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ABSTRACT

The main goal of this study is the-situ investigation of the ferroelectric domain
structure inside polycrystalline BaT4d@nder thermo-electro-mechanical loading conditions
The outcome is two-fold: (i) the characterizati@thniques were improved to study the
polycrystalline ferroelectrics in the mesoscale] &) the texture, lattice strain and volume
fraction of domains were tracked under appliedtateeld and mechanical stress.

Two novel synchrotron-based characterization tephes, three-dimensional X-ray
diffraction (3-D XRD) and Scanning X-ray Microdiffiction (LWSXRD) were used in this
study. The methodology and standards in both teclesi differ from each other and the
present study provides a framework to bridge thes@niques. Although these methods
have been developed earlier, their application aaaptation to ferroelectrics required some
care. For instance, diffraction spots often ovgréap and made it difficult to identify
individual domains and/or grains. In order to ehate the spot overlap, the polycrystalline
BaTiOs; sample was heated above the Curie temperatureewher (tetragonal) domains
disappear and attain the orientation of the graext, the sample was cooled slowly to the
room temperature and the evolution of the ferraatedomains was studied at temperature
and under electric field. The orientation relasbmps, volume fractions and lattice strain
evolution of 8 domain systems were studied.

Whereas the orientation of the domains remainedhamged under electric field, the
fraction of the energetically favorable domain sats increased. Due to local constraints,
complete switching from one domain variant to amotlwas not observed. The
misorientation angles between domain variants gjigheviated from the theoretical value
(=89.4°) by 0.2-0.3°. The deviation angle can kplaned with the phase-matching angle
developed during the cubic-tetragonal phase tramsttion to maintain strain compatibility
of neighboring domains. The multiscale strain atioh of ferroelectric domains in a
polycrystal was investigated quantitatively for thest time. Under electric field, lattice
strains of up to 0.1% were measured along the egbfield direction.

The present study offers a framework to characetie polycrystalline materials
with complex twin structures. By using the methiody described in this study, 3D-XRD



and uSXRD techniques can be employed to study rexand lattice strain evolution in
polycrystalline materials in the mesoscale.



CHAPTER 1. INTRODUCTION

Ferroelectric ceramics have been extensively usethicroelectronic and sensing
applications for more than 50 years because of theiellent piezoelectric properties [Jona,
F. (1962)]. As we live in an electronic age, a widage of additional applications such as in
transport and civil infrastructure will be built tvimore ferroelectric actuators and sensing
devices. Therefore, more accurate prediction ofofdectric properties will improve the
efficiency and productivity of the design and regluis environmental impact. To achieve
this, more sophisticated constitutive models aedad.

Ferroelectric materials are widely produced withwger processing and other
advanced manufacturing techniques [Rogan, R. (2008 final microstructure is usually
composed of grains containing several domains tesdldrom each other with domain
boundaries. With an external stimulus such as idetield or mechanical stress, domains
tend to orient along a uniform direction via a damawitching mechanism. Domain
switching in one grain results in a change of str@sd electric field in neighboring grains
and this change generally leads to additional caimés on the original grain. The result is a
complex three-dimensional stress state, which, vdoeipled with the low fracture toughness
of ferroelectric ceramics, leads to degradation faildre. Therefore, proper quantification
of ferroelectric constitutive behavior requires echinique capable of measuring internal
stress/strain and domain switching (which leadsetdure) at the inter- and intragranular

level.

The current understanding of ferroelectric congtieu behavior is often based on
either extreme of the microstructure scale, i.ethat microscopic or macroscopic levels.
While the former employs energy relations at tlmrat level and requires a great number of
parameters [Jordan, T. L. (2001)], the latter seli@ various assumptions to describe the
behavior of the bulk and ignores most microstrugtyrarameters of the material. Both
approaches also usually assume linear piezoelemedficients and employ a number of
assumptions and parameters for the boundary conditilTherefore, the improvement of the
design and performance of ferroelectric ceramicsnot be achieved without a more

sophisticated constitutive model, a model that se¢dol be multiscale bridging the



macroscopic and microscopic levels, and that takesaccount appropriate microstructural
parameters evolving at the intermediate mesoscale.

The main goal of the present study is to generata dt the mesoscale and help fill
the gap between the atomistic and macroscopic schtethis end, we have investigated the
mesoscale behavior of ferroelectrics by studyinmaios in the bulk and at the surface. The
bulk behavior has been studied using ttiee'e-dimensional X-ray diffractio(8D-XRD)”
method available at Sector 1 of the Advanced Ph&ource (APS) in Argonne National
Laboratory, Argonne, IL. For higher resolutiont loloser to the surface, th&€anning X-
ray microdiffraction (WSXRD)” technique has been employed at Beamli2e3.2 of the
Advanced Light Source (ALS), Lawrence Berkeley Na&il Laboratory, Berkeley, CA.

We have selected BaTi@s the test material because of its well-knowmpg and
chemically stable crystal structure. Having beewlisd for more than 50 years, there exists a
large body of literature on this material. Surpwgy, there are still some unknowns on
BaTiOs, e.g., the mechanism of 90° domain switching ¥ sbmewhat insufficiently
described [Floquet, N. (1997)].

There are seven main chapters that describe tkemirstudyChapter 1provides the
introduction and goal of this researchapter 2 outlines the basic principles of
piezoelectricity, ferroelectricity, ferroelectricoohain structures in both single crystal and
polycrystalline ferroelectrics. The texture evaduti of ferroelectric domains is very
important and it is crucial to have a fundamentabwledge on texture to interpret the
results.Chapter 3fills this gap and describes the fundamentalsegiure and explains why
we selected theNeo-Eulerian method to represent the orientation of the feecteic
domains. Chapter 4 and 5describe the general principles of the two nortrdetve
characterization techniques (3D-XRD and pSXRD) us€dhapter 6 presents the
experimental results and compares the domainserbtik and those at the surface. The
orientations of the ferroelectric domains in theneasample were also investigated with the
EBSD technique an@hapter 7shows the results from this investigation. Theegkpents
with both XRD techniques demonstrated that indigidierroelectric domains can be tracked
as a function of applied electric field or temparatandChapter 8summarizes the results of
this investigation. Here, individual domains witha polycrystalline ferroelectric were



monitored under loading and their lattice straimletion was measured for the first time.
The present study offers methodology and a unigyeounity to study the constitutive
behavior of ferroelectrics at the mesoscale.



CHAPTER 2. FERROELECTRICITY

This chapter will offer brief, fundamental basias f@rroelectric materials. The so-
called active materials and their application area$ be described. The concepts of
piezoelectricity, ferroelectricity and the micrasttural features of these materials will be
introduced. The response of ferroelectrics to detsstimuli alter their microstructural
features, e.g., via domain switching. The basichrmaisms that dominate this process will be
explained and the mesoscale behavior of polyciystaierroelectrics will be portrayed.

2.1. Active Materials

In modern materials science applications, theiegsowing interest in materials that
change shape or size under external stimuli sueheasric or electromagnetic fields. These
materials are called "active" or "smart" materidlbe active materials are used in a wide
variety of applications:

Thermo-elastic materiat® Fiber optic sensors

Piezoelectric material® Magneto-elastic damping, transducer/sensing aqjiics
Magnetostrictive material® Electro-acoustic devices

Shape memory alloy® Photo-elastic sensors

One of the most active research fields in matersence is dedicated to the
characterization of active materials so that thewoperties can be enhanced due to a better

understanding of the microstructural mechanisms tbatrol the constitutive behavior of
these materials.

2.2. Piezoelectricity

Piezoelectricity is defined as the coupling betwe®thanical stress and electricity.
Lack of symmetry in the unit cell is important fihie existence of piezoelectricity since a net
movement of positive and negative ions with resgeceach other as a result of stress
produces an electric dipole, i.e., polarizationt @uthe 32 point groups of symmetry, 21 do
not possess a center of symmetry and 20 of therpiezxeelectric [Haertling, G. H. (1999)].

Only 10 of these 20 groups can be polar in the rades®f applied stress. These 10 polar



classes are also pyroelectric (the ability to geteelan electric potential when heated or
cooled). Many electronic devices employ piezoeieityrin a variety of applications such as

actuators or sensors.

2.3. Ferroelectricity

Ferroelectric materials are a subgroup of pyrodaésct Ferroelectrics must have a
spontaneous polarization whose direction can baxgdth with an electric field. In other
words, a ferroelectric material will still possesselectric polarization when the electric field
is reduced to zero. Ferroelectrics differ from pelectric materials with their “spontaneous
polarization”. On a side note, there are analogmaserials that couple different physical
phenomena: a material showing a hysteresis betweshanical stress and strain is called
ferroelastic (usually due to a stress-induced effect such aselransformation or domain
switching), while the one that couples magnetitdfend strain is calleéerromagnetic If a
material combines at least two of the propertieatinaed above, it is calledultiferroic.

Most commercial ferroelectrics have the perovskitgstal structure. This structure
contains three ions of the forBGs. The A and B atoms posses +2 and +4 charges,
respectively, while th® atom has a -2 charge. TheandO atoms are at the corners and
faces of the unit cell, respectively, and hatom is at the center. One of the most common
ferroelectric materials is BaTgJFigure 2.1).

2.4. Ferroelectric Domains

Ferroelectric materials are known for their ability convert mechanical energy to

electric energy or vice versa. Upon cooling fromeaitral or paraelectric phase, the material
is called *“ferroelectric” if it exhibits spontane®upolarization. The transformation
temperature from the paraelectric to ferroelegthase is called the Curie temperaturg).(
As the material is cooled below the Curie pointlividual clusters of unit cells tend to orient
along crystallographic directions (that depend lo drystal structure) to minimize internal
energy. These individual clusters with uniform p@iation vectors are called ferroelectric
domains. Ferroelectric materials such as Ba B Pb(Zr, Ti)@ (PZT) have perovskite-type
ferroelectric phases beloWic and cubic crystal structure above. Figure 2.1wshthe



schematic displacive transformation of Ba7i@nit cell during the paraelectric-to-

ferroelectric transformation.
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Figure 2.1. Left: Unit cell of BaTiO; in the paraelectric phase above the Curie temperate (T¢).
The cubic symmetry does not allow for a spontaneoyslarization. Right: Unit cell of BaTiO3
in the ferroelectric phase (belowT¢). The vector of the spontaneous polarizatiorRsyon IS
oriented in the direction of the displaced titaniumion. [Kamlah M. (2001)]

The orientation of domains is crystal structureat@lent leading to polar directions

along a cube edge (6 variants), body diagonal (Bms) and face diagonal (12 variants) for

tetragonal, rhombohedral and orthorhombic symnegtriespectively [Li, F. X. (2006)]. The

six domain variants of tetragonal Bagi@re shown in Figure 2.2. A polycrystalline

ferroelectric is typically an assembly of graingttltontain several domain variants as in

Figure 2.3.



Figure 2.2. Following the paraelectric-to-ferroeletric phase transition, the spontaneous
polarization vectors can choose among six equivaledirections in tetragonal perovskites.
[Kamlah M. (2001)]

Figure 2.3. Grains in a ferroelectric material with sub-regions of equal spontaneous
polarization — domain variants. [Kamlah M. (2001)]

Due to crystal symmetry, the direction of some a@fmdins within the material can be
equivalent. For example, cooling from the cubiatietragonal phase can form three kinds of
domain structures [Cao W., Cross L. E. (1991)]:18)° domains where the polarizations in
the two domains will have the same magnitude bpbspe directions, (2) 90° domains with
a charge-neutral domain wall where for polarizagian the two domains are (almost)
perpendicular to each other with a head-to-tailfigomation, and (3) 90° domains with a
charged domain wall, where the polarizations intthe domains are perpendicular to each
other but in head-to-head or tail-to-tail configioas. It has been shown that the last kind of
domain structure is not stable and tends to tramsfoto the second kind with a zigzag twin



boundary. The 90° and 180° domains and the cornepg domain walls in BaTi©are
shown in Figure 2.4. The thickness of the 180° domaall in BaTiO; is generally
considered to be in the order of one unit cell@ligh larger estimates have been made for
the 90° domain walls [Subbarao E. €.al. (1957)].

90° domain wall
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Figure 2.4. (a) 180° domains separated with domaimalls. (b) 90° domains in BaTiQ where
the angle between neighboring polarization vectors 90° — 0.57° = 89.43°

Figure 2.5 shows the microstructure of a polyciiisg@ BaTiO; specimen. This
complicated domain pattern makes it a challengaciurately characterize the mesoscale
domain mechanics. To date, most research has doatezhon averaging the bulk behavior
and ignoring the contribution of the individual daims. In tetragonal symmetry, electric
field can lead to both 180° and 90° domains whilkechanical stress can cause only 90°
domain switching [Berlincourt, Det al. (1959)]. While Merz, W. J. (1952) indicated thia¢ t
final domain structure must contain all 180° domsaiMerz, W. J. (1954) later observed
reoriented 90° domains as high electric fieldsamother interesting research, Danielson, G.
C. (1949) investigated the domain orientation inygaystalline BaTiQ under applied
electric field and found that 80% of the polycrystansists of 180° domains while rest is 90°
domains. Berlincourt, D. (1959) predicted that @3he total polarization occurs due to 90°
domains switching, 1/6 occurs due to 18Witching and the rest is due to the intrinsic
piezoelectric effect. Since the 90° reorientatibd@mains requires more energy, the fraction
of the 90° domains is not usually significant ie fimal microstructure. All of these studies,
however, relied on bulk averaging or surface charamations. The present study will
attempt to offer more detailed information on damawitching in polycrystalline

ferroelectrics.



Figure 2.5. The microstructure of polycrystalline BaTiO3 that shows domain variants within
grains. [Arlt. G. (1990)]

2.4.1. Twinning vs. Domain Switching

Domain switching and twinning are similar mechargsbecause they both require
well-defined crystallographic orientation relatibiss across their boundaries.

Twinned crystals are produced in various ways. Asystal grows from its initial
nucleus some accident of growth may cause it ta,tauch accidents being for a variety of
reasons very much more probable in some structtihas in others. Twinning may
alternatively provide a means of relieving the istraduced by applied stress. Twinning may
also be produced as the result of polymorphic faansations when a structure of higher
symmetry is converted to a structure of low symmelhese are the three principle types of
twins and they are known respectively gsowth twins deformation twins and
transformation twingLee, C-C. (2004)]. The deformation twins are fdun, e.g., BCC and
FCC lattices. Growth twins are known in, e.g., B3gland the formation of the twin can be
understood as a shear operation with (111) planesessively translated by 1/3[11-2]
vectors [Lee, C-C. (2004)]. The transformation tsvare the dominant domain structure of
BaTiOs and they are known as 180° and 90° domain variants
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2.4.2. Models of Domain Switching

Modeling the domain switching in polycrystallinerrieelectrics is a popular topic
among the computational materials scientists. gtieg models can be exemplified as a
historical snapshot:

e Indirect Observations of Domain Switchinghe early work on the domain switching of

ferroelectrics was focused on the nucleation aravtir of domains in single crystal
BaTiOs under electric field and at high temperature [Méfz J. (1954)]. The domain
wall thickness and energy were calculated in thislys the latter using the contributions
of dipole-dipole interactions and anisotropy. Thergy of dipole interactions was found

as10™/Na’erg/cn? whereN is the thickness of the wall in atomic separatianda is

the lattice constant. The energy due to anisotogpybe calculated via the elastic energy
per cni which is stored when the unit cell deforms frotmagonal to cubic and is in the

order ofe,,, =1c,,z> erg/cmi wherecss is a single crystal elastic constant apdszhe

elast = 2
spontaneous strain in BaT4@t room temperature. In this assumption, the domaall
energy from the anisotropy is the function of spoebus strairg, crystal volume, V and
domain wall thickness, t and electric field is agtialong33 direction. Then, the wall

energy per crhdue to anisotropy becomes, . = 1¢,,z2Na erg/cmi. The minimum wall

energy is obtained when

—14
9oy _ 0= —(%) +3CpZ;a
oN N“a (2.1)
or when
N =(2x10*c,,z%a%)"? (2.2)

From Equation 2.2, it is clear thisit(wall thickness in atomic separations) must bellsima
BaTiOs because the dipole-dipole interaction is small gredanisotropy is largé\ value at
room temperature withss=2.0x10? dyne/cmi, z=7x10° a=4.0x10® cm becomes ~1 as an
atomic constant.

In Subbarao’s work [Subbarao, E. C. (1957)], donsavitching as a result of electric
field or mechanical stress was observed by chamgesray patterns and dimensional
changes in the polycrystalline BakiOBecause of the difference in tleeand a lattice
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constants in tetragonal BaTd090° domain switching should result in both dimenal
changes and changes in the intensity of some yeaks, e.g., (200) and (002). Meanwhile,
180° domain switching will not lead to any dimemsbor x-ray pattern changes. During the
depoling process, Subbarao, E. C. (1957) conclutat essentially all the 180° domain
walls are removed and the polar axis of the dombésswithin 90° of the applied field; in
addition, about 12% of the domains switch by 90dearrthe influence of the poling field, but
the about half of the these revert to their orior@éntation after removing the electric field.
Subbarao also observed a strong inelastic effecriamic BaTi@ in the ferroelectric region.
About the half of the strain, for a given stressinelastic; this is presumably due to domain
reorientation under stress, since the strain ier@babove the Curie point. For stresses
approaching the breaking stress of the materiahesb3% of the domains in the material are
reoriented by 90° according to Subbarao, E. C.{L95

In Berlincourt’s work [Berlincourt, Det al. (1959)], the amount of 90° reorientation
during poling was determined from measured mechésitains. It was found that within
tetragonal symmetry electric field can cause bd@°land 90° domain reorientation but,
mechanical stress can cause only 90° switching. degree of the polarization in
polycrystalline ferroelectric ceramics during pgliwas calculated for different crystal
structures in Table 2.1. According to these cattuis, the polarization vectors of the
domains in a polycrystalline are one of the favteathrections and the degree of the

polarization would bgn—1)/n wheren is the number of the polarization vectors allovired

the crystal symmetry.

Table 2.1. The portions of the polarization contriluted by various domain-switching
mechanisms in different crystal structures [Berlinourt, D. et al. (1959)]

Tetragonal Rhombohedral Orthorhombic
1/6  No switching 1/8 No switching 1/12  No switching
1/6  180° switching 1/8 180° switching 1/12  180°tsWing
2/3  90° switching 3/8  71° switching 1/6 90° switadyi
3/8 109° switching  1/3 60° switching
1/3 120° switching

The following calculation shows how the data inblBa2.1 were extracted from
experiments on single crystal and polycrystallin@TE; samples. The typical remnant
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polarization for polycrystalline BaTi{was measured as 5.314 pClowhile for a single
crystal, this value was 26 pC/énFor a perfect orientation of the ceramic along poling
direction, the maximum polarization will be cryssdtucture dependent and for tetragonal
crystal, it is 26x0.83=21.6 uC/énirhe portion resulting 180° domain switching aciiog to
Table 2.1 is 1/6*21.6=3.6 uC/émrhe mechanical strain for the perfect 90° redstion of

a tetragonal BaTi@ceramic in terms of the tetragonal distortion .8796 ¢/ais 1.01) and
the remnant axial strain was calculated as 0.04y%sbuming the parallel and lateral strains
are the same ratio of piezoelectric constai®ndds; [Berlincourt, D. et al. (1959)]. This
indicates only 12% of the possible domain reorigmta actually took place. With 12% of
the 90° domain reorientation, its contribution tdet ceramic polarization is
0.12*2/3*21.6=1.7 pC/cfn The total ceramic remnant polarization should nthee
3.6+1.7=5.3 uCl/cm As will be shown later, this number is in perfagreement with results

obtained in the present study.

o Phase-field ModelswWang, J. et al (2005) investigated the microscdpimain structures

in 2D ferroelectrics under biaxial strains usinglase-field model based on the time-
dependent Ginzburg-Landau equation that takes kmty-range electric and elastic
interactions into account. In phase-field simulasiothe spontaneous polarization vector,
P = (P1, P, P3), is usually used as the order parameter, and ithe-dependent

Ginzburg-Landau equation, given as,

Pt |, F .
. L6Pi(r,t) (i=123) (2.3)

is generally used to calculate the temporal evotytivherel is the kinetic coefficientf is

the total free energy of the systerc?;l,: IoR (r.1)

represents the thermodynamic driving
force of the spatial and temporal evolution of Hwmulated system; denotes the spatial
vector,r = (X1,%,Xs), andt denotes time. The total free energy of the systetades the bulk
free energy, the domain wall energy, i.e., the gynef the spontaneous polarization gradient,

the long-range electric and elastic interactionrgies, and the elastic energy induced by
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applied strains. The temporal evolution of the 2ilapzations at different temperatures and

applied strains can be obtained by solving Eq.)(&i8h periodic boundary conditions in

reciprocal space. In the cited research, thers@mee calculated results but this simulation is

based on temperature dependent domain switching &omulti-domain state to a single

domain state. The Curie temperature for this sitiariais selected around 400°C which is

close to the Curie’s temperature of PZT. In thigdgt the simulation results are only at the

steady state.

Thermodynamic Calculation#lere, the macroscopic polarization states can beireda

by a nonlinear thermodynamic theory [Wang, J. et(2005)]. The equilibrium
polarization states are a function of the Helmh&ke energy of the system. This energy
depends on several electromechanical parametens ascdielectric stiffness and
coefficients, electrostrictive coefficients, andastlc compliances. The equilibrium
polarization states under different biaxial straansl temperatures can then be determined
by the minimization of the Helmholtz free energy.

Statistical ModelsLi et al [Li, F. X. (2006)] calculated the theorsti saturated domain

orientation states in tetragonal, rhombohedral arthorhombic ferroelectrics under
electrical or mechanical loading by using a simgtltistical method. In this model, the
state of a cubic grain, which may contain seveyaés$ of domains, is described by three

Euler anglesd, ¢, y) in a fixed global Cartesian coordinate systenyFe 2.6).

A

xl
Figure 2.6. lllustration of the global Cartesian cordinate system [Li, F. X. (2006)]
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The polar vector of each domain can be denoted Vmctor that starts from the center of a
unit sphere and ends at the spherical surfacendrptoposed simple method, it is assumed
that for a ferroelectric witin equivalent polar directions, an ideal poling treat can make
the end points of the polar vectors distribute amifly on the spherical surface of a cone
with its area equal td/n that of the entire unit spherical surface. Thuw saturated
polarization and spontaneous strain of a poled&ectric can be obtained by the following

equations:
O¢
P, j cosfsin6do
n —
Psat = Oec = n I:)0 (24)
[sinode
0

O¢
cos’ 0 — 1sin®0)sin06do
Yo.c[( 2 ) _(n—l)(n—2)
- n2 YO (25)

YSat = 0c
jgnede
0

where@; equals half of the central angle of the cone glvgt, = arccosn;—2 . Cooling from

paraelectric phase, the individual domains camobiire certain crystallographic orientations.
These allowable directions are respectively alonglkse edge (6), body diagonal (8) and face
diagonal (12) for tetragonal, rhombohedral and artibmbic symmetries, respectively.
Therefore, the maximum spontaneous polarizatioa pbled ferroelectric will b€.833R,
0.875R and0.917R for tetragonal, rhombohedral and orthorhombic tadystructures [Jaffe,
B. (1971)], respectively, whe®, is the polarization of an ideally poled sample.

e Phenomenological Model§ hese models (e.g., the Rayleigh model) try to mlesche

observed behavior without attempting to explain gtg/sical origin. Hlinka, J. et al
(2006) analyzed the properties of ferroelectricdelastic twin boundaries in tetragonal
BaTiOs-like crystals in the framework of the phenomenaday Ginzburg-Landau-
Devonshire model. They assumed a proper ferro@ectystal with a parent phase of
macroscopically cubic Osymmetry. The free energy of this system is assuimdoe the
sum of the part associated with a hypotheticalregiee cubic statE; and the excess free
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energyF arising due to the nonzero primary and secondatgrqparameters (polarization
and strain fields).

Micromechanics Models In micromechanics models (e.g. the Preisach model)

[Steinkopff, T. (1999)], a set of physical equatds solved on a small material volume
from which the macroscopic behavior is calculatgdaberaging. The material behavior
is described by means of physically meaningfulatales. The main advantage of these
models lies in their predictive capability. In acnamechanics model, domain switching
occurs at sufficiently high stress, or field levels, E. Switching is connected with

changes of both the spontaneous sti4S° and the spontaneous polarizatii4P° .
Favorably oriented domains grow at the expensentdvworably oriented ones. Because
of crystal symmetry (e.g., tetragonal) there areartban one possible new direction of
spontaneous polarization. In the 3D micromechanicglel used, the work done by
switching is assumed to exceed a (positive) clitiatue:

T-AS*+ E -AP = Aw < Aw (2.6)

which corresponds to critical stress or criticaéotlic field under uncombined uniaxial

loading. As a consequence of this combined energgrion, the critical stress value is

linearly dependent on the applied electric fielthfdstunately, this model fails to offer

further insight into domain switching mechanisméeirmoelectrics.

Self-Consistent ModeHuber et al [Huber, Jet al. (1999)] developed a constitutive

model for the non-linear switching of ferroelectpolycrystals under a combination of
mechanical stress and electric field. It was assuthat domain switching gives rise to a
progressive change in remnant strain and polanzatnd to change in the average linear
electromechanical properties. It is further assurtieat switching is resisted by the
dissipative motion of the domain walls. This modely gives the macroscopic response
of tetragonal crystals and does not offer lattita@-specific information that could be
useful in the present study. Meanwhile, a recenkviay Motahari, M. S. (2007) enabled
self-consistent model to increase the capabilitysifdying crystal structures with a
higher number of domain variants such as rhombatedrthorhombic, and even
monoclinic structures and provide hkl dependerdrimftion from the domain variants.
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In this chapter, the fundamental principles of feeroelectric materials and the
morphology of the ferroelectric domain structureaeveutlined. In a polycrystal ferroelectric,
domain variants can present in a grain and then@ati®on of each domain variant can be
obtained by the 3D-XRD and puSXRD techniques. Qtetnte texture knowledge is
necessary to identify the domain variants fromgsame grains and evaluate the evolution of
those domains with external stimuli. Chapter 3 déiscribe the fundamentals of quantitive
texture analysis and shows the standards to firgbmeintation between domain variants

when crystal symmetry is present.
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CHAPTER 3. TEXTURE

Most engineering materials are crystalline, and aonty of those are used in
polycrystalline form. Depending on their crystalustures, materials can exhibit anisotropy
in certain physical properties as both single @algsand polycrystals. Therefore, quantitative
texture analysis is important in understanding mnmatebehavior. In this chapter,
fundamentals of quantitative texture analysis, mwesh of defining the orientation of
crystallites and finding misorientation betweennthe&ill be described. This information will

be valuable when the XRD techniques employed mshidy are described in Chapter 4.

3.1. Definition

Each grain in polycrystalline materials is essdiytia single crystal (while it is
sometimes customary to also define sub-granulaomegof slight misorientations). If the
majority of grains are oriented along a certainection, the material is considered
“textured”. Therefore, one can simply define tegtas the “non-random distribution of the
individual crystallites or “grains” (Note that theords “grain” and “crystallite” will be used
interchangeably in this text, while strictly speaki a “grain” can contain several
“crystallites” as distinguished by diffraction apsis.). Figure 3.1(a) shows the schematic
representation of two grains that are separated avigrain boundary. In order to define an
orientation of a grain, a right-handed global cawmate system is introduced. The global
coordinate system has the orthogonal axgss, s5). The selection of orthogonal axes is
important because it does not require any cornmestiovhen dealing with vector
transformations. Every point in the global coortinaystem can be expressed as a global

vector:
s=ls s, 1S (3.1)

wherel; (i=1,2,3) are the coefficients of the vector in the glotabrdinate system. Each unit
cell, on the other hand, can be represented axa twordinate system which has the
orthogonal axesc{, ¢, ¢3) bound to the main crystal axes. A local vectothe crystal can

then be defined as:
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C= M, + mM,C, + My, (3-2)

wherem (i=1,2,3) are the coefficients of the vector with respecthe local axes.

(a) (b)
Figure 3.1. (a) Schematic representation of two gmas separated by a grain boundary. (b) A
unit cell with attached local coordinates shown wit respect to the global coordinates.

The local vectors can be transformed to the globatdinate system using:

C, = cos%)sl + cos%)s2 + COS%)SQ; =013 + 0155, 0558
2

C, = COS%)% + COS%)Sz + COS%)S:; =0xnS T 02,S, + 055 (3.3)

C, = cos%)sl + cos%)s2 + cos%)s3 =038 1+ 03,8, + 03355
2

whereg; (i, j]=1,2,3) is the direction cosine of the angle betweensihecified axis in local
and global coordinates. For instangg, defines the direction cosine between tHeagis of
the local system and thé' axis of the global one. Since a coordinate systamsformation
can, in general, involve both rotation and tramsfatEquation (3.3) can also be written as:

G Ou 912 O3 S t,
C,|=|9xn 9n Ox||S |t (3-4)
Cs Os1 O3 Uss S; ts

C =0;S, +t (3.5)
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wheret; ( j=1,2,3) is the translational part of the transformatidreT3D-XRD and
HUSXRD techniques use different conventions fortthasformation matrix. While uSXRD
uses the same convention described above, 3D-XRidogma matrix that transforms local

vectors into global ones:
s; =U;¢ (3.6)
Therefore, the relation between the pSXRD and 3MXRnsformation matrices becomes:

U=g (3.7)

According to matrix algebra [Altmann, S. L. (1986)he transformation matrix is a real

square matrix whose transpose is its inverse amgavtdeterminant is +1.

3.2. Description of Orientation

As discussed above, the orientation of a grainbeaaxpressed as a transformation from the
local coordinates into global coordinates. Sinaghsairepresentation of the orientation with a
tensor is not feasible and difficult when dealinghmumerous grains, it is crucial to employ
other methods to represent grain orientation sushEaler angles, angle-axis pairs,

guaternions and Rodriguez vectors.

3.2.1. Bunge- Euler Angles

Bunge-Euler angles are the most commonly used igohrto describe orientation.
The crystal axes of a grain can be defined witlpeesto a fixed reference axis, which is
called the orientation of the grain. The crystaleotation can then be described by
consecutive rotation matrices. Euler angles defimee consecutive rotations: first, an
anticlockwise (positive) rotation around the [0@tystal direction; second, another rotation
around the rotated [100] crystal direction, andlfiyy a third rotation around the new [001]
direction. The corresponding rotation angles atiedahe o,, ¢ and ¢, Euler angles. In this
convention, gositiverotation is defined as anticlockwise and parallel to theceed axis.

Figure 3.2 shows these rotations and the correspgiitiler angles.
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Initial Crystal Orientation Rotation around G.(C,) axis
(Orthogonal to global axes) with ¢, Euler angle

Rotation around the new

C,(x) axis with @ Euler angle Rotation around the new C.(z)
axis with ¢, Euler angle

Figure 3.2. Euler angles and the corresponding rotens
The successive rotations in each Euler angle caagresented with the following matrices:

cosp, sing, O
U(¢1): _Sin¢1 COS¢1 0
0 0o 1

1 0 0
U(@)=|0 cos® sind (3.8)
0 -sin® cosd®

cosp, sing, O
U(¢2): _Sin¢2 COSd)Z 0
0 0o 1

The total rotation then becomes:

COSp,.C0Sp, —sing,.cosd.sing,  cosp, sing, +sing,.cosb.cosp, sing, sin®
U(¢4,D,4,) =| —sing,.cosp, —cosp,.cosD sing, -—sing, sing, + cosp,.cosd.cosp, cosp, Sind
sin® sing, sin®.cosp, cosd
(3.9)
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One can also employ a vector transformatmnwhich rotates the crystal from the
crystal frame into sample frame. We can constgutbm three rotations about the sample

axes:
0, :U(¢1)Ta g, :U((D)Ta Js :U(¢2)T (3.10)
9= 0,9,0; (3.11)
By simple algebreU = g' .

Finally, the crystal orientation can also be repntsd as crystallographic planes and

directions, i.e.(hkl)[uvw]. In this case, Bunge-Euler angles can be found as:

® = cos™( | ) (3.12)

vh? +k? +1?
w 2 +h%+k?

,=sin™ —
¢ (\/u2+v2+wz) (h* +k*)

¢, = cos’ L) (3.14)

3.2.2. Angle-Axis Pairs

(3.13)

The orientation of a crystal can be expressed withanticlockwise rotationyf)
around a rotation vecton). As shown in Eq. (3.9), the rotation matrix deBna proper

rotation and its determinant is +1. This rotatioatnx can be expressed as:

Ou 912 O3
0=192 U9 9 (3-15)
Os1 Uz Uss

To solve for the rotation angle and axis, the rotatnatrix above can be written as a

sum of a symmetric and skew-symmetric matrix [AlbmaS. L. (1986)]:

g=§{(g+gT)+(g—gT)} (3.16)
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The last part of the matrix is call&] corresponds to the skew-symmetric component

(g-g) of g and can be written as:

0 027921 913093 0 C b
S= g_gT =192 - 01, 0 023 — Os, =deff-c 0 a (3-17)
Os1 7013 Uz — 0Oz 0 -b -a 0

where,a, b andc stand for the virtual components of the rotati@is.a Such a rotation axis

(n) will be same after applying the rotation:
gn=n (3.18)

From the orthogonality conditio gg’ = 1, we can obtain

n=g'n (3.19)
gn=g'n (3.20)
(9-g" )n=0 = Sn=0 (3.21)
The skew-symmetrical matrix compone8) ¢an be written from Equation (3.17):
0O ¢ b|n
Sn={-c 0 a|n,|=0 (3.22)
-b -a 0|n,

From this equation, the components of the rotatais can be expressed as the virtual

components defined in Equation (3.17):

n=an/c n,=-bn/c n,=1@*+b*+c?) Y2 (3.23)
1 n3 2 n3 3

The expression in the last component of the ratatids can be easily written as the trace of
SS:

0 ¢ bJo -c -b c? +b? ba —-ca
SS =|-¢c 0 alc 0 -al=| ba c*+a* «c¢b (3.24)
-b -a 0|b a © —ca cb  b?+a?

and their relations are:

a’+b’+c’= %Tr(SST ) (3.25)

On the other hand:
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SS =(9-9")g -9)=21-9°-(@")’ (3.26)
where,| is the identity matrix. From the diagonalizatidigaandg’,

g=[1 , (9 )=[1 (3.27)
i2y

e—iy/ e—in//

so that the trace af must bel+ 2cosay. The trace ofg')? must be the same sing&being
the reciprocal ofy, its rotation angle is equal and opposite to tfag. Then, Tr(SS) in
Equation (3.26) i8sirfy, giving:

a®+ b’ + ¢ = 4sin’y (3.28)
Then, the components of the rotation axis will be:

n, = a( 2siny) " n, = #b(2siny) ™t n, = c( 2siny) (3.29)

If we replace the virtual terms b andc with their real values in Equation (3.17), we will

obtain:
1
Cogy = E(gn'{_ J2 + O3 _1) (330)

923 932 n 913 931 — 912 921

3.31
2sing  °  2siny M= 2siny (3:31)

The term2siny in Equation (3.31) drops when normalizing the tiota axis components.
The rotation angle and axis method is extremelyfulsghen dealing with rotations of
crystals with high lattice parameter ratios (ehgp metals). Figure 3.3 shows the schematic
representation of orientation with rotation axisl @amgle method. The rotation angies still

an anticlockwise rotation parallel to the rotat@as.
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Figure 3.3. Schematic representation of orientatiomith the rotation angle and axis (a.k.a.
angle-axis pair) method.

3.2.3. Quaternions

Quaternions are the non-commutative form of complembers. In this formalism,

an orientation is represented by a quaternion ¢batains the rotation angleywv < [0, ]

and the unit vector of the rotation axig (in the Cartesian coordinate system). In addjtion

for rotations, only quaternions of unit length aomsidered.

_ \y ) ) s
q—[cosg), n, S|n(2), n25|n(2), n35|n(2)] (3.32)

Note that the components of the quaternion carlyebsiobtained from the rotation angle
and axis method. Adoption of the quaternion foremalin place of matrix representation of
orientations makes it easier to calculate misoaigorh and will be discussed in Section 3.4.

3.2.4. Rodrigues Vectors

The division of the rotation axis componentsg,ny, andns, by the rotation angle will
create the Rodrigues vectors. The directions ofRbdrigues vectors are chosen parallel to
the global axes. The relation between angle-axisgoma Rodrigues vectors is given as:

r= ntan%) (3.33)
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The Rodrigues vectors offer a major advantage wsly the rotation axis and angle

components in their vector components.

3.3. Representation of Orientation

The methods to define grain orientations describbdve are three-dimensional
representations. When a population of the graianbations is interested, these methods are
not easy to represent on a paper. As suggestedabi,H-. C. (1988), it can be accomplished
by holograms, but that would be an expensive teglmi Therefore, grain orientations are

often mapped on a projection of a plane as willlbscribed below.

Grain orientation mapping is basically “perspectpr@jection”. Figure 3.12 shows
the most widely used perspective projection methbds employ a reference sphere. The
main distinction between these methods is the imcatf the viewpoint. Let us consider the
point P as an orientation vector pointing from the cerntethe surface of the reference
sphere. While the viewpoint from the center of te&rence sphere to the projection plane
gives thegnomonicprojection a viewpoint from an infinite distance paralleltt@ NS plane
yields theorthographic projection If the viewpoint is the surface of the otherfla the

sphere (e.qg., poir®), the result is thetereographic projectian

Gnomonic

Stereographic

Orthographic T
= N —

\
/
N

. 7/ A
\\\ ' ujz -//
y b

s

Figure 3.4. Different projections of a pointP [redrawn from Amoros, J.L. et al (1975)]

While 3D-XRD uses stereographic projection, the gBXtechnique often employs
gnomonic projection. In this section, orientatioapping will be described with respect to
stereographic projection only because it is thetnsosnmon method uses in quantitative
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texture analysis. Mapping an orientation with thiéedent projections is based on the same
principles except the different projection angi@s shown in Figure 3.4.

3.3.1. Pole Figure

As described in Equation 3.4, the orientation madifia grain defines the direction
cosines of the angles between the local crystalgdotaal vector components. The orientation
of a grain on anhkl) plane can be represented as a vector startingthe origin of a sphere
to the surface of the sphere. The correspondingrmwlordinates of this unit vector will be:

sino.cos3 Ou G2 Ui
sinocsinB :E 0,0 9x»n 0| k (334)
COoso 931 g32 933 I

where, P= v h*+ k?+|? anda andR are the polar angles described in Figure 3.5.

Figure 3.5. Orientation vector on an kkl) plane within the unit sphere

Let us consider drawing a pole figure on the (Q@lape. In this case, the components
of the orientation matrix in Equation (3.34) canrbduced tays;, gs2 andgss. The length of

the orientation vector can be expressed as:

r= \/(9312 + 9322 + 9332) (3-35)

which will be unity from the condition of orthogditg. The polar angles of the orientation
vector can easily be found as:
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p= tanfl(ﬁ) a= cos’l(ﬁ) (3.36)
U, r
And, the Cartesian coordinates of the orientat®m @ole figure in stereographic projection
will be:

X = tar(%).cos‘} y= tar(%).sir;ﬁ (3.37)

With the pole figure thus described, the orientataf a crystal direction can be
mapped in the stereographic projection. The boyndfathe pole figure describes the global
coordinates. To view the distribution of crystallaghic planes along a specific global

direction, the inverse pole figure, described ngx very useful method.

3.3.2. Inverse Pole Figure

The orientation along a specific global directiandoe drawn as an “inverse pole
figure”. The major advantage of this method isaibdity to map crystallographic orientations
within one figure along a fixed global directionhd plotting procedure of the inverse pole
figure is very similar to the one described for pude figure. The main difference is in which
components of the orientation matrix are consideFad instance, for the distributions of
crystallographic planes in the globaldirection, one needs to take thes, g.;3 andgss
components of the orientation matrix as the cowedmg vectors in the stereographic
projection. Then the same procedure described watans (3.35) - (3.37) is used to plot the

orientation of individual grains.

The size of the unique inverse pole figure depemdthe crystallographic symmetry
of the material (Figure 3.6). This non-repeatedeise pole figure is often called the
“standard stereographic triangle (SST)”. The comeptarcle of the projection plane can be
divided using point symmetry operations. Startinthvriclinic symmetry, one-fold rotation
will cover the complete projection circle while theo-fold rotation symmetry in a
monoclinic system will cover half of the area. Tdrenutually perpendicular symmetry
elements in orthorhombic symmetry will define a e of the circular area; four-fold

rotation and a mirror plane in tetragonal struckuvell lead to 1/8 of the area; trigonal
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systems will have 1/6 due to their three-fold notatand mirror plane; hexagonal crystals
will need only 1/12 of the total area, and finaltybic materials will suffice with 1/24 due to
their four-fold and three-fold symmetries plus mirplanes.

[010] ortherhombic

[010] trigonal

[110] tetragonal
[110] hexagonal

/

|

\
i|

 [100)

maonoclinic [100] (001)

Figure 3.6. Size of theunique inverse pole figure depends on crystal symmetry [@hms, M.
(1992)].

3.3.3. Rodrigues Space

Rodrigues space is an extremely useful method @ev sitientation distributions. Its
major advantage is its ability to show grain or&ions a single plot unlike both types of
pole figures. The Rodrigues space is mainly theedtimensional reconstruction of the
standard stereographic triangle shown in Figuref@&different crystal symmetries. It is
simply obtained by applying the symmetry operati@absthe boundaries of the standard
stereographic triangle. The details of this procedwill be described in the Fundamental
Region section (3.4.1).

3.4. Misorientation

The rotation (or orientation) difference betweerotgrains is called misorientation
and is defined as the smallest angle of rotati@adileg from one orientation to the other
[Morawiec, A. (1995)]. There are several ways twwate the misorientation between two
grains. First, it can be calculated in a matrixyidoy multiplying the orientation matrix of a
grain by the inverse of the orientation matrix lod other. If we denote two grainsAasndB,
the misorientation between these two grains wilglven by:

A9=0,0; (3.38)
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cosy = [(Z Ag;) —1] / (3.39)

< ﬁl’ ﬁz’ﬁs >=< Agzs o AgSZ’AgB o AgSl’Agﬂ o A921 > (3-40)
where, < A A, A, > and i represent the misorientation axis and angle, mesdy. It is

important to realize that misorientation is expeess terms of the local crystal coordinates
as opposed to the fixed sample coordinate system.

In the second method, the rotation between twontai®ns can be obtained by the
product of their corresponding Rodrigues vectoratk, F.C. (1988)]:

rpor, = Uatle ~TaxTs) (3.41)
° (1_rA'rB)

where, X’ and *.’ denote to vector and scalar products, respegtividie sign betweery and

ra shows a special product of two Rodrigues vecldsing this approach, the misorientation
angle between two domains was calculated in theeptestudy as:

y = 2tan ' ry°(-r, )l (3.42)

In the 3D-XRD technique, we use an orientation mdtrat transforms local vectors
to global vectors and its relation to the classim@éntation matrix is=g"). In the third

method of representing misorientation, the dot pobtsl of each column of two orientation
matrices U and U ) of grainsA andB are calculated and the misorientation anw; ) is

defined by:

ZUmB

w. = cOS* (3.43)
1) 3

sz P ney

In this study of ferroelectrics, for the two sefdlwe grains found at different applied
electric fields, a misorientation matri>S“) was created. From the calculated sets of
misorientation angles, the ones between 0 and d88A and 90° are in close interest. The

misorientation angles between 0 and 1° confirmssHmae orientations found between sets.



30

The misorientation angles between 89° and 90°teeandidates for the 90° domains where

the misorientation angle for 90° domains is expgdttebe 89.4° Ztan’l(é)). ForM andN
o

number of grains, the misorientation mat s¥is given by:

Sk = {wg' 10< y¥ < 2tan®(<)-90° A 2tan*(2) <y < 90°} k=1,2,.N (3.44)
a c
1=1,2,..M
This method requires manual inspection of colunfrib@® orientation matrices because some

orientations can be found as domains coincidentally

Among the misorientation techniques described, fitet method is more
advantageous because it makes it possible to detetimee misorientation axis components
rather than just the misorientation angle. Thisegierucial information about ferroelectric
domains because it indicates the domain boundadwele® neighboring domain variants. We
have used the first method to find the misorieatatingles between the orientations found
by both 3D-XRD and uSXRD methods.

3.4.1. Fundamental Region

Some of the orientation methods described abovedashow unique orientations.
Figure 3.7 exhibits an object in inverse pole fegirFor tetragonal symmetry (four-fold
rotation, and two mirror planes), there will be uievalent representations of the same
object. For the cubic casd3m i.e., four-fold rotation, three-fold inversion cam mirror
plane) there will be 24 equivalent representatiohshe same object. The number of the
equivalent representations increases substantfatlye object locates near the symmetry
elements and doubles for the misorientation cafimra of two grains. When describing this
orientation, Euler angles would fail to show theptations with crystal symmetry because it
is based on continuous rotations. The second nmagdylem with Euler angles is that if the
second Euler anglef) is zero and the sum @f and g, are constant, all the orientations will
be shown as the same orientations. [Morawiec, 89%)]. For example, the orientations
shown with (45°, 0°, 45°) and (60°, 0°, 30°) Euegles will be mapped to the same point

in the stereographic projection while they will diéerent orientations.
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The unique representation of orientation is notirmpke task. Due to crystal
symmetry, there is a multiplicity of different réitens from the reference orientation and the
new orientations can be represented by differenbtpon the stereographic projection
[Frank, F. C. (1988)]. For instance, for two culmgystals, there are 24 symmetrically
equivalent points due td3m symmetry (4x3x2 symmetry points) and the misoa#&ah
between these crystals can have 24x24=576 equivalesignations. While all these
orientations show physical identical orientatioihss important to select which one to use in
the misorientation calculations. As shown in Fig8ré, the orientations can be confined to a
smaller section due to crystal symmetry. Among ¢hpiojection areas, the area where there
is only one unique representation in the steredycaprojection is called theundamental
regionand the orientation mapped to this area is useddioulation misorientation.

The orentation in tetragonal symmetsy (4 m The orentation in cubic symmetny (4 3m)

Figure 3.7. (a) Orientation representations in tetagonal @mm), and (b) cubic 43m)
symmetries. The red areas show the unique repres@tions

A tetragonal P4mn) crystal has a four-fold rotation and two mirrolaes as
symmetry operators. If we start with the standaetemgraphic triangle of the tetragonal
crystal (Figure 3.6), we see that the maximum &allole rotation angle for [100] axis is 45°
due to the four-fold symmetry. For the [001] andQlLaxes, the maximum rotation angle is

180°. The corresponding Rodrigues vectors for thesations will then be [0,0,1] for the

[001] axis[v2 -1+2-10] for the [100] axis and+2-1+/2-10] for the [110] axis.
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Figure 3.8(a) shows the representation of thisdstathstereographic triangle with Rodrigues
vectors. By applying the tetragonal symmetry omestthe Rodrigues space can be
constructed from the fundamental region. Figurgl8.8hows the corresponding Rodrigues
space for tetragonal crystals. The maximum alloe/abigle in tetragonal Rodrigues space
can be calculated with the maximum value of the moments of the Rodrigues vector. Since

the maximum Rodrigues vector for the tetragonastadg is[v'2 — 1,+/2 —11], the maximum

rotation angle@ will be:

0= 2tam*(y/(N2 -1)2+ (V2 -1)? +1%)) = 98.42 (3.45)

In sum, to calculate misorientations between irtiliai grains, the following procedure can

be applied:
¢ Find the standard stereographic triangle (SSThettystals
e Convert the SST boundaries into Rodrigues vectors
e Obtain Rodrigues space by applying the crystal sgtnywoperators

¢ Find the maximum rotation angle in the fundamergglon of the Rodrigues
space

e Apply the symmetry operators to the orientationteratonverting the orientation
into a Rodrigues vector

e Select the orientation with the smallest rotatioglae and closest to origin. FoF
symmetry operators aridbeing the vectors of the rotation axis of theelement
of the symmetry operator, the fundamental regiatescribed by:

N {r;tan@, /4)=r |, >0} (3.46)

where,i=1 corresponds to the identity rotation [Morawiec, A995), Frank F.C.
(1988)]. Each orientation found by 3D-XRD and pSXEighniques was mapped to

tetragonal fundamental region by using the stepighed above.
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[W2-1v

[2-1, 0, 0]

(a) (b)
Figure 3.8. (a) Representation of the fundamentalegion. (b) Construction of the Rodrigues space with
the tetragonal symmetry operators {ldentity (M1), four-fold rotation around [100] (M2) and two-fold
rotation around [010] (M3) and [001] (M4)}.
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CHAPTER 4. 3D-XRD TECHNIQUE

In this chapter, the 3D-XRD technique and dataectitbn procedures will be
described. Several new analysis methods have besated during the present study to
interpret the results efficiently and these methedsh asphi-eta map domain size
polarization angleandstrain extractionwill also be described. 3D-XRD experiments were
performed at Sector 1-ID of the Advanced Photonr&@at Argonne National Laboratory,
Argonne, IL. A detailed description of the BaEiGD-XRD experiments is presented in
Section 6.1.

4.1. Introduction

It is well known that most engineering materiale arystalline and their properties
are greatly influenced by their crystal structurberefore, it is essential to characterize the
internal structure of a material and link the reswith performance. Selection of a non-
destructive characterization technique allows aemeliable assessment of a material under
various applied external stimuli. The most commgarded non-destructive characterization
techniques are electron microscopy and standardrd&dry X-ray diffraction. These
techniques are considered surface probes [Lauridsé&m (2000)] because the penetration
depth of low energy X-rays and electrons is abofgwapm. Due to various surface effects
such as surface charges, strain relaxation, distotsa samples have to be prepared carefully
to represent the bulk behavior. Because of thesmcsu effects, it is believed that such
characterization techniques do not reveal the neatlerial characteristics requiring most
models to make sweeping assumptions on boundadjteors and average bulk properties.
It is also believed that present models overesanthe texture development since grains
undergo different crystallographic orientations hwileformation [Margulies, L.et al.
(2004)].

With high penetration depth and fast acquisitiometi synchrotron radiation has lately
become widely used in materials science. Sevenal clferacterization techniques such as
3D-XRD and uSXRD have been developed and applieshubmerous problems. These



35

techniques allown-situ measurements on mechanical behavior, temperagpendence or

ferroelectric behavior by coupling a stress rign&ce or high voltage supply, respectively.

The 3D-XRD technique has recently been develope®ibge National Laboratory,
Denmark [Lauridsen, E. M. (2001)] to study indivadugrains embedded in a bulk
polycrystalline material. 3D-XRD allows the structlicharacterization of individual grains
in polycrystals and yields the position, volumdentation, and lattice (elastic) strain of these
grains. The experimental setup consists of a mawoudtic beam source, a sample holder,
and a two-dimensional digital image plate detedtorecord the transmitted diffraction
patterns. Figure 4.1 shows a schematic 3D-XRDpsélypically high energy (50-80 keV)
X-rays are employed to fully penetrate the samphéchvis rotated around thgaxis while
collecting sequential diffraction patterns in sm@l°) ¢ steps. The scanneg range is

usually large enough (e.gt,x65°) to allow a fuller map of the reciprocal spac

X-Rays

Figure 4.1. Simplified 3D-XRD setup. While x-rays ee illuminating the region of interest
(shown as a cube), the sample is rotated around tleaxis with A¢ angle steps. Each spot from
different grains will diffract in a different 2 6 and ) location on the detector (shown as the y-z
plane).

4.2. Data Analysis

The details of the data analysis were explainethénpaper of Lauridsen, E.M. et al

(2001). To summarize, the overall data analysisbeaaxplained by one equation:
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G = 2S¢ 'BG,, (4.1)
where, the scattering vect@; in the laboratory coordinate system (x,y,z) is ated into
the reciprocal lattice systen®ix). Q represents the rotation along z direction andthas

following form:

cos(p) -sin(¢) O
Q=|sin(p) cos@p) O (4.2)
0 0 1
S, is the (sample) matrix that defines how the sangpimounted on the setup. If the sample
is placed on the turntable, the resulting sampleiraill be:

S= (4.3)

o O k-
O —» O
= O O

Finally, g* defines the orientation of individual grains wiglspect to the sample coordinate
system. Note that the original orientation matrsed in 3D-XRD transforms the crystal
coordinate system into sample coordinate systenardier to be consistent with literature,
this orientation matrix was represented with itgeirse.

Figure 4.2 shows reciprocal lattice vectors in direspace together with the
corresponding angles. In the 3D-XRD convention,ahis parallel tobs, a; is in the plane of
b, andb, andas is perpendicular to that plane. For tetragonastaig, the reciprocal lattice
vectors by, by, bs) are parallel to the main axes of the crystal, dnedefore, also the vectors
in the Cartesian grain systef@.
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b,

Figure 4.2. Reciprocal lattice vectors in real spacand their corresponding angles.

The reciprocal lattice matrix transforms real spaeetors &, &, a) to reciprocal lattice
vectors by, by, bs) and is given by:

b, b,cosf*) b, cos@*)
B=| 0 b,sin(y*) —Db,sin({3*)cosq) (4.4)
0 0 b, sin(3*) sin(a)

where,a, B, vy anda*, B*, y* define the angles between real space and re@practors,
respectively.

Assuming an X-ray is diffracted from positior,y,2 in the sample system, with
(x,y)=(0,0) along the rotation axis, the direction bé tdiffracted ray is determined by the
Bragg ® and the azimuthal angle (Figure 4.1). The intersection between the ray thed

detector planelf Iy, I'y) is found from:

r, =—(L—x)tan@d)sinn + vy,

(4.5)
r,=(L-x) tan(20)cosn + z
where,
X, X cos@p) -—sin(®) OY x
Yi |=Q y|=|sin@¢) cosp) O]y (4.6)

z z 0 0 1\ z
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Here, whenry, I, is at (0,0), the incoming beam and detector plamersect. The

normalized diffracted vector in the laboratory systcan then be expressed as:

o —tan@)
m = QSy= QSg*h = cosp)| —sin(n) (4.7)
' cosf)

The standard coordinate system used at APS differa the original coordinate
system developed by Risoe. The APS coordinate ewioveis to identify theZ axis as the
direction of beam propagation, thfeaxis as up and th¢ axis as horizontal, orthogonal to the
beam direction. The original system used by Risseimes the incoming beam direction as
the X axis, while theY and Z are the horizontal and vertical axes, respectivéiyr
convenience, we will use the European Synchrotradi®ion Facility (ESRF) coordinate
system to be consistent with the original setufRigoe. The summary of these coordinate
systems are given in Table 4.1:

Table 4.1. Coordinate systems used at APS and ESRF

APS ESRF
Z:2Incoming Beam X:—>Incoming Beam
X: 2Horizontal Y:>Horizontal
Y:>Vertical Z:~>Vertical

The collection of 2D diffraction patterns for egui oscillation were analyzed by the
software calledsraindex[Lauridsen, E.Met al. (2001)]. Graindexis a multi-grain-indexing
program that finds the orientation of grains basadnonochromatic X-ray diffraction. The
first version of this software runs as a subroutinelmage-Pro Plust.5.22 (Media
Cybernetics, Silver Spring, MD) and the new vers®ra standalone freeware with a new
name, Grainspotter. Since the optimization rungrogress, the data analysis routines were
described according to GraindeXigure 4.3 describes the flowchart during a typigbt

XRDdata analysis. Three main steps are involved:



39

1. Data Preparation:

Any spatial distortion of the diffraction imagescisrrected.The success in finding
the grains accurately is highly dependent on tha geeparation. If the diffraction
patterns contain any spatial distortion, the datads to be corrected before the
grain analysis.

The beam center of the diffraction patterns is tbuithin the Graindex convention.
It was found from experience that several prograoth ag=it2D, Matlab, Image-
Pro Plus use different conventions re. Coordinate systeffiserefore, it is
important to perform a final tuning of the beamteerby checking th@é locations
of the peaks as a function of. This helps eliminate misindexation of the

neighboring spots from differehklis such as (200) and (002) peaks.

Experimental parameters (sample-to-detector distqrare adjusted carefullylhe
location of a diffraction spot should be well defih The sample-to-detector
distance directly affectgf location of spots. Theoretically, the sample-ttedtor
distance is refined until the difference B6 values between the theoretical

predictions and those found by image processifessthan 190.
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Data
— |
I | Image Analysis & Ray Tracing :
|
I |
I i I
: Reflections : GRAINDEX
| |
I i I
Indexing
| |
Grains Position, Orientation,
Volume
L A
Elastic Sftrain Grain Map ODF Pk e S
Analysis Refinement

Figure 4.3. The flowchart in the data analysis of &pical 3D-XRD experiment [Lauridsen,
E.M. (2001)]

2. Image Analysis and Ray Tracing:

o All reflections on detector image are located aftefining an intensity threshold.
The image processing is performed by creating antcsetting file to define a
desired intensity threshold. There are several @dges of the intensity threshold.
First, it helps eliminate spots from weaker graiBecond. as the rotation of the
sample approaches the phi angle limit (e.g., +6&5me domains at high phi angle
will diffract and the intensity threshold will alsgiminate those domains. Third, it

also helps eliminate overlapping it closely spasgats.

e List all reflections in a tableThe diffraction peaks and corresponding informatio

such as their position on the detector plane (d#tz),n, ¢, 20 and area of interest

(AOI) are collected in a table.
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e ldentify peak families based on theif 2alues and the diffraction familieBy
using sample-to-detector distance and the X-rayrggnetc., it is possible to

categorize reflection families.
3. Indexing with theGraindiggerRoutine:
o Convert the scattering vector orientatiomhe scattering vectors in Eq. 4.12 is
dependent on the phi rotation and it can be retewitas G, = g 'BG,, by

converting the scattering vectors of each reflecgo they are dependent only on
the orientation and reciprocal lattice matrices

e Increase Euler angles defining gvith finite steps using the following formula:

4,0 N 0
Umn_Uanrg(U )mn.A¢+

N

0 ol 0
U Ap, +— (U A (4.8)
5¢,1( )mn ¢1+5¢,2( )mn )

where, U is the orientation matrixU=g™). In order to find the orientation of all
grains of interest, the full [@] x [0,2x] x [0,2rx] Euler space is searched and
scattering vectors of the simulated and found céfles are compared using the

least square method. For a given step:°,,¢,°) and corresponding
U° =U(4,¢,,9,), Graindexsorts the reflections whether there is no obs&mat

matching observations or more than one observedct®ins in the calculated
detector location. The reflections with no obsdaprs are called “outliers”.

e Find the observable reflectionghe number of observablekl's, Mey, is found
where there is at least one observat@@nthat matchedJBG,y. Among these
reflections, grains are authenticated if:

I. The ratio of the observed reflections<{yl is higher than the completeness
threshold.Completeness is defined as the threshold rattbeohumber of the
calculated peaks to the observed peaks. The mgtatomdition can be

represented wit M _,, >(1-a)M, wherea is a small tolerance factor.

exp =
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il. Uniqueness factor is satisfiedniqueness factor defines the degree of which
the set of matchingkl’s is not a sub-set of the matchimg’s for anothei

setting.

ili. Chi-square threshold is satisfieBor a given step size of a few degrees in
Euler angles, the fit can be weighted with respeztthe estimated

experimental errors in andn:

{( Gs)j —[U (Ad, Apy, Ap,B(Gyy )]J}IZ

x :,ZJ: Gﬁ(Aoo,An) (4.9)

where, index runs over the spatial coordinatesl,2,3, while j enumerates the
members of groufB. o is the error orGs vector numbey in the pointUo,
calculated by error propagation using Eq. 4.1 aiid 4

Noting that Graindex calculates the orientation matrices from the oleskr
reflections, it is crucial to check whether thesaibig difference between the positions of the
calculated and observed reflections. The deviasloould be as small as possible because
large values suggest a discrepancy from the trigmtation of the grains. Furthermore, the
presence of a significant number of outliers mattes analysis questionable and further
refinement of theGraindexparameters is necessary. Therefore, a minimumrefl&ctions

are sought for each grain before it can be autbateti as a “real” grain.

Another “pitfall” [Lauridsen, E.M. (2001)] in studyg ferroelectrics with the 3D-
XRD technique is the overlapping spots of the domairiants. The misorientation between
90° domains within the polycrystal BaTi@an be calculated b3tari*(c/a) wherea andc
denote the lattice parameters of tetragonal feemdet ceramics [Rogan, R. (2003)]. Since
c/aratio is 1.01 in BaTig the misorientation between the grains is verylsaeound 0.6°)
and high resolution of domain peaks is necessargetmnvolute overlapping spots. To
prevent this, the sample-to-detector distance dsemsed until one can observe the 200/002
rings near the outside edge of the CCD detectors &djustment was found to yield
sufficient resolution to deconvolute peaks from damvariants of BaTi@
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4.3. Phi-Eta Map

Due to the presence of domains in ferroelectriasherain contains “sub-grains” that
are oriented by well defined, intrinsic crystal syetry operations. The domains belonging
to the same grain are called “domain variantsB&110;, these domains are arranged along
the cube edges and the domains can have a coniguravith six equal direction
possibilities. Sincec/a ratio in BaTiQ is different than unity, the orientations between
domain variants can vary up to 1.2° (see Figurg &d these domain variants diffract within
proximity of each other. For this reason, the 3DEXBxperiments of BaTi®@employed

smaller¢ oscillations of 0.2° compared to the usual 1°.

To characterize the spots from individual domaegyivenhkl ring was summed
alongn and then combined alorg The map thus created is called “Phi-Eta” ancelpg in
the characterization and interpretation of diffr@ctpatterns. Figure 4.4 shows the schematic
procedure of creating an Phi-Eta map.

n
{ n ]
b —
(a) (b) (c)

Figure 4.4. Schematic procedure of an Phi-Eta maga) The Friedel pair of a reflection diffracts
with a 46 angle. (b) The correspondindkl! rings are binned alongn. (c) The binned rings are
combined in¢.

There are several advantages offheEta map First, it is helpful in identifying the
Friedel pair of any reflection. The Friedel pairaogiven reflection will appear 180° further
atm. The¢ location of the Friedel pair is dependentrpriWWhenn is close to 90° or 270°, the

Friedel pair of the same reflection will diffra26 apart. Whem is close to 0° or 180°, the
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Friedel pair will diffract at more tha#é apart. The second advantage of the Phi-Eta map is
that it helps identify new spots appearing aroundimmal spots. If the new close spot does
not appear in the Phi-Eta map of its Friedel pa&ican be confirmed as belonging to a
neighboring grain.

This point can be further clarified as follows. Let consider the spot from a grain
that appears ay=90° and label it askl in Figure 4.5. The Friedel pair of this spot will
appear at) 180° away. Since these pairs dteapart from each other, the Friedel pair of the
reflection will diffract after rotating the sampley 26 degrees. For the spots diffracting
parallel to the rotation axi$|€0° or 180°), the difference @¢ between the Friedel pairs will
be bigger thar?6. Let's consider a scattering vectdX, By inspecting Figure 4.5, the

normalized scattering vectévin the diffraction cone can be found as:

4

(hkl)
C. A

B N

(k1)

s
S

X

Figure 4. 5. lllustration of a scattering vectorA and its Friedel pair, B. Since it is difficult to
distinguish opposite directions with x-rays, the Fiedel pair of A is mirrored on the —YZ plane.
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1

A=2l tane (4.10)
N 1

cosHtann

whered andn are the diffracting Bragg and azimuth anglesN = \/1+ tan’d+ tan°y

[Pecharsky, V. K. (2005)]. When the sample is eddbyg, the scattering vector will also be
rotated. The rotation of the sample can be expdegsen Eq. 4.2. After the rotation, the new

scattering vectoB will be given by
B= QA (4.11)
If the rotation angle between Friedel pairs saitigfithe Bragg condition is denoted

as¢, the relation between the Friedel pairs will be@pivs:

The anglg¢) between the two vectors, before and after theioot@an be calculated
as:

&= 2tan1(% )N = 46\/1+ tan’ 20+ tan °y (4.12)

It can be easily seen that Friedel pairs diffracithew an phi angle of

26\/1+ tan’ 20+ tan’y from each other. A spot with an value near the equator will

experience the rotation that is equal to the acttationg of the sample, while a diffraction

spot near the poleg/£0 andz) will experience a smaller effective rotationéof

4.4. Domain Size

According to diffraction theory, there is a corteda between the integrated intensity
of a spot and the volume of the domain that geadrdt [Warren, B. E. (1990)]. The
integrated intensities of diffraction spots wererfd by summing the pixel intensities and
subtracting the background of the diffraction imagependix 2 develops the relationship
between the diffracting volume and the integratgdnsity in more detail. It was observed
that several spots diffract within a rangeofvhich makes it difficult to find out which

diffraction spots are the region of interest. Thenes Phi-Eta maps were used to calculate the
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integrated intensities of the diffraction spots.cbmvert the integrated intensities of the spots
to grain volumes, the summed intensities of @2 Phi-Eta maplPyoy at each electric field
were used as an internal calibration. The relatignbetween the grain volumé&ain and the
integrated intensity of a specifidkl reflection, Pn will then be:

o Atp mooz‘Fooz‘2 Ad"Sin’/l‘Sinzehm |
oAty Rl 4sinf,, 12, 9

g 002

\Y

(4.13)

where,F, m, 6, and4t refer to structure factor, multiplicity, Bragg dagnd the acquisition
times, respectively. However, this equation assuanesnstant gauge volume during the phi
oscillation. This is not true because the samplektiess changes during this oscillation and
reaches a maximum &t+45°. To derive the transmission ratio of the X-t@eam in each

phi value, beam intensity after a thickness &f used:

1= 1,67 = 1,6/ PIPX (4.14)
where,lq is the incident beam intensity, is the linear absorption coefficient apg= W/ is

the mass absorption coefficient ands the density. Therefore, the transmission rafi@

sample without rotation is:

1o guXz gl plpx (4.15)

l 0

Sample thickness, changes with thé¢ oscillation and the effective sample thickness
can be denoted as. Sincexp=x/cosf, the transmission ratio of the sample witloscillation

will be:

| = oo = ¢ CO% (4.16)

Figure 4.6 shows the transmission ratio of theiBgaBample as a function of phi

oscillation.
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Figure 4.6. X-ray transmission fraction of the BaTO3; sample during¢ oscillation.

Because the sample thickness changes idscillation, the gauge volume in the

equation above needs to be normalized with th@gdillation. Equation 4.18en becomes:

2 . .
V - Atp rnOOZ‘FOOZ‘ ACO‘SlnI/]‘SlnzehH Il'?k| Vgauge
rain 1
9 at, R f 4sid,,, &, cos

(4.17)

The geometry of the diffracted domains is not knptwt can be approximated by a
cube or a sphere. The sphere radius can be fou R=,/3V/(4r) while the cube edge

will be a= %’\7 Since domains are arrangements of several tetahgmit cells, the cube

approximation of the shape of a domain may be &betpresentation of their shape.

4.5. Polarization Angle

Ferroelectric domains in a polycrystal will tend @oient along the electric field
direction above the coercive field. The reoriemtatof these domains is called “poling” and

the poling direction is the-axis of the domains. The angle between the p@toiz vector of
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a domain and the direction of the electric fieldcaled the “polarization angle” and is
expected to decrease as higher electric fieldappded. Figure 4.7 shows a schematic of a
3D-XRD experiment geometry. In order to track themtation of the ferroelectric domains
within the polycrystal as a function of electritahd, the polarization angle is calculated as
the angle between the electric field in the sangplerdinate system (i.e., the [010] direction
or TD) and the polarization vector in crystal cdoades (i.e., the [001] direction in crystal
coordinates). This angle corresponds to the doecatbsine of they sample axis and the
crystal direction (which show the electric fieldettion) and the axis of the crystal. The

U,, component of the orientation matri¥) then becomes the polarization angle and these

angles were tracked as a function of electric field

1mm

s X-RAY

Ys

Figure 4.7. Schematic set-up in a 3D-XRD experimenEach grain consists of ferroelectric domains that
are arranged in three dimensions. Each crystallit¢or domain) can be represented by a vector in thetal
coordinate systemX,, V., z) and within a fixed sample coordinate systenx, Vs, z). The polarization
angle,0, defines the angle between the polarization vect®of the domains and the applied electric field
direction.
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4.6. Elastic Strain

In addition to the change in the orientation of é&ims, their elastic strain tensors can
also be obtained from 3D-XRD data. To gather sidffit statistics, however, it is crucial to
measure multiple domains and determine the stesusadr components of each grain and the

offset (Ay, Az) of its center of mass with respect to the pis @Margulies L. (2004)].

The relative shift in each spot with respect to tbationd axis can be calculated
either from the detector images or the Phi-Eta nddlpile the spots from the detector images
give a better fit, the Phi-Eta map is essentiahm study of the orientation relationships of
the neighboring spots. As a routine, the deteadcation of a spot from a domain was
extracted fromGraindex results at low voltage and the relative changehdd spot as a
function of electric field was calculated with 20a@ssian fitting. If the location of the spot
can be expressed as a functiory ahdz coordinates, the 2D Gaussian function of this spot
given by [Tamura, N. (2007)]:

_}(( (Y-Yp) sin6+(z-z,) c059)2+( (y—Yp) cosf—(z-z,) sin9)2)

f(y,2)=b+ Ae”’ i i (4.18)

whereb is the background value of the peak, the coefiicheis the peak value, y, are the
center of the peak ang, oy are the full width half maximum (FWHM) of the spdthe 2D
peak fitting can also be done with different pmfiunctions and the corresponding 2D
Lorentzian and Pearson functions are the following:

2D Lorentzian:  f(y,z)=b+ A

((y— Yo)Sin@ +(z-1z,) 0059)2 o

o, o,

(y—Y,)cosO —(z—z,)sin6

)2

(4.19)

2D Pearson: f(Y,2)=b+ (4.20)

(yo+zo+D"

Y, :2((y_yO)C059_(Z_Zo)Sin9) [own _q (4.21)

(o}

z
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2, = 2((y— yO)Sin9+(Z—ZO)COSH)W (4.22)

Oy

where,N is the Pearson index.

After the initial guess for the peak location,(¥%), FWHM of the peak &, o),
background value of the peak)( it is possible to fit the 2D peak by using leaguare
fitting. It is also possible to find the integratedensity of the peak by summing the fitted

function.

As with diffraction studies in general, 3D-XRD Ia# strain characterization is based
on measurements of relative changes indtspacing of selected lattice planes. For each
diffraction spot, the lattice strainis found by measuring the shift in Bragg ang@o. A
specific measurement with a corresponding diffraction spot positioneédgagles ¢, 20, n;)
and a scattering vector defined by the directiosireesl;, m, n, is related to the components
of the strain tensad,y by

€11€13€13 |( |

g, =(imn) e, €585 { M —[COS((i).)Jrw AX —Cosﬂ)i)sin(ni)]ﬂ

tan@,) ]T_[Sin(¢i)+ tan@, ) L
€13€13815 |\ M

(4.23)

where,Ax andAy are the offsets in the sample system from théecexi rotation and. is the

sample-to-detector distance [Margulies, L. (2004)].
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CHAPTER 5. MICRODIFFRACTION

The scanning X-ray microdiffraction (WSXRD) techmigis based on back-scattering
Laue diffraction. The technique and its data analpsocedure, together with its coordinate
system conventions will be explained in this chaptegtSXRD allows the extraction of
deviatoric lattice strain components; a processhdining two-dimensional strain maps will
thus be described. All uSXRD experiments were peréal at the X-ray microdiffraction
end-station (first called, Beamline 7.3.3, recentlynoved to Beamline 12.3.2) at the
Advanced Light Source (ALS), Lawrence Berkeley Na#l Laboratory. Further

experimental details will be presented at Secti@n 6

5.1. The Scanning X-ray Microdiffraction Technique

A polychromatic (“white”) X-ray beam offers a ungwpportunity to sample a large
fraction of the reciprocal space due to its ability diffract from many lattice planes

simultaneously. Figure 5.1 illustrates this processematically.

X-Rays

Figure 5.1. Diffraction from a polychromatic (“whit €”) X-ray beam. The X-rays with the
highest energy (i.e., lowest wavelengttl) will yield the high end of the Ewald sphere, whé the
low energy X-rays will form the low end of the Ewadl sphere.

The fundamental principles of the uSXRD technigueedescribed elsewhere [Chung,
J-S. (1999)]. Here, only a brief summary will beeggnted for completeness. By
microfocusing the X-ray beam to a spot size of al@ob-1 pum, the technique offers a unique

opportunity to study local microstructure. The o$@ white beam allows a fast scan of local
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crystal orientations (i.e., local micro-texture)dathree-dimensional strain fields (i.e., the
deviatoric lattice strain tensor), all this withawtating the sample and/or the detector as is
done on conventional (monochromatic) X-ray instrateeThe analysis and interpretation of
the multiple Laue patterns collected at each locatequires sophisticated softwadMAS
(X-Ray Micro Analysis Software) was developed fhistpurpose and has been successfully
employed [Tamura, N. (2003)]. The relatively lowry energy oluSXRD (about 10-25
keV) compared to that of the 3D-XRD technique (k&¥) limits the former to near surface

regions, esp. with heavy elements

5.1.1. Coordinate Transformation

The USXRD technique uses several coordinate systhatsare similar to those
employed in 3D-XRD. Figure 5.2 shows a typical p$XRetup at ALS. The diffraction
plane (ki) is described in the laboratory coordinate sysiemeal space and transformed to
reciprocal space by the reciprocal lattice matix (

a, a,cosy a, cos
B=| 0 a,siny —a;sinffcosa* (5.1)
0 0 1/b,

where,a; 23 and by 23 and are the real and reciprocal lattice parametende (o, 13, ») and
(o*, B*, ) are the real and reciprocal lattice angles, respdy. The orientation of each
grain can be expressed by a matrix transformatiom freciprocal lattice to the sample
coordinate system and can be expressed with teatation matrix g):

Ou 912 O3
=192 922 0O (5-2)
Oas1 O3 Uss

where, each component is the direction cosine letwhe reciprocal lattice vector and a
vector in the sample coordinate system.
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Figure 5.2. Laboratory and sample coordinate systesof the uSXRD technique as used at ALS
[Valek, B. C. (2003)].

With the aid of the transformations described abauvey diffraction spot on the
detector can be linked with the normdiKl] vector of a grain as follows:

1 0 0 h
0 cos@5’) -sin(45°) |gB| k
0 sin(45°) cosé5) I
Ny = h (5.3)
gBl k

Here, the first matrix transforms from the samp@ordinate system to the laboratory
coordinate system (the sample is mounted at a d@e avith respect to the incoming X-ray
beam). Additional diffraction angles are definedrigure 5.3.

X-Rays

Figure 5.3. The coordinate and angle notations useat ALS
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26=cos'(n,) and® = tan’(n,/n,) (5.4)

The location of a reflection on the image platd thién be:
dx=dx, + L-tan@0- 26) - sin(®)/ px (5.5)
dz=dz, + L-tan®0- 29)-cos@®)/ pz (5.6)
where,dx anddz define the center of the imadejs the sample-to-detector distanpgand

pzis the pixel size of the detector horizontal aedtical directions, respectively. Figure 5.4
shows a simulated Laue pattern for Bagi8ing the X-ray energy range of 5-14 keV.

The Laue reflections of one domain between 5-14 ke
1000
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300 -
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0 1 1 L 1 L 1 1 L 1 L
0 100 200 300 400 500 BOO YOO 8O0 200 1000
DetX, pixel

Figure 5.4. A simulated Laue diffraction pattern fa a BaTiO; domain at X-ray energies
between 5 and 14 keV (the former energy range of ¢/ALS microdiffraction beamline 7.3.3).

5.1.2. Data Analysis

The X-ray microdiffraction end-station at the ALsSdapable of delivering a focused
X-ray white beam with a spot size slightly lessnttaum using a pair of elliptically bent
mirrors in the Kirkpatrick-Baez configuration. Drifiction data were collected in reflection
mode using a large-area Bruker SMART 6000 CCD camaunted on a vertical slide. The
sample surface was set at 45° relative to the imogrbeam. Figure 5.5 shows a typical

experimental setup and a diffraction pattern.
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Figure 5.5 (a) A typical schematic setup for the P&RD experiments at ALS. (b) A typical
diffraction pattern from single crystal BaTiO 3.

The diffraction patterns were analyzed by the aussoftware developed at the ALS
(XMAS X-ray Microdiffraction Analysis Software). The t@aanalysis can be divided into
three parts. First, the reflection positions in fhegterns are determined within sub-pixel
resolution by fitting their two-dimensional peakoples with (two-dimensional) profile
functions such as Gaussian, Lorentzian or PeardbnA the peaks in the diffraction
pattern are sorted according to their integratéensity values from the most intense to the
weakest. After taking into consideration the fisgt of the strongest reflections, a virtual
grain with a close orientation to this set of refilens is simulated using the measured peak
positions and known lattice parameters. Next, tamidil matching reflections are identified
until at least one spot matches with a spot okthmilated grain. If there is no match for the
simulated spot, the search continues with the neimgireflections from the strongest to
weakest. For the remaining unindexed reflectioesy mirtual grains are simulated and the
search continues until a match is found. At the @inelach search, the orientation matrix and
the corresponding indexed reflections are savetefsimulated grain is authenticated as a
real grain. Using theequential analysisoutine available i'KMAS additional (sequential)
diffraction patterns can be analyzed automaticaflgl the output of a given surface scan can
be reported visually by using various subroutingslable inXMAS



56

5.1.3. Elastic Strain

To specify a position in sample coordinates [Chulk§, (1999)], one can use a
vector either in crystal coordinates)(or in sample coordinateg,j. The relation between
these vectors can be formulated as:

a, a,cosy a, cos
v, = Av A= 0 a,siny —a,sinfcosa* (5.7)
0 0 1/b,

where,a; » 3and by » zand are the real and reciprocal lattice parametespectively, andx(
B, » and @*, B*, »*) are the real and reciprocal lattice angles, r@spgdy. Calculated

refined lattice parameter A, _,.) for each grain and reference lattice paramet&)sférm a

matrix. Transformation of these vectors is possitté

Aneas™ TA (5.8)

where,T is the transformation matrix and finally deviatolattice strain can be found by:

c_(T+T)
#y= e, (5.9)
where, |; is the identity matrix. The complete strain tens®rsimply the sum of the

deviatoric strain tensor and dilatational tensef £ &', +A) where A = 8Iij and $ is the

dilatational strain. The complete strain tensor ¢@n measured with this technique by
knowing the absolute lattice parameters of a sihgiee reflection but the XMAS software

currently calculates the deviatoric strain compasie8ince elastic strains play an important
role in ferroelectric domain microstructures, finglithe deviatoric strain components for

each domain would be enough to study the ferrogeddmain switching in mesoscale.

5.1.4. Grain Map

The uSXRD technique, by not requiring a rotationtled sample/detector and by
using a small beam size (below a typical grain)se&z@bles detailed two-dimensional scans
of the sample surface. Following data analysis tadtulates, among other parameters, the
orientation matrix @) of a grain, one can create a 2-D grain map. cwece of creating the
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grain map is arbitrary. For the ferroelectric domsaithe angle between the direction of the
polarization vector of the crystallites and globaés can be expressed as:

6= cosi(———2——) 1=1,2,3 (5.10)
where,| stands for x, y and z axes in global coordinatéss Tap will help to interpret the
distribution of the polarization vectors along gdltoordinates. Grain map is very useful
when mapping the distribution of the crystal prasrwith respect to the global coordinates.

5.1.5. Finding Precise Lattice Parameters

While the uSXRD technique is superb in obtaining dleviatoric lattice strain tensor,
its use of a polychromatic X-ray beam makes it isgilole to estimatabsolute lattice
parameters. However, there is a way to overcome disadvantage. After indexing a
diffraction pattern obtained from a polychromatiealm, one can perform an energy scan
around one of the spots. This determines the atesakspacing of that spot, and by
extension, the absolute lattice parameter. As altresne can measure the complete three-

dimensional lattice strain tensor of a gui-region usingtSXRD.

5.1.6. Grain Depth

As mentioned before, uSXRD can routinely providestaof grains that diffract from
a specific sample location. In order to study thee¢-dimensional arrangement of these
grains, a triangulation technique was developedddhm@ B. C.et al. (2000)]. Here, the
diffraction patterns are collected from several gato-detector distances and the origins of
the diffracted grains are traced back (Figure 3Mile time consuming, this method offers
unprecedented information about the geometricangement of grains in real space. A
detailed description of the triangulation techniga& be found in Larson, B.€t als article
(2000).
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Figure 5.6. Schematic of the triangulation technige [Larson, B. C.et al. (2000)]
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CHAPTER 6. RESULTS and DISCUSSION

The present study employed two complementary methtmd investigate the

mesoscale behavior of ferroelectrics:

e 3D-XRD techniqueto track domains in multiple grains of a polycajkhe
ferroelectric and to investigate their evolutioreasinction of electric field.

e Scanning X-Ray Microdiffraction techniqt@ zoom on surface domains and to

study their evolution with temperature.

6.1. 3D-XRD Experiments on BaTiO 3

BaTiO; ceramics were processed from a single batch o¥iqusly prepared
stoichiometric BaTi@ powder (99.9% pure, with Ba/Ti ratio=1.00, fromriee Corp.,
Transelco Division) to minimize the effects of stuometry variations between batches
[Bryne, T. A. (2004)]. The initial powders were hogeneously mixed via vibratory milling
for 5 h in zirconia media in ethanol. Approximatdlyt% binder was added to the powder.
Following binder burn-out at 500°C for 2 h, the laaixed powder was calcined at 1300 °C
for 2 h in an alumina crucible covered with zir@miowder. The final composition of the
sample had approximately 95% of the theoreticalsiignFor grain size measurements,
samples were thermally etched at 1300°C for 2 teveal the grain structure. The grain size
was calculated around 20 pm. The SEM micrograpla aypical microstructure of the

BaTiOs ceramic is shown in Figure 6.1.
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Figure 6.1. SEM image of BaTiQ sample used in 3D-XRD experiment. The grain sizg i
typically around 20 pm.

Bulk polycrystalline BaTi@ samples were sectioned with a diamond saw into
1.2x1.2x5 mm dimensions to use in 3D-XRD experiraeAfter sectioning, the surfaces of
the samples were polished with abrasive and finaiti fine sandpaper until the dimensions
would be 1x1x5 mm. Both 1x1 mm sides were sputtevidd gold for 5 minutes and thin
wires were attached using conductive epoxy. Thegesaveral advantages of selecting such
sample dimensions. First, the X-rays can easilyeprate through the sample at high energy.
Second, the applied electric field can be more twercive field which leads to significant

domain switching.

The polarization versus electric field hysteresispls of the BaTi@ ceramics were
measured with a RT66A standard ferroelectric tgstesn (Radiant Technologies). Figure
6.2 shows a typical set of hysteresis loops. Thanent, spontaneous and saturation
polarization of the sample were measured as 58a8d 22.2 uC/cfn respectively. The

nominal coercive field was found to be 5.16 kV/cm.
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Figure 6.2. Polarization P) vs. electric field ) hysteresis loops of the BaTi@sample used in
3D-XRD experiments.

3D-XRD experiments of BaTip were performed at beamline 1-ID-C of the
Advanced Photon Source (APS), Argonne National tatiooy, Argonne, IL. This beamline
not only provides dedicated high energy focusingcepbut is specialized for 3D-XRD data
acquisition and analysis.

Figure 6.3 shows a schematic setup of the BaEXperiments. High energy x-rays
(80.72 keV, with wavelengtii ~ 0.1535 A) in transmission mode were focused 89x30
unt spot size. Since the grain size was estimatedetarbund 20 pm, this spot size was
enough to illuminate roughly 100 grains. The sasmere oscillated perpendicular to the
beam with 0.2% steps up to +65°; repeated at each applied eldattid. The samples were
not intentionally poled before the experiment biigh electric field was sometimes applied
briefly to check the cable connections. The elecfield was applied in-situ with a Trek
610D HV amplifier reaching up to £20 kV/cm in 0.1R¥/cm steps and was perpendicular
to the incoming beam (along tlyeaxis in Figure 6.3). The maximum applied elecfrad
was high enough to trigger domain switching asrtbminal coercive field of the material
was previously measured as 5.16 kV/cm (Figure @.8¢. sample was aligned with the other
1 mm surfaces normal to the beam direction. Thius,direction of the electric field was
perpendicular to the X-ray beam (thexis in Figure 6.3). The rotation axis of the séamp

was carefully aligned by checking the same spa@r afitating the sample for 180° along



62

The sample-to-detector distance was adjusted a®@58m. This distance enhanced the
resolution of the diffraction spots on the Mar C@€&tector (2048x2048 pixel size, MarUSA,
Inc.) by increasing the resolutions of the variants{001}, {011}, {111} and {002}
diffraction planes. The lattice parameters of tlad i®; were calculated as=0.4000 nm and
c=0.40314 nm.
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Figure 6.3. (a) Schematic 3D-XRD setup used at beéne 1-ID-C, APS. (b) A view along the X-
ray beam (along thex-axis) at¢ = 0°. The electric field direction is parallel tathe y-axis which is
perpendicular to the rotation axis )

6.1.1. Macroscopic Response to Electric Field

To make sure the sample experienced domain swgchthe macroscopic
(polycrystalline) response of ferroelectric domawmishin the polycrystalline BaTi@was
obtained by integrating diffraction images withihQf of ¢ (where,#=0° is perpendicular to
the beam) and parallel to the electric fielg=90°+5°) using the~it2D.v12.077 software
[Hammersley, A. P. (1997)]. Figure 6.4 also displélye results in terms of the MRD value

(multiples of random distribution relative to anpated sample) obtained from this equation:

MRD= — Slooz (6.1)

(loozt 21 00)
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The MRD is a better measure of texture evolutioa thudomain re-orientation and
should be 1.0 for a random polycrystal. The eledteld led to an increase of the (002) peak
intensity due to a small portion of the domain mtigent along the field direction. In Figure
6.1.4, while the initial state of the specimen & random (MRD ~ 0.78), the applied field
leads to slight domain re-alignment (MRD ~ 0.87 28t kV/cm). The most important
contribution of this weak effect of the electrieli may be the residual texture from the pre-

poling the sample while checking the wire contacts.
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Figure 6.4. Variation of the integrated intensity atio (I 00/l 002) and MRDgo, as a function of
electrical loading. Diffraction images within £10°f the ¢ = 0° position and along the electric
field were summed to obtain these macroscopic datalhe arrows indicate the progression of

the electrical loading.

6.1.2. Graindex Analysis

The diffraction patterns were analyzed using@naindexsoftware [Lauridsen, E. M.
(2001)]. Table 6.1 shows th@raindexparameters employed. Section 4.2.1 explainedfall o
these. To summariz€6nax is the maximun2d angle of the diffraction patterGloudfit
Tolerancedefines the tolerance of a spot to be classifeetha same spot at different sample

detector distances(s-vector Tolerancesets the range o2é@for each hkl family, Eta
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Tolerancedefines the eta limit during the image analySismpletenesdefines the ratio of
number of theoretical reflections to identifiedleefions, Uniquenesgequires that a set of
matchinghkl's does not belong to another graAngle StepDelta Omegaand Delta Eta

define the grid size of the Eulerian space wherGtandiggerroutine looks for a grain.

Table 6.1. Graindex parameters used in the BaTi©3D-XRD analysis

Parameters Value
Rotation Dstar -64.9°
¢end 64.9°
¢Step 0.2°
Experiment Energy 80.57 keV
Parameters Sample-to-Detector distance 952.7 mm
Center Point of Image, oY 1028.7 pixel
Center Point of Image,Z 1028.5 pixel
Detector size 2048x2048
Pixel size 0.08057 pm
Crystallography a -Lattice parameter (a) 0.4000 nm
b -Lattice parameter (b) 0.4000 nm
C - Lattice parameter (c) 0.40314 nm
o. - Unit cell angle ¢) 90°
3 -Unit cell angle (B) 90°
7 - Unit cell angle §) 90°
Space Group- The space group of the grain belongs to 99 (PAmm)
Number of Atoms in unit cell 5
Atom Number of I Atom (Ba) 56
Atom position (X,y,z) 0,0,1
Atom Number of 2 Atom (Ti) 22
Atom position (X,y,z) 0.5,0.5, 05
Atom Number of 8 Atom (O) 8
Atom position (X,y,z) 0.5,05,0
20max - Max. 22 angle of the diffraction patterns 4.7°
Ray Tracing Cloudfit Tolerance 0.003
G-vector Tolerance Range of allowable@ for each {hkl} 0.003
Eta Tolerance 0.2°
Graindigger Completeness 0.7
Unigueness 0.3
AngleStep  The steps of the 1st Euler an§tey),° 0.2°
Delta Eta The steps of thé2Euler angle(4),° 0.2°
Delta Omega The steps of the 3rd Euler anglg),° 0.2°
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Table 6.2 shows the number of the domains foundGbgindex at each applied
electric field.Graindexcompares the location of each spot in the diffoacpattern to those
in the simulated pattern, and when sufficient eyerik found, it authenticates a domain (see
Section 4.2 for further details). Typically, a dispancy of about 0.2° was seen between
measured and calculateédand 7 locations of spots.

Table 6.2. Number of the orientations found by Graidex at each applied electric field.

Voltage,kVicm 2 3 5 75 10 125 15 175 20 10 5 O

Numberof ., 59 36 36 34 36 35 40 37 36 3733
Domalins
Voltage,kVicm -2 -3 4 -5 -75 -10 -125 -15 -20 -10 -5 O

Numberof 5. 45 38 38 37 39 37 40 37 70 7867
Domalins

6.1.3. Domain Characterization

At this stage, it is important to note the facttthehat Graindex identifies as a
“‘domain” is simply a crystallite with a distinct ientation matrix. To determine special
orientation relationships between any subset (faffdomains” — as would be expected from
the tetragonal structure of BaT4O the misorientation angles of the domains werapared.
As was explained in Section 3.4, misorientatiothis smallest rotation angle leading from
one orientation to another [Morawiec, A. (1995J]we denote the orientation matrices of

two domains aga and gg, the rotation matrix that transformsinto B will be given byAqg:

9s =Ag- g, Ag=0;5(ga) " (6.2)
The rotation angle and axis of this rotation wikh be:
3
(X Ag:) -1
cosy=—"*+—— (6.3)
2
< ﬁl’ ﬁz J ﬁs >=< (Agsz o Agzs)a (Agls o A931)’ (A921 o Ang) > (6-4)

While the misorientation is described as the mimmtptation angle from one
orientation to another, the orientation can alsaléscribed by finding a minimum rotation

angle with respect to an orthogonal reference donigihe same procedure described above
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is repeated by taking an orthogonal reference donoegie obtains the orientation of the given

domain. Table 6.3 lists the orientation of the dmmdound by Graindex at 2kV/cm together

with their mutual misorientations. The orientatiomgh respect to an orthogonal reference

domain is shown aangle-axis the misorientations of the domains of the domaiesshown

asmisorientation angle-axiwith the given domain.

Table 6.3. The list of orientation relationships beveen the domains found at 2 kV/cm

Domain*

Orientation Matrix

Angle Axis
Misor. Angle Axis

Polar.
Angle, °

Euler Angles
(@1d92),°

Complet

eness

Chi-
Square

33F

27

178

17

28

25

1€

15

13

3

0.899
0.032
0.437
0.898
0.031
0.438
0.430
-0.260
-0.865
0.912
-0.189
-0.363
0.911
-0.189
-0.366
0.397
0.594
0.699
0.949
0.314
0.006
0.221
-0.663
-0.716
0.318
0.232
0.919
0.873
0.310
-0.378
0.370
-0.743
-0.557
0.924
0.272
0.267

-0.429 -0.086
0.260 -0.965
0.865 0.247
0.084 -0.431
0.967 0.254

-0.242 0.866
0.092 0.898
0.965 0.025
-0.244 0.439
0.401 0.084

0.595 -0.781
0.697 0.618

-0.083 0.404
0.7863 0.588
-0.612 0.701

-0.089 -0.913
0.784 0.182

-0.615 0.364

-0.224 0.220
0.665 -0.678
0.713 0.701

-0.211 0.951

0.684 0.306
-0.698 0.011

-0.368 -0.874
0.924 -0.305

-0.106 0.379

-0.370 0.318
0.924 0.225
-0.098 0.921
0.052 0.928
0.615 0.262
-0.786 0.266

-0.378 -0.049
0.745 -0.609
0.549 0.792

78.28° <0.93 -0.27 0.24>
89.66° <1 0 0>

30.06° <-0.5 -0.87 -0.05>

65.12° <-0.15 0.97 -0.2>

89.98° <0 -1 0>

55.76° <0.89 0.27 -0.36>
89.56° <1 00>

45.66° <-0.84 0.54 -0.07>

74.18° <-0.41 -0.84 0.36>

89.64° <0 1 0>

48.88° <0.92 0.14 0.36>
89.4°<1 00>

92.4° <-0.5 0.83 -0.23>

71.94° <0.10 -0.94 0.32>

30.84° <-0.32 0.68 0.66>

89.9°<010>

82.76° <-0.53 0.75 -0.40>

43.08° <0.85 -0.23 0.48>
89.89° <1 00>

354975.726.8 74.8

239.530 118.9

75.3

91.6 63.9 254.2

88.6

6.151.8 3325

51.4

14554552109 54

258.768.6 131.3 79.5

18.045.50.44

42.7

107.8 89.3225.7 72.2

289.2 67.7 96.5

17.7

125.32292554 77

105.8 7457 15.3 74.8

355.4 37.7
25.94

37.5

1

0.72

0.83

0.73

0.86

0.7

55.57

73.21

29.29

10.78

339.

132.88

84.39

0.83 56.36

0.94

0.86

0.93

160.28

68.72

115.44

80.42

* The domains with the same superscript are vagiaheach other.

Table 6.3 shows that some domains are variantaaf ether since they transform

into another by rotating around {100} or {010} ples by about 90°. For example, domains

with 33 and11 id numbers are found to be domain variants bytimtaof domain 27 with
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89.66° <1 0 0> and 89.98° <0 -1 0> rotation angld axis respectivelylhis is the exact
relationship to be expected from 90° domains ineagonal structure. These results
demonstrate the power of the 3D-XRD technique émtifly and track ferroelectric domains
as well as their variants in situ. This is thestfistep towards quantifying the mesoscale

constitutive response of ferroelectrics.

6.1.4. Domain Tracking

The domain tracking capabilty of 3D-XRD is illuated in Figure 6.5: the
progression of domains with electric field on th@0{} pole figure. The numbering of
domains at each electric field is exclusive, igomains with the same numbers at two
different voltage values are not necessarily tmmesdomains. While there are no clear and
drastic changes, some clustering is observed atut@ages along the field direction (thfe
axis of the pole figure). The results shows thai \Jittle 90° switching occurred like since

the sample was pre-poled leading to a built-inuext

o @<
2

13
oz X

IS 1 o o2
10%5 a0

e M P33

2 kV/cm 5 kV/cm 10 kV/cm

Figure 6.5. (Continued)
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Figure 6.5. [001] pole figure in stereographic praction of the orientations of ferroelectric
domains as a function of electric field. Note thathe numbering is unique to each electric field
value.
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The progression of the ferroelectric domains with electric field can further be
tracked by their polarization angles. As definedsdéttion 4.2, the polarization angle is the
angle between the polarization vector of the domaimd direction of the electric field and is
expected to decrease with the applied electricl.fi€hble 6.4 shows the progression of the
polarization angle of the domains as a functiorelettric field. With the applied electric
field, some new domains were observed along angepédicular to the electric field. To the
contrary with the expected, the polarization angiethe ferroelectric domains don’t change
gradually with applied electric field. This is due the fast dynamics and nature of the

displacive transformation of the domain switching.
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Table 6.4. The angle between polarization vectord tracked ferroelectric domains in BaTiOs
and the applied electric field vector as a functiomf electric field. Domains marked with the
same superscript and color belong to the same sul@n/grain shown in Table 6.3. New domains
(bold font) parallel and perpendicular to the electic field appear under electric loading while
most of the domains remain unchanged due to residligexture from pre-poling. For instance,
new parallel domains are 1.41, 1.87, 11.44° etc. dehnew perpendicular domains are 85.58 and
89.15° at 20 kv/cm.

@ (°)-rows vs. Electric Field (kV/cm)-columns

2 3 5 7.5 10 12.5 15 17.5 20
1.4 1.5 1.5 1.5 1.5 1.5
1.9 1.9 1.9 1.9
11.4 11.3 11.3 11.4 11.4 11.4 11.3 11.3
12.3 12.4 12.5 12.4 12.4 12.4 12.4
12.8 12.8 12.8 12.8
13.3 13.3 13.3 13.4 13.4 135
17.7¢ 17.7 17.8 17.8 17.8 17.8 17.8 17.8 17.8
27.8 27.9 27.9 27.9
36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.5 36.5
42.7°
46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.4 46.5
48.6 48.6 48.6 48.6 48.5 48.5 48.5 48.6 48.6
50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.1 50.2
56.8 56.8 56.7 56.7 56.7 56.7 56.7 56.7 56.7
64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.7
69.2 69.2 69.2 69.2 69.2 69.2 69.2 69.1
70.3 70.4 70.4 70.3 70.4 70.4 70.3 70.3 70.3
72.2° 72.2 72.2 72.2 72.1 72.1 72.2 72.2 72.2
74.8% 74.8 74.8 74.8 74.8 74.8 74.7 74.7 74.8
75.3% 75.4 75.4 75.3 75.4 75.3 75.3 75.4
77 76.9 76.9 76.9 76.9 76.9 77.0 77.0 76.9
83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.6
84.2 84.2 84.1 84.2 84.2 84.2
84.7 84.8 84.7 84.7 84.7 84.7 84.7
85.6 85.6
89.2 89.2
86.2

88.6%
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A close inspection of Table 6.4 shows that someadosncould not be identified at
the next electric field during th&raindex analysis. This may be due to the experimental
parameters or the overlap of spots. In order taesse the efficiency of domain
characterization and to better characterize clopebitioned spots, a 90° domain switching
model was developed.

6.1.5. 90°Domain Switching Model

Other than the previously described pseudo-cubionivwg of ferroelectric domains
by 89.4° (2tan’(a/c)) rotation around the cube edges, {100} (see Se@i@ for details) ,
the crystallography of 90° domain switching in axdgonal crystal can also be described by a
180° rotation around the {110} directions (Figur&)6 The angleg, is calculated atan(c/a)
wherea andc are the lattice parameters of the tetragonalaetit

100

001

Figure 6.6. Schematic of 90° domain switching in &tragonal crystal. The scale of the 100 and
001 directions is exaggerated for clarity.

This means, domain switching can happen on 6 diygtaphic planes. For a tetragonal
parent (with a polarization along [001]), the raias around [101], [011], [0-11] and [-101]
are equivalent to 90° switching while rotation and{110] and [1-10] for 180° domains.

Figure 6.7 depicts the formation of a {100} quadessplitting by 90° domain switching.
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(@) (b)

Figure 6.7. (a) Schematic of 90° domain switchingnia tetragonal crystal. (b) Projection from
the z direction of the parent showing its corresponding100} twin orientations. The angle
between two domain variants corresponds to 1.2° whec/a ratio is taken as 1.01.

The transformation between the scattering vectohanlaboratory coordinate system
(G)) and a crystallographiakl plane Gnk) from a domain is given by:

GI = QUTBGnm (65)

where () is the rotation matrix defining a rotation alondirection which is perpendicular to
the incoming beam directiotJ is the orientation matrix of the domain betweeystallite
and sample coordinate syste,is the twin transformation matrix in the crystali
coordinate system arilis the reciprocal lattice matrix (where crystallaxis x is parallel to
b;, y is in the plane ofiband b and z is perpendicular to that plane) &g is the vector
from the diffraction plane.

The twin transformation matrixT§{ can be obtained by two methods. In the first
method, the twinning happens by 180° rotation adatlne normal of (101), (-101), (011) or
(0-11) planes. This rotation can be achieved by tthesformation of the vectors hy
rotation (in Figure 6.7) around the normal of th@X), (-101), (011) or (0-11) planes and an
inverse symmetry operation around the non-negatite These rotations can be expressed

as following:
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cos@) O sin(a) 1 0 O
Mig, = 0 1 0 Tn=M;u0 -1 0 (MlOl)il (6.6)
—sin(@) 0 cos@) 0O 0 -
1 0 0 -1 0 0
Moy =0 cosgr) sin(a) T,,=My 0 1 0|(My)*  (6.7)
0 -sin(a) cosg) 0O 0 -
1 0 0 -1 0 0
My, =|0 costa) sin(-a)) T, ,,=M,,/0 1 0|T,,)" (6.8)
0 -sin(-a) cosfa) 0O 0 -
costa) O sin(-a) 1 0 O
Muu=| 0 1 0 Tw=M 0 -1 0|(M,,)* (6.9)
—-sin(-a) 0 cosfa) 0O 0 -

The corresponding twin transformation matricestifi@se rotations will then be:

—cosf) 0 sin(y) —cosf) 0 —sin(y)
T =| O -1 0 Te=|l 0 -1 0 (6.10)
sin(y) 0 cosf) -sin(y) 0 cosf)
-1 0 0 -1 0 0
Ty =0 —cosf) sin(y) T,.,=|0 —cosf) -—sin(y) (6.11)
0 sin(y) cosf) 0 -—sin(y) cosf)

wherey represents the angle between the polarizatioreaaighg polarization directions of
parent domain and domain variants as shown in Eigu6.6 and

v =180- 20 =180 2tan* (%) _ 894z |

100

The second method to obtain twin transformation riceg is to use skew-
symmetrical matrices. In this method, the transtdion matrix can be obtained by a rotation
around an axis. Ih and o are denoted as the rotation axis and angle raspbgtthe

transformation matrix can be expressed as the cwtibn of the identify matrix times
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cos(), a matrix which is symmetrical about the leaddiggonal and a matrix which is
antisymmetrical (skew-symmetrical) about the legddhagonal (term on other side of
diagonal is negative). This transformation matax de shown as [Euclid (2007)]:

100 0 -n, n, n> nn, nn,
T=coso|0 1 O|+sino-| n, 0 -n|+@-cosw):|nn, n; n,n,| (6.12)
0 01 -n, n O nn, nn, n

The combination of these matrices can be writtean single matrix form as follows:

@-cosw)n’+cosn  (1-cose)nn, —n;sine  (L-coso)nn, +n,sine
T =| l-coso)nn, +n,sine  (L-coso)n +coso  (L—cosm)n,n, —nsine | (6.13)
@-cosw)nn, —n,sine  (L-cosw)n,n,+nsine  (1-cose)n; +cose

As discussed in Section 6.1.4, Graindex is not &blénd all the domain variants
from a grain due to experimental conditions suchslastter didn't open, beam lost etc.
Therefore, one needs to look for the domain vasiananually by starting a orientation
matrix found by Graindex. By using the transformatmatrix and diffraction equation in Eq
(6.6), it is possible to simulate the possible domaariants, investigate the other domain
variants and investigate the neighboring spotsotaiion whether they are belong to same
grain or not. By using both techniques describeavabit is possible to mimic the domain

switching and interpret the results better.

6.1.6. Characterization of Domain Variants

By combining the twin transformation matrices in. 8} 5), it is possible to study the
variants of a domain found kgraindex In order to accomplish this, a simulation package
calledDiffsim was usedDiffsim was written inMatlab by Risoe Lab researchers in Denmark
to simulate 3D-XRD diffraction patterns from a sétgrains with known orientations (its
current name isFarfield Simulation” [Schmidt, S. (2007)]). With the aid of this packag
is possible to predict the domain variants of agidomain and characterize the orientation
of its variants. The best way to characterize tbmain variants is to use thhi-Eta map
(Section 4.3) because the spots of the simulatedadio variants can be easily observed.
SeveralPhi-Eta mapswere prepared from the (100), (001), (110), (011)11), (200) and
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(002) Debye rings using th&it2D.v12.077 software [Hammersley, A. P. (1997)] by
integrating the rings along (azimuth angle) and binning i® 2nd combining summed each

ring alongg in Matlab.

Figure 6.8 shows an example of such a simulatiorifi®e domain variants no. 1, 17
and 28 (see Table 6.3). The corresponding locat@mnthe (200) and (002) spots from
domains no. 1, 17 and 18 are shown on the expetahéata in Figure 6.8(a). As was shown
in Eq. (4.12), it is possible to locate the Friegair of a given spot with the 3D-XRD
technique and the shapes and morphologies of fhmseare expected to be identical. Non-
matching spots between Friedel maps are considagdsome spots that diffract
coincidentally in that given phi oscillation andethare discarded. Figure 6.8(b) shows the
simulation by starting with domain no. 1 as thegparThe simulation identifies domains no.
17 and 28 as the variants of no. 1 rotated arobhed@ll] (*) and [-101] (red>) directions,
respectively.

As proved in Eqg. (4.12), it is possible to locate Eriedel pair a given spot with the
3D-XRD technique and these two spots and surrognsiiots are expected to be identical.
Any new spots without its Friedel pair are consédeas coincidence spots diffracting at that
specifico oscillation. Figure 6.8 (b) shows the simulationdtarting with Domain 1 as a
parent domain. With this simulation, the domain dal 28 are identified as the domain
variants rotated around [011] (*) and [-101] (redbrection.
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Figure 6.8. (alPhi-Etalocations of the 200 and 002 peaks and their Efiedirs of domain variants
(1-17-28) in 200 and 002 at phi-eta map. The phireap was prepared with the experiment data
from 2kV/cm oscillation images from 2kV/cm. (b) Theediction of the spots by starting Domain 1
(red circle) and its domain variants. (re@dParent, red+ 101, red>>-101, red*>011, red1>0-
11, black+> 011&-101, black>>011&101, black®*>0-11&-101, blackl>0-11&101)

Table 6.5 shows the overall summary obtained frioen0° domain model for all the
domain variants shown in Table 6.3. Note that [P-4dd [-101] directions in Table 6.3

correspond to successive 180° rotations arourdd, fite [0-11], and then [-101] directions.

Table 6.5. The summary of the relationships betweesome domains listed in Table 6.3. The
crystallographic relation is defined as rotation apund a specified axis of the parent domain.
For example, among domain variants 33, 27 and 1dpmains 27 and 11 can be obtained by the

180° rotation around [011] and [101] axes respectly.

Domain Group Polarization Angle, ©° Crystallographic relation

33, 27,11 74.8, 75.3, 88.5 Parent(33), [011](27),
[101](11)

1,17, 28 51.4,54,79.5 Parent(1), [011](17), [-
101](28)

13, 34 74.8, 37.5 Parent(13), [011](34)

3,15 17.7,77 Parent(3), [101](15)

2,14 42.7,72.2 Parent(14), [011](2)

Among the indentified groups of the ferroelectrenthins, Domain 1, 17 and 28 is

" (@)

particularly interesting. While, the polarizationgde of Domain 28 is almost perpendicular,
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(79°), applied electric field reduces the intensityhis domain. Figure 6.9 and 6.10 show the

evolution of this domain as a function of elecfiadd.
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The application of the electric field shows thaé tthomains gradually experience
domain switching and the domain switching can stestind the coercive field (5 kV/cm).

6.1.7. Domain Intersections

A close inspection of the domains shown in Tab® réveals that most of domain
groups found are basically 90° variants of a paderain twinned over (011) or (101)
planes. These domain variants can be expressed thiir polarization directions
schematically. If we denote the parent domain as[@i®1] direction, then the (011) twin
variant will have a polarization along the [010fedtion. In the same way, the (101) variant
will have a polarization along the [100] directiorhe intersections of these domains can be
shown schematically in Figure 6.11.

[100]

L .
b Q@ P
[010]

(110) (110) (101) (101)

[010] -
» o (011)
(oo / [\f}ol] o @ ./ \.
[100]

(110) (110)

[001] i (019
[100]'/ / ?}1:]‘ [010] . ./ \.

[100] y

(101) (1o1)
(a) z é—’x

Figure 6.11. (a) The possible 90° variants of a pant domain with polarization vectors (from
top to bottom) along [100], [010] and [001]. (b) Sematic intersection of these domains
indicating the domain boundary planes. Each row shes the possible domain intersections of
[100], [010] and [001] polarization vectors.

Combining the information on possible domain vasaand the variants found by
Graindex one can draw a schematic of their arrangemerttseimicrostructure. Figure 6.12
shows such a schematic [Tan, X. 2007)]. If we take parent domain to be oriented along

the x-direction, its variants can be obtained by twignaround (101) or (110) planes. These
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domain variants can be either along the electatd for perpendicular to electric field and
application of the electric field will yield the dwins perpendicular to electric field to
switch. Only two domain variants are seen in theaios embedded in the sample. The third

domain variants are not seen as seen in the uSXxB&iments.
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(a) (b)
Figure 6.12. Schematic of domain intersections. (®rojection of these domains on the-axis
and the unit cell representation [Tan, X. (2007)[The arrows show the intersections of the
polarization vectors in a unit cell. (b) 2-D schemigc of domain intersections. The [001] domain
is neighbor with a [100] domain along the (011) doain boundary. The [100] domain is next to a
[010] domain along (110). The fourth possibility isa [00-1] domain that borders a [010] domain
along (101) and we didn’t observe the fourth domairariant in 3D-XRD experiment [Tan, X.
(2007)].

From the domain switching model and the resultsstnad the parent domains are
found to be along the surface normal and the domarmmants of the parent domains are
produced by the rotation around either [100] or0]Qdirection with 89.4 or 89.6°. While the
fraction of the domain variants that are perperidicto the electric field reduces with the
electric field, the parallel domains have higheemsity. This is consistent with the principles

of the ferroelectric domain switching. With the nemprovements, the configurations of the
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domain variants can be predicted in three dimesswhich give a unique opportunity to
study the ferroelectric domain switching.

6.1.8. Domain Size

As discussed in Section 4.2.3, it is possiblend the volume of a diffracting domain
based on measured intensity. Due to domain swiglhire volumes of domains with larger
polarization angles are expected to decrease Woke of domains with smaller polarization
angles to increase. To quantify domain volume diariuas a function of electric field, the
integrated intensities of diffraction spots fromntiin variants were calculated with a 2-D
Gaussian (Eq. 4.18). The intensity values were edad to domain volume by using Eg.
(4.17). The same routine was repeated for thed€figair of a spot to get a better estimate
for the domain volume. Thehi-Eta map was used in this effort because it is easyalate
spots and observe its variants alafignd . Figure 6.13 shows domain size evolution as a
function of electric field for the domains listed Table 6.3. The calculated domain sizes are
based on the 200 reflections. The main reasonlettsgg 200 is that 200 peaks can have 4
variants (200, -200, 020, and 0-20) and it is gedio observe more variants on a -
Etamap and compare their integrated intensity values.
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Figure 6.13. The domain size versus electric fielss a function of electric field of the domain
variants shown in Table 6.3
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The data in Figure 6.11 is somewhat ambiguous aattesed. For instance, the
volumes of some domains (Domain 1, 17, 28, 3-16)adese with the increased electric field.
An opposite trend should be observed as the vohind@mains perpendicular to the electric
field should decrease while that of the paralleémshould increase. Additional data is
needed to clarify this issue. However, this ex@demonstrated the feasibility of tracking

not only domain orientations, but also their voluasea function of loading.

6.2. Investigation of Mesoscale Behavior of Ferroel  ectrics in
Response to Electric Field and Temperature

The evolution of the ferroelectric domains withotte field and temperature was
studied by using 3D-XRD technique. The phase tmanstion from cubic to tetragonal and
the distribution of the domain variants within theain was studied. After cooling, the
resultant domain variants are obtained by rota8@@®6° and 89.6° of the [100] or [010] axis
of the cubic grain respectively. As response tatate field, the volume fraction change
between the domains was observed. This volumeidracs favored on the domain that has a
small angle between its ¢ axis and the electrid fkrection. There is no such a significant
grain rotation observed during domain switching.e Timprovements are explained to

eliminate the major drawbacks of studying ferrogles: spot overlapping.

6.2.1. Experimental Procedures
BaTiO; ceramics were processed from a single batch oViqusly prepared

stoichiometric BaTi@ powder (99.9% pure, with Ba/Ti ratio=1.00, fromriee Corp.,
Transelco Division) to minimize the effects of stuometry variations between batches
[Bryne, T. A. (2004)]. The initial powders were hogeneously mixed via vibratory milling
for 5 h in zirconia media in ethanol. Approximatdlyt% binder was added to the powder.
Following binder burn-out at 500°C for 2 h, the haixed powder was calcined at 1300°C
for 2 h in an alumina crucible covered with zir@miowder. The final composition of the
sample had approximately 95% of the theoreticalsitignFor grain size measurements,
samples were thermally etched at 1300°C for 2 feveal the grain structure. The grain size
was calculated around 20 pm.
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Bulk polycrystalline BaTi@ samples were sectioned with a diamond saw into
1.2x1.2x5 mm dimensions. After sectioning, the ates of the samples were polished with
abrasive and finally with fine sandpaper until fiveal dimensions would be 1x1x5 mm.
During polishing, extra caution was shown not ttraduce residual stress to the sample.
Both 1x1 mm sides were sputtered with gold for Hwutes and thin copper wires were
attached using conductive epoxy. There are sewhahntages of selecting such sample
dimensions. First, the X-rays can easily penettat@ugh the sample at high energy. Second,
the applied electric field can be more than coerdigld which leads to significant domain

switching.

The 3D-XRD experimental setup mainly consists af@aochromatic high energy x-
ray source, to enhance the penetration depth gmtoange, a sample holder with a rotating
device inx, y, z, and¢ axis to allow studying the grain rotations, and @0D detector to
record the diffraction patterns in easloscillation. Figure 6.3 shows the schematic 3D-XRD
setup. With a typical range of 50-80 keV of micomtised monochromatic x-rays, the
crystallographic planes of each grain diffractsBaagg peaks on the 2D detector. Rotation
alongz axis allows the grain to diffract as Bragg comtfitisatisfies. For the ferroelectrics,
domains diffract as population with a small degaeel the technique requires smalder
oscillation to resolve the domains, i.e. less t0&3. This angle can be resolved by 3D-XRD

technique which gives a unique opportunity to stiyferroelectrics.

3D-XRD experiments of BaTip were performed at beamline 1-ID-C of the
Advanced Photon Source (APS), Argonne National tatiooy, Argonne, IL. This beamline
not only provides dedicated high energy focusingcepbut is specialized for 3D-XRD data
acquisition and analysis. By focusing verticallydarsing slits horizontally, high energy x-
rays (80.72 keV, with wavelength ~ 0.1535 A) in transmission mode were focused to a
20x20 um spot size. Since the grain size was estimatea tarbund 20 um, this spot size
was enough to illuminate roughly 50 grains. Amolngse grains, a few of those grains were
illuminated with the x-ray beam during the sampéation. The sample was centered on a
vertically (phi) rotating fixture which heating capility is provided by a Thunderbolt electric
cartridge heater that can heat up to 650°C with Wfh? power density. This device is
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embedded to a sample holder which made of coppehigh thermal conductivity. An
electrically insulating and heat conductive epoxgsvapplied between the sample and the
sample holder to prevent an electric arcing. Tineperature profile on the copper plate was
measured with Omega Model HH21 Microprocessor Theneter and Fluke 871V True
RMS Multimeter. The temperature gradient within ganple was also monitored by using
Inframetrics Model 760 IR imaging radiometer. Whiteating the sample stage, the
positioning stage is prevented from heating by MAC®@achinable glass ceramic posts.

Heating the sample above Curie temperature pricgldéotric field randomized the
poling and preferred orientation became feasibli wlectric field. After cooling to room
temperature, the sample was oscillated perpenditolthe beam with 0.25§ steps up to
+60°; repeated at each applied electric field. €letric field was applied in-situ with a
Canberra 3002 HV supply reaching up to +10 kV/cion{d) in 5 kV/cm steps and was
perpendicular to the incoming beam (along the g-axiFigure 6.3). The maximum applied
electric field was high enough to trigger domaintehing as the nominal coercive field of
the material was previously measured as 5.16 kVidm. sample was aligned with the way
where the electric field direction is normal to theoming beam direction (Figure 6.3). The
rotation axis of the sample was carefully aligngcchecking the same spot after rotating the
sample for 180° along. The sample-to-detector distance was adjuste@®3$.2 mm. This
distance enhanced the resolution of the diffracsipats on the GE 41RT amorphous silicon
detector (2048x2048 pixel size, GE Healthcare Inay) increasing the radial angle
resolutions of the variants of {001}, {011}, {1114nd {002} diffraction planes. The lattice
parameters of the BaT#Qvere calculated as a=0.39986 nm at cubic regiahas®.39836
nm and ¢=0.40198 nm at room temperature. Usingththe-fly scan mode in GE detector,
collecting 480 images took less than 5 min. Th& &cquisition speed of the GE detector
made possible to automate the data acquisitionessocT he diffraction patterns collected at
above Curie temperature were analyzed by Graindexiridsen, E. M. (2001)]. The
orientation with the highest number of observedentions compared to simulated ones is
selected as reference grain. The same grain \&aketl while cooling the sample to room
temperature and applying electric field.
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After cooling to the room temperature, it is veifficult to find the orientations of
the ferroelectric domains due to spot overlappifige reflections with low multiplicity such
as (001), (002), (110) and (112) don't experienuat ®verlapping and they are used to find
the orientations of the domains by simulating therdgations using “diffsim” [Lauridsen, E.
M. (2001)]. In order to find the misorientation Wween the tetragonal domains and the cubic
grain, the orientations are first mapped to fundataleegion respectively. While3mpoint
symmetry was used for cubic gra#timmpoint symmetry was used for tetragonal domains
and misorientation was calculated by using ODF/Pfiware package from Cornell
University [Dawson, P.et al. (2005)]. As a convention, angle-axis pairs weredusT his
convention has a major advantage to show the reig@ation angle and axis with respect to
the reference grain and it is helpful when desegbthe misorientation angle between

domains with the domain boundary.

6.2.2. Data Evaluation

In 3D-XRD technique, using high energy monochromatrays makes possible to
illuminate the grains embedded in a polycrystaR&y beam can be focused to a desired
area or grain. Among the illuminated area in thensa, each crystallographic plane of
grains diffracts as a peak on the detector. Thpeshdistribution, and intensity of these peaks
can be used to study the texture evolution of treenmal. Rotation along the axis,
perpendicular the incoming beam direction, alloWshee grains within the illuminated area
to satisfy the Bragg condition and enable us td tine orientations of the grains. Typical
oscillation angle for cubic materials is 1° andstangle needs to be small enough to resolve
reflections if the sample has subgrain structube flirther details of the data analysis can be
found from Lauridsen, E. M. (2001)'s paper. To swaripe, the overall data analysis can be
explained by one equation:

G = Qg_lBGnkI (6.14)

where the scattering vect@; of each crystallographic planes in the laboratargrdinate
system (X,y,z) is translated into reciprocal l&tgystem (). For the translatior) is the

rotation matrix defining a rotation parallel to theaxis between laboratory system and the
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sample system ang® is the orientation matrix defining a rotation beem sample and
crystal system (i.eG=Q.Gs, Gs=g*.G¢). Note that the original orientation matrix used in
3D-XRD transforms the crystal coordinate systern sample coordinate system. In order to
be consistent with literature, this orientation nxatvas represented with its inverse. B is a
second rank tensor which transforms the crystatdinate system from reciprocal to real
space. Each spot in the detector is convertedsttatiering vector®|) and these vectors are
compared to simulated ones by using Euler anglé® fEflections matching with the
simulated ones with Euler angles are authenticaseorientations within the sample volume.
For cubic materials, finding orientations are faielasy compared to ferroelectrics since the
reflections appear as distinct spots contrary timéectric domains.

The polycrystalline ferroelectrics are usually casgd of grains with several domains
isolated by domain boundaries. Domain boundarieasthe twin boundaries and depending
on the lattice parameters, the pseudo-cubic edf#iseodomains within a grain can have
misorientation to each other. For the ferroelestridere the c/a ratio is close to unity, the
misorientation angle between the domains can bg serall. For instance, c/a ratio of
BaTiO; is 1.01 and the misorientation angle between i) and (001) planes of the
individual domains can be calculated as i.e.@du6°. In order to resolve the domains, the
sample needs to be oscillated with an angle smiilder theoretical misorientation angle. The
typical oscillation step for the current investigatwas 0.25° and this step was sufficient to
resolve the domains from the same grain. The résalof the spots along was 0.1°. Due
to tetragonal crystal structure in BagjQhe distinction between (100) and (010) planes
between the domains in the same grain is nearlpssiple and it is difficult to resolve these
reflections alongh andr. This drawback is known as spot overlap and ithheen a limiting
factor for finding the precise orientation of thenthins.

One of the major advantages of the 3D-XRD compaiedother characterization
techniques is the capability to resolve the criagahphic planes with opposite directions.
These planes are called as “Friedel pairs” in ditiere. If we assume one of these spots

diffracting at ¢,oscillation angle,n, azimuthal angle and26 diffracting angle at the

detector, the Friedel pair of this spot will difftaat
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{0y = b + 20,/1+ tan? 20 + tan 2y, : =1, +180° (6.15)

where ¢, andn, are the oscillation and azimuthal angle of itedel pair. The reflections

that can be resolved from its Friedel pairs and’tderperience spot overlap ip4mm

tetragonal structure are (OOlIOOf , 1§002) and (0072) Since these reflections can be

resolved in¢ and n, they can represent the domains within the gr&imong these

reflections, the radial separation of the (002frddtion ring is the highest. Therefore, the

(002) and (0072) reflections are in great interest because theye hidne highest radial
resolution achievable with the current detectorcdkding to crystal structure of BaTiO
titanium atom is located in this crystal plane alhand this plane is more sensitive to study
the strain and the orientation changes with apiedtric field.

Indexation attempt of the ferroelectric domainsdse® be done carefully. Because there
are several domains diffract within a half degrde indexation based on all reflection
families may create a slight deviation from thel m@entation of the domains. In addition,
depending on the angle between its scattering westd rotation axis, the same reflection
can appear at sequential phi sets. To find theecaritmass of the reflections, a given hkl
ring was binned along and then integrated alor2§. The resultant map is called “Phi-Eta”
and by using this map, it is possible to find tleater-of-mass of the reflections @tandm.

As of interest, eta-phi map for the (002) reflentias prepared and the center of mass of 002

reflections is found based on the cubic grain awhr temperature. Since (002) ar(@Df 2)

reflections will not be sufficient to find the ontion of the domains and (001) a@bf 1
reflections will be linear to these reflectionshert reflections are needed for finding the
orientation. Because it has a high radial resofutiod appears as a singlet alofg @12)

reflections can be used for candidate reflectidiee normalized scattering vectors of these

reflections in the sample systef, [Poulsen, H. Fet al (2004)] can be written as:

cos(p) -sin(¢p) O h —tan@)
G=0g'h=|sin@g) cosp) O g’lﬂB k | = cos@)| —sin(n) (6.16)
0 0 1 Tsin(®) I cost)
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where ¢ is the rotation angle,'gs the orientation matrix with direction cosine quonents,
A is the wavelengthy, is azimuthal angle an@ is half Bragg diffracting angle at the

detector. Scattering vectors can also be writteralytation from the crystal to sample
coordinate systems by using Eq. (6.16):

cos(p) -sin(¢p) O ' —tan@)
G=g'h=|sin(¢) cos@p) 0] cosp) —sin(n) (6.17)
0 0 1 cosf)

This equation allows one to calculate the angle Between diffraction planes (@Gnd G)

as:
cosd =cosG; - G,) (6.18)

This angle §) is also equivalent to interplanar angles [Pechargki., Zavalij, P.Y. (2005)]
and for tetragonal structuré, angle can be calculated as:

b, + ik, 1,

coSd = a’ ¢’ (6.19)
h?2+k? 12 [h2+kZ 12
P PO

To find the orientations of the domains, the rdftats from cubic grains were used as
reference. During the cooling, the tetragonal otites transformed from those cubic
reflections were tabulated. Among tabulated tetnafjoreflections, (002) and (112)
reflections were used for fitting. From these eefilons, the angles between the tetragonal
reflections are calculated via Eq. (6.17) and caegbdo theoretical interplanar angles for
tetragonal structure Eq. (6.19). The angle betw@6a) and (112) reflections was found to
be 35.51° by using EQ.(6.19) and the candidateegfins within a range of 0.1° of
theoretical interplanar angles are fitted by udtigg 6.19 and the orientations of the domains
are found. The reflections from calculated orienotet were also compared with the raw
diffraction patterns by using “diffsim” software guridsen, E.M. (2001), Schmidt, S. (2007)]
and the orientations were verified for all reflecis. The deviation between the reflections of
the fitted orientations and raw diffraction patsemas less than 0.05° i and 0.1° ireta
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In order to find the misorientation between theaagbnal domains and the cubic
grain, the orientations are first mapped to cowesing fundamental regions respectively.
While m3m point symmetry was used for cubic grdimm point symmetry was used for
tetragonal domains and misorientation was calcdl&ée using ODF/PF software package
from Cornell University [Dawson, P. (2005), Frark,C. (1988)]. As a convention, angle-
axis pairs were used. This convention has a maearggage to show the misorientation
angle and axis with respect to the reference gaauh it is helpful when describing the

misorientation angle between domains with the darbaundary.

6.2.2.1. Box Scan

Intrinsic spot overlap is often a limiting factor single grain investigations, esp. in
ceramics. It has been demonstrated that this prololen be alleviated by taking repeated
data sets while translating a smaller beam actwssdample. Such ‘box scans’ also provide
2D spatial information about the center-of-masshefscattering unit. With recent advances
in detector technology, the acquisition of suclgéadata sets has become reasonably fast for
in-situ investigations. Figure 6.14 shows the schematicimes of box scan.

omega

—_— z scans =)
y S€ans
100 i % 10 pm

30 wrn X 100 wm

Figure 6.14. The “box scan” procedure: The samplesiilluminated with a desired spot size. The
spot size is further decreased to isolate overlappg peaks in the diffraction pattern and to
locate the domains in 2D while changing the locatioof the sample. [Poulsen, H. F. (2004)]
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From the previous 3D-XRD experiment, it is welsebved that the domain switching
doesn’t involve a gradual domain rotation. In orderds, the domains are switched to the
most energetically favorable state by a displadcramsformation. By combining the “box
scan” technique, it is possible to study the looakntation distribution function of
polycrystalline BaTiQ. The procedure for studying the local orientatistribution function
is described by Poulsen et al [Poulsen, H. F. (J005is crucial to boost the analysis by
implementing the local distribution functions.

Box scan is the newly implemented routine to 3D-X&bhnique to study the shape
of the grain and distribution of the domain vargawtthin the grain. In our experiment, the
incoming beam is narrowed and sample was moveddmally from -50 to 50 microns with
5 micron steps. At each image, the sample is rdtakeng phi from -60 to 60 deg with 0.25
deg steps. With box scan technique, it is posgiblebtain 3D information of the tracked
grains. We used this technique to track the mogahobf the close spots along the sample
and monitor the distribution of the domains withire grain. Figure 6.15 (a) shows the
distribution o the close spots and their distriatas beam is moved out of the sample. The
close spot appearing close to domain are showopaleft of the images stay diffract as the
same behavior with the domain itself. The distiduiof these close spots along the sample
is shown Figure 6.15.b. This clearly shows thatdlbse spot belongs to same grain and it is
a subgrain feature. The detailed understandindn@fstibgrain feature is still underway and

isn’'t included here.
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Figure 6.15 (a)



90

6000

a000 B

4000 4

3000 B

Intensity

2000 B

1000 B

D e L 1 1 1
0 10 20 30 40 50 60 70 a0
SaImX, microns

(b)

Figure 6.15. (a) The distribution of the close (2QGspots along the sample coordinates. The spot
at the center of the image belongs to the grain artthie close spots appear at the top left portion
of the image. (b) The distribution of the peak intasities when moving the sample. Blue color
represent the spot belong to reference grain and gen one is the close spot.

6.2.3. Results and Discussion

The phase transformation from cubic to tetragondlthe distribution of the domain
variants within the grain was studied. The oriaatatelationship between the domains was
revealed. As response to electric field, the voldraetion change between the domains was
observed. The orientation changes with the electramge were studied. The distribution of

the domains was also studied at above Curie tertyverand room temperature.

The first study was to observe the evolution of hiké cubic peaks when cooling
down to room temperature. This study was carriethyonropping the locations of the cubic
reflections from summed oscillation imagest@t5° ¢ and observing the changes in the cubic
reflections when cooling to room temperature. Fegbirl6 shows the locations of (200) cubic
reflections and their transformation to the tetraad200), (020) and (002) reflections when
cooling down to room temperature. The cubic reite were observed to be sharp and
intense at above Curie temperature. When coolingdm temperature, the centrosymmetric
cubic phasegm3n) transforms to noncentrosymmetric tetragonal plgskrst transforming
to an intermediate noncentrosymmetric tetragonahsphp4mn). During the phase
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transformation fronpm3mto p4mm the cubic unit cell slightly contracts aloagaxis and
expands along axis [Buttner, R. H. (1992)]. During the furtheyading to room temperature,

the tetragonality increases by cooling and domfins at room temperature.
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Figure 6.16. The evolution of 002 and 200 peaks lbpoling to room temperature
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Table 6.6 shows the orientations fitted with thetiree described in Section 6.2.2 and
misorientation angles of the domains with respectubic grain. The scattering vectors of
the calculated orientations were compared withekigerimental scattering vectors and the
difference ing andn was less than 0.1°. The domain A has the smatiesirientation with
the cubic grain. Therefore, this domain can be idensd as the parent domain. The
orientation of Domain C can be obtained by rotaB8g74° around [0 1 0] axis of the cubic
grain. This rotation is also equivalent to 180%atmin around the normal of tetragonal (101)

plane. The theoretical misorientation angle ofdbenains can be calculated 2san*(a/c )

where a and ¢ are the lattice parameters. For Bajihere c/a ratio is 1.0092, the

theoretical misorientation angle between domai@9id7°.

Table 6.6. The list of orientation relationships othe cubic grains and their domain variants as
cooling to room temperature. The orientations werexpressed as tensor and angle-axis pairs.
The misorientation between domain variants was defed with respect to cubic grain.

Temperature
130°C RT
Orientation Matrix,
Misor. Angle  Orien. ID
0.607 0.295 0.738
-0.750 0.519 0.409
-0.262 -0.802 0.537

Orientation Matrix

0.32° [-0.35 0.05 0.94] A
0.741 -0.604 -0.294
0.407 0.752 -0.518

0.606 0300 0.737 0:°34 0265 0.803

-0.753 0.516 0.408

-0.258 -0.802 0.538 22:9°[100] B1

0.738 -0.604 -0.300
0.403 0.752 -0.521
0.541 0.264 0.799

89.64° [-1 0 0] B2
0.740 0.295 -0.604
0.406 0.521 0.751
0.536 -0.801 0.266

89.74° [0 -1 0] C




93

One of the striking finding from Table 6.6 is thhere are four tetragonal domains
formed from the cubic grain. We expect 3 domaineash of polarization vectors of the
domains will form along the main cubic axes. Thendos B1 and B2 are first considered as
the subdomains inside the grain because the mmtatien angle between these two domains
is 0.4734°. The smallest misorientation angle betwihe domains can be 1.2° where two
domains can rotate around a common plane with ipesstind negative rotation. The close
inspection of the domain microstructure confirmiedttthese domains are actually c domains
where their polarization vectors pointed along d am direction. Because of the ambiguity
in xrays where the positive and negative directiaresnot detectable, we see two close spots
diffracting from domains pointing opposite direct®o The crystal directions of these close

spots are opposite as well and we see (002)(@08 cry8jal directions as close spots.

Figure 6.17.a and b show the typical 3D arrangesnehthe ferroelectric domains in
a grain and the schematic distribution of the poédion vectors of the domains respectively.
The domains are separated from each other with mobmndaries. The microstructure in
Figure 6.17.a is called “wedge shaped” in theditere [Merz, W. J. (1952)]. Arlt, G. (1990)
discusses that this type of microstructure can hlagaeninimum elastic energy. The domains
in Figure 3.b is shown with their polarization wactdirections with respect to sample
coordinates. As shown in Table 1, domain A is padnalong x direction and this domain is
more likely the parent domain due to its small me@ation angle with the cubic grain. The
misorientation between domain A and domain B2 i689by rotation around [-100] axis of
domain A. This clearly shows that the polarizati@ctor of domain B2 is upwards along z
direction. They are separated by (011) domain bayndlhe misorientation angle and axis
between domain A and C is 89.74° [0 -1 0]. The poddion vector of domain C is along y
axis and these domains are separated by (-101)iddrmandary. Finally, the misorientation
between domain A and B1 is 89.9° around [100] akidomain A. Based on this model, the
misorientation angle between domain B1 and B2 wasd as 0.52° and this angle is well
matched with the misorientation angle found from ttomains (i.e. 0.4734°). The three-

dimensional arrangement of the domain variantsssi@ed to repeat itself inside the grain.
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Figure 6.17. Schematic 3D arrangement of the ferrdectric domains. (b) The schematic
distributions of the polarization vectors of the danains in sample coordinates.

When cooling from Curie temperature, each graimkseip to domains to reduce the
overall energy of the system [Arlt, G. (1990)]. tiig 6.18 shows the [100], [010] and [001]
directions of the cubic grain and domain variantpole figure as stereographic projection.
For clarity, Wulf plot was overlaid to pole figur€he c axes of the domains are marked with
red colors and the direction of the e-field wasvalman Y axis as well. As clearly seen, the
cubic crystal directions transform to tetragonakwltooling to room temperature and due to
tetragonality, each cubic crystal directions bregkto domains. For instance [100] cubic
direction breaks up to [100], [010] and [001] tgwaal directions and each direction is
shared by a domain. As shown in close-up view gufa 4 the angle between the crystal

directions of the domains is around 0.6° Rd¢an *(c/a) —90° where c/a ratio is 1.0092 for

BaTiOs. While forming the domains, it is also seen inufegy6.18 that transformation from

cubic to tetragonal is displacive and doesn't irrecd significant grain rotation.
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Figure 6. 18. {100} pole figures as a stereographgrojection at above Curie and room
temperature. The Wulf plot was overlaid for clarity. The orientations with letters at room
temperature are shown in Table 1 and they are theainain variants within the grain. The
electric field direction is Y-axis and the angles &tween c-axis of the domains (shown in red
color) and the electric field are shown as well.

Figure 6.19 shows thign distribution of the (002) reflections of the domaariants

at above Curie temperature and room temperaturne. distribution is obtained by binning
(002) diffraction rings along and integrating along62 The markers at each map show the
predictions of the calculated orientations foundtéghnique described earlier and there is a
good correlation between calculated and observéiectiens. Figure 6.19 also shows the
Friedel pair of the same reflections and Friedat pd& Domain A is missing because it
diffracts out of oscillation range. From Table lgrbainA has the same orientation with the
cubic grain and appears as uniform domain withlasecspots. DomaiB1 and B2appear as
close spots and one might consider them as dirgcttpntact and separated by a coherent
domain boundary. As described previously, theseailosnare actually pointing along the
opposite directions and we observe them close shago ambiguity of detecting opposite
directions in x-rays. The neighboring close spoéscnsidered as not belonging to the same
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grain because they have cubic reflections and tlmyt transform from the parent cubic
reflections. The neighboring close spots that ast appearing at Friedel pairs are also
considered as spots that diffract coincidentallyiaen¢$ and don’t belong to same grain.
DomainC appears as uniform domain as well. Between DorAaiBl, B2 and C, there are
domain boundaries with a transition region andahentation relationship of the domains is

explained in Figure 6.18.

RT

Figure 6.19. The phi-eta distribution of (002) rections of the domains. The markers A, B and
C represent the orientations shown at Table 1. Thiggures with a similar pattern are from
Friedel pairs of the same reflections.

Electric field was applied to the sample up to L@kW. Considering the coercive
field of BaTiO; was measured as 5.14 kV/cm, the applied eleatid Was enough to trigger
the domain switching. In order to quantify the aleichange in the orientation of the
domains, the orientations of the domains are catledlfrom its reflections at given electric
field. The overall change was expressed with treonentation angle between the domain at
given electric field and the same domain with nectlc field. Figure 6.20 shows the
orientation change of the domains with applied teilecfield. Except the domain
perpendicular to electric field, no significant daimrotation was observed.
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Figure 6.20. The orientation change of the domainsith applied electric field

In order to understand why domains behave to thetréd field differently, the angle
between c axis of the domain and the electric figickction was calculated from the
orientation matrices of the domains. We define dmgle as “polarization angle”. The
polarization angles for DomaiA, B1, B2 and C are calculated as 65.8°, 58.8°, 58.6 and
41.3°. Since domaiA has a large polarization angle, the applicatiothefelectric field is
expected to cause the domain switching in greatalesin this domain. Therefore, the
orientation change of this domain was observedetdhke highest. This is also a proof that
domains don’t rotate during the poling process. oenain walls move as respond to
electric field and the volume fraction of the donsawill favor on the domain is the most
energetically favorable.

There is a direct relation between the volume & tomain and the integrated
intensity of the domain. In order to observe thdunee fraction change between domain
variants with applied electric field, the integihiatensities of the domains were calculated

and the volume fraction of the domain within a gréf ¢,) can be found as:
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where 1§, is the integrated intensity of (002) spot from andin and|l 3, and | &, are the

integrated intensity of the (200) and (020) reftmes of the remaining domain variants
within the grain. The reflections are taken frora ttomain variants shown in Figure 4. To
eliminate the effect of the Lorentz factor, the @mvariants that diffract at the samend
¢ are taken. For instance, (002) reflection of tlmendin A diffracting atn=122.5° and
$=58.4° is compared with the (200) and (020) reiters of the domain variants B1, B2 and

C ant the samg and¢. For many cases, s, and |5, are difficult to resolve due to spot

overlap and the sum of these overlapped spotsagemtin the calculation. To improve the
statistics, the Friedel pair of the spot is measazwell.

Figure 6.21 shows the volume fraction change indbmain variants with applied
electric field. The polarization angles for DomainB1, B2 andC are calculated as 65.8°,
58.8°, 58.6 and 41.3°. The application of the eiedield favors for the domain that is close
the electric field direction. In this case, Dom&th and B2 are the most favorable domain
with its low polarization angle. Indeed, the volufraction of Domain B1 and B2 increases
with electric field up to 10kV/cm. This is due tattice configuration and the polarization
angle of the subdomains. With its high polarizatomwgle, the volume fraction of Domain A
decreases by around 50%. The volume fraction ofadlor@ increases with electric field as
well but this increase is not as significant as donB1 and B2. Beyond 10kV/cm, it is
expected that the fraction of the energeticallyofable domain variant increases. Due to
grain boundaries and local boundary conditionsotrerall switching from one domain is not
complete. The higher electric field can be achdelg immersing the sample in a dielectric
liquid but this has not been feasible in our sdiepause the sample needs to be exposed to

heating prior to electric field to track the evaduit of the same grain.
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Figure 6. 21. The volume fraction change in the doains with the electric field. The error bars
shows the independent measurements from Friedel pai The volume fraction was calculated
from Eq. (6.20) which doesn’t require a correctiorof Lorentz factor because the domain
variants diffract at the closen and ¢.

As seen in the orientation relationships of the dms) there is a slight deviation in
the misorientation angles between domains and pgmmn when cooling down to room
temperature. This may come from the mismatch betwke lattice parameters of the local
domains and the creation of the spontaneous defmmmduring the cooling process. Figure
6.22 shows the schematic depiction of the pseudo-@@mains. The spontaneous
deformation of the domains creates a mismatchdarddmain walls and results in the rotation
of the domains to reduce the spontaneous strawmeeet the domains. This mechanism can
also be considered as domain clamping effect duhegooling. As described with details in
Appendix 7, Nepochatenko, V. A. (2006) modeledrtiiematch angle between domains and
this angle can be calculated as:

¥ =cos* (ﬁ) (6.21)
V2(af +cf)
where a and ¢ correspond to lattice parameters of the domairensidering the lattice
parameters for the BaTiOsample were measured as a=0.39836 and c¢=0.40198hem
phase matching angle can be calculated as 0.314% dngle is very close to the
misorientation angle between the parent grain amdash. Most of the domains still deviate
from the theoretical values which show the loctiida parameters of the domains that differ
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from the average values. One explanation candddhn-Teller effect which corresponds to
a geometrical distortion in the oxygen tetrahedted to deviations of the local domains.

Xy Xo.X;
(b)

Figure 6.22. Schematic depiction of structure of udo-90° walls Nepochatenko, V. A. (2006) y
corresponds to phase matching angle between the dams.

The transformation mechanism of the cubic grairtetbagonal domains is further
studied with more grains. Table 6.7 shows the granvestigated and the orientation

relationships of the grains with the correspondingrains.

Table 6.7. The orientation relationships of the grams and domains when cooling down to room
temperature

Grain Orientation Domain Orientations
Grain Number Misorientation Angle and Axis
0.416 0.909 0.028
0.791 -0.346 -0.505
-0.449 0.233 -0.863
B1 0.42°[0.91 0.2 0.36]

-0.903 0.429 0.030
0.355 0.783 -0.511
-0.243 -0.451 -0.859

B2 0.7° [0.06 -0.27 -0.96]

0.909 -0.029 -0.416

-0.344 0.511 -0.788

0.235 0.859 0.454
135

-0.909 0.025 -0.416
0.346 -0.510 -0.787
-0.232 -0.859 0.455

A 89.95° [1 0 0]
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Table 6.7 (Continued)

0.417 0.908 0.022
0.785 -0.348 -0.512
-0.458 0.231 -0.859
C 0.34° [0.65 0.7 0.29]

-0.410 0.912 -0.020

-0.791 -0.345 0.505

0.454 0.224 0.863
0.74°[0.2 0.67 0.72]

0.880 0.238 -0.411

0.228 0.546 0.806

0.417 -0.803 0.427
89.93°[-1 0 0]

0.882 -0.412 -0.229
0.235 0.806 -0.543
0.409 0.425 0.808

0.883 0.222 -0.413
0.236 0.550 0.801
0.405 -0.805 0.434
89.46° [-1 0 0]
0.883 -0.412 -0.227
0.235 0.805 -0.545
0.407 0.427 0.807
0.17° [0.73 0.54 -0.42]

208

0.508 -0.564 -0.651
-0.227 0.641 -0.733
0.831 0.520 0.198

-0.656 0.507 -0.559 89.74° [0 -1 O]

-0.729 -0.232 0.644
0.197 0.830 0.521

218 -0.656 0.506 -0.560

-0.728 -0.229 0.646
0.199 0.831 0.519
89.85°[100]

-0.995 -0.037 0.093
0.054 -0.982 0.180
0.085 0.184 0.979
0.36 [0.39 0.28 0.88]

0.091 -0.995 -0.043

0.178 0.058 -0.982

0.979 0.082 0.183
327

0.092 -0.995 -0.045
0.174 0.060 -0.983
0.980 0.082 0.179
89.79 [-1 0 0]
0.092 -0.995 -0.041
0.171 0.056 -0.984
0.981 0.083 0.176
89.61° [-1 0 0]
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One of the grains (#135) in Table 6.7 was furtheestigated. Figure 6.23 shows the

(002) directions of four domains. (002) crystakdtion of this grain gradually transforms to

four domains.
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Figure 6. 23. Evolution of 002 reflections with temerature and electric field

The integrated intensity values of the domains shawFigure 6.24 are calculated
and the volume fractions of the domains are studital the electric field. Figure 6.24 shows
the evolution of the volume fraction of the domawgh applied electric field. With
application of electric field, the volume of the main A decreases while Domain C
increases. Domain B1 and B2 remain unchanged héfapplication of electric field.
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Figure 6. 24. The evolution of the volume fractionsf the domains with the electric field

6.2.3.1. Lattice Strain by Domain Switching and Termperature

The evolution of the triaxial strain state of thaygrystalline BaTiQ as response to
electric field was studied in macroscopic and mespis scale. In macroscopic scale, the
strain evolution was investigated from paralleperpendicular direction of applied electric
field. In mesoscale, the strain evolution of thandms within a grain was studied. The

results were compared with the strains obtainewh fopecezoelectric constants of BakiO

6.2.3.1.1. Macroscopic Strain

Figure 6.25 (a) shows the lattice strain evolutadnthe ferroelectric BaTi@with
applied electric field. The results were obtaingdpbwder averaging the diffraction data and
then observing the changes in the interplanar spa€dhe diffraction planes. Since the
direction of the applied electric field has a direffect on the texture of the domains, the

parallel direction to the applied field are studimetause they will experience highest degree
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of the domain switching. The position of th&l peaks were found by single peak fitting.
With the application of electric field, the highedtain was seen in (111) and (202) planes.
While there is a compressive strain developed @2)@lane, no significant amount of strain
was observed in (200) plane with applied electeldf

Figure 6.25(b) shows the lattice strain tensor @wimh of the same sample with
applied electric field. The lattice strain tensoasaobtained from lattice strains shown in
Figure 6.25(a). With the application of electrieldi, a tensile strain was observed along the
yy and xz direction. YY direction corresponds to the applied electricdfidirection and a
tensile strain is developed along the electriadfieDevelopment of a tensile strain was also

observed along the shear directidZ) to the applied electric field direction.
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Figure 6.25 (a)
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Figure 6. 25. (a) Lattice strain evolution of thedrroelectric BaTiO3 with applied electric field.
(b) Lattice strain tensor evolution of the same saple with applied electric field

6.2.3.1.2. Mesoscopic Strain

As the technique described above, the lattice rstr@nsor can be measured from
powder average and domain variants. In order tdircorthe strain free material as cooling
down to room temperature, the first study was basedtudying the evolution of the hkl
cubic peaks when cooling down to room temperatflings study was carried on by summing
oscillation images along phi and caking along radieection from 0 to 360°. Figure 6.26
shows the caked diffraction patterns from differeamperatures and the evolution of the
peak splitting when cooling to room temperature. eAth temperature, the positions of the

diffraction peaks were found with Gaussian fittimgiction and spot strains were calculated
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compared to cubic grain. We see the largest éattimnge from [h00] and [00I] type peaks

up to 5500 microstrain (=0.55%).
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Figure 6.26.hkl lattice change of BaTiQ during the cooling from above Curie temperature to
room temperature

With applied electric field up to 10 kV/cm, the oab lattice strain tensor for the

powder average was found to be:
Applied Field, kV/cm Strain Tensok()

56 -40 O

5kV/cm 159 90
29
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-75 —-292 -40
10kV/cm 503 -74
41

As the lattice strain tensor are shown in micrdasttae. 10°. If the results are compared
with the piezoelectric constants of the single @y8aTi(;, around 600 microstrain is
expected alongy direction where the electric field direction isefd the results are offers a
good agreements with the calculated values whesidenng the strain resolution at APS
Sector 1-1D is 13 (100 microstrain).

The lattice strain tensors of the ferroelectric doma are calculated by fitting the
overall change of the diffraction peaks belong te tlomains. As reference, the peak
positions at room temperature and zero electrid fee taken. To improve statistical errors,
the Friedel pairs of the same spots are measureelaand the average values are taken as
within 100 microstrain. With the application of tledectric field up to 5kV/cm, the lattice

strain tensors of the ferroelectric domains arendbas:

Domain ID Strain Tensore()
13 0 0
B 800 O
-511
0 -292 -40
C 552 -74
-211

where the marked domains are confirmed to be praésehe grain tracked. As compared to
powder average, the slightly higher normal straatsng yy axis are observed with the

application of electric field in these domains. 8 due the local variation of the domains
compared to powder average. One also can noteDivaiain B has slightly larger normal

strain than Domain C. This can be explained byatiigde between c-axis of the domains with
respect to electric field, so-called “polarizatamgle”. The polarization angles for Domain B
and C are calculated as 65.9° and 41.3°. Sinc®dtimain B has larger angle with respect to

electric field, we can expect slightly higher notsi@ain along electric field direction.
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6.2.3.1.3. Comparison with Model

The measured strain values are the ones measuestlydirom the material. In order
to compare the strain findings with the data its#lé strain values were calculated from the
constitute relations. The three dimensional stsiate will be directly proportional to the
piezoelectric tensor, applied electric field and #pplied stress. By assuming the material
was stress free during the experiment, the stramsdr can be calculated from the
piezoelectric coefficients of BaTgby applying electric field. The constitutive redes of
the strain [Jaffe, B. (1971)] are

S.j = dijk E, + SuIEd Ty (6.22)

where § is the strain tensor,jdis the piezoelectric coefficient tensory B the applied
electric field, Sj, is the compliance tensor antk is the stress tensor. For BagjO
piezoelectric coefficient parameters [Simmons, &ale(1971)] used were €580, ds=-50,
ds5=191 in 10*? C/N and compliance parameters are used;a&0®8050, $=-0.235, $5=-

0.524, $=1.57, $4=1.84, $=0.884 in 10 n?/N. Figure 6.27 shows the strain evolution of
BaTiOs with applied electric field.
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Figure 6.27. The strain evolution of BaTiQ with applied electric field
Compared to constitutive relations of the Bad With the measured data, we can
observe discrepancies in the strain evolution. &atiian a strain development suggested by

the constitutive relations of BaTiDwe observe a shear strain development perpeaditul

the applied field direction.

The overall strain measured from powder average tapdferroelectric domains
suggest that the strain developed with appliedtedefield is rather small. The main source
of the discrepancies is the complicated domairepativhich makes a challenge to accurately
characterize the mesoscale domain dynamics. Tq daist research has concentrated on
averaging the bulk behavior and ignoring the cbotion of the individual domains. As
recalled, in tetragonal symmetry, electric fieldhdaad to both 180° and 90° domains while

mechanical stress can cause only 90° domain swgdBierlincourt, D. (1959)]. While Merz
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[Merz, W. J. (1952)] indicated that the final domatructure must contain all 180° domains,
Merz, W. J. (1952) later observed reoriented 90haias as high electric fields. In another
interesting research, Danielson, G. C. (1949) ingated the domain orientation in
polycrystalline BaTiQ under applied electric field and found that 80%tlwé polycrystal
consists of 180° domains while rest is 90° doma#eslincourt, D. (1959) predicted that 2/3
of the total polarization occurs due to 90° domasmsitching, 1/6 occurs due to 180
switching and the rest is due to the intrinsic paectric effect. Since the 90° reorientation
of domains requires more energy, the fraction ef38° domains is not usually significant in
the final microstructure. All of these studieswawer, relied on bulk averaging or surface
characterizations. Berlincourt, D. (1959) alsodmethe highest achievable strain in the
single crystal ferroelectrics is c/a=0.37% when thlk domains experience 90° domain
switching. Since the remnant polarization of thelypaystalline ferroelectrics (around
8uC/cm) is one/third of the one in single crys28 (1C/cm), the highest achievable strain in
polycrystalline ferroelectric will be 0.12%. Thisalue agrees well with the experimental
findings. The present study attempts to offer naetailed information on domain switching

in polycrystalline ferroelectrics.

6.3. Microdiffraction

The Scanning X-Ray Microdiffractionexperiments were conducted at the
microdiffraction end-station (initially at Beamlin23.3, lately at 12.3.2) of the Advanced
Light Source at Lawrence Berkeley National Labangt®erkeley, CA. These experiments
concentrated on the evolution of domains in polgtaline BaTiQ with the temperature and

electric field.

6.3.1. Evolution of Ferroelectric Domains around th e Curie Temperature

The evolution of ferroelectric domains inside ag#&ngrain of a polycrystalline
BaTiOs ceramic was investigated under quasistatic hedtyngsing polychromatic scanning
X-ray microdiffraction (WSXRD). Four domain orietitms were observed from certain
reflections and the 180° domain wall separating tlemains was measured to be 180.47°.
While heating the polycrystalline BaTiOfrom room temperature to above the Curie
temperature (125°C), the ferroelectric domains teotiowards the paraelectric cubic
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orientation. The crystallographic relationshipstioé domains with respect to paraelectric
phase were explained using a domain structure nimdBlepochatenko, V. A. (2006). With
the direct experimental observations, the technigas proved to be capable of studying

ferroelectric domains embedded in polycrystallieegdelectrics.

6.3.1.1. Introduction

Ferroelectric materials have been extensively usethicroelectronic and sensing
applications for more than 50 years because of theellent piezoelectric properties [Jona,
F. (1962)]. BaTiQ was one of the first commercially viable ferro¢lms [Jaffe, B. (1971)]
and has been one of the most widely investigatewdtectrics with its simple and well-
known structure [Haertling, G. H. (1999)]. Upon ting from a paraelectric phase, the polar
axes of the individual clusters within a ferroetectBaTiO; can orient in certain
crystallographic directions to minimize the overatiergy of the system [Arlt, G. (1990)].
These individual clusters are called ferroelectiaamains. The orientation of the domains
depends on the crystal structure and the spontanemarization of the ferroelectric domains
can be parallel to a cube edge (6 possible dinestio total), body diagonal (8) and face
diagonal (12) for tetragonal, rhrombohedral andatibmbic symmetries, respectively [Li, F.
X. (2006)]. For tetragonal ferroelectrics, the fimaicrostructure is composed of 90° and
180° domains where the polarization vectors of @ domains are perpendicular and
parallel to each other, respectively. Since tlgeratio of BaTiQ is not unity,y, the angle

between c axes of two 90° domains is

y=2tan* (%) (6.23)

For example,y = 89.44° for polycrystalline BaTi#with c/a=1.0098 [Harada, J. et al.
(1970)]. Therefore, the angle betweeandc axes of two adjacent domains is 0.54°.

Due to the relative ease of conventional ceramexessing [Jordan, T. L. (2001),
Rogan, R. (2003)], the most commonly employed fdactrics are processed in
polycrystalline form in which the material is conggaol of a collection of crystallographic
grains with distinct orientations. In ferroelectpolycrystalline materials, each grain contains
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domains that are oriented with respect to one @&molly specific crystal symmetry
operations. The domains belonging to the same graimeferred to as domain variants. The
domain structure in ferroelectric ceramics exhildtanore complex pattern compared to
single crystals. Several techniques such as trassmi electron microscopy (TEM) [Tan, X.
(2004), Schonau, K. A. (2007)], White Beam TopogsafHuang, X. R. (1996)], Electron
Back Scattering Diffraction [Ernst, F. et al (20D19ptical microscopy and atomic force
microscopy [Balakumar, S. et al (1997), KalininVS(2001)], etc. have been used to
characterize the ferroelectric domain structureduéntitive information on the orientation,

strain and mesoscale dynamics within the ferrosedbmains are often lacking.

Temperature dictates both the formation of the ofgdactric phase from the
paraelectric phase and the lattice aspect ratiheferroelectric phase, the latter of which
affects the orientation relationships (Eq. 1). Expents as a function of temperature can
therefore be useful to measure the evolution ofoseale domain patterns in polycrystalline
ferroelectrics. During cooling from an elevated pemature, the domain variants experience
a phase transformation from cubic to tetragonal #m orientation of the grain can be

distinctly determined.

Ferroelectrics are extremely sensitive to the matfrthe surface, defect structure,
sample preparation [Chen, J-H, (2005), Chang, WOTY and sample geometry [Lines, M.
E. (1977)]. Therefore, surface-sensitive charaza¢ion technigues may measure behavior
that is not representative of the bulk. Synchrotspased polychromatic Scanning X-Ray
Microdiffraction (USXRD), on the other hand, is aomising non-destructive tool with
greater penetration depth than these other tecési(Rbyum penetration depth in Ba¥%ial
5-16 keV as compared to fm using conventional laboratory X-rays or electron
microscopy), adequate resolution in strain (0.02%g crystallite orientation (0.01°) as well
as microfocusing capability providing submicron tsaresolution [Goudeau, P. et al
(2005)]. The fundamental principles of Laue or pblomatic X-Ray microdiffraction have
been described elsewhere [Chung, J-S. Ice, G. 39{]l and only a brief introduction is
provided here. Laue microdiffraction utilizes mifoused polychromatic X-rays to
illuminate an area of the sample as small as 1 pltiple diffracting planes then provide a

Laue diffraction pattern of individual crystallingrains from a small region of material
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embedded in a polycrystalline material. Laue midfattion can be used in scanning mode
(polychromatic puSXRD) by raster-scanning the sampider the X-ray microbeam and

measuring a Laue pattern at each step to obtantation and/or strain maps of the sample.
Furthermore, the recent implementation of fast @aiguisition and analysis programs such
as XMAS (X-Ray Micro Analysis Software) [Tamura, (2003)] as well as the development
of high-precision diffractometers [Tamura, N. (2P0Provides unique opportunities for

HSXRD. In the present work, the uSXRD techniquesesd to study the local, microscale and

mesoscale behavior of polycrystalline ferroeleatn&terials during heating.

6.3.1.2. Experimental Procedure

A polycrystalline BaTiQ ceramic was prepared using conventional high teatpes
sintering [Bryne T.A., (2004)] of BaTi¥)powder (99.9% purity, with Ba/Ti ratio=1.00, Ferro
Corp., Transelco Division). The nominal grain siz&s measured as approximately 20 um as
determined from an independent EBSD study with &iBasample from the same batch.
The sample dimensions measured 1 mm x 1 mm x 5 ndma electric field was applied
prior to the experiment. The sample was attachedadmeating element by using high
temperature conductive glue (AA-Bond 200 Adhesiweprevent sample movement during
heating. The heating stage consists of a sampliehaind a heating element bound by an
Indium-Gallium coating to increase the conductivithe temperature profile was monitored
by one thermocouple attached to the surface of sdwmple (Fluke 871V True RMS
Thermometer), one from the heating element (Ex&d807 thermometer) and one with the
IR thermometer (Extech Mini IR Thermometer 42500)nped to the surface of the sample
throughout the experiment. The sample was heatéd steps up to and above the Curie
temperature. The temperature variation betweerthd#enometers did not exceed +5°C for
any temperature step.

For capacitance measurements, a sample was sefemtedhe same batch and its
surface was polished with fine paper to remove sumgface contamination. The sample
surfaces were sputtered with gold and a drop e€sipaint was placed on the top of the
electrodes to ensure a good electrical contacta€imce measurements were conducted
using a Keithley 3330 LCZ meter at 0.1, 1, 10, 480 kHz. Capacitance versus temperature
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measurements took place in an environmental chabpbbkeating up to 150°C with 5°C/min
heating rate and cooling back to room temperafline. capacitance response of the BaTiO
sample was recorded during the heating followeccdgling and only the heating part is
included the present work because the measurerdantsy cooling are identical to those
measured during heating. The temperature was neshsuth a thermocouple placed in the
vicinity of the sample.

HUSXRD experiments were carried out on the X-rayroddfraction end-station
(7.3.3.) at the Advanced Light Source (ALS). Thstriament has a capability of delivering
X-ray white beam (5-14 keV) with less than 1 pmrbesize by using a pair of elliptically
bent mirrors in a Kirkpatrick-Baez configuration gfiura, N. (2003)]. The diffraction
patterns were collected with an area scan at rommpérature and repeating at higher
temperature steps. At each position of the areassthe sample was exposed to X-rays for 2
seconds. The back-reflection Laue diffraction pageproduced by the white X-rays with 1
Km beam size were recorded using an X-ray CCD uet@dAR133) mounted on a vertical
slide. The active area of the CCD camera had aeat@mof 133 mm and we used the
1024x1024 pixels binned mode. The sample surfacesstat 45° relative to the incoming
beam and the detector. The distance from the CCiheéosample and the center of the
diffraction patterns on CCD detector were deterghine be 63.00 mm and 640.5, 514.2

pixels respectively.

The collected white-beam (Laue) diffraction patsewere analyzed with the custom
XMAS software developed at the ALS. XMAS is capati@letermining the positions of the
reflections with subpixel resolution by using twwmrénsional profile functions such as
Gaussian, Lorentzian or Pearson VII. By using thakppositions and lattice parameters of
BaTiOs, each reflection was indexed with (hkl) indicesfteA indexing, the crystal
orientations as an orientation matrix and the devia strain tensor were obtained for each
domain belonging to the illuminated area. The datfparameter values of Baki@t room
temperature used for the indexing procedure \aer8.9947 A and = 4.0336 A [Rogan, R.
(2003)].

The orientation matrices in XMAS define the coaedes of the crystallites in the

sample coordinate system unlike the standard diefinof the orientation matrices as the
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direction cosines between the crystallites and dhumple axes. Therefore, the orientation
matrices must be normalized with the correspondattice parameters to convert the
standard orientation matrices. The resultant caigonts are a set of rotations that are a
function of crystal symmetry. A proper represeatatiof the orientations is important
because the misorientations between differing taiéons should be independent of the
crystal symmetry. Therefore, the orientations agired to be mapped to a unique solution,
fundamental region [Frank, F. C. (1988), Morawiéc,(1997)], in the orientation space.
Fundamental region [Sundararaghavan, S. (2007)ésepts a region in the orientation space
where the all symmetrically equivalent orientatiooan be mapped into a uniquely
determined one. In order to find the misorientati@ween the orientations of the domains,
the orientations were mapped into the corresponflindgamental region with the symmetry
operators in corresponding crystal structures. flhdamental regions of the cubic grain and
tetragonal domains were determined wiBmand4mm point symmetry respectively. The
misorientations between the grain-to-domains anghadios-to-domains were calculated by
using ODF/PF software package from Cornell Unitgridawson, P. (2005), Frank, F.C.
(1988)]. As the misorientation convention, anglésgairs were used. This convention has a
major advantage to show the misorientation anglk axis with respect to the reference
grain, information that is helpful when describiig misorientation angle between domains

and the rotation axis between the domain variants.

6.3.1.3. Results and Discussion

Figure 6.28 shows the capacitance versus temperatafile of the BaTi@sample
measured at several different frequencies. The peedkpacitance was measured as 125.32

°C £+ 0.06°C for all four frequencies.
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Figure 6.28. Capacitance change in BaTi{as a function of temperature

Diffraction images were collected from the polyd¢afine BaTiQ at each
temperature step. At each temperature, an are@ pfrbwas scanned using 1.5 um steps. At
room temperature, the diffraction pattern shows foose spots. One of these grains was
selected as reference and the diameter of this gvas found to be 16.5 pm by translating
the stage and observing the distance requireddaifisant changes in the diffraction pattern
that are indicative of sampling a different gramentation. Figure 6.29 shows the diffraction
patterns of the reference grain recorded at roanpéeature (Fig. 6.29a) and 150°C (Fig.
6.29b), at temperature which is above the Curigoezature of BaTi@ During the heating
cycle from room temperature to above the Curie tFatpire, the spots gradually converge to
one. This is illustrated in an enlarged portiontleé¢ diffraction pattern in Figure 6.29c.
Preceding the phase transformation from tetragmnaubic, the ferroelectric domains rotate
to the overall orientation of the grain. At a temgiare of 125°C, only one spot can be
distinguished in the diffraction pattern. The csaknce of the diffraction spots correlate
with the capacitance measurements presented ime=@@28 and, therefore, the evolution of
the ferroelectric domains within the grain. Furthere, the relative positions of the spots as
a function of temperature mimic the changes in ldtdce parameters as a function of

temperature. These observations suggest that tedifferent spots correspond to four
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unique domain orientations in a tetragonal perdeskrystal, a result which is consistent
with the expected domain wall orientations [Sapde(1975), Nepochatenko, V. A. (2006)].
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Figure 6.29. Laue diffraction patterns of BaTiG; recorded at (a) room temperature, (b) above
Curie temperature (150°C). (c) The evolution of (23) spots of ferroelectric domains in BaTiQ
sample as a function of temperature. Four spots beme spotE at temperatures above the Curie
temperature

The diffraction spots can be reconciled with thendm structures as follows. When
the spontaneous polarization is formed with respeet paraelectric cubic structure, several
different 90° domain wall orientations can form.r kitstance, for a spontaneous polarization
developed parallel to the [001] crystal directidhe domain walls can form parallel to

(101),(i01), (011) and(Of 1l)planes, creating four domains with perpendicutaapzation

vectors relative to the [001] polarization directiorhese four neighboring domains would

have spontaneous polarization vectors parallel@®], [010], [iOO] and [Oi 0]. In absence

of a domain architecture model in which to recantiie formation of such domains in real
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space, the domain walls separat[ﬁlgo and [100] domains are typically referred to as°180

domain walls as their orientations can be reprodutem one another though a 180°
crystallographic rotation. However, the domain #@stftures in real space can provide more
information that is critical to interpreting the }I8D measurement. A typical “wedge
shaped” domain architecture in polycrystalline defectrics is shown in Figure 6.30(b)
[Merz, W. J. (1952)]. Arlt, G. (1990) discussestttias type domain architecture exhibits the
minimum elastic energy. In Figure 6.30(a), the sadugc distributions of the domain variants

at room temperature are shown as crystal directidhe structure exhibits four domain

variants with virtual polarization vectors pointedrallel to [001], [100], [010] anctDOf ijolg

domainsA, B, C, andD, respectively. The domain walls between donfaimndC, C andB,

B andD, D andA are (101), (110), (011) and (110) respectivelye Hmgle between the
polarization axis oA andC is defined by Eq. (6.23) and will be equal to &ugdess than
90°. The angle betwedhandB is also an angle less than 90° as well as thedreglveerB

and D. Thus, when describing the orientation of doman<C, B, and D in sequence, the
polarization direction of A is not found to be gatiallel to the polarization direction of D.
Instead, the two domain orientations are relatedujh an angle that will be referred to as
the mismatch angle. The mismatch angle is develogedng the cubic-to-tetragonal
transformation and can be obtained by applyingspfentaneous deformation transformation.
The angle between the ferroelectric domain andotiraelectric phase corresponds to phase

matching angle as described by Nepochatenko, \2@0§) and is given by the equation

2+¢€,,+¢,

\/E\/(l-i- g,)° +(@A+e,,)°

B} a+c
) =cos’(

J2y/a? +cz)

whereeis, €22 are the spontaneous strain componeais<(a-a,)/a,, €,, =(C—-a,)/a,)

v = cos’( (6.24)

that represent the lattice parameters for cubics@l@) change to tetragonad,(c). The

mismatch angle between 180° domains correspondsvite the phase matching angle
between the ferroelectric and paraelectric phaseldped during the cubic-to-tetragonal
phase transformation to maintain the strain corbpiéy between neighboring domains
[Sapriel, J. (1975), Nepochatenko, V. A. (2006). dorder to satisfy the mechanical
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compatibility, the neighboring domain must shaboaain wall with the paraelectric phase.
Considering the paraelectric phase doesn't changégd the cubic-tetragonal phase
transformation, the neighboring domain must sharéomain wall with the paraelectric

phase. The domain pairs then have domain wallsat@aperpendicular to each other. For
instance, if a domain is separated with the pacagdephase with (101) domain wall, the

neighboring domain must be separated v(/jml dojnain wall with the paraelectric phase in

order to have common and stable paraelectric ptededoes not change during the phase
transformation. Such domains develop a phase nmgtcmgle with respect to paraelectric
phase with and separated withy{ as described by Nepochatenko, V. A. (2006).

The crystallographic orientation of domain A isréfere not related to the orientation
of domain D by a rotation of 180°, even though they classically defined as 180° domains.
Instead, their respective orientations can be ¢atled by a crystallographic rotation of
approximately 180.55° (using valuesaf 3.9947 A and = 4.0336 A [Rogan, R. (2003)]).
The structural nature of the interface between dosnaf this type is not considered in the
present work, although it is noted that the Ilattio@smatch requires an elastic
accommodation mechanism and the increasing latispect ratio with decreasing
temperature gradually changes this angle. Posaddemmodation mechanisms may include
a series of dislocations or elastic strain neardtwain wall. The region of the diffraction
pattern between the diffraction spots shows difsstering (Fig. 6.29¢) which may support
either of these mechanisms.
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Figure 6.30. (a) The schematic distributions of thelomain variants in misorientation axes. The
misorientation axes were based on the cubic graimd the angles were exaggerated for clarity.
(b) The three dimensional arrangement of the domam
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By considering all the cube faces {100} as a pabsilof spontaneous polarizations
in tetragonal ferroelectrics, there can be fourQiL20° domain wall types relative to the
cubic axis. However, since there are six possiblmain variants in tetragonal structures, a
total of 24 90° domains wall orientations can depein a three dimensional arrangement.
Due to the ambiguity of the directions in X-raysash the positive and negative directions
are not detectable, a maximum of 12 domain walkesygan be detected using X-ray

diffraction.

The changes in the lattice parameters play an itaporole in the formation of the
domains. During cooling, the lattice parametershim tetragonal structure create an elastic
driving force for the formation of the domain varis. Figure 6.29(c) shows the temperature
evolution of the (215) spots in the heating regifiee close spots are marked with a letter.
As the temperature is increased to a value neaCtinie temperature, these diffraction spots
begin to coalesce. These spots then become thew@ntation (identified as E in Fig. 2c) at

temperatures above the Curie temperature.

Table 6.8 shows the orientations of the domainsoatn temperature and the grain at
above Curie temperature. The orientations are stasadirection cosines between the crystal
lattice and global directions. Each column in thiemtation matrices represents the direction
cosines of the crystal lattice with respect to aarglobal direction. As seen in Table 6.8(a),
the domain orientations are produced from the atysiointing at different global directions.
While domains A and D have similar crystal orieimias in global coordinates, the
orientations of domains B and C can be produceth ilomain A by rotating approximately
90° around [100] and [010], respectively. The mesatation angles of the respective domain
orientations are also reported in Table 6.8. Taiobthe misorientation angles, domain A
was selected as the reference domain. The oriensatf domains B and C are related to
domain A by angles of 89.63%(2tan *(a/c ) and 89.41°, respectively. Domain D appears
as closely oriented to domain A with a 0.474° meaation angle. The orientations of
domains B and C were obtained by taking the domaas reference orientation. By taking
into account the varying c/a ratios of the domdihgble 6.8), the orientations of domain B



121

and C are related with twinning operations as mJO0add m[101] respectively. The
orientation relations of the domains are confirmedbe consistent with Keeble, D. S.
(2009)'s study on the tetragonal single crystaliBa.T

As the temperature is increased to above the Gemperature, the diffraction spots
coalesce to a single sp&t, The transformation of these spots representdiia@pearance of
the domain structure within the grain as the Ctemperature is passed and the material
becomes paraelectric. From the calculated misaiem between the orientations of the
domain variants and the orientation of the graithwvgpot E shown in Table 6.8, none of the
domains have an orientation that equals that ofgifaén in the paraelectric cubic state.
Nepochatenko, V. A. (2006) has shown that the dosnean rotate a small angle during the
cubic-to-tetragonal phase transformation to mamnthe strain compatibility as a function of
changing lattice aspect ratio. This rotation isatigé to the sample coordinate axes and
represents a rotation of the entire domain crystak; such a rotation is not the same as a
polarization rotation involving crystallographicstbrtions as described by Ahart, M. et al
(2008). The rotation angle of the domain with extgo paraelectric phase is referred to as
the “phase matching angle” and this angle was &tlet as 0.28%0.03° from the major axes
between the domains and the grain by using Eq4)6The comparison of the orientation of
the grain and domains shows good agreement toréuicped phase matching angle.
Table 6.8. The orientations and misorientations athe domains seen at room temperature and

above Curie temperature. The misorientations betwaethe domains were calculated by
selecting either domain A or domain E as the referece domain.

Domain* Orientation Matrix Misorientation Angle, ¥#s] Misorientation Angle, [Axis] c/a Ratio
0.846 0.193 -0.497
A 0.119 0.8340 0.529 Reference 0.36°, [-0.23 0.6 0.77] 1.01
o 0.519 -0.507 0.687
2 0.842 -0.500 -0.200
g B 0.118 0.534 -0.8367 89.63° [100] 89.47°,[10 0] 1.088
g 0.526 0.681 0.509
= 0.507 0.192 0.840
§ C -0.527 0.839 0.126 89.41°,[010] 89.67°,[0 1 0] 1.011
@ -0.681 -0.508 0.527

0.842 0.194 -0.502

D 0.119 0.843 0.525 0.47°,[0.59 -0.66 -0.47] 0.2°,[0.9-0.41 0.18] 098
0.525 -0.502 0.687
> Tc 0.842 0.194 -0.502
(C1)50° E 0119 0.841 0.526 nla Reference 1

0.524 -0.504 0.686
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The orientations demonstrate that the spontangolasization vectors of the domains
form perpendicular to the cube faces, {100}, orgtlat to the cube edges, <100>. To
illustrate this further, Figure 6.31 shows the @ile figure for the domains inside of the
reference grain at room temperature (Fig. 6.31d)the 100 pole figure for the reference
grain in the high temperature cubic phase (Figll®).3There is correlation between the [001]
of the low temperature orientations and the <QO0flth® high temperature orientations.

Figure 6.31. (a) 001 pole figure of the ferroeledir domain orientations at room temperature.
(b) 100 pole figure of the grain at a temperature laove the Curie temperature. Wulff net is
overlaid for clarity. The orientations correspond b those presented in Table 6.8

A closer inspection of the diffraction patterns adunction of distance along the
sample surface in 1.5 pm steps demonstrates thapthts representing different orientations
have varying intensities. Because the thicknesb@flomains is smaller than the beam size
(1 um), different domains are being illuminatedtbg beam as the sample is moved. Since
the same domain diffraction patterns are obsergethe@ sample stage is moved, this three-

dimensional arrangement of the domain variantsssi@ed to repeat itself inside the grain.
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During heating from room temperature, the domaixgesgence a gradual rotation
and lattice parameter changes that result in tthidual diffraction spots converging into a
single diffraction spot at the Curie temperatunguFe 6.32(a) shows the evolution of the a/c
ratio calculated as a function of temperature. ®meor bars were determined from
independent a/c calculations of the domains atngieenperature. The relatively different a/c
ratios of the domains suggest that the local dosneaam show significant deviations from the
from the local structure. During the phase tramsfition, the relative change in orientations
of the domains can be calculated from the refingmehthe peak position. These orientation
relationships are related directly to the changethe lattice parameter. For instance, the
angles between domains A and C and between doBaam&l D have been calculated to be
89.61° and 89.58°, respectively, at a temperatt@tC. The angles between these domain
pairs were calculated for all the different tempeara from the (251) and (351) diffraction
peaks. Figure 6.32(b) shows the angular separdbetgeen the domain pairs A and C and B
and D during heating. The orientation fitting wasgher difficult at 120°C because the
diffraction spots were very close to each otheit seasn’t included. As the sample is heated
to temperatures approaching the Curie temperatieeferroelectric domains become more
closely oriented to one another as well as becoroee nclosely oriented to the high
temperature cubic orientation. The domains convévge single orientation at temperatures
near and above the Curie temperature. The compaoisthe angular separation between the
domains and theoretical misorientation angle catedl from c/a ratio by using Eq. (6.23)
shows excellent correlations. The angular separatib the domain pairs is also well

correlated with the capacitance versus temperateasurements as shown in Figure 6.28.
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Figure 6. 32 (a) The evolution of a/c ratio as a fiction temperature. (b) The angles between
domain pairs (A/C and B/D) as a function of the terperature. Black curves were calculated by
using tangent formula (Eq. 6.23)

The evolution of the ferroelectric domains inside tpolycrystalline BaTi@ was
investigated during quasistatic heating using seo@niX-ray microdiffraction (LSXRD).
Four domains are observed for certain reflectiardicating that two domains that are
classically defined as 180° domains may exhibitoaientation relationship that deviates
from 180°. The crystallographic relationships od tthomains are explained using a domain
structure model by Nepochatenko, V. A. (2006). Whikating the polycrystalline BaTiO
from room temperature to above the Curie tempeeatbe ferroelectric domains coalesce by
gradual rotations that reflect their changing ¢&ttaspect ratio. With the direct experimental
observations, the technique is proved to be capablstudying ferroelectric domains
embedded in polycrystalline ferroelectrics.

6.3.2. Ferroelectric domains in a polycrystalline B aTiO3 under
guasistatic heating and applied electric field

The evolution of the ferroelectric domains in aypoystalline BaTiQ grain was
studied as a function of applied electric field dv@ting by using Scanning Microdiffraction
(LSXRD) technigue. By cooling to room temperattine, cubic grain transform to tetragonal
domains. By application of the electric field, p@tation vectors of the domain rotated along

the direction of the electric field. The changesthe volume fraction of the domains are
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measured with the electric field. The complete damnsavitching to one domain variant is not
observed with the application of the electric fielthe local boundary conditions hindering
the complete domain switching such as grain bouasland surface charges are discussed.

6.3.2.1. Experimental Procedure
The polycrystal BaTi@ samples were manufactured with conventional powder

processing techniques [Bryne, T. A. (2004)] fronTE2 powder (99.9% pure, with Ba/Ti
ratio=1.00, Ferro Corp., Transelco Division). Thaig size of the sample was measured at
approximately 20 um and the sample dimensions Wwet@5 mni During polishing, extra
caution was shown not to introduce residual sttesthie sample. The sides of the sample
were coated with a conductive silver paint and epppires were attached to the side with
high temperature conductive glue (AA-Bond 200 Adve)s No electric field was applied to
sample prior to the experiment. Figure 6.33 shdvesschematic setup for the experiment.
The sample was attached on a heating stage by bigghgemperature conductive glue (AA-
Bond 200 Adhesive) to prevent the sample moving tlueneating. The heating stage
consisted of a sample holder and a heating elebwmmd by copper coating to increase the
conductivity. To prevent a possible electric arcegween the heating stage and the sample,
an insulating layer with captone tape was applrethe interface. The temperature profile
was monitored by three thermocouples; one wastatato the surface of the sample (Fluke
871V True RMS Thermometer), one from the heatiregrednt (Extech 421307 thermometer)
and one with the IR thermometer (Extech Mini IR firhemeter 42500) pointed to the
surface of the sample throughout the experimene Jdmple was heated to above Curie
temperature (150°C) where the tetragonal-to-cubisp transformation was complete. The
complete phase transformation was confirmed with rticrodiffraction images. After an
initial area scan with a coarse grid size to log¢htegrains, the sample was cooled to room
temperature. The diameter of the reference gram avaund 25um. To make sure that the
same sample location is scanned during coolinopyddad piece was attached on the sample
as a reference point. While cooling, the orientagoolution of the cubic grain was studied.
At each cooling temperature steps, the locatiorithef reference point was checked with
fluorescence scan to make sure that polychromatays illuminates the same grain on the
sample. After cooling to room temperature, the damyas exposed to a constant electric
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field at 10, 15, 25 and 30 kV/cm. The amount of dpplied electric field was above the
coercive field which was measured as 5.14 kV/cnhwagsteresis measurements. At each
electric field, the 50x50 pfnarea was scanned with 1pm step size. The evolatiche
ferroelectric domains at the same grain was trackigd a final scan after reducing the
electric field to zero. The orientation of the sd@enpith respect to laboratory coordinates was
calculated with the fluorescence scan and the drgfl@een the sample edge and laboratory
coordinates was found to be 0.3°.

Insulating

/ Layer

Conductive
Epoxy
X-Ray

(a) (b)

Figure 6.33. (a) Side view of the schematic experant setup. (b) The view of the experiment
setup from incoming x-rays. Sample dimensions arex1x5 mn?

HSXRD experiments were carried out on the X-rayrodtdfraction end-station
(12.3.2) at the ALS. The instrument has a capahilftdelivering X-ray white beam (6-22
keV) with less than 1 um beam size by using a péielliptically bent mirrors in a
Kirkpatrick-Baez configuration [Savytskii, D. I. @23)]. The diffraction patterns were
collected with an area scan at various conditicgscdbed above. At each grid position of
area scans, the sample was exposed to polychromatgs for 1 second. The back-
reflection Laue diffraction patterns produced bg thhite x-rays with 1um beam size were
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recorded using a CCD detector (Bruker 6000) mountethe vertical slide. The active area
of the CCD camera was 90x90 fhand binning mode will be 1024x1024 pixels. The gtem
surface was set to be at 45° relative to the inognieam and the detector. The nominal
distance from the CCD to the sample and the cewitéhe diffraction patterns on CCD
detector will be determined to be 84.94 mm and B2212.3 pixels respectively. In order to

study the grain depth, the detector is moved 65upwards and the scans were repeated.

The collected white-beam (Laue) diffraction patsewere analyzed with the custom
software developed at the ALS (X-MAS, X-ray Micricaction Analysis Software)
[Tamura, N. (2003)]. XMAS is capable of determite fpositions of the reflections with
subpixel resolution by using two-dimensional pmfiinctions such as Gaussian, Lorentzian
or Pearson VIl function. By using the peak pos#i@nd lattice parameters of Batj®he
program simulates an orientation from three motnise spots. The simulated orientations
are compared with the experimental reflections thedsimulated orientation is authenticated
as real grain if a sufficient amount of reflectioase found. The typical number of the
reflections found from the cubic grain was arout.1IThe orientation of the cubic grain was
also validated from its reflections with a fittimgutine written in Matlab (Ver. 7.2.0, The
MathWorks, Inc.). The diffraction patterns recordgédoom temperature were analyzed with
XMAS software and the orientations sharing the cukflections are found. For the space
group and lattice parameters, the literature vatde¢se BaTiQ were used ag4mm(s.g. 99),

a: 0.3994hmandc: 0.4033ehmfor tetragonal structure amm3m(s.g. 221) and a: 0.4009

nm for cubic structure respectively [Rogan, R. @00

In order to find the misorientation between thesptations at room temperature and
the cubic grain, the orientations are first mappeadamental region with corresponding
symmetry operators. Whilen3m point symmetry was used for cubic grafhmnm point
symmetry was used for tetragonal orientations ambmentation was calculated by using
ODF/PF software package from Cornell University.eTorientation matrices found by
XMAS define the crystal coordinates instead of shendard definition as direction cosines
between the crystallites and the sample axes. derdo obtain the orientation matrix with
direction cosines, each orientation was normalized the corresponding lattice parameters.

As the misorientation convention, angle-axis paiese used. This convention has a major
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advantage to show the misorientation angle andwitisrespect to the reference grain. It is
helpful when describing the misorientation angléwleen domains and the rotation axis

between the domain variants.

HSXRD technique is well capable of finding devia@train components of the local
crystallites. The method simply compares the catibn lattice parameters with the localized
crystallites and finds strains from the mismatchween the lattice parameters between.
However, this method has some pitfalls. Using aegaized lattice parameter for all
structure can result in a big deviation from thealostructure. For instance, such calibration
lattice parameters havirgac lattice configuration along the global coordinates find a
large strain in the domains that haaga or caa configuration along the global coordinates.
Furthermore, using generalized calibration parareetean have deviation from the
experimental conditions. All of these factors condd, it is important to eliminate the errors

in the strain calculations.

The lattice strain tensore() of each domain was obtained by using technique

described by Margulies [Margulies, L. (2001)]. Tie¢ation between the lattice strain tensor

(g; ) of each domain and its spot straimg)(and the direction cosinegrfin, ) of those spots

can be described as [Poulsen, H. F. (2004)]

|
_di-d, _ sin@®;)-sin@®,) _ i
e d, sin@,) (imn)e; f: (6.25)

After finding the orientations of the domains swussfally, the center of mass of each
peak belong to the domains is found by peak seargtine [Blair, D. (2008)]. The peak
search routine is based on searching image rovWwyand identifying connected pixels that
are above the intensity threshold as a peak. Theath\principles of the peak search routine
were described at elsewhere [Vaughan, G. H. M.4800he spot strains for 15 reflections
were calculated with Eq. 6.25. Due to using whigar, d-spacings of each plane are
unknown. Instead of d-spacing, Bragg angle was uwgddthe right hand side of Eqg. 6.25.
The spot strains were measured from the peak ssftehe electric field is applied. As a

calibration, the peak position8o] as initial unpoled stage are taken. The peaksshiére
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calculated from the peak positions at given eledteld ©;) and initial stagefp). In order to

find the direct effect of domain switching, the wraghed sample was used as internal
calibration. From Eq. 6.25, the lattice strain tansan be easily calculated by using the
direction cosines of the peaks but no further asialis done considering that the spot strain

would be enough at this time.

6.3.2.2. Results and Discussion
The phase transformation from cubic to tetragondlthe distribution of the domain

variants within the grain was studied. The oriaatatelationship between the domains was
studied. As response to electric field, the volunaetion change between the domains the
orientation changes with the electric field at 18, 25 and 30 kV/cm were studied. The
distribution of the domains was also studied atvab&urie temperature and room
temperature. Figure 6.34 shows the typical micfaatition patterns recorded at above Curie
temperature, room temperature, applied electrid & 30kV/cm and finally with OkV/cm.
When the sample was in the above Curie region, bgerwed no peak broadening. This is a
proof that the material in unstrained state. Theeee no close spots were observed above
Curie temperature. This is due to cubic phase foamstion. During the cooling, the peaks
are gradually broadened and split to there to fmats depending on the hkl. This is a clear
proof that the phase transformation is complete rmaterial transformed to tetragonal. By
application of the electric field, no visual changeen in the diffraction pattern up to 5
kV/cm. The previous hysteresis measurement shohatdcbercive field of this material is
5.16 kV/cm and the applied electric field was wadllow to cause domain switching. By
applied field more than coercive field, the peales shifted along the electric field direction.
This is caused by the rotation of the polarizatectors of the domains along the electric
field. After removing the electric field, the peateturn to original position with a strained
state.
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(c) (d)

Figure 6.34. Microdiffraction patterns of BaTiO3; sample recorded at (a) above Curie
temperature (130°C), (b) 8 hours after cooling to@om temperature (c) applied electric field at
30kV/cm (d) electric field turn down to zero.

Table 6.9 shows the orientation of the cubic gediabove Curie temperature and the
orientations that formed when cooling to room terapge. The orientation of this cubic
grain was found by XMAS [Tamura, N. (2003)]. Upomoting, the cubic diffraction spots
split into tetragonal reflections due to cubic-etrhgonal phase transformation. The resultant
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orientations are obtained by indexing the diffractpattern recorded at room temperature
and they are rotated 89.73° and 89.28° of the [1®0]010] axes of the cubic grain
respectively. These [100] and [010] axes are psaulo and they are equivalent to 180°
rotation around tetragonal [011] and [101] axepeetvely. Since these orientations show
specific crystallographic relations and are thegsabp of the cubic grain, they are called
domain variants.

Table 6.9. The list of orientation relationships othe cubic grains and their domain variants as

cooling to room temperature. The orientations werexpressed as tensor and angle-axis pairs.
The misorientation between domain variants was defed with respect to cubic grain.

Temperature

130°C RT
Orientation Matrix,
Misor. Angle  Orien. ID
0.812 -0.098 0.567
-0.228 0.856 0.468
-0.537 -0.507 0.678

Orientation Matrix

0.13° <00.150.22> A

-0.567 -0.815 -0.095
0.809 0.089 -0.580 -0.467 0.235 0.853
-0.236 -0.859 -0.459 -0.678 0.530 -0.514
-0.538 0.504 -0.673

89.73°<1 00> B

-0.094 0.563 0.818

0.858 0.461 -0.232

-0.505 0.686 -0.527

89.28°<01 0> C

When cooling from Curie temperature, each graimkseip to domains to reduce the
overall energy of the system [Arlt, G. (1990)]. trig 6.35 shows the [100], [010] and [001]
directions of the cubic grain and domain variantpole figure as stereographic projection.
For clarity, Wulf plot was overlaid to pole figur€hec axes of the domains are marked with
red colors and the direction of the e-field wasvaman Y axis as well. As clearly seen, the
crystal directions transform to tetragonal whenliogoto room temperature and each crystal
directions break up to domains. For instance [X@jic direction breaks up to [100], [010]
and [001] tetragonal directions and each direcisoshared by a domain. As shown in close-
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up view in Figure 6.35, the angle between {100}stay directions of the domains is around
0.6° i.e. 2tan *(c/a)—90° where c/a ratio is 1.01 for BaTiOWhile forming the domains, it

is also seen in Figure 3 that no significant gratation was observed.

130°C

Figure 6.35. {100} pole figures as a stereographprojection at above Curie temperature and at
room temperature. The Wulf plot was overlaid for chrity. The orientations with letters at room
temperature are shown in Table 1 and they are theainain variants within the grain. The
electric field direction is Y-axis and the angles &tween c-axis of the domains (shown in red
color) and the electric field are shown as well

Figure 6.36 shows the evolution of the (211) peakhe temperature is cooled to
room temperature. From Table 6.9, domain A hass#ime orientation with the cubic grain
with a smallest misorientation to cubic grain. Dam is obtained with the rotation b 89.32°
along [100] axis or 180° along [011] direction bétcubic grain. Domaif is obtained with
the rotation by 89.28° around [010] axis of theicurain. The close inspection showed that
the domain C breaks up two subdomains. By the egidin of the electric field, these
subdomains orient along the electric field and evge to one with 30kV/cm electric field.
Between Domain A, B and C, there is a domain bondath a transition region. These
transition regions are considered as the regionsrevpolarization vectors transform one
direction to another [Floquet, N. (1997)]. The anbktween c axis of the domain and the
electric field direction was calculated from thdeatation matrices of the domains. We
define this angle as “polarization angle”. The piaktion angles for DomaiA, B andC are



133

calculated as 35.9°, 58.4° and 46.6°. Since dorAalms a large polarization angle, the
application of the electric field is expected tasa the domain switching in greater scale in

this domain.
(211) Bﬁfﬂmﬁz) . . ' L
Sl L L I o .
Cc(211)
20°C

130°C (after 12 hrs)  15kV/em 25 kV/ecm 30kV/cm OkV/cm

Figure 6.36. The evolution of the (211) peak fromhie above Curie temperature to cooling. (211),
(121) and (112) peaks at room temperature belong stlomains shown in Table 6.9 respectively

There is a direct relation between the volume & tomain and the integrated
intensity of the domain. In order to observe thdunee fraction change between domain
variants with applied electric field, the integihiatensities of the domains were calculated

and the volume fraction of the domain within a gréf S, ) can be found as:

I(?OZ
6.26
0518 18) (6.26)

d _
hkl —

where 1/, is the integrated intensity of (hkl) spot from antin and| 2 and I are the

integrated intensity of the (hlk) and (Ihk) refliects of the remaining domain variants within
the grain. The integrated intensities of the reitets are calculated with “automatic peak
finding routine” of XMAS software. For fitting, Lentzian type fitting was used. The
reflections calculated from the domain variantssr@wn in Figure 4. To eliminate the effect
of the Lorentz factor, the domain variants thatrddt at the same detector location are taken.
To improve the statistics, the {123} reflection fégynof the same grain are taken. Using
white beam enables to resolve the domain variamtb® detector.

Figure 6.37 shows the volume fraction change indbmain variants with applied
electric field. The polarization angles for Dom&#inB andC are calculated as 35.9°, 58.4°
and 46.56°. The application of the electric fieddvdrs for the domain that has smaller angle
with the electric field direction. In this case, Main A is the energetically favorable domain

with its low polarization angle. Indeed, the voluimaction of Domain A increases by 25%
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with the electric field up to 30kV/cm. This is dteelattice configuration and the polarization
angle of the subdomains. The volume fraction of @onC increases with electric field as
well but this increase is not as significant as dorA. With its high polarization angle, the
volume fraction of Domain B decreases by around 5Bé&yond 10kV/cm, it is expected that
the fraction of the energetically favorable domeamiant increases. Due to grain boundaries
and local boundary conditions, the overall switghfrom one domain is not complete. The
higher electric field can be achieved by immerding sample in a dielectric liquid but this
has not been feasible in our setup because thelsaepds to be exposed to heating prior to
electric field to track the evolution of the samaig.

0.7 s s s

0.6

0.5

0.4
0.3

) s N — -

VVolume Fraction of Domain

S e :

Voltage, kV/em

Figure 6.37. Volume fraction change in the domainariants with applied electric field.

During the poling process, the spontaneous polawizairections of the domains are
expected to switch along the electric field. Dugdivagonal symmetry [Berlincourt, D. et al.
(1959)], the poling process can lead either 90E88° domain switching. Among those, only
90° domain switching can create a strain in theylmutl this stress can calculated in theory.
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Due to small tetragonality ratio in BaT4Qhe overall strain in a single crystal Ba¥idue to
complete domain switching can be calculated aaX4%o). The strain values for polycrystal
are rather small than this value. To calculatectiteelation, we can compare the spontaneous
polarization of the single crystal and polycrysB&TiOs. The measured spontaneous
polarization of single crystal and polycrystalliBaTiO; are 26 and 5.3 pC/émespectively.
The maximum strain caused by the complete domaittisiwg is expected to be 20% of the
single crystal. Therefore, the application of &lectric field can create around 0.2% strain
(or 2000 microstrain).

The procedure on how to find the spot strains chebomain is outlined above. Table
6.10 shows the spot strains of the domains asléotrie field is applied. For the reflections
where hkl values are close to unity, it is veryfidifit to resolve the subdomains and the
strain values of those domains were not includée maximum spot strain with the electric
field is 2000 microstrain and this is well correldtwith the literature values [Cross00] and
the calculation above. The highest strains wereeroksl in the reflections that have high
angle with the electric field. Considering electiigld is applied along x axis of the sample
(Figure 6.33), the crystallographic planes aloraxis (such as 211 or 312) should experience
less strain compared to other domains. Indeed,pkdries experiences less strain compared
(112) planes. Domain C1 and C2 are subdomains lad éxperience elastic deformation
with applied electric field. With application ofeddtric field at 30kV/cm, these subdomains
showed tensile and compression strains. With rengpthe electric field, the domains return
to their initial states with a residual stress.

Table 6.10. The spot strains of the domains as tledectric field is applied

hkl 211 112 233 332 433 334 312 213 111 122 232 313 13625
10 494 16 889 16 28 893 322 39 107 51 44 5 936 24
E 15 -68 -45 -9 -45 -28 11 -6 -363 -836 3 -2 -258 72 26
A>i 25 55 652 -32 652 -70 -983 -47 -331 -858 -47 -963 9-21-642 -315
% 30 -46 -738 -143 -738 -847 -2000 -47 -901 -79 -1765 002 652 78 -806
t 0 -38 -755 -110 -755 -111  -1009 306 -425 -895 -68 5110 -316 58 -350

Domain A
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Table 6.10 (Continued)

hkl 211 112 233 332 433 334 312 213 111 122 232 313 134 525
10 653 20 -128 -12 981 9 -464 3 920 -18 29 482 84 45
£ 15 613 -1134 -174 -1834  -1033 1588  -456 10 1795 7-94-1009 -8 -753 713
< 25 620 38  -110 -1004 -1044 1568 -912 635 1807 -97&010 790 -780 325
% 30 91 582 238 1051 9 788  -432  -322 1706 2135 1210 216 -1652 713
o 0 802 -629 1844  -967 -996 -14 1000 678 879 20650201 215 -888 -48
Domain B
hk 112 213 225 211 313 134
10 -29 -335 -1044  -630 50 909
E 15 33 45 -340 707 630 876
2 25 54 -439 0 -442 238 142
% 30 2050 1239 -8 41111 544 807
4 0 .37 -344 341 -442 9 16
Domain C1
hk 112 213 225 211 313 134
10 -11 45 315 1223  -16 7
E 15 9 71 281 2513 45 -832
—>v_ 25 648 -1618 260 575 166  -909
3 30 1520 928 -40 42 685  -1425
E 0 -1398  -517 10 19 340 907
Domain C2

The evolution of the ferroelectric domains withatte field was studied by using
HSXRD technique. The phase transformation froma@@n3n) to tetragonalg4mn) and
the distribution of the domain variants within tein were investigated. After cooling, the
resultant domain variants are obtained by rota88¢/3° and 89.28° of the [100] or [010]
axes of the cubic grain respectively. As respoasgédctric field, the volume fraction change
between the domains was observed. This volumeidrats favored on the domain that has a
small angle between its ¢ axis and the electrid fikrection. There is no such a significant
grain rotation during domain switching. Domain$ fBuch without requiring a significant
rotation from the initial orientation. During th@mhain switching, the domain walls move to
decrease the energy of the system. The misorientatngles between domain variants

deviate from the theoretical value (89.4°) by 0.2°0This shows the local variations from
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the domain variants inside of the grain. This statbarly shows the uSXRD technique is
capable of studying the mesoscale behavior oféheélectrics in polycrystalline state.

This chapter showed the results from the evolutibthe ferroelectric domains both
with 3D-XRD and pSXRD technique. The orientatiolatienships from 3D-XRD technique
were confirmed with the uSXRD technique. The molpyp of the domain variants is
modeled and the 90° domain switching model was usedonfirm the domain variants
within the grains. Tetragonal-cubic phase transitised in pSXRD technique can help
solving the severe overlap problem in 3D-XRD teghei The next chapter will discuss the

results from EBSD experiments.
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CHAPTER 7. DOMAIN CHARACTERIZATION WITH EBSD

The objective of this study is to characterize treentation relationships in the
ferroelectric domains of polycrystalline BakiQsing the EBSD technique.

7.1. Experimental Procedure

The polycrystalline BaTi@ sample was prepared with the conventional ceramic
processing techniques and a bulk sample with ndr@ix@x4 mn? dimensions was used in
the Electron Backscatter Diffraction (EBSD) expeznts. The nominal grain size of BaEiO
sample was measured around 20pum. The sample suvece fine ground with 320 and 600
grits and then fine polished with 0.5um alumina dew Next, the surface was coated with
gold using sputtering and then polished with ionkng.

In the EBSD technique, the sample is tilted by & @fQgle with respect to the
incoming beam. A monochromatic electron beam witl25akV energy hits the tilted
crystalline sample and interacts with the lattitenps. The diffraction planes satisfying the
Bragg condition undergo backscatter diffraction dmdn Kikuchi lines on a fluorescent
screen. Each intersecting diffraction planes detimeezone axis of diffracted crystallographic
planes. An area scan along the sample surfaceecandal the measure the crystal orientation
and misorientation between neighboring grains. k¥, the penetration depth of electrons
in BaTiOs; was calculated to be around 2.5um.

An area of 4x11.7ufrwith 0.1um step size was scanned in the EBSD é@xpet.
The step size was selected as rather small to tdegtecorientation between the domain
variants within the grain. The collected EBSD difftion patterns were analyzed by a
commercial OIM software. For indexing, the crysighaphic database from the International
Centre for Diffraction (JCPDS) was used. The cii@gaphic parameters for BaTiQvere
selected aa=0.3994 nmc=0.40314 nm with the4mm(no: 99) space group. In order to find
the right zone axis, (103), (112) and (211) reitetd were added to the solution. During the
indexation, the free parameter being refined isattentation angle of the crystal. The fitting
parameter during the indexation is called “confmEnndex (Cl)” and for the perfect
solution, the confidence index is 1. For a very Idass than 0.1) confidence index, the
results can be questionable and a special caut@idsnto be taken to interpret them.
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Therefore, the lower threshold for the confidencatlin this experiment was 0.1 and the

orientations found with lower confidence indecesemeiscarded. The Euler angles of each
orientation from the area scan were exported tdddand each orientation was mapped into
the tetragonal fundamental region. The misorieotatbetween the domain variants was
shown with angle axis pair notation.

For the grain map, a new procedure was created.n\Vme inverse pole figure
direction is taken along a sample direction, theesponding direction constitutes a vector
with components ranging from O to 1. This vectoswlaectly used for the coloring in RGB
mode where [001], [010] and [100] corresponds th gFeen and blue colors, respectively.
The standard inverse pole figure was also plotieddsuming that the orientation in EBSD
experiments is defined with respect to crystal dowates.

7.2. Results

The EBSD experiments of BaTiOoffer hope that this method can be used to
correlate the domain structures found both by theX®D and uSXRD techniques. Figure
7.1(a) shows the typical EBSD pattern and it clegmoves that EBSD technique was

successful on BaTi§ Figure 7.1(b) shows the indexed EBSD pattern e/hbe zone axis

was found to be along [-110].
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Figure 7.1. (a) A schematic EBSD pattern from polywystalline BaTiO3. (b) The same pattern
after indexation. The zone axis was found as [-110]
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Figure 7.2 shows the orientation map with respgecthe sample coordinates. The
orientations found with a confidence limit of lessn 0.1 were eliminated. The majority of
the domains align along the [010] crystal directioith the sample surface normal. The
regions with close red, blue and green colors sti@iorientations that are perpendicular to
each other. These regions most likely are domarrants, but further proof is necessary.
Notice that the surface scan in EBSD techniquesrfopmed in a honeycomb pattern and we

see a gap between the successive points in evelesacan direction.

25k

¥ [rnicrons]
5]

1k}

o o

o 2 4 B 8 10
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Figure 7.2. The grain map of the ferroelectric domms along sample normal. Each color shows
the alignment of the crystal directions along theample normal. While green shows the [010]
direction, red and blue colors show the [100] and)P1] crystal directions respectively. The
confidence index threshold was 0.2 for this grain ap

Figure 7.3 shows the close-up region with orieatatithat are perpendicular to each

other. The regions are marked with different nuralterstudy the misorientation relationship

between them.
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Figure 7.3. The domain variants in close-up view. Wle green shows the [010] direction, red
and blue colors show the [100] and [001] crystal déctions respectively. In black regions, either
no grains or those with low confidence index wereotind.

Table 7.1 furnishes the marked orientations ofdbse-up region in Figure 7.3. The
close inspection shows that these orientationsnaleed domain variants to each other. The
orientations 2, 3 and 6 basically come from theesdomain. The orientations 1 and 5, 4 and
7 are also the same domains, respectively. Theestirg misorientation relation is between
domains 1 and 5 because they have a 0.4° misai@ntd his may be due to twinning of 1
to 2 and then 2 to 5. We see a similar patternianodiffraction experiments and called these
domains as “up and down” domains with respect & dhontaneous polarization direction.
The domain boundaries between domains 1 and 2d24aB and 5 are [100], [0-10] and
[100] axes, respectively. This clearly shows thmearientation morphology of the parent

domain that we found in the uSXRD technique.
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Table 7.1. The orientations of the domains markechi Figure 3 and their misorientation
relationships. * CI: Confidence index. Higher CI isthe better.

Location, pm CI* Euler Angle Axis Misorientation
X y Angles, ° Angle Axis
100.3

1 2.4 2.771 0.1 59.4 59.6° [-0.08 0.97 -0.22] Main Domain
254.3
25

2 2.35 2.858 0.117 76.3
315
2.4

3 2.3 2.771 0.142 76.2
31.3
251.3

4 2.3 2.944 0.247 33.8 34.3°[0.18 -0.9 -0.37] 89.74° [0-10]
115
100.2

5 2.25 2.685 0.192 59.4
253.9
2.3

6 2.25 2.858 0.125 75.9 81.94° [0.35-0.23 0.91] 89.56° [100]
311
250.6

7 2.25 3.031 0.225 33.8 34.39° [0.18 -0.91 -0.38] 89.63° [0-10]

115.6

ID No

82.44° [0.35 -0.23 0.90] 89.54° [100]

82.3°[0.35-0.23 0.9] 89.65° [100]

59.6° [ -0.09 0.97 -0.23] 0.4° [00-1]

Figure 7.4 shows the inverse pole figures alongodamirections. We see the same
orientation relationship as we see in the grain.n&amilarly, the crystals align along the
[001] and [101] crystal directions respectivelygdlal to the sample surface directions.

001 101 100 001 101 100 001 101 100

Figure 7.4.The inverse pole figures along sampleréctions (X, Y and 2)

During the area scan, it was realized that the EB8fDaction patterns rotate as the
scanned location is moved 0.1um away. Figure 7dwshthe change in the diffraction
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patterns as we moved to a different area. The iootadf the diffraction patterns was

measured as around 1° and this angle apparentlgspmnds to the angle betweeanda
axes of the domain variants sin@an'(c/a) - = 0.6° wherea andc refer to the lattice

parameters of BaTi) Therefore, a slight rotation in the EBSD diffiact patterns was
considered as the domain variant of the given domai

Figure 7.5. The small rotation in the EBSD diffracton pattern when scanning to the next
domain

This study clearly shows that the ferroelectric danstructure can mapped with the
EBSD technique. Meanwhile, there are several dralhto this technique. The penetration
depth is not as deep as with the 3D-XRD and pSX&thrtiques. Quantitative results on
internal strain in the domain variants are almagtassible. Also, the misorientation angle
between the domain variants is too close to thelwgen of the EBSD technique. Therefore,
EBSD can be used in a preliminary study to identifpportant regions before applying the
XRD techniques.
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CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

The main goal of this study has been thesitu investigation of the ferroelectric
domain structures inside polycrystalline BaZiinder thermo-electro-mechanical loading.
The outcomes are two-fold: (i) the characterizatiechniques are improved to study the
polycrystalline ferroelectrics in the mesoscale] &) the texture, strain and volume fraction
of the ferroelectric domains were tracked undeliegglectric field and mechanical stress.

Technique

3D-XRD, uSXRD and EBSD techniques were used in #tisdy. The XRD
techniques were improved and adapted to study domaichanics for the first time. The
details are explained in Appendices 1-6.

Results

The overlap of diffraction spots was a limiting tiacin the study of the domains. In
order to eliminate the spot overlap, the polyctisia BaTiO; sample was heated above the
Curie temperature where the tetragonal domainsdighhppear and attain the orientation of
the grain. Next, the sample was cooled slowlyheroom temperature and the evolution of
the ferroelectric domains was studied at tempegeadnd under electric field. The orientation
relationships, volume fractions and lattice strewolution of the domains were monitored.
The following results were found:

» 8 groups of ferroelectric domains were identified @aracked with electric field. New

domains were observed under high applied elegtid. f

* The orientation of the domains remained unchanget @nder high electric field.

However, by the application of electric field, tHeaction of the energetically

favorable domain variants increased. Due to looalstraints, the overall switching

from one domain variant to another was not complete

* There was no significant grain or domain rotatiomirsy domain switching. Domains
appeared to flip without requiring any measurabtgation from their initial
orientation. During the domain switching, the damaalls move to decrease the

energy of the system.
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 The misorientation angles between domain variatightly deviated from the
theoretical value (=89.4°) by 0.2-0.3°. This deaiatangle matches with the expected
phase-matching angle described in Appendix 7.

» Lattice strain evolution of the ferroelectric domawas studied under electric field.
Since the same grain was cooled down from the Cuwmeperature, the texture
evolution of the domains was easily visible. Theuits were compared with the
macroscopic strain results and a development ainstrup to 0.1% was observed
along the applied electric field direction. This ywahe multiscale evolution of the
ferroelectric domains in a polycrystal was investegyl quantitatively for the first
time.

» Data analysis was challenging due to the complexcitre of ferroelectrics. It
required an integrated approach that involves alifion pattern simulation. The
methodology to overcome the spot overlap in polstaline ferroelectrics was
established and the results from the methodologe wescribed.

Future Directions

The present study provides a framework to charizetéhe polycrystalline materials
with complex twin (or domain) structures. By usthg methodology described in this study,
3D-XRD and uSXRD techniques offer unique opporiasitto study texture and strain
evolution in the mesoscale nondestructively. Ihasv possible to employ these methods to
perform a detailed study of the mesoscale consttitehavior of materials with domains (or
twins) as their main inelastic deformation mechamisEspecially important is to determine
how the von Mises criterion [Hertzberg, R. W. (1§98 satisfied in materials with fewer
than 5 degrees of freedom (e.qg., independent dowaaiants). Note that tetragonal BagiO
has only 3 independent domain variants. As suaftgel intergranular stresses can be
expected to develop in polycrystalline Ba%iOnder high electric field. Other tetragonal
active materials will suffer a similar faith. #,itherefore, important to quantify the evolution
of lattice strain and texture within a cluster o&igs under electromechanical loading. The
newly developed box scan technique of 3D-XRD cainisaluable in this effort. However,

such a study would yield a large amount of data mglire new analysis procedures,



146

especially if integration to solid mechanics modslsttempted. Nevertheless, the present
study has laid the groundwork for this next sted affered a unique opportunity to truly
guantify the mesoscale constitutive behavior olaamaterials.
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Appendix 1. Scattering of x-rays from electrons, at  oms and unit cells

When an x-ray beam hits an atom, the beam may thereabsorbed with an ejection of
electrons from the atom or scattered. X-rays aeedlectromagnetic waves with electric vector
varying sinusoidally with time and directed perpenthr to the direction of the propagation of the
beam [Warren, B. E. (1990]. Let’'s consider a sirffgde electron at the origin with an unpolarized
primary beam directed along the X-axis as in Fightel. We would like to obtain the intensity of
scattered radiation at point P which is at a distaR from the electron at an anglevith X- axis.
Since the primary beam is polarized, the electeicter takes with equal probability all orientations

in the YZ plane.

Figure Al.1. Classical scattering of an unpolarizegrimary beam by a single free electron at the oriigp
[redrawn from Warren, B.E. (1990]

We can choose one directifdg and later average over all directions. Since & isctor Ey
can be resolved into componerisy and Eqz. If v is the frequency of the primary beam, the

instantaneous values of the electric fields are
gy = EgySin2nvit €07 = EgzSIN27v1 (Al.1)
Considering first the componee,, , a force is exerted on the electron which prodacés

component of acceleration

f = e—E‘JYsianzt (Al.2)

=y
aYm m

wheree andm are the charge and mass of the electron.
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From electromagnetic theory, an accelerated chagates. Figure Al.2 shows a charpe

with an acceleration, and at a distand®, the electric fieldt which results from the acceleration. In
terms of cgs units, which for x-ray scattering e simplest, the electric field is given by

_ gasina
&€= 2
c’R

(A1.3)

wherec is the velocity of the light. The electric field in the plane of R and a, and its magnitude
depends on the componeasina. This leads to a very simple and useful rule imsigering
problems of scattering and polarization. With tlye placed at the point of observatienwhich is
seen, determines the electric field produced.

Figure A1.2. lllustration of electric field €, produced by a chargeg with accelerationa, according to
classical electromagnetic theory

By means of Eq. 4.3, we can express the instantsnealue of the electric field due to the
acceleratior 2v :

e’E

e, = —2sin2zv t co Al.4
v R ¥ (Al.4)

Expressed in terms of amplituce,. = E,sin2zv t where the amplitude is given by

— e2 EOY

E, = co Al.5
v n K7 (A1.5)

Similar reasoning applied to the initial amplit. Foz leads to

EZ = (A1.6)

The resultant amplitude at the point of observation is then given by:
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e4

E=E B R

(Eg, + EgycOSp) (AL1.7)

We now let E take with equal probability all orientations in thé&~plane and consider the

appropriate averages

2 2 o2
EOY >+<EOZ >=< E0>

(A1.8)
Since theY andZ axes are equivalent,
2 — 2 — 1 2
EOY >=< Eoz >_§< Eo > and
4
. e 1+ coSy
E° >=< E02> mzc“RZ( - ) (A1.9)

The observable quantity is the intenditywhere by intensity we will always mean energy per

unit area per unit time. In cgs units, the intgnstgiven by

=~ <E?>
8n (A1.10)

whereE is the amplitude or maximum value of a sinusoyadrying field. Multiplying both sides
of Eq. Al.2, we obtain

4

=] € (1+co§go)

Al.11
® m?c*R? 2 ( )

Eqg. Al1.11 gives the intensity of classical scatigrby a single free electron and it is often
called “Thomson scattering equation”. The fa((1+ coSy)/2 is called the polarization factor for

an unpolarized primary beam. If the primary beamas polarized, the polarization factor takes a

different form. The numerical value in Eq. A1.11usingS! units is

et (4.802<1070)*
m’c*  (9.107x10 *%)?(2.998<10°)*

K= =7.94x10°m? (A1.12)

where R is expressed in meters. The equation Adahlbe expressed as a simpler forg ig taken

as B, Bragg angle in Figure Al1.1:
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¢ (m) (A1.13)

IOF 2

e

The scattering from the unit cell follows the sapagtern with the Eq. A1.13 but the arrangement of
the atoms in the unit cell needs to be consideSeuicture factor|F,, [, is the absolute value of the

structure amplitude and includes several contamstidetermined by the arrangement of the atoms
in the unit cell and other structural features [Rasky, V.T. (2005)]. Therefore, the scatteringriro
the unit cell will be:

K 1+ cos 26
o= oz o () (AL.14)
or in a simpler form
1= 1 |Ful (A1.15)

Al.1. X-Ray Scattering Basics

3D-XRD technique is based on elastic Bragg scatjefiom crystals and restricted in the
elastic limit of monochromatic x-rays. Thereforée tabsorption of x-rays from the sample is
neglected in this technique. The incident eledreaatter from the electrons in the crystal; this
process is well described in elsewhere [Warren, BLE90)].

Al.1.1. Basic Scattering Theory

The basic scattering from electrons, atoms andittitecell is discussed in Appendix 1 with
details. When monochromatic x-rays hit an objdut, diffraction planes in the object satisfying the
Bragg condition will diffract with 8 angles. Direction and multitude of each diffrantjglane will
differ with the plane wave monochromatic X-ray bedefined byki,. The scattering from x-rays are
shown in Figure Al.3. Each diffraction plane wilffcact with a different scattering vector. The

length of the wave vectokyy, is preserved due to assumption of elastic saadtethat is:

Kinl= ouel= % (A1.16)

where) is the wavelength of the x-ray beam.
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X-Rays

FigureAl.3. Scattering from x-rays

The scattering ability of the object is describgdthe complex scattering amplituda,
which described both the amplitude and the phasbeobbserved scattered wave to the incoming
wave. The phase difference, in the scattered wave to the different positions phumber of the
atoms in the object can be found as:

(k—ky)r;=qr, (A1.17)
with the scattering vector, q, defined as

g=k-k, (A1.18)

The scattering amplitude from a collection of ataras be written as:
A@=> f,(g)e"" (A1.19)
i

where fj(q) and r; are the g-dependent atomic scattering factor @atkesing vector for atom
respectively. Since x-ray detectors do not recarth bhe phase and the amplitude of the scattered
beam, but the only the intensity:

(@)= AA*|A(q)® (A1.20)

Therefore, the phase information is lost.

Al.1.2. Diffraction from a Perfect Crystal

The position of the atoms in a crystalline mategahormally described by a lattice and a
basis. A crystal lattice is characterized by thet fhat it obeys certain translation symmetrieSDA
lattice can be described with three lattice basistars,a;, & andas, which have the property that
looks the same if translated by an integer numbany of these.
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Thelattice is more formally described by vectors in the form:

R = na +na,+na, (AL.21)
with n=(ny,p,n3) all being integers.

These vectors give the positions of the unit ceflshe crystal, the lattice points, each unit
cell is populated by the same arrangement of amessribed by what is known as the basis. The

basis can be described by vectofgelative to the lattice points. The position afaiven atom in a
crystal can be given as:

R,j= R +r=na+na+na,+r, (A1.22)

for somen, j.

Scattering Amplitude

In the case of crystal, the general formula forgt&ttering amplitude can be separated into
two parts as:

unitcell surﬁ |atticetsum
Alg) =D f (e > ™ (A1.23)
j n

where the “unit cell sum” is the sum over the atmnfiguration in the basis, and the ‘lattice susY” i
over all lattice points.

The reciprocal space and lattice

In conventional crystallography, the substances assumed to have crystal structures
repeating themselves with three-dimensional pecibdiThe repeated crystals constitute thesct
lattice and macroscopic geometric properties are the goesee of this crystal in microscale. Each
faces of the crystal constitute a crystallograpiiame and these faces are parallel to sets ofdatti
planes. The electron density of the crystal carexgessed as a periodic function of the lattice:

p(r+t,)=p(r). The most general expression for a periodic famctis the plane wave:
e’ = cosp +ising. If we consider a functiof(r) such thatf(r +t_ )= f(r ) i.e., the function has

the total symmetry of the lattice. The most genesmy of writing this function i (r) = A€”". To
be an argument of this exponential functigrir) = K.r needs to be wher€ has units (1/distance).

The restrictions oK,
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f(r+t,)= AN = A TE N hich means thae* = 1or Kit, =2N
Since {t,} forms a lattice, therK is part of a set of vectors that also form adatt+ thereciprocal
lattice. K can be expressed ihb + kb, +1b,; h, k and | are integers ard, b, and bs are the

primitive vectors in reciprocal space. The condhitidhat define these vectors with respect to real
space lattice are;

a b, = 270, (A1.24)
where J; is the Kronecker delta.

The reciprocal space lattice is a set of imaginaints constructed in such a way that the
direction of a vector from one point to anotherncades with the direction of a normal to the real
space planes. The separation of those points (#bsehlue of the vector) is equal to the reciprocal
of the real interplanar distance. These reciprbesls vectors are related to the crystal latticesba

vectors by:

2n 2n 2n
b =—a,xa;,b,=—a;xa,b,=—a xa, (A1.25)
VC VC VC
with v, = a, -(a, xa,) the volume of the unit cell. It can be seen thatemsion of the reciprocal
lattice vectors are reciprocal in length, hencentdmme.

The reciprocal basis vectors span, in a natural, walattice in reciprocal space, with a

reciprocal lattice vectof, given as
G, = hb, + kb, + b, (A1.26)
with h, k, | integers.

Reciprocal lattice vectors have the following pndies, relating them to the underlying

crystal structure:
o Gy is perpendicular to the lattice plane with Milladices hkl.

e G,= E, where @y is the lattice spacing of the lattice planes Wititler indices hkl.
hkl

e Gy is bounded with the real lattice. When the refticle is rotated, the reciprocal lattice

is rotated too.
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APPENDIX 2. The relation between diffracting volume and intensity

[0}
In the rotating crystal technique, the crystalatated with an angular velocio normal to

the paper as shown in Figure A2.1.

a(Aas),

Figure A2.1. The geometry involved in calculatinghe integrated intensity from a small single crystal
which is rotated at constant angular velocity» about an axis normal to the paper

The intensity can be calculated as the energy pieatea and then the energy will be:
E= j j | dtdA= j j j |, dtR*dAdy (A2.1)

wherel, is the intensity from one unit cell (Eqg. 4.14j},is the unit data collecting timéA is the

unit area. Let the direction of the primary beasraa/ectol So making angle withw. Then the time

during the direction of primary beasmando+da

CE)
[0

The total diffracted energy

E=%2jjjlpdadﬁdy (A2.2)
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Since the directions of primary and diffracted beamhich differ from Bragg law directions, let

s'-s, = s—§, + 4s wheres—s,= A H,,
Replacing one of sine functions with-$) by 4 H,,, + AS

AS- Nlal)

nZ%(AH - +As)-N,d, = sin? n(hN, + (A2.3)

~ sinz%(As- N,&,)

It is convenient to represeAt as a vector in reciprocal space
AS=A( plbl + pzbz + psbs) (A2.4)

where B, by, b and p, p2, ps are the reciprocal lattice vectors and coeffigenftthese vectors.
sin® %Aé- N, - & =sin® z(p,b, + p,b, + psb,)- N,&, =sin® 7N, p, (A2.5)

Total diffracted energy

| .R?
E_ |Fhkl| ”Ism 7lepl sin 7zN2p2‘sm 7N, P, dor d3 dy (A2.6)
sinfzp, sinzp, sin’zp,

d(AS),|=dar  [d(AS),|=dB |d(aS),|=dy
dV = d(AS),, -d(AS), xd(AS), =sin20 da dg dy (A2.7)

a, 3 andy can be expressed as volume integral

_IR 2|Ful” msm 27N, p, sin®zN,p, sin® 2N, p; v

(A2.8)
o sin260 sinz p, sinzp, sin“zp,

dV = Ab,dp, - Ab,dp, x Ab,dp, = 2°V, dp,dp,dp,

/13
= —dpldpzdps

a

oo e O 02
2 —0 3

B | R22|F |’ °jisin27r|\|1p1OI Tsinzzrl\lzpzd Tsinzzrl\l
oV,sin20 * (r p,)? 2
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whereN=N;.N> N3 (number of the unit cells in the crystal, diffrattenergy
2,3 2
E- I R4 N‘Fhkl‘
oV, sin26

(A2.10)

Since the volume is composed of unit cell with Aadop numbers IV, =6V ), the integrated

intensity will be:

- | R2AV|Fy|”
~ wVZ.sin20

(A2.11)

The diffracted area will depend on tB@ diffracting angle as shown in Figure A2.2. If we
consider a volume element between z depth and ardalefinedV as the number of the blocks in

the volume element as the average volume, it willeshd on

e _ P02

e : (A2.12)
oV sing
Ap
6 /
z
Ao
dz g
A

Figure A2.2. The geometry involved in calculating the integrateensity for an extended face mosaic crystal.

Then, the final energy of the diffracted volumel\wi:

| RREVI|F | % -2/
E= Fu [e “sndz (A2.13)
z=0

V.7 sin26
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- | R22V|Fy|” sing
oVsin20 2y (A2.19)

Even though we related the energy of the diffracteldme, it will be related with the data
collecting time. Moreover, the effect of the locatiof the spot is important and we can relate the
diffraction spot withn and [sing)|. If we relate the diffracted total volume anéfrdicted specific hkl
vector, they will related as:

‘2

| RV gauge SN Fi

B gauge At A2.15
powder Vaz,u Zwsin20hk, powder (A2.15)
2 . g 2
E | RPAV, Slnehkl‘Fhkl‘ At
hkl VZi 20sin20, hkd (A2.16)
2 .
Epowder _ VgaugeAt powder, Fhil‘ rnhk|Aa) Sln26?hk|

= 7 (A2.17)
B thIAthkl‘Fh?d‘ sing,,

By the combination of the Eq. (A2.15) and (A2.1iB) volume of the diffracting grain can
be found as:

2 .
Fhil‘ MA@ sin2f,,

EhklvgaugeAt powder|
2
EpowderAthkl‘ Fh?(l ‘ sin ehkl

Vi = (A2.18)
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Appendix 3. Scanning microdiffraction principles

This section will describe the principles that sgag diffraction technique is relied on and
shows the coordinate transformations in Scanningrddiffraction technique. By using the
principles described, one can characterize the twientations by starting from an indexed pattern.

Figure A.3.1 describes the Scanning Microdiffractiechnique schematically. The incident
beam is pointed along -y direction. The normal hd diffraction plane will be dependent on the
orientation matrix (U), reciprocal lattice matriB)(and diffraction plane. The diffraction equation
will be:

1 0 0 h
n,, =|0 cos@5 -—sin(45UB| k (A3.1)
0 sin(45 cos@b I

From the vector addition, the diffracted beam veutitl be:
Ky = K + Ny (A3.2)

Detector ‘

out

dd

LT

90-6 (
. .

in

457

Figure A3.1. Scanning Microdiffraction Setup
The angle between the incident beam and the navfihé diffraction plane will be 90e2and

dOt(kout ! nth )

90-6 = cos’l(dOt(ki ’ nhk')) = cos’(
Ko

Tk ) (A3.3)
kil
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In order to obtain the diffracting vectok (,), the locations of the diffracting spots on the

detector are determined and each diffraction spet€onverted to a diffracting vectdq () with
the following formula:

(X_ Xc) - PX
kout = (y_ yc) Py (A34)
L
where x and y are the location of the spot in tedor x:. andy. are the center of the images and
py are the pixel size of the CCD detector in mm prelpandL is the sample-to-detector distance.

The normal of the diffraction planey,) by Equation A3.2 can be found as:

kout (1) O kout (1)
Kot (@) [=| 1 Kout (2) —1
n. — kout_kin _ kOUt (3) 0 _ kout (3)
" ko Kl (ko @Y (0] oy @7 + (ko (@) — D)2 + Koy (B
kout (2) -1
k.3 L0
o (A3.5)

By considering the incoming beam direction is ta¥gay. The normalized length of the diffracted

beam, ku, is 1 (\/kOut @) + K,y (2% +k,, (3)* =1) and if we put in the equation:

Ko @ Ko @

K..(2-1 K,:(2-1

Ko ) Ko (3
= = 3.6
M- 2k, @41 2-2k, () #50)

Then, the components of the diffracted beam vestibbe:
kout (2 =1- 20, (2)2
kout @ = Ni (1)\/ 2- 2kout ) (A3.7)
Kout 3) = Niya (342 = 2Ky, (2)

If the detector has a tilt with respect to incomibgam plane, the components of a finalized
diffraction vector (r) will be:

1 0 0 cosy -siny O cosy —siny 0
Ry =0 cos(p) -sin(-P) | siny cosy O0|=|cosEP)siny cosEP)cosy —sin(-P) (A3.8)
0 sin(-B) cosEP) 0 0 1 sin(-p)siny sin(-B)cosy cos(P)



160

r, cosy —siny 0 Kou @
Iy |= RitKowe =| COSER)siny  cosEP)cosy  —sin(-P) | K, (2) | =
r sin(-B)siny sin(-P)cosy  cosEP) A Koy (3)

(A3.9)
cosy - Ky @) —siny - Ky, (2)

cos(-p)siny - K, @) + costP) cosy - Ky, (2) —sin(—P) - Koy, (3)

sin(-B) siny - k,,, (@) + sin(-P) cosy - K, (2) + cosEP) - K, (3)

where3 andy are the tilt angles defining a rotation along X ah coordinates respectively. The
diffraction vector is converted to the normal od whffraction planes by using Equation A3.5 and the
orientation matrices of each domain are found byguEquation A3.1.
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Appendix 4. Computer Codes used in 3D-XRD Analysis

This section will describe the codes written tolgrethe 3D-XRD experiment output.

A4.1. Orientation Fitting
Due to complexity and spot overlapping problemseimoelectric materials, the orientation

fitting in the tetragonal regime needs to be doité ¥he following code. In order to do the fitting,
first a grain indexing software is used to identthe orientations at cubic regime. Then, the
distributions of these spots are found by Phi-E&épsnand center of mass of each candidate spot is
found. The minimum number of the spots required doentation fitting is 3 in this routine. By
using quaternions, the minimum number of spotsireduor the orientation fitting can be reduced

to 2 as well. Note that the reflections used indhentation fitting need to be nonlinear refleago

% Eta-Phi locations with hkl values go here.
etaPhi=[58.41 122.6 0 0 -2,

-41.17 1051 2 0 0;

-36.63 285.1 -2 0 0,

33.68 216.66 0 2 0,

263 36.66 0 -2 0],

Y%Lattice parameters of BaTiO3 at room temperature.
ucell=[3.9836 3.9836 4.0198 90 90 90];

en=80.72; %Energy of the x-rays

% Converting energy to lambda

lambda=12.398427/en,;

%Forming B matrix;
B=FormB (ucell);

%Getting hkls
Ghkl=etaPhi(,3:5)";

%Producing Bhkls
Bhkl=B*Ghkl,

- o
/oCreating d-spacing

list=findDspace(en,ucell,99,200,2274);

% Formulations on finding the U matrix comes from Poulsen's book
% Chapter 3, page 26, Equation 3.6

for i=1:size(Bhkl,2)
aa=find(list(;,1)==Ghkl(1,i) &list(;,2) ==Ghkl(2,) &list(:,3) ==Ghkl(3,i));
A@)=2*pi*sind(list(aa,6))/lambda;
gamma(;,.,i)=[cosd(etaPhi(i,1)) -sind(etaPhi(i,1)) 0;...
sind(etaPhi(i,1)) cosd(etaPhi(i,1)) 0;...
001];
b(,i)=A@)*[-tand(list(aa,6) /2) -sind(etaPhi(i,2)) cosd(etaPhi(i,2))];
bB(:,))=b(,i)*gammaC,:i);
BhKI(,i) =lambda*BhKI(.,i)/ (4*pi*sind (list(aa,6)/ 2));

end

U=bB/BhK],
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U(l,:) =U(1,)/norm(U(1,));
U(2,)=U2,)/norm(U(2,));
U(3,)=U(3,)/norm(U(3,))

% The determinant will determine whether the orientation is a real square
% matrix (determinant = 1)
determinant=det(U)

A4.2. Pole Figure
This function plots orientations as a pole figuree code was originally written by Henning

Poulsen and it was improved with overlaying Wulfitp

function xy = plotU2pol(U,ucell,H ttlFig,plotNum)

% Pole Figure from U Matrix

% A simple converter that plots a number of reflections in the corresponding pole-figure.
% The formalism follows the ID11-3DXRD specs

%

% Written by: Henning Poulsen, Risoe 1/11 2000.

% Improved by: Mesut Varlioglu, ISU 10/12/2007

% By overlaying the Waullf plot.

%

% USAGE: plotU2pol(uu,[3.9836 3.9836 4.0198 90 90 90],[1 0 0;0 1 0; 0 0 1], RT",1);

%

%Create B matrix; It uses farfield diffsim function which is avaliable
%online, type in google "fable farfield simulation" to obtain this package.
B=FormB (ucell);

figure;set(gef, 'color', 'white'),
%%wulff,

for ij=1:size(U,3)

% calculate the Bunge u,v,w then X and Y
foril = 1:size(H,1)

h = H(il,1);

k =H(@1,2),

1=H(1,3);

Gs = U(,,ij)*B* b k1]
Glen = (Gs(1)"2 + Gs(2)"2 + Gs(3)"2)"0.5;
u = Gs(1)/Glen; v = Gs(2)/Glen; w = Gs(3)/Glen,
if w<0
US4 V=V, WS W,
end
x(i1) =u/(w+1);
y(il) = v/(w+1),

end

%plot the data point
hold all;
plot(x,y, k+', MarkerSize',6);
xy{ijy=[xyl;
if plotNum==1
text(x+0.01,y,mum2str(ij), Color, k', FontWeight','bold', FontSize', 14);
else
continue;
end
hold all;

axis equal;
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axis off;
end

axis off; axis square;

text(1.3,1,tdFig, FontSize',8);
t=0:0.01:2*pi;

xcircle = cos(t);

ycircle = sin(t);
plot(xcircleycircle,'k-)
text(1.05,0,X''FontSize',14)
text(0,1.05,Y", FontSize',14)

t=-1:1/20:1;
hlinel = plot(t,0,k");
hline2 = plot(0,t,k");

N =90;

cx = cos(0:pi/ N:2*pi); % points on circle
cy = sin(0:pi/N:2%pi);

psi = [0:pi/N:pi];

fori=1:8 %plot great circles
rdip = i*(pi/ 18); %at 10 deg intervals

radip = atan(tan(rdip)*sin(psi));
rproj = tan((pi/2 - radip)/2),
x1 = rproj .* sin(psi);

x2 = rproj .* (-sin(psi));

y = rproj .* cos(psi);
plot(xl,y,"r' x2y,"r");

end

fori=1:8 %plot small circles
alpha = i*(pi/18),
xlim = sin(alpha);
ylim = cos(alpha);
x = [-xlim:0.01:xlim];
d = 1/cos(alpha),
rd = d*sin(alpha);
y0 = sqrt(@d*rd - (x .* x));
yl =d-y0;
y2=-d+y0;
plot(x,y1," ' x,y2,"r");

end

hold off;

xy=[xv];

A4.3. Inverse Pole Figure
This function plots orientations as an inverse daare. The code can currently plot the

orientations with cubic and tetragonal crystal syetnes.

function plotInvPoleFig(rmat,ttlFig symOP)

% It plots the inverse pole figures of the orientations with their symmetry
%o operations.

%

% USAGE: plotInvPoleFig(umat,'ttlFig1',1); For tetragonal

% plotInvPoleFig(umat,'ttlFigl',2); For cubic



164

figure;
hold all;

tﬂ: {YXV,V&?V’VZV};
for j=1:3
subplot(1,3,i));
hold all;
if symOP == 1
fori = 1:size(rmat,3)

u=rmat(1,ij,i);
v=rmat(2,ij,i);
w=rmat(3,j,i);

INVPF1(,j)=acos(abs(w)); %0 ...(;,1) is alpha angle
INVPF2(,i)=atan(abs(u)./ abs(v));%+45%pi/ 180; % ...(:,2) is beta angle
bmax=45;
if INVPF2() > (pi/4)
INVPF2(i) = pi/2 - INVPF2(i); % enforcing a mirror about 45deg

end
% tan(alpha/2) incorporates stereographic projection
xinv (i) =tan(INVPF1(i)/ 2).*cos INVPF2(1));
yinv(i)=tan(INVPF1(i)/2).*sinINVPF2(i));
% this line plots the data point
plot(xinv(i),yinv(i),k.")
Yoplot(xinv(i),yinv(i),ko', 'MarkerFaceColor', 'y', 'MarkerSize', 10)
Yotext(xinv(i)+0.01,yinv(i),num2str (i), Color','b', FontWeight','bold', FontSize', 10)
axis square
%title(PFtitle);
axis off
hold all;

end

hold on;

plot([0 1], 0 0], 'k-)

xinv2=tan([45 54.7 90]*pi/180/2).*cos([0 45 bmax]*pi/180),
yinv2=tan([45 54.7 90]*pi/ 180/2).*sin(J0 45 bmax]*pi/180),
plot(xinv2(1),yinv2(1),'k+")

plot(xinv2(2),yinv2(2),'k+")

% these plot lines for the borders of the Inverse PF
plot([0 xinv2(3)],[0 yinv2(3)],k-")
xinv3=ones(1,20).*cos(linspace(0,bmax,20)*pi/ 180);
yinv3=ones(1,20).*sin(linspace(0,bmax,20)*pi/180);
plot(xinv3,yinv3,'’k-")

text(0.38,-0.04,'101'FontWeight','bold', FontSize',12),
text(0.31,0.41,'111",'FontWeight','bold', FontSize',12),

text(-0.1,-0.04,'001', FontWeight','bold', FontSize',12);
text(1,-0.04,'100','FontWeight','bold', FontSize',12),

text(0.67,0.75,'110", FontWeight','bold', FontSize',12),
%text(1.02,0.04,'E Field',FontWeight','bold','Color’,'g', FontSize',12);

% i= 1; plot(xinv(i),yinv(i), ko', MarkerFaceColor', 'y', MarkerSize', 10)
Yotext(xinv ({)+0.01,yinv(i),num2str(i), Color','b', FontWeight','bold', FontSize', 10)
hold off;

elseif symOP == 2
fori = 1:size(rmat,3)

b(1)=rmat(1,ij,i);
b(2)=rmat(2,ij,i);
b(3)=rmat(3,ij,i);
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[A,INDEXA]=sort(abs(b));

w=abs(bINDEXA(3)));
v=abs(bINDEXA(2)));
u=abs(b(INDEXA(1)));

¢ = tan( acos(w)/2);
alpha = acos(v/(v"2 + u"2)".5);

xinv(i) = c*cos(alpha);
yinv(i) = c*sin(alpha);
plot(xinv(i),yinv(i),k."
Yotext(xinv(i)+0.01,yinv(i),num2str (i), Color','b', FontWeight','bold', FontSize', 10)
axis square
%title(PFtitle);
axis off
hold all;
bmax=45;
end
end

% these lines plot extra points for reference
hold on;

plot([0, 5],[0,0],k-',[0,.355],[0,.355],K);

% these plot lines for the borders of the Inverse PF
Yoplot([0 .366],[0 .366],’k-)
xinv3=ones(1,20)/2.*cos(linspace(0,bmax,20)*pi/ 180);
yinv3=ones(1,20)/2.*sin(linspace(0,bmax,20)*pi/180),
plot(xinv3,yinv3,k-")

text(0.34,0.38,'111",'FontWeight','bold','FontSize',12),
text(0.5,-0.02,'110", FontWeight',bold', FontSize',12);
text(-0.03,-0.02,'100','FontWeight','bold', FontSize',12),

% i= 1; plot(xinv(i),yinv(i), ko', 'MarkerFaceColor', 'y', MarkerSize', 10)
Yotext(xinv(i)+0.01,yinv(i),num2str (i), Color','b', FontWeight','bold', FontSize', 10)
hold off;
set(gcf, 'color', 'white'),
title(tt{ij});

end

text(0.5,0.5,ttFig);

A4.4. Lattice Strain Matrix
This code finds the lattice strain tensor fromdet strains and direction cosines.

function strain=findLatticeStrain(Imn,epsilomn)

%It finds the strain tensor components from the direction cosines and spot
%ostrains.

% USAGE: strain=findLatticeStrain(rand(3,18),rand(1,18))
for i = 1Lisize(lmn,2)
£x(1,) =[lmn(1,)"2 Imn(2,) "2 Imn(3,)"2 Imn(1,)) " Imn(2,i) lmno(1,i)*lmn(3,i) Imn(2,i)*Imn(3,)];

end

strain={x\epsilon"; %0lt causes rank deficient results.
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Appendix 5. Computer codes used in uSXRD analysis

This section will describe the codes written tolgrathe pSXRD experiment output.

A5.1. Orientation Fitting
Due to complexity of the pSXRD technique and sparlapping problems in ferroelectric

materials, the orientation fitting of the ferrodtc domains was confirmed with this code. In this
fitting, the information about the each orientatisrextracted and the orientations are confirmed by

using the output parameters from XMAS software.

function [usimCor,uxmas]=findOrienWB1(file)

% It finds and confirms the orientation from the XMAS outputs
%

% USAGE: [usimCor,uxmas]=findOrienWB1(BaTO130CLast_0392.STR")
[table reflist]=readSTRv4(file);

% Converting XMAS orientations to direction cosine matrices.
[uxmas,OM1] = convertU2rmat(table);

% xc=522.7,
% yc=512.3;

% dd=83.94;

px=135/1024,
py=135/1024;

0/ e
/0 tigure;

% B=[1.567 0.00081035 -0.0018622
% 0 1.569 0.00089509
% 0 0 1.5674];

abc(;,1:3)=table(;,5:7)*10;
abc(:,4:6)=table(;,8:10);

table(:,5:7)*10;

rot1=[0.99994 -0.01087 0; 0.00769 0.70735 -0.70682; 0.00769 0.70678 0.70739],
% rot2=[-1 0 0;

% 0 cosd45) -sind(45);

% -0 -sind(45) -cosd(45)];

for ij=1:size(reflist,2)

xc=table(ij,24);

yc=table(ij,25);

dd=table(ij,23);

for i=1:size(reflist{1,ij},1)
k{ij} ()= ((eetlist{L,ij} (,1)-x)*px) ((reflist{L,ij} (,2)-yc) “py) dd];
KL{i} () =K (i} )/ momm(k if} 6);
theta{ij} (i) =acosd(dot([0 -1 0],k1 {ij} (@,)))/2;
qvec i} (. =K1 {ij} )10 -1 OF

ghat{ij} (,)=qvec{ij} (,i)/norm(qvec {ij} (;,i);
qhat1 {ij} (i,)=qhat{ij} (,i);
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bkl {jj } € ,i)-= [reﬂis-t.{ l,i!' }(3,3) reflist {1,1] } (i,4) reflist{1,ij} (1,5)];
hKl1 {ij} () =hkl{ij} (i) /nomm bkl {ij} (,D);

thetal {ij} (i,)=acosd(dot(J0 -1 0],-qghat{ij} (:,))));
al(,.ij)=qhat{ij} /hkl1 {ij};
B(,:,ij)=FormB([table(ij,5:7)*10 table(ij,8:10)]);
B1(,.ij)=B(,:ij)/norm(B(,:,ij));
a2(:,51)=al(,,1)/B1(,1);

usim(,; ij)=rotl1"*a2(,: ij);

usimN (;,1,ij) =usim(,1,ij) /norm(usim(:,1,ij));
usimN (;,2,ij) =usim(;,2,ij) /norm(usim(:,2.ij));
usimN (;,3,ij) =usim(;,3,ij) /norm(usim(:,3,ij));
usimCor(1,.ij)=usimN(1,. ij);
usimCor(2,.,ij)=-usimN 3,.,ij);
usimCor(3,.ij)=usimN (2,.,ij);

gnew{ij} (;,)) =rot1*usim(:,:ij)*FormB([table(ij,5:7)*10 table(ij,8:10)])*hkl1 {ij} (.,i);
gnewl {ij} (i) =rot1 *usimN,.,ij) *FormB ([table (ij,5:7)*10 table(ij,8:10)])*hkl1 {ij} (;,i);
ghatsim {ij} (i,;)) =gnew { 1,ij} (;,)) /norm(gnew {ij} (;,1));

ghatsimN {ij} (i,;) =gnew1 {ij} (.,i)/norm(gnew1 {ij} (:,i));
theta2{ij} (i,)=acosd(dot(J0 -1 0],-ghatsimN {ij} (i,5)));
Yorot1%*ab(:,.ij)%o* FormB ([table(ij,5:7) *10 table(ij,8:10)])%*hkl1 {ij};
end
end

A5.2. Read Strain Files
This code reads pSXRD strain file and outputs mfiermation about each orientation found.

The strain file {ilen) is read by the code and the orientation matrie¢tsce parameters of each grain
is tabulated inable and the reflection information is createdaflist as cell each column containing
x(exp), y(exp), h, k, I, xdev, ydev, energy, dspaiceens, integr, xwidth, ywidth, tilt, rfactor,
pearson, xcentroid, ycentroid. This code also exphie deviatoric strain matrix.

function [table reflist]=readSTRv4 (filen)

% Read the uSXRD strain file and outputs the information in the strain text file.
% Developed from the readtextfile.m file available at http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect6.html website.
% Mesut Varlioglu, January 28th, 2007

% USAGE: [table,reflist]=1teadSTR(BTO_RT0036.str")

% OUTPUT: The output file (TABLE) contains the following:

% image g number g_indice peak_number a b ¢ alpha beta gamma dev1 dev2

% pixdev M11 M12 M13 M21 M22 M23 M31 M32 M33 DD Xcent YCent S11 812 S13 S21
% S22 823 S31 S32 833

%

% (REFLIST) contains the following columns:

©°
>~

% x(exp) y(exp) h k 1xdev ydev energy dspace intens integr xwidth ywidth tilt rfactor pearson xcentroid ycentroid
0

>~

0,

>~

tab=readtextfile(filen);
sz=size(tab);

idd=zeros(1,sz(1));
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for i=1: sz(1);
id{i} =find(stremp strcat(tab(i,1:10)),'Grain no:"));%&&str2num (tab (ID (i) +RefID({j) +26,:)) ~=0);
id1 {i} =find(stremp (strcat(tab(i,1:18)), latticeparameters="));%0& &s tr2num (tab (ID (i) +RefID(ij) +26,:)) ~=0);
if id{i} ~=NaN;%((id {i} ~=NaN)& (id1{i} ~=NaN)&(str2num(tab(id1{i} +24,))>0));

idd(i)=1,

end,

if id1 {i} ~=NaN%str2num (tab(id1 {i} +24,))>0;
idd1@)=1;

end

%  ifid1{i} ~=NaN; idd1@{)=id1{i};

% end;

end

% Finding the information on each grain
% (IDA for finding line starting with Grain No
% and ID1 for finding line starting with Lattice Parameters)

IDA=find(idd>eps);
ID1=find(idd1>eps);

for i=1:1length(IDA)
aa(i,)=str2num(tab(ID1(@)+25,));

end

finID=find(aa(;,1)~=0);
ID=IDA(finID);

table=zeros (length(ID),34);

for ij=1:length(ID)
IM=strcat(tab(1,));
%Inputting strain file number
table(ij,1) =str22num(IM(end-7:end-4));
%Inputting grain number;

table(ij,2) =ij;

%UFinding the number of the reflections
cc=strcat(tab(ID(i)),));
RefID(ij)=str2num(cc(end-2:end));
table(ij,4) =RefID(j));
latID=tab(ID(ij)+RefID(ij)+2,);

latt(ij,)) =str2num(strcat(latID(:,22:end)));
0//0

table(i,5:10)=latt(ij,.);

devID=tab(ID(ij)+RefID(ij)+7,);
dev(ij,))=str2num(devID(20:end));

table(ij,11:13)=dev ij,);

ul=str2num(tab(ID(ij)+RefID(ij)+26,));
u2=str2num(tab(ID(ij) +RefID(ij)+27,));
u3=str2num(tab(ID(ij) +RefID(ij)+28,));

om(ij,)=[ul u2 u3j;
table(ij,14:22)=om(j,’);

CentDDID=tab(ID(jj)+RefID(ij)+4,);
CenD(jj,)) =str2num(strcat(CentDDID(:;,20:end)));
table(ij,23:25)=CenD(jj,’);

s1=[str2num (tabID(jj)+RefID(ij)+13,1:10)) str2num(tab(ID(ij)+RefID(ij)+13,11:20)) str2num(tab(ID(ij)+ReflD({j)+13,21:30))];
s2=[str2num(tab(ID(jj)+RefID(ij)+14,1:10)) str2num( tabID(ij)+ReflD(ij)+14,11:20)) str2num(tab(ID(ij)+RefID(ij)+14,21:30))];
s3=[str2num (tabID(jj)+RefID(ij)+15,1:10)) str2num(tab(ID(ij)+RefID(ij)+15,11:20)) str2num(tab(ID(ij)+ReflD({j)+15,21:30))];
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sm(ij,)=[s1 s2 s3];
table(ij,26:34) =sm(jj,’);

reff=str2num (tab(ID () +2:ID(ij) + RefID(jj) +1,5));
reff(;,18)=ij;
%lic, id]=sort(reft,1);
reflist{ij} = reft;%o(id(;,1),);
clear reff;
end

A5.3. Read Indexation Files
This code reads pSXRD indexation file and outphésihformation about each orientation

found. The lattice parameters and components obtlentations are collected in one table while
strain matrix components are collected in anothielet

function [refList,u]=readIND(filen)

Yofilen='C:\research\xmas\jan08\ebsd\ebsd0220.IND',
Yofilen='C:\research\ALS_Jan08\xmas\strainFiles\BaTORT_0220.st';

Yofilen='C:\research\ALS_Jan08\xmas\EBSD\param\ebsd0005.STR',
Yofilen="'C:\research\ALS_Jan08\bto_3dxrd_0001.STR",

% Read the nSXRD indexation file and outputs the information in the indexation text file.

% Developed from the readtextfile.m file available at http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect6.html website.
% Mesut Varlioglu, January 28th, 2007

% USAGE: [reflist,u]=readIND('C:\research\xmas\jan08\ebsd\ebsd0220.IND')

% OUTPUT: The output file (TABLE) contains the following:

% image g number g_indice peak_number a b ¢ alpha beta gamma dev1 dev2

% pixdev M11 M12 M13 M21 M22 M23 M31 M32 M33 DD Xcent YCent S11 812 S13 S21
9% S22 S23 S31 S32 S33

%

% (REFLIST) contains the following columns:

%

% x(exp) y(exp) h k 1xdev ydev energy dspace intens integr xwidth ywidth tilt rfactor pearson xcentroid ycentroid
%

%

tab=readtextfile(filen);
sz=size(tab);
idd=zeros(1,sz(1));

for i=1: sz(1);
id{i} =find(stremp (strcat(tab(i,1:10)),'grain n0o:"));%&&str2num (tab (ID (i) +ReflD (i) +26,:)) ~=0);
id1 {i} =find(stremp(strcat(tab(i,1:25)), matrix X Y Z ->h k 1);%&&str2num (tabID(i)+RefID({j)+26,)) ~=0);
if id{i} ~=NaN;%((id {i} ~=NaN)& (id1{i} ~=NaN)&(str2num(tab(id1{i} +24,))>0));
idd(i)=1,
end,
if id1 {i} ~=NaN%str2num (tab(id1 {i} +24,))>0;
idd1@)=1;
end
%  ifid1{i}~=NaN; idd1(i)=id1{i};
% end,
end

% Finding the information on each grain
% (IDA for finding line starting with Grain No
% and ID1 for finding line starting with Lattice Parameters)
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IDA=find(idd>eps);

ID1=find(idd1>eps);

%

for i=1:1length(IDA)
refList{i} =str2num(tab(IDA@)+3):ID1(i)-2,));
u(;,,i)=str2num (streat(tab(ID1(@)+1): AD1(i)+3),)));

end

A5.4. Convert U Matrix

It converts the XMAS orientations to direction T@smatrices.

function [rmat,OM1] = convertU2rmat(datal)

% It converts the XMAS orientations to direction cosine matrices.
% USAGE: [uxmas,OM1] = convertU2rmat(table);

oml = datal(;,14:22);
%OM2=zeros(3,3,20);

for i=1:size(om1,1)
OM1(,,))=reshape(om1(i,),3,3)';
OM2(1,:))=0OMI1(1,:,i)/datal(i,5);
OM2(2,:,))=0M1(2,:,i)/datal(i,0);
OMZ2(3,:,))=0OM1(3,:,i)/datal(i,7);

end

rmat=0OM2;
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Appendix 6. Computer codes used in EBSD analysis

This macro reads the OIM software outputs and esean orientation map from the

orientations.

%tunction [table,misOr,mis,rmat1 rmat2,Dom90,Dom180,x,y,z] = read EBSDfile(filename,CILim)

% Manipulates the EBSD experiment data files and orientation matrices.

% Plots the orientation map with 1gh color mode where

% 100-->Red

% 010-->Green

% 001-->Blue

%USAGE: [table,misOr,mis,rmatl rmat2,Dom90,Dom180,x,y,z] = readEBSDfile('C:\research\EBSD\Mesut\BaTiO3-run3.b.ang',0.2)
%

% Mesut Varlioglu, December 19th, 2007

filename='C:\ research\EBSD\Mesut\BaTiO3-run3.b.ang';
table=textread(filename,", headerlines',58);

% x=table(,4);
% y=table(;,5);
% x=unique(table(:,4));
% y=unique(table(;,5));

% aa=find(table(;,7)~=-1&table(,7)>=CILim),
% table=table(aa,);

rmat=RMatOfBunge([table(;,1) table(;,2) table(;,3)]");
rmatl=convertU2FundaRegion(tmat, TetSymmetries),

for i=1:size(rmat1,3); or(i,)=rmat1(;,3,i); end

% %%0% Make the grain map
% figure,
% multicomb ([table(:,5) table(:,4) zeros(1,5372)",01,'honeym’)

%%

r=[table(;,5) table(;,4) zeros(1,5372)";
U=or;

figure;set(gef, 'color', 'white'),
warning off

Umax=max(max(U));
Umin=min(min(U));
[n,m]=size(r);

x = 1(,1);
y = 1(,2);
z = 1(,3);

%c = (U-Umin)/ (Umax+Umin);

c = abs(U);
d=sqrt((x(1,1)-£(2,1))"2+(x(1,2)-1(2,2))"2);

honeyrad=(d/2)/cos(pi/6),
tita =linspace(0,2*pi,7);

Rx = honeyrad*cos(tita);
Ry = honeyrad*sin(tita);
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70 = extract(z);
nz = length(zo);
zini = zo(1);
ni=1;
Y%otigure (fignum)
hold off

if (max(c)~=min(c)),

for ii=1:mn,
if (2 (i) ~=2zini),
zini=z(ii);
ni=ni+1;
xlabel(X [mm]')
ylabel('Y [min]')
colorbar('v')
% colormap hot
axis tight
shading flat
end,
subplot(nz,1,ni),
Yotitle(streat("Z="num2str(zini)))
hold all;
fill (x (i) +Rx,y (i) + Ry ¢ (id,:))
hold on
end,
colorbar('v)
xlabel(X [microns]')
ylabel ('Y [microns]')
%colormap hot
axis tight

shading flat
else;

for ii=1:n,
if (z(il) ==2zini),
fill(x(i)) +Rx,y (i) +Ry,'s’
hold on
end,
end,

% hold off
end

Yoaxis([2.1 3.5 2 2.6]); axis square;
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Appendix 7. Rotation of polarization vectors with s pontaneous deformation

The mechanism on how ferroelectric domains formindurthe cooling from cubic to
tetragonal structure has been a major researchesttén ferroelastic and ferroelectric materials
[Sapriel, J. (1975)]. Sapriel, J. (1975) discusted the domain boundaries are oriented during the
phase transformation to maintain the strain corbpéyi between two neighbor domains.
Nepochatenko, V.A. (2006) also discussed that tlsnatch between the lattice parameters of the
local domains result in the creation of the spoatars deformation during the cooling process. This
deformation creates a mismatch in the domain wails results in the rotation of the domains to
reduce the spontaneous strain between domains. rbk&tion mechanism proposed by

Nepochatenko, V.A. (2006) is revisited in the fallag section.

During cooling from cubic to tetragonal phase, pldarization vectors can develop along 6
major tetragonal crystal directions. From thesedions, the polarization vectors along the major
tetragonal crystal axes are:

P@) =P, (100)’ P(2)= P, (010)" P(3) =P, (001" (A7.1)
where B is the spontaneous polarization of the tetragdeabelectric. During the cooling, the
tetragonal-to-cubic phase transformation takesepéa the lattice parameters for cubic phagg (
change to tetragonad,(c) by creating a spontaneous strain within the bdlye to change in the
lattice parameters, BaTiCexhibit spontaneous deformation during the phasesformation from
cubic to tetragonal structure. During the phasasfiamation, the resultant spontaneous strain

tensors can be obtained for the polarization vecibove:

€2 €11 €1

e@ = € e(2) = €2 e = €n (A7.2)

€1 €1 €2
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where e, =(a—-a,)/a, and e,, =(c—a,)/a, represent the spontaneous deformation during the

phase transformation. Any of these polarizatioeaions can intersect with 90° domain walls. The
number of the maximum possible 90° domain walld.i$-or instance, for a domain with a [001]
cubic direction (P(3)) can intersect with 90° domwasalls of (101), (-101), (011) and (0-11). (110)
and (1-10) domain walls will be equivalent to 18@nain walls. To considering all the major cube
axes, 4 domains in each cube axis and 24 domagisanbe axes can form. Due to ambiguity of the
directions in x-rays where the positive and negatirections are not detectable, the total 12
domains can be detected. The domain walls sepgrawo domains must have mechanical
compatibility with the neighboring domains. Letsnsider (101) domain walls at paraelectric phase

and select noncollinear directiorsy,  [0E®DId b, [LO1] in plane of (101) domain wall. In the

ferroelectric phase, these directions transformaatandb; vectors under thermal expansion. Under
homogeneous deformation, the change in any veatobe calculated as:

Arj =g,

(A7.3)
Applying the corresponding spontaneous strain tetsdhe directions above, we can obtain the
change in these vectors as:[01+¢e,,0] and b,[1+e,,01+e,]. The normal to the domain wall
plane in the ferroelectric phase can be found as:

n=a, xb, (A7.4)
The corresponding normal of the domain wall will[be(l+¢,,)(1+¢,,),0,(1+¢,,)*]. The direction
cosine of the normal of the domain wafl) (denotes to the mismatching angle between the

paraelectric and ferroelectric phase. The anglevdmt the domain walls during the phase

transformation will be:

_ ] 2+e,;+e, _ ] + A7 5
e (fZJ<1+eu)2+<1+ezz)2) NN (A7)
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Considering the lattice parameters for the BaTg&ample were measured as a=0.39836 and

c=0.40198 nm, the phase matching angle can be latdduas 0.2592°. Table 1 summarizes the
possible domains and their 90° domain walls sepaydahe neighboring domains and the angles
between the domains. The relations between misnmgteimgles correspond to A=99-B=90+y.

The mismatch angle can be calculated as:

B} a+c
¥ =cos’(

J2(a® +cz))

wherea andc correspond to lattice parameters of the domainasidering the lattice parameters for

(A7.6)

the BaTiQ sample were measured as a=0.39836 and c=0.4019h@mhase matching angle can

be calculated as 0.2592°,
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The mismatching angle due to rotation of the pmémn vectors during the phase
transformation is in the resolution limit of the shaaommon characterization techniques. The
most commonly used characterization techniques asdEM, SEM and optical microscopy
have less than 1pm penetration depth [Poulsen,.Het &l (2004)] depending upon the
photon energy of the constituents of the matenakstigated. Several techniques such as
Atomic Force Microscopy [Balakumar, & al (1997)], White Beam Topography [Huang, X.
R. et al (1996)] and Electron Back Scattering Diffractidgriist, F.et al (2001)] have been
employed to ferroelectrics to study the texturel@von of the domains. Considering the
ferroelectrics are extremely sensitive to surfageparation [Chen, J-H, (2005)], the
information obtained from the surface can be infeexl by residual stress development.
With its superior penetration (up to 100 mm in Atal mm in BaTi@ at 80.72 keV), 0.04°
orientation resolution and the microfocusing calitghi3D-XRD technique has been a
promising tool to investigate the evolution of thyeains embedded in polycrystalline
materials. The technique was further capable afysitg the texture evolution of the grains
and domains as response to external stimuli. Teentemplementation of the GE detector
reduced the acquisition time to 10 orders of magias. With the superior penetration power
and unique orientation resolution made 3D-XRD agoasible characterization tool to

investigate the evolution of the ferroelectric damaembedded in polycrystalline BahiO
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