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ABSTRACT 

 

The main goal of this study is the in-situ investigation of the ferroelectric domain 

structure inside polycrystalline BaTiO3 under thermo-electro-mechanical loading conditions. 

The outcome is two-fold: (i) the characterization techniques were improved to study the 

polycrystalline ferroelectrics in the mesoscale; and (ii) the texture, lattice strain and volume 

fraction of domains were tracked under applied electric field and mechanical stress. 

Two novel synchrotron-based characterization techniques, three-dimensional X-ray 

diffraction (3-D XRD) and Scanning X-ray Microdiffraction (µSXRD) were used in this 

study. The methodology and standards in both techniques differ from each other and the 

present study provides a framework to bridge these techniques.  Although these methods 

have been developed earlier, their application and adaptation to ferroelectrics required some 

care. For instance, diffraction spots often overlapped and made it difficult to identify 

individual domains and/or grains. In order to eliminate the spot overlap, the polycrystalline 

BaTiO3 sample was heated above the Curie temperature where the (tetragonal) domains 

disappear and attain the orientation of the grain.  Next, the sample was cooled slowly to the 

room temperature and the evolution of the ferroelectric domains was studied at temperature 

and under electric field.  The orientation relationships, volume fractions and lattice strain 

evolution of 8 domain systems were studied.  

Whereas the orientation of the domains remained unchanged under electric field, the 

fraction of the energetically favorable domain variants increased. Due to local constraints, 

complete switching from one domain variant to another was not observed.  The 

misorientation angles between domain variants slightly deviated from the theoretical value 

(=89.4°) by 0.2-0.3°.  The deviation angle can be explained with the phase-matching angle 

developed during the cubic-tetragonal phase transformation to maintain strain compatibility 

of neighboring domains.  The multiscale strain evolution of ferroelectric domains in a 

polycrystal was investigated quantitatively for the first time.  Under electric field, lattice 

strains of up to 0.1% were measured along the applied field direction. 

The present study offers a framework to characterize the polycrystalline materials 

with complex twin structures.  By using the methodology described in this study, 3D-XRD 



 

 

x 

and µSXRD techniques can be employed to study texture and lattice strain evolution in 

polycrystalline materials in the mesoscale.  
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CHAPTER 1. INTRODUCTION 

Ferroelectric ceramics have been extensively used in microelectronic and sensing 

applications for more than 50 years because of their excellent piezoelectric properties [Jona, 

F. (1962)]. As we live in an electronic age, a wide range of additional applications such as in 

transport and civil infrastructure will be built with more ferroelectric actuators and sensing 

devices. Therefore, more accurate prediction of ferroelectric properties will improve the 

efficiency and productivity of the design and reduce its environmental impact.  To achieve 

this, more sophisticated constitutive models are needed. 

Ferroelectric materials are widely produced with powder processing and other 

advanced manufacturing techniques [Rogan, R. (2003)]. The final microstructure is usually 

composed of grains containing several domains isolated from each other with domain 

boundaries. With an external stimulus such as electric field or mechanical stress, domains 

tend to orient along a uniform direction via a domain switching mechanism. Domain 

switching in one grain results in a change of stress and electric field in neighboring grains 

and this change generally leads to additional constraints on the original grain.   The result is a 

complex three-dimensional stress state, which, when coupled with the low fracture toughness 

of ferroelectric ceramics, leads to degradation and failure.  Therefore, proper quantification 

of ferroelectric constitutive behavior requires a technique capable of measuring internal 

stress/strain and domain switching (which leads to texture) at the inter- and intragranular 

level.  

The current understanding of ferroelectric constitutive behavior is often based on 

either extreme of the microstructure scale, i.e. at the microscopic or macroscopic levels. 

While the former employs energy relations at the atomic level and requires a great number of 

parameters [Jordan, T. L. (2001)], the latter relies on various assumptions to describe the 

behavior of the bulk and ignores most microstructural parameters of the material. Both 

approaches also usually assume linear piezoelectric coefficients and employ a number of 

assumptions and parameters for the boundary conditions. Therefore, the improvement of the 

design and performance of ferroelectric ceramics cannot be achieved without a more 

sophisticated constitutive model, a model that needs to be multiscale bridging the 
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macroscopic and microscopic levels, and that takes into account appropriate microstructural 

parameters evolving at the intermediate mesoscale.  

The main goal of the present study is to generate data at the mesoscale and help fill 

the gap between the atomistic and macroscopic scales. To this end, we have investigated the 

mesoscale behavior of ferroelectrics by studying domains in the bulk and at the surface. The 

bulk behavior has been studied using the “three-dimensional X-ray diffraction (3D-XRD)”  

method available at Sector 1 of the Advanced Photon Source (APS) in Argonne National 

Laboratory, Argonne, IL.  For higher resolution, but closer to the surface, the “Scanning X-

ray microdiffraction (µSXRD)” technique has been employed at Beamline 12.3.2 of the 

Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA.  

We have selected BaTiO3 as the test material because of its well-known, simple and 

chemically stable crystal structure. Having been studied for more than 50 years, there exists a 

large body of literature on this material. Surprisingly, there are still some unknowns on 

BaTiO3, e.g., the mechanism of 90° domain switching is still somewhat insufficiently 

described [Floquet, N. (1997)]. 

There are seven main chapters that describe the present study. Chapter 1 provides the 

introduction and goal of this research. Chapter 2 outlines the basic principles of 

piezoelectricity, ferroelectricity, ferroelectric domain structures in both single crystal and 

polycrystalline ferroelectrics. The texture evolution of ferroelectric domains is very 

important and it is crucial to have a fundamental knowledge on texture to interpret the 

results. Chapter 3 fills this gap and describes the fundamentals of texture and explains why 

we selected the Neo-Eulerian method to represent the orientation of the ferroelectric 

domains. Chapter 4 and 5 describe the general principles of the two non-destructive 

characterization techniques (3D-XRD and µSXRD) used. Chapter 6 presents the 

experimental results and compares the domains in the bulk and those at the surface. The 

orientations of the ferroelectric domains in the same sample were also investigated with the 

EBSD technique and Chapter 7 shows the results from this investigation. The experiments 

with both XRD techniques demonstrated that individual ferroelectric domains can be tracked 

as a function of applied electric field or temperature and Chapter 8 summarizes the results of 

this investigation.  Here, individual domains within a polycrystalline ferroelectric were 
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monitored under loading and their lattice strain evolution was measured for the first time. 

The present study offers methodology and a unique opportunity to study the constitutive 

behavior of ferroelectrics at the mesoscale. 
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CHAPTER 2. FERROELECTRICITY 

This chapter will offer brief, fundamental basics on ferroelectric materials. The so-

called active materials and their application areas will be described. The concepts of 

piezoelectricity, ferroelectricity and the microstructural features of these materials will be 

introduced. The response of ferroelectrics to outside stimuli alter their microstructural 

features, e.g., via domain switching. The basic mechanisms that dominate this process will be 

explained and the mesoscale behavior of polycrystalline ferroelectrics will be portrayed. 

2.1. Active Materials 

In modern materials science applications, there is a growing interest in materials that 

change shape or size under external stimuli such as electric or electromagnetic fields. These 

materials are called "active" or "smart" materials. The active materials are used in a wide 

variety of applications: 

Thermo-elastic materials � Fiber optic sensors  

Piezoelectric materials � Magneto-elastic damping, transducer/sensing applications  

Magnetostrictive materials � Electro-acoustic devices  

Shape memory alloys � Photo-elastic sensors  

One of the most active research fields in materials science is dedicated to the 

characterization of active materials so that their properties can be enhanced due to a better 

understanding of the microstructural mechanisms that control the constitutive behavior of 

these materials. 

2.2. Piezoelectricity 

Piezoelectricity is defined as the coupling between mechanical stress and electricity. 

Lack of symmetry in the unit cell is important for the existence of piezoelectricity since a net 

movement of positive and negative ions with respect to each other as a result of stress 

produces an electric dipole, i.e., polarization. Out of the 32 point groups of symmetry, 21 do 

not possess a center of symmetry and 20 of them are piezoelectric [Haertling, G. H. (1999)]. 

Only 10 of these 20 groups can be polar in the absence of applied stress. These 10 polar 
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classes are also pyroelectric (the ability to generate an electric potential when heated or 

cooled). Many electronic devices employ piezoelectricity in a variety of applications such as 

actuators or sensors.  

2.3. Ferroelectricity 

Ferroelectric materials are a subgroup of pyroelectrics. Ferroelectrics must have a 

spontaneous polarization whose direction can be changed with an electric field. In other 

words, a ferroelectric material will still possess an electric polarization when the electric field 

is reduced to zero. Ferroelectrics differ from piezoelectric materials with their “spontaneous 

polarization”. On a side note, there are analogous materials that couple different physical 

phenomena: a material showing a hysteresis between mechanical stress and strain is called 

ferroelastic (usually due to a stress-induced effect such as phase transformation or domain 

switching), while the one that couples magnetic field and strain is called ferromagnetic. If a 

material combines at least two of the properties mentioned above, it is called multiferroic. 

Most commercial ferroelectrics have the perovskite crystal structure. This structure 

contains three ions of the form ABO3. The A and B atoms posses +2 and +4 charges, 

respectively, while the O atom has a -2 charge. The A and O atoms are at the corners and 

faces of the unit cell, respectively, and the B atom is at the center. One of the most common 

ferroelectric materials is BaTiO3 (Figure 2.1).   

2.4. Ferroelectric Domains 

Ferroelectric materials are known for their ability to convert mechanical energy to 

electric energy or vice versa. Upon cooling from a neutral or paraelectric phase, the material 

is called “ferroelectric” if it exhibits spontaneous polarization. The transformation 

temperature from the paraelectric to ferroelectric phase is called the Curie temperature (TC). 

As the material is cooled below the Curie point, individual clusters of unit cells tend to orient 

along crystallographic directions (that depend on the crystal structure) to minimize internal 

energy. These individual clusters with uniform polarization vectors are called ferroelectric 

domains. Ferroelectric materials such as BaTiO3 and Pb(Zr,Ti)O3 (PZT) have perovskite-type 

ferroelectric phases below TC and cubic crystal structure above.  Figure 2.1 shows the 
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schematic displacive transformation of BaTiO3 unit cell during the paraelectric-to-

ferroelectric transformation.  

 

Figure 2.1. Left: Unit cell of BaTiO3 in the paraelectric phase above the Curie temperature (TC). 
The cubic symmetry does not allow for a spontaneous polarization. Right: Unit cell of BaTiO3 
in the ferroelectric phase (below TC). The vector of the spontaneous polarization, Pspon, is 
oriented in the direction of the displaced titanium ion. [Kamlah M. (2001)] 
 

The orientation of domains is crystal structure dependent leading to polar directions 

along a cube edge (6 variants), body diagonal (8 variants) and face diagonal (12 variants) for 

tetragonal, rhombohedral and orthorhombic symmetries, respectively [Li, F. X. (2006)]. The 

six domain variants of tetragonal BaTiO3 are shown in Figure 2.2. A polycrystalline 

ferroelectric is typically an assembly of grains that contain several domain variants as in 

Figure 2.3. 
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Figure 2.2. Following the paraelectric-to-ferroelectric phase transition, the spontaneous 
polarization vectors can choose among six equivalent directions in tetragonal perovskites. 
[Kamlah M. (2001)] 
 

 

Figure 2.3. Grains in a ferroelectric material with sub-regions of equal spontaneous 
polarization – domain variants. [Kamlah M. (2001)] 

 

Due to crystal symmetry, the direction of some of domains within the material can be 

equivalent. For example, cooling from the cubic to a tetragonal phase can form three kinds of 

domain structures [Cao W., Cross L. E. (1991)]: (1) 180° domains where the polarizations in 

the two domains will have the same magnitude but opposite directions, (2) 90° domains with 

a charge-neutral domain wall where for polarizations in the two domains are (almost) 

perpendicular to each other with a head-to-tail configuration, and (3) 90° domains with a 

charged domain wall, where the polarizations in the two domains are perpendicular to each 

other but in head-to-head or tail-to-tail configurations. It has been shown that the last kind of 

domain structure is not stable and tends to transform into the second kind with a zigzag twin 
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boundary. The 90° and 180° domains and the corresponding domain walls in BaTiO3 are 

shown in Figure 2.4. The thickness of the 180° domain wall in BaTiO3 is generally 

considered to be in the order of one unit cell although larger estimates have been made for 

the 90° domain walls [Subbarao E. C., et al. (1957)]. 

 
(a) 

 
(b) 

Figure 2.4.  (a) 180° domains separated with domain walls. (b) 90° domains in BaTiO3 where 
the angle between neighboring polarization vectors is 90° – 0.57° = 89.43° 

 
Figure 2.5 shows the microstructure of a polycrystalline BaTiO3 specimen. This 

complicated domain pattern makes it a challenge to accurately characterize the mesoscale 

domain mechanics. To date, most research has concentrated on averaging the bulk behavior 

and ignoring the contribution of the individual domains. In tetragonal symmetry, electric 

field can lead to both 180° and 90° domains while mechanical stress can cause only 90° 

domain switching [Berlincourt, D. et al. (1959)]. While Merz, W. J. (1952) indicated that the 

final domain structure must contain all 180° domains, Merz, W. J. (1954) later observed 

reoriented 90° domains as high electric fields. In another interesting research, Danielson, G. 

C. (1949) investigated the domain orientation in polycrystalline BaTiO3 under applied 

electric field and found that 80% of the polycrystal consists of 180° domains while rest is 90° 

domains. Berlincourt, D. (1959) predicted that 2/3 of the total polarization occurs due to 90° 

domains switching, 1/6 occurs due to 180o switching and the rest is due to the intrinsic 

piezoelectric effect. Since the 90° reorientation of domains requires more energy, the fraction 

of the 90° domains is not usually significant in the final microstructure.  All of these studies, 

however, relied on bulk averaging or surface characterizations.  The present study will 

attempt to offer more detailed information on domain switching in polycrystalline 

ferroelectrics. 
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Figure 2.5. The microstructure of polycrystalline BaTiO3 that shows domain variants within 
grains. [Arlt. G. (1990)] 

2.4.1. Twinning vs. Domain Switching 

Domain switching and twinning are similar mechanisms because they both require 

well-defined crystallographic orientation relationships across their boundaries.  

Twinned crystals are produced in various ways. As a crystal grows from its initial 

nucleus some accident of growth may cause it to twin, such accidents being for a variety of 

reasons very much more probable in some structures than in others. Twinning may 

alternatively provide a means of relieving the strain induced by applied stress. Twinning may 

also be produced as the result of polymorphic transformations when a structure of higher 

symmetry is converted to a structure of low symmetry. These are the three principle types of 

twins and they are known respectively as growth twins, deformation twins, and 

transformation twins [Lee, C-C. (2004)]. The deformation twins are found in, e.g., BCC and 

FCC lattices. Growth twins are known in, e.g., BaTiO3 and the formation of the twin can be 

understood as a shear operation with (111) planes successively translated by 1/3[11-2] 

vectors [Lee, C-C. (2004)]. The transformation twins are the dominant domain structure of 

BaTiO3 and they are known as 180° and 90° domain variants.  
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2.4.2. Models of Domain Switching 

Modeling the domain switching in polycrystalline ferroelectrics is a popular topic 

among the computational materials scientists. The existing models can be exemplified as a 

historical snapshot: 

• Indirect Observations of Domain Switching: The early work on the domain switching of 

ferroelectrics was focused on the nucleation and growth of domains in single crystal 

BaTiO3 under electric field and at high temperature [Merz, W. J. (1954)]. The domain 

wall thickness and energy were calculated in this study, the latter using the contributions 

of dipole-dipole interactions and anisotropy. The energy of dipole interactions was found 

as 2214 //10 cmergNa−  where N is the thickness of the wall in atomic separations and a is 

the lattice constant. The energy due to anisotropy can be calculated via the elastic energy 

per cm3 which is stored when the unit cell deforms from tetragonal to cubic and is in the 

order of 2
332

1
zelast zc≅ε  erg/cm3 where c33 is a single crystal elastic constant and zz is the 

spontaneous strain in BaTiO3 at room temperature. In this assumption, the domain wall 

energy from the anisotropy is the function of spontaneous strain, z, crystal volume, V and 

domain wall thickness, t and electric field is acting along 33 direction. Then, the wall 

energy per cm3 due to anisotropy becomes Nazc zanis
2

332
1≅σ  erg/cm3. The minimum wall 

energy is obtained when  
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or when  

 1/232
z33

14 azc102N )( −×=    (2.2) 

From Equation 2.2, it is clear that N (wall thickness in atomic separations) must be small in 

BaTiO3 because the dipole-dipole interaction is small and the anisotropy is large. N value at 

room temperature with c33=2.0x1012 dyne/cm2, zz=7x10-3, a=4.0x10-8 cm becomes ~1 as an 

atomic constant. 

 In Subbarao’s work [Subbarao, E. C. (1957)], domain switching as a result of electric 

field or mechanical stress was observed by changes in x-ray patterns and dimensional 

changes in the polycrystalline BaTiO3. Because of the difference in the c and a lattice 
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constants in tetragonal BaTiO3, 90° domain switching should result in both dimensional 

changes and changes in the intensity of some x-ray peaks, e.g., (200) and (002). Meanwhile, 

180° domain switching will not lead to any dimensional or x-ray pattern changes. During the 

depoling process, Subbarao, E. C. (1957) concluded that essentially all the 180° domain 

walls are removed and the polar axis of the domains lies within 90° of the applied field; in 

addition, about 12% of the domains switch by 90° under the influence of the poling field, but 

the about half of the these revert to their original orientation after removing the electric field. 

Subbarao also observed a strong inelastic effect in ceramic BaTiO3 in the ferroelectric region. 

About the half of the strain, for a given stress, is inelastic; this is presumably due to domain 

reorientation under stress, since the strain is absent above the Curie point. For stresses 

approaching the breaking stress of the material, some 13% of the domains in the material are 

reoriented by 90° according to Subbarao, E. C. (1957). 

 In Berlincourt’s work [Berlincourt, D. et al. (1959)], the amount of 90° reorientation 

during poling was determined from measured mechanical strains. It was found that within 

tetragonal symmetry electric field can cause both 180° and 90° domain reorientation but, 

mechanical stress can cause only 90° switching. The degree of the polarization in 

polycrystalline ferroelectric ceramics during poling was calculated for different crystal 

structures in Table 2.1. According to these calculations, the polarization vectors of the 

domains in a polycrystalline are one of the favorable directions and the degree of the 

polarization would be nn /)1( −  where n is the number of the polarization vectors allowed in 

the crystal symmetry.  

 
Table 2.1. The portions of the polarization contributed by various domain-switching 

mechanisms in different crystal structures [Berlincourt, D. et al. (1959)] 
 

Tetragonal Rhombohedral Orthorhombic 
1/6 No switching 1/8 No switching 1/12 No switching 
1/6 180° switching 1/8 180° switching 1/12 180° switching 
2/3 90° switching 3/8 71° switching 1/6 90° switching 
  3/8 109° switching 1/3 60° switching 
    1/3 120° switching 
 

 The following calculation shows how the data in Table 2.1 were extracted from 

experiments on single crystal and polycrystalline BaTiO3 samples. The typical remnant 
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polarization for polycrystalline BaTiO3 was measured as 5.314 µC/cm2 while for a single 

crystal, this value was 26 µC/cm2. For a perfect orientation of the ceramic along the poling 

direction, the maximum polarization will be crystal structure dependent and for tetragonal 

crystal, it is 26x0.83=21.6 µC/cm2. The portion resulting 180° domain switching according to 

Table 2.1 is 1/6*21.6=3.6 µC/cm2. The mechanical strain for the perfect 90° reorientation of 

a tetragonal BaTiO3 ceramic in terms of the tetragonal distortion is 0.37% (c/a is 1.01) and 

the remnant axial strain was calculated as 0.047% by assuming the parallel and lateral strains 

are the same ratio of piezoelectric constants d33 and d31 [Berlincourt, D. et al. (1959)]. This 

indicates only 12% of the possible domain reorientations actually took place. With 12% of 

the 90° domain reorientation, its contribution to the ceramic polarization is 

0.12*2/3*21.6=1.7 µC/cm2. The total ceramic remnant polarization should then be 

3.6+1.7=5.3 µC/cm2. As will be shown later, this number is in perfect agreement with results 

obtained in the present study.  

 

• Phase-field Models: Wang, J. et al (2005) investigated the microscopic domain structures 

in 2D ferroelectrics under biaxial strains using a phase-field model based on the time-

dependent Ginzburg-Landau equation that takes both long-range electric and elastic 

interactions into account. In phase-field simulations, the spontaneous polarization vector, 

P = (P1, P2, P3), is usually used as the order parameter, and the time-dependent 

Ginzburg-Landau equation, given as, 

 

 )3,2,1(
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δ−=

∂
∂
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trP
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L

t

trP

i

i     (2.3) 

 
is generally used to calculate the temporal evolution, where L is the kinetic coefficient, F is 

the total free energy of the system, ),(/ trPF i

→

δδ  represents the thermodynamic driving 

force of the spatial and temporal evolution of the simulated system, r denotes the spatial 

vector, r = (x1,x2,x3), and t denotes time. The total free energy of the system includes the bulk 

free energy, the domain wall energy, i.e., the energy of the spontaneous polarization gradient, 

the long-range electric and elastic interaction energies, and the elastic energy induced by 
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applied strains. The temporal evolution of the 2D polarizations at different temperatures and 

applied strains can be obtained by solving Eq. (2.3) with periodic boundary conditions in 

reciprocal space. In the cited research, there are some calculated results but this simulation is 

based on temperature dependent domain switching from a multi-domain state to a single 

domain state. The Curie temperature for this simulation is selected around 400°C which is 

close to the Curie’s temperature of PZT. In this study, the simulation results are only at the 

steady state. 

• Thermodynamic Calculations: Here, the macroscopic polarization states can be obtained 

by a nonlinear thermodynamic theory [Wang, J. et al (2005)]. The equilibrium 

polarization states are a function of the Helmholtz free energy of the system. This energy 

depends on several electromechanical parameters such as dielectric stiffness and 

coefficients, electrostrictive coefficients, and elastic compliances. The equilibrium 

polarization states under different biaxial strains and temperatures can then be determined 

by the minimization of the Helmholtz free energy.  

• Statistical Models: Li et al [Li, F. X. (2006)] calculated the theoretical saturated domain 

orientation states in tetragonal, rhombohedral and orthorhombic ferroelectrics under 

electrical or mechanical loading by using a simple statistical method. In this model, the 

state of a cubic grain, which may contain several types of domains, is described by three 

Euler angles (θ,ϕ,ψ) in a fixed global Cartesian coordinate system (Figure 2.6). 

 
Figure 2.6. Illustration of the global Cartesian coordinate system [Li, F. X. (2006)] 
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The polar vector of each domain can be denoted by a vector that starts from the center of a 

unit sphere and ends at the spherical surface. In the proposed simple method, it is assumed 

that for a ferroelectric with n equivalent polar directions, an ideal poling treatment can make 

the end points of the polar vectors distribute uniformly on the spherical surface of a cone 

with its area equal to 1/n that of the entire unit spherical surface. Thus, the saturated 

polarization and spontaneous strain of a poled ferroelectric can be obtained by the following 

equations: 
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where θc equals half of the central angle of the cone given by
n

n
=θc

2
arccos

−
. Cooling from 

paraelectric phase, the individual domains can orient in certain crystallographic orientations. 

These allowable directions are respectively along a cube edge (6), body diagonal (8) and face 

diagonal (12) for tetragonal, rhombohedral and orthorhombic symmetries, respectively. 

Therefore, the maximum spontaneous polarization of a poled ferroelectric will be 0.833P0, 

0.875P0 and 0.917P0 for tetragonal, rhombohedral and orthorhombic crystal structures [Jaffe, 

B. (1971)], respectively, where P0 is the polarization of an ideally poled sample.  

• Phenomenological Models: These models (e.g., the Rayleigh model) try to describe the 

observed behavior without attempting to explain its physical origin. Hlinka, J. et al 

(2006) analyzed the properties of ferroelectric-ferroelastic twin boundaries in tetragonal 

BaTiO3-like crystals in the framework of the phenomenological Ginzburg-Landau-

Devonshire model. They assumed a proper ferroelectric crystal with a parent phase of 

macroscopically cubic Oh symmetry. The free energy of this system is assumed to be the 

sum of the part associated with a hypothetical reference cubic state Fr and the excess free 



15 

 

energy F arising due to the nonzero primary and secondary order parameters (polarization 

and strain fields). 

• Micromechanics Models: In micromechanics models (e.g. the Preisach model) 

[Steinkopff, T. (1999)], a set of physical equations is solved on a small material volume 

from which the macroscopic behavior is calculated by averaging. The material behavior 

is described by means of physically meaningful variables. The main advantage of these 

models lies in their predictive capability. In a micromechanics model, domain switching 

occurs at sufficiently high stress, T or field levels, E. Switching is connected with 

changes of both the spontaneous strain, ∆SS
 and the spontaneous polarization, ∆PS

. 

Favorably oriented domains grow at the expense of unfavorably oriented ones. Because 

of crystal symmetry (e.g., tetragonal) there are more than one possible new direction of 

spontaneous polarization. In the 3D micromechanics model used, the work done by 

switching is assumed to exceed a (positive) critical value: 

 (2.6) 
which corresponds to critical stress or critical electric field under uncombined uniaxial 

loading. As a consequence of this combined energy criterion, the critical stress value is 

linearly dependent on the applied electric field. Unfortunately, this model fails to offer 

further insight into domain switching mechanisms in ferroelectrics.  

• Self-Consistent Model: Huber et al [Huber, J. et al. (1999)] developed a constitutive 

model for the non-linear switching of ferroelectric polycrystals under a combination of 

mechanical stress and electric field. It was assumed that domain switching gives rise to a 

progressive change in remnant strain and polarization and to change in the average linear 

electromechanical properties. It is further assumed that switching is resisted by the 

dissipative motion of the domain walls. This model only gives the macroscopic response 

of tetragonal crystals and does not offer lattice-plane-specific information that could be 

useful in the present study. Meanwhile, a recent work by Motahari, M. S. (2007) enabled 

self-consistent model to increase the capability of studying crystal structures with a 

higher number of domain variants such as rhombohedral, orthorhombic, and even 

monoclinic structures and provide hkl dependent information from the domain variants.  
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In this chapter, the fundamental principles of the ferroelectric materials and the 

morphology of the ferroelectric domain structure were outlined. In a polycrystal ferroelectric, 

domain variants can present in a grain and the orientation of each domain variant can be 

obtained by the 3D-XRD and µSXRD techniques. Quantitative texture knowledge is 

necessary to identify the domain variants from the same grains and evaluate the evolution of 

those domains with external stimuli. Chapter 3 will describe the fundamentals of quantitive 

texture analysis and shows the standards to find misorientation between domain variants 

when crystal symmetry is present. 
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CHAPTER 3. TEXTURE 

Most engineering materials are crystalline, and a majority of those are used in 

polycrystalline form. Depending on their crystal structures, materials can exhibit anisotropy 

in certain physical properties as both single crystals and polycrystals. Therefore, quantitative 

texture analysis is important in understanding material behavior. In this chapter, 

fundamentals of quantitative texture analysis, methods of defining the orientation of 

crystallites and finding misorientation between them will be described. This information will 

be valuable when the XRD techniques employed in this study are described in Chapter 4.  

3.1. Definition 

Each grain in polycrystalline materials is essentially a single crystal (while it is 

sometimes customary to also define sub-granular regions of slight misorientations). If the 

majority of grains are oriented along a certain direction, the material is considered 

“textured”. Therefore, one can simply define texture as the “non-random distribution of the 

individual crystallites or “grains” (Note that the words “grain” and “crystallite” will be used 

interchangeably in this text, while strictly speaking, a “grain” can contain several 

“crystallites” as distinguished by diffraction analysis.). Figure 3.1(a) shows the schematic 

representation of two grains that are separated with a grain boundary. In order to define an 

orientation of a grain, a right-handed global coordinate system is introduced. The global 

coordinate system has the orthogonal axes (s1, s2, s3). The selection of orthogonal axes is 

important because it does not require any corrections when dealing with vector 

transformations. Every point in the global coordinate system can be expressed as a global 

vector: 

332211 sl+sl+sl=s      (3.1) 

where l i (i=1,2,3) are the coefficients of the vector in the global coordinate system. Each unit 

cell, on the other hand, can be represented as a local coordinate system which has the 

orthogonal axes (c1, c2, c3) bound to the main crystal axes. A local vector in the crystal can 

then be defined as: 
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332211 cm+cm+cm=c       (3.2) 

where mi (i=1,2,3) are the coefficients of the vector with respect to the local axes.  

 

(a) 

 

(b) 
Figure 3.1. (a) Schematic representation of two grains separated by a grain boundary. (b) A 
unit cell with attached local coordinates shown with respect to the global coordinates. 

 

The local vectors can be transformed to the global coordinate system using: 
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where gij (i, j=1,2,3) is the direction cosine of the angle between the specified axis in local 

and global coordinates. For instance, g31 defines the direction cosine between the 3rd axis of 

the local system and the 1st axis of the global one. Since a coordinate system transformation 

can, in general, involve both rotation and translation, Equation (3.3) can also be written as: 
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where tj ( j=1,2,3) is the translational part of the transformation.The 3D-XRD and 

µSXRD techniques use different conventions for the transformation matrix. While µSXRD 

uses the same convention described above, 3D-XRD employs a matrix that transforms local 

vectors into global ones:  

ijij cUs =         (3.6) 

Therefore, the relation between the µSXRD and 3D-XRD transformation matrices becomes: 

U= gT
        (3.7) 

According to matrix algebra [Altmann, S. L. (1986)], the transformation matrix is a real 

square matrix whose transpose is its inverse and whose determinant is +1. 

3.2. Description of Orientation 

As discussed above, the orientation of a grain can be expressed as a transformation from the 

local coordinates into global coordinates. Since such a representation of the orientation with a 

tensor is not feasible and difficult when dealing with numerous grains, it is crucial to employ 

other methods to represent grain orientation such as Euler angles, angle-axis pairs, 

quaternions and Rodriguez vectors. 

3.2.1. Bunge- Euler Angles 

Bunge-Euler angles are the most commonly used technique to describe orientation. 

The crystal axes of a grain can be defined with respect to a fixed reference axis, which is 

called the orientation of the grain. The crystal orientation can then be described by 

consecutive rotation matrices. Euler angles define three consecutive rotations: first, an 

anticlockwise (positive) rotation around the [001] crystal direction; second, another rotation 

around the rotated [100] crystal direction, and finally, a third rotation around the new [001] 

direction. The corresponding rotation angles are called the 21, ϕφϕ and  Euler angles. In this 

convention, a positive rotation is defined as anticlockwise and parallel to the specified axis. 

Figure 3.2 shows these rotations and the corresponding Euler angles. 
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Figure 3.2. Euler angles and the corresponding rotations 
 
The successive rotations in each Euler angle can be represented with the following matrices: 
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One can also employ a vector transformation, g, which rotates the crystal from the 

crystal frame into sample frame. We can construct g from three rotations about the sample 

axes: 

TTT UgUgUg )(,)(,)( 23211 φφ =Φ==    (3.10) 

321 ggg=g        (3.11) 

By simple algebra, Tg=U .  

Finally, the crystal orientation can also be represented as crystallographic planes and 

directions, i.e., (hkl)[uvw]. In this case, Bunge-Euler angles can be found as: 
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3.2.2. Angle-Axis Pairs 

The orientation of a crystal can be expressed with an anticlockwise rotation (ψ) 

around a rotation vector (n). As shown in Eq. (3.9), the rotation matrix defines a proper 

rotation and its determinant is +1. This rotation matrix can be expressed as: 
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









=

333231

232221

131211

ggg

ggg

ggg

g       (3.15) 

To solve for the rotation angle and axis, the rotation matrix above can be written as a 

sum of a symmetric and skew-symmetric matrix [Altmann, S. L. (1986)]: 

)}(){(
2

1 TT ggggg −++=      (3.16) 
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The last part of the matrix is called S, corresponds to the skew-symmetric component 

(g-gT) of g and can be written as: 
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where, a, b and c stand for the virtual components of the rotation axis.  Such a rotation axis 

(n) will be same after applying the rotation: 

g n = n          (3.18)  

From the orthogonality condition, 1=ggT , we can obtain 

n= gT n          (3.19) 

ng=gn T          (3.20) 

0=)ng(g T
−   ⇒ 0=Sn       (3.21) 

The skew-symmetrical matrix component (S) can be written from Equation (3.17): 
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From this equation, the components of the rotation axis can be expressed as the virtual 

components defined in Equation (3.17): 

 can=n 3 /1  cbn=n 3 /2 −       2/12
3

−)c+b+±c(a=n 22    (3.23) 

The expression in the last component of the rotation axis can be easily written as the trace of 
SST : 
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and their relations are: 

)Tr(SS=c+b+a T22

2

12        (3.25) 

On the other hand: 
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222I )(gg=g))(gg(g=SS TTTT
−−−−      (3.26) 

where, I is the identity matrix. From the diagonalization of g and gT,  
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so that the trace of g2 must be 2cos2ψ1+ . The trace of (gT)2 must be the same since gT being 

the reciprocal of g, its rotation angle is equal and opposite to that of g. Then, Tr(SST) in 

Equation (3.26) is 8sin2ψ, giving: 

ψ=c+b+a 22 22 4sin         (3.28) 

Then, the components of the rotation axis will be: 

 1
1 2sin −ψ)±a(=n  1

2 2sin −ψ)±b(=n       1
3 2sin −ψ)±c(=n   (3.29) 

If we replace the virtual terms a, b and c with their real values in Equation (3.17), we will 

obtain: 
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−
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The term 2sinψ in Equation (3.31) drops when normalizing the rotation axis components. 

The rotation angle and axis method is extremely useful when dealing with rotations of 

crystals with high lattice parameter ratios (e.g., hcp metals). Figure 3.3 shows the schematic 

representation of orientation with rotation axis and angle method. The rotation angle ψ is still 

an anticlockwise rotation parallel to the rotation axis. 
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Figure 3.3. Schematic representation of orientation with the rotation angle and axis (a.k.a. 
angle-axis pair) method. 

3.2.3. Quaternions 

Quaternions are the non-commutative form of complex numbers. In this formalism, 

an orientation is represented by a quaternion that contains the rotation angle (ψ) ],0[ π∈ψ  

and the unit vector of the rotation axis (n) (in the Cartesian coordinate system). In addition, 

for rotations, only quaternions of unit length are considered.  

)]
2

sin(),
2

sin(),
2

sin(),
2

[cos( 321

ψψψψ= nnnq     (3.32) 

Note that the components of the quaternion can easily be obtained from the rotation angle 

and axis method. Adoption of the quaternion formalism in place of matrix representation of 

orientations makes it easier to calculate misorientation and will be discussed in Section 3.4.  

3.2.4. Rodrigues Vectors 

The division of the rotation axis components, n1, n2, and n3, by the rotation angle will 

create the Rodrigues vectors. The directions of the Rodrigues vectors are chosen parallel to 

the global axes. The relation between angle-axis pair and Rodrigues vectors is given as: 

)
2

tan(
ψ= nr          (3.33) 
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The Rodrigues vectors offer a major advantage by showing the rotation axis and angle 

components in their vector components.  

3.3. Representation of Orientation 

The methods to define grain orientations described above are three-dimensional 

representations. When a population of the grain orientations is interested, these methods are 

not easy to represent on a paper. As suggested by Frank, F. C. (1988), it can be accomplished 

by holograms, but that would be an expensive technique. Therefore, grain orientations are 

often mapped on a projection of a plane as will be described below.  

Grain orientation mapping is basically “perspective projection”. Figure 3.12 shows 

the most widely used perspective projection methods that employ a reference sphere. The 

main distinction between these methods is the location of the viewpoint. Let us consider the 

point P as an orientation vector pointing from the center to the surface of the reference 

sphere. While the viewpoint from the center of the reference sphere to the projection plane 

gives the gnomonic projection, a viewpoint from an infinite distance parallel to the NS plane 

yields the orthographic projection.  If the viewpoint is the surface of the other half of the 

sphere (e.g., point S), the result is the stereographic projection.   

 

Figure 3.4. Different projections of a point P [redrawn from Amoros, J.L. et al (1975)] 
 

While 3D-XRD uses stereographic projection, the µSXRD technique often employs 

gnomonic projection. In this section, orientation mapping will be described with respect to 

stereographic projection only because it is the most common method uses in quantitative 
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texture analysis. Mapping an orientation with the different projections is based on the same 

principles except the different projection angle, α as shown in Figure 3.4.  

3.3.1. Pole Figure 

As described in Equation 3.4, the orientation matrix of a grain defines the direction 

cosines of the angles between the local crystal and global vector components. The orientation 

of a grain on an (hkl) plane can be represented as a vector starting from the origin of a sphere 

to the surface of the sphere. The corresponding polar coordinates of this unit vector will be: 
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cos
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cossin

    (3.34) 

where, 22 l+k+h=P 2 and α and ß are the polar angles described in Figure 3.5.  

 

Figure 3.5. Orientation vector on an (hkl) plane within the unit sphere 
 

Let us consider drawing a pole figure on the (001) plane. In this case, the components 

of the orientation matrix in Equation (3.34) can be reduced to g31, g32 and g33. The length of 

the orientation vector can be expressed as:  

)( 2
33

2
32

2
31 gggr ++=       (3.35) 

which will be unity from the condition of orthogonality. The polar angles of the orientation 

vector can easily be found as: 
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And, the Cartesian coordinates of the orientation as a pole figure in stereographic projection 

will be: 

β)
α

(=x .cos
2

tan    β)
α

(=y .sin
2

tan     (3.37) 

With the pole figure thus described, the orientation of a crystal direction can be 

mapped in the stereographic projection. The boundary of the pole figure describes the global 

coordinates. To view the distribution of crystallographic planes along a specific global 

direction, the inverse pole figure, described next is a very useful method. 

3.3.2. Inverse Pole Figure 

The orientation along a specific global direction can be drawn as an “inverse pole 

figure”. The major advantage of this method is its ability to map crystallographic orientations 

within one figure along a fixed global direction. The plotting procedure of the inverse pole 

figure is very similar to the one described for the pole figure. The main difference is in which 

components of the orientation matrix are considered. For instance, for the distributions of 

crystallographic planes in the global z direction, one needs to take the g13, g23 and g33 

components of the orientation matrix as the corresponding vectors in the stereographic 

projection. Then the same procedure described in Equations (3.35) - (3.37) is used to plot the 

orientation of individual grains.  

The size of the unique inverse pole figure depends on the crystallographic symmetry 

of the material (Figure 3.6). This non-repeated inverse pole figure is often called the 

“standard stereographic triangle (SST)”. The complete circle of the projection plane can be 

divided using point symmetry operations. Starting with triclinic symmetry, one-fold rotation 

will cover the complete projection circle while the two-fold rotation symmetry in a 

monoclinic system will cover half of the area. Three mutually perpendicular symmetry 

elements in orthorhombic symmetry will define a quarter of the circular area; four-fold 

rotation and a mirror plane in tetragonal structures will lead to 1/8 of the area; trigonal 
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systems will have 1/6 due to their three-fold rotation and mirror plane; hexagonal crystals 

will need only 1/12 of the total area, and finally, cubic materials will suffice with 1/24 due to 

their four-fold and three-fold symmetries plus mirror planes.  

 

Figure 3.6. Size of the unique inverse pole figure depends on crystal symmetry [Dahms, M. 
(1992)]. 

3.3.3. Rodrigues Space 

Rodrigues space is an extremely useful method to show orientation distributions. Its 

major advantage is its ability to show grain orientations a single plot unlike both types of 

pole figures. The Rodrigues space is mainly the three-dimensional reconstruction of the 

standard stereographic triangle shown in Figure 3.6 for different crystal symmetries. It is 

simply obtained by applying the symmetry operations at the boundaries of the standard 

stereographic triangle. The details of this procedure will be described in the Fundamental 

Region section (3.4.1).  

3.4. Misorientation 

The rotation (or orientation) difference between two grains is called misorientation 

and is defined as the smallest angle of rotation leading from one orientation to the other 

[Morawiec, A. (1995)]. There are several ways to calculate the misorientation between two 

grains. First, it can be calculated in a matrix form by multiplying the orientation matrix of a 

grain by the inverse of the orientation matrix of the other. If we denote two grains as A and B, 

the misorientation between these two grains will be given by: 

'
BA gg=∆g .         (3.38) 
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iig       (3.39) 

>∆−∆∆−∆∆−∆<=>< 211231133223321 ,,ˆ,ˆ,ˆ ggggggnnn   (3.40) 

where, >n,n,n< 321 ˆˆˆ  and ψ  represent the misorientation axis and angle, respectively. It is 

important to realize that misorientation is expressed in terms of the local crystal coordinates 

as opposed to the fixed sample coordinate system.  

In the second method, the rotation between two orientations can be obtained by the 

product of their corresponding Rodrigues vectors [Frank, F.C. (1988)]: 
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1
o       (3.41) 

where, ‘x’ and ‘.’ denote to vector and scalar products, respectively. The sign between rB and 

rA shows a special product of two Rodrigues vectors. Using this approach, the misorientation 

angle between two domains was calculated in the present study as: 

| |][2tan 1 )r°(r=ψ AB −
−       (3.42) 

In the 3D-XRD technique, we use an orientation matrix that transforms local vectors 

to global vectors and its relation to the classical orientation matrix is (U=gT). In the third 

method of representing misorientation, the dot products of each column of two orientation 

matrices ( A
ijU and B

ijU ) of grains A and B are calculated and the misorientation angle (ijψ ) is 

defined by:  
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In this study of ferroelectrics, for the two sets of the grains found at different applied 

electric fields, a misorientation matrix (klS ) was created. From the calculated sets of 

misorientation angles, the ones between 0 and 1° and 89° and 90° are in close interest. The 

misorientation angles between 0 and 1° confirms the same orientations found between sets. 
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The misorientation angles between 89° and 90° are the candidates for the 90° domains where 

the misorientation angle for 90° domains is expected to be 89.4° ( )
c

a
(12tan− ). For M and N 

number of grains, the misorientation matrix, Skl
is given by: 
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kl 3.44
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
 ≤ψ≤∧−≤ψ≤ψ −  

This method requires manual inspection of columns of the orientation matrices because some 

orientations can be found as domains coincidentally. 

Among the misorientation techniques described, the first method is more 

advantageous because it makes it possible to determine the misorientation axis components 

rather than just the misorientation angle. This gives crucial information about ferroelectric 

domains because it indicates the domain boundary between neighboring domain variants. We 

have used the first method to find the misorientation angles between the orientations found 

by both 3D-XRD and µSXRD methods. 

3.4.1. Fundamental Region 

Some of the orientation methods described above fail to show unique orientations. 

Figure 3.7 exhibits an object in inverse pole figures. For tetragonal symmetry (four-fold 

rotation, and two mirror planes), there will be 8 equivalent representations of the same 

object. For the cubic case (43m, i.e., four-fold rotation, three-fold inversion and a mirror 

plane) there will be 24 equivalent representations of the same object. The number of the 

equivalent representations increases substantially if the object locates near the symmetry 

elements and doubles for the misorientation calculations of two grains. When describing this 

orientation, Euler angles would fail to show the orientations with crystal symmetry because it 

is based on continuous rotations. The second major problem with Euler angles is that if the 

second Euler angle (φ) is zero and the sum of ϕ1 and ϕ2 are constant, all the orientations will 

be shown as the same orientations. [Morawiec, A. (1995)]. For example,  the orientations 

shown with (45°, 0°, 45°)  and (60°, 0°, 30°) Euler angles will be mapped to the same point 

in the stereographic projection while they will be different orientations. 
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The unique representation of orientation is not a simple task. Due to crystal 

symmetry, there is a multiplicity of different rotations from the reference orientation and the 

new orientations can be represented by different points in the stereographic projection 

[Frank, F. C. (1988)]. For instance, for two cubic crystals, there are 24 symmetrically 

equivalent points due to 43m symmetry (4x3x2 symmetry points) and the misorientation 

between these crystals can have 24x24=576 equivalent designations. While all these 

orientations show physical identical orientations, it is important to select which one to use in 

the misorientation calculations. As shown in Figure 3.7, the orientations can be confined to a 

smaller section due to crystal symmetry. Among those projection areas, the area where there 

is only one unique representation in the stereographic projection is called the fundamental 

region and the orientation mapped to this area is used for calculation misorientation.  

 

Figure 3.7. (a) Orientation representations in tetragonal (4mm), and (b) cubic (43m) 
symmetries.  The red areas show the unique representations 

A tetragonal (P4mm) crystal has a four-fold rotation and two mirror planes as 

symmetry operators. If we start with the standard stereographic triangle of the tetragonal 

crystal (Figure 3.6), we see that the maximum allowable rotation angle for [100] axis is 45° 

due to the four-fold symmetry. For the [001] and [110] axes, the maximum rotation angle is 

180°. The corresponding Rodrigues vectors for these rotations will then be [0,0,1] for the 

[001] axis, ]0,12,12[ −−  for the [100] axis and ]0,12,12[ −−  for the [110] axis. 
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Figure 3.8(a) shows the representation of this standard stereographic triangle with Rodrigues 

vectors. By applying the tetragonal symmetry operators, the Rodrigues space can be 

constructed from the fundamental region. Figure 3.8(b) shows the corresponding Rodrigues 

space for tetragonal crystals. The maximum allowable angle in tetragonal Rodrigues space 

can be calculated with the maximum value of the components of the Rodrigues vector. Since 

the maximum Rodrigues vector for the tetragonal crystals is ]1,12,12[ −− , the maximum 

rotation angle, θ  will be: 

°=))+)(+)((=θ 98.42112122tan 2221
max −−

−    (3.45) 

In sum, to calculate misorientations between individual grains, the following procedure can 

be applied: 

• Find the standard stereographic triangle (SST) of the crystals 

• Convert the SST boundaries into Rodrigues vectors 

• Obtain Rodrigues space by applying the crystal symmetry operators 

• Find the maximum rotation angle in the fundamental region of the Rodrigues 

space 

• Apply the symmetry operators to the orientations after converting the orientation 

into a Rodrigues vector 

• Select the orientation with the smallest rotation angle and closest to origin. For N 

symmetry operators and l i being the vectors of the rotation axis of the i th element 

of the symmetry operator, the fundamental region is described by: 

I
N

i i2
}0.)4/tan(;{

=
≥±θ ilrr      (3.46) 

where, i=1  corresponds to the identity rotation [Morawiec, A. (1995), Frank F.C. 

(1988)]. Each orientation found by 3D-XRD and µSXRD techniques was mapped to 

tetragonal fundamental region by using the steps outlined above.  
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(a) 
 

(b) 
Figure 3.8. (a) Representation of the fundamental region. (b) Construction of the Rodrigues space with 
the tetragonal symmetry operators {Identity (M1), four-fold rotation around [100] (M2) and two-fold 
rotation around [010] (M3) and [001] (M4)}. 
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CHAPTER 4. 3D-XRD TECHNIQUE 

In this chapter, the 3D-XRD technique and data collection procedures will be 

described. Several new analysis methods have been created during the present study to 

interpret the results efficiently and these methods such as phi-eta map, domain size, 

polarization angle and strain extraction will also be described. 3D-XRD experiments were 

performed at Sector 1-ID of the Advanced Photon Source at Argonne National Laboratory, 

Argonne, IL. A detailed description of the BaTiO3 3D-XRD experiments is presented in 

Section 6.1.  

4.1. Introduction 

It is well known that most engineering materials are crystalline and their properties 

are greatly influenced by their crystal structure. Therefore, it is essential to characterize the 

internal structure of a material and link the results with performance. Selection of a non-

destructive characterization technique allows a more reliable assessment of a material under 

various applied external stimuli.  The most commonly used non-destructive characterization 

techniques are electron microscopy and standard laboratory X-ray diffraction. These 

techniques are considered surface probes [Lauridsen, E.M. (2000)] because the penetration 

depth of low energy X-rays and electrons is about a few µm. Due to various surface effects 

such as surface charges, strain relaxation, dislocations, samples have to be prepared carefully 

to represent the bulk behavior. Because of these surface effects, it is believed that such 

characterization techniques do not reveal the real material characteristics requiring most 

models to make sweeping assumptions on boundary conditions and average bulk properties. 

It is also believed that present models overestimate the texture development since grains 

undergo different crystallographic orientations with deformation [Margulies, L. et al. 

(2004)]. 

With high penetration depth and fast acquisition time, synchrotron radiation has lately 

become widely used in materials science. Several new characterization techniques such as 

3D-XRD and µSXRD have been developed and applied to numerous problems. These 
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techniques allow in-situ measurements on mechanical behavior, temperature dependence or 

ferroelectric behavior by coupling a stress rig, furnace or high voltage supply, respectively.  

The 3D-XRD technique has recently been developed by Risoe National Laboratory, 

Denmark [Lauridsen, E. M. (2001)] to study individual grains embedded in a bulk 

polycrystalline material. 3D-XRD allows the structural characterization of individual grains 

in polycrystals and yields the position, volume, orientation, and lattice (elastic) strain of these 

grains. The experimental setup consists of a monochromatic beam source, a sample holder, 

and a two-dimensional digital image plate detector to record the transmitted diffraction 

patterns.  Figure 4.1 shows a schematic 3D-XRD setup. Typically high energy (50-80 keV) 

X-rays are employed to fully penetrate the sample which is rotated around the φ axis while 

collecting sequential diffraction patterns in small (<1º) φ steps.  The scanned φ range is 

usually large enough (e.g., φ ±65º) to allow a fuller map of the reciprocal space.   

 

Figure 4.1. Simplified 3D-XRD setup. While x-rays are illuminating the region of interest 
(shown as a cube), the sample is rotated around the z axis with ∆φ angle steps. Each spot from 
different grains will diffract in a different 2 θ and η location on the detector (shown as the y-z 
plane). 

4.2. Data Analysis 

The details of the data analysis were explained in the paper of Lauridsen, E.M. et al 

(2001). To summarize, the overall data analysis can be explained by one equation: 
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hkl
1

l BGΩSg=G −      (4.1) 

where, the scattering vector Gl in the laboratory coordinate system (x,y,z) is converted into 

the reciprocal lattice system (Ghkl). Ω represents the rotation along z direction and has the 

following form: 
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S, is the (sample) matrix that defines how the sample is mounted on the setup. If the sample 

is placed on the turntable, the resulting sample matrix will be: 
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100
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S       (4.3) 

Finally, g-1 defines the orientation of individual grains with respect to the sample coordinate 

system. Note that the original orientation matrix used in 3D-XRD transforms the crystal 

coordinate system into sample coordinate system. In order to be consistent with literature, 

this orientation matrix was represented with its inverse.  

Figure 4.2 shows reciprocal lattice vectors in direct space together with the 

corresponding angles. In the 3D-XRD convention, the a1 is parallel to b1, a2 is in the plane of 

b1 and b2 and a3 is perpendicular to that plane. For tetragonal crystals, the reciprocal lattice 

vectors (b1, b2, b3) are parallel to the main axes of the crystal, and therefore, also the vectors 

in the Cartesian grain system (Gc).  
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Figure 4.2. Reciprocal lattice vectors in real space and their corresponding angles. 
 
The reciprocal lattice matrix transforms real space vectors (a1, a2, a3) to reciprocal lattice 

vectors (b1, b2, b3) and is given by:   
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where, α, β, γ and α*, β*, γ* define the angles between real space and reciprocal vectors, 

respectively. 

Assuming an X-ray is diffracted from position (x,y,z) in the sample system, with 

(x,y)=(0,0) along the rotation axis, the direction of the diffracted ray is determined by the 

Bragg 2θ and the azimuthal angle η (Figure 4.1). The intersection between the ray and the 

detector plane (L, ry, rz) is found from: 
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Here, when ry, rz is at (0,0), the incoming beam and detector plane intersect. The 

normalized diffracted vector in the laboratory system can then be expressed as: 
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The standard coordinate system used at APS differs from the original coordinate 

system developed by Risoe. The APS coordinate convention is to identify the Z axis as the 

direction of beam propagation, the Y axis as up and the X axis as horizontal, orthogonal to the 

beam direction. The original system used by Risoe assumes the incoming beam direction as 

the X axis, while the Y and Z are the horizontal and vertical axes, respectively. For 

convenience, we will use the European Synchrotron Radiation Facility (ESRF) coordinate 

system to be consistent with the original setup by Risoe. The summary of these coordinate 

systems are given in Table 4.1: 

Table 4.1. Coordinate systems used at APS and ESRF 
 

APS ESRF 

Z:�Incoming Beam X:�Incoming Beam 

X:�Horizontal Y:�Horizontal 

Y:�Vertical Z:�Vertical 

 
 

The collection of 2D diffraction patterns for each phi oscillation were analyzed by the 

software called Graindex [Lauridsen, E.M. et al. (2001)]. Graindex is a multi-grain-indexing 

program that finds the orientation of grains based on monochromatic X-ray diffraction. The 

first version of this software runs as a subroutine in Image-Pro Plus 4.5.22 (Media 

Cybernetics, Silver Spring, MD) and the new version is a standalone freeware with a new 

name, Grainspotter. Since the optimization runs in progress, the data analysis routines were 

described according to Graindex.  Figure 4.3 describes the flowchart during a typical 3D-

XRDdata analysis. Three main steps are involved: 
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1. Data Preparation:  

• Any spatial distortion of the diffraction images is corrected. The success in finding 

the grains accurately is highly dependent on the data preparation. If the diffraction 

patterns contain any spatial distortion, the data needs to be corrected before the 

grain analysis. 

• The beam center of the diffraction patterns is found within the Graindex convention. 

It was found from experience that several programs such as Fit2D, Matlab, Image-

Pro Plus use different conventions re. Coordinate systems. Therefore, it is 

important to perform a final tuning of the beam center by checking the 2θ locations 

of the peaks as a function of η. This helps eliminate misindexation of the 

neighboring spots from different hkls such as (200) and (002) peaks.  

• Experimental parameters (sample-to-detector distance) are adjusted carefully. The 

location of a diffraction spot should be well defined. The sample-to-detector 

distance directly affects 2θ location of spots. Theoretically, the sample-to-detector 

distance is refined until the difference in 2θ values between the theoretical 

predictions and those found by image processing is less than 10-4. 
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Figure 4.3. The flowchart in the data analysis of a typical 3D-XRD experiment [Lauridsen, 
E.M. (2001)] 

 

2. Image Analysis and Ray Tracing:  

• All reflections on detector image are located after defining an intensity threshold. 

The image processing is performed by creating a count setting file to define a 

desired intensity threshold. There are several advantages of the intensity threshold. 

First, it helps eliminate spots from weaker grains. Second. as the rotation of the 

sample approaches the phi angle limit (e.g., ±65°), some domains at high phi angle 

will diffract and the intensity threshold will also eliminate those domains. Third, it 

also helps eliminate overlapping it closely spaced spots. 

• List all reflections in a table. The diffraction peaks and corresponding information 

such as their position on the detector plane (dety, detz), η, φ, 2θ and area of interest 

(AOI) are collected in a table.  
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• Identify peak families based on their 2θ values and the diffraction families. By 

using sample-to-detector distance and the X-ray energy etc., it is possible to 

categorize reflection families.  

3. Indexing with the Graindigger Routine:  

• Convert the scattering vector orientation. The scattering vectors in Eq. 4.12 is 

dependent on the phi rotation and it can be re-written as hkl
1

s BGg=G −  by 

converting the scattering vectors of each reflection so they are dependent only on 

the orientation and reciprocal lattice matrices. 

• Increase Euler angles defining g-1 with finite steps using the following formula: 

2
)0(

2
1

)0(
1

.)0(0 ϕδϕ
δϕδϕ

δφδφ
δ ∆+∆+∆+=

mnmnmnmnmn
U

U
U

U
U

U
UU   (4.8) 

where, U is the orientation matrix (U=g-1). In order to find the orientation of all 

grains of interest, the full [0,π] x [0,2π] x [0,2π] Euler space is searched and 

scattering vectors of the simulated and found reflections are compared using the 

least square method. For a given step (ϕ1
o,Φ,ϕ2

o) and corresponding 

),,( 21
0 ϕϕφUU = , Graindex sorts the reflections whether there is no observation, 

matching observations or more than one observed reflections in the calculated 

detector location. The reflections with no observations are called “outliers”. 

• Find the observable reflections. The number of observable hkl’s, Mexp, is found 

where there is at least one observation Gs that matches UBGhkl. Among these 

reflections, grains are authenticated if:  

i. The ratio of the observed reflections (Mexp) is higher than the completeness 

threshold. Completeness is defined as the threshold ratio of the number of the 

calculated peaks to the observed peaks. The matching condition can be 

represented with 0exp 1 α)M(M −≥ where α is a small tolerance factor. 
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ii.  Uniqueness factor is satisfied. Uniqueness factor defines the degree of which 

the set of matching hkl’s is not a sub-set of the matching hkl’s for another U 

setting. 

iii.  Chi-square threshold is satisfied. For a given step size of a few degrees in 

Euler angles, the fit can be weighted with respect to the estimated 

experimental errors in ω and η: 

∑ η∆ω∆σ
ϕ∆ϕ∆φ∆−=χ

ji ij

ijhkljs GBUG

,
2

2
212

),(

})](,,([){(
  (4.9) 

where, index i runs over the spatial coordinates, i=1,2,3, while j enumerates the 

members of group B. σij is the error on Gs vector number j in the point U0, 

calculated by error propagation using Eq. 4.1 and 4.7. 

Noting that Graindex calculates the orientation matrices from the observed 

reflections, it is crucial to check whether there is a big difference between the positions of the 

calculated and observed reflections. The deviation should be as small as possible because 

large values suggest a discrepancy from the true orientation of the grains. Furthermore, the 

presence of a significant number of outliers makes the analysis questionable and further 

refinement of the Graindex parameters is necessary. Therefore, a minimum of 8 reflections 

are sought for each grain before it can be authenticated as a “real” grain.  

Another “pitfall” [Lauridsen, E.M. (2001)] in studying ferroelectrics with the 3D-

XRD technique is the overlapping spots of the domain variants. The misorientation between 

90° domains within the polycrystal BaTiO3 can be calculated by 2tan-1(c/a) where a and c 

denote the lattice parameters of tetragonal ferroelectric ceramics [Rogan, R. (2003)]. Since 

c/a ratio is 1.01 in BaTiO3, the misorientation between the grains is very small (around 0.6°) 

and high resolution of domain peaks is necessary to deconvolute overlapping spots. To 

prevent this, the sample-to-detector distance is increased until one can observe the 200/002 

rings near the outside edge of the CCD detector. This adjustment was found to yield 

sufficient resolution to deconvolute peaks from domain variants of BaTiO3. 
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4.3. Phi-Eta Map 

Due to the presence of domains in ferroelectrics, each grain contains “sub-grains” that 

are oriented by well defined, intrinsic crystal symmetry operations. The domains belonging 

to the same grain are called “domain variants”. In BaTiO3, these domains are arranged along 

the cube edges and the domains can have a configuration with six equal direction 

possibilities. Since c/a ratio in BaTiO3 is different than unity, the orientations between 

domain variants can vary up to 1.2° (see Figure 6.7) and these domain variants diffract within 

proximity of each other. For this reason, the 3D-XRD experiments of BaTiO3 employed 

smaller φ oscillations of 0.2° compared to the usual 1°. 

To characterize the spots from individual domains, a given hkl ring was summed 

along η and then combined along φ. The map thus created is called “Phi-Eta” and it helps in 

the characterization and interpretation of diffraction patterns. Figure 4.4 shows the schematic 

procedure of creating an Phi-Eta map. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.4. Schematic procedure of an Phi-Eta map. (a) The Friedel pair of a reflection diffracts 
with a 4θ angle. (b) The corresponding hkl rings are binned along η. (c) The binned rings are 
combined in φ. 

 

There are several advantages of the Phi-Eta map. First, it is helpful in identifying the 

Friedel pair of any reflection. The Friedel pair of a given reflection will appear 180° further 

at η. The φ location of the Friedel pair is dependent on η. When η is close to 90° or 270°, the 

Friedel pair of the same reflection will diffract 2θ apart. When η is close to 0° or 180°, the 
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Friedel pair will diffract at more than 4θ apart. The second advantage of the Phi-Eta map is 

that it helps identify new spots appearing around original spots. If the new close spot does 

not appear in the Phi-Eta map of its Friedel pair, it can be confirmed as belonging to a 

neighboring grain.   

This point can be further clarified as follows. Let us consider the spot from a grain 

that appears at η=90° and label it as hkl in Figure 4.5. The Friedel pair of this spot will 

appear at η 180° away. Since these pairs are 4θ apart from each other, the Friedel pair of the 

reflection will diffract after rotating the sample by 2θ degrees. For the spots diffracting 

parallel to the rotation axis (η=0° or 180°), the difference in 2θ between the Friedel pairs will 

be bigger than 2θ. Let’s consider a scattering vector, A. By inspecting Figure 4.5, the 

normalized scattering vector A in the diffraction cone can be found as:  

 

Figure 4. 5. Illustration of a scattering vector A and its Friedel pair, B.  Since it is difficult to 
distinguish opposite directions with x-rays, the Friedel pair of A is mirrored on the –YZ plane.  
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where θ and η are the diffracting Bragg and azimuth angles and η+θ+=N 22 tantan1 −  

[Pecharsky, V. K. (2005)]. When the sample is rotated by φ, the scattering vector will also be 

rotated. The rotation of the sample can be expressed as in Eq. 4.2. After the rotation, the new 

scattering vector B will be given by 

ΩA=B         (4.11) 

If the rotation angle between Friedel pairs satisfying the Bragg condition is denoted 

as ξ, the relation between the Friedel pairs will be as follows: 

The angle (ξ) between the two vectors, before and after the rotation can be calculated 

as: 

η++=)N
A

A
(=ξ

x

y 221 tan2θtan14θ2tan −−    (4.12) 

It can be easily seen that Friedel pairs diffract within an phi angle of 

η+2θ+ 22 tantan12θ −  from each other. A spot with an η value near the equator will 

experience the rotation that is equal to the actual rotation φ of the sample, while a diffraction 

spot near the poles (η=0 and π) will experience a smaller effective rotation of ξ.  

4.4. Domain Size 

According to diffraction theory, there is a correlation between the integrated intensity 

of a spot and the volume of the domain that generated it [Warren, B. E. (1990)]. The 

integrated intensities of diffraction spots were found by summing the pixel intensities and 

subtracting the background of the diffraction image. Appendix 2 develops the relationship 

between the diffracting volume and the integrated intensity in more detail. It was observed 

that several spots diffract within a range of φ which makes it difficult to find out which 

diffraction spots are the region of interest. Therefore, Phi-Eta maps were used to calculate the 
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integrated intensities of the diffraction spots. To convert the integrated intensities of the spots 

to grain volumes, the summed intensities of the (002) Phi-Eta map, Ip002, at each electric field 

were used as an internal calibration. The relationship between the grain volume Vgrain and the 

integrated intensity of a specific hkl reflection, Ighkl
 will then be: 
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| |
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  (4.13) 

 

where, F, m, θ, and ∆t refer to structure factor, multiplicity, Bragg angle and the acquisition 

times, respectively. However, this equation assumes a constant gauge volume during the phi 

oscillation. This is not true because the sample thickness changes during this oscillation and 

reaches a maximum at φ=±45°. To derive the transmission ratio of the X-ray beam in each 

phi value, beam intensity after a thickness of x is used: 

ρ)ρxeI=xeI=I l(µ
0

lµ
0

/−−      (4.14) 

where, I0 is the incident beam intensity, µl is the linear absorption coefficient and µm= µ l/ρ is 

the mass absorption coefficient and ρ is the density. Therefore, the transmission ratio of a 

sample without rotation is: 

ρ)ρxe=xe=
I

I l(µlµ /

0

−−      (4.15) 

Sample thickness, x, changes with the φ oscillation and the effective sample thickness 

can be denoted as x0. Since x0=x/cosθ, the transmission ratio of the sample with ω oscillation 

will be:  
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     (4.16) 

Figure  4.6 shows the transmission ratio of the BaTiO3 sample as a function of phi 

oscillation. 
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Figure 4.6. X-ray transmission fraction of the BaTiO3 sample during φ oscillation. 
 

Because the sample thickness changes with φ oscillation, the gauge volume in the 

equation above needs to be normalized with the phi oscillation. Equation 4.13 then becomes: 
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The geometry of the diffracted domains is not known, but can be approximated by a 

cube or a sphere. The sphere radius can be found as )(=R 4π/3V   while the cube edge 

will be 3V=a . Since domains are arrangements of several tetragonal unit cells, the cube 

approximation of the shape of a domain may be a better representation of their shape. 

4.5. Polarization Angle 

Ferroelectric domains in a polycrystal will tend to orient along the electric field 

direction above the coercive field. The reorientation of these domains is called “poling” and 

the poling direction is the c-axis of the domains. The angle between the polarization vector of 
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a domain and the direction of the electric field is called the “polarization angle” and is 

expected to decrease as higher electric fields are applied. Figure 4.7 shows a schematic of a 

3D-XRD experiment geometry. In order to track the orientation of the ferroelectric domains 

within the polycrystal as a function of electrical load, the polarization angle is calculated as 

the angle between the electric field in the sample coordinate system (i.e., the [010] direction 

or TD) and the polarization vector in crystal coordinates (i.e., the [001] direction in crystal 

coordinates). This angle corresponds to the direction cosine of the y sample axis and the z 

crystal direction (which show the electric field direction) and the c axis of the crystal. The 

32U component of the orientation matrix (U) then becomes the polarization angle and these 

angles were tracked as a function of electric field.  

 
Figure 4.7. Schematic set-up in a 3D-XRD experiment. Each grain consists of ferroelectric domains that 
are arranged in three dimensions. Each crystallite (or domain) can be represented by a vector in the local 
coordinate system (xc, yc, zc) and within a fixed sample coordinate system (xs, ys, zs). The polarization 
angle, θ, defines the angle between the polarization vectors of the domains and the applied electric field 
direction. 
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4.6. Elastic Strain 

In addition to the change in the orientation of domains, their elastic strain tensors can 

also be obtained from 3D-XRD data. To gather sufficient statistics, however, it is crucial to 

measure multiple domains and determine the strain tensor components of each grain and the 

offset (∆y, ∆z) of its center of mass with respect to the phi axis [Margulies L. (2004)]. 

The relative shift in each spot with respect to the rotation φ axis can be calculated 

either from the detector images or the Phi-Eta map. While the spots from the detector images 

give a better fit, the Phi-Eta map is essential in the study of the orientation relationships of 

the neighboring spots. As a routine, the detector location of a spot from a domain was 

extracted from Graindex results at low voltage and the relative change of this spot as a 

function of electric field was calculated with 2D Gaussian fitting. If the location of the spot 

can be expressed as a function of y and z coordinates, the 2D Gaussian function of this spot is 

given by [Tamura, N. (2007)]: 
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where b is the background value of the peak, the coefficient A is the peak value, xo, yo are the 

center of the peak and σx, σy are the full width half maximum (FWHM) of the spot. The 2D 

peak fitting can also be done with different profile functions and the corresponding 2D 

Lorentzian and Pearson functions are the following: 
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where, N is the Pearson index. 

After the initial guess for the peak location (yo, zo), FWHM of the peak (σy, σz), 

background value of the peak (b), it is possible to fit the 2D peak by using least square 

fitting. It is also possible to find the integrated intensity of the peak by summing the fitted 

function.  

As with diffraction studies in general, 3D-XRD lattice strain characterization is based 

on measurements of relative changes in the d-spacing of selected lattice planes. For each 

diffraction spot, the lattice strain ε is found by measuring the shift in Bragg angle ∆2θ. A 

specific measurement εi with a corresponding diffraction spot positioned at angles (φ, 2θi, ηi) 

and a scattering vector defined by the direction cosines l i, mi, ni, is related to the components 

of the strain tensor εhkl by 
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(4.23) 

 

where, ∆x and ∆y are the offsets in the sample system from the center of rotation and L is the 

sample-to-detector distance [Margulies, L. (2004)]. 
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CHAPTER 5. MICRODIFFRACTION 

The scanning X-ray microdiffraction (µSXRD) technique is based on back-scattering 

Laue diffraction. The technique and its data analysis procedure, together with its coordinate 

system conventions will be explained in this chapter.  µSXRD allows the extraction of 

deviatoric lattice strain components; a process of obtaining two-dimensional strain maps will 

thus be described. All µSXRD experiments were performed at the X-ray microdiffraction 

end-station (first called, Beamline 7.3.3, recently it moved to Beamline 12.3.2) at the 

Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. Further 

experimental details will be presented at Section 6.2. 

5.1. The Scanning X-ray Microdiffraction Technique  

A polychromatic (“white”) X-ray beam offers a unique opportunity to sample a large 

fraction of the reciprocal space due to its ability to diffract from many lattice planes 

simultaneously. Figure 5.1 illustrates this process schematically. 

 

Figure 5.1. Diffraction from a polychromatic (“whit e”) X-ray beam. The X-rays with the 
highest energy (i.e., lowest wavelength, λ) will yield the high end of the Ewald sphere, while the 
low energy X-rays will form the low end of the Ewald sphere. 

 

The fundamental principles of the µSXRD technique are described elsewhere [Chung, 

J-S. (1999)]. Here, only a brief summary will be presented for completeness. By 

microfocusing the X-ray beam to a spot size of about 0.5-1 µm, the technique offers a unique 

opportunity to study local microstructure. The use of a white beam allows a fast scan of local 
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crystal orientations (i.e., local micro-texture) and three-dimensional strain fields (i.e., the 

deviatoric lattice strain tensor), all this without rotating the sample and/or the detector as is 

done on conventional (monochromatic) X-ray instruments. The analysis and interpretation of 

the multiple Laue patterns collected at each location requires sophisticated software: XMAS 

(X-Ray Micro Analysis Software) was developed for this purpose and has been successfully 

employed [Tamura, N. (2003)]. The relatively low X-ray energy of µSXRD (about 10-25 

keV) compared to that of the 3D-XRD technique (>60 keV) limits the former to near surface 

regions, esp. with heavy elements 

5.1.1. Coordinate Transformation  

The µSXRD technique uses several coordinate systems that are similar to those 

employed in 3D-XRD. Figure 5.2 shows a typical µSXRD setup at ALS. The diffraction 

plane (hkl) is described in the laboratory coordinate system in real space and transformed to 

reciprocal space by the reciprocal lattice matrix (B): 
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where, a1,2,3 and  b1,2,3 and are the real and reciprocal lattice parameters  while (α, ß, γ) and 

(α* , ß*, γ* ) are the real and reciprocal lattice angles, respectively. The orientation of each 

grain can be expressed by a matrix transformation from reciprocal lattice to the sample 

coordinate system and can be expressed with the orientation matrix (g): 
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where, each component is the direction cosine between the reciprocal lattice vector and a 

vector in the sample coordinate system. 
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Figure 5.2. Laboratory and sample coordinate systems of the µSXRD technique as used at ALS 
[Valek, B. C. (2003)]. 

 

With the aid of the transformations described above, any diffraction spot on the 

detector can be linked with the normal [ hkl] vector of a grain as follows: 
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Here, the first matrix transforms from the sample coordinate system to the laboratory 

coordinate system (the sample is mounted at a 45° angle with respect to the incoming X-ray 

beam). Additional diffraction angles are defined in Figure 5.3.  

 

Figure 5.3. The coordinate and angle notations used at ALS 
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)(n= z

1cos2θ −  and )n(n=Φ yx /tan 1−     (5.4) 

The location of a reflection on the image plate will then be: 

pxLdxdx /)sin()290tan(0 Φ⋅−⋅+= θ    (5.5) 

pzLdzdz /)cos()290tan(0 Φ⋅−⋅+= θ    (5.6) 

where, dx0 and dz0 define the center of the image, L is the sample-to-detector distance, px and 

pz is the pixel size of the detector horizontal and vertical directions, respectively. Figure 5.4 

shows a simulated Laue pattern for BaTiO3 using the X-ray energy range of 5-14 keV. 

 

Figure 5.4. A simulated Laue diffraction pattern for a BaTiO3  domain at X-ray energies 
between 5 and 14 keV (the former energy range of the ALS microdiffraction beamline 7.3.3). 

5.1.2. Data Analysis 

The X-ray microdiffraction end-station at the ALS is capable of delivering a focused 

X-ray white beam with a spot size slightly less than 1 µm using a pair of elliptically bent 

mirrors in the Kirkpatrick-Baez configuration. Diffraction data were collected in reflection 

mode using a large-area Bruker SMART 6000 CCD camera mounted on a vertical slide. The 

sample surface was set at 45° relative to the incoming beam. Figure 5.5 shows a typical 

experimental setup and a diffraction pattern.  
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(a) 

 

(b) 

Figure 5.5 (a) A typical schematic setup for the µSXRD experiments at ALS.  (b) A typical 
diffraction pattern from single crystal BaTiO 3. 

 

The diffraction patterns were analyzed by the custom software developed at the ALS 

(XMAS: X-ray Microdiffraction Analysis Software). The data analysis can be divided into 

three parts. First, the reflection positions in the patterns are determined within sub-pixel 

resolution by fitting their two-dimensional peak profiles with (two-dimensional) profile 

functions such as Gaussian, Lorentzian or Pearson VII. All the peaks in the diffraction 

pattern are sorted according to their integrated intensity values from the most intense to the 

weakest. After taking into consideration the first set of the strongest reflections, a virtual 

grain with a close orientation to this set of reflections is simulated using the measured peak 

positions and known lattice parameters.  Next, additional matching reflections are identified 

until at least one spot matches with a spot of the simulated grain.  If there is no match for the 

simulated spot, the search continues with the remaining reflections from the strongest to 

weakest. For the remaining unindexed reflections, new virtual grains are simulated and the 

search continues until a match is found. At the end of each search, the orientation matrix and 

the corresponding indexed reflections are saved if the simulated grain is authenticated as a 

real grain. Using the sequential analysis routine available in XMAS, additional (sequential) 

diffraction patterns can be analyzed automatically and the output of a given surface scan can 

be reported visually by using various subroutines available in XMAS. 
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5.1.3. Elastic Strain 

To specify a position in sample coordinates [Chung, J-S. (1999)], one can use a 

vector either in crystal coordinates (va) or in sample coordinates (vu). The relation between 

these vectors can be formulated as: 

au Avv =   









αβ−γ

βγ
=

3

32

321

/100

*cossinsin0

coscos

b

aa

aaa

A  (5.7) 

where, a1,2,3 and  b1,2,3 and are the real and reciprocal lattice parameters, respectively,  and (α, 

ß, γ) and (α*, ß*, γ* ) are the real and reciprocal lattice angles, respectively. Calculated 

refined lattice parameters (measA ) for each grain and reference lattice parameters (Ao) form a 

matrix. Transformation of these vectors is possible with  

0meas TA=A         (5.8) 

where, T is the transformation matrix and finally deviatoric lattice strain can be found by:  

ij
jiij

ij I
)T+(T

=ε −

2
'        (5.9) 

where, ijI  is the identity matrix. The complete strain tensor is simply the sum of the 

deviatoric strain tensor and dilatational tensor ( ∆+= ijij εε ' ) where ∆ = δI
ij 

and δ is the 

dilatational strain. The complete strain tensor can be measured with this technique by 

knowing the absolute lattice parameters of a single Laue reflection but the XMAS software 

currently calculates the deviatoric strain components. Since elastic strains play an important 

role in ferroelectric domain microstructures, finding the deviatoric strain components for 

each domain would be enough to study the ferroelectric domain switching in mesoscale. 

5.1.4. Grain Map 

The µSXRD technique, by not requiring a rotation of the sample/detector and by 

using a small beam size (below a typical grain size) enables detailed two-dimensional scans 

of the sample surface. Following data analysis that calculates, among other parameters, the 

orientation matrix (g) of a grain, one can create a 2-D grain map.  The choice of creating the 
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grain map is arbitrary. For the ferroelectric domains, the angle between the direction of the 

polarization vector of the crystallites and global axes can be expressed as: 

)
g+g+g

g
(=θ

2
33

2
32

l 2
31

3l1cos−      l = 1, 2, 3        (5.10) 

where, l stands for x, y and z axes in global coordinates. This map will help to interpret the 

distribution of the polarization vectors along global coordinates. Grain map is very useful 

when mapping the distribution of the crystal properties with respect to the global coordinates. 

5.1.5. Finding Precise Lattice Parameters 

While the µSXRD technique is superb in obtaining the deviatoric lattice strain tensor, 

its use of a polychromatic X-ray beam makes it impossible to estimate absolute lattice 

parameters. However, there is a way to overcome this disadvantage.  After indexing a 

diffraction pattern obtained from a polychromatic beam, one can perform an energy scan 

around one of the spots. This determines the absolute d-spacing of that spot, and by 

extension, the absolute lattice parameter. As a result, one can measure the complete three-

dimensional lattice strain tensor of a sub-µm region using µSXRD.  

5.1.6. Grain Depth 

As mentioned before, µSXRD can routinely provide a list of grains that diffract from 

a specific sample location. In order to study the three-dimensional arrangement of these 

grains, a triangulation technique was developed [Larson, B. C. et al. (2000)]. Here, the 

diffraction patterns are collected from several sample-to-detector distances and the origins of 

the diffracted grains are traced back (Figure 5.6). While time consuming, this method offers 

unprecedented information about the geometrical arrangement of grains in real space.  A 

detailed description of the triangulation technique can be found in Larson, B.C. et al’s article 

(2000).  
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Figure 5.6. Schematic of the triangulation technique [Larson, B. C. et al. (2000)]
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CHAPTER 6. RESULTS and DISCUSSION 

The present study employed two complementary methods to investigate the 

mesoscale behavior of ferroelectrics:  

• 3D-XRD technique to track domains in multiple grains of a polycrystalline 

ferroelectric and to investigate their evolution as a function of electric field.  

• Scanning X-Ray Microdiffraction technique to zoom on surface domains and to 

study their evolution with temperature.  

6.1. 3D-XRD Experiments on BaTiO 3 

 BaTiO3 ceramics were processed from a single batch of previously prepared 

stoichiometric BaTiO3 powder (99.9% pure, with Ba/Ti ratio=1.00, from Ferro Corp., 

Transelco Division) to minimize the effects of stoichiometry variations between batches 

[Bryne, T. A. (2004)]. The initial powders were homogeneously mixed via vibratory milling 

for 5 h in zirconia media in ethanol. Approximately 4 wt% binder was added to the powder. 

Following binder burn-out at 500°C for 2 h, the well-mixed powder was calcined at 1300 °C 

for 2 h in an alumina crucible covered with zirconia powder. The final composition of the 

sample had approximately 95% of the theoretical density. For grain size measurements, 

samples were thermally etched at 1300°C for 2 h to reveal the grain structure. The grain size 

was calculated around 20 µm. The SEM micrograph of a typical microstructure of the 

BaTiO3 ceramic is shown in Figure 6.1. 
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Figure 6.1. SEM image of BaTiO3 sample used in 3D-XRD experiment. The grain size is 
typically around 20 µm. 
 

Bulk polycrystalline BaTiO3 samples were sectioned with a diamond saw into 

1.2x1.2x5 mm dimensions to use in 3D-XRD experiments. After sectioning, the surfaces of 

the samples were polished with abrasive and finally with fine sandpaper until the dimensions 

would be 1x1x5 mm. Both 1x1 mm sides were sputtered with gold for 5 minutes and thin 

wires were attached using conductive epoxy. There are several advantages of selecting such 

sample dimensions. First, the X-rays can easily penetrate through the sample at high energy. 

Second, the applied electric field can be more than coercive field which leads to significant 

domain switching. 

The polarization versus electric field hysteresis loops of the BaTiO3 ceramics were 

measured with a RT66A standard ferroelectric test system (Radiant Technologies). Figure 

6.2 shows a typical set of hysteresis loops. The remnant, spontaneous and saturation 

polarization of the sample were measured as 5.3, 8.5 and 22.2 µC/cm2, respectively. The 

nominal coercive field was found to be 5.16 kV/cm. 
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Figure 6.2. Polarization (P) vs. electric field (E) hysteresis loops of the BaTiO3 sample used in 
3D-XRD experiments. 
 

3D-XRD experiments of BaTiO3 were performed at beamline 1-ID-C of the 

Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL. This beamline 

not only provides dedicated high energy focusing optics but is specialized for 3D-XRD data 

acquisition and analysis.  

Figure 6.3 shows a schematic setup of the BaTiO3 experiments. High energy x-rays 

(80.72 keV, with wavelength λ ~ 0.1535 Å) in transmission mode were focused to a 30x30 

µm2 spot size. Since the grain size was estimated to be around 20 µm, this spot size was 

enough to illuminate roughly 100 grains. The samples were oscillated perpendicular to the 

beam with 0.2º φ steps up to ±65º; repeated at each applied electric field. The samples were 

not intentionally poled before the experiment but a high electric field was sometimes applied 

briefly to check the cable connections. The electric field was applied in-situ with a Trek 

610D HV amplifier reaching up to ±20 kV/cm in 0.125 kV/cm steps and was perpendicular 

to the incoming beam (along the y-axis in Figure 6.3). The maximum applied electric field 

was high enough to trigger domain switching as the nominal coercive field of the material 

was previously measured as 5.16 kV/cm (Figure 6.2). The sample was aligned with the other 

1 mm surfaces normal to the beam direction. Thus, the direction of the electric field was 

perpendicular to the X-ray beam (the y-axis in Figure 6.3). The rotation axis of the sample 

was carefully aligned by checking the same spot after rotating the sample for 180° along ω. 
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The sample-to-detector distance was adjusted as 952.70 mm. This distance enhanced the 

resolution of the diffraction spots on the Mar CCD detector (2048x2048 pixel size, MarUSA, 

Inc.) by increasing the resolutions of the variants of {001}, {011}, {111} and {002} 

diffraction planes. The lattice parameters of the BaTiO3 were calculated as a=0.4000 nm and 

c=0.40314 nm. 

 

Figure 6.3. (a) Schematic 3D-XRD setup used at beamline 1-ID-C, APS.  (b) A view along the X-
ray beam (along the x-axis) at φ = 0º. The electric field direction is parallel to the y-axis which is 
perpendicular to the rotation axis (z) 

6.1.1. Macroscopic Response to Electric Field 

To make sure the sample experienced domain switching, the macroscopic 

(polycrystalline) response of ferroelectric domains within the polycrystalline BaTiO3 was 

obtained by integrating diffraction images within ±10º of φ (where, φ=0º is perpendicular to 

the beam) and parallel to the electric field (η=90°±5º) using the Fit2D.v12.077 software 

[Hammersley, A. P. (1997)]. Figure 6.4 also displays the results in terms of the MRD value 

(multiples of random distribution relative to an unpoled sample) obtained from this equation:   

)+(I
=MRD

200002

002

2I

3I
     (6.1) 
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The MRD is a better measure of texture evolution due to domain re-orientation and 

should be 1.0 for a random polycrystal. The electric field led to an increase of the (002) peak  

intensity due to a small portion of the domain alignment along the field direction.   In Figure 

6.1.4, while the initial state of the specimen is not random (MRD ~ 0.78), the applied field 

leads to slight domain re-alignment (MRD ~ 0.87 at 20 kV/cm). The most important 

contribution of this weak effect of the electric field may be the residual texture from the pre-

poling the sample while checking the wire contacts.  

 

 

Figure 6.4. Variation of the integrated intensity ratio (I 200/I002) and MRD002 as a function of 
electrical loading.  Diffraction images within ±10º of the φ = 0º position and along the electric 
field were summed to obtain these macroscopic data.  The arrows indicate the progression of 
the electrical loading. 

6.1.2. Graindex Analysis 

The diffraction patterns were analyzed using the Graindex software [Lauridsen, E. M. 

(2001)]. Table 6.1 shows the Graindex parameters employed. Section 4.2.1 explained all of 

these. To summarize, 2θmax is the maximum 2θ angle of the diffraction pattern, Cloudfit 

Tolerance defines the tolerance of a spot to be classified as the same spot at different sample 

detector distances, G-vector Tolerance sets the range of 2θ for each hkl family, Eta 
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Tolerance defines the eta limit during the image analysis, Completeness defines the ratio of 

number of theoretical reflections to identified reflections, Uniqueness requires that a set of 

matching hkl’s does not belong to another grain. Angle Step, Delta Omega and Delta Eta 

define the grid size of the Eulerian space when the Graindigger routine looks for a grain. 

Table 6.1. Graindex parameters used in the BaTiO3 3D-XRD analysis 
 

Parameters Value 

φstart -64.9° 

φend 64.9° 

Rotation 

φstep 0.2° 

Energy 80.57 keV 
Sample-to-Detector distance 952.7 mm 
Center Point of Image, Y0 1028.7 pixel 
Center Point of Image, Z0 1028.5 pixel 
Detector size 2048x2048 

Experiment 
Parameters 

Pixel size 0.08057 µm 
a  - Lattice parameter (a) 0.4000 nm 

b  - Lattice parameter (b) 0.4000 nm 

c  - Lattice parameter (c) 0.40314 nm 

α  - Unit cell angle (α) 90° 

ß  - Unit cell angle (ß) 90° 

γ  - Unit cell angle (γ) 90° 

Space Group  - The space group of the grain belongs to 99 (P4mm) 
Number of Atoms in unit cell 5 
Atom Number of 1st Atom (Ba) 56 
Atom position (x,y,z) 0, 0, 1 
Atom Number of 2nd Atom (Ti) 22 
Atom position (x,y,z) 0.5, 0.5, 0.5 
Atom Number of 3rd  Atom (O) 8 
Atom position (x,y,z) 0.5, 0.5, 0 

Crystallography 

2θmax   - Max. 2θ angle of the diffraction patterns 4.7° 
Cloudfit Tolerance  0.003 

G-vector Tolerance - Range of allowable 2θ  for each {hkl} 0.003 

Ray Tracing 

Eta Tolerance          0.2° 
Completeness   0.7 
Uniqueness    0.3 

AngleStep     - The steps of the 1st Euler angle (ϕ1),°  0.2° 

Delta Eta       - The steps of the 2nd Euler angle (φ),° 0.2° 

Graindigger 

Delta Omega - The steps of the 3rd Euler angle (ϕ2),° 0.2° 
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Table 6.2 shows the number of the domains found by Graindex at each applied 

electric field. Graindex compares the location of each spot in the diffraction pattern to those 

in the simulated pattern, and when sufficient overlap is found, it authenticates a domain (see 

Section 4.2 for further details). Typically, a discrepancy of about 0.2° was seen between 

measured and calculated φ and η locations of spots.  

Table 6.2. Number of the orientations found by Graindex at each applied electric field. 

Voltage, kV/cm 2 3 5 7.5 10 12.5 15 17.5 20 10 5 0 
Number of 
Domains 

34 28 36 36 34 36 35 40 37 36 37 33 

Voltage, kV/cm -2 -3 -4 -5 -7.5 -10 -12.5 -15 -20 -10 -5 0 
Number of 
Domains 

37 37 38 38 37 39 37 40 37 70 78 67 

 
 

6.1.3. Domain Characterization 

At this stage, it is important to note the fact that what Graindex identifies as a 

“domain” is simply a crystallite with a distinct orientation matrix.  To determine special 

orientation relationships between any subset of these “domains” – as would be expected from 

the tetragonal structure of BaTiO3 – the misorientation angles of the domains were compared.  

As was explained in Section 3.4, misorientation is the smallest rotation angle leading from 

one orientation to another [Morawiec, A. (1995)]. If we denote the orientation matrices of 

two domains as gA and gB, the rotation matrix that transforms A into B will be given by ∆g: 

AB ggg ⋅∆=   1)( −=∆ AB ggg      (6.2) 

The rotation angle and axis of this rotation will then be: 

2

]1)[(
cos

3

1

−∆
=
∑
=i

iig
ψ            (6.3) 

>∆−∆∆−∆∆−∆>=<< )(),(),(,, 122131132332321 ggggggnnn
)))

      (6.4) 

While the misorientation is described as the minimum rotation angle from one 

orientation to another, the orientation can also be described by finding a minimum rotation 

angle with respect to an orthogonal reference domain. If the same procedure described above 
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is repeated by taking an orthogonal reference domain, one obtains the orientation of the given 

domain. Table 6.3 lists the orientation of the domains found by Graindex at 2kV/cm together 

with their mutual misorientations. The orientations with respect to an orthogonal reference 

domain is shown as angle-axis, the misorientations of the domains of the domains are shown 

as misorientation angle-axis with the given domain.  

Table 6.3. The list of orientation relationships between the domains found at 2 kV/cm 

Domain* Orientation Matrix Angle Axis 
Misor. Angle Axis 

Euler Angles 
(ϕ1φϕ2),° 

Polar. 
Angle, ° 

Complet
eness 

Chi-
Square 

33a 0.899   -0.429   -0.086 
0.032    0.260   -0.965 
0.437    0.865    0.247 

78.28° <0.93 -0.27 0.24> 
89.66° <1 0 0> 

354.9 75.7 26.8 74.8 1 55.57 

27a 0.898    0.084   -0.431 
0.031    0.967    0.254 
0.438   -0.242    0.866 

30.06° <-0.5 -0.87 -0.05> 
 

239.5 30 118.9 75.3 0.72 73.21 

11a 0.430    0.092    0.898 
-0.260   0.965    0.025 
-0.865  -0.244   0.439 

65.12° <-0.15 0.97 -0.2> 
89.98° <0 -1 0> 

91.6 63.9 254.2 88.6 0.83 29.29 

1b 0.912    0.401    0.084 
-0.189    0.595   -0.781 
-0.363    0.697    0.618 

55.76° <0.89 0.27 -0.36> 
89.56° <1 0 0> 

6.1 51.8  332.5 51.4 0.73 10.78 

17b 0.911   -0.083    0.404 
-0.189   0.7863  0.588 
-0.366   -0.612   0.701 

45.66° <-0.84 0.54 -0.07> 145.5 45.5 210.9 54 1 79.33 

28b 0.397   -0.089   -0.913 
0.594    0.784    0.182 
0.699   -0.615    0.364 

74.18° <-0.41 -0.84 0.36> 
89.64° <0 1 0> 

258.7 68.6 131.3 79.5 0.86 132.88 

2c 0.949   -0.224    0.220 
0.314    0.665   -0.678 
0.006    0.713    0.701 

48.88° <0.92 0.14 0.36> 
89.4° <1 0 0> 

18.0 45.5 0.44 42.7 0.7 84.39 

14c 0.221   -0.211    0.951 
-0.663    0.684    0.306 
-0.716   -0.698    0.011 

92.4° <-0.5 0.83 -0.23> 107.8 89.3 225.7 72.2 0.83 56.36 

3d 0.318   -0.368   -0.874 
0.232    0.924   -0.305 
0.919   -0.106    0.379 

71.94° <0.10 -0.94  0.32> 
 

289.2 67.7 96.5 17.7 1 160.28 

15d 0.873   -0.370    0.318 
0.310    0.924    0.225 
-0.378   -0.098   0.921 

30.84° <-0.32 0.68 0.66> 
89.9° <0 1 0> 

125.3 22.9 255.4 77 0.94 68.72 

13e 0.370    0.052    0.928 
-0.743   0.615   0.262 
-0.557   -0.786   0.266 

82.76° <-0.53 0.75 -0.40> 
 

105.8 74.57 15.3 74.8 0.86 115.44 

34e 0.924   -0.378   -0.049 
0.272    0.745   -0.609 
0.267    0.549    0.792 

43.08° <0.85 -0.23  0.48> 
89.89° <1 0 0> 

355.4 37.7  
25.94 

37.5 0.93 
 

80.42 

* The domains with the same superscript are variants of each other. 

 
Table 6.3 shows that some domains are variants of each other since they transform 

into another by rotating around {100} or {010} planes by about 90°. For example, domains 

with 33 and 11 id numbers are found to be domain variants by rotation of domain 27 with 
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89.66° <1 0 0> and 89.98° <0 -1 0> rotation angle and axis respectively. This is the exact 

relationship to be expected from 90° domains in a tetragonal structure.  These results 

demonstrate the power of the 3D-XRD technique to identify and track ferroelectric domains 

as well as their variants in situ.  This is the first step towards quantifying the mesoscale 

constitutive response of ferroelectrics.   

6.1.4. Domain Tracking 

The domain tracking capability of 3D-XRD is illustrated in Figure 6.5: the 

progression of domains with electric field on the {001} pole figure. The numbering of 

domains at each electric field is exclusive, i.e., domains with the same numbers at two 

different voltage values are not necessarily the same domains. While there are no clear and 

drastic changes, some clustering is observed at high voltages along the field direction (the Y-

axis of the pole figure). The results shows that very little 90° switching occurred like since 

the sample was pre-poled leading to a built-in texture.  

 

2 kV/cm 

 

5 kV/cm 

 

10 kV/cm 

Figure 6.5. (Continued) 
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15 kV/cm 

 

20 kV/cm 

 

10 kV/cm unloading 

 

0V/cm unloading 

 

-4 kV/cm loading 

 

-12.5 kV/cm loading 

 

-20 kV/cm loading 

 

-10 kV/cm unloading 

 

-5 kV/cm unloading 

Figure 6.5. [001] pole figure in stereographic projection of the orientations of ferroelectric 
domains as a function of electric field.  Note that the numbering is unique to each electric field 
value. 
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The progression of the ferroelectric domains with the electric field can further be 

tracked by their polarization angles. As defined in section 4.2, the polarization angle is the 

angle between the polarization vector of the domains and direction of the electric field and is 

expected to decrease with the applied electric field. Table 6.4 shows the progression of the 

polarization angle of the domains as a function of electric field. With the applied electric 

field, some new domains were observed along and perpendicular to the electric field. To the 

contrary with the expected, the polarization angles of the ferroelectric domains don’t change 

gradually with applied electric field. This is due to the fast dynamics and nature of the 

displacive transformation of the domain switching.  
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Table 6.4. The angle between polarization vectors of tracked ferroelectric domains in BaTiO3 
and the applied electric field vector as a function of electric field. Domains marked with the 

same superscript and color belong to the same subgrain/grain shown in Table 6.3. New domains 
(bold font) parallel and perpendicular to the electric field appear under electric loading while 
most of the domains remain unchanged due to residual texture from pre-poling. For instance, 

new parallel domains are 1.41, 1.87, 11.44° etc. while new perpendicular domains are 85.58 and 
89.15° at 20 kV/cm. 

 

θ (°)-rows vs. Electric Field (kV/cm)-columns 
2 3 5 7.5 10 12.5 15 17.5 20 

      1.4 1.5 1.5 1.5 1.5 1.5 
  1.9 1.9 1.9 1.9         
  11.4 11.3 11.3 11.4 11.4 11.4 11.3 11.3 
    12.3 12.4 12.5 12.4 12.4 12.4 12.4 
    12.8 12.8       12.8 12.8 
      13.3 13.3 13.3 13.4 13.4 13.5 

17.7d 17.7 17.8 17.8 17.8 17.8 17.8 17.8 17.8 
27.8 27.9 27.9 27.9           
36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.5 36.5 

37.5e 37.6 37.5             
42.7c                 
46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.4 46.5 
48.6 48.6 48.6 48.6 48.5 48.5 48.5 48.6 48.6 
50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.1 50.2 

51.4b 51.3 51.3 51.4 51.3 51.3       
54b 54.0 54.0 54.0 54.0 53.9 53.9 53.9 53.9 

56.8 56.8 56.7 56.7 56.7 56.7 56.7 56.7 56.7 
64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.7   
69.2 69.2   69.2 69.2 69.2 69.2 69.2 69.1 
70.3 70.4 70.4 70.3 70.4 70.4 70.3 70.3 70.3 

72.2c 72.2 72.2 72.2 72.1 72.1 72.2 72.2 72.2 
74.8e 74.8 74.8 74.8 74.7 74.7 74.7 74.7 74.6 
74.8a 74.8 74.8 74.8 74.8 74.8 74.7 74.7 74.8 
75.3a 75.4 75.4 75.3   75.4 75.3 75.3 75.4 

77d 76.9 76.9 76.9 76.9 76.9 77.0 77.0 76.9 
79.5b 79.4 79.4 79.4 79.5 79.6 79.5     
83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.6 

      84.2 84.2 84.1 84.2 84.2 84.2 
    84.7 84.8 84.7 84.7 84.7 84.7 84.7 
              85.6 85.6 
              89.2 89.2 

86.2                 
88.6a                 
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A close inspection of Table 6.4 shows that some domains could not be identified at 

the next electric field during the Graindex analysis. This may be due to the experimental 

parameters or the overlap of spots. In order to increase the efficiency of domain 

characterization and to better characterize closely positioned spots, a 90° domain switching 

model was developed.  

6.1.5. 90° Domain Switching Model 

Other than the previously described pseudo-cubic twinning of ferroelectric domains 

by 89.4° (=2tan-1(a/c)) rotation around the cube edges, {100} (see Section 2.3 for details) , 

the crystallography of 90° domain switching in a tetragonal crystal can also be described by a 

180° rotation around the {110} directions (Figure 6.6). The angle, α, is calculated as tan(c/a) 

where a and c are the lattice parameters of the tetragonal unit cell. 

 

Figure 6.6. Schematic of 90° domain switching in a tetragonal crystal. The scale of the 100 and 
001 directions is exaggerated for clarity. 

 

This means, domain switching can happen on 6 crystallographic planes. For a tetragonal 

parent (with a polarization along [001]), the rotations around [101], [011], [0-11] and [-101] 

are equivalent to 90° switching while rotation around [110] and [1-10] for 180° domains. 

Figure 6.7 depicts the formation of a {100} quadruplet splitting by 90° domain switching.  
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(a) 

 

(b) 

Figure 6.7. (a) Schematic of 90° domain switching in a tetragonal crystal.  (b) Projection from 
the z direction of the parent showing its corresponding {100} twin orientations. The angle 
between two domain variants corresponds to 1.2° when c/a ratio is taken as 1.01. 
 
 

The transformation between the scattering vector in the laboratory coordinate system 

(Gl) and a crystallographic hkl plane (Ghkl) from a domain is given by: 

hkll ΩUTBG=G      (6.5) 

where, Ω is the rotation matrix defining a rotation along z direction which is perpendicular to 

the incoming beam direction, U is the orientation matrix of the domain between crystallite 

and sample coordinate system, T is the twin transformation matrix in the crystallite 

coordinate system and B is the reciprocal lattice matrix (where crystallite axis x is parallel to 

b1, y is in the plane of b1 and b2 and z is perpendicular to that plane) and Ghkl is the vector 

from the diffraction plane. 

The twin transformation matrix (T) can be obtained by two methods. In the first 

method, the twinning happens by 180° rotation around the normal of (101), (-101), (011) or 

(0-11) planes. This rotation can be achieved by the transformation of the vectors by α 

rotation (in Figure 6.7) around the normal of the (101), (-101), (011) or (0-11) planes and an 

inverse symmetry operation around the non-negative axis. These rotations can be expressed 

as following: 
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The corresponding twin transformation matrices for these rotations will then be: 
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where γ represents the angle between the polarization angle along polarization directions of 

parent domain and domain variants as shown in Figure 6.6 and 

°=−=α−=γ − 43.89)(tan21802180
100

0011

d

d
. 

The second method to obtain twin transformation matrices is to use skew-

symmetrical matrices. In this method, the transformation matrix can be obtained by a rotation 

around an axis. If n and ω are denoted as the rotation axis and angle respectively, the 

transformation matrix can be expressed as the combination of the identify matrix times 
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cos(ω), a matrix which is symmetrical about the leading diagonal and a matrix which is 

antisymmetrical (skew-symmetrical) about the leading diagonal (term on other side of 

diagonal is negative). This transformation matrix can be shown as [Euclid (2007)]: 
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The combination of these matrices can be written in a single matrix form as follows: 
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As discussed in Section 6.1.4, Graindex is not able to find all the domain variants 

from a grain due to experimental conditions such as shutter didn’t open, beam lost etc. 

Therefore, one needs to look for the domain variants manually by starting a orientation 

matrix found by Graindex. By using the transformation matrix and diffraction equation in Eq 

(6.6), it is possible to simulate the possible domain variants, investigate the other domain 

variants and investigate the neighboring spots to confirm whether they are belong to same 

grain or not. By using both techniques described above, it is possible to mimic the domain 

switching and interpret the results better.  

6.1.6. Characterization of Domain Variants 

By combining the twin transformation matrices in Eq. (6.5), it is possible to study the 

variants of a domain found by Graindex. In order to accomplish this, a simulation package 

called Diffsim was used. Diffsim was written in Matlab by Risoe Lab researchers in Denmark 

to simulate 3D-XRD diffraction patterns from a set of grains with known orientations (its 

current name is “Farfield Simulation” [Schmidt, S. (2007)]). With the aid of this package, it 

is possible to predict the domain variants of a given domain and characterize the orientation 

of its variants. The best way to characterize the domain variants is to use the Phi-Eta map 

(Section 4.3) because the spots of the simulated domain variants can be easily observed. 

Several Phi-Eta maps were prepared from the (100), (001), (110), (011), (111), (200) and 
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(002) Debye rings using the Fit2D.v12.077 software [Hammersley, A. P. (1997)] by 

integrating the rings along η (azimuth angle) and binning in 2θ and combining summed each 

ring along φ  in Matlab.  

Figure 6.8 shows an example of such a simulation for the domain variants no. 1, 17 

and 28 (see Table 6.3).  The corresponding locations of the (200) and (002) spots from 

domains no. 1, 17 and 18 are shown on the experimental data in Figure 6.8(a). As was shown 

in Eq. (4.12), it is possible to locate the Friedel pair of a given spot with the 3D-XRD 

technique and the shapes and morphologies of these pots are expected to be identical. Non-

matching spots between Friedel maps are considered as some spots that diffract 

coincidentally in that given phi oscillation and they are discarded. Figure 6.8(b) shows the 

simulation by starting with domain no. 1 as the parent. The simulation identifies domains no. 

17 and 28 as the variants of no. 1 rotated around the [011] (*) and [-101] (red>) directions, 

respectively. 

As proved in Eq. (4.12), it is possible to locate the Friedel pair a given spot with the 

3D-XRD technique and these two spots and surrounding spots are expected to be identical. 

Any new spots without its Friedel pair are considered as coincidence spots diffracting at that 

specific ω oscillation. Figure 6.8 (b) shows the simulation by starting with Domain 1 as a 

parent domain. With this simulation, the domain 17 and 28 are identified as the domain 

variants rotated around [011] (*) and [-101] (red>) direction. 
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 (a) 
  

 (b) 

Figure 6.8. (a) Phi-Eta locations of the 200 and 002 peaks and their Friedel pairs of domain variants 
(1-17-28) in 200 and 002 at phi-eta map. The phi-eta map was prepared with the experiment data 
from 2kV/cm oscillation images from 2kV/cm. (b) The prediction of the spots by starting Domain 1 
(red circle) and its domain variants. (red’o’�Parent, red+�101, red>�-101, red*�011, red⁮�0-
11, black+� 011&-101, black>�011&101, black*�0-11&-101, black⁮�0-11&101) 

 

Table 6.5 shows the overall summary obtained from the 90° domain model for all the 

domain variants shown in Table 6.3. Note that [0-11] and [-101] directions in Table 6.3 

correspond to successive 180° rotations around, first, the [0-11], and then [-101] directions. 

Table 6.5. The summary of the relationships between some domains listed in Table 6.3. The 
crystallographic relation is defined as rotation around a specified axis of the parent domain. 

For example, among domain variants   33, 27 and 11, domains 27 and 11 can be obtained by the 
180° rotation around [011] and [101] axes respectively. 

Domain Group Polarization Angle, °  Crystallographic relation 
33, 27, 11 74.8, 75.3, 88.5 Parent(33), [011](27), 

[101](11) 
1, 17, 28 51.4, 54, 79.5 Parent(1), [011](17), [-

101](28) 
13, 34 74.8, 37.5 Parent(13), [011](34) 
3, 15 17.7, 77 Parent(3), [101](15) 
2, 14 42.7, 72.2 Parent(14), [011](2) 

 
Among the indentified groups of the ferroelectric domains, Domain 1, 17 and 28 is 

particularly interesting. While, the polarization angle of Domain 28 is almost perpendicular, 
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(79°), applied electric field reduces the intensity of this domain. Figure 6.9 and 6.10 show the 

evolution of this domain as a function of electric field.  
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Figure 6.9. The evolution of the 200 reflections of Domain 1 and 28 as a function of electric field 
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Figure 6.10. The evolution of the 200 reflections of Domain 1 and 28 as a function of electric 
field 
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The application of the electric field shows that the domains gradually experience 

domain switching and the domain switching can start around the coercive field (5 kV/cm).   

6.1.7. Domain Intersections 

A close inspection of the domains shown in Table 6.3 reveals that most of domain 

groups found are basically 90° variants of a parent domain twinned over (011) or (101) 

planes. These domain variants can be expressed with their polarization directions 

schematically. If we denote the parent domain as the [001] direction, then the (011) twin 

variant will have a polarization along the [010] direction. In the same way, the (101) variant 

will have a polarization along the [100] direction. The intersections of these domains can be 

shown schematically in Figure 6.11.  

 

Figure 6.11. (a) The possible 90° variants of a parent domain with polarization vectors (from 
top to bottom) along [100], [010] and [001]. (b) Schematic intersection of these domains 
indicating the domain boundary planes. Each row shows the possible domain intersections of 
[100], [010] and [001] polarization vectors. 

 

Combining the information on possible domain variants and the variants found by 

Graindex, one can draw a schematic of their arrangements in the microstructure. Figure 6.12 

shows such a schematic [Tan, X. 2007)]. If we take our parent domain to be oriented along 

the x-direction, its variants can be obtained by twinning around (101) or (110) planes. These 
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domain variants can be either along the electric field or perpendicular to electric field and 

application of the electric field will yield the domains perpendicular to electric field to 

switch. Only two domain variants are seen in the domains embedded in the sample. The third 

domain variants are not seen as seen in the µSXRD experiments. 

 

 
(a) (b) 

Figure 6.12. Schematic of domain intersections. (a) Projection of these domains on the z-axis 
and the unit cell representation [Tan, X. (2007)]. The arrows show the intersections of the 
polarization vectors in a unit cell. (b) 2-D schematic of domain intersections. The [001] domain 
is neighbor with a [100] domain along the (011) domain boundary. The [100] domain is next to a 
[010] domain along (110). The fourth possibility is a [00-1] domain that borders a [010] domain 
along (101) and we didn’t observe the fourth domain variant in 3D-XRD experiment [Tan, X. 
(2007)]. 
 
 

From the domain switching model and the results, most of the parent domains are 

found to be along the surface normal and the domain variants of the parent domains are 

produced by the rotation around either [100] or [010] direction with 89.4 or 89.6°. While the 

fraction of the domain variants that are perpendicular to the electric field reduces with the 

electric field, the parallel domains have higher intensity. This is consistent with the principles 

of the ferroelectric domain switching. With the new improvements, the configurations of the 
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domain variants can be predicted in three dimensions which give a unique opportunity to 

study the ferroelectric domain switching. 

6.1.8. Domain Size 

As discussed in Section 4.2.3, it is possible to find the volume of a diffracting domain 

based on measured intensity. Due to domain switching, the volumes of domains with larger 

polarization angles are expected to decrease while those of domains with smaller polarization 

angles to increase. To quantify domain volume evolution as a function of electric field, the 

integrated intensities of diffraction spots from domain variants were calculated with a 2-D 

Gaussian (Eq. 4.18). The intensity values were converted to domain volume by using Eq. 

(4.17).  The same routine was repeated for the Friedel pair of a spot to get a better estimate 

for the domain volume. The Phi-Eta map was used in this effort because it is easy to isolate 

spots and observe its variants along φ and η. Figure 6.13 shows domain size evolution as a 

function of electric field for the domains listed in Table 6.3.  The calculated domain sizes are 

based on the 200 reflections. The main reason of selecting 200 is that 200 peaks can have 4 

variants (200, -200, 020, and 0-20) and it is possible to observe more variants on a 200 Phi-

Eta map and compare their integrated intensity values. 

   

   

Figure 6.13. The domain size versus electric field as a function of electric field of the domain 
variants shown in Table 6.3 
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The data in Figure 6.11 is somewhat ambiguous and scattered. For instance, the 

volumes of some domains (Domain 1, 17, 28, 3-15) decrease with the increased electric field. 

An opposite trend should be observed as the volume of domains perpendicular to the electric 

field should decrease while that of the parallel ones should increase. Additional data is 

needed to clarify this issue.  However, this exercise demonstrated the feasibility of tracking 

not only domain orientations, but also their volume as a function of loading. 

6.2. Investigation of Mesoscale Behavior of Ferroel ectrics in 

Response to Electric Field and Temperature 

The evolution of the ferroelectric domains with electric field and temperature was 

studied by using 3D-XRD technique. The phase transformation from cubic to tetragonal and 

the distribution of the domain variants within the grain was studied. After cooling, the 

resultant domain variants are obtained by rotating 89.96° and 89.6° of the [100] or [010] axis 

of the cubic grain respectively. As response to electric field, the volume fraction change 

between the domains was observed. This volume fraction is favored on the domain that has a 

small angle between its c axis and the electric field direction. There is no such a significant 

grain rotation observed during domain switching. The improvements are explained to 

eliminate the major drawbacks of studying ferroelectrics: spot overlapping. 

6.2.1. Experimental Procedures 
BaTiO3 ceramics were processed from a single batch of previously prepared 

stoichiometric BaTiO3 powder (99.9% pure, with Ba/Ti ratio=1.00, from Ferro Corp., 

Transelco Division) to minimize the effects of stoichiometry variations between batches 

[Bryne, T. A. (2004)]. The initial powders were homogeneously mixed via vibratory milling 

for 5 h in zirconia media in ethanol. Approximately 4 wt% binder was added to the powder. 

Following binder burn-out at 500°C for 2 h, the well-mixed powder was calcined at 1300°C 

for 2 h in an alumina crucible covered with zirconia powder. The final composition of the 

sample had approximately 95% of the theoretical density. For grain size measurements, 

samples were thermally etched at 1300°C for 2 h to reveal the grain structure. The grain size 

was calculated around 20 µm. 
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Bulk polycrystalline BaTiO3 samples were sectioned with a diamond saw into 

1.2x1.2x5 mm dimensions. After sectioning, the surfaces of the samples were polished with 

abrasive and finally with fine sandpaper until the final dimensions would be 1x1x5 mm. 

During polishing, extra caution was shown not to introduce residual stress to the sample. 

Both 1x1 mm sides were sputtered with gold for 5 minutes and thin copper wires were 

attached using conductive epoxy. There are several advantages of selecting such sample 

dimensions. First, the X-rays can easily penetrate through the sample at high energy. Second, 

the applied electric field can be more than coercive field which leads to significant domain 

switching. 

The 3D-XRD experimental setup mainly consists of a monochromatic high energy x-

ray source, to enhance the penetration depth up to cm range, a sample holder with a rotating 

device in x, y, z, and φ axis to allow studying the grain rotations, and 2D CCD detector to 

record the diffraction patterns in each ω oscillation. Figure 6.3 shows the schematic 3D-XRD 

setup. With a typical range of 50-80 keV of micro-focused monochromatic x-rays, the 

crystallographic planes of each grain diffracts as Bragg peaks on the 2D detector. Rotation 

along z axis allows the grain to diffract as Bragg condition satisfies. For the ferroelectrics, 

domains diffract as population with a small degree and the technique requires smaller φ 

oscillation to resolve the domains, i.e. less than 0.6°. This angle can be resolved by 3D-XRD 

technique which gives a unique opportunity to study the ferroelectrics. 

3D-XRD experiments of BaTiO3 were performed at beamline 1-ID-C of the 

Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL. This beamline 

not only provides dedicated high energy focusing optics but is specialized for 3D-XRD data 

acquisition and analysis. By focusing vertically and using slits horizontally, high energy x-

rays (80.72 keV, with wavelength λ ~ 0.1535 Å) in transmission mode were focused to a 

20x20 µm2 spot size. Since the grain size was estimated to be around 20 µm, this spot size 

was enough to illuminate roughly 50 grains. Among these grains, a few of those grains were 

illuminated with the x-ray beam during the sample rotation. The sample was centered on a 

vertically (phi) rotating fixture which heating capability is provided by a Thunderbolt electric 

cartridge heater that can heat up to 650°C with 172 W/in2 power density. This device is 
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embedded to a sample holder which made of copper for high thermal conductivity. An 

electrically insulating and heat conductive epoxy was applied between the sample and the 

sample holder to prevent an electric arcing. The temperature profile on the copper plate was 

measured with Omega Model HH21 Microprocessor Thermometer and Fluke 87IV True 

RMS Multimeter. The temperature gradient within the sample was also monitored by using 

Inframetrics Model 760 IR imaging radiometer. While heating the sample stage, the 

positioning stage is prevented from heating by MACOR machinable glass ceramic posts.  

Heating the sample above Curie temperature prior to electric field randomized the 

poling and preferred orientation became feasible with electric field. After cooling to room 

temperature, the sample was oscillated perpendicular to the beam with 0.25º φ steps up to 

±60º; repeated at each applied electric field. The electric field was applied in-situ with a 

Canberra 3002 HV supply reaching up to +10 kV/cm (10mA) in 5 kV/cm steps and was 

perpendicular to the incoming beam (along the y-axis in Figure 6.3). The maximum applied 

electric field was high enough to trigger domain switching as the nominal coercive field of 

the material was previously measured as 5.16 kV/cm. The sample was aligned with the way 

where the electric field direction is normal to the incoming beam direction (Figure 6.3). The 

rotation axis of the sample was carefully aligned by checking the same spot after rotating the 

sample for 180° along η. The sample-to-detector distance was adjusted as 2274.3 mm. This 

distance enhanced the resolution of the diffraction spots on the GE 41RT amorphous silicon 

detector (2048x2048 pixel size, GE Healthcare Inc.) by increasing the radial angle 

resolutions of the variants of {001}, {011}, {111} and {002} diffraction planes. The lattice 

parameters of the BaTiO3 were calculated as a=0.39986 nm at cubic region and a=0.39836 

nm and c=0.40198 nm at room temperature. Using the on-the-fly scan mode in GE detector, 

collecting 480 images took less than 5 min. This fast acquisition speed of the GE detector 

made possible to automate the data acquisition process. The diffraction patterns collected at 

above Curie temperature were analyzed by Graindex [Lauridsen, E. M. (2001)]. The 

orientation with the highest number of observed reflections compared to simulated ones is 

selected as reference grain.  The same grain was tracked while cooling the sample to room 

temperature and applying electric field.  
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After cooling to the room temperature, it is very difficult to find the orientations of 

the ferroelectric domains due to spot overlapping. The reflections with low multiplicity such 

as (001), (002), (110) and (112) don’t experience spot overlapping and they are used to find 

the orientations of the domains by simulating the orientations using “diffsim” [Lauridsen, E. 

M. (2001)]. In order to find the misorientation between the tetragonal domains and the cubic 

grain, the orientations are first mapped to fundamental region respectively. While m3m point 

symmetry was used for cubic grain, 4mm point symmetry was used for tetragonal domains 

and misorientation was calculated by using ODF/PF software package from Cornell 

University [Dawson, P., et al. (2005)]. As a convention, angle-axis pairs were used. This 

convention has a major advantage to show the misorientation angle and axis with respect to 

the reference grain and it is helpful when describing the misorientation angle between 

domains with the domain boundary.  

6.2.2. Data Evaluation  

In 3D-XRD technique, using high energy monochromatic x-rays makes possible to 

illuminate the grains embedded in a polycrystal. X-Ray beam can be focused to a desired 

area or grain. Among the illuminated area in the sample, each crystallographic plane of 

grains diffracts as a peak on the detector. The shape, distribution, and intensity of these peaks 

can be used to study the texture evolution of the material. Rotation along the φ axis, 

perpendicular the incoming beam direction, allows all the grains within the illuminated area 

to satisfy the Bragg condition and enable us to find the orientations of the grains. Typical 

oscillation angle for cubic materials is 1° and this angle needs to be small enough to resolve 

reflections if the sample has subgrain structure. The further details of the data analysis can be 

found from Lauridsen, E. M. (2001)'s paper. To summarize, the overall data analysis can be 

explained by one equation: 

hkll BGgG 1−Ω=      (6.14) 

where the scattering vector Gl of each crystallographic planes in the laboratory coordinate 

system (x,y,z) is translated into reciprocal lattice system (Ghkl). For the translation, Ω is the 

rotation matrix defining a rotation parallel to the z axis between laboratory system and the 
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sample system and g-1 is the orientation matrix defining a rotation between sample and 

crystal system (i.e. Gl=Ω.GS, GS=g-1.GC). Note that the original orientation matrix used in 

3D-XRD transforms the crystal coordinate system into sample coordinate system. In order to 

be consistent with literature, this orientation matrix was represented with its inverse. B is a 

second rank tensor which transforms the crystal coordinate system from reciprocal to real 

space. Each spot in the detector is converted to a scattering vector (Gl) and these vectors are 

compared to simulated ones by using Euler angles. The reflections matching with the 

simulated ones with Euler angles are authenticated as orientations within the sample volume. 

For cubic materials, finding orientations are fairly easy compared to ferroelectrics since the 

reflections appear as distinct spots contrary to ferroelectric domains.  

The polycrystalline ferroelectrics are usually composed of grains with several domains 

isolated by domain boundaries. Domain boundaries act as the twin boundaries and depending 

on the lattice parameters, the pseudo-cubic edges of the domains within a grain can have 

misorientation to each other. For the ferroelectrics where the c/a ratio is close to unity, the 

misorientation angle between the domains can be very small. For instance, c/a ratio of 

BaTiO3 is 1.01 and the misorientation angle between the (100) and (001) planes of the 

individual domains can be calculated as   i.e. around 0.6°. In order to resolve the domains, the 

sample needs to be oscillated with an angle smaller than theoretical misorientation angle. The 

typical oscillation step for the current investigation was 0.25° and this step was sufficient to 

resolve the domains from the same grain. The resolution of the spots along η was 0.1°. Due 

to tetragonal crystal structure in BaTiO3, the distinction between (100) and (010) planes 

between the domains in the same grain is nearly impossible and it is difficult to resolve these 

reflections along φ and η. This drawback is known as spot overlap and it has been a limiting 

factor for finding the precise orientation of the domains. 

One of the major advantages of the 3D-XRD compared to other characterization 

techniques is the capability to resolve the crystallographic planes with opposite directions.  

These planes are called as “Friedel pairs” in literature. If we assume one of these spots 

diffracting at 0φ oscillation angle, 0η  azimuthal angle and θ2  diffracting angle at the 

detector, the Friedel pair of this spot will diffract at  
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0
22

01 tantan12θ η+2θ+ −+φ=φ   ; °+= 18001 ηη   (6.15)  

where 1φ  and 1η  are  the oscillation and azimuthal angle of its Friedel pair. The reflections 

that can be resolved from its Friedel pairs and don’t experience spot overlap in p4mm 

tetragonal structure are (001), )100(
−

, (002) and )200(
−

. Since these reflections can be 

resolved in φ and η, they can represent the domains within the grain. Among these 

reflections, the radial separation of the (002) diffraction ring is the highest. Therefore, the 

(002) and )200(
−

 reflections are in great interest because they have the highest radial 

resolution achievable with the current detector. According to crystal structure of BaTiO3, 

titanium atom is located in this crystal plane as well and this plane is more sensitive to study 

the strain and the orientation changes with applied electric field. 

Indexation attempt of the ferroelectric domains needs to be done carefully. Because there 

are several domains diffract within a half degree, the indexation based on all reflection 

families may create a slight deviation from the real orientation of the domains. In addition, 

depending on the angle between its scattering vector and rotation axis, the same reflection 

can appear at sequential phi sets. To find the center-of-mass of the reflections, a given hkl 

ring was binned along η and then integrated along 2θ. The resultant map is called “Phi-Eta” 

and by using this map, it is possible to find the center-of-mass of the reflections at ω and η. 

As of interest, eta-phi map for the (002) reflections is prepared and the center of mass of 002 

reflections is found based on the cubic grain and room temperature. Since (002) and )200(
−

 

reflections will not be sufficient to find the orientation of the domains and (001) and )100(
−

 

reflections will be linear to these reflections, other reflections are needed for finding the 

orientation. Because it has a high radial resolution and appears as a singlet along 2θ, (112) 

reflections can be used for candidate reflections. The normalized scattering vectors of these 

reflections in the sample system, G  [Poulsen, H. F. et al (2004)] can be written as: 
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where φ  is the rotation angle, g-1 is the orientation matrix with direction cosine components, 

λ  is the wavelength, 0η  is azimuthal angle and θ  is half Bragg diffracting angle at the 

detector. Scattering vectors can also be written by a rotation from the crystal to sample 

coordinate systems by using Eq. (6.16):  
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 This equation allows one to calculate the angle (δ ) between diffraction planes (G1 and G2) 

as: 

)cos(cos 21 GG ⋅=δ         (6.18) 

This angle ( )δ is also equivalent to interplanar angles [Pecharsky, V.K., Zavalij, P.Y. (2005)] 

and for tetragonal structure, φ  angle can be calculated as: 
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To find the orientations of the domains, the reflections from cubic grains were used as 

reference. During the cooling, the tetragonal reflections transformed from those cubic 

reflections were tabulated. Among tabulated tetragonal reflections, (002) and (112) 

reflections were used for fitting.  From these reflections, the angles between the tetragonal 

reflections are calculated via Eq. (6.17) and compared to theoretical interplanar angles for 

tetragonal structure Eq. (6.19). The angle between (002) and (112) reflections was found to 

be 35.51° by using Eq.(6.19) and the candidate reflections within a range of 0.1° of 

theoretical interplanar angles are fitted by using Eq. 6.19 and the orientations of the domains 

are found. The reflections from calculated orientations were also compared with the raw 

diffraction patterns by using “diffsim” software [Lauridsen, E.M. (2001), Schmidt, S. (2007)] 

and the orientations were verified for all reflections.  The deviation between the reflections of 

the fitted orientations and raw diffraction patterns was less than 0.05° in phi and 0.1° in eta. 
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In order to find the misorientation between the tetragonal domains and the cubic 

grain, the orientations are first mapped to corresponding fundamental regions respectively. 

While m3m point symmetry was used for cubic grain, 4mm point symmetry was used for 

tetragonal domains and misorientation was calculated by using ODF/PF software package 

from Cornell University [Dawson, P. (2005), Frank, F. C. (1988)]. As a convention, angle-

axis pairs were used. This convention has a major advantage to show the misorientation 

angle and axis with respect to the reference grain and it is helpful when describing the 

misorientation angle between domains with the domain boundary. 

6.2.2.1. Box Scan 

Intrinsic spot overlap is often a limiting factor in single grain investigations, esp. in 

ceramics. It has been demonstrated that this problem can be alleviated by taking repeated 

data sets while translating a smaller beam across the sample. Such ‘box scans’ also provide 

2D spatial information about the center-of-mass of the scattering unit. With recent advances 

in detector technology, the acquisition of such large data sets has become reasonably fast for 

in-situ investigations. Figure 6.14 shows the schematic principles of box scan.  

 

Figure 6.14. The “box scan” procedure: The sample is illuminated with a desired spot size. The 
spot size is further decreased to isolate overlapping peaks in the diffraction pattern and to 
locate the domains in 2D while changing the location of the sample. [Poulsen, H. F. (2004)] 
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 From the previous 3D-XRD experiment, it is well observed that the domain switching 

doesn’t involve a gradual domain rotation. In order words, the domains are switched to the 

most energetically favorable state by a displacive transformation. By combining the “box 

scan” technique, it is possible to study the local orientation distribution function of 

polycrystalline BaTiO3. The procedure for studying the local orientation distribution function 

is described by Poulsen et al [Poulsen, H. F. (2005)]. It is crucial to boost the analysis by 

implementing the local distribution functions.  

Box scan is the newly implemented routine to 3D-XRD technique to study the shape 

of the grain and distribution of the domain variants within the grain. In our experiment, the 

incoming beam is narrowed and sample was moved horizontally from -50 to 50 microns with 

5 micron steps. At each image, the sample is rotated along phi from -60 to 60 deg with 0.25 

deg steps. With box scan technique, it is possible to obtain 3D information of the tracked 

grains. We used this technique to track the morphology of the close spots along the sample 

and monitor the distribution of the domains within the grain.  Figure 6.15 (a) shows the 

distribution o the close spots and their distribution as beam is moved out of the sample.  The 

close spot appearing close to domain are shown at top left of the images stay diffract as the 

same behavior with the domain itself. The distribution of these close spots along the sample 

is shown Figure 6.15.b. This clearly shows that the close spot belongs to same grain and it is 

a subgrain feature. The detailed understanding of the subgrain feature is still underway and 

isn’t included here.   

 

Figure 6.15 (a) 
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(b) 

Figure 6.15. (a) The distribution of the close (200) spots along the sample coordinates. The spot 
at the center of the image belongs to the grain and the close spots appear at the top left portion 
of the image. (b) The distribution of the peak intensities when moving the sample. Blue color 
represent the spot belong to reference grain and green one is the close spot. 
 

6.2.3. Results and Discussion 

The phase transformation from cubic to tetragonal and the distribution of the domain 

variants within the grain was studied. The orientation relationship between the domains was 

revealed. As response to electric field, the volume fraction change between the domains was 

observed. The orientation changes with the electric change were studied. The distribution of 

the domains was also studied at above Curie temperature and room temperature.  

The first study was to observe the evolution of the hkl cubic peaks when cooling 

down to room temperature. This study was carried on by cropping the locations of the cubic 

reflections from summed oscillation images at ±0.5° φ and observing the changes in the cubic 

reflections when cooling to room temperature. Figure 6.16 shows the locations of (200) cubic 

reflections and their transformation to the tetragonal (200), (020) and (002) reflections when 

cooling down to room temperature. The cubic reflections were observed to be sharp and 

intense at above Curie temperature. When cooling to room temperature, the centrosymmetric 

cubic phase (pm3m) transforms to noncentrosymmetric tetragonal phase by first transforming 

to an intermediate noncentrosymmetric tetragonal phase (p4mm). During the phase 
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transformation from pm3m to p4mm, the cubic unit cell slightly contracts along a axis and 

expands along c axis [Buttner, R. H. (1992)]. During the further cooling to room temperature, 

the tetragonality increases by cooling and domains form at room temperature. 

(002) 

 

(020) 

 

(200) 

 

130°C 

  

100°C 

  

80°C 

  

50°C 

  

RT 

Figure 6.16. The evolution of 002 and 200 peaks by cooling to room temperature 
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Table 6.6 shows the orientations fitted with the routine described in Section 6.2.2 and 

misorientation angles of the domains with respect to cubic grain. The scattering vectors of 

the calculated orientations were compared with the experimental scattering vectors and the 

difference in φ and η was less than 0.1°. The domain A has the smallest misorientation with 

the cubic grain. Therefore, this domain can be considered as the parent domain. The 

orientation of Domain C can be obtained by rotating 89.74° around [0 1 0] axis of the cubic 

grain. This rotation is also equivalent to 180° rotation around the normal of tetragonal (101) 

plane. The theoretical misorientation angle of the domains can be calculated as )/(tan2 1 ca−  

where a and c are the lattice parameters. For BaTiO3, where c/a ratio is 1.0092, the 

theoretical misorientation angle between domains is 89.47°.  

Table 6.6. The list of orientation relationships of the cubic grains and their domain variants as 
cooling to room temperature. The orientations were expressed as tensor and angle-axis pairs. 

The misorientation between domain variants was defined with respect to cubic grain. 
 

Temperature 
130°C RT 

Orientation Matrix 
Orientation Matrix, 
Misor. Angle     Orien. ID 
0.607 0.295   0.738 
-0.750 0.519  0.409 
-0.262 -0.802 0.537 
 
0.32° [-0.35 0.05 0.94]         A 
0.741   -0.604   -0.294 
0.407    0.752   -0.518 
0.534    0.265    0.803 
 
89.9° [1 0 0]                        B1 
0.738   -0.604   -0.300 
0.403    0.752   -0.521 
0.541    0.264    0.799 
 
89.64° [-1 0 0]                     B2 

0.606   0.300   0.737 
-0.753  0.516   0.408 
-0.258  -0.802  0.538 
 
 

0.740    0.295   -0.604 
0.406    0.521    0.751 
0.536   -0.801    0.266 
 
89.74° [0 -1 0]                    C 
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One of the striking finding from Table 6.6 is that there are four tetragonal domains 

formed from the cubic grain. We expect 3 domains as each of polarization vectors of the 

domains will form along the main cubic axes. The domains B1 and B2 are first considered as 

the subdomains inside the grain because the misorientation angle between these two domains 

is 0.4734°. The smallest misorientation angle between the domains can be 1.2° where two 

domains can rotate around a common plane with positive and negative rotation. The close 

inspection of the domain microstructure confirmed that these domains are actually c domains 

where their polarization vectors pointed along z and –z direction. Because of the ambiguity 

in xrays where the positive and negative directions are not detectable, we see two close spots 

diffracting from domains pointing opposite directions. The crystal directions of these close 

spots are opposite as well and we see (002) and )200(
−

 crystal directions as close spots.  

Figure 6.17.a and b show the typical 3D arrangements of the ferroelectric domains in 

a grain and the schematic distribution of the polarization vectors of the domains respectively. 

The domains are separated from each other with domain boundaries. The microstructure in 

Figure 6.17.a is called “wedge shaped” in the literature [Merz, W. J. (1952)]. Arlt, G. (1990) 

discusses that this type of microstructure can have the minimum elastic energy. The domains 

in Figure 3.b is shown with their polarization vector directions with respect to sample 

coordinates. As shown in Table 1, domain A is pointed along x direction and this domain is 

more likely the parent domain due to its small misorientation angle with the cubic grain. The 

misorientation between domain A and domain B2 is 89.64° by rotation around [-100] axis of 

domain A. This clearly shows that the polarization vector of domain B2 is upwards along z 

direction. They are separated by (011) domain boundary. The misorientation angle and axis 

between domain A and C is 89.74° [0 -1 0]. The polarization vector of domain C is along y 

axis and these domains are separated by (-101) domain boundary. Finally, the misorientation 

between domain A and B1 is 89.9° around [100] axis of domain A. Based on this model, the 

misorientation angle between domain B1 and B2 was found as 0.52° and this angle is well 

matched with the misorientation angle found from the domains (i.e. 0.4734°). The three-

dimensional arrangement of the domain variants is assumed to repeat itself inside the grain.  



 

 

94 

 
(a) 

 
(b) 

 
Figure 6.17. Schematic 3D arrangement of the ferroelectric domains. (b) The schematic 

distributions of the polarization vectors of the domains in sample coordinates. 
 

When cooling from Curie temperature, each grain breaks up to domains to reduce the 

overall energy of the system [Arlt, G. (1990)]. Figure 6.18 shows the [100], [010] and [001] 

directions of the cubic grain and domain variants in pole figure as stereographic projection. 

For clarity, Wulf plot was overlaid to pole figure. The c axes of the domains are marked with 

red colors and the direction of the e-field was shown in Y axis as well. As clearly seen, the 

cubic crystal directions transform to tetragonal when cooling to room temperature and due to 

tetragonality, each cubic crystal directions break up to domains. For instance [100] cubic 

direction breaks up to [100], [010] and [001] tetragonal directions and each direction is 

shared by a domain. As shown in close-up view in Figure 4 the angle between the crystal 

directions of the domains is around 0.6° i.e. °−− 90)/(tan2 1 ac  where c/a ratio is 1.0092 for 

BaTiO3. While forming the domains, it is also seen in Figure 6.18 that transformation from 

cubic to tetragonal is displacive and doesn’t involve a significant grain rotation.   
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Figure 6. 18. {100} pole figures as a stereographic projection at above Curie and room 
temperature. The Wulf plot was overlaid for clarity. The orientations with letters at room 
temperature are shown in Table 1 and they are the domain variants within the grain. The 
electric field direction is Y-axis and the angles between c-axis of the domains (shown in red 
color) and the electric field are shown as well. 

 

Figure 6.19 shows the φ-η distribution of the (002) reflections of the domain variants 

at above Curie temperature and room temperature. This distribution is obtained by binning 

(002) diffraction rings along η and integrating along 2θ. The markers at each map show the 

predictions of the calculated orientations found by technique described earlier and there is a 

good correlation between calculated and observed reflections. Figure 6.19 also shows the 

Friedel pair of the same reflections and Friedel pair of Domain A is missing because it 

diffracts out of oscillation range. From Table 1, Domain A has the same orientation with the 

cubic grain and appears as uniform domain with no close spots. Domain B1 and B2 appear as 

close spots and one might consider them as directly in contact and separated by a coherent 

domain boundary. As described previously, these domains are actually pointing along the 

opposite directions and we observe them close spots due to ambiguity of detecting opposite 

directions in x-rays. The neighboring close spots are considered as not belonging to the same 
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grain because they have cubic reflections and they don’t transform from the parent cubic 

reflections. The neighboring close spots that are not appearing at Friedel pairs are also 

considered as spots that diffract coincidentally at given φ and don’t belong to same grain. 

Domain C appears as uniform domain as well. Between Domain A, B1, B2 and C, there are 

domain boundaries with a transition region and the orientation relationship of the domains is 

explained in Figure 6.18.  

 
Figure 6.19. The phi-eta distribution of (002) reflections of the domains. The markers A, B and 
C represent the orientations shown at Table 1. The figures with a similar pattern are from 
Friedel pairs of the same reflections. 

 

Electric field was applied to the sample up to 10kV/cm. Considering the coercive 

field of BaTiO3 was measured as 5.14 kV/cm, the applied electric field was enough to trigger 

the domain switching. In order to quantify the overall change in the orientation of the 

domains, the orientations of the domains are calculated from its reflections at given electric 

field. The overall change was expressed with the misorientation angle between the domain at 

given electric field and the same domain with no electric field. Figure 6.20 shows the 

orientation change of the domains with applied electric field. Except the domain 

perpendicular to electric field, no significant domain rotation was observed.  
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Figure 6.20. The orientation change of the domains with applied electric field 
 

In order to understand why domains behave to the electric field differently, the angle 

between c axis of the domain and the electric field direction was calculated from the 

orientation matrices of the domains. We define this angle as “polarization angle”.  The 

polarization angles for Domain A, B1, B2 and C are calculated as 65.8°, 58.8°, 58.6 and 

41.3°. Since domain A has a large polarization angle, the application of the electric field is 

expected to cause the domain switching in greater scale in this domain. Therefore, the 

orientation change of this domain was observed to be the highest. This is also a proof that 

domains don’t rotate during the poling process. The domain walls move as respond to 

electric field and the volume fraction of the domains will favor on the domain is the most 

energetically favorable. 

There is a direct relation between the volume of the domain and the integrated 

intensity of the domain. In order to observe the volume fraction change between domain 

variants with applied electric field, the integrated intensities of the domains were calculated 

and the volume fraction of the domain within a grain ( df002 ) can be found as:  
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where dI 002 is the integrated intensity of (002) spot from a domain and dvI 200  and dvI 020  are the 

integrated intensity of the (200) and (020) reflections of the remaining domain variants 

within the grain. The reflections are taken from the domain variants shown in Figure 4. To 

eliminate the effect of the Lorentz factor, the domain variants that diffract at the same η and 

φ are taken. For instance, (002) reflection of the domain A diffracting at η=122.5° and 

φ=58.4° is compared with the (200) and (020) reflections of the domain variants B1, B2 and 

C ant the same η and φ. For many cases, dvI 200  and dvI 020  are difficult to resolve due to spot 

overlap and the sum of these overlapped spots are taken in the calculation. To improve the 

statistics, the Friedel pair of the spot is measured as well.  

Figure 6.21 shows the volume fraction change in the domain variants with applied 

electric field. The polarization angles for Domain A, B1, B2 and C are calculated as 65.8°, 

58.8°, 58.6 and 41.3°. The application of the electric field favors for the domain that is close 

the electric field direction. In this case, Domain B1 and B2 are the most favorable domain 

with its low polarization angle. Indeed, the volume fraction of Domain B1 and B2 increases 

with electric field up to 10kV/cm. This is due to lattice configuration and the polarization 

angle of the subdomains. With its high polarization angle, the volume fraction of Domain A 

decreases by around 50%. The volume fraction of domain C increases with electric field as 

well but this increase is not as significant as domain B1 and B2. Beyond 10kV/cm, it is 

expected that the fraction of the energetically favorable domain variant increases. Due to 

grain boundaries and local boundary conditions, the overall switching from one domain is not 

complete.  The higher electric field can be achieved by immersing the sample in a dielectric 

liquid but this has not been feasible in our setup because the sample needs to be exposed to 

heating prior to electric field to track the evolution of the same grain.  
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Figure 6. 21. The volume fraction change in the domains with the electric field. The error bars 
shows the independent measurements from Friedel pairs. The volume fraction was calculated 
from Eq. (6.20) which doesn’t require a correction of Lorentz factor because the domain 
variants diffract at the close η and φ.  
 

As seen in the orientation relationships of the domains, there is a slight deviation in 

the misorientation angles between domains and parent grain when cooling down to room 

temperature. This may come from the mismatch between the lattice parameters of the local 

domains and the creation of the spontaneous deformation during the cooling process. Figure 

6.22 shows the schematic depiction of the pseudo-90° domains. The spontaneous 

deformation of the domains creates a mismatch in the domain walls and results in the rotation 

of the domains to reduce the spontaneous strain between the domains. This mechanism can 

also be considered as domain clamping effect during the cooling. As described with details in 

Appendix 7, Nepochatenko, V. A. (2006) modeled the mismatch angle between domains and 

this angle can be calculated as:  

)
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+
+=Ψ −       (6.21) 

where a and c correspond to lattice parameters of the domains. Considering the lattice 

parameters for the BaTiO3 sample were measured as a=0.39836 and c=0.40198 nm, the 

phase matching angle can be calculated as 0.314°. This angle is very close to the 

misorientation angle between the parent grain and domain. Most of the domains still deviate 

from the theoretical values which show the local lattice parameters of the domains that differ 
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from the average values.  One explanation can be the Jahn-Teller effect which corresponds to 

a geometrical distortion in the oxygen tetrahedral due to deviations of the local domains.  

 
Figure 6.22. Schematic depiction of structure of pseudo-90° walls [Nepochatenko, V. A. (2006)]. ψ 
corresponds to phase matching angle between the domains.  

 
The transformation mechanism of the cubic grain to tetragonal domains is further 

studied with more grains. Table 6.7 shows the grains investigated and the orientation 

relationships of the grains with the corresponding domains.  

 

Table 6.7. The orientation relationships of the grains and domains when cooling down to room 
temperature 

 

Grain Orientation 
Grain Number 

Domain Orientations 
Misorientation Angle and Axis 

    0.909   -0.029   -0.416 
   -0.344    0.511   -0.788 
    0.235    0.859    0.454 

135 

    0.416    0.909    0.028 
    0.791   -0.346   -0.505 
   -0.449    0.233   -0.863 

 B1 0.42° [0.91 0.2 0.36] 
 
   -0.903    0.429    0.030 
    0.355    0.783   -0.511 
   -0.243   -0.451   -0.859 

 B2 0.7° [0.06 -0.27 -0.96] 
 
   -0.909    0.025   -0.416 
    0.346   -0.510   -0.787 
   -0.232   -0.859    0.455 

 A 89.95° [1 0 0] 
 



 

 

101 

Table 6.7 (Continued) 

 

    0.417    0.908    0.022 
    0.785   -0.348   -0.512 
   -0.458    0.231   -0.859 

 C 0.34° [0.65 0.7 0.29] 
 
   -0.410    0.912   -0.020 
   -0.791   -0.345    0.505 
    0.454    0.224    0.863 
0.74° [0.2 0.67 0.72] 

0.882   -0.412   -0.229 
0.235    0.806   -0.543 
0.409    0.425    0.808 

208 

    0.880    0.238   -0.411 
    0.228    0.546    0.806 
    0.417   -0.803    0.427 

89.93° [-1 0 0] 
 
    0.883    0.222   -0.413 
    0.236    0.550    0.801 
    0.405   -0.805    0.434 

89.46° [-1 0 0] 
    0.883   -0.412   -0.227 
    0.235    0.805   -0.545 
    0.407    0.427    0.807 

0.17° [0.73 0.54 -0.42] 

   -0.656    0.507   -0.559 
   -0.729   -0.232    0.644 
    0.197    0.830    0.521 

218 

    0.508   -0.564   -0.651 
   -0.227    0.641   -0.733 
    0.831    0.520    0.198 
89.74° [0 -1 0] 
 
   -0.656    0.506   -0.560 
   -0.728   -0.229    0.646 
    0.199    0.831    0.519 
89.85° [1 0 0] 

    0.091   -0.995   -0.043 
    0.178    0.058   -0.982 
    0.979    0.082    0.183 

327 

   -0.995   -0.037    0.093 
    0.054   -0.982    0.180 
    0.085    0.184    0.979 

0.36 [0.39 0.28 0.88] 
 
    0.092   -0.995   -0.045 
    0.174    0.060   -0.983 
    0.980    0.082    0.179 

89.79 [-1 0 0] 
    0.092   -0.995   -0.041 
    0.171    0.056   -0.984 
    0.981    0.083    0.176 

89.61° [-1 0 0] 
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One of the grains (#135) in Table 6.7 was further investigated. Figure 6.23 shows the 

(002) directions of four domains.  (002) crystal direction of this grain gradually transforms to  

four domains.  

 

 
Figure 6. 23. Evolution of 002 reflections with temperature and electric field 

 
The integrated intensity values of the domains shown in Figure 6.24 are calculated 

and the volume fractions of the domains are studied with the electric field. Figure 6.24 shows 

the evolution of the volume fraction of the domains with applied electric field. With 

application of electric field, the volume of the Domain A decreases while Domain C 

increases. Domain B1 and B2 remain unchanged with the application of electric field. 
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Figure 6. 24. The evolution of the volume fractions of the domains with the electric field 

6.2.3.1. Lattice Strain by Domain Switching and Temperature 

The evolution of the triaxial strain state of the polycrystalline BaTiO3 as response to 

electric field was studied in macroscopic and mesoscopic scale. In macroscopic scale, the 

strain evolution was investigated from parallel to perpendicular direction of applied electric 

field. In mesoscale, the strain evolution of the domains within a grain was studied. The 

results were compared with the strains obtained from piezoelectric constants of BaTiO3. 

6.2.3.1.1. Macroscopic Strain 
 

Figure 6.25 (a) shows the lattice strain evolution of the ferroelectric BaTiO3 with 

applied electric field. The results were obtained by powder averaging the diffraction data and 

then observing the changes in the interplanar spaces of the diffraction planes. Since the 

direction of the applied electric field has a direct effect on the texture of the domains, the 

parallel direction to the applied field are studied because they will experience highest degree 
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of the domain switching. The position of the hkl peaks were found by single peak fitting. 

With the application of electric field, the highest strain was seen in (111) and (202) planes. 

While there is a compressive strain developed in (002) plane, no significant amount of strain 

was observed in (200) plane with applied electric field. 

Figure 6.25(b) shows the lattice strain tensor evolution of the same sample with 

applied electric field. The lattice strain tensor was obtained from lattice strains shown in 

Figure 6.25(a). With the application of electric field, a tensile strain was observed along the 

yy and xz direction. YY direction corresponds to the applied electric field direction and a 

tensile strain is developed along the electric field.  Development of a tensile strain was also 

observed along the shear direction (XZ) to the applied electric field direction.  

 

   
 

Figure 6.25 (a) 
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  (b) 
 
Figure 6. 25. (a) Lattice strain evolution of the ferroelectric BaTiO3 with applied electric field. 
(b) Lattice strain tensor evolution of the same sample with applied electric field 
 

6.2.3.1.2. Mesoscopic Strain 
 

As the technique described above, the lattice strain tensor can be measured from 

powder average and domain variants. In order to confirm the strain free material as cooling 

down to room temperature, the first study was based on studying the evolution of the hkl 

cubic peaks when cooling down to room temperature. This study was carried on by summing 

oscillation images along phi and caking along radial direction from 0 to 360°. Figure 6.26 

shows the caked diffraction patterns from different temperatures and the evolution of the 

peak splitting when cooling to room temperature. At each temperature, the positions of the 

diffraction peaks were found with Gaussian fitting function and spot strains were calculated 
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compared to cubic grain.  We see the largest lattice change from [h00] and [00l] type peaks 

up to 5500 microstrain (=0.55%).   

 

(b) 
Figure 6.26. hkl lattice change of BaTiO3 during the cooling from above Curie temperature to 
room temperature  

 

With applied electric field up to 10 kV/cm, the overall lattice strain tensor for the 

powder average was found to be: 

Applied Field, kV/cm Strain Tensor (ijε ) 

5kV/cm   









 −

29

90159

04056
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10kV/cm   










−
−−−

41

74503

4029275

 

As the lattice strain tensor are shown in microstrain (i.e. 10-6). If the results are compared 

with the piezoelectric constants of the single crystal BaTiO3, around 600 microstrain is 

expected along yy direction where the electric field direction is. Here the results are offers a 

good agreements with the calculated values when considering the strain resolution at APS 

Sector 1-ID is 10-4 (100 microstrain).  

The lattice strain tensors of the ferroelectric domains are calculated by fitting the 

overall change of the diffraction peaks belong to the domains.  As reference, the peak 

positions at room temperature and zero electric field are taken. To improve statistical errors, 

the Friedel pairs of the same spots are measured as well and the average values are taken as 

within 100 microstrain. With the application of the electric field up to 5kV/cm, the lattice 

strain tensors of the ferroelectric domains are found as: 

Domain ID  Strain Tensor (ijε ) 

B   











− 511

0800

0013

 

C   











−
−
−−

211

74552

402920

 

where the marked domains are confirmed to be present in the grain tracked. As compared to 

powder average, the slightly higher normal strains along yy axis are observed with the 

application of electric field in these domains. This is due the local variation of the domains 

compared to powder average. One also can note that Domain B has slightly larger normal 

strain than Domain C. This can be explained by the angle between c-axis of the domains with 

respect to electric field, so-called “polarization angle”. The polarization angles for Domain B 

and C are calculated as 65.9° and 41.3°. Since the Domain B has larger angle with respect to 

electric field, we can expect slightly higher normal strain along electric field direction.  



 

 

108 

6.2.3.1.3. Comparison with Model 
 

The measured strain values are the ones measured directly from the material. In order 

to compare the strain findings with the data itself, the strain values were calculated from the 

constitute relations. The three dimensional strain state will be directly proportional to the 

piezoelectric tensor, applied electric field and the applied stress. By assuming the material 

was stress free during the experiment, the strain tensor can be calculated from the 

piezoelectric coefficients of BaTiO3 by applying electric field.  The constitutive relations of 

the strain [Jaffe, B. (1971)] are 

kl
E
ijklkijkij TSEdS +=       (6.22) 

 
where Sij is the strain tensor, dijk  is the piezoelectric coefficient tensor, Ek is the applied 

electric field, E
ijklS  is the compliance tensor and Tkl is the stress tensor. For BaTiO3, 

piezoelectric coefficient parameters [Simmons, G. et al. (1971)] used were d15=580, d13=-50, 

d33=191 in 10-12 C/N and compliance parameters are used as S11=0.8050, S12=-0.235, S13=-

0.524, S33=1.57, S44=1.84, S66=0.884 in 10-12 m2/N. Figure 6.27 shows the strain evolution of 

BaTiO3 with applied electric field. 
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Figure 6.27. The strain evolution of BaTiO3 with applied electric field 
 

Compared to constitutive relations of the BaTiO3 with the measured data, we can 

observe discrepancies in the strain evolution. Rather than a strain development suggested by 

the constitutive relations of BaTiO3, we observe a shear strain development perpendicular to 

the applied field direction.  

The overall strain measured from powder average and the ferroelectric domains 

suggest that the strain developed with applied electric field is rather small. The main source 

of the discrepancies is the complicated domain pattern which makes a challenge to accurately 

characterize the mesoscale domain dynamics. To date, most research has concentrated on 

averaging the bulk behavior and ignoring the contribution of the individual domains. As 

recalled, in tetragonal symmetry, electric field can lead to both 180° and 90° domains while 

mechanical stress can cause only 90° domain switching [Berlincourt, D. (1959)]. While Merz 
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[Merz, W. J. (1952)] indicated that the final domain structure must contain all 180° domains, 

Merz, W. J. (1952) later observed reoriented 90° domains as high electric fields. In another 

interesting research, Danielson, G. C. (1949) investigated the domain orientation in 

polycrystalline BaTiO3 under applied electric field and found that 80% of the polycrystal 

consists of 180° domains while rest is 90° domains. Berlincourt, D. (1959) predicted that 2/3 

of the total polarization occurs due to 90° domains switching, 1/6 occurs due to 180o 

switching and the rest is due to the intrinsic piezoelectric effect. Since the 90° reorientation 

of domains requires more energy, the fraction of the 90° domains is not usually significant in 

the final microstructure.  All of these studies, however, relied on bulk averaging or surface 

characterizations.  Berlincourt, D. (1959) also predict the highest achievable strain in the 

single crystal ferroelectrics is c/a=0.37% when all the domains experience 90° domain 

switching. Since the remnant polarization of the polycrystalline ferroelectrics (around 

8µC/cm) is one/third of the one in single crystal (26 µC/cm), the highest achievable strain in 

polycrystalline ferroelectric will be 0.12%. This value agrees well with the experimental 

findings. The present study attempts to offer more detailed information on domain switching 

in polycrystalline ferroelectrics. 

6.3. Microdiffraction 

The Scanning X-Ray Microdiffraction experiments were conducted at the 

microdiffraction end-station (initially at Beamline 7.3.3, lately at 12.3.2) of the Advanced 

Light Source at Lawrence Berkeley National Laboratory, Berkeley, CA. These experiments 

concentrated on the evolution of domains in polycrystalline BaTiO3 with the temperature and 

electric field.  

6.3.1. Evolution of Ferroelectric Domains around th e Curie Temperature 

The evolution of ferroelectric domains inside a single grain of a polycrystalline 

BaTiO3 ceramic was investigated under quasistatic heating by using polychromatic scanning 

X-ray microdiffraction (µSXRD). Four domain orientations were observed from certain 

reflections and the 180° domain wall separating two domains was measured to be 180.47°. 

While heating the polycrystalline BaTiO3 from room temperature to above the Curie 

temperature (125°C), the ferroelectric domains rotate towards the paraelectric cubic 
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orientation. The crystallographic relationships of the domains with respect to paraelectric 

phase were explained using a domain structure model by Nepochatenko, V. A. (2006). With 

the direct experimental observations, the technique was proved to be capable of studying 

ferroelectric domains embedded in polycrystalline ferroelectrics. 

6.3.1.1. Introduction 

Ferroelectric materials have been extensively used in microelectronic and sensing 

applications for more than 50 years because of their excellent piezoelectric properties [Jona, 

F. (1962)]. BaTiO3 was one of the first commercially viable ferroelectrics [Jaffe, B. (1971)] 

and has been one of the most widely investigated ferroelectrics with its simple and well-

known structure [Haertling, G. H. (1999)]. Upon cooling from a paraelectric phase, the polar 

axes of the individual clusters within a ferroelectric BaTiO3 can orient in certain 

crystallographic directions to minimize the overall energy of the system [Arlt, G. (1990)]. 

These individual clusters are called ferroelectric domains. The orientation of the domains 

depends on the crystal structure and the spontaneous polarization of the ferroelectric domains 

can be parallel to a cube edge (6 possible directions in total), body diagonal (8) and face 

diagonal (12) for tetragonal, rhombohedral and orthorhombic symmetries, respectively [Li, F. 

X. (2006)]. For tetragonal ferroelectrics, the final microstructure is composed of 90° and 

180° domains where the polarization vectors of adjacent domains are perpendicular and 

parallel to each other, respectively.  Since the c/a ratio of BaTiO3 is not unity, γ, the angle 

between c axes of two 90° domains is 

  )(tan2 1

c

a
−=γ         (6.23) 

For example, γ = 89.44° for polycrystalline BaTiO3 with c/a=1.0098 [Harada, J. et al. 

(1970)]. Therefore, the angle between a and c axes of two adjacent domains is 0.54°.  

Due to the relative ease of conventional ceramic processing [Jordan, T. L. (2001), 

Rogan, R. (2003)], the most commonly employed ferroelectrics are processed in 

polycrystalline form in which the material is composed of a collection of crystallographic 

grains with distinct orientations. In ferroelectric polycrystalline materials, each grain contains 
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domains that are oriented with respect to one another by specific crystal symmetry 

operations. The domains belonging to the same grain are referred to as domain variants. The 

domain structure in ferroelectric ceramics exhibits a more complex pattern compared to 

single crystals. Several techniques such as transmission electron microscopy (TEM) [Tan, X. 

(2004), Schönau, K. A. (2007)], White Beam Topography [Huang, X. R. (1996)], Electron 

Back Scattering Diffraction [Ernst, F. et al (2001)], optical microscopy and atomic force 

microscopy [Balakumar, S. et al (1997), Kalinin, S.V. (2001)], etc. have been used to 

characterize the ferroelectric domain structure but quantitive information on the orientation, 

strain and mesoscale dynamics within the ferroelectric domains are often lacking.  

Temperature dictates both the formation of the ferroelectric phase from the 

paraelectric phase and the lattice aspect ratio of the ferroelectric phase, the latter of which 

affects the orientation relationships (Eq. 1). Experiments as a function of temperature can 

therefore be useful to measure the evolution of mesoscale domain patterns in polycrystalline 

ferroelectrics. During cooling from an elevated temperature, the domain variants experience 

a phase transformation from cubic to tetragonal and the orientation of the grain can be 

distinctly determined.  

Ferroelectrics are extremely sensitive to the nature of the surface, defect structure, 

sample preparation [Chen, J-H, (2005), Chang, W. (2007)] and sample geometry [Lines, M. 

E. (1977)]. Therefore, surface-sensitive characterization techniques may measure behavior 

that is not representative of the bulk. Synchrotron-based polychromatic Scanning X-Ray 

Microdiffraction (µSXRD), on the other hand, is a promising non-destructive tool with 

greater penetration depth than these other techniques (25µm penetration depth in BaTiO3 at 

5-16 keV as compared to 5 µm using conventional laboratory X-rays or electron 

microscopy), adequate resolution in strain (0.02%) and crystallite orientation (0.01°) as well 

as microfocusing capability providing submicron spatial resolution [Goudeau, P. et al 

(2005)]. The fundamental principles of Laue or polychromatic X-Ray microdiffraction have 

been described elsewhere [Chung, J-S. Ice, G. E. (1999)] and only a brief introduction is 

provided here. Laue microdiffraction utilizes microfocused polychromatic X-rays to 

illuminate an area of the sample as small as 1 µm2. Multiple diffracting planes then provide a 

Laue diffraction pattern of individual crystalline grains  from a small region of material 
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embedded in a polycrystalline material. Laue microdiffraction can be used in scanning mode 

(polychromatic µSXRD) by raster-scanning the sample under the X-ray microbeam and 

measuring a Laue pattern at each step to obtain orientation and/or strain maps of the sample. 

Furthermore, the recent implementation of fast data acquisition and analysis programs such 

as XMAS (X-Ray Micro Analysis Software) [Tamura, N. (2003)] as well as the development 

of high-precision diffractometers [Tamura, N. (2003)] provides unique opportunities for 

µSXRD. In the present work, the µSXRD technique is used to study the local, microscale and 

mesoscale behavior of polycrystalline ferroelectric materials during heating.   

6.3.1.2. Experimental Procedure 

A polycrystalline BaTiO3 ceramic was prepared using conventional high temperature 

sintering [Bryne T.A., (2004)] of BaTiO3 powder (99.9% purity, with Ba/Ti ratio=1.00, Ferro 

Corp., Transelco Division). The nominal grain size was measured as approximately 20 µm as 

determined from an independent EBSD study with a BaTiO3 sample from the same batch. 

The sample dimensions measured 1 mm x 1 mm x 5 mm and no electric field was applied 

prior to the experiment. The sample was attached on a heating element by using high 

temperature conductive glue (AA-Bond 200 Adhesive) to prevent sample movement during 

heating. The heating stage consists of a sample holder and a heating element bound by an 

Indium-Gallium coating to increase the conductivity. The temperature profile was monitored 

by one thermocouple attached to the surface of the sample (Fluke 87IV True RMS 

Thermometer), one from the heating element (Extech 421307 thermometer) and one with the 

IR thermometer (Extech Mini IR Thermometer 42500) pointed to the surface of the sample 

throughout the experiment. The sample was heated with steps up to and above the Curie 

temperature. The temperature variation between the thermometers did not exceed ±5°C for 

any temperature step. 

For capacitance measurements, a sample was selected from the same batch and its 

surface was polished with fine paper to remove any surface contamination. The sample 

surfaces were sputtered with gold and a drop of silver paint was placed on the top of the 

electrodes to ensure a good electrical contact. Capacitance measurements were conducted 

using a Keithley 3330 LCZ meter at 0.1, 1, 10, and 100 kHz. Capacitance versus temperature 
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measurements took place in an environmental chamber by heating up to 150°C with 5°C/min 

heating rate and cooling back to room temperature. The capacitance response of the BaTiO3 

sample was recorded during the heating followed by cooling and only the heating part is 

included the present work because the measurements during cooling are identical to those 

measured during heating. The temperature was measured with a thermocouple placed in the 

vicinity of the sample.  

µSXRD experiments were carried out on the X-ray microdiffraction end-station 

(7.3.3.) at the Advanced Light Source (ALS). The instrument has a capability of delivering 

X-ray white beam (5-14 keV) with less than 1 µm beam size by using a pair of elliptically 

bent mirrors in a Kirkpatrick-Baez configuration [Tamura, N. (2003)]. The diffraction 

patterns were collected with an area scan at room temperature and repeating at higher 

temperature steps. At each position of the area scans, the sample was exposed to X-rays for 2 

seconds. The back-reflection Laue diffraction patterns produced by the white X-rays with 1 

µm beam size were recorded using an X-ray CCD detector (MAR133) mounted on a vertical 

slide. The active area of the CCD camera had a diameter of 133 mm and we used the 

1024x1024 pixels binned mode. The sample surface was set at 45° relative to the incoming 

beam and the detector. The distance from the CCD to the sample and the center of the 

diffraction patterns on CCD detector were determined to be 63.00 mm and 640.5, 514.2 

pixels respectively. 

The collected white-beam (Laue) diffraction patterns were analyzed with the custom 

XMAS software developed at the ALS. XMAS is capable of determining the positions of the 

reflections with subpixel resolution by using two-dimensional profile functions such as 

Gaussian, Lorentzian or Pearson VII. By using the peak positions and lattice parameters of 

BaTiO3, each reflection was indexed with (hkl) indices. After indexing, the crystal 

orientations as an orientation matrix and the deviatoric strain tensor were obtained for each 

domain belonging to the illuminated area. The lattice parameter values of BaTiO3 at room 

temperature used for the indexing procedure were a = 3.9947 Å and c = 4.0336 Å [Rogan, R. 

(2003)].  

 The orientation matrices in XMAS define the coordinates of the crystallites in the 

sample coordinate system unlike the standard definition of the orientation matrices as the 
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direction cosines between the crystallites and the sample axes. Therefore, the orientation 

matrices must be normalized with the corresponding lattice parameters to convert the 

standard orientation matrices. The resultant orientations are a set of rotations that are a 

function of crystal symmetry. A proper representation of the orientations is important 

because the misorientations between differing orientations should be independent of the 

crystal symmetry. Therefore, the orientations are required to be mapped to a unique solution, 

fundamental region [Frank, F. C. (1988), Morawiec, A. (1997)], in the orientation space. 

Fundamental region [Sundararaghavan, S. (2007)] represents a region in the orientation space 

where the all symmetrically equivalent orientations can be mapped into a uniquely 

determined one. In order to find the misorientation between the orientations of the domains, 

the orientations were mapped into the corresponding fundamental region with the symmetry 

operators in corresponding crystal structures. The fundamental regions of the cubic grain and 

tetragonal domains were determined with m3m and 4mm point symmetry respectively. The 

misorientations between the grain-to-domains and domains-to-domains were calculated by 

using ODF/PF software package from Cornell University [Dawson, P. (2005), Frank, F.C. 

(1988)]. As the misorientation convention, angle-axis pairs were used. This convention has a 

major advantage to show the misorientation angle and axis with respect to the reference 

grain, information that is helpful when describing the misorientation angle between domains 

and the rotation axis between the domain variants.  

6.3.1.3. Results and Discussion 

Figure 6.28 shows the capacitance versus temperature profile of the BaTiO3 sample 

measured at several different frequencies. The peak in capacitance was measured as 125.32 

°C ± 0.06°C for all four frequencies.  
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Figure 6.28. Capacitance change in BaTiO3 as a function of temperature 
 

Diffraction images were collected from the polycrystalline BaTiO3 at each 

temperature step. At each temperature, an area of 50 µm2 was scanned using 1.5 µm steps. At 

room temperature, the diffraction pattern shows four close spots. One of these grains was 

selected as reference and the diameter of this grain was found to be 16.5 µm by translating 

the stage and observing the distance required for significant changes in the diffraction pattern 

that are indicative of sampling a different grain orientation. Figure 6.29 shows the diffraction 

patterns of the reference grain recorded at room temperature (Fig. 6.29a) and 150°C (Fig. 

6.29b), at temperature which is above the Curie temperature of BaTiO3. During the heating 

cycle from room temperature to above the Curie temperature, the spots gradually converge to 

one. This is illustrated in an enlarged portion of the diffraction pattern in Figure 6.29c. 

Preceding the phase transformation from tetragonal to cubic, the ferroelectric domains rotate 

to the overall orientation of the grain. At a temperature of 125°C, only one spot can be 

distinguished in the diffraction pattern. The coalescence of the diffraction spots correlate 

with the capacitance measurements presented in Figure 6.28 and, therefore, the evolution of 

the ferroelectric domains within the grain. Furthermore, the relative positions of the spots as 

a function of temperature mimic the changes in the lattice parameters as a function of 

temperature. These observations suggest that the four different spots correspond to four 
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unique domain orientations in a tetragonal perovskite crystal, a result which is consistent 

with the expected domain wall orientations [Sapriel, J. (1975), Nepochatenko, V. A. (2006)].  

 
(a) 

 
(b) 

 
(c) 

Figure 6.29. Laue diffraction patterns of BaTiO3 recorded at (a) room temperature, (b) above 
Curie temperature (150°C). (c) The evolution of (215) spots of ferroelectric domains in BaTiO3 
sample as a function of temperature. Four spots become spot E at temperatures above the Curie 
temperature 

 

The diffraction spots can be reconciled with the domain structures as follows. When 

the spontaneous polarization is formed with respect to a paraelectric cubic structure, several 

different 90° domain wall orientations can form. For instance, for a spontaneous polarization 

developed parallel to the [001] crystal direction, the domain walls can form parallel to 

(101), )011(
−

, (011) and )110(
−

 planes, creating four domains with perpendicular polarization 

vectors relative to the [001] polarization direction. These four neighboring domains would 

have spontaneous polarization vectors parallel to [100], [010], ]001[
−

 and ]010[
−

. In absence 

of a domain architecture model in which to reconcile the formation of such domains in real 
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space, the domain walls separating ]001[
−

 and [100] domains are typically referred to as 180° 

domain walls as their orientations can be reproduced from one another though a 180° 

crystallographic rotation. However, the domain architectures in real space can provide more 

information that is critical to interpreting the µSXRD measurement. A typical “wedge 

shaped” domain architecture in polycrystalline ferroelectrics is shown in Figure 6.30(b) 

[Merz, W. J. (1952)]. Arlt, G. (1990) discusses that this type domain architecture exhibits the 

minimum elastic energy. In Figure 6.30(a), the schematic distributions of the domain variants 

at room temperature are shown as crystal directions. The structure exhibits four domain 

variants with virtual polarization vectors pointed parallel to [001], [100], [010] and ]100[
−

 for 

domains A, B, C, and D, respectively. The domain walls between domain A and C, C and B, 

B and D, D and A are (101), (110), (011) and (110) respectively. The angle between the 

polarization axis of A and C is defined by Eq. (6.23) and will be equal to a value less than 

90°. The angle between C and B is also an angle less than 90° as well as the angle between B 

and D. Thus, when describing the orientation of domains A, C, B, and D in sequence, the 

polarization direction of A is not found to be antiparallel to the polarization direction of D. 

Instead, the two domain orientations are related through an angle that will be referred to as 

the mismatch angle. The mismatch angle is developed during the cubic-to-tetragonal 

transformation and can be obtained by applying the spontaneous deformation transformation. 

The angle between the ferroelectric domain and the paraelectric phase corresponds to phase 

matching angle as described by Nepochatenko, V.A. (2006) and is given by the equation 
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where ε11, ε22 are the spontaneous strain components ( 0011 /)( aaa −=ε , 0022 /)( aac−=ε ) 

that represent the lattice parameters for cubic phase (a0) change to tetragonal (a, c). The 

mismatch angle between 180° domains corresponds to twice the phase matching angle 

between the ferroelectric and paraelectric phase developed during the cubic-to-tetragonal 

phase transformation to maintain the strain compatibility between neighboring domains 

[Sapriel, J. (1975), Nepochatenko, V. A. (2006)]. In order to satisfy the mechanical 
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compatibility, the neighboring domain must share a domain wall with the paraelectric phase. 

Considering the paraelectric phase doesn't change during the cubic-tetragonal phase 

transformation, the neighboring domain must share a domain wall with the paraelectric 

phase. The domain pairs then have domain walls that are perpendicular to each other. For 

instance, if a domain is separated with the paraelectric phase with (101) domain wall, the 

neighboring domain must be separated with )011(
−

 domain wall with the paraelectric phase in 

order to have common and stable paraelectric phase that does not change during the phase 

transformation. Such domains develop a phase matching angle with respect to paraelectric 

phase with and separated with (±ψ) as described by Nepochatenko, V. A. (2006). 

The crystallographic orientation of domain A is therefore not related to the orientation 

of domain D by a rotation of 180°, even though they are classically defined as 180° domains. 

Instead, their respective orientations can be calculated by a crystallographic rotation of 

approximately 180.55° (using values of a = 3.9947 Å and c = 4.0336 Å [Rogan, R. (2003)]).  

The structural nature of the interface between domains of this type is not considered in the 

present work, although it is noted that the lattice mismatch requires an elastic 

accommodation mechanism and the increasing lattice aspect ratio with decreasing 

temperature gradually changes this angle. Possible accommodation mechanisms may include 

a series of dislocations or elastic strain near the domain wall. The region of the diffraction 

pattern between the diffraction spots shows diffuse scattering (Fig. 6.29c) which may support 

either of these mechanisms.  

 
(a) 

 
(b) 

Figure 6.30. (a) The schematic distributions of the domain variants in misorientation axes. The 
misorientation axes were based on the cubic grain and the angles were exaggerated for clarity. 
(b) The three dimensional arrangement of the domains. 



 

 

120 

 

By considering all the cube faces {100} as a possibility of spontaneous polarizations 

in tetragonal ferroelectrics, there can be four {110} 90° domain wall types relative to the 

cubic axis. However, since there are six possible domain variants in tetragonal structures, a 

total of 24 90° domains wall orientations can develop in a three dimensional arrangement. 

Due to the ambiguity of the directions in X-rays where the positive and negative directions 

are not detectable, a maximum of 12 domain wall types can be detected using X-ray 

diffraction.  

The changes in the lattice parameters play an important role in the formation of the 

domains. During cooling, the lattice parameters in the tetragonal structure create an elastic 

driving force for the formation of the domain variants. Figure 6.29(c) shows the temperature 

evolution of the (215) spots in the heating regime. The close spots are marked with a letter. 

As the temperature is increased to a value near the Curie temperature, these diffraction spots 

begin to coalesce. These spots then become the same orientation (identified as E in Fig. 2c) at 

temperatures above the Curie temperature.  

Table 6.8 shows the orientations of the domains at room temperature and the grain at 

above Curie temperature. The orientations are shown as direction cosines between the crystal 

lattice and global directions. Each column in the orientation matrices represents the direction 

cosines of the crystal lattice with respect to certain global direction. As seen in Table 6.8(a), 

the domain orientations are produced from the crystals pointing at different global directions. 

While domains A and D have similar crystal orientations in global coordinates, the 

orientations of domains B and C can be produced from domain A by rotating approximately 

90° around [100] and [010], respectively. The misorientation angles of the respective domain 

orientations are also reported in Table 6.8. To obtain the misorientation angles, domain A 

was selected as the reference domain. The orientations of domains B and C are related to 

domain A by angles of 89.63° ( )/(tan2 1 ca−

≈ ) and 89.41°, respectively. Domain D appears 

as closely oriented to domain A with a 0.474° misorientation angle. The orientations of 

domains B and C were obtained by taking the domain A as reference orientation. By taking 

into account the varying c/a ratios of the domains (Table 6.8), the orientations of domain B 
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and C are related with twinning operations as m[011] and m[101] respectively. The 

orientation relations of the domains are confirmed to be consistent with Keeble, D. S. 

(2009)'s study on the tetragonal single crystal BaTiO3. 

As the temperature is increased to above the Curie temperature, the diffraction spots 

coalesce to a single spot, E. The transformation of these spots represents the disappearance of 

the domain structure within the grain as the Curie temperature is passed and the material 

becomes paraelectric. From the calculated misorientation between the orientations of the 

domain variants and the orientation of the grain with spot E shown in Table 6.8, none of the 

domains have an orientation that equals that of the grain in the paraelectric cubic state. 

Nepochatenko, V. A. (2006) has shown that the domains can rotate a small angle during the 

cubic-to-tetragonal phase transformation to maintain the strain compatibility as a function of 

changing lattice aspect ratio. This rotation is relative to the sample coordinate axes and 

represents a rotation of the entire domain crystal axes; such a rotation is not the same as a 

polarization rotation involving crystallographic distortions as described by Ahart, M. et al 

(2008).  The rotation angle of the domain with respect to paraelectric phase is referred to as 

the “phase matching angle” and this angle was calculated as 0.28°±0.03° from the major axes 

between the domains and the grain by using Eq. (6.24). The comparison of the orientation of 

the grain and domains shows good agreement to the predicted phase matching angle. 

Table 6.8. The orientations and misorientations of the domains seen at room temperature and 
above Curie temperature. The misorientations between the domains were calculated by 

selecting either domain A or domain E as the reference domain. 

Domain* Orientation Matrix Misorientation Angle, [Axis] Misorientation Angle, [Axis] c/a Ratio 

A 
0.846       0.193     -0.497 
0.119      0.8340      0.529 
0.519     -0.507      0.687 

Reference 0.36°, [-0.23 0.6 0.77] 1.01 

B 
0.842     -0.500     -0.200 
0.118      0.534     -0.8367 
0.526      0.681      0.509 

89.63°, [1 0 0] 89.47°, [1 0 0] 1.088 

C 
0.507      0.192      0.840 
-0.527      0.839      0.126 
-0.681     -0.508      0.527 

89.41°, [0 1 0] 89.67°, [0 1 0] 1.011 
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D 
0.842      0.194     -0.502 
0.119      0.843     0.525 
0.525     -0.502      0.687 

0.47°, [0.59 -0.66 -0.47] 0.2°, [0.9 -0.41 0.18] 1.098 

T> TC 
(150°
C) 

E 
0.842      0.194     -0.502 
0.119      0.841      0.526 
0.524     -0.504      0.686 

n/a Reference 1 
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 The orientations demonstrate that the spontaneous polarization vectors of the domains 

form perpendicular to the cube faces, {100}, or parallel to the cube edges, <100>. To 

illustrate this further, Figure 6.31 shows the 001 pole figure for the domains inside of the 

reference grain at room temperature (Fig. 6.31a) and the 100 pole figure for the reference 

grain in the high temperature cubic phase (Fig. 6.31b). There is correlation between the [001] 

of the low temperature orientations and the <001> of the high temperature orientations. 

 

Figure 6.31. (a) 001 pole figure of the ferroelectric domain orientations at room temperature. 
(b) 100 pole figure of the grain at a temperature above the Curie temperature. Wulff net is 
overlaid for clarity. The orientations correspond to those presented in Table 6.8  
 

A closer inspection of the diffraction patterns as a function of distance along the 

sample surface in 1.5 µm steps demonstrates that the spots representing different orientations 

have varying intensities. Because the thickness of the domains is smaller than the beam size 

(1 µm), different domains are being illuminated by the beam as the sample is moved. Since 

the same domain diffraction patterns are observed as the sample stage is moved, this three-

dimensional arrangement of the domain variants is assumed to repeat itself inside the grain.  
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During heating from room temperature, the domains experience a gradual rotation 

and lattice parameter changes that result in the individual diffraction spots converging into a 

single diffraction spot at the Curie temperature. Figure 6.32(a) shows the evolution of the a/c 

ratio calculated as a function of temperature. The error bars were determined from 

independent a/c calculations of the domains at given temperature. The relatively different a/c 

ratios of the domains suggest that the local domains can show significant deviations from the 

from the local structure. During the phase transformation, the relative change in orientations 

of the domains can be calculated from the refinements of the peak position. These orientation 

relationships are related directly to the changes in the lattice parameter. For instance, the 

angles between domains A and C and between domains B and D have been calculated to be 

89.61° and 89.58°, respectively, at a temperature of 90°C. The angles between these domain 

pairs were calculated for all the different temperature from the (251) and (351) diffraction 

peaks. Figure 6.32(b) shows the angular separations between the domain pairs A and C and B 

and D during heating. The orientation fitting was rather difficult at 120°C because the 

diffraction spots were very close to each other so it wasn’t included. As the sample is heated 

to temperatures approaching the Curie temperature, the ferroelectric domains become more 

closely oriented to one another as well as become more closely oriented to the high 

temperature cubic orientation. The domains converge to a single orientation at temperatures 

near and above the Curie temperature. The comparison of the angular separation between the 

domains and theoretical misorientation angle calculated from c/a ratio by using Eq. (6.23) 

shows excellent correlations. The angular separation of the domain pairs is also well 

correlated with the capacitance versus temperature measurements as shown in Figure 6.28. 
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Figure 6. 32 (a) The evolution of a/c ratio as a function temperature. (b) The angles between 
domain pairs (A/C and B/D) as a function of the temperature. Black curves were calculated by 
using tangent formula (Eq. 6.23) 
 

The evolution of the ferroelectric domains inside the polycrystalline BaTiO3 was 

investigated during quasistatic heating using scanning X-ray microdiffraction (µSXRD). 

Four domains are observed for certain reflections indicating that two domains that are 

classically defined as 180° domains may exhibit an orientation relationship that deviates 

from 180°. The crystallographic relationships of the domains are explained using a domain 

structure model by Nepochatenko, V. A. (2006). While heating the polycrystalline BaTiO3 

from room temperature to above the Curie temperature, the ferroelectric domains coalesce by 

gradual rotations that reflect their changing lattice aspect ratio. With the direct experimental 

observations, the technique is proved to be capable of studying ferroelectric domains 

embedded in polycrystalline ferroelectrics. 

6.3.2. Ferroelectric domains in a polycrystalline B aTiO3 under 
quasistatic heating and applied electric field 

The evolution of the ferroelectric domains in a polycrystalline BaTiO3 grain was 

studied as a function of applied electric field and heating by using Scanning Microdiffraction 

(µSXRD) technique. By cooling to room temperature, the cubic grain transform to tetragonal 

domains. By application of the electric field, polarization vectors of the domain rotated along 

the direction of the electric field. The changes in the volume fraction of the domains are 
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measured with the electric field. The complete domain switching to one domain variant is not 

observed with the application of the electric field. The local boundary conditions hindering 

the complete domain switching such as grain boundaries and surface charges are discussed.   

6.3.2.1. Experimental Procedure 
The polycrystal BaTiO3 samples were manufactured with conventional powder 

processing techniques [Bryne, T. A. (2004)] from BaTiO3 powder (99.9% pure, with Ba/Ti 

ratio=1.00, Ferro Corp., Transelco Division). The grain size of the sample was measured at 

approximately 20 µm and the sample dimensions were 1x1x5 mm3.  During polishing, extra 

caution was shown not to introduce residual stress to the sample. The sides of the sample 

were coated with a conductive silver paint and copper wires were attached to the side with 

high temperature conductive glue (AA-Bond 200 Adhesive). No electric field was applied to 

sample prior to the experiment. Figure 6.33 shows the schematic setup for the experiment. 

The sample was attached on a heating stage by using high temperature conductive glue (AA-

Bond 200 Adhesive) to prevent the sample moving due to heating. The heating stage 

consisted of a sample holder and a heating element bound by copper coating to increase the 

conductivity. To prevent a possible electric arcing between the heating stage and the sample, 

an insulating layer with captone tape was applied in the interface. The temperature profile 

was monitored by three thermocouples; one was attached to the surface of the sample (Fluke 

87IV True RMS Thermometer), one from the heating element (Extech 421307 thermometer) 

and one with the IR thermometer (Extech Mini IR Thermometer 42500) pointed to the 

surface of the sample throughout the experiment. The sample was heated to above Curie 

temperature (150°C) where the tetragonal-to-cubic phase transformation was complete. The 

complete phase transformation was confirmed with the microdiffraction images. After an 

initial area scan with a coarse grid size to locate the grains, the sample was cooled to room 

temperature. The diameter of the reference grain was around 25µm. To make sure that the 

same sample location is scanned during cooling, a tiny lead piece was attached on the sample 

as a reference point. While cooling, the orientation evolution of the cubic grain was studied. 

At each cooling temperature steps, the location of the reference point was checked with 

fluorescence scan to make sure that polychromatic x-rays illuminates the same grain on the 

sample. After cooling to room temperature, the sample was exposed to a constant electric 
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field at 10, 15, 25 and 30 kV/cm. The amount of the applied electric field was above the 

coercive field which was measured as 5.14 kV/cm with hysteresis measurements. At each 

electric field, the 50x50 µm2 area was scanned with 1µm step size. The evolution of the 

ferroelectric domains at the same grain was tracked with a final scan after reducing the 

electric field to zero. The orientation of the sample with respect to laboratory coordinates was 

calculated with the fluorescence scan and the angle between the sample edge and laboratory 

coordinates was found to be 0.3°. 

 
Figure 6.33. (a) Side view of the schematic experiment setup. (b) The view of the experiment 
setup from incoming x-rays. Sample dimensions are 1x1x5 mm3 

µSXRD experiments were carried out on the X-ray microdiffraction end-station 

(12.3.2) at the ALS. The instrument has a capability of delivering X-ray white beam (6-22 

keV) with less than 1 µm beam size by using a pair of elliptically bent mirrors in a 

Kirkpatrick-Baez configuration [Savytskii, D. I. (2003)]. The diffraction patterns were 

collected with an area scan at various conditions described above. At each grid position of 

area scans, the sample was exposed to polychromatic x-rays for 1 second. The back-

reflection Laue diffraction patterns produced by the white x-rays with 1µm beam size were 
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recorded using a CCD detector (Bruker 6000) mounted on the vertical slide. The active area 

of the CCD camera was 90x90 mm2 and binning mode will be 1024x1024 pixels. The sample 

surface was set to be at 45° relative to the incoming beam and the detector. The nominal 

distance from the CCD to the sample and the center of the diffraction patterns on CCD 

detector will be determined to be 84.94 mm and 522.7, 512.3 pixels respectively. In order to 

study the grain depth, the detector is moved 65 mm upwards and the scans were repeated. 

The collected white-beam (Laue) diffraction patterns were analyzed with the custom 

software developed at the ALS (X-MAS, X-ray Microdiffraction Analysis Software) 

[Tamura, N. (2003)]. XMAS is capable of determine the positions of the reflections with 

subpixel resolution by using two-dimensional profile functions such as Gaussian, Lorentzian 

or Pearson VII function. By using the peak positions and lattice parameters of BaTiO3, the 

program simulates an orientation from three most intense spots. The simulated orientations 

are compared with the experimental reflections and the simulated orientation is authenticated 

as real grain if a sufficient amount of reflections are found. The typical number of the 

reflections found from the cubic grain was around 110. The orientation of the cubic grain was 

also validated from its reflections with a fitting routine written in Matlab (Ver. 7.2.0, The 

MathWorks, Inc.). The diffraction patterns recorded at room temperature were analyzed with 

XMAS software and the orientations sharing the cubic reflections are found. For the space 

group and lattice parameters, the literature values of the BaTiO3 were used as p4mm (s.g. 99), 

a: 0.39947 nm and c: 0.40336 nm for tetragonal structure and pm3m (s.g. 221) and a: 0.4009 

nm for cubic structure respectively [Rogan, R. (2003)].  

In order to find the misorientation between the orientations at room temperature and 

the cubic grain, the orientations are first mapped fundamental region with corresponding 

symmetry operators.  While m3m point symmetry was used for cubic grain, 4mm point 

symmetry was used for tetragonal orientations and misorientation was calculated by using 

ODF/PF software package from Cornell University. The orientation matrices found by 

XMAS define the crystal coordinates instead of the standard definition as direction cosines 

between the crystallites and the sample axes. In order to obtain the orientation matrix with 

direction cosines, each orientation was normalized with the corresponding lattice parameters. 

As the misorientation convention, angle-axis pairs were used. This convention has a major 
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advantage to show the misorientation angle and axis with respect to the reference grain. It is 

helpful when describing the misorientation angle between domains and the rotation axis 

between the domain variants.  

µSXRD technique is well capable of finding deviatoric strain components of the local 

crystallites. The method simply compares the calibration lattice parameters with the localized 

crystallites and finds strains from the mismatch between the lattice parameters between. 

However, this method has some pitfalls. Using a generalized lattice parameter for all 

structure can result in a big deviation from the local structure. For instance, such calibration 

lattice parameters having aac lattice configuration along the global coordinates can find a 

large strain in the domains that have aca or caa configuration along the global coordinates. 

Furthermore, using generalized calibration parameters can have deviation from the 

experimental conditions. All of these factors combined, it is important to eliminate the errors 

in the strain calculations.  

 The lattice strain tensor (ijε ) of each domain was obtained by using technique 

described by Margulies [Margulies, L. (2001)]. The relation between the lattice strain tensor 

( ijε ) of each domain and its spot strains (iε ) and the direction cosines ( iii nml ) of those spots 

can be described as [Poulsen, H. F. (2004)]  
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After finding the orientations of the domains successfully, the center of mass of each 

peak belong to the domains is found by peak search routine [Blair, D. (2008)]. The peak 

search routine is based on searching image row by row and identifying connected pixels that 

are above the intensity threshold as a peak. The overall principles of the peak search routine 

were described at elsewhere [Vaughan, G. H. M. (2004)]. The spot strains for 15 reflections 

were calculated with Eq. 6.25. Due to using white beam, d-spacings of each plane are 

unknown. Instead of d-spacing, Bragg angle was used with the right hand side of Eq. 6.25. 

The spot strains were measured from the peak shifts as the electric field is applied. As a 

calibration, the peak positions (θ0) as initial unpoled stage are taken. The peak shifts were 
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calculated from the peak positions at given electric field (θi) and initial stage (θ0). In order to 

find the direct effect of domain switching, the unstrained sample was used as internal 

calibration. From Eq. 6.25, the lattice strain tensor can be easily calculated by using the 

direction cosines of the peaks but no further analysis is done considering that the spot strain 

would be enough at this time. 

6.3.2.2. Results and Discussion 
The phase transformation from cubic to tetragonal and the distribution of the domain 

variants within the grain was studied. The orientation relationship between the domains was 

studied. As response to electric field, the volume fraction change between the domains the 

orientation changes with the electric field at 10, 15, 25 and 30 kV/cm were studied. The 

distribution of the domains was also studied at above Curie temperature and room 

temperature. Figure 6.34 shows the typical microdiffraction patterns recorded at above Curie 

temperature, room temperature, applied electric field at 30kV/cm and finally with 0kV/cm. 

When the sample was in the above Curie region, we observed no peak broadening. This is a 

proof that the material in unstrained state. There were no close spots were observed above 

Curie temperature. This is due to cubic phase transformation. During the cooling, the peaks 

are gradually broadened and split to there to four spots depending on the hkl. This is a clear 

proof that the phase transformation is complete and material transformed to tetragonal. By 

application of the electric field, no visual change seen in the diffraction pattern up to 5 

kV/cm. The previous hysteresis measurement showed that coercive field of this material is 

5.16 kV/cm and the applied electric field was well below to cause domain switching. By 

applied field more than coercive field, the peaks are shifted along the electric field direction.  

This is caused by the rotation of the polarization vectors of the domains along the electric 

field. After removing the electric field, the peaks return to original position with a strained 

state.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.34. Microdiffraction patterns of BaTiO3 sample recorded at (a) above Curie 
temperature (130°C), (b) 8 hours after cooling to room temperature (c) applied electric field at 
30kV/cm (d) electric field turn down to zero. 

 

Table 6.9 shows the orientation of the cubic grain at above Curie temperature and the 

orientations that formed when cooling to room temperature. The orientation of this cubic 

grain was found by XMAS [Tamura, N. (2003)]. Upon cooling, the cubic diffraction spots 

split into tetragonal reflections due to cubic-to-tetragonal phase transformation. The resultant 



 

 

131 

orientations are obtained by indexing the diffraction pattern recorded at room temperature 

and they are rotated 89.73° and 89.28° of the [100] or [010] axes of the cubic grain 

respectively. These [100] and [010] axes are pseudocubic and they are equivalent to 180° 

rotation around tetragonal [011] and [101] axes respectively. Since these orientations show 

specific crystallographic relations and are the subgroup of the cubic grain, they are called 

domain variants.   

Table 6.9. The list of orientation relationships of the cubic grains and their domain variants as 
cooling to room temperature. The orientations were expressed as tensor and angle-axis pairs. 
The misorientation between domain variants was defined with respect to cubic grain. 

Temperature 

130°C RT 

Orientation Matrix 
Orientation Matrix, 
Misor. Angle     Orien. ID 
0.812   -0.098    0.567 
-0.228    0.856    0.468 
-0.537   -0.507    0.678 
 
0.13°  < 0 0.15 0.22>     A 
-0.567   -0.815   -0.095 
-0.467    0.235    0.853 
-0.678    0.530   -0.514 
 
89.73° <1 0 0>              B 

    0.809    0.089   -0.580 
   -0.236   -0.859   -0.459 
   -0.538    0.504   -0.673 

-0.094    0.563    0.818 
0.858    0.461   -0.232 
-0.505    0.686   -0.527 
 
89.28° <0 1 0>              C 

 
When cooling from Curie temperature, each grain breaks up to domains to reduce the 

overall energy of the system [Arlt, G. (1990)]. Figure 6.35 shows the [100], [010] and [001] 

directions of the cubic grain and domain variants in pole figure as stereographic projection. 

For clarity, Wulf plot was overlaid to pole figure. The c axes of the domains are marked with 

red colors and the direction of the e-field was shown in Y axis as well. As clearly seen, the 

crystal directions transform to tetragonal when cooling to room temperature and each crystal 

directions break up to domains. For instance [100] cubic direction breaks up to [100], [010] 

and [001] tetragonal directions and each direction is shared by a domain. As shown in close-
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up view in Figure 6.35, the angle between {100} crystal directions of the domains is around 

0.6° i.e. °−− 90)/(tan2 1 ac  where c/a ratio is 1.01 for BaTiO3. While forming the domains, it 

is also seen in Figure 3 that no significant grain rotation was observed.  

 

Figure 6.35. {100} pole figures as a stereographic projection at above Curie temperature and at 
room temperature. The Wulf plot was overlaid for clarity. The orientations with letters at room 
temperature are shown in Table 1 and they are the domain variants within the grain. The 
electric field direction is Y-axis and the angles between c-axis of the domains (shown in red 
color) and the electric field are shown as well 

 

Figure 6.36 shows the evolution of the (211) peak as the temperature is cooled to 

room temperature. From Table 6.9, domain A has the same orientation with the cubic grain 

with a smallest misorientation to cubic grain. Domain B is obtained with the rotation b 89.32° 

along [100] axis or 180° along [011] direction of the cubic grain. Domain C is obtained with 

the rotation by 89.28° around [010] axis of the cubic grain. The close inspection showed that 

the domain C breaks up two subdomains. By the application of the electric field, these 

subdomains orient along the electric field and converge to one with 30kV/cm electric field. 

Between Domain A, B and C, there is a domain boundary with a transition region. These 

transition regions are considered as the regions where polarization vectors transform one 

direction to another [Floquet, N. (1997)]. The angle between c axis of the domain and the 

electric field direction was calculated from the orientation matrices of the domains. We 

define this angle as “polarization angle”. The polarization angles for Domain A, B and C are 
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calculated as 35.9°, 58.4° and 46.6°. Since domain A has a large polarization angle, the 

application of the electric field is expected to cause the domain switching in greater scale in 

this domain.  

 

Figure 6.36. The evolution of the (211) peak from the above Curie temperature to cooling. (211), 
(121) and (112) peaks at room temperature belong to domains shown in Table 6.9 respectively 
 

There is a direct relation between the volume of the domain and the integrated 

intensity of the domain. In order to observe the volume fraction change between domain 

variants with applied electric field, the integrated intensities of the domains were calculated 

and the volume fraction of the domain within a grain ( d
hklf ) can be found as:  
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where d
hklI is the integrated intensity of (hkl) spot from a domain and dv

hlkI  and dv
lhkI  are the 

integrated intensity of the (hlk) and (lhk) reflections of the remaining domain variants within 

the grain. The integrated intensities of the reflections are calculated with “automatic peak 

finding routine” of XMAS software. For fitting, Lorentzian type fitting was used. The 

reflections calculated from the domain variants are shown in Figure 4. To eliminate the effect 

of the Lorentz factor, the domain variants that diffract at the same detector location are taken. 

To improve the statistics, the {123} reflection family of the same grain are taken. Using 

white beam enables to resolve the domain variants on the detector.   

Figure 6.37 shows the volume fraction change in the domain variants with applied 

electric field. The polarization angles for Domain A, B and C are calculated as 35.9°, 58.4° 

and 46.56°. The application of the electric field favors for the domain that has smaller angle 

with the electric field direction. In this case, Domain A is the energetically favorable domain 

with its low polarization angle. Indeed, the volume fraction of Domain A increases by 25% 
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with the electric field up to 30kV/cm. This is due to lattice configuration and the polarization 

angle of the subdomains. The volume fraction of domain C increases with electric field as 

well but this increase is not as significant as domain A. With its high polarization angle, the 

volume fraction of Domain B decreases by around 50%. Beyond 10kV/cm, it is expected that 

the fraction of the energetically favorable domain variant increases. Due to grain boundaries 

and local boundary conditions, the overall switching from one domain is not complete.  The 

higher electric field can be achieved by immersing the sample in a dielectric liquid but this 

has not been feasible in our setup because the sample needs to be exposed to heating prior to 

electric field to track the evolution of the same grain.  

 

Figure 6.37. Volume fraction change in the domain variants with applied electric field. 
 

During the poling process, the spontaneous polarization directions of the domains are 

expected to switch along the electric field. Due to tetragonal symmetry [Berlincourt, D. et al. 

(1959)], the poling process can lead either 90° or 180° domain switching. Among those, only 

90° domain switching can create a strain in the body and this stress can calculated in theory. 
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Due to small tetragonality ratio in BaTiO3, the overall strain in a single crystal BaTiO3 due to 

complete domain switching can be calculated as 1-c/a (1%). The strain values for polycrystal 

are rather small than this value. To calculate the correlation, we can compare the spontaneous 

polarization of the single crystal and polycrystal BaTiO3. The measured spontaneous 

polarization of single crystal and polycrystalline BaTiO3 are 26 and 5.3 µC/cm2 respectively. 

The maximum strain caused by the complete domain switching is expected to be 20% of the 

single crystal.  Therefore, the application of the electric field can create around 0.2% strain 

(or 2000 microstrain).  

The procedure on how to find the spot strains of each domain is outlined above. Table 

6.10 shows the spot strains of the domains as the electric field is applied. For the reflections 

where hkl values are close to unity, it is very difficult to resolve the subdomains and the 

strain values of those domains were not included. The maximum spot strain with the electric 

field is 2000 microstrain and this is well correlated with the literature values [Cross00] and 

the calculation above. The highest strains were observed in the reflections that have high 

angle with the electric field. Considering electric field is applied along x axis of the sample 

(Figure 6.33), the crystallographic planes along x axis (such as 211 or 312) should experience 

less strain compared to other domains. Indeed, 211 planes experiences less strain compared 

(112) planes. Domain C1 and C2 are subdomains and they experience elastic deformation 

with applied electric field. With application of electric field at 30kV/cm, these subdomains 

showed tensile and compression strains. With removing the electric field, the domains return 

to their initial states with a residual stress.   

Table 6.10. The spot strains of the domains as the electric field is applied 
 

hkl 211 112 233 332 433 334 312 213 111 122 232 313 134 525 

10 494 16 889 16 28 893 322 39 107 51 44 5 936 24 

15 -68 -45 -9 -45 -28 11 -6 -363 -836 3 -2 -258 72 26 

25 -55 652 -32 652 -70 -983 -47 -331 -858 -47 -963 -219 -642 -315 

30 -46 -738 -143 -738 -847 -2000 -47 -901 -79 -1765 -2004 -652 78 -806 

E
 F

ie
ld

, k
V

/c
m

 

0 -38 -755 -110 -755 -111 -1009 306 -425 -895 -68 -1051 -316 58 -350 

Domain A 
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Table 6.10 (Continued) 

 

 

hkl 211 112 233 332 433 334 312 213 111 122 232 313 134 525 

10 653 -20 -128 -12 -981 9 -464 3 920 -18 29 482 84 45 

15 613 -1134 -174 -1834 -1033 1588 -456 10 1795 -947 -1009 -8 -753 713 

25 620 -38 -110 -1004 -1044 1568 -912 635 1807 -978 2010 790 -780 325 

30 -91 -582 -238 1051 9 788 -432 -322 1706 2135 -1012 216 -1652 713 

E
-f

ie
ld

, k
V

/c
m

 

0 -802 -629 1844 -967 -996 -14 1000 678 879 2065 -1020 215 -888 -48 

Domain B 
 

hkl 112 213 225 211 313 134 

10 -29 -335 -1044 -630 50 909 

15 -33 45 -340 707 630 876 

25 -54 -439 0 -442 238 142 

30 2050 1239 -8 -1111 544 807 

E
-f

ie
ld

, k
V

/c
m

 

0 -37 -344 -341 -442 -9 16 

Domain C1 

hkl 112 213 225 211 313 134 

10 -11 45 315 1223 -16 7 

15 9 71 281 2513 45 -832 

25 648 -1618 260 575 166 -909 

30 -1520 -928 -40 -42 -685 -1425 

E
-F

ie
ld

, 
kV

/c
m

 

0 -1398 -517 10 19 -340 -907 

Domain C2 

 

The evolution of the ferroelectric domains with electric field was studied by using 

µSXRD technique. The phase transformation from cubic (pm3m) to tetragonal (p4mm) and 

the distribution of the domain variants within the grain were investigated. After cooling, the 

resultant domain variants are obtained by rotating 89.73° and 89.28° of the [100] or [010] 

axes of the cubic grain respectively. As response to electric field, the volume fraction change 

between the domains was observed. This volume fraction is favored on the domain that has a 

small angle between its c axis and the electric field direction. There is no such a significant 

grain rotation during domain switching. Domains flip such without requiring a significant 

rotation from the initial orientation. During the domain switching, the domain walls move to 

decrease the energy of the system. The misorientation angles between domain variants 

deviate from the theoretical value (89.4°) by 0.2-0.3°. This shows the local variations from 
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the domain variants inside of the grain. This study clearly shows the µSXRD technique is 

capable of studying the mesoscale behavior of the ferroelectrics in polycrystalline state.  

This chapter showed the results from the evolution of the ferroelectric domains both 

with 3D-XRD and µSXRD technique. The orientation relationships from 3D-XRD technique 

were confirmed with the µSXRD technique. The morphology of the domain variants is 

modeled and the 90° domain switching model was used to confirm the domain variants 

within the grains. Tetragonal-cubic phase transition used in µSXRD technique can help 

solving the severe overlap problem in 3D-XRD technique. The next chapter will discuss the 

results from EBSD experiments.  
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CHAPTER 7. DOMAIN CHARACTERIZATION WITH EBSD  
 
 The objective of this study is to characterize the orientation relationships in the 

ferroelectric domains of polycrystalline BaTiO3 using the EBSD technique. 

7.1. Experimental Procedure 

The polycrystalline BaTiO3 sample was prepared with the conventional ceramic 

processing techniques and a bulk sample with nominal 2x2x4 mm3 dimensions was used in 

the Electron Backscatter Diffraction (EBSD) experiments. The nominal grain size of BaTiO3 

sample was measured around 20µm. The sample surfaces were fine ground with 320 and 600 

grits and then fine polished with 0.5µm alumina powder. Next, the surface was coated with 

gold using sputtering and then polished with ion-milling. 

In the EBSD technique, the sample is tilted by a 70° angle with respect to the 

incoming beam. A monochromatic electron beam with a 25 kV energy hits the tilted 

crystalline sample and interacts with the lattice planes. The diffraction planes satisfying the 

Bragg condition undergo backscatter diffraction and form Kikuchi lines on a fluorescent 

screen. Each intersecting diffraction planes define the zone axis of diffracted crystallographic 

planes. An area scan along the sample surface can be used the measure the crystal orientation 

and misorientation between neighboring grains. At 25 kV, the penetration depth of electrons 

in BaTiO3 was calculated to be around 2.5µm.  

An area of 4x11.7µm2 with 0.1µm step size was scanned in the EBSD experiment. 

The step size was selected as rather small to detect the orientation between the domain 

variants within the grain. The collected EBSD diffraction patterns were analyzed by a 

commercial OIM software. For indexing, the crystallographic database from the International 

Centre for Diffraction (JCPDS) was used. The crystallographic parameters for BaTiO3 were 

selected as a=0.3994 nm, c=0.40314 nm with the p4mm (no: 99) space group. In order to find 

the right zone axis, (103), (112) and (211) reflections were added to the solution. During the 

indexation, the free parameter being refined is the orientation angle of the crystal. The fitting 

parameter during the indexation is called “confidence index (CI)” and for the perfect 

solution, the confidence index is 1. For a very low (less than 0.1) confidence index, the 

results can be questionable and a special caution needs to be taken to interpret them. 
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Therefore, the lower threshold for the confidence limit in this experiment was 0.1 and the 

orientations found with lower confidence indeces were discarded. The Euler angles of each 

orientation from the area scan were exported to Matlab and each orientation was mapped into 

the tetragonal fundamental region. The misorientation between the domain variants was 

shown with angle axis pair notation. 

For the grain map, a new procedure was created. When an inverse pole figure 

direction is taken along a sample direction, the corresponding direction constitutes a vector 

with components ranging from 0 to 1. This vector was directly used for the coloring in RGB 

mode where [001], [010] and [100] corresponds to red, green and blue colors, respectively. 

The standard inverse pole figure was also plotted by assuming that the orientation in EBSD 

experiments is defined with respect to crystal coordinates. 

7.2. Results 

The EBSD experiments of BaTiO3 offer hope that this method can be used to 

correlate the domain structures found both by the 3D-XRD and µSXRD techniques. Figure 

7.1(a) shows the typical EBSD pattern and it clearly proves that EBSD technique was 

successful on BaTiO3. Figure 7.1(b) shows the indexed EBSD pattern where the zone axis 

was found to be along [-110]. 

 

 
(a) 

 
(b) 

Figure 7.1. (a) A schematic EBSD pattern from polycrystalline BaTiO3. (b) The same pattern 
after indexation. The zone axis was found as [-110] 
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 Figure 7.2 shows the orientation map with respect to the sample coordinates. The 

orientations found with a confidence limit of less than 0.1 were eliminated. The majority of 

the domains align along the [010] crystal direction with the sample surface normal. The 

regions with close red, blue and green colors show the orientations that are perpendicular to 

each other. These regions most likely are domain variants, but further proof is necessary. 

Notice that the surface scan in EBSD technique is performed in a honeycomb pattern and we 

see a gap between the successive points in every sample scan direction. 

 

 
Figure 7.2. The grain map of the ferroelectric domains along sample normal. Each color shows 
the alignment of the crystal directions along the sample normal. While green shows the [010] 
direction, red and blue colors show the [100] and [001] crystal directions respectively. The 
confidence index threshold was 0.2 for this grain map 

 
Figure 7.3 shows the close-up region with orientations that are perpendicular to each 

other. The regions are marked with different numbers to study the misorientation relationship 

between them. 
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Figure 7.3. The domain variants in close-up view. While green shows the [010] direction, red 
and blue colors show the [100] and [001] crystal directions respectively. In black regions, either 
no grains or those with low confidence index were found.  
 

Table 7.1 furnishes the marked orientations of the close-up region in Figure 7.3. The 

close inspection shows that these orientations are indeed domain variants to each other. The 

orientations 2, 3 and 6 basically come from the same domain. The orientations 1 and 5, 4 and 

7 are also the same domains, respectively. The interesting misorientation relation is between 

domains 1 and 5 because they have a 0.4° misorientation. This may be due to twinning of 1 

to 2 and then 2 to 5. We see a similar pattern in microdiffraction experiments and called these 

domains as “up and down” domains with respect to the spontaneous polarization direction. 

The domain boundaries between domains 1 and 2, 2 and 4, 3 and 5 are [100], [0-10] and 

[100] axes, respectively. This clearly shows the same orientation morphology of the parent 

domain that we found in the µSXRD technique. 
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Table 7.1. The orientations of the domains marked in Figure 3 and their misorientation 
relationships. * CI: Confidence index. Higher CI is the better. 

 
Location, µm ID No 
x y 

CI* Euler 
Angles, ° 

Angle Axis Misorientation 
Angle Axis 

1 2.4 2.771 0.1 
100.3 
59.4 
254.3 

59.6° [-0.08 0.97 -0.22]  Main Domain 

2 2.35 2.858 0.117 
2.5 
76.3 
31.5 

82.44° [0.35 -0.23 0.90]  
 

89.54° [100] 

3 2.3 2.771 0.142 
2.4 
76.2 
31.3 

82.3° [0.35 -0.23 0.9]  
 

89.65° [100] 

4 2.3 2.944 0.247 
251.3 
33.8 
115 

34.3° [0.18 -0.9 -0.37] 89.74° [0-10] 

5 2.25 2.685 0.192 
100.2 
59.4 
253.9 

59.6° [ -0.09 0.97 -0.23]    
 

0.4° [00-1] 

6 2.25 2.858 0.125 
2.3  
75.9  
31.1 

 81.94° [0.35 -0.23 0.91] 89.56° [100] 

7 2.25 3.031 0.225 
250.6 
33.8 
115.6 

34.39° [0.18 -0.91 -0.38] 89.63° [0-10] 

 
Figure 7.4 shows the inverse pole figures along sample directions. We see the same 

orientation relationship as we see in the grain map. Similarly, the crystals align along the 

[001] and [101] crystal directions respectively parallel to the sample surface directions.   

 

 
Figure 7.4.The inverse pole figures along sample directions (X, Y and Z) 

 
During the area scan, it was realized that the EBSD diffraction patterns rotate as the 

scanned location is moved 0.1µm away. Figure 7.5 shows the change in the diffraction 
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patterns as we moved to a different area. The rotation of the diffraction patterns was 

measured as around 1° and this angle apparently corresponds to the angle between c and a 

axes of the domain variants since °=π−− 6.0)/(tan2 1 ac  where a and c refer to the lattice 

parameters of BaTiO3. Therefore, a slight rotation in the EBSD diffraction patterns was 

considered as the domain variant of the given domain. 

 

 
 

Figure 7.5. The small rotation in the EBSD diffraction pattern when scanning to the next 
domain 

 

This study clearly shows that the ferroelectric domain structure can mapped with the 

EBSD technique. Meanwhile, there are several drawbacks to this technique. The penetration 

depth is not as deep as with the 3D-XRD and µSXRD techniques. Quantitative results on 

internal strain in the domain variants are almost impossible.  Also, the misorientation angle 

between the domain variants is too close to the resolution of the EBSD technique.  Therefore, 

EBSD can be used in a preliminary study to identify important regions before applying the 

XRD techniques. 
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CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 

The main goal of this study has been the in-situ investigation of the ferroelectric 

domain structures inside polycrystalline BaTiO3 under thermo-electro-mechanical loading. 

The outcomes are two-fold: (i) the characterization techniques are improved to study the 

polycrystalline ferroelectrics in the mesoscale; and (ii) the texture, strain and volume fraction 

of the ferroelectric domains were tracked under applied electric field and mechanical stress. 

Technique 

3D-XRD, µSXRD and EBSD techniques were used in this study. The XRD 

techniques were improved and adapted to study domain mechanics for the first time. The 

details are explained in Appendices 1-6.  

Results 

The overlap of diffraction spots was a limiting factor in the study of the domains. In 

order to eliminate the spot overlap, the polycrystalline BaTiO3 sample was heated above the 

Curie temperature where the tetragonal domains will disappear and attain the orientation of 

the grain.  Next, the sample was cooled slowly to the room temperature and the evolution of 

the ferroelectric domains was studied at temperature and under electric field. The orientation 

relationships, volume fractions and lattice strain evolution of the domains were monitored. 

The following results were found: 

• 8 groups of ferroelectric domains were identified and tracked with electric field. New 

domains were observed under high applied electric field. 

• The orientation of the domains remained unchanged even under high electric field. 

However, by the application of electric field, the fraction of the energetically 

favorable domain variants increased. Due to local constraints, the overall switching 

from one domain variant to another was not complete. 

• There was no significant grain or domain rotation during domain switching. Domains 

appeared to flip without requiring any measurable rotation from their initial 

orientation.  During the domain switching, the domain walls move to decrease the 

energy of the system. 
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• The misorientation angles between domain variants slightly deviated from the 

theoretical value (=89.4°) by 0.2-0.3°. This deviation angle matches with the expected 

phase-matching angle described in Appendix 7.  

• Lattice strain evolution of the ferroelectric domains was studied under electric field. 

Since the same grain was cooled down from the Curie temperature, the texture 

evolution of the domains was easily visible. The results were compared with the 

macroscopic strain results and a development of strains up to 0.1% was observed 

along the applied electric field direction. This way, the multiscale evolution of the 

ferroelectric domains in a polycrystal was investigated quantitatively for the first 

time. 

• Data analysis was challenging due to the complex structure of ferroelectrics.  It 

required an integrated approach that involves diffraction pattern simulation. The 

methodology to overcome the spot overlap in polycrystalline ferroelectrics was 

established and the results from the methodology were described. 

 

Future Directions 

The present study provides a framework to characterize the polycrystalline materials 

with complex twin (or domain) structures.  By using the methodology described in this study, 

3D-XRD and µSXRD techniques offer unique opportunities to study texture and strain 

evolution in the mesoscale nondestructively.  It is now possible to employ these methods to 

perform a detailed study of the mesoscale constitutive behavior of materials with domains (or 

twins) as their main inelastic deformation mechanism.  Especially important is to determine 

how the von Mises criterion [Hertzberg, R. W. (1995)] is satisfied in materials with fewer 

than 5 degrees of freedom (e.g., independent domain variants).  Note that tetragonal BaTiO3 

has only 3 independent domain variants.  As such, large intergranular stresses can be 

expected to develop in polycrystalline BaTiO3 under high electric field.  Other tetragonal 

active materials will suffer a similar faith.  It is, therefore, important to quantify the evolution 

of lattice strain and texture within a cluster of grains under electromechanical loading.  The 

newly developed box scan technique of 3D-XRD can be invaluable in this effort.  However, 

such a study would yield a large amount of data and require new analysis procedures, 
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especially if integration to solid mechanics models is attempted.  Nevertheless, the present 

study has laid the groundwork for this next step and offered a unique opportunity to truly 

quantify the mesoscale constitutive behavior of active materials.   
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Appendix 1. Scattering of x-rays from electrons, at oms and unit cells 

When an x-ray beam hits an atom, the beam may be either absorbed with an ejection of 

electrons from the atom or scattered. X-rays are the electromagnetic waves with electric vector 

varying sinusoidally with time and directed perpendicular to the direction of the propagation of the 

beam [Warren, B. E. (1990]. Let’s consider a single free electron at the origin with an unpolarized 

primary beam directed along the X-axis as in Figure A1.1. We would like to obtain the intensity of 

scattered radiation at point P which is at a distance R from the electron at an angle φ with X- axis. 

Since the primary beam is polarized, the electric vector takes with equal probability all orientations 

in the YZ plane.  

 

Figure A1.1. Classical scattering of an unpolarized primary beam by a single free electron at the origin 
[redrawn from Warren, B.E. (1990)] 
 

We can choose one direction E0 and later average over all directions. Since it is a vector, E0 

can be resolved into components E0Y and E0Z. If ν is the frequency of the primary beam, the 

instantaneous values of the electric fields are 

tπνE=ε OYOY .sin2 ;   tπνE=ε OZOZ .sin2   (A1.1) 

Considering first the component OYε , a force is exerted on the electron which produces a Y-

component of acceleration 

tπν
m

eE
=

m

f
=a 0YY

Y sin2      (A1.2) 

where e and m are the charge and mass of the electron. 
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From electromagnetic theory, an accelerated charge radiates. Figure A1.2 shows a charge q 

with an acceleration a, and at a distance R, the electric field ε which results from the acceleration. In 

terms of cgs units, which for x-ray scattering are the simplest, the electric field is given by 

Rc

αqa
=ε 2

sin
       (A1.3) 

where c is the velocity of the light. The electric field is in the plane of R and a, and its magnitude 

depends on the component αasin . This leads to a very simple and useful rule in considering 

problems of scattering and polarization. With the eye placed at the point of observation P, which is 

seen, determines the electric field produced.  

 

Figure A1.2. Illustration of electric field ε, produced by a charge q with acceleration a, according to 
classical electromagnetic theory 
 

By means of Eq. 4.3, we can express the instantaneous value of the electric field due to the 

acceleration aY : 

φtπν
Rmc

Ee
=ε 2Y' cossin20Y

2

     (A1.4) 

Expressed in terms of amplitude, tπνE=ε Y'Y' sin2 where the amplitude is given by 

φ
Rmc

Ee
=E 2Y' cos0Y

2

      (A1.5) 

Similar reasoning applied to the initial amplitude E
0Z  leads to 

Rmc

Ee
=E

2Z
0Z

2

       (A1.6) 

The resultant amplitude E at the point of observation is then given by: 
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φ)E+(E
Rcm

e
=E+E=E 2

0Y
2
Y'

2
Z

22
0Z242

4

cos    (A1.7) 

We now let E take with equal probability all orientations in the YZ-plane and consider the 

appropriate averages 

>EEE 2
0

2
0Z

2
0Y >=<<+>

     (A1.8) 

Since the Y and Z axes are equivalent, 

>E<EE 2
02

1
>=>=< 2

0Z
2
0Y   and 

)
φ+

(
Rcm

e
>EE

2

cos1
>=<

2

242

4

20

2     (A1.9) 

The observable quantity is the intensity I, where by intensity we will always mean energy per 

unit area per unit time. In cgs units, the intensity is given by  

>E<
c

=I 2
e 8π       (A1.10) 

where E is the amplitude or maximum value of a sinusoidally varying field. Multiplying both sides 

of Eq. A1.2, we obtain 

)
φ+

(
Rcm

e
I=I 0e 2

cos1 2

242

4

     (A1.11) 

Eq. A1.11 gives the intensity of classical scattering by a single free electron and it is often 

called “Thomson scattering equation”. The factor 2/cos1 2φ)+(  is called the polarization factor for 

an unpolarized primary beam. If the primary beam is not polarized, the polarization factor takes a 

different form. The numerical value in Eq. A1.11 by using SI units is 

230
410228

410

42

4

107.94
102.998109.107

104.802
m=

)()(

)(
=

cm

e
=K −

−

−

×
××

×
  (A1.12) 

where R is expressed in meters. The equation A1.11 can be expressed as a simpler form if φ is taken 

as 2θ, Bragg angle in Figure A1.1: 
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)
+

(
R

K
I=I 0e 2

2θcos1 2

2
      (A1.13) 

The scattering from the unit cell follows the same pattern with the Eq. A1.13 but the arrangement of 

the atoms in the unit cell needs to be considered. Structure factor, | |2hklF , is the absolute value of the 

structure amplitude and includes several contributions determined by the arrangement of the atoms 

in the unit cell and other structural features [Pecharsky, V.T. (2005)]. Therefore, the scattering from 

the unit cell will be: 

| | )
+

(F
R

K
I=I hkl0p 2

2θcos1 2
2

2
      (A1.14) 

or in a simpler form 

| |2hklep FI=I         (A1.15) 

 

A1.1. X-Ray Scattering Basics 

3D-XRD technique is based on elastic Bragg scattering from crystals and restricted in the 

elastic limit of monochromatic x-rays. Therefore, the absorption of x-rays from the sample is 

neglected in this technique.  The incident electrons scatter from the electrons in the crystal; this 

process is well described in elsewhere [Warren, B.E. (1990)].  

A1.1.1. Basic Scattering Theory 

The basic scattering from electrons, atoms and the unit cell is discussed in Appendix 1 with 

details. When monochromatic x-rays hit an object, the diffraction planes in the object satisfying the 

Bragg condition will diffract with 2θ angles. Direction and multitude of each diffraction plane will 

differ with the plane wave monochromatic X-ray beam defined by kin. The scattering from x-rays are 

shown in Figure A1.3. Each diffraction plane will diffract with a different scattering vector.  The 

length of the wave vector, kout, is preserved due to assumption of elastic scattering, that is: 

| | | |
λ

=k=k outin

2π
       (A1.16) 

where λ is the wavelength of the x-ray beam.  
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FigureA1.3. Scattering from x-rays 
 

The scattering ability of the object is described by the complex scattering amplitude, A, 

which described both the amplitude and the phase of the observed scattered wave to the incoming 

wave. The phase difference, in the scattered wave, due to the different positions of j number of the 

atoms in the object can be found as: 

jjo rq=r)k(k ..−       (A1.17) 

with the scattering vector, q, defined as 

0kk=q −        (A1.18) 

The scattering amplitude from a collection of atoms can be written as: 

jriq

j
j (q)ef=A(q)

.∑       (A1.19) 

where fj(q) and r j are the q-dependent atomic scattering factor and scattering vector for atom j 

respectively. Since x-ray detectors do not record both the phase and the amplitude of the scattered 

beam, but the only the intensity: 

| |2A(q)AA=I(q) ∗       (A1.20) 

Therefore, the phase information is lost. 

A1.1.2. Diffraction from a Perfect Crystal 

The position of the atoms in a crystalline material is normally described by a lattice and a 

basis. A crystal lattice is characterized by the fact that it obeys certain translation symmetries. A 3D 

lattice can be described with three lattice basis vectors, a1, a2 and a3, which have the property that 

looks the same if translated by an integer number of any of these. 
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The lattice is more formally described by vectors in the form: 

321 an+an+an=R 321n ,      (A1.21) 

with n=(n1,n2,n3) all being integers. 

These vectors give the positions of the unit cells of the crystal, the lattice points, each unit 

cell is populated by the same arrangement of atoms described by what is known as the basis. The 

basis can be described by vectors, rj, relative to the lattice points. The position of any given atom in a 

crystal can be given as: 

j321jnjn, r+an+an+an=r+R=R 321    (A1.22) 

for some n, j. 

Scattering Amplitude 

In the case of crystal, the general formula for the scattering amplitude can be separated into 

two parts as: 

484764484476
sumlattice

n

Riq

sumcellunit

j

riq
j

nj eeqfqA ∑∑= ..)()(     (A1.23) 

where the “unit cell sum” is the sum over the atom configuration in the basis, and the ‘lattice sum” is 

over all lattice points. 

The reciprocal space and lattice 

In conventional crystallography, the substances are assumed to have crystal structures 

repeating themselves with three-dimensional periodicity. The repeated crystals constitute the direct 

lattice and macroscopic geometric properties are the consequence of this crystal in microscale. Each 

faces of the crystal constitute a crystallographic plane and these faces are parallel to sets of lattice 

planes. The electron density of the crystal can be expressed as a periodic function of the lattice: 

)()( rtr ρ=+ρ n . The most general expression for a periodic function is the plane wave: 

ϕϕϕ sincos iei += . If we consider a function f(r) such that )()( rr ftf n =+ , i.e., the function has 

the total symmetry of the lattice. The most general way of writing this function is )()( riAerf ϕ
= . To 

be an argument of this exponential function, rKr .)( =ϕ needs to be where K has units (1/distance). 

The restrictions on K , 
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nn tiitri
n eAeAetf ..)()( KrKKr ==+ +

which means that Nore n
ti n π2.1 == tKK  

Since {tn} forms a lattice, then K  is part of a set of vectors that also form a lattice – the reciprocal 

lattice. K  can be expressed as 321 lb+kb+hb ; h, k and l are integers and b1, b2 and b3 are the 

primitive vectors in reciprocal space. The conditions that define these vectors with respect to real 

space lattice are; 

ijji πδ=ba 2.        (A1.24) 

where ijδ is the Kronecker delta. 

The reciprocal space lattice is a set of imaginary points constructed in such a way that the 

direction of a vector from one point to another coincides with the direction of a normal to the real 

space planes. The separation of those points (absolute value of the vector) is equal to the reciprocal 

of the real interplanar distance. These reciprocal basis vectors are related to the crystal lattice basis 

vectors by: 

213132321

2π2π2π
aa

v
=b,aa

v
=b,aa

v
=b

ccc

×××   (A1.25) 

with )a(aa=v 1c 32 ×⋅  the volume of the unit cell. It can be seen that dimension of the reciprocal 

lattice vectors are reciprocal in length, hence the name. 

The reciprocal basis vectors span, in a natural way, a lattice in reciprocal space, with a 

reciprocal lattice vector, G, given as 

321hkl lb+kb+hb=G       (A1.26) 

with h, k, l integers. 

Reciprocal lattice vectors have the following properties, relating them to the underlying 

crystal structure: 

• Ghkl is perpendicular to the lattice plane with Miller indices hkl. 

• 
hkl

hkl d
=G

2π
, where dhkl is the lattice spacing of the lattice planes with Miller indices hkl. 

• Ghkl is bounded with the real lattice. When the real lattice is rotated, the reciprocal lattice 

is rotated too. 
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APPENDIX 2. The relation between diffracting volume  and intensity 
 

In the rotating crystal technique, the crystal is rotated with an angular velocity 
o

ω  normal to 

the paper as shown in Figure A2.1.  

 

Figure A2.1. The geometry involved in calculating the integrated intensity from a small single crystal 
which is rotated at constant angular velocity ω about an axis normal to the paper 

 

The intensity can be calculated as the energy per unit area and then the energy will be: 

γβdddtRIdtdAIE pp∫∫ ∫∫∫==
2     (A2.1)  

where Ip is the intensity from one unit cell (Eq. 4.14), dt is the unit data collecting time, dA is the 

unit area.  Let the direction of the primary beam as a vector s0
'

 making angle with α. Then the time 

during the direction of primary beam α and α+dα 

ω

α )(d
dt =         

The total diffracted energy 

dγβddαIω
R

=E p∫∫∫2

     (A2.2) 
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Since the directions of primary and diffracted beams which differ from Bragg law directions, let 

∆s+ss=ss' '
00 −−  where hklHλ=ss 0−  

Replacing one of sine functions with (s-s0) by SH hkl ∆+λ  

)(sin)(sin 11
1

2
11

2

λ
⋅∆+π=⋅∆+λ

λ
π aNS

hNaNsH hkl

r

 (A2.3) 

)(sin 11
2 aNS

r⋅∆
λ
π=  

It is convenient to represent ∆S as a vector in reciprocal space 

)( 332211 bpbpbpS ++=∆ λ      (A2.4) 

where b1, b2, b3 and p1, p2, p3 are the reciprocal lattice vectors and coefficients of these vectors. 

11
2

11332211
2

11
2 sin)(sinsin pNaNbpbpbpaNs ππ
λ
π =⋅++=⋅⋅∆ rrr

  (A2.5) 

Total diffracted energy 

γβαπ
π

π
π

π
π

ω ddd
p
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      (A2.6) 

αα dSd =∆ )(     ββ dSd =∆ )(    γγ dSd =∆ )(  

γβαθαγβ dddSdSdSddV 2sin)()()( =∆×∆⋅∆=    (A2.7) 

α, ß and γ can be expressed as volume integral 

∫∫∫ ⋅⋅= dV
p

pN

p

pN

p

pNFRI
E hkle
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222
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 (A2.8) 

321
3

332211 dpdpdpVdpbdpbdpbdV bλλλλ =×⋅=  
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3
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λ
=  
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 (A2.9) 
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where N=N1.N2 N3  (number of the unit cells in the crystal, diffracted energy 

θω
λ

2sin

232

a

hkle

V

FNRI
E =        (A2.10) 

Since the volume is composed of unit cell with Avogadro numbers ( VNVa δ= ), the integrated 

intensity will be: 

θω
δλ

2sin2

232

a

hkle

V

FVRI
E =        (A2.11) 

The diffracted area will depend on the 2θ diffracting angle as shown in Figure A2.2. If we 

consider a volume element between z depth and z+dz and define δV as the number of the blocks in 

the volume element as the average volume, it will depend on 

θδ
θ

µ

sin
0sin

2

V

dzA
e

z−

        (A2.12) 

 

Figure A2.2. The geometry involved in calculating the integrated intensity for an extended face mosaic crystal. 
 

Then, the final energy of the diffracted volume will be: 

∫∞
=

−

=

0

sin
2

2

232

2sin z

z

a

hkle dze
V

FVRI
E θ

µ

θω
δλ

    (A2.13) 
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µ
θ

θω
δλ

2
sin

2sin2

232

a

hkle

V

FVRI
E =      (A2.14) 

Even though we related the energy of the diffracted volume, it will be related with the data 

collecting time. Moreover, the effect of the location of the spot is important and we can relate the 

diffraction spot with η and |sin(η)|. If we relate the diffracted total volume and diffracted specific hkl 

vector, they will related as: 

powder
hkl

p
hklhkl

a

gaugee
powder t

F

V

VRI
E ∆= θω

θ
µ

λ
2sin2

sin
2

2

32

  (A2.15) 

hkl
hkl

g
hklhkl

a

hkle
hkl t

F

V

VRI
E ∆= θω

θ
µ
λ

2sin2
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2

2

32

    (A2.16) 

hkl
g

hklhklhkl

hklhkl
p

hklpowdergauge

hkl
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FtV

mFtV

E
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θ

θω
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2

2

∆

∆∆
=   (A2.17) 

By the combination of the Eq. (A2.15) and (A2.16), the volume of the diffracting grain can 

be found as: 

hkl
g

hklhklpowder

hklhkl
p

hklpowdergaugehkl

hkl

FtE

mFtVE
V

θ

θω
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2
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∆

∆∆
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Appendix 3. Scanning microdiffraction principles 
 

This section will describe the principles that scanning diffraction technique is relied on and 

shows the coordinate transformations in Scanning Microdiffraction technique. By using the 

principles described, one can characterize the twin orientations by starting from an indexed pattern.  

Figure A.3.1 describes the Scanning Microdiffraction technique schematically. The incident 

beam is pointed along -y direction. The normal of the diffraction plane will be dependent on the 

orientation matrix (U), reciprocal lattice matrix (B) and diffraction plane. The diffraction equation 

will be: 











−=

l

k

h

UBnhkl

)45cos()45sin(0

)45sin()45cos(0

001

      (A3.1) 

 

From the vector addition, the diffracted beam vector will be: 

hkliout nkk +=       (A3.2) 

 

 
Figure A3.1. Scanning Microdiffraction Setup 

 
The angle between the incident beam and the normal of the diffraction plane will be 90-2θ and  
 

)
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(cos90 11

hklout
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hkl

hkli

nk

nkdot

nki
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−− ==θ−   (A3.3) 
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In order to obtain the diffracting vector (outk ), the locations of the diffracting spots on the 

detector are determined and each diffraction spots are converted to a diffracting vector (outk ) with 

the following formula: 











⋅−
⋅−

=
L

py)(

px)(

c

c

out yy

xx

k       (A3.4) 

where x and y are the location of the spot in the detector, xc and yc are the center of the image, px and 

py are the pixel size of the CCD detector in mm per pixel and L is the sample-to-detector distance. 

The normal of the diffraction plane (hkln ) by Equation A3.2 can be found as: 
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By considering the incoming beam direction is towards y. The normalized length of the diffracted 

beam, kout, is 1 ( 222 )3()2()1( outoutout kkk ++ =1) and if we put in the equation: 
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Then, the components of the diffracted beam vector will be: 
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If the detector has a tilt with respect to incoming beam plane, the components of a finalized 

diffraction vector (r) will be: 
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where β and γ are the tilt angles defining a rotation along X and Z coordinates respectively.  The 

diffraction vector is converted to the normal of the diffraction planes by using Equation A3.5 and the 

orientation matrices of each domain are found by using Equation A3.1. 
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Appendix 4. Computer Codes used in 3D-XRD Analysis 

This section will describe the codes written to analyze the 3D-XRD experiment output. 

A4.1. Orientation Fitting 
Due to complexity and spot overlapping problems in ferroelectric materials, the orientation 

fitting in the tetragonal regime needs to be done with the following code. In order to do the fitting, 

first a grain indexing software is used to identify the orientations at cubic regime. Then, the 

distributions of these spots are found by Phi-Eta maps and center of mass of each candidate spot is 

found. The minimum number of the spots required for orientation fitting is 3 in this routine. By 

using quaternions, the minimum number of spots required for the orientation fitting can be reduced 

to 2 as well. Note that the reflections used in the orientation fitting need to be nonlinear reflections. 

%Eta-Phi locations with hkl values go here. 
etaPhi=[58.41   122.6   0   0   -2; 
    -41.17  105.1   2   0   0; 
    -36.63  285.1   -2  0   0; 
    33.68   216.66  0   2   0; 
    26.3    36.66   0   -2  0]; 
  
%Lattice parameters of BaTiO3 at room temperature. 
ucell=[3.9836  3.9836 4.0198 90 90 90];  
  
en=80.72; %Energy of the x-rays 
  
 % Converting  energy to lambda 
lambda=12.398427/en; 
  
%Forming B matrix; 
B=FormB(ucell); 
  
%Getting hkls 
Ghkl=etaPhi(:,3:5)'; 
  
%Producing Bhkls 
Bhkl=B*Ghkl; 
  
%Creating d-spacing 
list=findDspace(en,ucell,99,200,2274); 
  
% Formulations on finding the U matrix comes from Poulsen's book 
% Chapter 3, page 26, Equation 3.6 
  
for i=1:size(Bhkl,2) 
    aa=find(list(:,1)==Ghkl(1,i)&list(:,2)==Ghkl(2,i)&list(:,3)==Ghkl(3,i)); 
    A(i)=2*pi*sind(list(aa,6))/lambda; 
    gamma(:,:,i)=[cosd(etaPhi(i,1)) -sind(etaPhi(i,1)) 0;... 
        sind(etaPhi(i,1)) cosd(etaPhi(i,1)) 0;... 
        0 0 1]; 
    b(:,i)=A(i)*[-tand(list(aa,6)/2) -sind(etaPhi(i,2)) cosd(etaPhi(i,2))]; 
    bB(:,i)=b(:,i)'*gamma(:,:,i); 
    Bhkl(:,i)=lambda*Bhkl(:,i)/(4*pi*sind(list(aa,6)/2)); 
end 
  
U=bB/Bhkl; 
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% 
U(1,:)=U(1,:)/norm(U(1,:)); 
U(2,:)=U(2,:)/norm(U(2,:)); 
U(3,:)=U(3,:)/norm(U(3,:)) 
  
% The determinant will determine whether the orientation is a real square 
% matrix (determinant = 1) 
determinant=det(U) 

A4.2. Pole Figure 
This function plots orientations as a pole figure. The code was originally written by Henning 

Poulsen and it was improved with overlaying Wulff plot. 

 
function xy = plotU2pol(U,ucell,H,ttlFig,plotNum) 
  
% Pole Figure from U Matrix 
% A simple converter that plots a number of reflections in the corresponding pole-figure. 
% The formalism follows the ID11-3DXRD specs 
% 
%  Written by: Henning Poulsen, Risoe 1/11 2000. 
% Improved by: Mesut Varlioglu, ISU 10/12/2007 
% By overlaying the Wullf plot. 
% 
% USAGE:  plotU2pol(uu,[3.9836 3.9836 4.0198 90 90 90],[1 0 0; 0 1 0; 0 0 1],'RT',1); 
% 
  
%Create B matrix; It uses farfield diffsim function which is avaliable 
%online, type in google "fable farfield simulation" to obtain this package. 
B=FormB(ucell); 
  
figure;set(gcf, 'color', 'white'); 
%wulff; 
for ij=1:size(U,3) 
  
    % calculate the Bunge u,v,w then X and Y 
    for i1 = 1:size(H,1) 
        h = H(i1,1); 
        k = H(i1,2); 
        l = H(i1,3); 
  
        Gs = U(:,:,ij)*B*[h k l]'; 
        Glen = (Gs(1)^2 + Gs(2)^2 + Gs(3)^2)^0.5; 
        u = Gs(1)/Glen; v = Gs(2)/Glen; w  = Gs(3)/Glen; 
        if w<0 
            u = -u; v = -v; w = -w; 
        end 
        x(i1) = u/(w+1); 
        y(i1) = v/(w+1); 
    end 
  
  
    %plot the data point 
    hold all; 
    plot(x,y,'k+','MarkerSize',6); 
    xy{ij}=[x y]; 
    if plotNum==1 
        text(x+0.01,y,num2str(ij),'Color','k','FontWeight','bold','FontSize', 14); 
    else 
        continue; 
    end 
    hold all; 
    axis equal; 
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    axis off; 
end 
  
axis off; axis square; 
  
  
text(1.3,1,ttlFig,'FontSize',8); 
t=0:0.01:2*pi; 
xcircle = cos(t); 
ycircle = sin(t); 
plot(xcircle,ycircle,'k-') 
text(1.05,0,'X','FontSize',14) 
text(0,1.05,'Y','FontSize',14) 
  
t = -1:1/20:1; 
hline1 = plot(t,0,'k'); 
hline2 = plot(0,t,'k'); 
  
N = 90; 
cx = cos(0:pi/N:2*pi);                           % points on circle 
cy = sin(0:pi/N:2*pi); 
psi = [0:pi/N:pi]; 
for i = 1:8                                      %plot great circles 
    rdip = i*(pi/18);                             %at 10 deg intervals 
    radip = atan(tan(rdip)*sin(psi)); 
    rproj = tan((pi/2 - radip)/2); 
    x1 = rproj .* sin(psi); 
    x2 = rproj .* (-sin(psi)); 
    y = rproj .* cos(psi); 
    plot(x1,y,':r',x2,y,':r'); 
end 
  
for i = 1:8                                     %plot small circles 
    alpha = i*(pi/18); 
    xlim = sin(alpha); 
    ylim = cos(alpha); 
    x = [-xlim:0.01:xlim]; 
    d = 1/cos(alpha); 
    rd = d*sin(alpha); 
    y0 = sqrt(rd*rd - (x .* x)); 
    y1 = d - y0; 
    y2 = - d + y0; 
    plot(x,y1,':r',x,y2,':r'); 
end 
  
hold off; 
  
xy=[x y]; 
 

A4.3. Inverse Pole Figure 
This function plots orientations as an inverse pole figure. The code can currently plot the 

orientations with cubic and tetragonal crystal symmetries. 

 

function plotInvPoleFig(rmat,ttlFig,symOP) 
  
% It plots the inverse pole figures of the orientations with their symmetry 
% operations. 
% 
% USAGE: plotInvPoleFig(umat,'ttlFig1',1); For tetragonal 
%       plotInvPoleFig(umat,'ttlFig1',2); For cubic 
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figure; 
hold all; 
  
ttl={'X','Y','Z'}; 
for ij=1:3 
    subplot(1,3,ij); 
    hold all; 
    if symOP == 1 
        for i = 1:size(rmat,3) 
  
            u=rmat(1,ij,i); 
            v=rmat(2,ij,i); 
            w=rmat(3,ij,i); 
  
            INVPF1(:,i)=acos(abs(w));  % ...(:,1) is alpha angle 
            INVPF2(:,i)=atan(abs(u)./abs(v));%+45*pi/180; % ...(:,2) is beta angle 
            bmax=45; 
            if INVPF2(i) > (pi/4) 
                INVPF2(i) = pi/2 - INVPF2(i); % enforcing a mirror about 45deg 
            end 
            % tan(alpha/2) incorporates stereographic projection 
            xinv(i)=tan(INVPF1(i)/2).*cos(INVPF2(i)); 
            yinv(i)=tan(INVPF1(i)/2).*sin(INVPF2(i)); 
            % this line plots the data point 
            plot(xinv(i),yinv(i),'k.') 
            %plot(xinv(i),yinv(i),'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 10) 
            %text(xinv(i)+0.01,yinv(i),num2str(i),'Color','b','FontWeight','bold','FontSize', 10) 
            axis square 
            %title(PFtitle); 
            axis off 
            hold all; 
        end 
        hold on; 
  
        plot([0 1], [0 0], 'k-') 
        xinv2=tan([45 54.7 90]*pi/180/2).*cos([0 45 bmax]*pi/180); 
        yinv2=tan([45 54.7 90]*pi/180/2).*sin([0 45 bmax]*pi/180); 
        plot(xinv2(1),yinv2(1),'k+') 
        plot(xinv2(2),yinv2(2),'k+') 
  
  
        % these plot lines for the borders of the Inverse PF 
        plot([0 xinv2(3)],[0 yinv2(3)],'k-') 
        xinv3=ones(1,20).*cos(linspace(0,bmax,20)*pi/180); 
        yinv3=ones(1,20).*sin(linspace(0,bmax,20)*pi/180); 
        plot(xinv3,yinv3,'k-') 
  
        text(0.38,-0.04,'101','FontWeight','bold','FontSize',12); 
        text(0.31,0.41,'111','FontWeight','bold','FontSize',12); 
  
        text(-0.1,-0.04,'001','FontWeight','bold','FontSize',12); 
        text(1,-0.04,'100','FontWeight','bold','FontSize',12); 
        text(0.67,0.75,'110','FontWeight','bold','FontSize',12); 
        %text(1.02,0.04,'E Field','FontWeight','bold','Color','g','FontSize',12); 
  
        % i= 1; plot(xinv(i),yinv(i),'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 10) 
        %text(xinv(i)+0.01,yinv(i),num2str(i),'Color','b','FontWeight','bold','FontSize', 10) 
        hold off; 
    elseif symOP == 2 
        for i = 1:size(rmat,3) 
  
            b(1)=rmat(1,ij,i); 
            b(2)=rmat(2,ij,i); 
            b(3)=rmat(3,ij,i); 
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            [A,INDEXA]=sort(abs(b)); 
  
            w=abs(b(INDEXA(3))); 
            v=abs(b(INDEXA(2))); 
            u=abs(b(INDEXA(1))); 
  
            c = tan( acos(w)/2); 
  
            alpha = acos(v/(v^2 + u^2)^.5); 
  
            xinv(i) = c*cos(alpha); 
            yinv(i) = c*sin(alpha); 
            plot(xinv(i),yinv(i),'k.') 
            %text(xinv(i)+0.01,yinv(i),num2str(i),'Color','b','FontWeight','bold','FontSize', 10) 
            axis square 
            %title(PFtitle); 
            axis off 
            hold all; 
            bmax=45; 
        end 
    end 
  
    % these lines plot extra points for reference 
    hold on; 
    plot([0,.5],[0,0],'k-',[0,.355],[0,.355],'k'); 
  
    % these plot lines for the borders of the Inverse PF 
    %plot([0 .366],[0 .366],'k-') 
    xinv3=ones(1,20)/2.*cos(linspace(0,bmax,20)*pi/180); 
    yinv3=ones(1,20)/2.*sin(linspace(0,bmax,20)*pi/180); 
    plot(xinv3,yinv3,'k-') 
  
     text(0.34,0.38,'111','FontWeight','bold','FontSize',12); 
    text(0.5,-0.02,'110','FontWeight','bold','FontSize',12); 
    text(-0.03,-0.02,'100','FontWeight','bold','FontSize',12); 
  
  
    % i= 1; plot(xinv(i),yinv(i),'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 10) 
    %text(xinv(i)+0.01,yinv(i),num2str(i),'Color','b','FontWeight','bold','FontSize', 10) 
    hold off; 
    set(gcf, 'color', 'white'); 
    title(ttl{ij}); 
end 
text(0.5,0.5,ttlFig); 
  
  
 

A4.4. Lattice Strain Matrix 
This code finds the lattice strain tensor from the spot strains and direction cosines. 

function strain=findLatticeStrain(lmn,epsilon) 
  
%It finds the strain tensor components from the direction cosines and spot 
%strains.  
% USAGE: strain=findLatticeStrain(rand(3,18),rand(1,18)) 
  
for i = 1:size(lmn,2) 
    fx(i,:)=[lmn(1,i)^2 lmn(2,i)^2 lmn(3,i)^2 lmn(1,i)*lmn(2,i) lmn(1,i)*lmn(3,i) lmn(2,i)*lmn(3,i)]; 
end 
  
strain=fx\epsilon'; %It causes rank deficient results. 
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Appendix 5. Computer codes used in µSXRD analysis 

This section will describe the codes written to analyze the µSXRD experiment output. 

A5.1. Orientation Fitting 
Due to complexity of the µSXRD technique and spot overlapping problems in ferroelectric 

materials, the orientation fitting of the ferroelectric domains was confirmed with this code. In this 

fitting, the information about the each orientation is extracted and the orientations are confirmed by 

using the output parameters from XMAS software. 

 
function [usimCor,uxmas]=findOrienWB1(file) 
  
% It finds and confirms the orientation from the XMAS outputs 
% 
% USAGE: [usimCor,uxmas]=findOrienWB1('BaTO130CLast_0392.STR') 
  
[table,reflist]=readSTRv4(file); 
  
% Converting XMAS orientations to direction cosine matrices. 
[uxmas,OM1] = convertU2rmat(table); 
  
  
% xc=522.7; 
% yc=512.3; 
% dd=83.94; 
  
px=135/1024; 
py=135/1024; 
  
% figure; 
  
% B=[1.567   0.00081035   -0.0018622 
%     0      1.569         0.00089509 
%     0      0              1.5674]; 
  
abc(:,1:3)=table(:,5:7)*10; 
abc(:,4:6)=table(:,8:10); 
  
table(:,5:7)*10; 
%rot1=[-0.99993 -0.01146 0; -0.00806 0.70319 -0.71095; 0.00815 -0.71090 -0.70324]; %For ALSJan08 
rot1=[0.99994 -0.01087 0; 0.00769 0.70735 -0.70682; 0.00769 0.70678 0.70739]; 
% rot2=[-1 0 0; 
%       0 cosd(45) -sind(45); 
%       -0 -sind(45) -cosd(45)]; 
  
for ij=1:size(reflist,2) 
    xc=table(ij,24); 
    yc=table(ij,25); 
    dd=table(ij,23); 
    for i=1:size(reflist{1,ij},1) 
        k{ij}(i,:)=[ ((reflist{1,ij}(i,1)-xc)*px) ((reflist{1,ij}(i,2)-yc)*py) dd]; 
        k1{ij}(i,:)=k{ij}(i,:)/norm(k{ij}(i,:)); 
  
        theta{ij}(i,:)=acosd(dot([0 -1 0],k1{ij}(i,:)))/2; 
        qvec{ij}(:,i)=-k1{ij}(i,:)-[0 -1 0]; 
        qhat{ij}(:,i)=qvec{ij}(:,i)/norm(qvec{ij}(:,i)); 
        qhat1{ij}(i,:)=qhat{ij}(:,i); 
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        hkl{ij}(:,i)=[reflist{1,ij}(i,3) reflist{1,ij}(i,4) reflist{1,ij}(i,5)]; 
        hkl1{ij}(:,i)=hkl{ij}(:,i)/norm(hkl{ij}(:,i)); 
  
        theta1{ij}(i,:)=acosd(dot([0 -1 0],-qhat{ij}(:,i))); 
        a1(:,:,ij)=qhat{ij}/hkl1{ij}; 
        B(:,:,ij)=FormB([table(ij,5:7)*10 table(ij,8:10)]); 
        B1(:,:,ij)=B(:,:,ij)/norm(B(:,:,ij)); 
        a2(:,:,ij)=a1(:,:,ij)/B1(:,:,ij); 
        usim(:,:,ij)=rot1'*a2(:,:,ij); 
  
        usimN(:,1,ij)=usim(:,1,ij)/norm(usim(:,1,ij)); 
        usimN(:,2,ij)=usim(:,2,ij)/norm(usim(:,2,ij)); 
        usimN(:,3,ij)=usim(:,3,ij)/norm(usim(:,3,ij)); 
        usimCor(1,:,ij)=usimN(1,:,ij); 
        usimCor(2,:,ij)=-usimN(3,:,ij); 
        usimCor(3,:,ij)=usimN(2,:,ij); 
  
        gnew{ij}(:,i)=rot1*usim(:,:,ij)*FormB([table(ij,5:7)*10 table(ij,8:10)])*hkl1{ij}(:,i); 
        gnew1{ij}(:,i)=rot1*usimN(:,:,ij)*FormB([table(ij,5:7)*10 table(ij,8:10)])*hkl1{ij}(:,i); 
        qhatsim{ij}(i,:)=gnew{1,ij}(:,i)/norm(gnew{ij}(:,i)); 
  
  
        qhatsimN{ij}(i,:)=gnew1{ij}(:,i)/norm(gnew1{ij}(:,i)); 
        theta2{ij}(i,:)=acosd(dot([0 -1 0],-qhatsimN{ij}(i,:))); 
        %rot1%*ab(:,:,ij)%*FormB([table(ij,5:7)*10 table(ij,8:10)])%*hkl1{ij}; 
    end 
end 

A5.2. Read Strain Files 
This code reads µSXRD strain file and outputs the information about each orientation found. 

The strain file (filen) is read by the code and the orientation matrices, lattice parameters of each grain 

is tabulated in table and the reflection information is created in reflist as cell each column containing 

x(exp), y(exp), h, k, l, xdev, ydev, energy, dspace, intens, integr, xwidth, ywidth, tilt, rfactor, 

pearson, xcentroid, ycentroid. This code also exports the deviatoric strain matrix. 

 
function [table,reflist]=readSTRv4(filen) 
 
% Read the µSXRD strain file and outputs the information in the strain text file. 
% Developed from the readtextfile.m file available at http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect6.html website. 
% Mesut Varlioglu, January 28th, 2007 
  
% USAGE: [table,reflist]=readSTR('BTO_RT0036.str') 
% OUTPUT: The output file (TABLE) contains the following: 
% image g_number g_indice peak_number a b c alpha beta gamma dev1 dev2 
% pixdev M11 M12 M13 M21 M22 M23 M31 M32 M33 DD Xcent YCent S11 S12 S13 S21 
% S22 S23 S31 S32 S33 
% 
% (REFLIST) contains the following columns: 
% 
% x(exp)  y(exp)  h  k  l xdev  ydev  energy  dspace  intens   integr xwidth   ywidth  tilt  rfactor   pearson  xcentroid  ycentroid 
% 
% 
  
tab=readtextfile(filen); 
  
 sz=size(tab); 
  
idd=zeros(1,sz(1)); 
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for i=1: sz(1); 
    id{i}=find(strcmp(strcat(tab(i,1:10)),'Grain no:'));%&&str2num(tab(ID(i)+RefID(ij)+26,:))~=0); 
    id1{i}=find(strcmp(strcat(tab(i,1:18)),'latticeparameters='));%&&str2num(tab(ID(i)+RefID(ij)+26,:))~=0); 
    if id{i}~=NaN;%((id{i}~=NaN)& (id1{i}~=NaN)&(str2num(tab(id1{i}+24,:))>0)); 
        idd(i)=1; 
    end; 
    if id1{i}~=NaN%str2num(tab(id1{i}+24,:))>0; 
        idd1(i)=1; 
    end 
    %      if id1{i}~=NaN;  idd1(i)=id1{i}; 
    %     end; 
end 
  
% Finding the information on each grain 
% (IDA for finding line starting with Grain No 
% and ID1 for finding line starting with Lattice Parameters) 
  
IDA=find(idd>eps); 
ID1=find(idd1>eps); 
  
for i=1:length(IDA) 
    aa(i,:)=str2num(tab(ID1(i)+25,:)); 
end 
  
finID=find(aa(:,1)~=0); 
ID=IDA(finID); 
  
table=zeros(length(ID),34); 
  
for ij=1:length(ID) 
    IM=strcat(tab(1,:)); 
    %Inputting strain file number 
    table(ij,1)=str2num(IM(end-7:end-4)); 
    %Inputting grain number; 
    table(ij,2)=ij; 
  
    %Finding the number of the reflections 
    cc=strcat(tab(ID(ij),:)); 
    RefID(ij)=str2num(cc(end-2:end)); 
    table(ij,4)=RefID(ij); 
    latID=tab(ID(ij)+RefID(ij)+2,:); 
    latt(ij,:)=str2num(strcat(latID(:,22:end))); 
    % 
    table(ij,5:10)=latt(ij,:); 
  
    devID=tab(ID(ij)+RefID(ij)+7,:); 
    dev(ij,:)=str2num(devID(20:end)); 
  
    table(ij,11:13)=dev(ij,:); 
  
    u1=str2num(tab(ID(ij)+RefID(ij)+26,:)); 
    u2=str2num(tab(ID(ij)+RefID(ij)+27,:)); 
    u3=str2num(tab(ID(ij)+RefID(ij)+28,:)); 
    om(ij,:)=[u1 u2 u3]; 
  
    table(ij,14:22)=om(ij,:); 
  
    CentDDID=tab(ID(ij)+RefID(ij)+4,:); 
    CenD(ij,:)=str2num(strcat(CentDDID(:,20:end))); 
    table(ij,23:25)=CenD(ij,:); 
  
    s1=[str2num(tab(ID(ij)+RefID(ij)+13,1:10)) str2num(tab(ID(ij)+RefID(ij)+13,11:20)) str2num(tab(ID(ij)+RefID(ij)+13,21:30))]; 
    s2=[str2num(tab(ID(ij)+RefID(ij)+14,1:10)) str2num( tab(ID(ij)+RefID(ij)+14,11:20)) str2num(tab(ID(ij)+RefID(ij)+14,21:30))]; 
    s3=[str2num(tab(ID(ij)+RefID(ij)+15,1:10)) str2num(tab(ID(ij)+RefID(ij)+15,11:20)) str2num(tab(ID(ij)+RefID(ij)+15,21:30))]; 
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    sm(ij,:)=[s1 s2 s3]; 
    table(ij,26:34)=sm(ij,:); 
  
    reff=str2num(tab(ID(ij)+2:ID(ij)+RefID(ij)+1,:)); 
    reff(:,18)=ij; 
    %[ic, id]=sort(reff,1); 
    reflist{ij}= reff;%(id(:,1),:); 
    clear reff; 
end 

A5.3. Read Indexation Files 
This code reads µSXRD indexation file and outputs the information about each orientation 

found. The lattice parameters and components of the orientations are collected in one table while 

strain matrix components are collected in another table.  

 
function [refList,u]=readIND(filen) 
  
%filen='C:\research\xmas\jan08\ebsd\ebsd0220.IND'; 
%filen='C:\research\ALS_Jan08\xmas\strainFiles\BaTORT_0220.str'; 
  
%filen='C:\research\ALS_Jan08\xmas\EBSD\param\ebsd0005.STR'; 
%filen='C:\research\ALS_Jan08\bto_3dxrd_0001.STR'; 
% Read the µSXRD indexation file and outputs the information in the indexation text file. 
% Developed from the readtextfile.m file available at http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect6.html website. 
% Mesut Varlioglu, January 28th, 2007 
  
% USAGE: [reflist,u]=readIND('C:\research\xmas\jan08\ebsd\ebsd0220.IND') 
% OUTPUT: The output file (TABLE) contains the following: 
% image g_number g_indice peak_number a b c alpha beta gamma dev1 dev2 
% pixdev M11 M12 M13 M21 M22 M23 M31 M32 M33 DD Xcent YCent S11 S12 S13 S21 
% S22 S23 S31 S32 S33 
% 
% (REFLIST) contains the following columns: 
% 
% x(exp)  y(exp)  h  k  l xdev  ydev  energy  dspace  intens   integr xwidth   ywidth  tilt  rfactor   pearson  xcentroid  ycentroid 
% 
% 
  
tab=readtextfile(filen); 
  
sz=size(tab); 
  
idd=zeros(1,sz(1)); 
   
for i=1: sz(1);  
    id{i}=find(strcmp(strcat(tab(i,1:10)),'grain no:'));%&&str2num(tab(ID(i)+RefID(ij)+26,:))~=0);  
    id1{i}=find(strcmp(strcat(tab(i,1:25)),'matrix X  Y  Z -> h  k  l'));%&&str2num(tab(ID(i)+RefID(ij)+26,:))~=0); 
    if id{i}~=NaN;%((id{i}~=NaN)& (id1{i}~=NaN)&(str2num(tab(id1{i}+24,:))>0));   
        idd(i)=1; 
    end; 
    if id1{i}~=NaN%str2num(tab(id1{i}+24,:))>0; 
        idd1(i)=1; 
    end 
%      if id1{i}~=NaN;  idd1(i)=id1{i};  
%     end; 
end 
  
% Finding the information on each grain  
% (IDA for finding line starting with Grain No  
% and ID1 for finding line starting with Lattice Parameters) 
  



 

 

170 
IDA=find(idd>eps); 
ID1=find(idd1>eps); 
  
% 
for i=1:length(IDA) 
    refList{i}=str2num(tab((IDA(i)+3):ID1(i)-2,:)); 
   u(:,:,i)=str2num(strcat(tab((ID1(i)+1):(ID1(i)+3),:))); 
end 
 
 

A5.4. Convert U Matrix 
 

 It converts the XMAS orientations to direction cosine matrices. 
 
function [rmat,OM1] = convertU2rmat(data1) 
  
% It converts the XMAS orientations to direction cosine matrices. 
% USAGE: [uxmas,OM1] = convertU2rmat(table); 
  
om1 = data1(:,14:22); 
  
%OM2=zeros(3,3,20); 
  
for i=1:size(om1,1) 
    OM1(:,:,i)=reshape(om1(i,:),3,3)'; 
    OM2(1,:,i)=OM1(1,:,i)/data1(i,5); 
    OM2(2,:,i)=OM1(2,:,i)/data1(i,6); 
    OM2(3,:,i)=OM1(3,:,i)/data1(i,7); 
end 
  
rmat=OM2; 
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Appendix 6. Computer codes used in EBSD analysis 

This macro reads the OIM software outputs and creates an orientation map from the 

orientations.  

%function [table,misOr,mis,rmat1,rmat2,Dom90,Dom180,x,y,z] = readEBSDfile(filename,CILim) 
% Manipulates the EBSD experiment data files and orientation matrices. 
% Plots the orientation map with rgb color mode where  
% 100-->Red 
% 010-->Green  
% 001-->Blue 
%USAGE: [table,misOr,mis,rmat1,rmat2,Dom90,Dom180,x,y,z] = readEBSDfile('C:\research\EBSD\Mesut\BaTiO3-run3.b.ang',0.2) 
% 
% Mesut Varlioglu, December 19th, 2007 
  
filename='C:\research\EBSD\Mesut\BaTiO3-run3.b.ang'; 
table=textread(filename,'','headerlines',58); 
  
% x=table(:,4); 
% y=table(:,5); 
% x=unique(table(:,4)); 
% y=unique(table(:,5)); 
  
% aa=find(table(:,7)~=-1&table(:,7)>=CILim); 
% table=table(aa,:); 
  
  
rmat=RMatOfBunge([table(:,1) table(:,2) table(:,3)]'); 
  
rmat1=convertU2FundaRegion(rmat,TetSymmetries); 
  
 for i=1:size(rmat1,3); or(i,:)=rmat1(:,3,i); end 
  
  
% %%% Make the grain map 
% figure; 
% multicomb([table(:,5) table(:,4) zeros(1,5372)'],or,'honeym') 
  
%% 
r=[table(:,5) table(:,4) zeros(1,5372)']; 
U=or; 
  
figure;set(gcf, 'color', 'white'); 
warning off 
  
  
Umax=max(max(U)); 
Umin=min(min(U)); 
[n,m]=size(r); 
x = r(:,1); 
y = r(:,2); 
z = r(:,3); 
%c = (U-Umin)/(Umax+Umin); 
c = abs(U); 
d=sqrt((r(1,1)-r(2,1))^2+(r(1,2)-r(2,2))^2); 
  
honeyrad=(d/2)/cos(pi/6); 
  
tita =linspace(0,2*pi,7); 
Rx =  honeyrad*cos(tita); 
Ry =  honeyrad*sin(tita); 
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zo = extract(z); 
nz = length(zo); 
zini = zo(1); 
ni=1; 
  
%figure(fignum) 
hold off 
if (max(c)~=min(c)), 
  
    for ii=1:n, 
        if (z(ii)~=zini), 
            zini=z(ii); 
            ni=ni+1; 
            xlabel('X [mm]') 
            ylabel('Y [mm]') 
            colorbar('v') 
            % colormap hot 
            axis tight 
            shading flat 
        end; 
        subplot(nz,1,ni), 
        %title(strcat('Z=',num2str(zini))) 
        hold all; 
        fill(x(ii)+Rx,y(ii)+Ry,c(ii,:)) 
        hold on 
    end; 
    colorbar('v') 
    xlabel('X [microns]') 
    ylabel('Y [microns]') 
    %colormap hot 
    axis tight 
    shading flat 
  
else; 
  
    for ii=1:n, 
        if (z(ii)==zini), 
            fill(x(ii)+Rx,y(ii)+Ry,'g') 
            hold on 
        end; 
    end; 
  
  
   % hold off 
end 
  
%axis([2.1 3.5 2 2.6]); axis square; 
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Appendix 7. Rotation of polarization vectors with s pontaneous deformation 

The mechanism on how ferroelectric domains form during the cooling from cubic to 

tetragonal structure has been a major research interest in ferroelastic and ferroelectric materials 

[Sapriel, J. (1975)]. Sapriel, J. (1975) discussed that the domain boundaries are oriented during the 

phase transformation to maintain the strain compatibility between two neighbor domains. 

Nepochatenko, V.A. (2006) also discussed that the mismatch between the lattice parameters of the 

local domains result in the creation of the spontaneous deformation during the cooling process. This 

deformation creates a mismatch in the domain walls and results in the rotation of the domains to 

reduce the spontaneous strain between domains. The rotation mechanism proposed by 

Nepochatenko, V.A. (2006) is revisited in the following section.  

During cooling from cubic to tetragonal phase, the polarization vectors can develop along 6 

major tetragonal crystal directions. From these directions, the polarization vectors along the major 

tetragonal crystal axes are: 

TPP )0,0,1()1( 0=  ( ) TPP )0,1,0(2 0=  TPP )1,0,0()3( 0=   (A7.1) 

where P0 is the spontaneous polarization of the tetragonal ferroelectric. During the cooling, the 

tetragonal-to-cubic phase transformation takes place and the lattice parameters for cubic phase (a0) 

change to tetragonal (a, c) by creating a spontaneous strain within the body. Due to change in the 

lattice parameters, BaTiO3 exhibit spontaneous deformation during the phase transformation from 

cubic to tetragonal structure. During the phase transformation, the resultant spontaneous strain 

tensors can be obtained for the polarization vectors above: 
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where 0011 /)( aaa −=ε  and 0022 /)( aac −=ε  represent the spontaneous deformation during the 

phase transformation. Any of these polarization directions can intersect with 90° domain walls. The 

number of the maximum possible 90° domain walls is 4. For instance, for a domain with a [001] 

cubic direction (P(3)) can intersect with 90° domain walls of (101), (-101), (011) and (0-11). (110) 

and (1-10) domain walls will be equivalent to 180° domain walls. To considering all the major cube 

axes, 4 domains in each cube axis and 24 domains in all cube axes can form. Due to ambiguity of the 

directions in x-rays where the positive and negative directions are not detectable, the total 12 

domains can be detected. The domain walls separating two domains must have mechanical 

compatibility with the neighboring domains. Let’s consider (101) domain walls at paraelectric phase 

and select noncollinear directions ]0,1,0[oa and ]1,0,1[ob  in plane of (101) domain wall. In the 

ferroelectric phase, these directions transform into a1 and b1 vectors under thermal expansion. Under 

homogeneous deformation, the change in any vector can be calculated as: 

 iijj rer =∆          (A7.3) 

Applying the corresponding spontaneous strain tensor to the directions above, we can obtain the 

change in these vectors as: ]0,1,0[ 111 ea +  and ]1,0,1[ 22111 eeb ++ . The normal to the domain wall 

plane in the ferroelectric phase can be found as: 

11 ban ×=          (A7.4) 

The corresponding normal of the domain wall will be [ 2
112211 )1(,0),1)(1( ε+ε+ε+− ]. The direction 

cosine of the normal of the domain wall (n) denotes to the mismatching angle between the 

paraelectric and ferroelectric phase. The angle between the domain walls during the phase 

transformation will be:  
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Considering the lattice parameters for the BaTiO3 sample were measured as a=0.39836 and 

c=0.40198 nm, the phase matching angle can be calculated as 0.2592°. Table 1 summarizes the 

possible domains and their 90° domain walls separating the neighboring domains and the angles 

between the domains. The relations between mismatching angles correspond to A=90-ψ, B=90+ψ. 

The mismatch angle can be calculated as: 

)
)(2

(cos
22

1

ca

ca

+
+=Ψ −        (A7.6) 

where a and c correspond to lattice parameters of the domains. Considering the lattice parameters for 

the BaTiO3 sample were measured as a=0.39836 and c=0.40198 nm, the phase matching angle can 

be calculated as 0.2592°.  
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The mismatching angle due to rotation of the polarization vectors during the phase 

transformation is in the resolution limit of the most common characterization techniques. The 

most commonly used characterization techniques such as TEM, SEM and optical microscopy 

have less than 1µm penetration depth [Poulsen, H. F. et al (2004)] depending upon the 

photon energy of the constituents of the material investigated. Several techniques such as 

Atomic Force Microscopy [Balakumar, S. et al (1997)], White Beam Topography [Huang, X. 

R. et al (1996)] and Electron Back Scattering Diffraction [Ernst, F. et al (2001)] have been 

employed to ferroelectrics to study the texture evolution of the domains. Considering the 

ferroelectrics are extremely sensitive to surface preparation [Chen, J-H, (2005)], the 

information obtained from the surface can be influenced by residual stress development. 

With its superior penetration (up to 100 mm in Al and 1 mm in BaTiO3 at 80.72 keV), 0.04° 

orientation resolution and the microfocusing capability, 3D-XRD technique has been a 

promising tool to investigate the evolution of the grains embedded in polycrystalline 

materials. The technique was further capable of studying the texture evolution of the grains 

and domains as response to external stimuli. The recent implementation of the GE detector 

reduced the acquisition time to 10 orders of magnitudes. With the superior penetration power 

and unique orientation resolution made 3D-XRD as a possible characterization tool to 

investigate the evolution of the ferroelectric domains embedded in polycrystalline BaTiO3.  
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