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Abstract. Gullies are an extreme form of soil erosion that degrade diverse environments 
trough the siltation of streams and water bodies. Indirectly, gully erosion compromises crop 

productivity working as a link to watercourse allowing movement of detached topsoil 
particles from agricultural fields during heavy storm events. Furthermore, studies found 
reduction of the catchment area when active gullies are present. This complex process 
involves multiple factors and it demands to be studied consistently in order to locate the 

areas prone for gully erosion. The determination of gullies areas depends upon 
topographical, geological, and hydrological characteristics; however its location is mainly 
controlled by the high capacity of overland flow to cut the channel. We hypothesize that 

identification of gully in agricultural landscape can be performed from high-resolution 
elevation data products and unsupervised clustering approaches. In order to examine this 
hypothesis we have used variables resultant from of LiDAR-based terrain analysis as input 

of a three clustering techniques.  A k-means, fuzzy k-means, and CLARA clustering 
algorithms were used to carry out the cluster analysis. The results of the cluster analysis 

suggested that 8 classes were optimal for group areas in the watershed. Elevation data from 
one field-scale watershed near Treynor in Pottawattamie County, IA, was used to calibration 

purpose and terrain analysis using slope, flow accumulation, plan convexity, topographic 
wetness Index, and stream power index were calculated. The cluster analysis has shown 
highest concordance with percentage of corrected classified pixels that approach based in 

medoid (CLARA) has obtained the best agreement of points within gullied area (30.1%). The 
results of this research might speed up gullies field surveys and also can serve as input in 

conservation planning framework 
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Introduction  

Classic gullies are an extreme form of soil erosion which degrade diverse environments 
trough the siltation of streams and water bodies. Indirectly, gully erosion compromises crop 
productivity working as a link to watercourses. It allows movement of detached topsoil 
particles from agricultural fields during heavy storm events.  

Many studies (e.g. Vandaele et al., 1996, Vandekerckhove et al., 1998, Poesen et al., 2003, 
Poesen et al., 2011) indicated that location of gullies areas depends upon topographical, 
geological, and hydrological characteristics; however its location is mainly controlled by the 
high capacity of overland flow to cut the channel.  Nevertheless, despite of its significance, 
only a restricted erosion models account for channel sediment losses in its procedures, for 
instance: AGNPS (Annual Agricultural non-point source pollution), WEPP (Water Erosion 
Prediction Project) model, EGEM (ephemeral gully erosion model), and CREAMS 
(Chemicals, Runoff and Erosion from Agricultural Management Systems). Most of these 
models compute sediment production of small or ephemeral gullies. Furthermore, those 
models need also the user guidance to indicate the gully location.  Thus, an accurate and 
no-time consuming methodology to indicate the gully location in the landscape is needed.   

The concept of a topographic threshold is applied, recently, to predict location in the 
landscape where gullies are prone to develop (Momm et al. 2013, Poesen et al., 2011).  A 
negative relationship between drainage area and watershed slope to associate channel 
incision was found by Begin and Schumm (1979). 

Other approach applied to describe potential flow erosion is the unit stream power index 
(SPI).  This measure of erosive power of overland flow is detailed by Moore et al. (1993) and 
its equation given as: 

ሻܫሺܵܲݔ݁݀݊ܫ	ݎ݁ݓ݋ܲ	݉ܽ݁ݎݐܵ ൌ 	ሺ݊ܮ 	஺ೞ
ௌ
ሻ   (1) 

The As is the local upslope contributing area per unit width of contour line and S is the local 
slope.  

The topographic wetness index (TWI) is often employed to simulate the soil moisture 
conditions in a watershed and also takes in account both a local slope geometry and site 
location in the landscape. Validation studies of this index were done by Beven and Kirkby, 
1979 and  Deng and Li, 2002. The TWI is usually used to   describe the long term soil 
moisture at each point of a drainage basin.  

ሻܫሺܹܶ	ݔ݁݀݊ܫ	ݏݏ݁݊ݐܹ݁	݄ܿ݅݌ܽݎ݃݋݌݋ܶ ൌ 	ሺ݊ܮ ஺ೞ∗௉௜௫௘௟	௔௥௘௔
்௔௡ሺ	ೄ∗	ഏ

భఴబ
ሻ
ሻ (2) 

With availability of high resolution spatial data and data mining techniques, tasks of grouping 
objects with similarity are able to be performed repeatedly and applicable to large data sets. 
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Clustering is one of these tasks, which encompass methods to form analogous groups from 
observations or samples into classes (clusters). This means that samples that have similar 
attribute values are close together in a multidimensional feature space and consequently 
form a distinct cluster (Han and Kamber, 2006; Pakhira et al., 2005).  On the other hand, the 
use of a statistical clustering technique can also produce boundaries based on minor 
attribute difference, or, reflect data noise (e.g. measurement error, caused by sampling bias, 
etc). The clustering techniques, generally, group samples into distinct classes with discrete 
boundaries. However, soil or topographic attribute vary gradually over space, for example, 
and this representation may increase errors associate to inappropriate boundaries (Burrough 
et al. 1998) 

K-means is one example of discrete or hard clustering method (MacQueen, 1967). It is the 
simplest and a fast unsupervised learning algorithm based on fixed (k) number of clusters. 
Once initial points are assigned as a centroid (points in space that represent the center of the cluster), 
then each sample is labeled comparing its distance to the centroid. As disadvantage, k-
means with different initial partitions can result in distinct final cluster configuration. 

In order to overcome the problem of class overlapping, Bezdek et al. (1984) proposed the 
fuzzy k-means (FCM) approach and extended by De Gruijter and McBratney (1988). This 
technique seems suitable to environmental sciences (Burrough et al. 2000). This is because 
the degree with a sample belongs to a given class is expressed not in terms of a binary “yes” 
or “No”, but rather than a continuous membership value that ranges, for instance, from 0 to 
100. The method FCM clustering allows points to belong to more than one cluster, as result 
is frequently used in pattern recognition. It is based on minimization of the following objective 
function:  

J୫ ൌ 	∑ ∑ u୧୨
୫ୡ

୨ୀଵ
୒
୧ୀଵ 	ቚหx୧ െ	c୨หቚ

ଶ
, 1 ൑ m	 ൏∝            (3)             

Where m is any real number greater than 1, u୧୨  the degree of membership of xi in the cluster 
j, xi is the ith of d-dimensional measured data, cj is the d-dimension center of the cluster, 
and ||*|| is any norm expressing the similarity between any measured data and the centroid. 

Instead to tackle clustering with centroid points Kaufman and Rousseeuw (1990) created the 
medoid approach to group large data set.  CLARA (Clustering LARge Applications), a 
partitioning method, is one of the medoid variations which find medoids for a sample from 
the data set.  

We hypothesize that identification of gully in agricultural landscape can be performed from 
high-resolution elevation data products and unsupervised clustering approach. In order to 
examine this hypothesis we have used outcomes variables from LiDAR-based terrain 
analysis as input of a three clustering techniques 

The main goal of this study is: Analyze the efficiency of three unsupervised clustering 
techniques to identify potential gullies zones trough terrain analysis variables in a field-scale 
watershed. 

Material and Methods 

Description of study area 

The study area selected has a computed drainage area of 330,574 m2 ( 81.6 Acre or  33.05 
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hectare) and is a field-scale watershed  (41° 9' 44.54"N, 95° 38' 19.94" W) near Treynor in 
southern Pottawattamie County, IA (Figure 1). Entitled as Watershed #1, this field is one of 
four study areas established by the U.S. Department of Agriculture Research Service 
(USDA-ARS) and since 1965 was instrumented to provide measurements of runoff, base 
flow and sediment concentration. These measurements were quantified using broad-crested 
V-notch weirs located at the base of each watershed where the gullies channels are located. 
Precipitation was measured by rain gauges placed in the watershed perimeter. Four soil 
types occur in watershed #1, with the predominant soil being Monona silt loam (fine-silty, 
mixed, superactive, calcareous, mesic). Other soil types found in the watershed were Ida silt 
loam (fine-silty, mixed, superactive, nonacid, mesic), Marshall Silt clay loam (fine-silty, 
mixed, superactive, calcareous, mesic). The slopes in this sites range from 2% to 4% at the 
ridges and from 14 % to 20% for valleys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 - Topography map of watershed #1  in Western Iowa generated from LiDAR outcomes and, detail of gullied area. 

Methods 

Analysis involved completion of four main tasks: acquisition of spatial databases and 
creation of a digital elevation model (DEMs) of the study area, computation of terrain indices, 
classification of distinct areas and accuracy assessment. 

Spatial database and terrain model creation  

Spatial data for Pottawattamie County, including soil survey attributes and aerial imagery 
(national aerial imagery program, NAIP), were acquired from Iowa Department of Natural 
Resources Data Gateway (http:// http://www.igsb.uiowa.edu/webapps/nrgislibx/) and LiDAR 
(LIgth Detection And Ranging) data was obtained by Iowa LiDAR mapping project ( 
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http://geotree2.geog.uni.edu/lidar/). The integration of the spatial data was performed by Arc 
Map version 10.   

Using LiDAR survey Iowa statewide for the watershed #1 were identified 192,000 points 
inside of the study area.  This raw LiDAR point cloud was processed to produce digital 
elevation model (DEM) and triangulated irregular network with spatial resolution of 1 meter. 
From the DEM, consequent maps of topographic and hydrological variables were computed 
(slope, drainage network and aspect) implemented by ArcGis 10 (Jenson and Dominguez, 
1988). The gullied area was determined by previous surveys. 

Local slope (%) was calculated by eight-direction (D8) algorithm (Greenlee, 1987; Jenson 
and Dominguez, 1988), and later the percent slop was divided by 100 to obtain slope in m/m 
unit. In the same way flow direction and flow accumulation grids were computed. Flow 
accumulation for each cell represents the sum of all upstream elements (pixels) draining to 
the watershed outlet. The plan curvature (m/100) was computed by Zevenbergen and 
Thorne(1987) method where positive values represent a convex surface and negative a 
concave surface. Zero values indicate flat topography.  Profile curvature is towards the 
maximum slope and plan curvature is perpendicular to the direction of the maximum slope 
(ESRI, 2013) 

Creation of terrain-analysis indices  

Initially, the stream power and topographic wetness indices were computed trough raster 
calculator function available at ArcGis. The drainage area present in both equations was 
calculated by the flow accumulation procedure.  An automated model was created using 
model builder application (ArcGis 10) to calculate and consolidate topographic indices in 
watershed #1 data. The squared boxes represent the ArcGis functions (e.g. raster 
calculator, transform raster to point) and the rounded boxes symbolize the initial and 
intermediate input/output data as depicted in Figure 2.  

 
Fig. 2 - Flow chart showing the process to calculate topographic indices. 
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Once all the topographic, hydrologic features and indices were computed for each cell for its 
correspondent geography coordinates, they were consolidated in one text file to be used in 
the classification task.  Table 1 lists descriptive statistics for the study area.    

Other important spatial layers were analyzed in this study such as the soil data from 
SSURGO database which contains diverse soil parameter (e.g, soil series, available water 
capacity, surface and subsoil bulk density, parent material, texture, sand, silt, and clay 
content). From SSURGO soil properties analysis we could confirmed areas with soils types 
prone to erosion as well.  

Table 1 – Summary statistics of the quantitative independent variables used in the model. 

Variable  Max Min Mean Standard 
Deviation 

Units 

Local slope 40.6 0.0003 5.3 3.5 % 
Curvature  211 -238 0.05 7.8 rad/meter 
Plan curvature (tangential) 109.2 -160 0.02 3.6 m/100 
Profile curvature 145.6 -120.6 -0.03 5.7 m/100 
Flow Accumulation 701 1 10.6 23.4 Pixels (m2) 
Stream Power Index 7.4 -1.2 2.8 1.3 pixels 
Topographic wetness 
Index 

14.8 0.15 4 1.54 pixels 

Creation of distinct areas in the watershed and accuracy assessment 

 

Three unsupervised classification approach were used to analyze the data. K-Means 
(centroid approach), Fuzzy K-means (membership centroid approach) and CLARA (medoid 
approach) clustering techniques were performed on the dataset by R package (e1071, 
cluster and clusterSim functions). The within-cluster variation was the measure used to 
define the optimal number of clusters which is required to each grouping technique. In this 
case given the number of cluster K, the clustering algorithm minimizes the within-cluster 
variation: 

ܹ ൌ	∑ ∑ || ௜ܺ	 െ ܺ௞	||ଶ
ଶ	஼ሺ௜ሻୀ௞

௄
௞ୀଵ    (4) 

Over clustering assignments C, where ܺ௞		is the average of points in group K and  	
		ܺ௞	 ൌ 			

ଵ

௡ೖ
∑ ௜ܺ		஼ሺ௜ሻୀ௞     (5) 

As a way to measure the accuracy of the method to classify correctly the pixels in gullied or 
non-gullied area, we compared all gully pixels in the reference map to those pixels classified 
by each clustering technique.  Thus, the percentage of accuracy was calculated as total 
correct pixels in the gully area divided by total test pixels, multiplied by 100. The equation of 
the percentage of corrected classified pixel index (PCCP) is given by 

Percentage of Corrected Classified Pixels (ܲܲܥܥሻ ൌ 	 ((Pixels within gully area)/(total area 
classified as gully at watershed #1))* 100   (6) 

Results and Discussion 

The flow accumulation has the highest variability (s.d. 23.4 pixels) and local slopes vary from 
0 to 40 % suggesting that abrupt breaks in the landscape occurs locally in the gullied area. 
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The sum squared distance within clusters curve displayed local minima at the set of eight (8) 
classes, which suggested that this number of classes is optimal for partitioning the set of 
observed areas in the watershed.   

Among the three clustering techniques, CLARA (CLustering LARge Applications) obtained 
the best classification rate in the gully feature (Tab. 2). CLARA is based on medoid (median) 
approach instead of centroid method of K-means and Fuzzy K-means (Fig. 3). The resulting 
plot of the eighth classes by each classifier method is shown in Figure 3.  

Table 2 – Calculation of percentage of corrected classified pixels (PCCP) 

Clustering 
technique 

Pixels within gully area 
(m2) 

total area classified as gully at 
watershed #1(m2) 

PCCP (%)

K-means 708 2544 27.83 
Fuzzy K-means 3162 59977 5.27 
CLARA 982 3173 30.95 

It can noted graphically in Figure 3 that fuzzy k-means has the worst performance of 
classification including not only points in the gullied area but in curves lines. Even though, 
CLARA model final results classified more spurious points outside of the gullied area it 
appear that linear features prone to high concentrated overland flow were included in its 
analysis.  It worth mentioned that the lower rates of correct classification are due to the 
inclusion of pixels in the contour lines.  

   
(a) CLARA                        (b)   K‐means                               (c) Fuzzy K‐means 

Fig. 3 - Cluster with gully characteristics grouped by (a) CLARA, (b) K-means and, (c) Fuzzy K-means techniques. 

Cluster 1 computed by CLARA algorithm describes accordingly the gully perimeter. It is 
characterized by local high concaves topographies (mean: 21.51 rad/meter), and has 
negative profile curvature (mean: - 19.4 rad/m) which means convex flow, typically on gully 
edges and contour lines. Furthermore, the positive mean plan curvature (2.11 rad/m) 
suggests converging flows in the bottom-valley gully. Furthermore, we found that the range 
of values of Topographic wetness Index from 0.15 to 0.5 lies only in gully areas.  

Gully 
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Conclusions 

Accurate information about location of erosion features is of essential importance for 
landowners, stakeholders and researchers. In this study we compare three unsupervised 
methodologies to identify gully in a field-scale watershed using high-resolution LiDAR 
products such as topographic index and curvature. The approach using medoid approach 
(CLARA) achieves best classification rate and it seems promising because is not affected by 
outlier points. Furthermore, the median approach suggests that areas with similar hydrologic 
and topographic characteristics should have spatial proximity. So far, the methodology 
employed in this research presents certain degree of misclassification including contour lines 
as zones prone to erosion. Thus, improvements that isolate linear erosion features like 
classic gullies are our next steps. 

As a future research, we will continue making advances in medoid approach to account for 
features of conservation practices such as contours. Also, we are planning to compare 
gullies location in areas with different topographies and hydrologic features incorporating 
climate and soil aspects.   

We believe that this approach based on multidimensional clustering of topographic and 
hydrologic characteristics to locate classic gullies has potential to better inform decision 
makers relate to planning and implementation of soil conservation measures. 

Acknowledgements 

The authors acknowledge the valuable contribution Kevin Cole who provided the climate and 
hydrographic data for the Treynor site. This research was supported by Embrapa and 
Environmental Science Department of Iowa State University. 

References 

Begin, Z. B., and S. A. Schumm.1979. Instability of alluvial valley floors: a method for its 
assessment. Trans. ASAE. 22: 347-50. 

Beven, K. J., Kirkby, M. J., 1979. A physically based, variable contributing area model of 
basion hydrology, Hydrological Sciences Bulletin.  24: 43-69 

Bezdek, J.C., Ehrlich, R., Full, W., 1984. FCM: the fuzzy c-means clustering algorithm. 
Computers Geosciences. 10: 191–203 

Burrough, P.A., McDonnell, R.A., 1998. Principles of geographical information systems. 
Principles of Geographical Information Systems. Oxford University Press, USA. 

Burrough, P.A., Van Gaans, P.F.M., MacMillan, R.A. 2000. High resolution landform 
classification using fuzzy k-means. Fuzzy sets and systems.  113: 37-52. 

Deng H.,  and Li X. 2002. Relationship of upslope contribution area and soil water content in 
TOPMODEL, Progress in Geography. 21(2): 103- 110. 

De Gruijter, J.J., McBratney, A.B., 1988. A modified fuzzy k-means method for predictive 
classification. In: Bock, H.H. (Ed.), Classification and Related Methods of DataAnalysis. 
Elsevier Science Publishers, B.V,  97–104. 

 



2013 ASABE Annual International Meeting Paper Page 8 

ESRI. Curvature. 2013. Available at : < http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm? 

TopicName=curvature> 

Greenlee, D. D. 1987. Raster and Vector Processing for Scanned 
Linework. Photogrammetric Engineering and Remote Sensing 53 (10): 1383–1387. 

Han, Jiawei,and Micheline Kamber. 2006. Data Mining: Concepts and Techniques, 2nd 
edition, Morgan Kaufmann. 

Jenson, S. K., and J. O. Dominguez. 1988. Extracting Topographic Structure from Digital 
Elevation Data for Geographic Information System Analysis.  Photogrammetric Engineering 
and Remote Sensing 54 (11): 1593–1600. 

Kaufman, L. and Rousseeuw, P. J. 1990. Finding Groups in Data: An Introduction to Cluster 
Analysis, John Wiley & Sons, Inc., New York, NY. 

MacQueen, J. B. 1967. Some Methods for classification and Analysis of Multivariate 
Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and 
Probability, Berkeley, University of California Press, 1:281-297 

Momm, H. G., R. L. Bingner, R. R. Wells, J. R. Rigby, and S. M. Dabney. 2013. Effect of 
topographic characteristics on compound topographic index for identification of gully channel 
initiation locations. Trans. ASABE 56(2): 523-537. 

Moore, I.D., A. Lewis, and Gallant, J. C. 1993. Terrain attributes: Estimation method and 
scale effects. 30-38. In A. K . Jakeman et al. (ed.) Modeling change in environmental 
systems. John Wiley & Sons, New York.  

Pakhira, M.K., Bandyopadhyay, S., Maulik, U., 2005. A study of some fuzzy cluster validity 
indices, genetic clustering and application to pixel classification. Fuzzy Sets and Syst. 155, 
191–214. 

Poesen, J., J. Nachtergaele, Verstraeten, G. and Valentin, C. 2003. Gully erosion and 
environmental change: importance and research needs. Catena. 50: 91-133. 

Poesen, J., D. Torri, and T. Vanwalleghem. 2011. Ch. 19 – Gully erosion: procedures to 
adopt when modelling soil erosion in landscapes affected by gullying. In Morgan, R.P.C., 
and M.A. Nearing (eds). Handbook of Erosion Modelling. Blackwell-Wiley: Oxford. 

Vandaele, K., J. Poesen, G. Govers, and B. van Wesemael. 1996. Geomorphic threshold 
conditions for ephemeral gully incision. Geomorphology. 16: 161-73. 

Vandekerckhove, L., J. Poesen, D. Oostwoud Wijdenes, and T. de Figueiredo. 1998. 
Topographical thresholds for ephemeral gully initiation in intensively cultivated areas of the 
Mediterranean. Catena. 33: 271-92. 

Zevenbergen, L. W., and C. R. Thorne. 1987. Quantitative analysis of land surface 
topography. Earth Surf. Proc. Land. 12: 47-56.  

 

 


