancing mathematical understanding. In order 
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to support such understanding, students should be challenged with well-chosen problems 

(Kahan & Wyberg, 2003; NCTM, 2000; Schoenfeld, 1985). 

Accordingly, Heibert and Wearne (2003) suggested that to promote students’ 

deep understanding we should pose problems that require them to struggle for solutions. 

They further argued that mathematics should be “problematic” enough for students “to 

wrestle with what is mathematically challenging” (p. 6). The scholars who plead for 

learning and teaching mathematics through problem solving claim that problem solving is 

the perfect tool for students to deepen their understanding of mathematics and 

mathematical thinking skills and that important mathematical ideas can be embedded in 

problem solving tasks (Goldenberg & Walter, 2003; Hiebert & Wearne, 2003; Levasseur 

& Cuoco, 2003). Kahan and Wyberg (2003), Rasmussen, Yackel, and King (2003), and 

others have stated that teaching and learning mathematics through problem solving gives 

both teachers and students opportunities to make sense of mathematical ideas by 

appreciating the individual and collective aspects of mathematics—that is, the 

conversational nature of mathematical knowledge (Ernest, 1998). 

Even though problem solving can be used for conceptual understanding of 

mathematical ideas, how this understanding occurs indeed depends on what the problem 

solver does while solving a problem. How does problem solving contribute to 

understanding? I think the answer to this question lies in the process of problem solving. 

So, what does the problem solver do during problem solving that leads to understanding 

of mathematical concepts? The following section scrutinizes the problem-solving process 

using different problem-solving heuristics. However, I will first discuss the major 
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problem-solving heuristics (or models or frameworks) that I found important for the 

development of the mathematics reasoning heuristic (MRH). 

Problem-solving heuristics and problem-solving process 

Polya’s problem-solving heuristic constitutes the basis of the other heuristics 

created thereafter; therefore, I will first briefly discuss his four-stage heuristic before 

discussing the others. The heuristic consists of understanding the problem, devising a 

plan, carrying out the plan, and looking back. As discussed by Polya, and later by many 

others, understanding is the heart of solving the problem, and indeed of all types of 

learning (Lester, 1982). One first needs to understand the problem in order to solve it. 

Understanding is closely related to one’s internal representation of the problem context 

(Greeno, 1977). Polya (1945, 1981) argued that to understand a problem, the problem 

solver must be aware of and correctly identify the data, the unknown, and the condition(s) 

of the problem.
3
 In other words, he or she constructs a representation of the patterns of 

the relationships within the problem context (Greeno, 1977; Lester, 1982). During the 

course of understanding, one tries to extract the information (data, unknown, relation 

between them, etc.) from the problem statements. This stage leads the person to the 

planning phase where he or she actually finds the relationship between the data and the 

unknown, constructs a model for the conditions of the problem, and devises a plan for the 

solution. The problem solver also searches for his or her knowledge structure in order to 

relate the given problem to a familiar problem, methods that have worked for similar 

problems, or any information (definitions and theorems) that can be used for the solution 

of the problem. Based on the method generated for the problem, the problem solver 

carries out the plan. The execution of the plan includes verifying that each step for the 
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solution (algorithm) is correct. Finally, Polya suggested the problem solver examine the 

solution regarding the accuracy of the result and relate the method used in the problem 

and the result obtained to other problems studied before (looking back and checking the 

results and arguments and making connections to other problems). 

This problem solving process has been explained by others to a certain degree by 

considering different cognitive and metacognitive processes involved during the solution. 

The definition of metacognition that all the following authors agreed on is drawn from 

Flavell (1976): 

Metacognition refers to one’s knowledge concerning one’s own cognitive 

processes and products or anything related to them, e.g., the learning-relevant 

properties of information or data. … Metacognition refers, among others, to the 

active monitoring and consequent regulation and orchestration of these processes 

in relation to the cognitive objects or data on which they bear, usually in the 

service of some concrete [problem solving] goal or objective. (p. 232). 

This definition is inclusive enough to explain the relationship between what is cognitive 

and what is metacognitive; that is, “cognition is involved in doing, whereas 

metacognition is involved in choosing and planning what to do and monitoring what is 

being done” (Garofalo & Lester, 1985, p. 164). 

The first problem-solving heuristic is Schoenfeld’s (1983, 1985), which was 

derived from Polya’s four-stage heuristic. Schoenfeld’s heuristic begins with analysis
4
 of 

the problem, where the problem solver “reads” and “examines” the problem statements 

and identifies what is given, what is being asked, and the conditions of the problem. 

During analysis a person gets the feel for the problem. That is, the problem solver decides 
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if there is enough information given to solve the problem or if there is a need for extra 

information not explicitly stated in the problem but that might help to meet the subgoals. 

For example, if one is trying to find the cost of carpeting a room, he or she first needs to 

figure out the area of the room (even though it is not stated in the problem text) as a 

subgoal in order to get to finding the price. As in Polya’s heuristic, the stages in 

Schoenfeld’s heuristic overlap (they are not really even separate at all). Design, even 

though it is given as a separate stage, is actually a part of analysis and indeed “pervades 

the entire solution process” (Schoenfeld, 1985, p. 108). During the design stage, the 

problem solver is engaged in the construction of global argumentation about the solution 

and in outlining the solution process. 

The bridge between the analysis and design stages is the exploration stage. The 

role of exploration is to provide feedback for the problem solver to examine the status of 

the solution to determine whether the subgoals are met, there is a more accessible 

(solvable) related problem, or there is a need for new information or reorganization of the 

givens and the conditions of the problem. Exploration helps the problem solver recast the 

problem based on what is needed for the solution. For example, one might feel that he or 

she does not understand the problem, then he or she goes back to analysis and, say, 

reexamines the given and the conditions of the problem; or, one might believe that he or 

she has made a progress, then he or she returns to design to restructure the plan of the 

solution. 

After this cyclic process, the problem solver carries out the plan step by step by 

verifying the steps. Schoenfeld (1985, p. 111, original emphasis) said, “Implementation… 

should (usually) be the last step in the actual problem solving.” On the other hand, the 
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verification stage is crucial because one can approach the problem differently or discover 

connections to other problems as a result of this looking-back process with a wider 

perspective and find mistakes or insights within specific areas at a local level. 

Knowledge categories for problem solving 

Besides the heuristic knowledge (strategies and techniques that help individuals to 

progress on unfamiliar or nonstandard problems), Schoenfeld (1985) also identified three 

different categories of knowledge and behavior that he thinks are crucial for 

understanding the human problem-solving behavior. These levels include (a) resources 

(knowledge that can be used by individuals to bear on a specific problem), (b) control 

(knowledge that guides the person’s resource and heuristic knowledge), and (c) belief 

systems (the person’s views about self, the environment, the topic, and mathematics that 

determine one’s behavior). These levels are in fact related to one’s solution attempts 

described above. 

Schoenfeld argued that the problem solver searches for his or her repertoire of 

facts, procedures, and skills that help him or her attempt to solve the problem. These 

resources, depending on the degree to which the person knows or how certain about that 

knowledge he or she is, guide the problem solver throughout the solution. However, how 

and when the resources are used is related to one’s decision making, which requires 

metacognitive skills (control). In other words, as Schoenfeld emphasized, resources 

(facts, procedures, and skills) and control (making plans, selecting subgoals, monitoring 

process of solution, etc.) are inherently interwoven. The key ingredient of effective 

control “lies in [the periodic] monitoring the state of a solution as it evolves and taking 

appropriate action in the light of new information” (p. 134). As this suggests, problem 
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solving is deeply metacognitive, for the problem solver is engaged in constructing logical 

argument about the solution of the problem, and he or she has to consider the cognitive 

actions progressing within the solution. 

Another problem-solving framework that I will discuss was proposed by Garofalo 

and Lester (1985). Garofalo and Lester approached problem solving from a cognitive and 

metacognitive perspective. They argued that metacognitive knowledge (knowledge about 

one’s cognition) plays an important role in problem solving and mathematical 

performance. By drawing on various literatures on metacognition, they expressed that 

successful mathematical performance depends not only on content knowledge but also on 

consciousness, regulation, and control of that knowledge. Their “cognitive-metacognitive 

framework,” based on the work of Polya (1945), Schoenfeld (1983, 1984), Sternberg 

(1980, 1982), and, to some degree, Luria (1973), consists of four categories: orientation 

(one’s assessing and understanding of a problem); organization (planning goals and 

subgoals and choice of actions); execution (monitoring and regulating behavior to carry 

out plans); and verification (evaluation of actions made in prior stages). 

Garofalo and Lester’s strong emphasis on metacognition pervades the four 

categories. They argued that the actions taken during these stages are connected to and 

pass through metacognitive components. Therefore, at each stage the problem solver 

evaluates the decisions made and the actions executed previously. The four stages are 

strongly related to Polya’s four phases but are explicitly connected to metacognitive 

behaviors. Schoenfeld’s categories, except for exploration, are also incorporated: reading 

and analysis taken together as orientation, planning as organization, implementation as 

execution, and verification as verification. Garofalo and Lester called for further research 
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to scrutinize the relationship between cognitive and metacognitive behaviors and their 

impact on problem solving. 

This call was addressed by Artzt and Armour-Thomas (1992), who approached 

problem solving from a cognitive-metacognitive perspective. The Artzt and Armour-

Thomas model was based on the work of Garofalo and Lester (1985), Polya (1945), and 

Schoenfeld (1983) with respect to problem solving, and on the work of Brown (1978), 

Flavell (1981), and Jacobs and Paris (1987) about metacognition. Unlike previous 

problem-solving models, the Artzt and Armour-Thomas model classified the problem-

solving episodes observed in the small-group setting according to the type and level of 

processes used by the problem solver. The framework consists of the following sequence 

of episodes: read, understand, analyze, explore, plan, implement, verify, and watch and 

listen. 

 

Figure 3. The Artzt and Armour-Thomas cognitive-metacognitive model. 
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Acknowledging that problem-solving behaviors can be cognitive or metacognitive 

depending on the purpose, they proposed reading as cognitive, understanding, analyzing, 

and planning as metacognitive, and exploring, implementing, and verifying as cognitive 

and metacognitive (see Figure 3). The figure illustrates that the problem solver makes 

various movements among episodes during solving a problem. 

One of the significant findings of the work of Artzt and Armour-Thomas is that 

their model delineated the role of metacognitive processes in successful problem solving. 

They argued that the most successful problem solving groups had the highest percentages 

of metacognitive behaviors. This speaks to the argument that monitoring and regulating 

cognitive actions lie at the heart of problem solving (Garofalo & Lester, 1985; 

Schoenfeld, 1985). Another key contribution of the Artzt and Armour-Thomas work, 

supporting Schoenfeld’s findings, is that students show changing problem-solving 

patterns by returning several times to different problem-solving episodes as needed. 

Furthermore, studying problem solving from a metacognitive perspective using Garofalo 

and Lester’s framework, Stillman and Galbraith (1998) also found similar results: 

students used graphs and diagrams or some sort of pictorial aids during the representation 

of the problem in order to organize the data given and clarify the relationships between 

pieces of information in the problem text. They also argued that few students were aware 

of such metacognitive behaviors. 

Process of problem solving 

Each of the models explained above and many other problem-solving heuristics 

seek to explain the process of problem solving from different perspectives. In light of the 

frameworks that I have discussed here and by using Mayer’s (1992) analysis of 
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mathematical problem solving, I will now discuss the process of problem solving, the 

types of knowledge needed, and cognitive and metacognitive behaviors used during this 

process. 

The most common characteristic of the frameworks discussed above is the 

importance of understanding in order to solve a problem. As Greeno (1977, p.44) stated, 

“understanding is the act of constructing … a pattern of relations among concepts … 

[and]… its internal representation.” Similarly, Mayer (1992) argued that the first step to 

solving a problem is “converting the words (and pictures) of the problem into an internal 

mental representation” (p. 459). This problem representation includes translation of the 

problem statements (sentences, phrases, pictures, etc.) into an internal mental 

representation that shows one’s understanding of the meaning of the sentences (Greeno, 

1977). Moreover, Greeno (1977), Hayes and Simon (1977), and Mayer (1992) argued 

that the translation is a cognitive process through one’s linguistic and semantic 

knowledge structure. Translation and representation, the key ingredients of 

understanding, lie at the heart of constructing the pattern of relationships among the 

concepts in the problem context. 

Greeno specified three criteria for developing good understanding: 1. achievement 

of a coherent representation; 2. subtle correspondence between the internal 

representation and the object to be understood; 3. connectedness of the representation to 

general concepts and procedures in the person’s knowledge structure. In other words, the 

problem solver generates a cognitive network and new relationships among the elements 

of the problem—coherence—and eventually creates a solution pattern that satisfies the 

conditions of the problem in a relatively direct way—correspondence—in which the 
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problem solver connects and adds the newly generated knowledge to his or her existing 

knowledge structure (e.g., schematic knowledge, problem space) in order to apply it to 

new problem situations—connectedness. Such understanding relies on one’s background 

knowledge of language, the concepts in the problem, and the schema. 

Furthermore, Goldin (1987, p. 61), Greeno (1977), Janvier (1987), and Mayer 

(1992) discussed that one’s linguistic knowledge plays an important role in understanding 

the problem because problem solvers “interpret the grammar of sentences and associate 

words and phrases with other words and phrases.” This interpretation allows individuals 

to comprehend the relationships in the problem text that connect the words in a 

meaningful way in which their representation closely corresponds to the object that is 

understood. In this case, not only is the natural linguistic knowledge of importance but 

mathematical language is also crucial to create a representation of the problem situation. 

For example, to solve a problem about the amount of carpet used for a rectangular room 

one should know the meaning of “carpeting” as well as of “area,” what they refer to and 

how they are used in everyday and mathematical language. Mayer also argued that the 

problem solver needs to have semantic knowledge (facts and resources about the world, 

such as 1 meter equals 100 centimeters) and schematic knowledge (knowledge of 

problem types) for the representation of the problem. These knowledge structures 

include, for example, understanding relational statements (which express a numerical 

relation between two variables), metric systems or geometric shapes, and the fact that 

area problems for rectangular shapes are based on the formula area=length x width. As 

the problem solver reads the problem and engages in the representation of the 

relationships in the context, he or she activates various knowledge structures relevant to 
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the problem as needed (Pape & Wang, 2003). However, constructing this representation 

is related to the linguistic forms of the problem and the problem solvers’ existing 

schematic knowledge structures (Cummins, Kintsch, Reusser, & Weimer, 1988, in 

Mayer, 1992). 

Mayer (1992) argued that schematic knowledge helps to distinguish relevant from 

irrelevant information and to activate necessary knowledge. During problem 

representation, the problem solver puts all the information together into a coherent 

structure. If students do not have appropriate schematic knowledge, they struggle to 

represent the problem. As Greeno (1977), Hayes and Simon (1977), and Schoenfeld 

(1985) expressed, one has to decode the problem text using linguistic, semantic, and 

schematic knowledge structures and “reconstruct” the relationships using the same 

knowledge networks. This representation is a process of translating the problem text to a 

set of problem solving operators using the knowledge structures mentioned above. Once 

a representation is established, the amount of searching for information is reduced 

(Lester, 1982; Stillman & Galbraith, 1998); thus, the problem solver focuses on the 

solution of the problem. 

In the frameworks described in the preceding paragraphs, the entire problem 

representation was broken into two or three subprocesses (e.g., reading, understanding, 

planning). As discussed by several authors (e.g., Artzt & Armour-Thomas, 1992; 

Garofalo & Lester, 1985; Mayer, 1992), metacognitive knowledge plays an important 

role not only in constructing such a representation but also in the problem solution phase 

of the process. Problem solution (e.g., implementation and verification) involves the 
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“planning and monitoring” and “execution” subprocesses intertwined with each other 

(Mayer, 1992). 

Since problem solvers move between different problem-solving episodes (Artzt & 

Thomas-Armour, 1992; Artzt & Yaloz-Femia, 1999; Garofalo & Lester, 1985), planning 

is already a part of problem representation. During planning, the problem solver outlines 

appropriate and necessary problem solving operators using his or her strategic 

knowledge. For example, for solving a linear equation, a problem solver might devise a 

plan such as rearranging the equation so that the unknowns are on one side and the 

numbers on the other. Mayer (1992) argued that this strategy might depend on the nature 

of the problem and the characteristics of the problem solver, and different strategies may 

lead the problem solver to different problem solution patterns. For instance, consider the 

following equation, 9 (x + 40) = 5 (x + 40) (Mayer, 1992, p. 475). Besides a typical 

strategy for solving this algebraic equation such as isolation, one might think, “when 

would multiplying the same number by 9 and 5 be equal? The answer is when it is zero; 

thus, x + 40 must equal to zero. Therefore, x is –40.” 

This solution pattern, for example, is related to the problem solver’s schematic 

and semantic knowledge. He or she may have known that the equation cannot be 

simplified by dividing both sides by x + 40 because x + 40 may be zero, which conflicts 

with “division by zero.” As pointed out by many scholars, problems solvers must know 

how and when to apply these strategies. This metacognitive characteristic of problem 

solving indeed pervades the entire solution process. The problem solver plans, monitors, 

and controls the problem solution by reflecting on the algorithms, and the regulation of 

the problem solution allows the problem solver to constantly check the conditions of the 



 54 

problem. Accordingly, Mayer (1998) argued that metacognition helps the problem solver 

cope with and orchestrate the cognitive and motivational components of problem solving. 

Throughout the course of the problem-solving endeavor the solver often sets and 

implements subgoals until he or she gets to the main goal by monitoring the process. 

Problem 

Text 

Problem 

Representation 

Problem 

Solution 

Expert Problem Solver 

Novice Problem Solver 
 

Figure 4. Difference between expert and novice problem solvers 

 

However, the problem-solving process reveals differentiation between experts and 

novices in terms of cognitive and metacognitive behaviors (Artzt & Thomas-Armour, 

1992; Artzt & Yaloz-Femia, 1999; Mayer, 1998). For example, expert problem solvers 

create a well-structured internal representation of the problem given by means of their 

semantic, schematic, and strategic knowledge networks. They spend more time on a 

representation that allows them to understand the relationship among the concepts in the 

problem and to set subgoals to achieve the main goals (Lester, Garofalo, & Kroll, 1989; 

Schoenfeld, 1985; Sternberg, 1999). On the other hand, novices often directly begin to 

solve the problem without forming a representation that scaffolds their solution processes 

(Pape & Wang, 2003; Sternberg, 1999). As depicted in Figure 4, novice problem solvers 

bypass the problem representation phase or spend less time on constructing mental 

representation of the problem. Pape and Wang further argued that the missing problem-

solving behavior of novices is that they do not record or transform their reading for an 
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image; rather, they repeatedly read and carry out the computations without referring to 

the text of the problem. Furthermore, Sternberg stated that students often do not monitor 

their problem solving process and evaluate whether their answers even make sense and 

that this leads to mistakes. Moreover, another difference between expert and novice 

problem solvers is that experts transfer what they learn from one problem to another 

problem situation in order to form a schema or expand their schemas (Steele & 

Johanning, 2004); whereas, novices see the problem solution as separate and isolated 

from other problem types and even similar problems.  

Algebraic Problem Solving 

Rationale for focus on algebra to study the MRH. Algebraic thinking is crucial for 

developing thorough mathematical habits of mind (NCTM, 1989, 2000). Algebra has 

been the stumbling-block for many high school students, who have difficulty in making 

the transition from arithmetic to algebra (Brenner et al., 1997) due to the lack of expertise 

in problem representation, which involves understanding word problems. Research in 

high school mathematics has been limited to problem-solving tasks prepared by 

researchers (Nesher, Hershkovitz, & Novotna, 2003); few studies have looked at 

students’ performances on state-mandated standardized tests, such as Iowa Test of Basic 

Skills. Nesher et al. stated that teachers often fail to pass on their expert knowledge in 

solving algebra word problems to students because they focus on teaching skills for 

applying pre-established problem-solving methods rather than asking students to develop 

their own. 

The nature of problem solving described above does by no means differ among 

different branches of mathematics, such as algebra. In other words, the problem-solving 
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process given above was not characterized by considering a specific domain in 

mathematics. This general process can, however, be applied to a particular branch, by 

still keeping the very nature of problem solving. The deduction helps researchers and 

teachers understand the applications of the general in the particular, and, in turn, helps 

them make generalizations about problem solving and, on the whole, about learning 

mathematics. Realizing the importance of algebraic thinking and reasoning to advanced 

mathematics and other academic courses, educators and researchers have agreed on the 

inclusion of algebra in early grades and called for studies experimenting in learning and 

teaching algebra in schools (Greenes & Findell, 1999; Steele & Johanning, 2004). 

Since algebra requires an abstract level of thinking, most students have difficulties 

connecting the studies of arithmetic that they learned during elementary and middle 

school to algebra (Nesher et al., 2003; Romberg, Carpenter, & Fennema, 1993). Brenner 

et al. (1997, p. 664) argued that “prealgebra courses focus mainly on symbol 

manipulation skills, such as how to solve equations but do not emphasize the underlying 

problem representation skills, such as understanding what a word problem means.” Even 

though algebraic thinking is a part of every level of school mathematics, it has been 

considered by teachers as a separate and isolated school subject because of its language. 

Swafford and Langrall (2000) defined algebraic thinking as “the ability to operate on an 

unknown quantity as if the quantity was known [emphasis added], in contrast to 

arithmetic reasoning which involves operations on known quantities” (p. 2). This 

unknown quantity is represented with symbols in different forms (e.g., x, y, f(x)=3x + 1), 

which creates an unfamiliar language system for novice students (Layzer, 1989; Nesher 

et al., 2003). 
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Greenes and Findell (1999) have proposed that the big ideas of algebraic thinking 

are deductive and inductive reasoning, representation, equality, variable, function, and 

proportion. These “concepts” are interrelated to each other and based on arithmetical 

relationships. For example, inductive and deductive reasoning are related to recognizing 

number patterns and forming the relationship among those cases using symbols. It is 

important for developing algebraic thinking to be able to move between these concepts.  

For example, to determine the function between two sets of numbers in a word 

problem, a learner must simultaneously use his or her understanding of the concept of 

representation, variable, and function. Brenner et al. (1997) and Nesher et al. (2003) have 

supported the interrelated nature of these concepts, pointing out that symbol manipulation 

and problem representation (which involves translating the text of the problem into 

algebraic representation) are important for successful algebraic story problem solving. 

Students find story problems difficult at both the arithmetic and algebraic levels 

according to Koedinger and Nathan (2004). Referencing other studies they conducted, 

Koedinger and Nathan also stated that there is a common belief among mathematics 

teachers and educators that story problems are difficult for students. Koedinger and 

Nathan also argued that this difficulty is related to the phases of problem solving—that 

errors in the stages account for word problems difficulties. However, studying high 

school students, Koedinger and Nathan also investigated the symbolic, situation, and 

verbal facilitation hypotheses and found that symbolic problems can be more difficult for 

students than story problems and that students do not always use equations to solve story 

problems. They also found that students have difficulty in equation solving due to errors 

in the comprehension phase as well as in the solution process. Similarly, Brenner et al. 
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(1997) found that students have difficulty transitioning from arithmetic to algebra. This 

may be related to the contradiction between the language forms of the problem text and 

the cognitive map of the problem solver. 

To this end, Layzer (1989) suggested that prealgebra students have to learn the 

language of algebra (the syntax of arithmetic) like the syntax of English, and transform 

arithmetic statements. Mayer (1992) suggested that students have difficulty because the 

linguistic forms of the problem text do not match with their existing forms of concepts 

and language (Nesher et al., 2003). Therefore, this mismatch during the translation phase 

causes the problem solver to be unsuccessful in solving the problem. For example, 

consider the following statement Mayer (1992, p. 461) used: “There are 6 times as many 

students as professors at this university.” He said that one-third of the college students 

made mistakes in this problem by producing the relational statement “6S=P.” This 

mistake results from difficulty in comprehending relational statements; the representation 

of word problems is not quite a literal translation of the sentences in the problem. Thus, 

the problem solver has to consider the relationships among the objects of the problem. 

Kieran (1993) stated that representing such functional relations in words problems is 

often the struggle that middle-school students face. Creating a coherent representation of 

the statements is to some degree related to one’s knowledge of problem type—schemas. 

Mayer affirmed, “the failure to solve word problems may be caused by lack of 

appropriate schemas rather than poor arithmetic or logical skills” (p. 468). 

As stated above, expert problem solvers develop a schema or expand their 

existing schemas during problem solving. Steele and Johanning (2004) attributing to 

Marshall (1995), among others, suggested that schematic knowledge is important to 
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algebraic problem solving. A schema helps problem solvers create a web of related 

concepts around which they organize subsequent experiences. Moreover, a schema 

allows individuals to connect a particular experience (e.g., consistent pattern of numbers) 

to a more general cognitive structure. Steele and Johanning stated that mathematical 

problem solving and algebraic thinking can be connected to schemas via the notion of 

generalization. They argued that during problem solving schemas are activated and 

eventually generalized by their usage in a wider scale of related experiences. As Simon 

(2006) argued, learners assimilate their experiences into their existing knowledge 

structure by making logical connections among the concepts. This is the notion of 

problem solving that Greeno (1977) emphasized—connectedness. 

Writing-To-Learn 

Writing to learn has grown in importance in education and educational research 

since James Britton and his colleagues’ work on language in the 1960s and Janet Emig’s 

landmark article “Writing as a Mode of Learning.” With the writing across the 

curriculum movement in 1970’s, the emphasis on teaching and learning writing has 

shifted from a focus on mechanical aspects to an emphasis on using writing as a learning 

tool for construction of meaning. Britton and his colleagues proposed three functional 

types of (written) language: transactional, poetic, and expressive (Britton, 1970; Britton, 

Burgess, Martin, McLeod, & Rosen, 1975). According to Britton and his colleagues, we 

not only use language to say what we want to say (instrumental function— transactional 

writing) or to create beautiful objects (poetic writing) but we also use language to explore 

ideas and reflect on the meaning of our actions (self-reflection— expressive writing). 

Arguing that writing can be used as a learning tool across disciplines, Zinsser (1988, p. 
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56) emphasized the importance of using different types of writing in the classroom 

because the varying types of writing are all “equally valid and useful.” He suggested that 

the role of writing should not be underestimated, especially, when one is exploring what 

he or she means: “Meaning, in fact, doesn’t exist until a writer goes looking for it” 

(Zinsser, 1988, p. 57). 

Distinguished from other types of writing, expressive writing, which is related to 

what Vygotsky called “inner speech,” has been viewed as the root of understanding the 

process of writing and its function in learning (Bazerman et al., 2005). In expressive 

writing the intent is for the writer to explore his or her current ideas and feelings about a 

problem and reflect on them; in turn, exploration and reflection promotes one’s personal 

understanding (Miller, 1997).  

Similarly, Emig (1977, p. 122), who saw writing as “a unique mode of learning,” 

indicated that due to its demanding functional cognitive action, writing is a powerful 

source of thought. Immediate connections between what has been written (product) and 

what is still to be said (process) are made by means of lexical, syntactic, and rhetorical 

devices and create new meaning. Building on Vygotsky’s ideas about writing, learning, 

and inner speech, Emig proposed that writing is a tool for originating and constructing a 

unique verbal structure that is graphically recorded (symbolization of sound in written 

signs). In a similar vein, Galbraith (1999) defined writing as generating new ideas and 

new meanings via an ongoing dialogue between written product (text) and one’s 

thoughts. He argued the writers engage in ongoing negotiation of meaning in a dialectical 

disposition through self-dialogue. 
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In addition, one of the functions of writing is to augment understanding through 

the cognitive and metacognitive actions that writing demands. During writing one 

negotiates meaning, and in negotiation, one is constructing knowledge and augmenting 

learning (Powell & Lopez, 1989). As Zinsser (1988, p. 49) suggested, “Writing is a tool 

that enables people in every discipline to wrestle with facts and ideas.” One way writers 

create new meaning is through the interactive process between the writer’s written 

product and his or her own thoughts. Writing is not only a text production, a reflection of 

thought, but also a learning tool that provides the writer a “conversational partner” for a 

constant social interaction (Bereiter & Scardamalia, 1987; Galbraith & Torrance, 1999). 

During this process the writer reflects on his or her own meanings, which leads to new 

learning. Accordingly, Galbraith and Torrance argued that generating new ideas is a part 

of this writing process. From the point of view of cognitive theory, the writer engages in 

modifying existing knowledge while writing and this process helps the writer access the 

knowledge network (Pittard, 1999). The activation of the necessary knowledge structure 

is related to the connection between the individual’s knowledge and the topic. In this 

sense, Galbraith and Torrance argued, writers generate the content knowledge in the 

course of writing process. However, different writing models explain the writing process 

and the generation of ideas differently. The commonalities among three of these models 

are detailed in the next section, then each of the models are explored in detail in separate 

sections, focusing on how each of the models’ contribute to the assumptions of the MRH. 

Process of Writing and Writing Models 

Among the models that explain the writing process and its role in learning are the 

models of Hayes and Flower (1980), Bereiter and Scardamalia (1987), and Galbraith 
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(1999). The common view among these models is that writing is a discovery process of 

what to say in the course of action and a heuristic for learning; that is, writing facilitates 

learning (Alamargot & Chanquoy, 2001; Langer & Applebee, 1987). The models also 

agree that in the process (of writing) the writer produces the text due to a problem (e.g., 

writing assignment) that will be resolved through a series of activations of knowledge 

structures and interaction of rhetorical goals with the problem statements (Galbraith, 

1999). 

Another viewpoint that these models share is about the difference between expert 

and novice writers. The major difference between the two types of writers is that “experts 

develop an elaborate set of goals for their text and generate ideas to satisfy these goals, 

whereas novices simply retrieve ideas prompted spontaneously by the topic and translate 

them directly into text” (Galbraith, 1999, p. 139). In other words, writing processes are 

not the same for all writers. For example, inexperienced writers generally use knowledge-

telling processes as a means to reduce the cognitive load, while expert writers develop 

complex sets of writing strategies, which requires reconstruction and transformation of 

knowledge structure (Van der Hoeven, 1999). This difference between the two groups of 

writers is also related to the writers’ linguistic skills as inexperienced writers have 

difficulties generating new ideas due to this lack of linguistic knowledge (Bereiter & 

Scardamalia, 1987; Van der Hoeven, 1999). Studying differences in writing performance, 

Van der Hoeven found that even though inexperienced writers’ writing process could not 

be simply described as knowledge telling, there is a gradual transition from knowledge 

telling to knowledge transforming, with a continuous two-way interaction between 

developing knowledge and developing text. 



 63 

In the following section I will outline how these common aspects of the writing 

models inform the assumptions of the mathematics reasoning heuristic (MRH), the tool 

created by the author that will be the focus of this paper.  

As stated above, the three basic processes proposed by Hayes and Flower (1980) 

are, to some extent, common to all the writing models; that is, planning, translating plans 

into text, and revising. These three processes operate upon two kinds of information: (1) a 

representation of the task environment consisting of writing assignment and the text 

produced and (2) the knowledge stored in the long-term memory consisting of topic 

knowledge, linguistic knowledge, audience, and writing plan (Galbraith & Torrance, 

1999). Of course, the working progress of these knowledge structures and how they are 

processed depends on the writer’s experience in writing and the strength of the 

connections among those knowledge structures. These three processes (planning, 

translating, and revising) will be elaborated on within each of the other two models in the 

following sections.  

Model 1: Knowledge-Telling vs. Knowledge-Transforming 

Among the attempts to explain the complex process of writing, Bereiter and 

Scardamalia (1987) connected the writing activity to two distinguishable processes. First, 

the writing process can be “explainable within a ‘psychology of the natural,’” which 

takes the position that human language competence and skill is the product of social 

experience (p. 5). They called this way of writing “knowledge-telling.” The second way 

of explaining the writing process is through psychology of the problematic; that is, the 

person has to reprocess the knowledge learned through social interaction beyond normal 

linguistic abilities. Such a writing model is called “knowledge-transforming.” 



 64 

Knowledge-telling and knowledge-transforming will be detailed in sections after a 

discussion of their interrelationships.  

Bereiter and Scardamalia (1987), using Vygotsky’s idea of language efficacy in 

children, gave a temporal progress for children’s writing development: from conversation 

to knowledge-telling to knowledge-transforming. This progress is related to the 

experiences of the child in writing as well as his/her age. Bereiter and Scardamalia 

argued that the knowledge generated in each level of progress and how it is generated 

varies depending on the availability of information and the relevancy of the topic to the 

knowledge structure in the long-term memory. Therefore, it is legitimate to say that since 

novice writers have less experience in language activities, they have to pay more 

attention to the rules of language during writing, which reduces their knowledge 

generating process.  In contrast, expert writers do not have to struggle with basic 

language skills (e.g., correctly using grammatical rules); therefore, they develop specific 

writing strategies by reprocessing and transforming the knowledge available (Bereiter & 

Scardamalia, 1987; Van der Hoeven, 1999). 

Knowledge-telling model 

In the knowledge-telling model, the writing process starts with a writing 

assignment or a self-chosen writing task. Knowledge telling is a “think-say” process; that 

is, knowledge is activated and retrieved by the topic and discourse cues to be translated 

into text. In the knowledge-telling process, the writer tends to retrieve and write down all 

the information he or she possesses activated by the text already written. Bereiter and 

Scardamalia (1987, p. 22) expressed that from the perspective of the knowledge-telling 

model, the writer produces text so that someone else can understand:  
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Writing is a matter of conveying a selection of this knowledge [one already has] 

to someone else. It is absolutely about asking questions like, “Will my sentence 

make sense to others?” “Is it clear enough for someone who doesn’t know 

anything about the subject?”  

In another related approach to discussing writing to learn across disciplines, 

Zinsser (1988) generalized two kinds of writing: explanatory writing, which is similar to 

knowledge telling with the purpose of explanatory writing as informing people and “it 

has no deeper content that the writer will discover in the act of writing” (p. 56). The other 

type of writing, exploratory writing, enables writers to discover what they want to say. 

Similarly, Keys (1999) argued that in the knowledge-telling model, no generation of new 

knowledge takes place because the writer only uses already established connections 

between knowledge structures (topic knowledge, semantic knowledge, and discourse 

knowledge). 

The diagram in Figure 5 shows that the knowledge-telling process begins with the 

mental representation of the topic created from cues extracted from the writing 

assignment by means of the topic identifier and the genre identifier. For example, 

Bereiter and Scardamalia gave the example of an assignment to write an essay on 

“whether boys and girls should play in the same sports team” (p. 7). In this example, they 

suggested that amateur sports and sexual equality might be topic identifiers and the 

structure of the sentence might be a cue for a genre identifier, an opinion or argument 

essay. Therefore, the information retrieved by means of the identifiers is more likely used 

in the composition depending on the relevance to the topic and the structure of the 

composition. The writer, in this process, seeks cues in the long-term memory for the 
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appropriateness of the information with respect to the topic, genre, and the text already 

produced before he or she actually writes it down. 

 

 

Figure 5. Structure of the knowledge-telling model. Adapted from Bereiter and 

Scardamalia (1987, p.8) 
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As Bereiter and Scardamalia described, knowledge-transforming goes beyond 

knowledge-telling because of the cognitive and metacognitive demands that a writer 
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encounters during the process of writing. In the knowledge-transforming process, the 

writer takes into account rethinking and restating what he or she wants to say, which 

helps develop new knowledge. There is a cyclic process between the content problem 

space and rhetorical problem space that forces the writer to clarify what to say. This 

course of action leads to two distinct but inseparable processes—knowledge processing 

and text processing—and with these two processes together, the writer makes 

modifications in the text and in his or her knowledge/thoughts. The distinctive feature of 

the model is that knowledge transforming is a process of formulating and solving 

problems within the interaction between continuously developing text and knowledge. 

Furthermore, in the knowledge-transforming model, writers restructure their knowledge 

of the subject through translation of ideas mediated by active problem solving. The 

reformulated knowledge leads to a deeper understanding. 

This writing process is sketched in Figure 6. According to the model in the figure, 

the problem analysis of the writing assignment and composition planning take place in 

two kinds of problem spaces. The content problem space consists of knowledge states 

that can be characterized as opinions, moral decisions, inferences about matters of fact, 

causal explanations, and so on. It is the kind of space in which writers work out “what to 

say.” The other type of space is the rhetorical problem space in which writers deal with 

the problems of “how to say.” Writers create a mental representation of “what to say” 

from their content space, and once the mental representations are transferred into text, 

which is what is being said, the representations are converted back to the content space 

for clarification of “what do I mean?” (p. 303). Bereiter and Scardamalia argued that, for 

an expert writer, these two problem spaces operate together to feed into each other with 
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their products; that is, the experienced writer “…carries on a two-way process of 

information transfer, which results in the joint evolution of the composition and the 

writer’s understanding of what he or she is trying to say…” (p. 304). This two-way 

interactional process in the act of writing leads to growth in both knowledge and text. 

 

Figure 6. Structure of knowledge-transforming model. Adapted from Bereiter and 

Scardamalia (1987, p. 12) 

 

As can be seen, both the knowledge telling and knowledge transforming models 

describe cognitive actions during writing and not the text itself. Both models also share 

the common idea that writers are eventually obligated to make themselves understood. 
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knowledge-transforming model. They pointed out that “the crucial difference between 

knowledge telling and knowledge transforming lies in the problem-formulating and 

problem-solving activities associated with the latter” (p. 299). Specifically, as explained 

above, there is a reflective process in the knowledge-transforming model encompassing 

the two problem spaces. This process is a cyclic process in which the problem spaces 

provide each other with inputs and outputs, and the interaction between the content 

problem space and the rhetorical problem space creates a reflective process in 

composition. Moreover, van der Hoeven (1999) confirmed that the frequency of 

generating activities throughout the entire writing process shows differences in 

knowledge telling and knowledge transforming: There is a constant curve for the 

knowledge-telling strategy whereas there is a decreasing curve for the knowledge-

transforming strategy. Another alternative viewpoint for the cognitive actions during 

writing was acclaimed by Galbraith (1999), who perceives writing as a knowledge-

constituting process. 

Model 2: Writing as a Knowledge-Constituting Process 

As an alternative account of the writing process, Galbraith (1999) proposed a dual 

process model, one process (roughly) equivalent to the knowledge-transforming model of 

Bereiter and Scardamalia (1987) and with an additional component Galbraith refers to as 

the knowledge-constituting process that features successive generation of ideas produced 

in the act of writing. Galbraith suggested that the production of new ideas during writing 

occurs in these two distinct processes. Moreover, he argued that in the knowledge-

transforming process, writers evaluate and reorganize their existing ideas in episodic 

memory to satisfy the rhetorical goals. On the other hand, in the knowledge-constituting 
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process, writers produce a dispositional dialectic between their implicit disposition and 

the emerging text in order to capture and develop understanding. In other words, because 

writers have the disposition (or propensity), or habits of mind, to engage their own 

thoughts through writing, they create a conversation with themselves, an inner dialectic—

what Vygotsky has successfully communicated using the terms “inner speech” or, more 

explicitly, “inner dialogue.” 
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Figure 7. Simplified version of the knowledge-constituting model. 

 

In Figure 7, I provide a simplified version of the knowledge-constituting model, 

which should be considered my own understanding of the model proposed by Galbraith. 

In the simplified figure, which is an offspring of Galbraith’s original diagram in Figure 8, 

the writer activates his or her knowledge structure with the input coming from 
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topic/writing assignment. This activated knowledge structure essentially consists of 

connected knowledge units corresponding to individual ideas, which is used by the 

writer’s implicit disposition and linguistic network to produce a single statement. The 

roles of the disposition and linguistic network are both to form a message and to 

articulate the message in words. The newly generated utterance becomes a new input into 

the writer’s knowledge structure for evaluation by explicit planning and problem-solving 

processes, and further utterances can be produced as a result of successive cycles between 

the writer’s disposition and linguistic network for “the best fit” to what the writer wants 

to say about the topic (p. 146). Galbraith further articulated that this cyclic process is 

actually a dispositional dialectic, which “is essentially a consequence of the tension 

between the amount of potential content within the writer’s disposition and the amount 

which can be expressed in a single utterance” (pp. 148-149). 

However, the dispositional dialectic is not produced quite as simply as described 

above. The articulation of thoughts in a dispositional dialectic depends on and is 

constrained by many other factors such as input, content, and linguistic knowledge. First 

of all, as can be seen in Figure 8, the writer’s knowledge network consists of 

conceptually linked relationships, and the ideas are “synthesized by constraint 

satisfaction within this network, rather than being directly retrieved” (Galbraith, 1999, p. 

143). According to the diagram in Figure 8, the writer’s rhetorical goals, which include 

planning and problem solving, activate the knowledge network in regards to the topic. 

Activation of the units within the network depends on the strength of the connections 

among the units and the relevance of the ideas to the topic. In other words, not all ideas 
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are activated during this process: only ideas with strong connections to the topic and to 

the previously activated ideas are activated. 

 

Figure 8. An illustration of the main features of the knowledge-constituting model. 

Adapted from Galbraith (1999, p. 144). 
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writer’s disposition and linguistic network such that a single utterance is a partial 

statement created by the linguistic network as a consequence of the message formulated 

within the writer’s disposition. Ideas with weak connections in the message are “lost out” 

during this conflict resolution. 

The newly generated utterance is added to the writer’s disposition for evaluation 

by planning and problem-solving processes. Even though further utterances can be 

produced as a result of this input to the knowledge network by simply retrieving or 

reorganizing existing ideas (as in knowledge telling or knowledge transforming), 

Galbraith argued that one of the main features of the model is that not until the message 

is transferred to a single utterance from the disposition to linguistic network does 

feedback occur. Consequently, this input becomes a part of the knowledge structure in 

the writer’s disposition, which influences the whole disposition itself. Therefore, the 

dynamic within the network will change; that is, the pattern of activation produced by 

constraint satisfaction leads to the production of a new idea. As Galbraith stated, “[this 

activation] enables the network to produce different ideas on successive cycles [emphasis 

added] without requiring a change in the input from TOPIC AND TASK SPECS” (p. 

147, original emphasis). 

Galbraith further argued that through these successive cycles not only is a 

particular utterance that represents the dominant knowledge units in the network 

produced due to constraint satisfaction but also this feedback has the potential for the 

writer’s disposition to activate the previously suppressed content. As Galbraith (1999, p. 

147) suggested, “Overall, then, the disposition’s response to its input will be constituted 

over a series of cycles, and will be represented by the set of interdependent utterances as 
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a whole, rather than by one particular utterance.” Feedback also impacts the overall 

synthesis of an idea, which takes place between the writer’s disposition, where the 

formation of the message occurs, and the linguistic network, where the articulation of the 

message in words is created. Moreover, the cyclic process also occurs within the 

disposition and the linguistic network as well as between them. The cycle within the 

disposition works for creating single or multiple stable messages, and the cycle within the 

linguistic network produces stable utterance(s) for those messages. During this dual 

process, the “lost out” ideas may be reactivated, which may produce conflicting ideas 

about the topic because of previously suppressed messages. In sum, the whole sequence 

of the composition is a result of dispositional dialectic between the writer’s disposition 

and the produced text. 

Conditions for the dispositional dialectic 

As explained in the preceding paragraphs, according to the knowledge-

constituting model, content can be generated through a retrieval process from episodic 

memory or it can be produced as a result of continuous dialogical interaction between the 

writer’s implicit disposition and the previously generated text. However, the generation 

of content depends on some conditions relative to the length of the dispositional dialectic. 

Galbraith analyzed these conditions in two groups of factors: factors related to 

differences in writers’ knowledge and factors related to writers’ strategy for translation. 

In terms of the knowledge-constituting model, the dispositional dialectic is 

closely related to the relationship between the potential content knowledge within the 

writer’s disposition and the amount that can be transferred into a single utterance. This 

relationship can be affected by three factors: the complexity of the writer’s disposition, 
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the range of units activated within the writer’s disposition, and linguistic knowledge. 

Writers who have more a complex dispositional structure produce more cycles before 

they actually activate the units within the disposition. In addition, the strength of the 

connections between individual units also has a role on the extent of the dispositional 

dialectic. This varies though within individuals when they face different topics. Topics 

that activate weaker connections will result in shorter dialectic. Galbraith argued that 

since the dispositional dialectic occurs between the writer’s disposition and linguistic 

network, the writer’s linguistic skills are also of importance in order to express the 

message of the disposition in a single utterance. Linguistic competence may result in 

producing more content in a single utterance, therefore leading to a longer dialectic. 

Galbraith suggested that the second factor that influences the length of the 

dispositional dialectic is the strategies that the writer uses for translation. These strategies 

are in relation to activation of the units in the disposition, how to express the message in 

language, and the writer’s goals. The writer may engage in different planning stages 

before the act of writing, and depending on the planning activity, the range of the units 

activated within the writer’s disposition, which is related to the strength of the 

connections between the units, may cause a longer dispositional dialectic. The writer may 

also directly translate the knowledge into text retrieved from episodic memory. 

Furthermore, how the content is expressed in language is important. The type of writing 

(prose or note) either elicits a longer dispositional dialectic because of the cycles 

produced for generation of a single utterance or reduces the activation of new ideas 

because of the labeled phrases. Finally, Galbraith argued that if the successive utterances 

are directed to the writer’s rhetorical goals, this interrupts the dialectic; on the other hand, 
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if the utterances are sent into the dispositional goals, they get feedback from the 

preceding utterances based on the dispositional goals and, hence, produce a longer 

dialectic. 

In short, Galbraith offers the following: 

[T]he knowledge-constituting model enables us to describe different kinds of 

translation in terms of the extent to which they involve the dispositional dialectic, 

and to specify that the conditions under which the dispositional dialectic will be at 

a maximum correspond to the synthetically planned, dispositionally-driven 

articulation of thought in continuous prose (p. 150). 

To summarize the importance of the knowledge-constituting model in the 

generation of new ideas and text production, the dispositional dialectic enables the writer 

to negotiate his or her own meaning through the successive feedback from the preceding 

utterances to the writer’s disposition. This process is two-fold. First, the preceding ideas 

produce successive ideas in relation to one another; this pushes the writer to go beyond 

his existing knowledge. Second, the ideas produced in the disposition and translated into 

text become the sources of new knowledge generation in the writer’s disposition. The 

knowledge-constituting model claims that knowledge production is a consequence of the 

dispositional dialectic that occurs between the writer’s disposition and the linguistic 

network by means of simultaneous activation of the units with the strongest connections 

to the topic without pre-planning and without rhetorical evaluation. 

Writing as a Learning Tool 

The concept of writing as a powerful tool for learning is now widely accepted. 

Writing has been considered a powerful learning tool not only because it provides writers 
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with instant feedback about his or her thoughts but also because it helps writers negotiate 

their own meaning in a dialogue: dialogue between the writer’s disposition and the 

emerging text (Galbraith, 1999). Galbraith argued that this dispositional dialectic is a 

knowledge constituting process through cognitive and metacognitive actions such as 

planning, monitoring, reviewing, and revising. 

 Many scholars (Galbraith, 1999; Hand & Prain, 1996; Powell & Lopez, 1989; 

Pugalee, 2004) assert that writing is a tool not only for extracting what one knows about a 

subject but also for generating new ideas in the course of negotiation of meaning and, 

therefore, for augmenting learning. This generation of new ideas is, though, connected to 

the activation of knowledge structure by the topic. In this sense, writing is closely and 

mutually related to the structure of the knowledge network. That is, since knowledge is 

conceptually stored within a web of meanings (Simon, 1995), the quality and length of 

writing is related to this knowledge network structure. In turn, writing, as a thinking 

device, helps the writers organize their thoughts, activate relevant knowledge networks, 

and enhance/expand their knowledge network by reorganizing the connections between 

units of information in the network. Moreover, during writing the writer must engage in a 

“deliberate structuring of the web of meaning” (Vygotsky, 1986, p. 182). The relationship 

between writing and knowledge generation is mutual because emerging text eventually 

becomes a part of the knowledge network. Emig (1977) reinforced the connective nature 

of writing by arguing that the process of writing inherently gives the writer the 

opportunity to integrate the information in the prose passage into his/her own knowledge 

structure. 
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As stated in the preceding paragraphs, writing has multiple roles in the 

construction and communication of knowledge, ideas, or thoughts. First of all, the writer 

is in a constant conversation with himself or herself during the very act of writing as if 

talking to an “imaginary reader.” Of course, depending on the type of writing (summary, 

reflection, journal, or diary) and the audience (self, peers, parents, or teacher), the flow of 

the conversation on the paper takes its own shape. However, since the audience is not 

present at the time of writing, writers have to create the situation and represent it to 

themselves. Ernest (1998, p. 163) suggested while not an immediate conversation, 

“writing is much more than symbolized speech and has a life and history of its own.” 

Furthermore, Vygotsky (1986, p. 183) argued that writing adds awareness to speech and 

augments the “intellectuality of the child’s actions.” This growth of one’s intellectuality 

(e.g., knowledge) is related to active participation in the process of finding what to say 

and how to say it (Ernest, 1998). In writing, this process is the conversation (dialogical 

interaction) between the writer and the imaginary reader (Ernest, 1998), question and 

answer (Vygotsky, 1986), the disposition and the emerging text (Galbraith, 1999). 

Summary 

I reiterate that writing is not simply a display of what one has learned. As pointed 

out by many scholars (Emig, 1977; Keys, 1999; Stehney, 1990), writing is itself a unique 

mode of learning. Writing helps the writer crystallize and develop his or her own concept 

web (knowledge network structure) of the subject matter by reflecting on one’s own 

thought process. As the proponents of writing to learn have argued, the writer is actively 

engaged in thinking during the very act of writing. As one writes, he or she generates 

successive ideas emerging from the preceding written ideas. Simply, one utterance 
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triggers an idea that sparks another “brilliant” or “controversial” idea. This process 

continues through the writing activity. Not surprisingly, the “live” interaction between 

one’s thinking and the emerging text leads the person to the very heart of the negotiation 

of ideas, which in turn causes changes/improvements in the person’s knowledge 

structure. As Zinsser (1988, p. 166) stated, after his observation of Countryman’s 

calculus classroom during a writing activity, “writing and thinking and learning had 

merged into one process.” 

Implications of writing-as-a-learning tool 

We need to understand that learning is not a separated/isolated act from the 

context, nor is it a communal act. Two facets of this concept require consideration. First, 

learning is an individual act of creating a web of knowledge structure. But, this does not 

mean that social interaction has nothing to do with learning. Rather, the second facet of 

learning for the individual person is in the interaction with his or her environment 

(including people on the one extreme side, and the chair that he or she sits on to the other 

side). Taking this view into account, providing such an environment for students where 

they can experience learning by being active in the process should be, and is, a crucial 

part of the education system. Barnes (1992) explored different aspects of learning in the 

school classroom and argued that students should take part in the formulation of 

knowledge. Of course, students’ contributions in the production/creation of knowledge 

are made possible by, as the proponents of the constructivist view claim, valuing the 

ideas students have formed outside of the school and bring into the classroom. 

In a broader sense, language (any form of language—oral, written, pictorial, etc.) 

is the only tool that humankind has for “representing or symbolizing [their] experience of 
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the world” (Britton, 1970, p. 135) and for communicating with others—to make 

“someone else understand something or pass on some piece of information”—and with 

themselves—“to help organize [and reflect on] their thoughts” (Pimm, 1987, pp. 23-24; 

Norris & Phillips, 2003). However, there are usually two modes of communication used 

in the classroom, spoken and written (Ernest, 1998; Pimm, 1987); and Barnes (1992) and 

Pimm (1987) argued that talking and writing (as two forms of language) are both used as 

communication tools and learning tools. Similarly, the advocates of writing to learn have 

argued that talking and writing are jointly beneficial for students’ learning because they 

both provide a powerful mirror to reflect on their thoughts. 

In order for talking and writing and their connection to learning to make sense to 

students, the instruction should be oriented away from traditional didactic approaches 

(Countryman, 1992). As pointed out above, constructivist learning theories (specifically 

social constructivism) view learning as an individual construction of meaning as a 

consequence of the social interactions of the learner. Therefore, from this point of view, 

students should be given opportunities where they can be exposed to different 

perspectives from their peers and they can individually work on the ideas discussed in the 

classroom. Writing becomes crucial to creating such an environment where the individual 

students can reorganize their formerly created ideas with the ideas that have emerged 

from the classroom discussion. 

In summary, writing alone is not fully useful unless it is supported with a talk, 

conversation, or discussion in the classroom. Taking the views of Gee (1999) and Pimm 

(1987) on language, talking and writing are considered the two critical elements for 

generation of thoughts because when students have the opportunity to discuss their ideas 
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before a writing activity, they negotiate their own meaning publicly and they then 

renegotiate meaning during individual writing. As Galbraith (1999) argued, the act of 

writing provides writers a unique structure in which they can engage in the dispositional 

dialectic. Overall, discussion before writing scaffolds this dialectic. 

Writing to Learn in Mathematics Education 

Our changing world needs many more mathematically literate individuals. 

Mathematical literacy can be defined, parallel to reading and writing literacy, as not only 

being able to understand the fundamental notions of mathematics, develop sophisticated 

mathematical models and evaluate someone else’s use of numbers and mathematical 

models but also being able to represent quantitative relations using algebraic reasoning 

and interpret and reflect on mathematical language patterns (Jablonka, 2003; NCTM, 

2000). Writing is one of the tools via which students can build mathematical literacy. 

Writing-to-learn has gained favor among mathematics educators for at least the 

last three decades. Starting with the writing across the curriculum movement, many 

mathematics educators have begun to use writing in their classrooms in a variety of ways, 

such as journaling, explaining a mathematical problem solution, or reflecting on the 

mathematics being studied (Cooley, 2002; Meier & Rishel, 1998; Morgan, 1998; Powell 

& Lopez, 1989). The Mathematics Association of America has included “writing to learn 

in mathematics” into MAA Notes and Reports series in college mathematics (Meier & 

Rishel, 1998). Other similar interest in writing in K-12 mathematics classrooms exists, 

but what lacks is the attention on the roles of writing in improving content knowledge 

and communicational skills given by the earlier advocates of “writing across the 

curriculum” (Connolly, 1989).  
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Accordingly, with the 2000 Principles and Standards for School Mathematics, the 

National Council of Teachers of Mathematics (NCTM) has focused attention on students’ 

conceptual understanding of mathematics suggesting students need to be actively 

involved in the learning process using their experiences and prior knowledge. This view 

has been supported with constructivist learning theories that essentially claim that the 

learner constructs his or her own understanding and meaning based on the interaction 

with his or her environment. Therefore, students are now considered active creators of 

mathematics rather than passive consumers (Morgan, 1998). Along with this view on 

learning, understanding of teaching has also been revised in mathematics classrooms. 

Teachers now need to provide students with a challenging and supportive classroom 

environment in which they can build new knowledge by engaging in exploration of 

mathematical ideas by themselves.  

This change in the views of learning and teaching has placed students in the 

center of learning occurring in the classroom by altering students’ roles and requiring 

them to be actively involved in talking and writing in mathematics classrooms 

(Countryman, 1992; Morgan, 1998). The NCTM mandated that students at all levels 

should be able to use mathematical ideas in a variety of situations. For this purpose, 

students must have the opportunity to discuss their ideas publicly, to reflect on their 

thoughts and problem solving processes, and to communicate their ideas using various 

modes of representation (graphical, pictorial, oral, written, etc.). Writing in mathematics 

was emphasized in The Principles and Standards for School Mathematics (NCTM, 2000, 

p. 61), which said, “Writing in mathematics can …help students consolidate their 

thinking…” because it requires an active involvement of learners such that they use 
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writing as a vehicle for learning and become the center of their own learning processes by 

engaging in reflection on mathematical experiences (Powell & Lopez, 1989). 

Advocates of “writing-to-learn” mathematics focus on the investigative feature of 

writing, claiming that writing helps students learn mathematical ideas by reflecting on 

problem solving processes, and they state that writing helps develop understanding of 

mathematical language (Kenyon, 1989; Morgan, 1998). Indeed, Birken (1989) stated that 

writing allows students to explore the structures of mathematical language via the natural 

language in which they are most comfortable of expressing their ideas. In the act of 

writing and talking, students are in a conversation with themselves as well as with their 

peers such that they negotiate their meanings of mathematical concepts. 

Given that language has a powerful role in the production of knowledge, writing, 

as a unique form of using language in generation of ideas, is a powerful tool for 

construction of mathematical knowledge and for discovery of mathematical ideas. 

Connolly (1989) stated that writing, as a learning tool in mathematics and science, is 

mostly used for developing students’ conceptual understanding by enhancing their use of 

the languages of mathematics and science fields. Recent studies on writing, especially in 

science, have, however, focused on characteristics of writing in the construction of ideas 

(Klein, 2004). Klein found that setting content goals, applying moderately sophisticated 

writing strategies, and extensive use of content sources were crucial for learning. He 

further suggested that the purpose and the audience of the writing activity should be 

discussed with students so that they know that writing is used for learning, not for 

improving their communicational skills or for testing their knowledge, per se. 
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Burton and Morgan (2000) mentioned that students at many levels have 

difficulties in writing, and they may indeed struggle to explain their mathematical ideas 

or problem solutions. Phrases such as “I know how to do it, but I don’t know how to 

explain it” are common for student’s talking and writing in mathematics classrooms. One 

of the reasons for difficulties may have been that students (and teachers as well) see 

problem solving (mathematics) and writing (in terms of explaining it) as two separate 

entities, which cause them not to connect writing to the stages of problem solving. Burton 

and Morgan focused on the “natural language”
5
 in which mathematical language is 

embedded. They argued that natural language is used in the construction of mathematical 

ideas. Since natural language is established on the social needs within the culture and is 

an expressive tool with which we reflect on our experience and thinking, learners (of 

mathematics) attach the mathematical objects to their natural language (Bereiter & 

Scardamalia, 1987; Burton & Morgan, 2000; Connolly, 1989; Morgan, 1998). 

Furthermore, Connolly put it: 

our natural language, operating as the “metadiscourse” of all our other symbol 

systems, from math through money, from dance to drawing, enables us to distance 

ourselves from, for example, our own mathematical problem solving, and reflect 

on our procedure, thereby making knowledge of it (p. 9). 

However, writing mathematically (e.g., learning conventions of mathematical 

writing) needs practice in both natural and mathematical languages. Indeed, Ernest 

(1987) argued that the acquisition of competence in mathematical language (figural and 

symbolic linguistic forms) is crucial for the learning of mathematics. In order to enhance 

learning mathematics, Burton and Morgan (2000), Kenney (1992), Keys (1999), and 
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Morgan (1998) suggested that a writer’s knowledge about his or her natural language and 

about its nature fosters (empowers) his or her writing in the mathematical genre. In other 

words, (knowing of) the natural language serves for students’ learning of mathematical 

language and writing mathematically. As Birken (1989, p. 41) stated, “Writing allows 

students to explore the constructs of a foreign language (mathematics) using a language 

in which most are fluent.” In considering writing and mathematics as two discourses used 

to communicate through writing mathematically, students need knowledge and practice 

in both discourses not separately but rather jointly by embedding one in another. 

Furthermore, Ernest (1987), Morgan (1998), and Pimm (1987) argued that students need 

knowledge of the symbolization of mathematics and an understanding that 

mathematics—like written English has its own grammar (consisting of mathematical 

objects, symbols, and verbs)—both of which are conventions of mathematical objects. 

In relation to learning the conventions of mathematics, by drawing from different 

literature on writing and writing-in-mathematics, Burton and Morgan (2000, p. 431) 

suggested that students should have the opportunity “to practice in high-status forms of 

discourse.” They cited that knowledge of the characteristics of the forms of discourses 

(natural and mathematical languages in particular) is crucial to enhancing students’ 

learning mathematics through writing. Similarly, Adler (1999) suggested that students 

should “practice being users of educated discourses” (p. 51). Writing enables the writer to 

internalize “mathematical concepts and thus their appropriation into the learner’s own 

words and thought processes” (John-Steiner, 1989, p. 287). 

Implications of writing-to-learn in mathematics 
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Mathematics has long been considered a “concrete” set of pre-established 

knowledge consisting of facts, rules, numbers, and right or wrong answers all of its own 

(Borasi, 1992). Such a perception among students and teachers puts mathematics in a 

position where it is seen as an isolated course subject and there is no solid connection to 

other studies, for example, to social studies. This compartmentalized view is even true for 

the branches of mathematics: geometry is seen as a different area of mathematics from 

algebra, and students cannot make absolute connections between the branches. This 

perception is somewhat related to students and teachers’ understanding of the overall 

nature of mathematics. 

Borasi (1992) and Rose (1989) identified several traditional perceptions of 

mathematics that students have: mathematics is the discipline of certainty; the nature of 

mathematics is unclear; mathematics is as a body of knowledge consisting of its own 

symbols and right or wrong answers; and teachers have the authority of the mathematical 

knowledge in the classroom and teachers must transfer the set of concrete knowledge to 

students. Rose suggested that using writing in mathematics classrooms can create 

changes in students’ traditional beliefs about teaching and learning mathematics toward 

an attitude that reflects collective construction of mathematical knowledge through active 

experiencing of “doing mathematics.” As mentioned in the nature of mathematics 

section, because the uses of the “same” words (i.e., difference) in everyday language and 

in mathematics show differentiation, students often struggle to make the connection 

between everyday language and mathematical language. Writing helps students build 

their mathematical language on their everyday language, which they use to make 

meaning of their experiences. 
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Accordingly, Countryman (1992) used different writing-to-learn strategies in her 

mathematics classrooms with the belief that learning mathematics is doing mathematics. 

Indeed, doing mathematics is not simply executing an algorithm by just plugging 

numbers in right places in the formula. Rather, students must experience the mathematics 

they are studying by being actively involved in the construction of mathematical 

knowledge. In other words, students play in the sand to get the necessary ingredients to 

make a castle, rather than waiting for someone (e.g., teacher) to supply the materials for 

them. In this process, students fully engage in experiencing the work they are doing. 

This hands-on and minds-on experience gives students opportunities to explore 

what they know and do not know, to claim what is true and not true, to argue for and 

against an idea or view, to justify and reason their claims and arguments, to question 

others and themselves, to raise questions about new ideas, to negotiate their own meaning 

of the phenomena, and, in turn, to construct and reconstruct their knowledge network 

structure. Countryman (1992) and others, in my opinion, have quite rightly argued that 

writing, with its cognitive and metacognitive demands, is an ideal activity that supports 

such an experience. 

Despite the many benefits of writing to learn, the practice has not been easily 

welcomed by mathematics teachers or students at secondary and college levels. Drawing 

from the literature on writing to learn mathematics, Rose (1989) gives different writing 

tasks (summaries, reports, essays, word problems, free writing, letters, journals, etc.) to 

deal with/address the issues stated above. But even with all these choices for activities, 

Birken (1989), Countryman (1992), and Tobias (1989) identified a strong resistance or 

reluctance to use writing in math classrooms in which neither teachers nor students 
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believe that writing should be part of a mathematics course. Tobias (pp. 48-49) suggested 

that mathematics teachers, at least, can partition their grading accordingly: “one-third 

credit for a right answer, one-third credit for finding variety of ways to get to that answer, 

and one-third credit for an essay … in which the student would be asked to reflect on 

‘what makes this problem mathematically interesting.’” 

Similarly, Kenyon (1989) suggested that students can write about their problem 

solving process and explain it to an audience. He asserted that the steps of writing and 

problem solving are similar; a writer and a problem solver engages in the same stages. As 

Hayes and Flower (1980), who see writing as problem solving, Kenyon argued that 

writing is problem solving. Pointing out the cognitive and metacognitive processes during 

writing, he said that writing is a means for students to engage in self-reflection on their 

problem-solving process, which in turn becomes more effective. 

Writing as Problem Solving and Mathematics Reasoning Heuristic 

This section of the literature review discusses the connections between writing 

and problem solving and explains the mathematics reasoning heuristic (MRH) as a 

pedagogical approach to teaching mathematics. The assumptions of the MRH approach 

have been outlined in the previous literature review sections. In short, the MRH approach 

assumes that supporting students’ ability to develop a dispositional dialectic for writing in 

the context of mathematical problem solving will enhance their mathematical 

understanding and abilities. In the first part of this section, the ideas from the problem 

solving and writing literature reviews are outlined and the parallel nature of the writing 

process and the problem-solving process is clearly delineated. Based on this parallel 

nature and the previously discussed research on writing-to-learn, in the last part of this 
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section the MRH approach will be introduced as a pedagogical tool for teaching 

mathematics that guides teachers and students through the problem-solving process. 

Eventually, the entire process of the MRH approach becomes an internalized problem-

solving heuristic for students. 

Connections between Writing and Problem Solving 

To recap, current research into the use of writing-to-learn strategies within 

classrooms has indicated that writing is an effective learning tool. As Emig (1977) 

suggested, writing is a unique mode of learning because of its connective nature. 

Building on Britton’s (1970) work on language and writing, current writing models that 

explain the writing process and its function in learning (Bereiter & Scardamalia, 1987, 

Hayes & Flower, 1980; Galbraith, 1999) consider writing as a process of developing 

one’s ideas, a tool for communicating them, and a heuristic for learning. Furthermore, 

Hayes and Flower stated that writing is a problem-solving activity—a matter of finding 

the solution to rhetorical problems. This view was based on the findings from research 

on problem solving in general that could be applied to different areas (Galbraith & 

Torrance, 1999). 

After Britton’s work and the writing across the curriculum movement, the use of 

writing in mathematics classrooms has increased, incorporating a range of different 

purposes (Gopen & Smith, 1989; Morgan, 1998; Stonewater, 2002). Even though many 

studies on using writing in mathematics already exist, few studies have been conducted 

specifically exploring the connection between the writing and mathematical problem-

solving processes. For example, Bell and Bell (1985) discussed that the writing and 

problem-solving processes are similar: the two processes share the same thought 
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processes since Polya’s four stages of problem solving (understanding, devising a plan, 

carrying out the plan, and looking back) are very similar to the stages of prewriting, 

planning, drafting, and revising and rewriting (Steele, 2005). Kenyon (1989) and 

Connolly and Vilardi (1989) also mentioned that writing can be used as a problem 

solving tool and as a tool for communicating students’ mathematical knowledge, yet they 

did not outline how the writing process is similar to the problem-solving process. 

Therefore, the purpose of this section is to provide a theoretical framework for 

connecting the writing-process and problem-solving process using the preceding 

literature review.    

I will first outline the skeleton of the rest of the discussion. Based on Galbraith’s 

writing model and Artzt and Armour-Thomas’ problem solving framework, the 

discussion will be centered around the following phases: input, knowledge network, 

planning and strategic network, sub-product, feedback, further product, verification, and 

final product. Note that these stages are not linear or hierarchical; rather, they are cyclic. I 

have used these two models because they are the most comprehensive of all existing 

models in their fields. 

Both writing and problem-solving processes begin with an input (writing 

assignment or mathematical problem). The input activates the knowledge network units 

related to the topic (see Figure 9). The network includes one’s knowledge about the topic 

or the problem. For example, if one is reading a mathematics problem, the problem 

statements activate his or her schemas (knowledge about the types of problems) and 

semantics (knowledge about facts). Once activated, the person moves into a how-to-

process, the process in which he or she tries to find a way to use the network units or 



 91 

schema knowledge in order to reach the subgoals. In this stage, the writer makes a plan 

for creating an utterance using his or her linguistic knowledge, and the problem solver 

develops an algorithm using his or her strategic knowledge. The planning phase is also a 

part of the problem representation for the problem solver. The sentence is sent back to 
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Figure 9. Parallel structure of problem-solving and writing processes. 

 

the knowledge network for feedback to check if the sentence corresponds to what the 

writer wants to say; and the problem solver controls his or her algorithms and checks to 

see if the sub-solution satisfies the conditions of the problem. This verification and 

feedback process continues until the sub-goals of the writer and problem solver are met. 

After this local cycle process, the writer creates a further utterance that best fits to his or 



 92 

her goals; and the problem solver uses the results of the local cycle to reach the main 

goals. For example, if the problem asks to find the cost of carpeting a room, first finding 

the area of the room would be a sub-goal. Thus, the problem solver uses this new 

information to find the cost integrating the information given back into the problem (e.g., 

unit price of carpet). 

According to Galbraith (1999), the writer engages in a dispositional dialectic 

between his or her knowledge network and the produced text. Therefore, the writing 

process involves both local and global feedback processes. Similarly, as pointed out by 

Schoenfeld (1985), the person is engaged in making connection between different 

knowledge structures (resources, heuristics, belief system, etc.) during problem solving. 

For example, he or she interacts with his or her internal knowledge network in order to 

retrieve related information that helps to solve the problem (Vygotsky, 1978). 

Furthermore, the problem solver (Artzt & Armour-Thomas, 1992; Garofalo & Lester, 

1985) and the writer (Van den Bergh & Rijlaarsdam, 1999) both go back and reread the 

assignment; however, the same reading activity serves a different purpose than the first 

time the student reads the assignment. Now reading the assignment is a check if the 

person is still on the right track in solving the problem and the writing process. 

Lester (1982) argued that the problem solver interprets the language of the 

instructions and constructs the problem space during the representation of the problem. 

The representation process is for understanding the problem as well as for sanctioning the 

information. Greeno (1977) disputed that the problem solver creates new relationships 

among the components of the problem, attaining a structure that satisfies the conditions 

of the problem and which is eventually added in to the knowledge network of the 
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problem solver. This ongoing generation of problem structure helps the problem solver 

activate different knowledge networks that make the connections stronger, and, 

eventually, the newly established knowledge structure becomes a part of the larger 

problem space. 

Similarly, Galbraith (1999) articulated that during the composition process the 

writer engages in a dispositional dialectic where he or she activates the knowledge 

structures related to the topic and constructs an utterance using his or her linguistic 

network. The newly generated utterance becomes a new input into the writer’s 

knowledge structure and is evaluated to determine whether it fits into what the writer 

wants to say about the topic. As depicted in Figure 9, both the problem solver and the 

writer engage in an internal negotiation process through both problem solving or writing, 

which is what Galbraith called dispositional dialectic. 

Studies exploring the relationship between writing and problem solving have 

shown that writing helps students organize and monitor their problem solving behaviors 

and develop their schemata knowledge (Pugalee, 2001; Steele, 2005). Steele found that 

when students use writing during problem solving they use all the aspects of their 

schemata knowledge and develop their mathematical structure and algebraic thinking. 

Pugalee, likewise, provided evidence of metacognitive behaviors in students’ 

mathematical writing. These studies also show that the demanding and connective notion 

of writing scaffolds students’ problem solving activities and, therefore, enhances their 

mathematical knowledge structure. 

The difference between experts and novices also shows similarities in writing and 

problem solving. For example, Galbraith (1999) stated that the writing process differs for 
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expert and novice writers such that “experts develop an elaborated set of goals for their 

text and generate ideas to satisfy these goals, whereas novices simply retrieve ideas 

prompted spontaneously by the topic and translate them directly into text” (p. 139). Pape 

and Wang (2003, p. 419) described novice and expert problem solvers similarly:  

Expert and successful problem solvers transform the problem text to form a 

mental model of a cognitive representation of the problem that corresponds to the 

problem elements and their relationships… [whereas] less successful problem 

solvers may not form this mental model. Rather, they often directly translate the 

problem elements to a solution without an image of the problem to facilitate their 

solution processes. 

Therefore, such differences between experts and novices create differences in cognitive 

and metacognitive behaviors as well. Considering the fact that metacognition plays an 

important role in problem solving, it is crucial to point out the dual effects of writing: 

providing a cognitive tool for the writer to reflect on his or her thoughts and thinking 

process (Galbraith, 1999; Halliday, Yore, & Alvermann, 1994) and enhancing the 

students’ problem solving abilities by acting as a monitoring tool students during their 

problem solving process (Artzt & Armour-Thomas, 1992; Dow & Mayer, 2004; Garofalo 

& Lester, 1985; Kenyon, 1989). 

As articulated by Pape and Wang, cognitive (e.g., organizing and transforming, 

seeking information, and rehearsing and memorizing) and metacognitive (e.g., self-

evaluating, goal setting and planning, keeping records and monitoring, and reviewing) 

strategies are very important in problem solving. Writing is a unique tool for such 

purposes (Kenyon, 1989; Pugalee, 2001, 2004). 
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Greeno (1977) said that understanding is a process of constructing internal 

representation of the object to be understood through interpretation of the language of the 

problem text. One powerful function of writing in mathematics is that it inherently pushes 

the translation between the problem text and problem solving operators to the forefront to 

help the problem solver be aware of how he or she can associate mathematical concepts 

with language (Galbraith, 1999; Keys, 1999; Pugalee, 2004). As Galbraith said, the writer 

engages in a dispositional dialectic during writing where he or she negotiates the meaning 

through self-dialogue (Vygotsky, 1986). 

The Mathematics Reasoning Heuristic Approach 

Kenyon (1989) argued that asking students to write about their problem-solving 

process allows them to clarify their thoughts about how they will approach the problem. 

Furthermore, he said, “As students write down, reflect on, and react to their thoughts and 

ideas, they enhance the executive problem-solving abilities, and the problem-solving 

process becomes more effective” (p. 77). Moreover, teachers need to develop conceptual 

understanding of the subject matter (Simon, 1995) in order to effectively implement 

writing-to-learn strategies (Hand & Prain, 2002) so that students develop mathematical 

habits of mind for solving problems (Driscoll, 1999; Levasseur & Cuoco, 2003). In other 

words, a mathematical dispositional dialectic is necessary for expert writing in the 

context of mathematical problem solving. 

Development of the MRH 

The intent of the MRH is to provide a framework for teachers to combine 

different aspects of mathematics teaching and learning such as students’ knowledge of 

mathematics, teachers’ knowledge of mathematics (Simon, 1995), negotiation of problem 
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solving methods, and embedding writing into mathematics instruction (Ernest, 1998; 

Galbraith, 1999; Hand & Keys, 1999; Morgan, 1998). Another intent of the MRH is to 

guide students’ problem-solving behaviors and enhance students’ problem-solving skills 

via the use of writing (Connolly & Vilardi, 1989; Kenyon, 1989; Morgan, 1998). 

Therefore, using the structure of the science writing heuristic (SWH) developed by Hand 

and Keys (1999), two templates were created for the teacher and students (Akkus & 

Hand, 2005). 

The science writing heuristic (SWH) as a deriving model 

The MRH has been influenced by the basic ideas of the science writing heuristic 

(SWH), adapting the main structure of the model. The SWH was constructed as a 

heuristic that links writing, reading, and science laboratory activities (Hand & Keys, 

1999). The main focus of the SWH is to promote students’ participation in setting their 

investigative laboratory work, framing their own questions, proposing methods to address 

these questions, and carrying out appropriate investigations. The SWH also scaffolds 

students’ scientific thinking about the relationships between questions, evidence, and 

claims. It consists of two templates: the teacher template and the student template. 

The teacher template provides important phases of negotiation of science 

knowledge created in the classroom. The teacher needs to build upon his or her students’ 

background knowledge by creating a discussion that allows students clarify their own 

understanding of the concepts studied. Therefore, the SWH activities are organized so 

that students go through various forms of negotiation (i.e., individual writing, sharing, 

comparing to other resources, individual reflection). 
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The student template is designed to scaffold student understanding of scientific 

concepts while they are engaging in laboratory activities. The template allows students to 

think about their claims, interpret the data, and provide supporting evidence for their 

claims. The SWH is also based on the assumption that science laboratory activities and 

writing genres in school should reflect some of the characteristics of scientists’ writing 

(Omar, 2004). 

Akkus and Hand (2005), as an attempt to develop a teaching/learning approach 

embedding writing into problem solving, constructed the mathematics reasoning heuristic 

(MRH), which they consider to be an approach that links teacher promotion of 

negotiation of mathematical ideas, writing, and problem-solving activities. The 

framework for designing the MRH includes the shift to constructivist theory, teachers’ 

conceptual understanding of mathematics, embedding writing into mathematics, and 

promoting problem solving. 

Teacher template 

The teacher template (Figure 10) provides important phases of knowledge 

construction in mathematics classroom that teachers need to be aware of before and 

during instruction. For example, the template emphasizes the importance of planning the 

learning goals and the major concepts of a unit. As Simon (1995) argued, a teacher’s 

knowledge of mathematics and students’ knowledge of mathematics interact in the course 

of learning in the classroom environment. Prior to engaging students in a learning 

process, the teacher has initial understanding of students’ mathematical knowledge and 

their learning of mathematics (Simon, 1995, 1997). 
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According to the MRH, it is crucial that teachers are engaged in the planning 

phase that provides them the opportunity to determine the major concepts that they want 

their students to learn, identify what they know and do not know about the topic, and, 

importantly, align their teaching according to the notion of how students learn. As Simon 

emphasized, if we store knowledge as a conceptual frame, we then need to help students 

construct a mathematically acceptable framework. To this end, the MRH suggests that 

teachers consider their mathematical knowledge and students’ knowledge of 

mathematics, which they represent during classroom interaction, and create small- and 

large-group discussion opportunities for students to negotiate their meanings of 

mathematical activities and problem solution methods. 

Teacher Template 

Preparation: 
- Identify the big ideas of the unit.  

- Make a concept map that relates sub-concepts to the big ideas. 

- Consider students’ prior knowledge 

- Consider students’ alternative conceptions during the lesson as they 

connect the prior knowledge to the big ideas 

During the unit: 

• Students’ knowledge of mathematics 
- Give students opportunity to discuss their ideas. 

- Have students put their ideas on the board for exploration. 

• Teacher’s knowledge of mathematics 
- Use your knowledge to identify students’ alternative conceptions. 

- Guide students to the big ideas identified earlier during the preparation. 

• Negotiation of ideas 
- Create small-group and whole-class discussion. 

- Encourage students to reflect on each other’s ideas. 

• Writing 

- Have students write about what they have learned in the unit to real audiences 

(teacher, parents, classmates, lower grades, etc.). 

 

Figure 10. The mathematics reasoning heuristic teacher template. 

 



 99 

In addition, the purpose of such classroom activities is to promote students’ 

mathematical thinking and talking. Adler (1999) argued that students and the teacher all, 

to some degree, engage in classroom discourses in varying ways. She suggested that 

students should have opportunities “to practice being users of educated discourses”
6
 (p. 

51). To foster classroom discourse, teachers need to be continuously aware of students’ 

mathematical ideas and questions. Simon (1997) argued that the dynamic of the 

classroom discourse depends upon the relationship between the teacher’s mathematical 

knowledge and his or her knowledge of students’ mathematical knowledge (of related 

concepts). However, it is important to note that the mathematics knowledge in a 

classroom is, in turn, based on this classroom dynamic (Ernest, 1998). The MRH 

facilitates both public and private aspects of knowledge construction via classroom 

discussions and individual writing activities. 

Furthermore, the teacher template focuses on the importance of writing-to-learn 

strategies as one of the main foci of learning mathematics. For example, the template 

encourages teachers to ask students to explain the mathematics they have learned to 

different audiences (e.g., parents, younger students, peers, teacher, etc.). Writing-to-learn 

concepts suggest that the role of language and writing is to scaffold students’ process of 

constituting thoughts and knowledge (Galbraith, 1999), as well as their representation of 

that knowledge externally (Connolly, 1989). Therefore, teachers are asked to provide 

students with the opportunities to discuss their ideas publicly before they actually write 

their individual understanding. 

Student template 
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The second component of the MRH, the student template (Figure 11), is 

constructed to promote students’ problem solving. It is a series of questions for students 

to consider when they are engaged in the problem solving process. The student template 

resembles Polya’s (1945) four-stage problem-solving heuristic (understanding, planning, 

carrying out the plan, and looking back) or Schoenfeld’s (1985) phases of problem 

solving (analysis, design, exploration, and implementation). However, one distinct 

feature of the template from all the other problem-solving frameworks is indeed that it 

asks students to compare their solutions with their peers and to reflect on their problem 

solution after classroom discussion. 

Student Template 

• What is my question (problem)? 
 - Specify what you are asked (What is (are) the question(s) being asked?). 

 - Outline the information/data given (What information is/are given?). 

• What can I claim about the solution? 
 - Use complete sentences to explain how you will solve the problem. 

 - Tell what procedures you can follow. 

• What did I do? 
 - What steps did I take to solve the problem? 

 - Does my method (procedure) make sense? Why? 

• What are my reasons? 
 - Why did I choose the way I did? 

 - How can I connect my findings to the information given in the problem? 

 - How do I know that my method works? 

• What do others say? 
 - How do my ideas/solutions compared with others? 

 a. My classmates 

 b. Textbooks/Mathematicians 

• Reflection  
    - How have my ideas changed? 

 - Am I convinced with my solution? Why? 

 

Figure 11. The mathematics reasoning heuristic student template. 

 

The template allows students to clarify their thoughts, through writing, about how 

they will approach the problem (Kenyon, 1989). This course of action may be completed 
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individually or in a group depending on the teacher’s decision. When a teacher chooses 

group discussion, students would discuss the question (the question might be a word 

problem or any mathematical task chosen by the teacher) and negotiate possible ways of 

solving it within each group. Then each group shares their methods with the whole class. 

The student template also encourages students to think about their metacognitive actions 

and reflect on their thoughts (Pugalee, 2001, 2004). Kenyon (1989) emphasized the 

importance of writing on the thinking process during problem solving and the importance 

of the metacognitive skills that students use to reflect on their thoughts declaring that 

within a “writing process, students begin to gather, formulate, and organize old and new 

knowledge, concepts, and strategies, and to synthesize this information as a new structure 

that becomes a part of their own knowledge network” (p. 77). Pugalee (2004) showed 

that students who wrote about their problem solving process scored significantly higher 

than students who provided verbal description. This also indicates the importance of 

asking students to write about their problem solving process, which is why the MRH 

encourages students to present their understanding of mathematics to different audiences 

(e.g., parents, peers, and younger students). 

Students using the template to structure their writing can engage in a self-

negotiation of meaning through cognitive and metacognitive actions such as planning, 

monitoring, reviewing, and revising. Therefore, the process of text production during 

problem solving is an internal discussion about schema knowledge, problem-solving 

strategies, and rhetorical knowledge, which, Galbraith (1999) argued, are all 

interconnected. This internal discussion is intended to support and benefit from external 

classroom discussions of students’ reasoning about the mathematics. Once students and 
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the teacher are aware of students’ informal mathematical ideas, they are better able to 

negotiate the connections to the formalized mathematical language. The MRH 

encourages teachers to embed mathematical language into mathematical activities rather 

than giving isolated definitions of mathematics concepts. Sternberg (1999) emphasized 

the importance of asking students to identify the nature of the problem to be solved to 

help them improve their mathematical reasoning abilities. This also gives students 

opportunities to transfer the method learned during problem solving to other situations. 

Summary 

The literature review of the dissertation traces a wide range of the literature on 

mathematical problem solving, the nature of mathematics, the construction of 

mathematical knowledge, writing-to-learn strategies in mathematics, and the relationship 

between the processes of mathematical problem solving and writing. The studies on 

problem solving point out the importance of integrating problem solving into 

mathematics programs to promote students’ conceptual understanding of the mathematics 

they study (Hiebert & Wearne, 2003; NCTM, 2000). Specifically, the NCTM states that 

the effectiveness of school mathematics in work, school, and life “lies at the heart of 

problem solving” (p. 334). 

Given the significance of problem solving in learning mathematics, the literature 

review also shows that teaching and learning mathematics through problem solving gives 

both teachers and students opportunities to make sense of mathematical ideas by 

appreciating the individual and collective aspects of mathematics—that is, the 

conversational nature of mathematical knowledge (Ernest, 1998; Kahan & Wyberg, 2003; 

Rasmussen, Yackel, & King, 2003). Moreover, Hiebert and Wearne (2003) have argued 
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that students should be challenged with mathematical problems that make them struggle 

in finding solutions and that require them to work collaboratively to solve the problems. 

Based on the literature review on the nature of mathematics and social 

construction of mathematical knowledge and taking a constructivist perspective to 

learning, I conclude that learning mathematics should be considered as an active process 

of personal construction of mathematical understanding through the use of natural 

language in a socially situated conversation by students. However, considering that 

learning can be, and is, an individual act and that conversation can occur within an 

individual (without an interlocutor), I highlight the importance of writing in learning 

(mathematics); that is, writing as a “unique mode of learning” allows the writer to 

generate new ideas and new meanings via an ongoing dialogue between the written 

product (text) and one’s thoughts (Bereiter & Scardamalia, 1987; Emig, 1977; Galbraith, 

1999; Galbraith & Torrance, 1999; Vygotsky, 1986). Furthermore, Galbraith (1999) and 

Powell and Lopez (1989) have argued that during writing one engages in a dispositional 

dialectic where he or she negotiates meaning, and in negotiation, one is constructing 

knowledge and augmenting learning. 

Building on the work in the areas of problem solving and writing and on the bases 

of the SWH approach by Hand and Keys (1999), I propose a framework—the 

mathematics reasoning heuristic (MRH) approach—for teachers and students to combine 

different aspects of mathematics teaching and learning such as teachers’ knowledge of 

mathematics, students’ knowledge of mathematics, and students’ learning of 

mathematics. These aspects come together with the MRH approach in a dialogical 

interaction and writing. The intent of the MRH approach is to guide students’ problem 
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solving behaviors and their problem solving skills via the use of writing (Connolly & 

Vilardi, 1989; Kenyon, 1989; Morgan, 1998). 
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CHAPTER THREE 

Journal Article 

Abstract 

This study examines the pedagogical differences when three teachers change their 

practices from traditional teaching to student-centered practices. The student-centered 

approach adopted—the Mathematics Reasoning Heuristic (MRH) approach—was 

developed by the researcher. A professional development program was implemented over 

one semester where the MRH approach was initially modeled for teachers before the 

three teachers implementing the approach. The level of student-centered teaching in the 

MRH classes varied as a result of the feedback provided by the researcher, while the 

teachers’ traditional-style teaching level stayed the same. The patterns of the change for 

all three teachers, with different scales, were similar; that is, their MRH teaching stayed 

at the level of their control teaching for a while and began to move up depending on the 

pedagogical area on which they put emphasis. Their questioning was the first move to 

change, yet it was not aligned with other areas at the beginning. However, variations 

existed in the differences between the teachers’ control and MRH instructions. 

Introduction 

From a social constructivist point of view, dialogical interaction is crucial to 

students’ learning because learning requires active involvement in the construction of 

mathematical knowledge. However, teachers are generally uncomfortable with using 

such an approach. Teachers need to change their pedagogical practices in order to 

promote such mathematical learning in classrooms (Nelson, 1997). Promoting dialogic 

learning within classrooms is challenging for teachers and requires ongoing support. This 
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study focused on working with three teachers to enhance dialogical interaction within 

mathematics classrooms through the use of the Mathematics Reasoning Heuristic (MRH) 

approach, which is designed on the premise that supporting students’ ability to develop a 

dispositional dialectic for writing in the context of mathematical problem solving will 

enhance their mathematical understanding. That is, when students create a dispositional 

dialectic during writing, they sort the context of the problem through what they know in a 

cyclic process. 

The results from the study indicated that students in the treatment classrooms 

gained enhanced mathematical understanding. Students’ Iowa Test of Educational 

Development (ITED) performance in the treatment classes where the three teachers 

implemented the MRH approach was significantly higher than that of students in the 

control classes where the teachers engaged in typical instructional routines. Given this 

statistical difference and the results from the complementary qualitative analysis of the 

teachers using the MRH approach, the researcher would suggest that the teachers’ ability 

to support dialogic interaction for mathematical problem solving improved across time. 

Finally, during the process of learning to support dialogic interaction, the teachers’ 

questioning skills were a forerunner to improving other pedagogical skills important for 

promoting dialogic interaction, such as giving students voice, promoting student problem 

solving, and listening attentively to students’ ideas. 

Dialogic Learning 

Social constructivist approaches stress the importance of dialogical interaction 

between students (Borasi, 1992; Cobb, Yackel, & Wood, 1993; Ernest, 1998). As such, 

learning is seen as a process of negotiation of meaning between individuals through a 
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series of “dialogues.” Borasi and Ernest describe the conversational aspect of 

mathematical knowledge as a human endeavor, with Ernest further defining conversation 

as “a sequence of linguistic utterances or texts in a common language (or languages) 

made by a number of speakers or authors, who take it in turn to ‘speak’ (contribute) and 

who respond with further relevant contributions to the conversation” (Ernest, 1998, p. 

163, emphasis added). Thus, conversation plays an important role in the construction of 

mathematical knowledge because it initiates all participants into negotiating their 

explicated utterances through their perspectives. This negotiation is the result of the 

dialectical, persuasive reasoning, and social exchange aspects of the conversation (Ernest, 

1998; Russell, 1983; Sfard, 2000). 

Alro and Skovsmose (2002), Cobb, Yackel, and Wood (1992), Ernest (1998), and 

Frijters, ten Dam, and Rijlaarsdam (in press) argued that participants involved in a 

conversation collaboratively construct knowledge by recognition of different perspectives 

or through an extended exchange of points of view. Furthermore, speakers are challenged 

to mutually understand each other in order to communicate that what they say is 

understood as what they intend to mean (Alro & Skovsmose, 2002; Cobb et al., 1993). 

Thus, the dialogue is inter-related to the dynamic of mutual negotiation of meanings. 

The central strand of the nature of knowledge is that knowledge is socially 

constructed within a community through negotiated meaning of experiences, not static or 

stable, but inconstant (Connolly, 1989; Ernest, 1998). Cobb et al. (1992) and Ernest 

(1998) have pointed out that children partly construct their knowledge as a form of 

collaborative meaning making based on their interaction with others. Seeing mathematics 

learning as an active problem-solving process, Cobb et al. (1993) stated that social 
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interactions in the classroom can create contradictions and conflicts in children, and in 

the process of resolving these conflicts, students in turn reorganize their mathematical 

experiences and mathematical ways of knowing. Similarly, von Glaserfeld (1993) 

asserted that through talk (dialogical interaction) students find inconsistencies in their 

thoughts that lead them to change or reorganize their conceptual relationships. 

The role of the teacher in such a context, from a social constructivist point of 

view, is to generate disturbances for students about their conceptual structures (von 

Glaserfeld, 1993) and to provide opportunities for students to discuss their alternative 

ideas for solving problems (Marshall, 2004; NCTM, 2000) so that the class as a 

community can determine which opinion(s) or solution(s) should be accepted. While 

individual responses may not always be conventional, they are valid and indicative of 

students’ own thinking. Teacher questioning is crucial to creating such a classroom 

climate where students are actively involved in doing mathematics through problem 

solving (Grouws, 2003). Questioning can engage students in a dialogical interaction 

where they can organize and reorganize their knowledge of mathematical concepts and, 

therefore, develop and enhance their mathematical understanding (Cobb et al., 1993). On 

the other hand, the problem solving activity can be an individual act where students are 

engaged in a self-dialogue. In this case, teacher questioning is still important because it 

helps an individual construct the conceptual relationships by creating conflicts. Yackel 

(2002) pointed out that the teacher’s understanding of mathematical concepts and of 

students’ mathematical perspective is important for the teacher to step into the classroom 

conversation to push the argumentation forward. 
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Social constructivism accords a crucial role to dialogue and argumentation in both 

collective and individual aspects of knowledge because “without conversation and its 

feedback mechanisms, the individual appropriation of collective knowledge cannot be 

conducted or validated” (Ernest, 1998, p. 166). Ernest further pointed out that 

mathematical knowledge claims are constructed through a series of “formal dialectical 

conversational exchanges” by individuals using their subjective (personal) mathematical 

knowledge and perspectives (p. 149). In a similar vein, Cobb, Boufi, McClain, and 

Whitenack (1997, p. 264) argued that “children actively construct their mathematical 

understandings as they participate in classroom social processes.” Individuals, as they are 

talking, at the same time, are reflecting on their own speech and what has been said thus 

far. Cobb and his colleagues also pointed out that while participating in such social 

practices individuals restructure their mathematical activities and experiences based on 

the reflection they have made through irrevocable dialogue. The value of talk in students’ 

learning is crucial because talk provides opportunities for students to modify their 

existing concepts and conceptual relationships according to the inconsistencies and 

perturbations they are experiencing at the moment (von Glaserfeld, 1993). 

A study by Schwarz, Neuman, Gil, and Ilya (2003) showed that individual 

students partly internalized the collectively constructed arguments. This study suggests 

that the “appropriation” of socially constructed knowledge is constrained by (a) the 

individual’s own perspective of the topic and the individual’s interpretation of what has 

been discussed, (b) the social relationships between group members (i.e., peer effect), and 

(c) the counter-examples created in the argumentative activities (Yackel, 2002). 

Analyzing the roles of the teacher in collective argumentation, Yackel argued that 
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argumentation is crucial to students’ learning of mathematical concepts both as a 

collective and an individual act. Yet, the teacher plays an important role in initiating such 

an argument, supporting students as they interact, and supplying supports (data, warrant, 

and backing) that are omitted or left implicit in arguments (Yackel, 2002). That said, 

change is difficult and it is often hard for teachers to give up old habits in favor of new, 

student-centered techniques; thus, in order for teachers to transform their teaching to 

support argument within their classrooms, they need support and guidance (Borko, 

Davinroy, Bliem, & Cumbo, 2000; Weissglass, 1994). 

Professional Development 

Early studies of teacher change (Carpenter, Fennema, Peterson, & Carey, 1988; 

Lampert, 1987; NCTM, 1991) identified a set of changes in belief that teachers go 

through as they shifted their teaching to a practice based on a student-centered learning: 

(a) coming to see students as learners who are actively engaged in problem solving rather 

than as vessels to be filled; (b) coming to see that teaching could be and should be 

aligned with students’ learning and thinking; (c) the need for changing the locus of 

authority from teachers to classroom interaction and negotiation; and (d) coming to see 

that students can use mathematical reasoning to construct mathematical knowledge 

(Nelson, 1997). 

Scholars have asserted that teachers need ongoing support (e.g., feedback) as they 

make these pedagogical shifts (Borko et al., 2000; Franke et al., 1997; Goldsmith & 

Shifter, 1997; Weissglass, 1994). Considering the required changes stated above, 

teachers’ promotion of students’ active involvement in problem-solving process is crucial 

because, as Cobb et al. (1993) have stated, learning is about students’ reflection on their 
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experiences and reorganization of their interpretive framework. Therefore, the locus of 

teacher change should target such a goal in teachers because, as Franke et al. (1997), 

Cooney and Shealy (1997), and Weissglass (1994) have argued, teachers’ beliefs 

influence their practices in classrooms. Furthermore, Cooney (1994) pointed out that 

teacher change cannot be considered separate from teachers’ everyday activities of 

teaching and Borko et al. expressed that the change takes time and effort and can be very 

rewarding. Similarly, McCaffrey, Hamilton, Stecher, Klein, Bugliari, and Robyn (2001) 

suggested that such changes require acceptance and adoption by teachers. The MRH is an 

approach that supports such teacher changes in order to enhance students’ problem 

solving skills through dialogical interaction in classrooms and individual writing 

activities in the context of mathematical problem solving. 

Writing as Problem Solving and the Mathematics Reasoning Heuristic Approach for 

Dialogic Learning 

Building on Britton’s (1970) work on language and writing, current writing 

models that explain the writing process and its function in learning (Bereiter & 

Scardamalia, 1987, Hayes & Flower, 1980; Galbraith, 1999) consider writing as a process 

of developing one’s ideas, a tool for communicating them, and a heuristic for learning. 

Furthermore, Hayes and Flower stated that writing is a problem-solving activity—a 

matter of finding the solution to rhetorical problems. This view was based on the 

findings from research on problem solving in general that could be applied to different 

areas (Galbraith & Torrance, 1999). 

Studies exploring the relationship between writing and mathematical problem 

solving have shown that writing helps students organize and monitor their problem 
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solving behaviors and develop their schemata knowledge (Pugalee, 2001; Steele, 2005). 

Steele found that when students use writing during problem solving, they use all the 

aspects of their schemata knowledge and develop their mathematical structure and 

algebraic thinking. Pugalee, likewise, provided evidence of metacognitive behaviors in 

students’ mathematical writing. These studies also show that the demanding and 

connective notion of writing scaffolds students’ problem solving activities and, therefore, 

enhances their mathematical knowledge structure. One powerful function of writing in 

mathematics is that it inherently pushes the translation between the problem text and 

problem solving operators to the forefront to help the problem solver be aware of how he 

or she can associate mathematical concepts with language (Galbraith, 1999; Greeno, 

1977; Keys, 1999; Pugalee, 2004). As Galbraith said, the writer engages in a 

dispositional dialectic during writing where he or she negotiates the meaning through 

self-dialogue. 

Kenyon (1989, p. 77) expressed, “As students write down, reflect on, and react to 

their thoughts and ideas [emphasis added], they enhance the executive problem-solving 

abilities, and the problem-solving process becomes more effective.” Writing helps 

students develop a mathematical dispositional dialectic that is necessary for becoming an 

expert in the context of mathematical problem solving. Kenyon further argued that asking 

students to write about their problem-solving process allows them to clarify their 

thoughts about how they will approach the problem. Implementing writing-to-learn 

strategies effectively requires teachers to develop conceptual understanding of the subject 

matter so that they can help students develop mathematical habits of mind for solving 

problems (Driscoll, 1999; Hand & Prain, 2002; Levasseur & Cuoco, 2003; Simon, 1995). 
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Akkus and Hand (2005), as an attempt to develop a teaching/learning approach 

with embedded writing into problem solving, constructed the mathematics reasoning 

heuristic (MRH) approach, which they consider to be an approach that links promotion of 

negotiation of mathematical ideas, writing, and problem-solving activities. The 

framework for designing the MRH approach includes shifting to constructivist theory, 

promoting teachers focus on conceptual understanding of mathematics, embedding 

writing into mathematics, and the promotion of problem solving. 

Development of the mathematics reasoning heuristic approach 

The intent of the MRH approach is to provide a framework for teachers to 

combine different aspects of mathematics teaching and learning such as students’ 

knowledge of mathematics, teachers’ knowledge of mathematics (Simon, 1995), 

negotiation of problem solving methods, and embedding writing into mathematics 

instruction (Ernest, 1998; Hand & Keys, 1999; Galbraith, 1999; Morgan, 1998). Another 

intent of the MRH approach is to guide students’ problem-solving behaviors and enhance 

students’ problem-solving skills through the use of writing (Connolly & Vilardi, 1989; 

Kenyon, 1989; Morgan, 1998).  

The science writing heuristic (SWH) as a deriving model 

The MRH approach has been influenced by the basic ideas of the science writing 

heuristic (SWH) approach by adapting the main structure of the model. The SWH 

approach was constructed as a heuristic that links writing, reading, and science laboratory 

activities (Hand & Keys, 1999). The main focus of the SWH approach is to promote 

students’ participation in setting their investigative laboratory work, framing their own 

questions, proposing methods to address these questions, and carrying out appropriate 
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investigations. The SWH approach also scaffolds students’ scientific thinking about the 

relationships between questions, claims, and evidence. Therefore, using the structure of 

the SWH approach developed by Hand and Keys, two MRH templates were created for 

the teacher and students (Akkus & Hand, 2005). 

Teacher template 

The teacher template (Figure 12) provides important phases of knowledge 

construction in mathematics classrooms that teachers need to be aware of before and 

during instruction. For example, the template emphasizes the importance of planning the 

learning goals and the major concepts of a unit. As Simon (1995) has argued, a teacher’s 

knowledge of mathematics and students’ knowledge of mathematics interact in the course 

of learning in the classroom environment. Prior to engaging students in a learning 

process, the teacher has initial understanding of students’ mathematical knowledge and 

their learning of mathematics (Simon, 1995, 1997). This knowledge is used to guide the 

teacher in the teaching/learning environment. 

Using the MRH approach, teachers engage in a planning phase that requires them 

to determine the major concepts that they want their students to learn, to identify what 

they (teachers) know and do not know about the topic, and, importantly, to align their 

teaching according to the concepts of how students learn. As Simon (1995) emphasized, 

if we store knowledge as a conceptual frame, we then need to help students construct a 

mathematically acceptable framework. To this end, the MRH approach suggests that 

teachers consider their mathematical knowledge and students’ knowledge of 

mathematics, which they represent during classroom interaction, and create small- and 
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large-group discussion opportunities for students to negotiate their meanings of 

mathematical activities and problem solution methods. 

Teacher Template 

Preparation: 
- Identify the big ideas of the unit.  

- Make a concept map that relates sub-concepts to the big ideas. 

- Consider students’ prior knowledge 

- Consider students’ alternative conceptions during the lesson as they 

connect the prior knowledge to the big ideas 

During the unit: 

• Students’ knowledge of mathematics 
- Give students opportunity to discuss their ideas. 

- Have students put their ideas on the board for exploration. 

• Teacher’s knowledge of mathematics 
- Use your knowledge to identify students’ alternative conceptions. 

- Guide students to the big ideas identified earlier during the preparation. 

• Negotiation of ideas 

- Create small-group and whole-class discussion. 

- Encourage students to reflect on each other’s ideas. 

• Writing 

- Have students write about what they have learned in the unit to real audiences 

(teacher, parents, classmates, lower grades, etc.). 

 

Figure 12. The mathematics reasoning heuristic teacher template. 

In addition, the purpose of such classroom activities is to promote students’ 

mathematical thinking and talking. Adler (1999) argued that students and the teacher all, 

to some degree, engage in classroom discourses in varying ways. She suggested that 

students should have opportunities “to practice being users of educated discourses”
7
 (p. 

51). In order to foster classroom discourse, teachers need to be continuously aware of 

students’ mathematical ideas and questions. Simon (1997) argued that the dynamic of the 

classroom discourse depends upon the relationship between the teacher’s mathematical 

knowledge and his or her knowledge of students’ mathematical knowledge (of related 

concepts). However, it is important to note that the mathematics knowledge in a 
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classroom is, in turn, based on this classroom dynamic (Ernest, 1998). The MRH 

approach facilitates both public and private aspects of knowledge construction via 

classroom discussions and individual writing activities. 

Furthermore, the teacher template focuses on the importance of writing-to-learn 

strategies as one of the main foci of learning mathematics. For example, the template 

encourages teachers to ask students to explain the mathematics they have learned to 

different audiences (e.g., parents, younger students, peers, teacher, etc.). Writing-to-learn 

concepts suggest that the role of language and writing is to scaffold students’ process of 

constituting thoughts and knowledge (Galbraith, 1999), as well as their representation of 

that knowledge externally (Connolly, 1989). Therefore, teachers are asked to provide 

students with the opportunities to discuss their ideas publicly before they actually write 

their individual understanding. 

Student template 

The second component of the MRH approach, the student template (Figure 13), is 

constructed to promote students’ problem solving. The template consists of a series of 

questions for students to consider when they are engaged in the problem solving process. 

The student template resembles Polya’s (1945) four-stage problem-solving heuristic 

(understanding, planning, carrying out the plan, and looking back) or Schoenfeld’s (1985) 

phases of problem solving (analysis, design, exploration, and implementation). However, 

one distinct feature of the template from other problem-solving frameworks is indeed that 

it specifically asks students to compare their solutions with their peers and to reflect on 

their problem solution after a classroom discussion. 
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Student Template 

• What is my question (problem)? 
 - Specify what you are asked (What is (are) the question(s) being asked?). 

 - Outline the information/data given (What information is/are given?). 

• What can I claim about the solution? 
 - Use complete sentences to explain how you will solve the problem. 

 - Tell what procedures you can follow. 

• What did I do? 

 - What steps did I take to solve the problem? 

 - Does my method (procedure) make sense? Why? 

• What are my reasons? 
 - Why did I choose the way I did? 

 - How can I connect my findings to the information given in the problem? 

 - How do I know that my method works? 

• What do others say? 
 - How do my ideas/solutions compared with others? 

 a. My classmates 

 b. Textbooks/Mathematicians 

• Reflection  
    - How have my ideas changed? 

 - Am I convinced with my solution? Why? 

 

Figure 13. The mathematics reasoning heuristic student template. 

The template allows students to clarify their thoughts, through writing, about how 

they will approach the problem (Kenyon, 1989). This course of action may be completed 

individually or in a group depending on the teacher’s decision. When the teacher chooses 

group discussion, students discuss the question (the question might be a word problem or 

any mathematical task chosen by the teacher) and negotiate possible ways of solving it 

within each group. Then each group shares their methods with the whole class. A 

critically important criterion is that the teacher needs to create opportunities for students 

to share their methods, hear alternative methods, and then compare advantages and 

disadvantages of the methods (Hiebert & Wearne, 2003). The student template also 

encourages students to think about their metacognitive actions and reflect on their 

thoughts (Pugalee, 2001, 2004). Kenyon (1989) emphasized the importance of writing on 
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the thinking process during problem solving and the importance of the metacognitive 

skills that students use to reflect on their thoughts declaring that within a “writing 

process, students begin to gather, formulate, and organize old and new knowledge, 

concepts, and strategies, and to synthesize this information as a new structure that 

becomes a part of their own knowledge network” (p. 77). The Pugalee’s study (2004) 

showed that students who wrote about their problem solving process scored significantly 

higher than students who provided verbal description. This also indicates the importance 

of asking students to write about their problem solving process, which is why the MRH 

approach encourages students to present their understanding of mathematics in text to 

different audiences (e.g., parents, peers, and younger students). 

Students using the template to structure their writing can engage in a self-

negotiation of meaning through cognitive and metacognitive actions such as planning, 

monitoring, reviewing, and revising. Therefore, the process of text production during 

problem solving is an internal discussion about schema knowledge, problem-solving 

strategies, and rhetorical knowledge, which, Galbraith (1999) has argued, are all 

interconnected. This internal discussion is intended to support and benefit from external 

classroom discussions of students’ reasoning about the mathematics they learn. Once 

students and the teacher are aware of the students’ informal mathematical ideas, they are 

better able to negotiate the connections to the formalized mathematical language. The 

MRH approach encourages teachers to embed mathematical language into mathematical 

activities rather than giving isolated definitions of mathematics concepts. Sternberg 

(1999) emphasized the importance of asking students to identify the nature of the 

problem to be solved in order to help them improve their mathematical reasoning 
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abilities. This also gives students opportunities to transfer the method learned during 

problem solving to other situations. 

This study was guided by the following two research questions: 

1. Is there a difference in students’ mathematical performance on a standardized 

test, the Iowa Test of Educational Development (ITED), between the students 

in the control classes where the teachers are engaged in their traditional 

instructional routines and the students in the treatment classes where the 

teachers used the MRH approach to improve their pedagogical practices and 

to scaffold students’ problem solving skills? 

2. How do the teachers change their pedagogical practices through the use of the 

MRH approach? 

Methods 

Research Setting and Participants 

The researcher initially started working with a grade-nine algebra teacher (Mike) 

at a high school located in a rural area of Midwest. During the initial phase of his 

collaboration, Mike and the researcher worked closely together to implement the 

fundamentals of the MRH approach and on numerous occasions engaged in team-

teaching. This way the researcher had an opportunity to model the new approach. As 

Mike gained more experience and felt more confident with the approach, he decided to 

try teaching on his own for the rest of the semester. During the second semester, the head 

of the mathematics department in the school (John), who was also teaching algebra 

sections, became interested in the project and agreed to participate in the following 

school year. Later, Mike moved to a different school district and was replaced with a new 
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teacher (Amy) who agreed to participate for the first semester of the second year. 

Consequently, in this study we used the data from Mike’s first semester in the first year 

and John and Amy’s first semester in the second year. The reason I used the first 

semester data was because the Iowa Test of Basic Skills (ITBS) and Iowa Test of 

Educational Development (ITED) were administered in this school in February, at the 

beginning of the second semester. This enabled the same conditions to apply for each 

teacher in terms of implementation time prior to collection of standardized test scores. All 

three teachers taught the same units of polynomials and fractions. The number of students 

in each teacher’s control and treatment classes is provided in Table 1. 

Mike. Mike had 20 years of mathematics teaching experience in different schools 

in Iowa, the last five years of which had been at the high school featured in this study. 

Mike also taught an Applied Mathematics course. During his career he has taught all 

different levels of high school mathematics as well as coaching football as an 

extracurricular activity in the school. He had three algebra classes participating in this 

study. 

John. John had 33 years of teaching experience, 28 years of which were at his 

current school district, where he started as a middle school mathematics and English 

teacher. He had worked in the middle school for 18 years before moving to the high 

school. He was the head of the mathematics department in the school and taught 

Probability and Statistics and Algebra I courses for ninth grade students. He also had 

master’s degrees in English and Guidance Counseling. In his years at the current high 

school, he taught algebra, general mathematics, consumer mathematics, applied 

mathematics, and probability and statistics. He was also employed by the Area Education 
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Agency (the local professional development organization) as a facilitator for staff 

development programs. John coached basketball and tennis at the school. He had four 

classes participating in this study. 

Amy. Amy had been teaching for five years; this was her first year in this school 

district. She taught Algebra I (ninth grade) and Applied Math II (tenth grade) courses. 

She received her bachelor’s degree in education with a double major in mathematics and 

mathematics education. She also had a coaching endorsement and coached cross country 

and girl’s basketball. Amy had three classes participating in this study. 

Table 1. Distribution of students according to teacher and group. 

 

Teacher Group 
Number of 

students 
Male Female 

High 

Achv
** 

Med 

Achv 

Low 

Achv 

Control 21 11 10 1
*** 

12 3 
Mike 

Treatment (MRH) 44
* 

19 25 3 25 7 

Control 43
* 

26 17 5 26 8 
John 

Treatment (MRH) 45
* 

35 10 6 29 6 

Control 24 13 11 1 12 5 
Amy 

Treatment (MRH) 25
* 

8 17 2 20 2 
*
 Teachers had two classes in this group. 

** 
Achv (achievement) refers to proficiency level provided by the testing center using students’ ITBS 

scores, relative to each other. 
***

 The number of students for proficiency level was obtained according to the data reported. 
 

Participating School District 

The school district that participated in this study is located in a moderate-sized 

federally-designated rural poverty town in Midwest. The school district is classified as a 

3-A district, with 106 teachers in the middle and high school buildings. Total student 

enrollment was 2,276. The distribution of students’ ethnicities was: 96% white, 1.60% 

African American, 0.37% Asian, 1.85% Hispanic, and 0.18% Native American. The 

number of minority students per classroom was, at most, two for each of the three 

participating teachers. Based on the decision made by the school administration, only 
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those students who are considered proficient in mathematics based on the results obtained 

in the 7
th

 grade are admitted to take algebra in the 8
th

 grade. The students who did not 

qualify to take algebra I in the 8
th

 grade constituted 60% of the students, and this group 

participated in this study (see Table 1 for the proficiency level distribution across 

teachers). 

Interventions 

The year in which each teacher participated was different; Mike participated in 

fall of 2004, while John and Amy participated in fall of 2005. The researcher first met 

Mike in September 2004 to introduce the project. He explained the details of the project 

and the major components of the MRH approach. After the first meeting, the researcher 

visited Mike weekly to model or to co-teach. Mike raised his questions or concerns about 

the implementation, and the researcher addressed them at the weekly planning meeting, 

where the focus was on the mathematics topics that they were planning to teach for data 

collection. The intent of the planning meetings was to get Mike to identify the main ideas 

(or concepts) of the units and make a concept map related to the concepts identified. 

When the researcher would co-teach or model, he arrived during Mike’s daily planning 

hour and briefly discussed the major points of the lesson (Frenke et al., 1997). The MRH 

students were provided with the student template as a poster to hang on the wall and as a 

bookmark for their individual use, and were encouraged to use the MRH student template 

in their studies. This orientation period lasted for two months, with ten visits total. During 

the following three months, Mike then taught two mathematics units (polynomials and 

fractions) using the MRH approach based on the planning. During Mike’s 

implementation, the researcher observed the lessons and debriefed with Mike afterwards. 
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The purpose of the debriefings was to make Mike aware of his own actions during 

teaching, to highlight the pedagogical areas that needed improvement, and to provide 

suggestions for the future. There also was a lot of email correspondence because Mike 

had been told he could send an email about any concern at any time. 

The same support was provided for John and Amy; they also had the chance to 

work together with or without the researcher being present. However, there were 

differences in the intervention for John and Amy compared to Mike, one of which was 

that the researcher met them before school started and had them read related articles. The 

other difference was that with two participating teachers more discussions occurred and 

more ideas were raised than during Mike’s planning meetings. There were seven visits 

with John and Amy for the first two months, and eighteen for the last three months during 

their implementation. Similarly, debriefing sessions and email corresponding occurred 

with John and Amy, individually or together. 

The intervention provided for the teachers was based on the Iowa Professional 

Development Model, which requires on-going support. The main commitment between 

the researcher, the teachers, and their school administration was to provide the support 

necessary for the teachers and to help the researcher with the data collection process. 

Data Collection 

There were two main data sources. The quantitative data included the ITBS and 

ITED scores that were used to examine performance differences between the control and 

treatment classes. The qualitative data included observations through both on-site 

observations and videotape recordings in both MRH and control classrooms and 

interviews that shed light on the level of teacher implementation. 



 124 

All data were collected by the researcher, who had been involved in data 

collection and analysis from the beginning of the study. Data collection occurred during 

the last three months of the first semester of the school year. Mike was observed, 

videotaped, and interviewed during the first semester of the 2004-2005 school year, and 

John and Amy were observed, videotaped, and interviewed during the first semester of 

the 2005-2006 school year. 

Observations and Videotaping. For each teacher, two types of observations 

occurred in both their treatment and control classes—on-site observations and videotaped 

observations. Of particular interest for both types of observations were teacher-student 

dialogical interaction, teacher questioning and its promotion for interaction, and the focus 

of learning and problem solving. 

During the on-site observations, the observer was physically present in the 

classroom at least once and often twice a week for three months, following the teachers, 

taking field notes on teacher-student interactions, and filling in the observation protocol 

(the Reformed Teaching Observation Protocol [RTOP]). At the end of each visit, the 

observer had a short debriefing session with the teachers, where constructive feedback 

was provided after the teachers’ identification/self evaluation of strengths, weaknesses, 

and difficulties with implementation. Such debriefings targeted several areas of interest 

such as increasing the level of confidence and trust between the teachers and researcher, 

promoting the teachers’ awareness of certain behaviors observed, highlighting the 

pedagogical areas that needed improvement, and suggesting some strategies that the 

teachers might use to improve their implementation of the required student-oriented 

approaches in the future. Every time the observer had a debriefing session, detailed field 
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notes were kept and transferred into electronic format for further analysis. The number of 

visits, observations, and videotape recordings for each teacher are provided in Table 3 

below. The videotapes were independently analyzed and assigned an RTOP-score by the 

three researchers and a retired teacher in terms of the level of implementation. 

Interviews. The teacher interviews occurred once at the end of the semester. The 

interviews were semi-structured, for 45 minutes to an hour, targeting the teachers’ 

perceptions of learning and teaching, their role during problem solving, and use of 

writing. The researcher asked the teachers to compare their teaching experience before 

and after using the MRH approach and posed follow-up questions based on the teachers’ 

responses. Each interview was audiotaped and transcribed. 

Student scores. For each student participating in the study, the ITBS and ITED 

scores were obtained in such areas as mathematics concepts and estimation, mathematics 

problem solving and data interpretation, and writing. The ITBS (Grades 3-8) and ITED 

(Grades 9-12) are district-wide, annually-administered standardized tests that are used in 

the participating school district. The tests are administered around the same time every 

year (in February) across the district. The ITBS and ITED cover a wide variety of subject 

areas, such as vocabulary, reading comprehension, spelling, capitalization, mathematics 

concepts and estimation, mathematics problem solving and data interpretation, social 

studies, reference materials, and science. 

Analyses 

The analyses consisted of a series of passes through various aspects of the data. In 

terms of quantitative data, an analysis of covariance (ANCOVA) was estimated to control 

for other variables that might impact students’ mathematics achievement (Agresti & 
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Finlay, 1997). To ensure the accuracy of the data that were collected, both frequency 

distributions and descriptive statistics were obtained using the SPSS Frequencies 

procedure (Mertler & Vannatta, 2002). The SPSS Casewise Diagnostic procedure was 

employed to examine whether outliers possibly could affect the results of the study 

(Levine & Roos, 2002). Students’ ITED mathematics scores of the year of the 

implementation were used as the dependent variable, with teacher and group as the 

independent variables, and students’ ITBS scores from the previous year as the covariate. 

In terms of qualitative data, the classroom and videotape observations and the 

field notes were analyzed in terms of the level of teaching (i.e., level of dialogic teaching) 

in both control and MRH classrooms. The findings from both types of observations were 

triangulated with the interviews, email correspondence, and field notes, which provided a 

general trend of teachers’ pedagogical implementation that confirmed our classification 

of the level of their teaching.  

Level of teaching. To determine the level of teaching, we adapted an observation 

protocol called the Reformed Teaching Observation Protocol (RTOP) used to measure 

the degree of “reformed” teaching in mathematics and science classrooms (Sawada et al., 

2000). The instrument draws on the recommendations and standards for teaching 

mathematics and science that have been promulgated by NCTM (1989, 1991, 1995, and 

2000) and the National Science Education Standards (NRC, 1995). The instrument 

consists of 25 items, each rated from 0 (not observed) to 4 (very descriptive). The RTOP 

Chronbach’s Alpha is .954 for both mathematics and science classes (Sawada et al., 

2000). However, we modified the RTOP and chose the 14 items in Table 3 (Chronbach’s 

Alpha was .976). The items were then categorized according to the relevancy to each 
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other, and four sub-categories are constructed: Student Voice, Teacher Role, Problem 

Solving and Reasoning, and Questioning. The values of Cronbach’s alpha for the sub-

categories (Student Voice, Teacher Role, and Problem Solving and Reasoning) were 

.908, .882, and .952, respectively. There was only one item related to questioning so 

Cronbach’s alpha was not reported. The RTOP sub-categories identified are also similar 

to the categories of classroom practice documented by Franke, Fennema, and Carpenter 

(1997): providing opportunity for children to solve mathematical problems in their own 

ways; listening to children’s mathematical ideas; and using children’s mathematical 

thoughts in making instructional decisions through questioning. The RTOP sub-

categories were defined as followed: a) Student Voice: The amount of opportunities for 

students to share their ideas; b) Teacher Role: Allowing students to take responsibility of 

thinking process and problem solving process and moderating the conversation; c) 

Problem Solving and Reasoning: Allowing and encouraging students to discover their 

own problem solving methods either as groups or individually rather than providing a 

method, and asking for justification for their solution methods; and d) Questioning: The 

type and purpose of questions asked by the teacher. There was only one item related to 

questioning in the original RTOP instrument; therefore, questioning stands alone. 

The researcher provided an RTOP score for the on-site observations. However, 

not all the observations were RTOP-scored and the number of videotape recordings was 

not equal for all teachers. The number of observations and RTOP scores for each teacher 

is shown below in Table 2. The corresponding on-site RTOP scores were replaced with 

their videotape RTOP scores negotiated by the four raters. In other words, the 

corresponding videotape RTOP scores were used in the analysis. Thus, for all teachers 
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combined, 11 MRH and 5 control, final RTOP scores were provided, and the analyses 

were done accordingly. 

Table 2. Number of observations and RTOP scores provided for teachers. 

 

 

Total 

Number of 

Observations 

On-site 

RTOP 

Scoring 

Videotape 

RTOP 

Scoring 

Final RTOP 

Scoring 

Control 5 5 5 5 (0
*
) 

Mike 
MRH 20 11 9 11 (2) 

Control 5 5 5 5 (0) 
John 

MRH 18 11 8 11 (3) 

Control 5 5 5 5 (0) 
Amy 

MRH 18 11 7 11 (4) 
*
 Represents the number of final RTOP scores based on the on-site observation. 

 

The percentage of agreement (or the inter-rater reliability) between any pairs of 

observers for teachers’ level of teaching ranged from 90% to 95%. If there were any 

disagreement about a score, all observers watched the videotape and made a decision 

based on a discussion revolving around the problematic part of teaching. Such 

discussions resulted in 100% agreement by providing rationales for the scores. The final 

score of the observers was also compared to the researcher’s score for that particular 

lesson based on his on-site observations. There was a 90% match between the group 

scores and the on-site observation scores. 
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Table 3. Reformed Teaching Observation Protocol (RTOP)—modified
*
. 

 

  Never 

Occurred 
   

Very 

Descriptive 

-The instructional strategies and activities 

respected students’ prior knowledge and 

the preconceptions inherent therein. 

0 1 2 3 4 

-The focus and direction of the lesson was 

often determined by ideas originating with 

students. 

0 1 2 3 4 

-Students were involved in the 

communication of their ideas to others 

using a variety of means and media. 

0 1 2 3 4 

-There was a high proportion of student 

talk and a significant amount of it 

occurred between and among students.  

0 1 2 3 4 

-Student questions and comments often 

determined the focus and direction of 

classroom discourse. 

0 1 2 3 4 

S
tu

d
en

t 
V

o
ic

e 

OVERALL (Total/5)      

-The teacher acted as a resource person, 

working to support and enhance student 

investigations. 

0 1 2 3 4 

-The metaphor “teacher as listener” was 

very characteristic of this classroom. 
0 1 2 3 4 

T
ea

ch
er

 R
o
le

 

OVERALL (Total/2)      

-This lesson encouraged students to seek 

and value alternative modes of 

investigation or of problem solving. 

0 1 2 3 4 

-Students were actively engaged in 

thought-provoking activity that often 

involved the critical assessment of 

procedures. 

0 1 2 3 4 

-Students were reflective about their 

learning. 
0 1 2 3 4 

-Intellectual rigor, constructive criticism, 

and the challenging of ideas were valued.  
0 1 2 3 4 

-Active participation of students was 

encouraged and valued.  
0 1 2 3 4 

-Students were encouraged to generate 

conjectures, alternative solution strategies, 

and/or different ways of interpreting 

evidence.  

0 1 2 3 4 

M
a

th
 P

ro
b

le
m

 S
o
lv

in
g

 a
n

d
 R

ea
so

n
in

g
 

OVERALL (Total/6)      

- The teacher’s questions triggered 

divergent modes of thinking. 
0 1 2 3 4 

Q
.i

n
g

 

OVERALL (Total/1)      

 *
 The items were not changed but rearranged.     
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Results 

Overall Results 

The results from the study indicated that students in treatment classrooms did gain 

mathematical understanding. To back up this claim, we first provide the details of 

students’ ITED performance in three teachers’ classrooms: both the classes where the 

teachers implemented the MRH approach and their control classes where the teachers 

engaged in their typical instructional routines. The complementary qualitative analysis 

unpacks the evidence we gathered to document our second claim that there was 

improvement across time in the three teachers’ ability to support dialogic interaction for 

mathematical problem solving. Finally, in order to support our description of how 

teachers shifted their pedagogical practices over the time of the study,  we illustrate our 

evidence that teacher questioning skills were a forerunner to improving other pedagogical 

skills important for promoting dialogic interaction, such as giving students voice, 

promoting student problem solving, and listening attentively to students’ ideas. 

Treatment Improved ITED Scores Significantly over Control 

Statistical results are reported for all the three teachers. Before estimating an 

ANCOVA model, possible violations of key assumptions were investigated. Normal 

probability plots of model residuals, along with the Kolmogorov-Smirnov test, were used 

to examine the normality assumption for the estimated model. The linearity assumption 

was addressed by plotting standardized residual values against the predicted values. 

Using the SPSS Casewise Diagnostic procedure, the outliers (below and above 3 standard 

deviations) were removed from the data file (Levine & Roos, 2002). Examination of the 

Normal Q-Q Plots obtained through the SPSS Explore procedure enabled the researchers 
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to monitor the patterns of lines in which the resemblance to linearity was judged. The 

results of tests of the linearity and normality assumptions and transformation procedures 

were not reported unless one or both were violated. Finally, the homogeneity assumption 

was examined by using Levene’s test for equal variances within each ANCOVA analysis. 

Levene’s test results were provided with each set of analysis of results. 

To decide the potential covariate for the ANCOVA model, students’ ITBS scores 

for the previous year in different subject areas such as language, reading, and 

mathematics were analyzed. The ITBS Mathematics (Mathematics: Problem solving and 

Data interpretation) was the only subject that was significantly different between the 

control and MRH groups for each teacher (e.g., F (1, 47) = 4.545, p = .038) or among the 

teachers for each group (i.e., F (2, 64) = 3.365, p = .041). Therefore, the ITBS 

Mathematics scores were chosen as the covariate for the ANCOVA model. 

An overall ANCOVA model was estimated using the ITED mathematics test of 

the same year as the dependent variable, with the teacher and group as the independent 

variables, and the ITBS Mathematics Problem Solving and Data Interpretation test of the 

previous year as the covariate. The model yielded a significant main effect of group in 

favor of the MRH (F (1, 163) = 5.381, p = .022, η
2
 = .032) (see Table 4 for adjusted 

means and standard errors). Moreover, even though there was no significant interaction 

effect (F (2, 163) = .350, p = .706), the analyses of pairwise comparisons indicated that 

John’s MRH classes (M = 284.554, SD = 18.721) significantly outperformed Mike’s 

control class (M = 273.645, SD = 14.700), t (52) = 2.288, p< .05, Amy’s control class (M 

= 268.555, SD = 14.361), t (54) = 3.518, p< .05, and John’s own control classes (M = 

276.154, SD = 18.585), t (75) = 1.976, p< .05. Corresponding Cohen’s d effect sizes 
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were, respectively, .618 SD, .916 SD, and .450 SD (see Table 5). Even though the 

difference was not significant, Cohen’s d effect size difference between John and Amy’s 

control classes was .437 SD. Moreover, Mike and Amy’s MRH classes had higher mean 

scores than their control classes (significantly higher in Amy’s case). Mean Square Error 

was 345.281, and adjusted R
2
 was .316 for this model. Finally, Levene’s test of equality 

of error variance showed non-significant results (F (5, 164) = 1.154, p = .334), which 

confirms that the error variance of the dependent variable is equal across groups. 

Table 4. Descriptive statistics for ITED Mathematics scores 

 

Group Teacher n Adj. Mean Std. Error 

Mike 16 273.645 3.675 

John 39 276.154 2.976 Control 

Amy 18 268.555 3.385 

Mike 35 279.463 3.145 

John 38 284.554 3.037 MRH 

Amy 24 279.113 3.800 

 

Table 5. Pairwise comparisons in Cohen’s d effect size 

 

  t (d.f.) Cohen’s d 

Mike (Control) 2.288
*
 (52) .618 

Amy (Control) 3.518
* 

(54) .916 

John (Control) 1.976
*
 (75) .450 

Mike (MRH) 1.165 (71) .273 

John (MRH) 

Amy (MRH) 1.119 (60) .291 

Mike (Control) .531 (60) .143 
John (Control) 

Amy (Control) 1.686 (55) .437 

Mike (MRH) Mike (Control) 1.203 (49) .332 

Amy (MRH) Amy (Control) 2.075
*
 (40) .623 

*
 p < .05 

 

Teachers’ Pedagogical Practices Improved Across Time 

Each teacher’s level of implementation was identified using the RTOP 

instrument. Each lesson observed and/or videotaped was attributed an RTOP score 
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ranging from “0” to “4,” with 4 being the highest level of teaching (see Figure 14). The 

mean scores of all individual lesson RTOP scores were assigned to the teachers as their 

final RTOP scores. Mike and Amy’s control teachings were rated .22 and .26, 

respectively. Their MRH teaching levels were 1.60 and .88, respectively. John’s control 

and MRH teaching levels were 1.40 and 2.10, respectively. Overall, while the teachers’ 

MRH teaching improved, their control teaching level tended to score the same throughout 

the study. John’s routine control teaching level was as high as Mike’s MRH teaching and 

higher than Amy’s MRH teaching. Moreover, Mike and Amy occasionally regressed in 

their implementation of the MRH approach, whereas John continued to improve after the 

5
th

 observation. Mike and Amy’s control teachings were the same over the course of the 

study. These observations can be seen in the left-hand side of Figure 14, where they were 

purposefully represented together in the same figure in order to present the comparisons 

of pedagogical practices between the teachers. Furthermore, the detailed analysis of the 

teachers’ MRH teachings provides evidence that there was an improvement in the 

teachers’ practices, with “questioning” being the critical component (the right-hand side 

of Figure 14). For example, even though the RTOP scores for John’s forth and fifth 

observations were low (between 1 and 1.5), his questioning was high (3); and then he 

improved all the pedagogical areas together for the next time. Below is the description of 

each teacher’s level of teaching. 

Case 1 (Mike) 

The left-hand side of Figure 14 provides Mike’s observation scores for his MRH 

and control classes. As can be seen in Figure 14a, his MRH teaching went up while his 

control teaching remained the same throughout the data collection. The MRH approach 
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provided Mike with a scaffold that he could use during his teaching, more specifically 

during problem-solving activities. Mike’s control teaching was traditional teaching where 

a teacher tells students what to do all the time, provides them with problem solving 

methods, and has students practice those methods. The detailed analysis of Mike’s MRH 

classroom practices showed that he put a lot of emphasis on questioning; however, the 

maximum RTOP score for questioning was 2.5, which occurred towards the end of the 

study. There were fluctuations in Mike’s practice between the 4
th

 and 8
th

 observations. 

Those were the times when he focused on his questioning yet was unable to pull up the 

other pedagogical areas. 

Case 2 (John) 

John’s classroom environment was very different from the other two teachers. He 

put a great deal of importance on the relationship with his students. He was always 

friendly and “a big believer of relationship. [I] need to connect with the kids on a first 

level, non-math level, uhm, on a human level” (Interview, John, 01/11/2006). His students 

were active in the classroom: “a noisy class never bothers me,” said John during the 

interview. John always began his lessons with an activity he called “The Event of the 

Day,” which asked, for example, “What happened at this time 10 years ago?” In both 

MRH and control classes, he always made problems a detective game and connected to a 

real-life situation in a meaningful way. As can be seen in Figure 14c, John’s control 

teaching was also higher compared to Mike and Amy’s control teachings. The detailed 

analysis of John’s MRH teaching practices also showed fluctuations yet consistently rose 

over time (the right-hand side of Figure 14). His questioning level was always higher 

compared to other pedagogical areas (student voice, teacher role, and problem solving) 
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and he was able to pull them up after the 4
th

 and 5
th

 observations where there were larger 

gaps between the questioning and other areas. As can be seen in Figure 14d, John began 

to more improve his questioning during the 9
th

, 10
th

, and 11
th

 observations along with 

other areas of his pedagogical practice, although these areas did not increase at the same 

rate. 

Case 3 (Amy) 

Amy was new at this school and was reluctant to try something different than her 

regular way of teaching. Even though she made progress in her 6
th

, 7
th

, and 8
th

 videotaped 

observations, this improvement was not consistent and she often fell back to her 

traditional way of teaching. Her regular questioning pattern was asking for factual 

information and mostly yes-no questions without following up with “why” question. She 

often missed the opportunity to create student-centered problem solving; instead there 

was a rush to get the “right” answer. Any student-student interaction was filtered by the 

teacher. Amy’s MRH teaching was parallel to her control teaching except for the 6
th

, 7
th

, 

and 8
th

 observations (the left-bottom corner of Figure 14). Amy showed an improvement 

in her practice of the MRH during these three observations where the first two were 

examples of high questioning without connecting to the other pedagogical areas and the 

third observation was a case of pulling these areas together with questioning even though 

the overall teaching was not high (the right-bottom corner of Figure 14).  
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Figure 14. Teachers’ levels of teaching and RTOP scores for sub-categories in MRH.  
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Patterns in the Teachers’ Pedagogical Shift to Supporting Dialogic Interaction 

As a result of intensive qualitative analysis, the researchers have four assertions 

for how the process of shifting pedagogical practices unfolded for these teachers. The 

assertions are in bold, while supportive evidence is in italics and the researchers’ 

comments are in normal type. 

Assertion 1. The MRH teaching strategies improved as a result of the feedback. 

Throughout the contact with the researcher, the teachers’ MRH teaching 

improved while their control teaching remained the same throughout the study. As can be 

seen in Figures 14a, 14c, and 14e, their MRH teaching resembled their control teaching at 

the beginning. Yet, their improvement occurred at different times and at different rates 

and amounts. For example, Mike showed a big gain during the third and forth 

observations and his level of MRH teaching dropped a little bit during the next two 

observations. On the other hand, John and Amy’s MRH teaching was stable (according to 

their control teaching) throughout the first half of the study. While Amy had a small 

improvement and then regressed to her control teaching level, John continuously 

improved his teaching with the MRH approach for the rest of the study. Mike, similarly, 

had a gain for the rest of the study; however, it was smaller compared to John’s. The 

following is the part of an example of feedback provided for the teachers after debriefing 

sessions:  

In general, I realized that your questioning is improving. Here are some remarks: 

give students chance to write their ideas on the board – in this way they will have 

feeling of ownership (For example, when Natasha said “divide, or split the L 

shape,” she could have gone to the board and showed what exactly she had 
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meant). Therefore, you would have had the opportunity to reflect on students’ 

responses. Instead of asking too general/vague questions, try to be specific and 

clear for your question. (For example: What properties of addition, 

multiplication, and division did you use to solve this problem? How and why did 

you choose to use them?) Missed opportunity: Creating a discussion on 

perimeter. When a student said that they needed to find the perimeter to find the 

cost of the carpet, a group discussion could have been created by asking, “What 

do you guys think? Let’s make groups of three or four to decide what we need to 

do.” (E-mail feedback for Mike, 11/06/2004) 

Such feedback was given to the teachers after debriefing sessions following the 

classroom observations. The focus was to highlight weaknesses and strengths in their 

implementations. The reactions of the teachers to such feedbacks were positive and they 

were willing to put them in practice in the next lesson. However, Amy showed reluctance 

to changing her implementation, with various reasons that are mentioned in the next 

assertions. 

Assertion 2. Promoting negotiation for problem solving was a challenge for the 

teachers. 

Since the teachers were used to their traditional teaching, where they first 

introduced the method for solving a problem and then had students practice it, moving to 

ensure they were “getting everybody’s contribution was a challenge” (Interview, John, 

01/11/2006). They had to force themselves to step back and let the kids discover different 

ways of solving problems. Mike, for example, said, “I think I need to let them discover 

on their own if it is right or wrong, let them go their own path” (Interview, Mike, 01/ 
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17/2005). On the other hand, the teachers struggled with how much they needed to let the 

students go down their own path. This challenge was addressed differently by each 

teacher. For instance, Amy was extremely frustrated when her students did not give the 

right answer in a lesson. During the debriefing session afterwards, she stated, “See, they 

don’t get it! Sometimes, I need to directly tell them the answer. We have so much to 

cover” (Debrief, Amy, 12/05/2005). Mike had the same opinion that 

I need to guide them along. Otherwise, we can end up not being very efficient. …If 

they are getting way off, I need to come in and steer them back to the direction. I 

can do that by giving them some facts or some questions to consider. (Interview, 

Mike, 01/17/2005) 

On the other hand, John took an opposite perspective on this. He admitted that he 

did not give students enough time to discover their own methods and “I always think that 

big part of figuring out is for me to instruct them.… But now with this project, [I am] 

trying to step back and see how it [letting kids discover] works” (Interview, John, 

01/11/2006). When he compared his control teaching and MRH teaching, he noticed the 

changes in his teaching: 

I always find myself thinking “ohh, Reggie would be proud of me. Or Reggie 

would slap my hand.” So, I tried it, and it went so well, because I had to shut up. 

We went back and forth, back and forth, arguing…. I know in my heart that this 

class [MRH] learned better than the other period [control] where I was more the 

instructor. (Interview, John, 01/11/2006) 

Even though Mike did not mention his thought-process during teaching, analyses of the 

videos revealed that he often went back and forth between his traditional teaching and the 
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new way of teaching. For example, he often stopped telling students how to do the 

problem and said, “Well, uhm, okay, I guess I’ll let you guys think on this, okay? Think 

about it, either on your own or with your partner, for a moment. And we’ll come back 

together” (Videotape, Mike, No. 5). In a lesson where Mike followed students’ ideas, 

even though he was good at asking high-level questions, he eventually ended up telling 

students what to do: “The ‘square’ part tells you that you need to find the area. Go ahead 

and find the area” (Videotape, Mike, No. 7). Mike, like Amy, was also constrained by 

the curriculum. 

When we did student-led learning, we ended up with, uhm, pushing them for 15 

minutes or so, and ended up not getting the concepts out of that we wanted them 

to. And to get through the curriculum, and get through the things that we want to 

teach each year, we’ve got to be on a, at least, certain speed, or certain direction 

on each day. (Interview, Mike, 01/17/2005) 

On the other hand, John pointed out the importance of spending time on a single problem, 

by saying “We don’t get as much our curriculum covered because it takes longer, so, but 

the students are learning in greater depth. Perhaps, this is more important” (Interview, 

John, 01/11/2006). 

For Mike and Amy, behavioral problems were also a challenge in this student-

oriented learning environment as Mike said, “Some students don’t know their boundaries 

in student-led learning” (Interview, Mike, 01/17/2005) whereas, for John, “A noisy class 

never bothers me.…That’s why I do those warm-up activities [e.g., The Event of the Day] 

before we get started. To get to know students on a human level.” (Interview, John, 

01/11/2006). Indeed, even though John had more students with behavioral problems, he 
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was able to get them involved in solving problems by assigning them roles in their 

groups. On the other hand, Mike and Amy used “punishment” (e.g., suspension or the 

principal’s office) to control such behaviors, which turned students off to the lesson. 

Interestingly, the on-site and videotape observations revealed that students with 

behavioral problems in Mike and Amy’s classes in fact did make significant contributions 

to the discussion about solving problems. 

Assertion 3. While the teachers were more active in their questioning strategies, they 

were unable to move to a consistent pattern of dialogical interaction. 

From Figures 14b, 14d, and 14f, it can be seen that all the teachers, at some point, 

had a high level of questioning yet were unable to incorporate that with problem solving 

and dialogical interaction. For example, the major area that John needed to work on was 

his domination of classroom interaction; that is, even though he asked thought-provoking 

questions, the interaction was only with a particular student. This notion of interaction 

meant that student voice was lost in his class. Throughout the debriefing sessions, he 

realized that “So, you just want me to shut up and not tell the answer?” (Fieldnotes, 

John, 11/13/2006). John’s level of questioning also improved his role during problem 

solving by giving students more opportunities to discover their own methods. He 

indicated that 

In math there is always a right answer, and I tell the answer. But now with this 

project, [I am] trying to step back. …The first time we did, it wasn’t as good as it 

should be. Because they’d never done it before. But they get better at listening. I 

discovered ways of looking at stories I’ve never thought of. One time, about a 
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problem, one girl came up an idea, which I never thought of, because I’ve never 

given them think time to tell me how they do it. (Interview, John, 01/11/2006) 

Similarly, Mike’s classroom observations showed that he often lost track of 

students’ ideas since he focused on his questioning and had a teacher-only-one-student 

interaction pattern. During the debriefing sessions the researcher focused on questioning 

and the effects of higher-order questioning in other pedagogical areas. Mike worked on 

his questioning and on not telling students the answer if the correct one did not emerge. 

To this end, he started to call on different students, which required other students to be 

engaged in problem solving and listening to their peers, and he often rephrased his 

questions to make them explicit to the students (e.g., Well, what I’m trying to ask is …). 

Thus, he managed to incorporate his questioning with problem solving later in his 

implementation. For example, he spent more than half of a lesson trying to come up with 

different ways of solving an equation. The students were fully engaged, working together 

to come up with, as they said at the end of the lesson, “different routes to get to the town 

if the high-way is closed” (Videotape, Mike, No. 10). On the other hand, Mike solved 

four different problems in 15 minutes in his control class, without any discussion or 

getting students’ ideas. This type of teaching was his regular control teaching throughout 

the project. This view also came out during the interview, as he defined learning: “It 

[learning] goes like hand in hand. I have x amount of knowledge and skills that I can 

pass on to the students” (Interview, Mike, 01/17/2005). Even though he acknowledged 

students’ own knowledge and ways of knowing, this idea was consistent neither with his 

pedagogical practices nor with his definition of the teacher’s role in the classroom, as he 

indicated during the interview: “I think it [the role of the teacher] depends on what type 
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of learning atmosphere we want for the day. Sometimes, I can be more of a facilitator, 

and other times, if it is information type, I need to lecture and give it to them directly” 

(Interview, Mike, 01/17/2005). 

The same perspective on teaching was also held by Amy. Her implementation of 

the MRH approach was not as high as Mike or John’s. Yet, there were instances where 

she tried harder to get students involved in discussion, as can be seen in her eighth 

observation (Figure 14f). From the observation, it appeared as though Amy was 

struggling with managing classroom discipline. As such she tended to go back to her 

traditional teaching, where she lectured most of the time. She often indicated during the 

debriefing session and the interview that “these students are not used to this kind of 

learning, so lecturing works better for them” (Debrief, Amy, 12/05/2005). 

Assertion 4. The teachers implemented writing in different ways. 

The teachers used writing in a variety of ways such as filling in the MRH student 

template while solving a problem, writing an explanation of a problem solution to an 

audience, and writing a letter about a topic. While Mike and Amy struggled to implement 

many writing activities in their classes—for example, Amy implemented only two 

writing activities during the first unit—John, on the other hand, was very active trying to 

get writing activities going, as he said, “Writing is always natural to me. But I never used 

that much in my lesson plan, writing in this way, so simple. ‘Explain the concepts so that 

a fifth grade student can understand it. Or imagine somebody is absent.’” (Interview, 

John, 01/11/2006). This notion of writing, “not just writing, but writing to an audience,” 

was appealing to John, as he said, “before they only wrote to me.” All three teachers used 

writing prompts such as “Write a letter to a 5
th

-grade student about multiplying 
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fractions.” or “Explain to your parents what you have learned this week about factoring 

polynomials.” Mike, for example, asked his students to write a letter for 5
th

-grade 

students about ratios and how they could use them in shopping. He actually took the 

letters to a fifth grade teacher and asked her to distribute to her students and ask them to 

read and evaluate the letters. Similarly, John had his MRH students write an explanation 

of the solution of a problem they solved in class to 7
th

-grade students, while his control 

students were asked to “write an explanation about this problem so that I can understand 

that you know how to solve it.” John was excited when he was talking about this activity 

during a debriefing session: 

You know what, Reggie? The seventh-grade writing came out wonderful. They 

drew pictures, and all other stuff. Even they came up with different ways of 

solving the problem, which we didn’t in the class. They thought of what they knew 

back in seventh grade. (Debrief, John, 12/15/2005) 

On the other hand, Amy was using writing as an assessment tool rather than a 

learning tool. While John spent time in class discussing what students wrote, Amy and 

Mike did not provide feedback on writing assignments. In fact, there was only one 

instance where Amy spent some time on discussing students’ writings: when John and 

she collaborated for a writing activity during the second unit. However, although Amy 

did not provide feedback on writing assignments, she was more insistent on having 

students complete the MRH student template as part of the problem solving process. 

Discussion 

This study focuses on examining the changes in pedagogical practices when three 

teachers shift from their traditional teaching to more student-centered practices. The 
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study also looked at the performance differences on the Iowa Test of Educational 

Development (ITED) between the students in the control classes where the teachers 

engaged in their traditional instructional routines and the students in the treatment classes 

where the teachers used the MRH approach to improve their pedagogical practices and to 

scaffold students’ problem solving skills. The study particularly focused on changes in 

the teachers’ pedagogical practices when using the MRH approach. The major findings of 

this study are that implementing a student-oriented approach such as the MRH approach 

which includes embedded writing-to-learn strategies does have an impact on student 

performance and that teachers’ adoption of the required pedagogical practices varied as 

they attempted to move away from their traditional practices. 

The student performance on the standardized test was significantly enhanced for 

students in the MRH classrooms than students who engaged in the more traditional 

approaches—the statistically significant main effect of group was in favor of the MRH (F 

(1, 163) = 5.381, p = .022, η
2
 = .032). Moreover, the performance differences in effect 

sizes in the ITED scores between John’s MRH classes and the other two teachers’ and his 

own control classes—Mike’ control (.618 standard deviation units), Amy’s control (.916 

standard deviation units), and John’s control (.450 standard deviation units)—indicate the 

benefit of using student-oriented approaches such as the MRH approach with embedded 

writing-to-learn strategies in problem solving. I argue that there are two reasons why 

these differences occurred. First, the results from the analysis of the teachers’ 

pedagogical practices in their treatment and control classes show us the importance of 

pedagogical skills to promote dialogical interaction during problem solving. Such a result 

supports the earlier work of Cobb, Yackel, and Wood (1993) and Simon (1995, 1997) 
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who have argued for implementing a constructivist approach to learning, where the 

teacher’s role is crucial to promoting social aspects of learning by creating dialogical 

interaction. Specifically, Lester et al. (1994) and Simon (1997) stated that the teacher, by 

avoiding being the authority of knowledge in the classroom contrary to the view of 

appropriate teacher behavior in the past, can promote students’ negotiation of 

mathematical ideas and problem solution methods. This concept of dialogical interaction 

and negotiation of mathematical ideas and solutions gives students the ownership of 

problem solving. The students in the MRH classes were involved in the process of 

construction of mathematical relations, questions, problems, and meanings rather than, as 

Ernest (1998) says, working on textual or symbolically presented teacher-set tasks. This 

study suggests that teachers should change their pedagogical practices from an 

algorithmic view of problem solving to a negotiation view of problem solving. Similarly, 

Cobb, Boufi, et al. (1997) and Watson and Mason (2005) also argue that the importance 

of social constructive nature of mathematical objects is that individuals actively construct 

their mathematical understandings as they participate in a socially situated discourse. 

In examining the results the researcher would suggest that there are two critical 

elements of the MRH approach. The first is the pedagogical approach needed and the 

second is the consistent use of the heuristic concept through the scaffolded writing 

component of the MRH approach. Given that John’s RTOP scores and his willingness to 

use writing activities in his classroom are consistently higher than Mike and Amy’s, I 

would suggest that he is able to build both of these critical components, that is, the 

pedagogy and the heuristic writing. However, when examining Mike and Amy’s results, I 

would suggest that each had a different emphasis in his/her classroom. Mike’s RTOP 
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scores were higher than Amy’s which indicates that he was more prepared to engage with 

the required pedagogical practices. However, the classroom observation data does 

provide evidence that Amy was more insistent on having students complete the MRH 

student template as part of the problem solving process. While she struggled with the 

pedagogical changes her students were still able to engage in the heuristic problem 

solving process. This data does begin to indicate the importance of building both of these 

aspects together as a means to benefit student performance. 

In examining the changing pedagogical practices, the researcher would suggest 

that developing appropriate questioning skills is a necessary skill in promoting dialogical 

interaction. The break-down for the RTOP scores in the teachers’ MRH classes (the right-

hand side of Figure 14) shows that questioning was the skill that moved the most and was 

the one that brought the others (student voice, problem solving and reasoning, and 

teacher role) up to match it. This structure was parallel across the three teachers and had a 

match with the fluctuations in their MRH implementations shown on the left-hand side of 

Figure 14. That is, as the teachers improved their questioning skills, they were better able 

to implement the MRH approach. This suggests that in helping teachers to implement the 

MRH approach we need to focus attention on their questioning skills. Moreover, for 

better results, teachers should align their questioning with dialogical interaction by 

providing students with more opportunities to discuss their problem solving methods in 

public. 

The structure of the MRH approach is two fold. The teacher component requires 

teachers to make connections among different aspects of learning mathematics in the 

classroom. For example, they are to consider the importance of student-student dialogue 
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as well as of self-dialogue (e.g., through writing) in problem solving. Students in the 

MRH classes are engaged in such a learning experience in the classroom where they can 

discuss their ideas with their peers, and through individual writing they are engaged in 

self-problem solving using the MRH student template. Therefore, it is possible to see two 

different sources of effect on students’ learning when using the MRH approach. First, 

teachers using the MRH approach are required to change their pedagogical practices in a 

way to promote student dialogical interaction through questioning. Second, using the 

MRH student template students are engaged in self-dialogue through writing—the 

heuristic function of the MRH approach. In other words, students use the template as a 

thinking device rather than as a worksheet. For this reason, the MRH approach should be 

considered as a whole rather than as two different parts for teachers and students in order 

to observe its impact on the improvement of students’ learning and problem-solving 

skills. 
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CHAPTER FOUR 

General Conclusions, Implications, and Limitations 

General Overview 

The last chapter of the dissertation first addresses the general conclusions 

emerging from the literature on mathematical problem solving and writing-to-learn in 

mathematics and makes the connection to the themes of the results of the study. Second, 

implications based on the findings of the study and their relationships to the literature are 

discussed. Finally, surrounding limitations of the study are delineated. 

General Conclusions 

Literature Review 

The literature review of the dissertation traces a wide range of the literature on 

mathematical problem solving, the nature of mathematics, the construction of 

mathematical knowledge, writing-to-learn strategies in mathematics, and the relationship 

between the processes of mathematical problem solving and writing. The studies on 

problem solving point out the importance of integrating problem solving into 

mathematics programs to promote students’ conceptual understanding of the mathematics 

they study (Hiebert & Wearne, 2003; NCTM, 2000). Specifically, the NCTM states that 

the effectiveness of school mathematics in work, school, and life “lies at the heart of 

problem solving” (p. 334). 

Given the significance of problem solving in learning mathematics, the literature 

review also shows that teaching and learning mathematics through problem solving gives 

both teachers and students opportunities to make sense of mathematical ideas by 

appreciating the individual and collective aspects of mathematics—that is, the 
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conversational nature of mathematical knowledge (Ernest, 1998; Kahan & Wyberg, 2003; 

Rasmussen, Yackel, & King, 2003). Moreover, Hiebert and Wearne (2003) have argued 

that students should be challenged with mathematical problems that make them struggle 

in finding solutions and that require them to work collaboratively to solve the problems. 

Based on the literature review on the nature of mathematics and social 

construction of mathematical knowledge (Borasi, 1992; Cobb, Boufi, McClain, & 

Whiteneck, 1997; Cobb, Yackel, & Wood, 1992, 1993; Ernest, 1998; Krummheuer, 

2000) and taking a constructivist perspective to learning, I conclude that learning is 

associated with personal meaning making based on the already existing knowledge 

structure and the social interaction with the environment. Therefore, learning 

mathematics should be considered an active process of personal construction of 

mathematical understanding through the use of natural language in a socially situated 

conversation by students. Further, Borasi and Ernest point out the humanistic and 

conversational aspects of learning mathematics. 

However, considering that learning can be, and is, an individual act and that 

conversation can occur within an individual (without an interlocutor), I highlight the 

importance of writing in learning (mathematics); that is, writing as a “unique mode of 

learning” allows the writer to generate new ideas and new meanings via an ongoing 

dialogue between the written product (text) and one’s thoughts (Bereiter & Scardamalia, 

1987; Emig, 1977; Galbraith, 1999; Galbraith & Torrance, 1999; Vygotsky, 1986). 

Furthermore, Galbraith (1999) and Powell and Lopez (1989) have argued that during 

writing one engages in a dispositional dialectic where he or she negotiates meaning, and 

in negotiation, one is constructing knowledge and augmenting learning. 
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Using the problem-solving model of Artzt and Armour-Thomas (1992) and 

Galbraith’s (1999) writing as knowledge-constituting model, I have examined the parallel 

structures of the problem-solving process and writing process. In both processes, one has 

to move between different episodes in order to solve a problem or write a text. For 

example, both writing and problem-solving processes begin with an input (writing topic 

or mathematical problem), which activates the knowledge network units related to the 

topic. Both problem solver and writer engage in an internal negotiation process through 

both problem solving and writing, which is what Galbraith called dispositional dialectic. 

Even though there are studies exploring the relationship between writing and problem 

solving, these studies have not outlined the parallel structures (Pugalee, 2001; Steele, 

2005). Pugalee and Steele’s work provide evidence of metacognitive behaviors in 

students’ mathematical writing. These studies also show that the demanding and 

connective notion of writing scaffolds students’ problem solving activities and, therefore, 

enhances their mathematical knowledge structure. 

Building on the work in the areas of problem solving and writing and on the bases 

of the SWH approach by Hand and Keys (1999), I propose a framework—the 

mathematics reasoning heuristic (MRH) approach—for teachers and students to combine 

different aspects of mathematics teaching and learning such as teachers’ knowledge of 

mathematics, students’ knowledge of mathematics, and students’ learning of 

mathematics. These aspects come together with the MRH approach in a dialogical 

interaction and writing. The intent of the MRH approach is, besides supporting teachers’ 

pedagogical practices, to guide students’ problem solving behaviors and their problem 
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solving skills through the use of writing (Connolly & Vilardi, 1989; Kenyon, 1989; 

Morgan, 1998). 

The Study 

The purpose of the study is to examine the changes in pedagogical practices when 

three teachers change their practices from traditional teaching to student-centered 

practices and to explore the performance differences in the ITED scores between the 

students in the control classes where the teachers engaged in traditional instructional 

practices and the students in the treatment classes where the teachers used the MRH 

approach to improve their pedagogical practices and to scaffold students’ problem 

solving skills. The major findings of the study are that implementing a student-centered 

approach such as the MRH approach with embedded writing-to-learn strategies in 

mathematics classrooms does have an impact on students’ performance and that teachers 

improve pedagogical practices at different times during an attempt to shift their teaching 

practices to practices based on a student-centered learning. 

Performance on the ITED mathematics test significantly favored those students 

who were involved in the MRH approach compared to students involved in the teachers’ 

traditional approach. Moreover, significant mean score differences between John’s MRH 

classes and the other two teachers’ and John’s own control classes indicate the benefit of 

using the MRH approach with embedded writing-to-learn strategies in the problem 

solving process. The first reason for this difference is the teachers’ ability to promote 

dialogical interaction during problem solving. The results from the analysis of the 

teachers’ pedagogical practices in their treatment and control classes illustrate the 

importance of pedagogical skills in promoting dialogical interaction. In implementing a 
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constructivist approach to learning, the teacher’s role is crucial to promoting the social 

aspects of learning by creating dialogical interaction (Cobb, Yackel, & Wood, 1993; 

Simon, 1995, 1997). Simon (1997) further argued that the teacher, by avoiding being the 

authority of knowledge in the classroom, can promote students’ negotiation of 

mathematical ideas and problem solution methods. This concept of dialogical interaction 

and negotiation of mathematical ideas and solutions gives students ownership of problem 

solving. The students in the MRH classes are involved in the process of the construction 

of mathematical relations, questions, problems, and meanings rather than, as Ernest 

(1998) says, working on textual or symbolically presented teacher-set tasks. 

The results obtained from observational data indicate the importance of 

questioning in creating dialogical interaction. For example, even though John’s 

questioning was high during the third, fourth, and fifth observations, he was unable to use 

it to improve other areas of his pedagogy. On the other hand, throughout the debriefing 

sessions, John used his questioning not only to get richer responses but also to challenge 

students’ ideas and create conflicts in students. He was then able to have students discuss 

with each other in order to resolve these conflicts. Von Glaserfeld (1993) argues that 

through dialogical interaction students have the opportunities to modify their existing 

concepts and conceptual relationships according to inconsistencies they are experiencing 

at the moment. Thus, questioning is a crucial part of pedagogical practices because it 

creates perturbations requiring students to negotiate their meanings and mathematical 

experiences among themselves and thus providing opportunities for them to resolve these 

conflicts. 
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The second reason for the difference comes from the heuristic/writing function of 

the MRH approach. The MRH approach provides students with a heuristic as a problem-

solving device. In order to have an impact on students’ standardized test scores, the 

pedagogical practices and the heuristic/writing function of the MRH approach should be 

combined. While John was able to make a greater connection between these two 

components, Amy and Mike tried various, sometimes inconsistent, combinations of the 

pedagogy and heuristic/writing functions of the MRH approach during their practices. 

However, even though Mike’s implementation rated by the RTOP was greater than 

Amy’s, their MRH class means were equal. This would indicate that the heuristic and 

writing functions of the MRH approach may also play a critical role on students’ 

standardized test scores, given that Amy’s pedagogical practices were the weakest, yet 

her class means were the same as Mike’s. These two functions make problem solving a 

valuable tool for students to deepen their understanding of mathematical ideas 

(Goldenberg & Walter, 2003; Heibert & Warne, 2003) and mathematics as “a living 

language, or, more precisely, a family of living languages” (Layzer, 1989, p. 129). 

The results from this study indicate that the MRH approach should be considered 

as a whole interweaving the teacher and student templates together by integrating writing 

into problem solving. In terms of implementation, the studies conducted in science areas 

using the SWH approach (Akkus, Gunel, & Hand, in press; Gunel, 2006) also showed 

that students’ test scores were directly correlated with the level of implementation. Low-

level teachers tended to use the SWH approach as a template without incorporating the 

major pedagogical practices suggested by the SWH approach. 
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Implications 

The results of the study suggested a number of implications for students during 

problem solving and for mathematics teachers who wish to shift their teaching practices 

to more student-oriented approaches where they can integrate writing into mathematical 

problem solving. First, the MRH approach provides a scaffold for teachers to understand 

the fundamental aspects of learning and teaching mathematics in a student-centered 

manner because it requires teachers to consider various components of classroom 

learning such as students’ knowledge of mathematics, teacher’s knowledge of 

mathematics, and teacher’s knowledge of students’ learning. To implement such an 

approach, teachers should identify the fundamental concepts of a unit and relate them to 

how students learn. The teacher template is a tool for teachers to consider different 

aspects of learning through the phases of negotiation. Having said the MRH approach 

provides a scaffold for teachers, teachers can also use the RTOP instrument to evaluate 

their own or a colleague’s teaching practice. Even though this study suggests the 

importance of long-term support for teachers, there is still a need for research that 

examines teachers’ pedagogical changes over a longer period of time documenting the 

effect of these changes on students’ standardized test scores. 

Second, the MRH approach provides a problem solving heuristic for students 

during problem solving. The student template is not just a template to fill in; rather, it is a 

device to scaffold students’ mathematical thinking and problem solving. One of the major 

connotations that can be drawn from the results is that this study suggests that students 

should be provided opportunities to negotiate problem solving rather than engage in the 

more expected role of memorizing and practicing teacher-generated problem solving 
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methods. In accordance with students’ learning through negotiation, teachers should shift 

their view of problem solving from an algorithmic view to a negotiation view of problem 

solving. The performance difference between students in the control and MRH classes 

indicates that when students have the opportunities to negotiate their problem solving 

either in public or private through writing, they construct their own mathematical 

understanding. However, this study did not examine students’ use of the student template. 

In other words, further research needs to be conducted to examine students’ problem 

solving episodes in order to explore what aspects of cognitive and metacognitive 

behaviors occur when students use the MRH student template during problem solving. 

Third, the results of the study suggest that the MRH approach should be 

implemented by combining the heuristic and writing functions of the approach with the 

necessary pedagogical skills in order to promote students’ mathematical learning. 

However, one can argue that the effect of the approach may only come from a teacher’s 

implementation level (rated by the RTOP), and, therefore, writing has nothing to do with 

the students’ scores. Another argument might be that writing is the only key for students’ 

success on the standardized test. In these cases, further experimental studies are needed 

that focus on only (a) the teacher component of the approach, (b) the student component 

(the heuristic and writing functions), and (c) the combined version as suggested by this 

study to delineate effects of each model component of the MRH approach. 

General Remarks 

This study looked at the changes in teachers’ pedagogical practices through the 

use of the MRH approach as a way to promote students’ problem solving via dialogical 

interaction and writing. The study was able to show the need for analyzing the 
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relationship between different areas of teacher pedagogical practices and helping teachers 

to use their questioning skills to promote a better classroom negotiation. Moreover, the 

study suggests that teachers should change their practices from an algorithmic view of 

problem solving to a negotiation view of problem solving. 

Limitations 

There are several limitations surrounding the study. First, because of the nature of 

the study and the teacher volunteers, random sampling was not possible; therefore, one of 

the statistical assumptions was violated. In addition, even though the town that the school 

is located in can be considered typical for Iowa, the characteristics of the school district 

and town may be different from other school districts and towns in general. Thus, 

generalization of the findings from the study is limited to the sample of the study in the 

population in Iowa, not to a population in general. The assignment of students to classes 

was completed by the school district and assumed to be random. Indeed, random 

sampling for research purposes in educational settings is rarely possible due to several 

organizational and cultural restrictions. 

Another limitation is that even though standardized tests have been widely used in 

educational research for measuring learning outcomes, they lack measures of the 

complexity of the learning process. Yet, standardized tests are stronger indicators than 

teacher generated tests. The ITED, in particular, measures not only content areas with 

factual knowledge, but it also tests the mathematical problem solving and data 

interpretation. 

The other limitation of the study is the time of the intervention for the teachers 

and their teaching experience in the school district featured in the study. For example, the 
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data of the study were collected at two different times, the 2004-2005 and 2005-2006 

school years. Moreover, while John has been in this school district for 28 years, Mike and 

Amy have been for 5 and 1 years, respectively. This might have effected Amy’s 

implementation. Further, the number of videotapes for the control and treatment classes 

was not equal. Therefore, the ability to draw a general conclusion about the relationships 

between teachers’ pedagogical shifts and students’ test scores is constrained. 

The final limitation is the researcher’s biases. Since the interaction between the 

researcher and the teachers occurred at different times and in different conditions, the 

relationships between the teachers and researcher may have influenced the researcher’s 

view and interpretation of the data. However, the researcher attempted to reduce this 

influence by using multiple data collection methods, triangulation of the data, and 

independent observers. Moreover, one would argue that without the researcher’s 

subjective perspective, it is not possible to draw such conclusions. Subjectivity is part of 

research. 
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FOOTNOTES 

1
 The schema (knowledge) is defined in Silver (1982) as “a cluster of knowledge 

that describes the properties of the concept it represents” (p. 16). 

2
 The collective knowledge can be a mathematical knowledge introduced by the 

teacher (e.g., A= l x w), or it can be created by the participating students in the classroom. 

3
 The condition of the problem is the relationship between the data and the 

unknown (e.g., in a problem finding the sides of a rectangle whose circumference is 

known with the largest area, the known circumference and the area are the two 

conditions). In other words, it is the constraint or limit of the problem. 

4
 Schoenfeld’s 1983 edition of the heuristic includes “reading” as the first stage of 

problem solving; however, the 1985 version considers reading within analysis. 

5
 “Ordinary or ‘natural’ language is the medium in which we think and speak 

about the world of ordinary experience. The words and phrases of a natural language 

derive their meanings, directly or indirectly, from shared experience” (Layzer, 1989, pp. 

124-125). 

6
 New ways of using language (e.g., in algebra “let x be any number”) (Adler, 

1999, p. 51). 

7
 New ways of using language (e.g., in algebra “let x be any number”) (Adler, 

1999, p. 51). 


