
Contributions to computational phylogenetics and algorithmic self-assembly

by

Brad Shutters

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

David Fernández-Baca, Major Professor

Pavan Aduri

Clifford Bergman

Jack H. Lutz

Giora Slutzki

Iowa State University

Ames, Iowa

2013

Copyright c© Brad Shutters, 2013. All rights reserved.



ii

DEDICATION

I dedicate this dissertation to my mother, Betty Ann Shutters, whose loving support and

encouragement made it possible for me to complete this work.



iii

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1. General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Computational Phylogenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Perfect Phylogeny Problem . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The Tree Compatibility Problem . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Algorithmic Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Author’s Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2. Obstructions to Perfect Phylogenies . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Preliminaries and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Unrooted Phylogenetic Trees and Quartets . . . . . . . . . . . . . . . . 11

2.2.2 Multi-State Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Partition Intersection Graphs . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Solving 3-State Perfect Phylogeny with 2-State Characters . . . . . . . 16

2.2.5 The Algorithm of Kannan and Warnow . . . . . . . . . . . . . . . . . . 16

2.3 Results on 3-state Perfect Phylogenies . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 A Single Forbidden Subgraph for 3-state Perfect Phylogenies . . . . . . 23

2.3.2 Finding All Minimal Obstruction Sets . . . . . . . . . . . . . . . . . . . 24

2.3.3 Dependent States and Legal Minimal Separators . . . . . . . . . . . . . 25



iv

2.4 Results on Multi-State Perfect Phylogenies . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Incompatible Quartets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Incompatible Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 3. Fixed-Parameter Algorithms for Finding Agreement Supertrees 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Solving the Agreement Supertree Problem . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 An auxiliary graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Finding successor positions and interesting vertices . . . . . . . . . . . . 40

3.3.3 Testing for an agreement supertree . . . . . . . . . . . . . . . . . . . . . 44

3.4 Solving the AST-EC and AST-TR problems . . . . . . . . . . . . . . . . . . . 49

3.4.1 An auxiliary algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Solving the AST-EC problem . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Solving the AST-TR problem . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Deferred proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Proofs of Section 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 Proof of Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 4. The Tile Assembly Model and Discrete Fractals . . . . . . . . 65

4.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 The Tile Assembly Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Local Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Discrete Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Zeta-Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Approximate Self-Assembly of a Discrete Fractal . . . . . . . . . . . . . 70

CHAPTER 5. Approximate Self-Assembly of the Sierpinski Triangle . . . . . 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



v

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 The Sierpinski Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Limitations on Approximating the Sierpinski Triangle . . . . . . . . . . . . . . 78

5.4 Conditional Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Fibering the Sierpinski Triangle in Place . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 6. Self-Assembling Rulers for Approximating Generalized Sier-

pinski Carpets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 Generalized Sierpinski Carpets . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Embedded Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Approximating Generalized Sierpinski Carpets . . . . . . . . . . . . . . . . . . 112

6.4.1 The Ruler Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 The Reader Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.3 The Decrementer Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.4 Putting it All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.5 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

CHAPTER 7. General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 135

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



vi

LIST OF FIGURES

Figure 1.1 Darwin’s first diagram of an evolutionary tree (1837) [5]. . . . . . . . . 1

Figure 1.2 AFM image of Sierpinski triangles self-assembled from DNA tiles [66]. 4

Figure 1.3 Approximation of the Sierpinski carpet in the Tile Assembly Model. . 5

Figure 2.1 Example perfect phylogeny for input matrix M. . . . . . . . . . . . . . 9

Figure 2.2 A phylogenetic tree and a restricted subtree. . . . . . . . . . . . . . . . 12

Figure 2.3 Partition intersection graph for the matrix M of Figure 2.1. . . . . . . 14

Figure 2.4 Three forbidden subgraphs for 3-state character compatibility from [50]. 15

Figure 2.5 The four possible realizable tree-structures for a 3-state character α. . 18

Figure 2.6 Illustrating the proof of Lemma 3. . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.7 Illustrating the proof of Theorem 8. . . . . . . . . . . . . . . . . . . . . 22

Figure 2.8 An alternate proof of Corollary 3 using the forbidden subgraphs of [50]. 23

Figure 2.9 A single forbidden subgraph for 3-state character compatibility. . . . . 24

Figure 2.10 Case 1 in the proof of Lemma 6. . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.11 Case 2 in the proof of Lemma 6. . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.1 An example illustration of a tile. . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.1 The first five stages of the continuous Sierpinski triangle. . . . . . . . . 76

Figure 5.2 Stages 0 through 4 of the discrete Sierpinski triangle. . . . . . . . . . . 77

Figure 5.3 Illustrating the proof of Lemma 25 for n = 3. . . . . . . . . . . . . . . 79

Figure 5.4 Illustrating the proof of Lemma 26 for n = 3. . . . . . . . . . . . . . . 81

Figure 5.5 Illustrating the partition used in the proof of Lemma 27. . . . . . . . . 83

Figure 5.6 The TAS TB = (TB, σB, 1) which uses a blocking technique. . . . . . . 84



vii

Figure 5.7 Stage 6 of the laced Sierpinski triangle. . . . . . . . . . . . . . . . . . . 88

Figure 5.8 Fibering S in place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.9 The tile set TL of the TAS TL. . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.10 Example assembly of the horizontal and vertical bars of S. . . . . . . . 94

Figure 5.11 Example assembly of the cap fibers in L. . . . . . . . . . . . . . . . . . 95

Figure 5.12 Example assembly of the counter fibers in L. . . . . . . . . . . . . . . . 96

Figure 5.13 Example assembly of the test fibers in L. . . . . . . . . . . . . . . . . . 97

Figure 6.1 Example illustration of a tile used in a construction. . . . . . . . . . . 105

Figure 6.2 Some generalized Sierpinski carpets. . . . . . . . . . . . . . . . . . . . 106

Figure 6.3 Weak self-assembly of a generalized Sierpinski carpet. . . . . . . . . . 107

Figure 6.4 The Sierpinski triangle embedded in the Sierpinski carpet. . . . . . . . 108

Figure 6.5 Rulers, readers, and decrementers embedded in the Sierpinski carpet. . 113

Figure 6.6 Corner turn operation for a base 2 counter and ruler. . . . . . . . . . . 114

Figure 6.7 Tileset for a ruler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.8 Tileset for ground of ruler embedded in a carpet. . . . . . . . . . . . . 118

Figure 6.9 Tileset for reader tiles embedded into a carpet. . . . . . . . . . . . . . 120

Figure 6.10 Tileset for decrementer tiles embedded into carpet. . . . . . . . . . . . 121

Figure 6.11 Constructing a tileset for approximating a generalized Sierpinski carpet. 122

Figure 6.12 Assembly sequence for an n-block of size p. . . . . . . . . . . . . . . . . 130



viii

ACKNOWLEDGEMENTS

Though only my name appears on the cover of this dissertation, a great many people have

contributed to its production. I owe my gratitude to all those people who have made this

dissertation possible.

My deepest gratitude is to my dissertation advisor, David Fernández-Baca. I have been

fortunate to have an advisor who gave me the freedom to explore the topics of interest to me,

provided guidance when my steps faltered, and was always patient with my progress. David

has been a great example of a first class scientist.

I thank Jack Lutz for getting me started in research and providing me with guidance in the

initial stages of my doctoral studies. I am grateful to Steve Kautz, Sylvain Guillemot, and Sud-

heer Vakati for collaborating with me on the research projects that lead to many of the results

presented in this dissertation, and Jim Lathrop for encouraging my research in self-assembly. I

also thank Pavan Aduri, Clifford Bergman, and Giora Slutzki for giving their time to serve on

my committee. Additionally, there are several other members of the research community who

have inspired me with stimulating conversations, and provided valuable feedback on my work.

My biggest thanks are to my mother, Betty Shutters, for her constant encouragement and

loving support, both mentally and financially. None of this would have been possible without

her help, and I deeply appreciate her belief in me. I am also thankful to my father, Bill Shutters,

for the many valuable math lessons over the years.

A few friends have helped me stay sane through these difficult years. In particular, Brad

Bossard and Steve Tangeman have given me much needed inspiration and encouragement at

various times throughout my studies. I greatly value their friendship.

Finally, I thank the Computer Science Department at the University of Wisconsin-La Crosse

for giving me the opportunity to succeed at the next level. This has given me much needed

motivation in my final months as a graduate student.



ix

ABSTRACT

This dissertation addresses some of the algorithmic and combinatorial problems at the

interface between biology and computation. In particular, it focuses on problems in both com-

putational phylogenetics, an area of study in which computation is used to better understand

evolutionary relationships, and algorithmic self-assembly, an area of study in which biological

processes are used to perform computation.

The first set of results investigate inferring phylogenetic trees from multi-state character

data. We give a novel characterization of when a set of three-state characters has a perfect

phylogeny and make progress on a long-standing conjecture regarding the compatibility of

multi-state characters.

The next set of results investigate inferring phylogenetic supertrees from collections of

smaller input trees when the input trees do not fully agree on the relative positions of the

taxa. Two approaches to dealing with such conflicting input trees are considered. The first

is to contract a set of edges in the input trees so that the resulting trees have an agreement

supertree. The second is to remove a set of taxa from the input trees so that the resulting

trees have an agreement supertree. We give fixed-parameter tractable algorithms for both

approaches.

We then turn to the algorithmic self-assembly of fractal structures from DNA tiles and

investigate approximating the Sierpinski triangle and the Sierpinski carpet with strict self-

assembly. We prove tight bounds on approximating the Sierpinski triangle and exhibit a class

of fractals that are generalizations of the Sierpinski carpet that can approximately self-assemble.

We conclude by discussing some ideas for further research.
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CHAPTER 1. General Introduction

This dissertation addresses some of the algorithmic and combinatorial problems at the

interface between biology and computation. In particular, it focuses on problems in both com-

putational phylogenetics, an area of study in which computation is used to better understand

evolutionary relationships, and algorithmic self-assembly, an area of study in which biological

processes are used to perform computation. General introductions to the problems addressed

in each area are given separately below.

1.1 Computational Phylogenetics

Darwin used a metaphor he termed the tree of life to describe the evolutionary relatedness

among species. Figure 1.1 shows a sketch from his seminal work The Origin of Species. For

a set of species (or other taxa) a phylogenetic tree is constructed from the similarities and

differences in the characters of the taxa, i.e., the observed physical or genetic characteristics.

Evolutionary biologists use phylogenetic trees to depict evolution because they convey the

Figure 1.1: Darwin’s first diagram of an evolutionary tree (1837) [5].
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concept that speciation occurs through the splitting of lineages. This dissertation focuses on

two fundamental problems in constructing phylogenetic trees by computational methods: the

perfect phylogeny problem (Chapter 2) and the tree compatibility problem (Chapter 3).

1.1.1 The Perfect Phylogeny Problem

Formally, a character χ is a partition of a taxon set L. The parts of χ are called states. If χ

has k parts, then χ is a k-state character. Given a phylogenetic tree T whose leaves are labeled

by L, and a state s of χ, we denote by Ts(χ) the minimal subtree of T connecting all leaves

labeled by taxa having state s for χ. We say that T displays χ if the subtrees Ti(χ) and Tj(χ)

are vertex disjoint for all states i and j of χ where i 6= j. The perfect phylogeny problem is to

determine if there is a phylogenetic tree for a given set of taxa that displays a given collection

of characters on those taxa; in which case those characters are said to be compatible.

Since 1971, it has been known that a set of 2-state characters is compatible if and only

if it is pairwise compatible, i.e., every pair of characters is compatible. However, it wasn’t

until 2009 that it was shown that a set of 3-state characters is compatible if and only if every

triple of characters is compatible when Lam, Gusfield, and Sridhar [50] characterized the sets

of compatible 3-state characters (that are also pairwise compatible) by the existence of one of a

set of four forbidden subgraphs in the intersection graph of the characters. This result implies

an O(m3n) time algorithm for finding all minimal subsets of a set of m 3-state characters over

n taxa that are incompatible. In Chapter 2, we give an O(m2n+ p) time algorithm for finding

all p minimal subsets of incompatible characters, and we completely characterize the sets of

compatible 3-state characters (that are also pairwise compatible) by the existence of a single

forbidden subgraph in the intersection graph of the characters.

We then turn to the character compatibility conjecture which is a long standing conjecture

in computational phylogenetics on the necessary and sufficient conditions for the compatibility

of a set of k-state characters: There exists a function f(k) such that, for any set C of k-state

characters, C is compatible if and only if every subset of f(k) characters of C is compatible.

If the conjecture is true, it has several algorithmic consequences. For example, we could find

a subset of characters to remove from C so that the remaining characters are compatible by
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reducing to f(k)-hitting set which is fixed-parameter tractable [22]. From the discussion above

we have that f(2) = 2 and f(3) = 3. In 1983, Meacham demonstrated a lower bound of

f(k) ≥ k for all k [57], and it was long conjectured that f(k) = k for all k. However, in

Chapter 2, we show a quadratic lower bound on f(k), i.e., f(k) ∈ Ω(k2).

Our lower bound on f(k) is proven using quartets. Given a phylogenetic tree, a quartet is

a restriction of that tree to four of its leaves. A collection of quartets is compatible if they are

the subset of the quartets of some tree. The previous lower bound on the maximum cardinality

of a minimal set of incompatible quartets was Ω(n) where n is the number of taxa. In Chapter

2, we give an Ω(n2) lower bound. We also show that such a set of quartets can have size at

most 3 when n = 5, and at most O(n3) for arbitrary n.

1.1.2 The Tree Compatibility Problem

Due to the biological and computational constraints on constructing large scale phylogenetic

trees from multi-state character data, techniques to combine collections of smaller input trees

on overlapping sets of taxa into a supertree for all of the taxa are desired. Determining if such

a tree exists for a given collection of input trees is called the tree compatibility problem. It is

often impossible to construct such a supertree from a collection of smaller trees on overlapping

subsets of the taxa because of conflicts with the relative positions of some of the taxa occurring

in multiple input trees. Such conflicts arise due to errors in the inference process, or due to

biological processes. In Chapter 3, we develop two fixed-parameter algorithms for dealing with

this problem when each of the input trees is required to be homeomorphic to the constructed

supertree. The first is an algorithm for finding a minimal subset of taxa to remove from the

input trees so that a supertree can be constructed (the taxon removal problem). The second is

an algorithm for finding a minimal subset of the edges of the input trees to contract so that a

supertree can be constructed (the edge contraction problem).

1.2 Algorithmic Self-Assembly

Self-assembly occurs when simple objects autonomously combine to form complex structures

as a consequence of specific, local interactions among the objects themselves without external
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direction. It is a fundamental process in nature that generates structural organization on all

scales; from water molecules self-assembling into snowflakes to the formation of galaxies. Since

the pioneering work of Seeman [69], the self-assembly of DNA molecules has developed into a

field with rich interactions between the theory of computing (the information processing prop-

erties of DNA) and geometry (the structural properties of DNA), and with many applications

to nanotechnology [70].

The primary model used for studying the self-assembly of DNA tiles is the Tile Assembly

Model [84]. In this model, simple two-dimensional square tiles are designed so that they self-

assemble into a desired pattern or shape. The tiles represent DNA double crossover molecules

and the single-strand nucleotide sequences making up the four arms of the molecule are known

as sticky ends. To design a system in which a given structure self-assembles, the challenge is to

program the sticky ends so that the tiles stick together forming the target structure. We give

an overview of the Tile Assembly Model sufficient for understanding the results presented in

this dissertation in Chapter 4.

A major objective of nanotechnology is to engineer the structures found in nature, which

are often fractals. In fact, Carbone and Seeman, the father of DNA nanotechnology, stated

that “generating fractal structures by self-assembly is a major challenge for nanotechnology”

[16]. Figure 1.2 shows atomic force microscopy (AFM) images of several Sierpinski triangles

that have self-assembled from DNA tiles [66]. However, what has self-assembled in this case is

not the structure of the Sierpinski triangle, but rather a surface on which the pattern of the

Figure 1.2: AFM image of Sierpinski triangles self-assembled from DNA tiles [66].
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Sierpinski triangle can be observed. This is called weak self-assembly. In this dissertation we

are interested in self-assembling the fractal structure itself, and nothing else. This is known as

strict self-assembly. It is an open question whether any fractal structure self-assembles in the

strict sense, and negative results exist for the Sierpinski triangle [51].

This has motivated the development of techniques to approximate fractal structures with

strict self-assembly. Previous techniques for the self-assembly of fractal structures [51, 62]

introduced communication fibers that shift the successive stages of the fractal. Although this

technique results in a structure with the same fractal dimension as the intended fractal, the

fractal pattern cannot be observed in specially labeled tiles. In fact, the resulting structure

does not even contain the intended fractal structure, it only visually resembles the intended

structure.

Ideally, an approximation of a fractal F would be an in-place approximation, i.e., a set

X ⊃ F with the same fractal dimension as F that strictly self-assembles in such a way that

those tiles corresponding to F are specially labeled. In other words, communication fibers are

allowed to be added to the structure so long as they do not distort the geometry of the target

structure, and the additional space used by the communication fibers is no greater than the

space used by the target structure itself. If a target structure can be approximated with self-

assembly in this manner, then we say that it approximately self-assembles. Figure 1.3 shows

an approximation of the Sierpinski carpet in which the yellow area represents negative space.

In this dissertation, we focus on the approximate self-assembly of two important fractals

in the Tile Assembly Model: the Sierpinski triangle (Chapter 5) and the Sierpinski carpet

Figure 1.3: Approximation of the Sierpinski carpet in the Tile Assembly Model.
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(Chapter 6). For the Sierpinski triangle, we exhibit a tile assembly system in which the target

fractal approximately self-assembles, and give tight upper and lower bounds on how closely the

Sierpinski triangle can be approximated with self-assembly. We also develop a new method, con-

ditional determinism, to determine if the output of a self-assembly is unique. For the Sierpinski

carpet, we show that an infinite class of fractals generalizing the Sierpinski carpet can approx-

imately self-assemble. This self-assembly employs the use of new mechanisms for measuring

distances in a growing assembly, namely rulers and readers, which have many geometric ad-

vantages over conventional binary counters, and should be useful in several other self-assembly

systems. Additionally, we develop the concept of embedded fractals and prove some interesting

properties about their dimensions that should be a useful tool for analyzing the dimension of

other fractal structure approximations. We conclude by giving strong evidence for a conjecture

on the limitations of approximating fractal structures in the Tile Assembly Model.

1.3 Organization of this Dissertation

Chapters 2 and 3 focus on computational phylogenetics. In Chapter 2 we explore the

multi-state perfect phylogeny problem. The results given in Chapter 2 are taken from three

papers [72, 73, 74]. Chapter 3 is a reproduction of [28] and explores approaches to the tree

compatibility problem when the input trees have conflicts in the relative positions of some of

the taxa. Chapters 4, 5 and 6 focus on algorithmic self-assembly. In Chapter 4 we give a formal

definition of the Tile Assembly Model and a brief introduction to discrete self-similar fractals.

In Chapter 5 we study approximating the Sierpinski triangle in the Tile Assembly Model. The

results given are taken from [53]. In Chapter 6 we study approximating generalized Sierpinski

carpets in the Tile Assembly model. The results given are taken from [48]. Concluding remarks

appear in Chapter 7.

1.3.1 Author’s Contributions

Chapter 2: All results given in this chapter are the author’s own contributions to three

manuscripts [72, 73, 74]. The author also wrote all portions of those manuscripts which are

reproduced here. Chapter 3: The author contributed to the design of all algorithms and struc-
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tural results given in the manuscript reproduced for this chapter [28] with the exception of

Theorem 22 which was the work of Sylvain Guillemot. The author also made major contribu-

tions to the writing of the manuscript. Chapter 5: The results in this chapter are from [53]. All

results given in this chapter are the author’s own contributions with the exception of Theorem

28 which was suggested, along with the idea used in its proof, by Jack Lutz. Chapter 6: The

results in this chapter are from [48] which was based on a preliminary work of the author in

which the self-assembling rulers and readers were developed and used to create a construction

in which the Sierpinski carpet approximately self-assembles. The author worked jointly with

Steve Kautz to modify that construction to generalized Sierpinski carpets. The construction

was primarily the work of the author, but the construction’s proof of correctness is primarily

the work of Steve Kautz.
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CHAPTER 2. Obstructions to Perfect Phylogenies

The work in this chapter is based on the author’s contribution to the three manuscripts

[72, 73, 74].

Abstract

We study a long standing conjecture on the necessary and sufficient conditions for the

compatibility of multi-state characters: There exists a function f(k) such that, for any set C

of k-state characters, C is compatible if and only if every subset of f(k) characters of C is

compatible. We show that for every k ≥ 2, there exists an incompatible set C of Ω(k2) k-state

characters such that every proper subset of C is compatible. This improves the previous lower

bound of f(k) ≥ k given by Meacham (1983), and f(4) ≥ 5 given by Habib and To (2011).

For the case when k = 3, Lam, Gusfield and Sridhar (2011) recently showed that f(3) = 3.

We give an independent proof of this result and completely characterize the sets of pairwise

compatible 3-state characters by a single forbidden intersection pattern. We then use this

result to give an O(m2n + p) time algorithm to output all p minimal subsets of incompatible

characters for a set of m 3-state characters over a set of n taxa.

Our lower bound on f(k) is proven via a result on quartet compatibility that may be of

independent interest: For every n ≥ 4, there exists an incompatible set Q of Ω(n2) quartets

over n labels such that every proper subset of Q is compatible. This improves the previous

lower bound of n− 2 given by Steel (1992). We also show that such a set of quartets can have

size at most 3 when n = 5, and at most O(n3) for arbitrary n.
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2.1 Introduction

The perfect phylogeny problem is a basic question in computational phylogenetics [71]. The

input is an n by m matrix M of integers from the set K = {1, . . . , k}. We refer to each row

of M as a taxon (plural taxa), each column of M as a character, and each value that occurs

in a column α of M as a state of character α. We will often write C to represent the set of

all characters in M. A perfect phylogeny for M is a tree T with n leaves such that each leaf

is labeled by a distinct taxon of M, each internal node is labeled by a vector in Km, and, for

every character α of M, and every state i of α, the nodes labeled with state i for character

α form a connected subtree of T . The perfect phylogeny problem is to decide if there exists

a perfect phylogeny for M; if so, then we say that the characters of M are compatible, and

incompatible otherwise. See [27, 71] for more on the perfect phylogeny problem. See Figure

2.1 for an example.

If the number of states of each character is unbounded (so k can grow with n), then the

perfect phylogeny problem is NP-complete [8, 77]. However, if the number of states of each

character is fixed, then the perfect phylogeny problem is solvable in O(m2n) [23, 43, 2, 44], and

O(mn) time when k = 2 [35].

It is straightforward to show that every subset of a compatible set of characters is itself

compatible. It follows that if no perfect phylogeny exists for M, there must be some minimal

subset of the characters of M that does not have a perfect phylogeny. We call such a set a

minimal obstruction set for M. Although the above mentioned algorithms can also construct

a perfect phylogeny for M if one exists, they do not output a minimal obstruction set when

M α β γ

1 3 2 1

2 2 1 3

3 2 2 2

4 3 3 2

5 1 1 3

6 2 2 3

321

332

222

223

213

113

Figure 2.1: Example perfect phylogeny for input matrix M.
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there is no perfect phylogeny forM. The focus of this chapter is on these minimal obstruction

sets.

It has long been known that whenM consists only of 2-state characters,M is compatible if

and only if every pair of characters inM is compatible; see [12, 24, 35, 57, 71]. However, when

k > 2, pairwise character compatibility is no longer sufficient to guarantee the compatibility of

M. This was first demonstrated in 1971 by Fitch [29, 30] who exhibited a set of three pairwise

compatible 3-state characters that is incompatible. In 1983, Meacham [57] generalized this

example by exhibiting, for every k ≥ 3, an incompatible set of k-state characters of cardinality

k such that every proper subset is compatible; see also [50]. This result lead to the following

conjecture.

Conjecture 1. There exists a function f(k) such that, for any set C of k-state characters, C

is compatible if and only if every subset of f(k) characters of C is compatible.

If Conjecture 1 is true, it would follow that we can determine if a set of k-state characters

is compatible by testing the compatibility of each subset of f(k) characters, and, in case of

incompatibility, output a subset of at most f(k) characters that is incompatible. This would

allow us to reduce the character removal problem (i.e., finding a subset of characters to remove

from C so that the remaining characters are compatible) to f(k)-hitting set which is fixed-

parameter tractable [59]. From the discussion above, it follows that f(2) = 2 and f(k) ≥ k for

all k > 2.

In this chapter, we start with the 3-state perfect phylogeny problem and build upon the

work of Lam, Gusfield, and Sridhar [50] who showed that the maximum cardinality of a minimal

obstruction set for a set of 3-state characters has cardinality at most three; establishing that

f(3) = 3 and implying an O(m3n) time algorithm to output all minimal obstruction sets for

a set of m 3-state characters on n taxa. They also gave a complete characterization of the

minimal obstruction sets of pairwise compatible sets of 3-state characters by the existence of

one of four forbidden subgraphs in the partition intersection graph of the characters. Here,

we give an independent proof that the maximum cardinality of such an obstruction set is

three, and completely characterize the minimal obstruction sets of pairwise compatible 3-state
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characters by the existence of a single forbidden subgraph in the partition intersection graph of

the characters. We then give a O(m2n+ p) time algorithm to output all p minimal obstruction

sets. Although there can be O(m3) minimal obstruction sets for a set of 3-state characters in

the worst case, in practice we expect the number of minimal obstruction sets to be small; in

which case the algorithm given here is a considerable improvement.

While the above results could lead one to conjecture that f(k) = k for all k, Habib and

To [39] recently disproved this possibility by exhibiting a set of five 4-state characters that is

incompatible, but every proper subset is compatible, showing that f(4) ≥ 5. They conjectured

that f(k) ≥ k+1 for every k ≥ 4. We prove their conjecture by giving a quadratic lower bound

on f(k). Formally, we show that for every k ≥ 2, there exists a set of bk2c · dk2e+ 1 incompatible

k-state characters such that every proper subset is compatible. Therefore, f(k) ≥ bk2c · dk2e+ 1

for every k ≥ 2. Our proof relies on a new result on quartet compatibility we believe is

of independent interest. We show that for every n ≥ 4, there exists an incompatible set of

bn−22 c · dn−22 e + 1 quartets over a set of n labels such that every proper subset is compatible.

This is an improvement over the previous lower bound on the maximum cardinality of such an

incompatible set of quartets of n − 2 given in [77]. Additionally, we show that such a set of

quartets can have cardinality at most 3 when n = 5, and at most O(n3) for arbitrary n.

2.2 Preliminaries and Previous Work

Given a graph G, we represent the vertices and edges of G by V (G) and E(G) respectively.

We use the abbreviated notation uv for an edge {u, v} ∈ E(G). For any e ∈ E(G), G − e

represents the graph obtained from G by deleting edge e. For an integer i, we use [i] to

represent the set {1, 2, · · · , i}.

2.2.1 Unrooted Phylogenetic Trees and Quartets

An unrooted phylogenetic tree (or just tree) is a tree T whose leaves are in one to one

correspondence with a label set L(T ), and has no vertex of degree two. See Fig. 2.2(a) for an

example. For a collection T of trees, the label set of T , denoted L(T ), is the union of the label

sets of the trees in T . A tree is binary if every internal (non-leaf) vertex has degree three. A
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a

b

c

d

e

f

(a) A tree T witnessing that the quartets q1 = ab|ce, q2 = cd|bf , and
q3 = ad|ef are compatible; T is also a witness that the characters
χq1 = ab|ce|d|f , χq2 = cd|bf |a|e, and χq3 = ad|ef |b|c are compatible.

a

b

c

d

e

(b) T restricted to {a, b, c, d, e}.

Figure 2.2: A phylogenetic tree and a restricted subtree.

quartet is a binary tree with exactly four leaves. A quartet with label set {a, b, c, d} is denoted

ab|cd if the path between the leaves labeled a and b does not intersect with the path between

the leaves labeled c and d.

For a tree T , and a label set L ⊆ L(T ), the restriction of T to L, denoted by T |L, is the tree

obtained from the minimal subtree of T connecting all the leaves with labels in L by suppressing

vertices of degree two. See Fig. 2.2(b) for an example. A tree T displays another tree T ′, if T ′

can be obtained from T |L(T ′) by contracting edges. A tree T displays a collection of trees T if

T displays every tree in T . If such a tree T exists, then we say that T is compatible; otherwise,

we say that T is incompatible. See Fig. 2.2(a) for an example. Determining if a collection of

unrooted trees is compatible is NP-complete [77].

2.2.1.1 Quartet Rules

We now introduce quartet (closure) rules which were originally used in the contexts of

psychology [18] and linguistics [19]. The idea is that for a collection Q of quartets, any tree

that displays Q may also necessarily display another quartet q 6∈ Q, and if so we write Q ` q.

Example 1. Let Q = {ab|ce, ae|cd}. Then the tree of Fig. 2.2(b) displays Q, and furthermore,

it is easy to see that it is the only tree that displays Q. Hence, Q ` ab|de, Q ` ab|cd, and

Q ` be|cd.

We will make use of the following quartet rules.
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{ab|cd, ab|ce} ` ab|de (R1)

{ab|cd, ac|de} ` ab|ce (R2)

For our purposes, we define the closure of an arbitrary collection Q of quartets, denoted Q∗,

as the minimal set of quartets that contains Q, and has the property that if for some q1, q2 ∈ Q∗,

{q1, q2} ` q3 using either (R1) or (R2), then q3 ∈ Q∗. Clearly, any tree that displays Q must

also display Q∗. We will use the following lemma which follows by repeated application of (R1)

and is formally proven in [20].

Lemma 1. Let Q be an arbitrary set of quartets with {x, y, z1, . . . , zk} ⊆ L(Q). If

k−1⋃
i=1

{xy|zizi+1} ⊆ Q∗ ,

then xy|z1zk ∈ Q∗.

We refer the reader to [71] and [33] for more on quartet rules.

2.2.2 Multi-State Characters

There is also a notion of compatibility for sets of partitions of a label set L. A character χ

on L is a partition of L; the parts of χ are called states. If χ has at most k parts, then χ is a

k-state character. Given a tree T with L = L(T ) and a state s of χ, we denote by Ts(χ) the

minimal subtree of T connecting all leaves with labels having state s for χ. We say that χ is

convex on T , or equivalently T displays χ, if the subtrees Ti(χ) and Tj(χ) are vertex disjoint

for all states i and j of χ where i 6= j. A collection C of characters is compatible if there exists

a tree T on which every character in C is convex, i.e., there is a perfect phylogeny for C. If

no such tree exists, then we say that C is incompatible. See Fig. 2.2(a) for an example. The

perfect phylogeny problem (or character compatibility problem) is to determine whether a given

set of characters is compatible.

For an input matrix M, we write C(M) for the set of all characters in M, and just C

when the underlying matrix M is clear. We will also often refer to a set C of characters
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without reference to an input matrix M, and in this case the matrix M is assumed. We write

M[α1, . . . , αj ] to denote M restricted to the columns in α1, . . . , αj .

2.2.3 Partition Intersection Graphs

For input matrix M, the partition intersection graph (or just intersection graph) of M,

denoted by G(M), is the graph having a vertex αi for each character α of M and each state i

of α, and an edge αiβj precisely when there is a taxon ofM having state i for character α and

state j for character β. Note that G(M) cannot have an edge between vertices associated with

different states of the same character ofM. See Figure 2.3 for an example. Here we give a brief

overview of some known results relating perfect phylogenies to partition intersection graphs.

α1

α2

α3

β1 β2 β3

γ1

γ2

γ3

Figure 2.3: Partition intersection graph for the matrix M of Figure 2.1.

2.2.3.1 Partition Intersection Graphs and Perfect Phylogenies

A graph G is triangulated if and only if there are no induced chordless cycles of length

four or greater. A proper triangulation of G(M) is a triangulated supergraph of G(M) such

that each edge is between vertices of different characters of M. The following theorem relates

perfect phylogenies to proper triangulations [13, 57, 77].

Theorem 1. There is a perfect phylogeny forM if and only if G(M) has a proper triangulation.

We say that M is pairwise compatible if, for every pair α, β of characters in M, there

is a perfect phylogeny for M[α, β]. The following theorem gives a simple test for pairwise

compatibility using the intersection graph of M [25].
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Theorem 2. Let α and β be two characters of M. Then M[α, β] has a perfect phylogeny if

and only if G(M[α, β]) is acyclic.

The following theorem shows that Theorem 2 is sufficient for determining the compatibility

of M when M consists only of 2-state characters [12, 24, 35, 57, 71].

Theorem 3. An input matrixM of 2-state characters is compatible if and only ifM is pairwise

compatible.

2.2.3.2 Partition Intersection Graphs and 3-State Perfect Phylogenies

WhenM contains characters with more than two states, pairwise compatibility is no longer

sufficient to guarantee the compatibility of M. This was first demonstrated in 1971 by Fitch

[29, 30] who exhibited a set of three pairwise compatible 3-state characters that is incompatible.

However, a recent breakthrough by Lam, Gusfield, and Sridhar [50] gives necessary and suffi-

cient conditions on the compatibility of pairwise compatible 3-state characters by the existence

of one of a set of forbidden subgraphs in the intersection graph of M.

Theorem 4. An input matrix M of 3-state characters admits a perfect phylogeny if and only

if both of the following hold: (i) for every pair α, β of characters in M, G(M[α, β]) is acyclic;

and (ii) for every triple {α, β, γ} of characters of M, G(M[α, β, γ]) does not contain, up to

relabeling of characters and states, any of the subgraphs shown in Fig. 2.4.

α1

β1

γ1 β2

γ2

β3γ3

α2
α3

(a)

α1

β1

γ1 β2

γ2

β3γ3

α2

(b)

γ1

β1

γ2

α1

α2

α3β3

β2

γ3

(c)

Figure 2.4: Three forbidden subgraphs for 3-state character compatibility from [50].

Note that, in regards to Conjecture 1, Theorem 4 shows that f(3) = 3.
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Corollary 1. M has a perfect phylogeny if and only if, for every triple α, β, γ of characters

in M, M[α, β, γ] has a perfect phylogeny.

2.2.4 Solving 3-State Perfect Phylogeny with 2-State Characters

Here we review a result of Dress and Steel [23]. Our exposition closely follows that of [37].

Our goal is to derive a matrix of 2-state charactersM from the matrixM of 3-state characters

in such a way that the properties of M enable use to find a perfect phylogeny for M. The

matrixM contains three characters α(1), α(2), α(3) for each character α inM. The characters

α(1), α(2), α(3) are constructed so that all of the taxa that have state i for α in M are given

state 1 for character α(i) in M, and the other taxa are given state 2 for α(i) in M.

Since every character in M has two states, two characters α(i) and β(j) of M are incom-

patible if and only if the two columns corresponding to α(i) and β(j) contain all four of the

pairs (1, 1), (1, 2), (2, 1), and (2, 2), otherwise they are compatible. This is known as the four

gametes test [71]. The following theorem is from [23].

Theorem 5. There is a perfect phylogeny for M if and only if there is a subset C of the

characters of M such that

(i) the characters in C are pairwise compatible, and

(ii) for each character α in M, C contains at least two of the characters α(1), α(2), α(3).

Theorem 5 was used in [23] to give an O(m2n) time algorithm to decide if there is a perfect

phylogeny for M. It was also used in [37] to reduce the 3-state perfect phylogeny problem in

polynomial time to the well known 2-SAT problem, which is in P .

2.2.5 The Algorithm of Kannan and Warnow

We will use several structural results from an algorithm for the 3-state perfect phylogeny

problem given by Kannan and Warnow [43].

The algorithm of [43] takes a divide and conquer approach to determining the compatibility

of a set of 3-state characters. An instance is reduced to subproblems by finding a partition

S1, S2 of the taxon set S of C with both of the following properties:
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1. 2 ≤ |Si| ≤ n− 2, i = 1, 2.

2. Whenever C is compatible on S, there is a perfect phylogeny P that contains an edge e

whose removal breaks P into subtrees P1 and P2 with L(Pi) = Si, i = 1, 2.

A partition of S satisfying both of these properties is a legal partition, and the following

theorem shows that finding such a partition for a given set of characters is the crux of the

algorithm.

Theorem 6. [43] Given a set C of three state characters, we can in O(nk) time either find a

legal partition of S or determine that the set of characters is incompatible.

2.2.5.1 Finding a Legal Partition

We now discuss the manner in which such a legal partition is found for a set of 3-state

characters C. Let T be a tree witnessing that C is compatible. The canonical labeling of T is

the labeling where, for each internal node v of T , and each character α ∈ C, if there are leaves

x and y in different components of T −{v} such that α(x) = α(y), then α(v) = α(x); otherwise

α(v) = ∗ where ∗ denotes a dummy state for C. Note that such a labeling of T always exists

and is unique. We will assume that every compatible tree for C is canonically labeled.

The tree-structure for a character α in T is formed by repeatedly contracting edges of T

connecting nodes that have the same state (other than ∗) for α. Note that this tree does not

depend on the sequence of edge-contractions and is thus well defined. Furthermore, there is

exactly one node for each state (other than the dummy state) of α, and each node labeled by ∗

has degree at least three. A tree-structure for α that is formed from some compatible tree for

C is called a realizable tree-structure for α. There are four possible realizable tree-structures

for a 3-state character α which are shown in Fig. 2.5.

To find a realizable tree structure for a character α, the algorithm examines the pairwise

intersection patterns of α with every other character β ∈ C, and applies the following rules to

rule out possible tree structures for α.
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αj αi αk

(a) A path Pi for each i ∈ {1, 2, 3}.

α1

∗
α2 α3

(b) A star S∗.

Figure 2.5: The four possible realizable tree-structures for a 3-state character α.

Rule 1. Let α and β be two characters of C. If, under some relabeling of the states of α and

β, we have that α1 ⊆ β1, α2∩β2 6= ∅, and α3∩β2 6= ∅, then P 1 is not a realizable tree-structure

for α. If this is the case, we say that α and β match Rule 1 with respect to α1.

Rule 2.1 Let α and β be two characters of C. If, under some relabeling of the states of α and

β, we have that α1 ∩ β1 6= ∅, α2 ∩ β1 6= ∅, α2 ∩ β2 6= ∅, and α3 ∩ β2 6= ∅, then P 2 is the only

possible realizable tree-structure for α. If this is the case, we say that α and β match Rule 2

with respect to α2.

The set QCα of candidate tree-structures for α are all of those possible tree-structures for α

that are not ruled out after comparing the intersection pattern of α with every other character

in C and applying Rules 1 and 2.

The following theorem which follows from [43] shows that a legal partition is found by

choosing an arbitrary α ∈ C for which QCα 6= ∅. Furthermore, if there is an α ∈ C for which

QCα = ∅, then C is incompatible.

Theorem 7 ([43]). If QCα 6= ∅, then we can find a legal partition of S.

Corollary 2. A set C of 3-state characters is compatible if and only if QCα 6= ∅ for every

α ∈ C.

2.3 Results on 3-state Perfect Phylogenies

Our goal in this section is to give a characterization of the situation when M is pairwise

compatible, but does not have a perfect phylogeny, that can be inferred from the partition

intersection graphs of the pairs of characters in M. Thus, in this section, we fix M to be a

1Rule 2 was stated incorrectly in [43]



19

pairwise compatible n by m matrix of integers from the set {1, 2, 3}. Note that Theorem 2

gives a simple characterization of the situation when M is not pairwise compatible.

We say that a state i for a character α of M is dependent precisely when there exists a

character β of M, and two states j and k of β, such that α(i) is incompatible with both β(j)

and β(k). In such a case, we say that the character β is a witness that the state i of α is

dependent.

Lemma 2. Let α be a character of M and let i be a dependent state of α. Then no pairwise

compatible subset of characters in M satisfying Theorem 5 contains α(i).

Proof. Let I be a pairwise compatible subset of the characters in M that contains α(i). Since

state i of α is dependent, there is a character β in M and two states j, k of β, such that α(i)

is incompatible with both β(j) and β(k). It follows that β(j) 6∈ I and β(k) 6∈ I. But then

I cannot possibly contain two of β(1), β(2), and β(3). Thus, I cannot satisfy the conditions

required in Theorem 5.

The next lemma gives a characterization of when a state is dependent using partition

intersection graphs. We first introduce some notation: if p : p1p2p3p4p5 is a path of length four

in a graph, then we write middle[p] to denote p3, the middle vertex of p.

Lemma 3. Let M be pairwise compatible. A state i of a character α of M is a dependent

state if and only if there is a character β of M and a path p of length four in G(M [α, β]) with

middle[p] = αi.

Proof. W.l.o.g. assume that i = 1, i.e., αi = α1.

(⇒) Since 1 is a dependent state of α, there exists a character β in M such that α(1) is

incompatible with two of β(1), β(2), and β(3). W.l.o.g., assume α(1) is incompatible with both

β(1) and β(2). Then, α1β1 and α1β2 are edges of G(M [α, β]), and, sinceM has no cycles, either

β2α2 and β1α3 or β2α3 and β1α2 are edges of G. If β2α2 and β1α3 are edges of G(M [α, β]),

then α2β2α1β1α3 is the required path of length four. If β2α3 and β1α2 are edges of G(M [α, β]),

then α3β2α1β1α2 is the required path of length four.

(⇐) Let β be a character of M such that there is a path p of length four in G(M [α, β])

with middle[p] = α1. Since G(M [α, β]) cannot contain edges between to states of the same
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α1
| α2α3

β1 | β2 β3
(a) α(1) and β(1) are incompatible.

α1
| α2α3

β2 | β1 β3
(b) α(1) and β(2) are incompatible.

Figure 2.6: Illustrating the proof of Lemma 3.

character, we can assume w.l.o.g. that p is the path α2β1α1β2α3. Then, it is easy to verify

that α(1) is incompatible with both β(1) and β(2). This is illustrated in Figure 2.6.

Lemma 4. If there is a character ofM that has two dependent states, then no perfect phylogeny

exists for M.

Proof. Let i and j be two dependent states of a character α of M. Then, by Lemma 2, no

pairwise compatible subset I of the characters of M that satisfy the condition required in

Theorem 5 can contain α(i) or α(j). But then I can only contain one of α(1), α(2), or α(3).

Hence, no pairwise compatible subset I of the characters of M can satisfy the condition required

in Theorem 5. Hence, by Theorem 5, there is no perfect phylogeny for M.

We now show that the converse of Lemma 4 holds. We first give an observation relating the

Rule 2 intersection pattern from the algorithm of Kannan and Warnow with dependent states.

Observation 1. Let C be a set of 3-state characters, let α ∈ C, and let αi be a state of α. If

there is a β ∈ C where the intersection pattern of α and β matches Rule 2 with respect to αi,

then αi is a dependent state of α.

Theorem 8. If a set C of 3-state characters is incompatible, then there exists a character

α ∈ C, and two distinct states αi and αj of α, such that both of the following hold:

1. There is a β ∈ C where the intersection pattern of α and β matches Rule 2 with respect

to αi.

2. There is a γ ∈ C where the intersection pattern of α and γ matches Rule 2 with respect

to αj.
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Proof. If C is pairwise incompatible, then by Theorem 2, there is a pair α, β ∈ C whose

intersection graph contains a cycle. Since the intersection graph is bipartite, this cycle must

have length at least four and contain at least two states of each character. Let αi and αj be the

two states of α on this cycle. Then, the intersection pattern of α and β matches Rule 2 with

respect to both αi and αj , and so the theorem holds. So we may assume that C is incompatible

but pairwise compatible.

It follows from Corollary 2 that there exists an α ∈ C such that QCα = ∅. Then there

must exist a character β ∈ C such that the intersection pattern of α and β matches Rule 2

with respect to some state αi of α; otherwise S∗ ∈ QCα . Hence, QCα ⊆ {P i}. Then, since

QCα = ∅, there must be a character γ ∈ C such that the intersection pattern of α and γ places

a constraint on QCα that prevents QCα from containing P i. There are two possibilities.

Case 1: There is a state αj of α where j 6= i and the intersection pattern of α and γ matches

Rule 2 with respect to αj . In this case the theorem holds.

Case 2: The intersection pattern of α and γ matches Rule 1 with respect to αi. W.l.o.g.,

we fix i = 1, and relabel the states of α, β, and γ so that α1 ∩β1 6= ∅, α1 ∩β2 6= ∅, α2 ∩β1 6= ∅,

α3∩β2 6= ∅, α1 ⊆ γ1, α2∩γ2 6= ∅, and α3∩γ2 6= ∅. Such a labeling exists since, by assumption,

α and β matches Rule 2 with respect to α1, and α and γ matches Rule 1 with respect to α1.

If α2 ∩ γ1 6= ∅, then the intersection pattern of α and γ matches Rule 2 with respect to

α2, in which case the theorem holds. If α3 ∩ γ1 6= ∅, then the intersection pattern of α and γ

matches Rule 2 with respect to α3, in which case the theorem holds. So we may assume hat

α1 = γ1. Now, since α1 ∩ β1 6= ∅, α1 ∩ β2 6= ∅, and α1 = γ1, we have that both β1 ∩ γ1 6= ∅ and

β2 ∩ γ2 6= ∅.

Clearly γ3 must have a nonempty intersection with at least one state of α, and since α1 = γ1,

we have that α1 ∩ γ3 = ∅. So γ3 has a nonempty intersection with either α2 or α3. Due to the

symmetry of the intersection graph of α and β, we may assume, w.l.o.g., that α3 ∩ γ3 6= ∅.

By assumption, α2 ∩ γ1 = ∅, and if α2 ∩ γ3 6= ∅, then the intersection graph of α and

β contains a cycle, contradicting our assumption that C is pairwise compatible. So we may

assume that α2 ⊂ γ2. Then, since β1 ∩ α2 6= ∅, we have that β1 ∩ γ2 6= ∅.

Let s ∈ α3 ∩ β2. Since, by assumption, α3 ∩ γ1 = ∅, we have that either s ∈ γ2 or s ∈ γ3.
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Figure 2.7: Illustrating the proof of Theorem 8.

However, if s ∈ γ2, then β2 ∩ γ2 6= ∅ and intersection graph of β and γ contains a cycle,

contradicting our assumption that C is pairwise compatible. Hence s ∈ γ3 and β2 ∩ γ3 6= ∅.

We have now established all of the edges of the intersection graph of α, β, and γ represented

by the solid edges in Fig. 2.7. Now, let t ∈ α3 ∩ γ2. Now t must be in some state of β. If

t ∈ β1, then t ∈ β1∩α3 and the intersection graph of β and α contains a cycle, contradicting our

assumption that C is pairwise compatible. If t ∈ β2, then t ∈ β2∩γ2, and the intersection graph

of β and γ contains a cycle, again contradicting our assumption that C is pairwise compatible.

Hence t ∈ β3. Then, we have that t ∈ β3 ∩ α3 and t ∈ β3 ∩ γ2, witnessing the dotted edges

in Fig. 2.7. So we have that the intersection pattern of β and α matches Rule 2 with β2 as

witness, and the intersection pattern of β and γ matches Rule 2 with β1 as witness. Hence the

theorem holds.

Note that in the statement of Theorem 8, the characters β and γ are not necessarily distinct.

However, in cases where they are not distinct, C contains an incompatible pair.

Observation 1 together with Theorem 8 gives the following corollary which is the converse

of Lemma 4.

Corollary 3. If no perfect phylogeny exists for M, then there is a character of M that has

two dependent states.

We remark here that the forbidden subgraphs for 3-state character compatibility given in

[50] can also be used to establish Corollary 3. Figure 2.8 reproduces each of the forbidden

subgraphs of [50] with the paths of length four witnessing the dependent states highlighted in

blue and red.

Lemma 4 together with Corollary 3 gives the following theorem.
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Figure 2.8: An alternate proof of Corollary 3 using the forbidden subgraphs of [50].

Theorem 9. If the characters of M have at most three states, then M is compatible if and

only if each character of M has at most one dependent state.

In [50], it was shown using an elaborate argument on triangulations of the intersection

graph of C, that C is compatible if and only if every subset of at most three characters

of C is compatible. Since each dependent state of a character α requires only one other

character as witness, and two dependent states of the same character are necessary and sufficient

for compatibility, Theorem 9 provides an independent proof of this result with the following

corollary.

Corollary 4. A set C of 3-state characters is compatible if and only if every subset of at most

three characters of C is compatible.

Another interesting and immediate consequence of Theorem 9 is that every set C of 3-

state characters has a canonical subset that does have a perfect phylogeny, namely the subset

{α ∈ C : α has at most one dependent state}.

2.3.1 A Single Forbidden Subgraph for 3-state Perfect Phylogenies

In [50], it was also shown that we can determine the compatibility of a pairwise compatible

set C of 3-state characters by testing the intersection patterns of C for the existence of one of

a set of four forbidden patterns. As a corollary to Theorem 8, we have that a single forbidden

pattern suffices to determine the compatibility of C.
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Corollary 5. A pairwise compatible set C of 3-state characters is compatible if and only if the

partition intersection graph of C does not contain, up to relabeling of characters and states, the

subgraph of Figure 2.9.

α3 γ1

α1

β1α2

γ2

β2

Figure 2.9: A single forbidden subgraph for 3-state character compatibility.

2.3.2 Finding All Minimal Obstruction Sets

We now describe an algorithm, denoted by A, which outputs all of the minimal obstruction

sets for M. Step 1 of A computes for each character α of M the following.

• A set B(α) of all characters β of M such that G(M[α, β]) contains a cycle.

• For each state i of α, a set D(α, i) of all characters β ofM such that β 6∈ B(c) and there

is a path p of length four in G(M[α, β]) with αi = middle[p].

Step 2 of A visits each character α of M and outputs the following.

• For each character β in B(α), the set {α, β}.

• For each pair of states {i, j} of α with both D(α, i) and D(α, j) non-empty, each element

of the set {{α, χi, χj} : χi ∈ D(c, i), χj ∈ D(c, j)}.

Theorem 10. A outputs all p minimal obstruction sets for M in O(m2n+ p) time.

Proof. We first establish the following claim.

Claim 1. For each character α of M, the sets B(α), D(α, 1), D(α, 2), and D(α, 3) are

pairwise disjoint.

Proof of Claim 1. By construction, for each character α of M, B(α) ∩ (D(α, 1) ∪D(α, 2) ∪

D(α, 3)) = ∅. So it suffices to show that for each character α of M, the sets D(α, 1), D(α, 2),



25

and D(α, 3) are pairwise disjoint. W.l.o.g. let α be a character ofM and let β ∈ D(c, 1)∩D(c, 2).

Let G = G(M[α, β]). Since β ∈ D(α, 1) ∩ D(α, 2), β 6∈ B(α), and there are paths p1 and p2

of length four in G with α1 = middle[p1] and α2 = middle[p2]. Since β 6∈ B(α), G is acyclic.

W.l.o.g. suppose that p1 is the path α2β1α1β2α3. Since middle[p2] = α2, there must be two

edges from α2 to vertices associated with states of β. We have that α2β1 is an edge of p1. If

α2β2 is an edge of p2, then we have a cycle in G. So α2β3 and either β3α3 or β3α1 are edges of

p2. In either case, there is a cycle in G. �

By Lemma 3, A finds all dependent states, and hence, by Theorems 4, outputs all of the

minimal obstruction sets for M. By Claim 1, every obstruction set output by A is minimal.

We now establish the runtime. Step 1 of A takes O(m2n) time to construct the intersection

graphs of each pair of characters of M. Since each intersection graph has exactly six vertices

and at most nine edges, it follows that it all cycles and paths of length four can be found in

O(1) time. Hence step 1 takes O(m2n) time. Step 2 of A visits each of the m characters of

M and takes O(1) time per set output. Any minimal obstruction set of cardinality two will be

output twice. If follows from Claim 1 that each minimal obstruction set of cardinality three

will be output at most three times. Thus, step 2 takes O(m + p) time where p is the number

of minimal obstruction sets. Hence, A takes O(m2n + p) time to complete both steps 1 and

2.

2.3.3 Dependent States and Legal Minimal Separators

Several approaches to determining the existence of a perfect phylogeny for M studied in

the literature make use of separating sets in G(M) [36, 38]. For two vertices a and b of G(M),

an a− b separator is a set of vertices whose removal separates a from b. An a− b separator is

minimal if no subset of it is an a − b separator. A minimal separator is a separator that is a

minimal a−b separator for some pair a, b of vertices of G(M). A minimal separator S of G(M)

is legal if, for each character c ofM, S contains at most one vertex corresponding to a state of

c. A pair of vertices of G(M) represent different states of the same character is monochromatic.

The following theorem follows from results given in [36, 38, 50].
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Theorem 11. M admits a perfect phylogeny if and only if both of the following hold: (i)

the characters of M are pairwise compatible; and (ii) every monochromatic pair of vertices in

G(M) is separated by a legal minimal separator.

We conclude with Theorem 12 that relates dependent states to legal minimal separators. A

consequence of Theorem 12 is that algorithmA can be easily modified to output monochromatic

pairs of vertices of G(M) with no legal minimal separator.

Theorem 12. Suppose that the characters of M are pairwise compatible. Two states i and j

of a character α of M are dependent if and only if there is no legal minimal separator for αi

and αj in G(M).

Proof. By Theorems 4 and 11, it suffices to show that the theorem holds for every minimal

obstruction set, i.e., for each graph in Fig. 2.4, a monochromatic pair of vertices has no legal

minimal separator if and only if they correspond to a pair of dependent states. This is verified

by inspection. In the graph of Fig. 2.4a: {γ1, γ2} is the only monochromatic pair of vertices

with no legal minimal separator; 3 is the only dependent state of α; 2 is the only dependent

state of β; and 1 and 2 are the only dependent states of γ. In the graph of Fig. 2.4b: (β1, β2)

and (γ1, γ2) are the only monochromatic pairs of vertices with no legal minimal separator; there

are no dependent states of α; 1 and 2 are the only dependent states of β; and 1 and 2 are the

only dependent states of γ. In the graph of Fig. 2.4c: (α1, α2), (β1, β3), (γ1, γ2), and are the

only monochromatic pairs of vertices with no legal minimal separator; 1 and 2 are the only

dependent states of α; 1 and 3 are the only dependent states of β; and 1 and 2 are the only

dependent states of γ.

2.4 Results on Multi-State Perfect Phylogenies

We now turn to the general case where we consider where M is composed of k-state char-

acters for k ≥ 2. Our main result is to prove the conjecture stated in [39] the function f(k) of

Conjecture 1 is bounded below by f(k) ≥ k + 1. We do so by giving a quadratic lower bound

on f(k). Our proof relies on a new result on quartet compatibility which is given first. We then
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exploit a natural correspondence between quartet compatibility and character compatibility to

prove the lower bound on f(k).

2.4.1 Incompatible Quartets

For every s, t ≥ 2, we fix a set of labels Ls,t = {a1, a2, . . . , as, b1, b2, . . . , bt} and define the

set

Qs,t = {a1b1|asbt} ∪
s−1⋃
i=1

t−1⋃
j=1

{aiai+1|bjbj+1}

of quartets with L(Qs,t) = Ls,t. We denote the quartet a1b1|asbt by q0, and a quartet of the

form aiai+1|bjbj+1 by qi,j .

Observation 2. For all s, t ≥ 2, |Qs,t| = (s− 1)(t− 1) + 1.

Lemma 5. For all s, t ≥ 2, Qs,t is incompatible.

Proof. For each i ∈ [s− 1],

t−1⋃
j=1

{aiai+1|bjbj+1} ⊆ Qs,t ⊆ Q∗s,t.

Then, by Lemma 1, it follows that for each i ∈ [s− 1], aiai+1|b1bt ∈ Q∗s,t. So,

s−1⋃
i=1

{b1bt|aiai+1} ⊆ Q∗s,t.

Then, again by Lemma 1, it follows that b1bt|a1as ∈ Q∗s,t. But then {a1b1|asbt, b1bt|a1as} ⊆ Q∗s,t.

It follows that any tree that displays Qs,t must display both a1b1|asbt and b1bt|a1as. However,

no such tree exists. Hence, Qs,t is incompatible.

Lemma 6. For all s, t ≥ 2, every proper subset of Qs,t is compatible.

Proof. Since every subset of a compatible set of quartets is compatible, it suffices to show that

for every q ∈ Qs,t, Qs,t \ {q} is compatible. Let q ∈ Qs,t. Either q = q0 or q = qx,y for some

1 ≤ x < s and 1 ≤ y < t. In either case, we exhibit a tree witnessing that Qs,t \ {q} is

compatible.
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Figure 2.10: Case 1 in the proof of Lemma 6.

Case 1. Suppose q = q0. We build the tree T as follows: There is a node ` for each label

` ∈ Ls,t and two additional nodes a and b along with the edge ab. There is an edge axa

for every ax ∈ Ls,t, and an edge bxb for every bx ∈ Ls,t. There are no other nodes or edges

in T . See Fig. 2.10 for an illustration of a tree displaying Qs,t \ {q0} . Now consider

any quartet q ∈ Qs,t \ {q0}. Then q = aiai+1|bjbj+1 for some 1 ≤ i < s and 1 ≤ j < t.

Then, the minimal subgraph of T connecting leaves with labels in {ai, ai+1, bj , bj+1} is

the quartet q. Hence T displays q.

Case 2. Suppose q = qx,y for some 1 ≤ x < s and 1 ≤ y < t. We build the tree T as

follows: There is a node ` for each label ` ∈ Ls,t and six additional nodes a`, b`, `, h, ah,

and bh. There are edges a``, b``, `h, hah, and hbh. For every ai ∈ Ls,t, there is an edge

aia` if i ≤ x, and an edge aiah if i > x. For every bj ∈ Ls,t there is an edge bjb` if j ≤ x,

and an edge bjbh if j > y. There are no other nodes or edges in T . See Fig. 2.11 for an

illustration of a tree displaying Qs,t \ {qx,y} . Now consider any quartet q ∈ Qs,t \ {qx,y}.

Either q = q0 or q = qi,j where i 6= x or j 6= y. If q = q0, then the minimal subgraph of T

connecting leaves with labels in {a1, b1, as, bt} is the subtree of T induced by the nodes in

{a1, a`, `, b`, b1, as, ah, h, bh, bt}. Suppressing all degree two vertices results in a tree that

is the same as q0. So T displays q. So assume that q = aiai+1|bjbj+1 where i 6= x or
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Figure 2.11: Case 2 in the proof of Lemma 6.

j 6= y. We define the following subset of the nodes in T :

V =



{ai, ai+1, a`, `, b`, bj , bj+1} if i < x and j < y,

{ai, ai+1, a`, `, by, b`, h, bh, by+1} if i < x and j = y,

{ai, ai+1, a`, `, h, bh, bj , bj+1} if i < x and j > y,

{ax, a`, `, h, ah, ax+1, b`, bj , bj+1} if i = x and j < y,

{ax, a`, `, h, ah, ax+1, bh, bj , bj+1} if i = x and j > y,

{aj , aj+1, ah, h, `, b`, bj , bj+1} if i > x and j < y,

{aj , aj+1, ah, h, by, b`, `, bh, by+1} if i > x and j = y,

{aj , aj+1, ah, h, bh, bj , bj+1} if i > x and j > y.

Now, the subgraph of T induced by the nodes in V is the minimal subgraph of T connect-

ing leaves with labels in q. Suppressing all degree two vertices gives q. Hence, T displays

q.

With s = bn2 c and t = dn2 e, Observation 2 and Lemmas 5 and 6 imply the following theorem.

Theorem 13. For every integer n ≥ 4, there exists a set Q of quartets over n taxa such that

all of the following conditions hold.

1. Q is incompatible.

2. Every proper subset of Q is compatible.

3. |Q| = bn−22 c · dn−22 e+ 1.
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2.4.1.1 Incompatible Quartets on Five Taxa

When Q is a set of quartets over five taxa, we show that the set of quartets given by Theorem

13 is as large as possible. We hope that the technique used in the proof of the following theorem

might be useful in proving tight bounds for n > 5.

Theorem 14. If Q is an incompatible set of quartets over five taxa such that every proper

subset of Q is compatible, then |Q| ≤ 3.

Proof. Let Q be an incompatible set of quartets with L(Q) = {a, b, c, d, e} and q0 = ab|cd ∈ Q.

We will show that Q contains an incompatible subset of at most three quartets. If Q contains

two different quartets on the same four taxa, then Q must contain an incompatible pair of

quartets. So, we may assume that each quartet is on a unique subset of four of the five taxa.

Hence, every pair of quartets in Q shares three taxa in common. We have the following two

cases.

Case 1: Q contains at least one of the quartets ac|be, ac|de, ad|be, ad|ce, ae|bc, ae|bd,

bc|de, or bd|ce. W.l.o.g. we may assume that Q contains q1 = ac|de, as all other cases are

symmetric. By (R2), {q0, q1} ` ab|ce. Then, by (R1), {q0, q1, ab|ce} ` ab|de. Then, again

by (R1), {q0, q1, ab|ce, ab|de} ` bc|de. Now let Q′ = {q0, q1, ab|ce, ab|de, bc|de}. Now, any

quartet in Q must be either in Q′ or be pairwise incompatible with a quartet in Q′. Since

Q′ is compatible, but by assumption, Q is incompatible, Q must contain a quartet q2 that

is pairwise incompatible with some quartet in Q′. Hence, {q0, q1, q2} is an incompatible

subset of Q.

Case 2: Q contains none of the quartets ac|be, ac|de, ad|be, ad|ce, ae|bc, ae|bd, bc|de, or

bd|ce. Then every quartet in Q is either of the form ab|xy where {x, y} 6= {c, d}, or cd|xy

where {x, y} 6= {a, b}. But then Q is compatible, contradicting our assumption that Q is

incompatible.

In either case, the theorem holds.
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2.4.1.2 Incompatible Quartets on Arbitrarily Many Taxa

We say a set Q of compatible quartets is redundant if for some q ∈ Q, Q\{q} ` q; otherwise,

we say that Q is irredundant. The following lemma establishes a connection between sets of

irredundant quartets and minimal sets of incompatible quartets.

Lemma 7. If Q is incompatible, but every proper subset of Q is compatible, then every proper

subset of Q is irredundant.

Proof. Suppose that Q is incompatible and every proper subset of Q is compatible. Further-

more, suppose that some proper subset Q′ of Q is redundant. Since every compatible superset

of a redundant set of quartets is also redundant, we may assume w.l.o.g., that there is a unique

quartet q ∈ Q \Q′ (i.e., |Q| = |Q′|+ 1). Since Q′ is redundant, there exists a q′ ∈ Q′ such that

Q′ \{q′} ` q′. But then (Q′ \{q′})∪{q} is incompatible, contradicting that every proper subset

of Q is compatible.

It follows from Lemma 7 that any upper bound on the maximum cardinality of an irredun-

dant set of quartets can be used to place an upper bound on the maximum cardinality of a set

of quartets satisfying the first two conditions of Theorem 13. The theorem follows from [20].

Theorem 15. Let Q be a set of quartets over a set of n taxa. If Q is irredundant, then Q has

cardinality at most (n− 3)(n− 2)2/3.

Lemma 7 together with Theorem 15 gives the following upper bound on the maximum

cardinality of a set Q of quartets over n > 5 taxa that satisfies the first two conditions of

Theorem 13.

Theorem 16. Let Q be a set of incompatible quartets over a set of n taxa such that every

proper subset of Q is compatible. Then |Q| ≤ (n− 3)(n− 2)2/3 + 1.

2.4.2 Incompatible Characters

There is a natural correspondence between quartet compatibility and character compati-

bility that we now describe. Let Q be a set of quartets, n = |L(Q)|, and r = n − 2. For each



32

q = ab|cd ∈ Q, we define the r-state character corresponding to q, denoted χq, as the character

where a and b have state 0 for χq; c and d have state 1 for χq; and, for each ` ∈ L(Q)\{a, b, c, d},

there is a state s of χq such that ` is the only label with state s for character χq (see Example

2). We define the set of r-state characters corresponding to Q by CQ =
⋃
q∈Q{χq}.

Example 2. Consider the quartets and characters given in Fig. 2.2(a): χq1 is the character

corresponding to q1, χq2 is the character corresponding to q2, and χq3 is the character corre-

sponding to q3.

The following lemma relating quartet compatibility to character compatibility is well known

[78], and its proof is omitted here.

Lemma 8. A set Q of quartets is compatible if and only if CQ is compatible.

The next theorem allows us to use our result on quartet compatibility to establish a lower

bound on f(k).

Theorem 17. Let Q be a set of incompatible quartets over n labels such that every proper

subset of Q is compatible, and let r = n−2. Then, there exists a set C of |Q| r-state characters

such that C is incompatible, but every proper subset of C is compatible.

Proof. We claim that CQ is such a set of incompatible r-state characters. Since for two quartets

q1, q2 ∈ Q, χq1 6= χq2 , it follows that |CQ| = |Q|. Since Q is incompatible, it follows by Lemma

8 that CQ is incompatible. Let C ′ be any proper subset of C. Then, there is a proper subset

Q′ of Q such that C ′ = CQ′ . Then, since Q′ is compatible, it follows by Lemma 8 that C ′ is

compatible.

Theorem 13 together with Theorem 17 gives the main theorem of this paper.

Theorem 18. For every integer k ≥ 2, there exists a set C of k-state characters such that all

of the following hold.

1. C is incompatible.

2. Every proper subset of C is compatible.
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3. |C| = bk2c · dk2e+ 1.

Proof. By Theorem 13 and Observation 2, there exists a set Q of bk2c·dk2e+1 quartets over k+2

labels that that are incompatible, but every proper subset is compatible, namely Qb k+2
2
c,d k+2

2
e.

The theorem follows from Theorem 17.

The quadratic lower bound on f(k) follows from Theorem 18.

Corollary 6. f(k) ≥ bk2c · dk2e+ 1.

2.5 Conclusion

We have shown that for every k ≥ 2, f(k) ≥ bk2c · dk2e+ 1, by showing that for every n ≥ 4,

there exists an incompatible set Q of bn−22 c · dn−22 e + 1 quartets over a set of n labels such

that every proper subset of Q is compatible. Previous results [12, 24, 35, 50, 57, 71], along

with our discussion in Section 2.4.2, show that our lower bound on f(k) is tight for k = 2 and

k = 3. For quartets, our discussion in Section 2.4.1 gives an upper bound on the maximum

cardinality of a minimal set of incompatible quartets. However, this argument does not extend

to multi-state characters. Indeed, an upper bound on the maximum cardinality of a minimal

set of incompatible k-state characters remains a central open question. We give the following

conjecture.

Conjecture 2. f(k) ∈ Θ(k2).

A less ambituous goal would be to narrow the gap between the upper bound of O(n3) and

lower bound of Ω(n2) on the maximum cardinality of a minimal incompatible set of quartets

over n taxa given in Section 2.4.1. Note that, due to Theorem 17, a proof of Conjecture 2

would also show that the number of incompatible quartets given in the statement of Theorem

13 is also as large as possible.
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CHAPTER 3. Fixed-Parameter Algorithms for Finding Agreement

Supertrees

Modified from a paper submitted to SIAM Journal on Computing

David Fernández-Baca, Sylvain Guillemot, Brad Shutters, and Sudheer Vakati

Abstract

We study the agreement supertree approach for combining rooted phylogenetic trees when

the input trees do not fully agree on the relative positions of the taxa. Two approaches to

dealing with such conflicting input trees are considered. The first is to contract a set of edges

in the input trees so that the resulting trees have an agreement supertree. We show that this

problem is NP-complete and give an FPT algorithm for the problem parameterized by the

number of input trees and the number of edges contracted. The second approach is to remove

a set of taxa from the input trees so that the resulting trees have an agreement supertree. An

FPT algorithm for this problem when the input trees are all binary was given by Guillemot

and Berry (2010). We give an FPT algorithm for the more general case when the input trees

have arbitrary degree.

3.1 Introduction

A phylogeny, or evolutionary tree, is a tree representing the evolutionary history of a set

of species. The leaves of the tree represent the current species (taxa), and the internal nodes

of the tree represent the hypothetical ancestors. A fundamental problem in phylogenetics is

to construct a supertree from smaller input trees with overlapping taxa in such a way that

the inferred supertree complies as closely as possible with the topological information of the
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input trees. This problem is motivated by the biological and computational constraints on

constructing large scale phylogenies. The supertree problem was introduced in [31], and a

variety of supertree construction methods have been proposed. See [7, 68, 3, 77, 11] for more

on supertrees.

In this paper we use the agreement supertree approach for combining rooted phylogenetic

trees. The goal of this approach is to search for a supertree such that each of the input trees is

a restriction of the supertree to a subset of its taxa. Formally, we have the following decision

problem.

Agreement Supertree (AST)

Input: A collection T of k rooted phylogenetic trees on a set of n taxa.

Question: Does there exist an agreement supertree for T ?

The answer to an instance of AST is “yes” if and only if the input trees fully agree on

the relative positions of the taxa, in which case the input trees are said to agree. There is a

polynomial time algorithm for the AST problem, which returns an agreement supertree if one

exists [58].

The input trees may fail to have an agreement supertree because of conflicts with respect to

the relative positions of some taxa. Such conflicts arise due to errors in the inference process,

or due to biological processes, e.g., lateral gene transfer, gene duplication, and others [55, 52].

Here we consider two approaches for dealing with conflicting input trees. The first addresses

the case where conflict is due to unnecessary edges in the input trees. The goal is to find a

subset of the edges of the input trees to contract so that the resulting collection of trees agree.

Formally, we focus on the following decision problem.
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Agreement Supertree Edge Contraction (AST-EC)

Input: A collection T of k rooted phylogenetic trees on a set of n taxa, and an integer p.

Question: Can we contract at most p internal edges of T so that the trees in T agree?

The AST-EC problem does not seem to have been considered before. We prove that

problem is NP-complete, and show that it is fixed-parameter tractable for parameters k and p.

The second approach we study addresses the case where disagreement is due to misplaced

taxa. The goal is to find a subset of the taxa to remove from the input trees so that the

resulting collection of trees agree. Formally, we focus on the following decision problem.

Agreement Supertree Taxon Removal (AST-TR)

Input: A collection T of k rooted phylogenetic trees on a set of n taxa, and an integer p.

Question: Can we remove at most p taxa so that the input trees agree?

The AST-TR problem is NP-complete [42, 6], but was shown to be fixed-parameter tractable

in k and p when restricted to the case when the input trees are all binary [34]. Our contribu-

tion is to show that the more general AST-TR problem, where the input trees are allowed to

have arbitrary degree, is fixed-parameter tractable in k and p. It was also shown in [6] that

if AST-TR is parameterized by only k or p, then the problem is fixed-parameter intractable.

We also note that the optimization version of AST-TR, i.e., finding a minimum set of taxa to

remove, is the dual of the Maximum Agreement Supertree (Smast) problem [6, 42, 45].

Exact algorithms for Smast on binary trees are known that run in time O(6knk) [34, 40] and,

when the maximum degree of the input trees is d, [40] gives an O((kd)kd+32knk) time algorithm

for Smast.

The rest of this paper proceeds as follows. In Section 3.2, we give basic definitions needed

for the remainder of the paper. In Section 3.3, we develop a characterization of when a set

of input trees agree. We then use this characterization to develop an algorithm for testing

agreement that solves the AST problem. We remark here that this algorithm could be easily

modified to produce an agreement supertree when the set of input trees agree. If the algorithm
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answers in the negative, it returns a subset of the internal nodes of the trees in T encapsulating

the taxa on which the trees in T disagree. In Section 3.4 we use these internal nodes to develop

O((2k)pkn2) time algorithms to solve the AST-EC and AST-TR problems. We also prove the

NP-completeness of the AST-EC problem by giving a reduction from Multicut to AST-EC.

Section 3.5 contains proofs of some results from Sections 3.3 and 3.4, that were deferred for

readability. We conclude in Section 3.6 with some ideas for future research.

3.2 Definitions

Let T = {T1, . . . , Tk} be a collection of rooted phylogenetic trees, and let T be some

arbitrary tree in T . We use V (T ), E(T ), I(T ), Ê(T ), and r(T ) to denote the vertices, edges,

internal vertices, internal edges, and root vertex of T respectively. We use L(T ) and L(T ) to

denote the leaves of T and the set of labels mapped to the leaves of T respectively. We write

L(T ) for
⋃
i∈[k] L(Ti) and Ê(T ) =

⋃
i∈[k] Ê(Ti), where [k] stands for {1, . . . , k}. We represent

that a vertex v is an ancestor of u in T by u ≤T v. For two vertices u and v such that u <T v,

we write childT (v, u) to denote the child of v along the path from v to u in T . For each

u ∈ V (T ), we use parent(u), Ch(u), T (u), and L(u) to denote the parent of u, the children of

u, the subtree of T rooted at u, and the set of labels mapped to the leaves of T (u), respectively.

For a label set L, the restriction of T to L, denoted by T |L, is the minimal homeomorphic

subtree of T connecting leaves with labels in L. For a set L ⊆ L(T ), we write T |L for the

collection {T1|L, . . . , Tk|L} of trees in T restricted to L. For a set F ⊆ Ê(T ) we use T/F to

denote the tree obtained from T by contracting the edges of F . For a set F ⊆ Ê(T ), we denote

the set {T1/F, ..., Tk/F} by T /F . Given two trees S and T where L(T ) ⊆ L(S), T is an induced

subtree of S if and only if S|L(T ) = T . Note that all degree two vertices in S|L(T ) other than

the root are assumed to be suppressed. An agreement supertree for T is a tree S such that

L(S) = L(T ), and each Ti is an induced subtree of S. We say that the trees in T agree if and

only if there is an agreement supertree for T .
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3.3 Solving the Agreement Supertree Problem

The main result of this section, presented in Section 3.3.3, is an O(kn2) time algorithm,

called TestAgreement, that determines whether or not a collection T of phylogenetic trees

has an agreement supertree. The algorithm relies on a recursive characterization of agreement,

based on an intersection graph that we define in Section 3.3.1. In Section 3.3.2, we use this

graph to develop an algorithm GetSuccessors that decomposes an agreement problem into

smaller subproblems, or reports that no such decomposition is possible. In the latter case,

GetSuccessors returns a small set of internal nodes from the input collection T that, in a

sense, obstruct agreement. GetSuccessors is thus at the core of TestAgreement, and the

information it produces is essential for our algorithms for the AST-EC and AST-TR problems.

3.3.1 An auxiliary graph

A position π in T is a tuple (v1, v2, . . . , vk) where each vi is either a vertex from the tree

Ti or the symbol ⊥. A reduced position is a position where each component is an internal

node or ⊥. The reduction of a position π, denoted by π↓, is derived by substituting every leaf

vertex in π by ⊥. We use π>, respectively π⊥, to denote the initial, respectively final, positions

where vi = r(Ti), respectively vi = ⊥, for each i ∈ [k]. We write L(π) for
⋃
i∈[k] L(π[i]).

By an agreement supertree for π, we mean an agreement supertree for the collection of trees

{T1(π[1]), . . . , Tk(π[k])}.

We now introduce an auxiliary graph G(T , π), defined in [34], which is useful for identifying

an agreement supertree for the position π. We will look for a specific partition of this graph,

called a nice partition, that allows us to break the problem into smaller subproblems, or to

conclude that there is no solution. The vertex set of G(T , π) consists of the children of all the

vertices in π, and there is an edge between two vertices u and v if and only if L(u)∩L(v) 6= ∅.

Note that the graph G(T , π) is only defined when π is a reduced position. In the rest of this

paper, G(T , π) is denoted by G = (V,E) and Vi = Ch(π[i]) for each i ∈ [k].

A subset U ⊆ V is nice if, for each i ∈ [k], U contains either zero, one, or all of the elements

of Vi. A partition P of V is a nice partition of G if every set of P is nice, and, for every
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{C,C ′} ⊆ P , C and C ′ are disconnected in G. The successor of π w.r.t. a nice set U , denoted

by πU , is defined as:

πU [i] =



⊥ if Vi ∩ U = ∅

p if Vi ∩ U = {p}

π[i] if |Vi ∩ U | ≥ 2

for each i ∈ [k]. We write L(U) for
⋃
v∈U L(v). We have the following relationship between

L(U) and L(πU ) which follows from the definition of a successor position.

Lemma 9. Let U ⊆ V be a nice set, then L(U) = L(πU ).

In the following, we will focus on a specific nice partition of G that is minimal in a certain

sense. For partitions P and Q of V , we say P is finer than Q, denoted P v Q, if and only if,

for every C ∈ P , there exists a D ∈ Q such that C ⊆ D. Let P represent the set of all nice

partitions of G, and let (P,v) represent the poset formed by partitions of P ordered under v.

Lemma 10. (P,v) has a unique minimal element.

Proof. Assume, towards a contradiction, that P and Q are distinct minimal elements of (P,v).

Consider the set P uQ defined as:

P uQ = {C ∩D : C ∈ P,D ∈ Q} \ {∅}. (3.1)

It is known that P uQ is also a partition of V , s.t. P uQ @ P . We show that P uQ is also in

P, which will contradict the minimality of P,Q.

Consider any X ∈ P u Q, and let us show that X is a nice set. We have X = C ∩ D for

some C ∈ P,D ∈ Q. Fix i ∈ [k], and assume that |X ∩ Vi| ≥ 2. Since C and D are nice sets,

Vi ⊆ C and Vi ⊆ D, and thus, Vi ⊆ X. As this holds for any i ∈ [k], we conclude that X is a

nice set.

Consider two distinct classes X,X ′ ∈ P uQ, and let us show that they are disconnected in

G. We have X = C ∩D for some C ∈ P,D ∈ Q, and X ′ = C ′ ∩D′ for some C ′ ∈ P,D′ ∈ Q.

As X 6= X ′, we have either C 6= C ′ or D 6= D′. In the first case, C,C ′ are disconnected, and in

the second case D,D′ are. We conclude that X,X ′ are disconnected. Hence, P u Q is a nice

partition of V .



40

We call the unique minimal element of (P,v) the minimum nice partition of G. Suppose

that the minimum nice partition P of G is a singleton. Let K = {i ∈ [k] : π[i] 6= ⊥}. We say

that a set I ⊆ V is interesting for a reduced position π of T if both |I ∩ Vi| = 2 for each i ∈ K,

and there is a set F ⊆ E such that all of the following conditions hold: (i) |F | ≤ 2|K| − 1;

(ii) for each v ∈ I, there exists an e ∈ F such that v ∈ e; and (iii) the subgraph of G induced

by F has a minimum nice partition that is a singleton. Intuitively, a set of interesting vertices

certifies that the minimum nice partition of G has a unique class. As we will see in Section

3.3.3, this condition will guarantee that there is no agreement supertree for π. In this case, we

say that π is an obstructing position for T .

3.3.2 Finding successor positions and interesting vertices

We now present algorithm GetSuccessors, which takes as input a position π in a collection

T of rooted phylogenetic trees, and finds the set Π of successor positions for each class in the

minimum nice partition of G (see Algorithm 1). When the minimum nice partition of G is a

singleton, the algorithm returns a set I of interesting vertices for π.

The central idea behind the GetSuccessors algorithm is that, for a given ` ∈ L(π), all of

the vertices in the set S` = {v ∈ V : ` ∈ L(v)} are connected, and hence, must be in the same

class of the minimum nice partition. The algorithm builds the successor positions by iterating

over each label ` and building a position for ` which is denoted by π`, by examining each vertex

v ∈ S`. If v is already covered by a position π′, then π′ will need to be merged with π`. Once

this merge is completed, the position π′ is no longer needed. For implementation efficiency,

instead of deleting positions, we keep a flag active(π`) for each position π`. If active(π`) is set

to true, then π` is one of the successor positions of the graph G restricted to only those labels

which have already been processed by the algorithm. If active(π`) is set to false, then it is no

longer used by the algorithm. If v is not already covered by some position, then we simply add

v to π`.

After merging a position π′ with π`, it may be the case that π` contains multiple vertices

from some input tree T . In such a case, the algorithm needs to merge with π` all of the positions

covering any of the vertices from T . Furthermore, since each ` ∈ L(π) can be in the subtree of



41

Algorithm 1: GetSuccessors(T , π)
Input: A position π in a collection T trees.

Output: A tuple (Π, I) where Π is the set of successor positions of each class in the

minimum nice partition of G, and when Π is a singleton, I is a set of

interesting vertices for the unique π ∈ Π.

1 foreach ` ∈ L(π) do S` ← ∅
2 foreach i ∈ [k] do

3 position(π[i])← ∅
4 foreach v ∈ Vi do

5 position(v)← ∅
6 foreach ` ∈ L(v) do S` ← S` ∪ {v}
7 Π← ∅ ; I ← ∅
8 foreach ` ∈ L(π) do

9 π` ← π⊥ ; Z ← ∅
10 foreach v ∈ S` do

11 if position(π[tree(v)]) 6= ∅ then Z ← Z ∪ position(π[tree(v)])

12 else if position(v) 6= ∅ then Z ← Z ∪ position(v)

13 else π`[tree(v)]← v ; position(v)← {π`}
14 while there is a πp ∈ Z with active(πp) = true do

15 active(πp)← false

16 foreach i ∈ [k] such that π`[i] 6= π[i] and πp[i] 6= ⊥ do

17 if π`[i] = ⊥ then π`[i]← πp[i] ; position(πp[i])← {π`}
18 else

19 I ← I ∪ {π`[i], πp[i]} ; π`[i]← π[i]

20 position(π[i])← {π`}
21 foreach w ∈ Vi do Z ← Z ∪ position(w)

22 active(π`)← true

23 Π← Π ∪ {π`}
24 return ({π` ∈ Π : active(π`) = true}, I)

at most one v per Vi, it follows that the first time two vertices from the same input tree end up

in the same partition, those two vertices are unique and we add them to the set I of interesting

vertices.

If GetSuccessors determines that the minimum nice partition of G is a singleton, then

the set Π returned has π as its only element. In this case, the set I of vertices returned by the

algorithm is a set of interesting vertices for π.

For each vertex v that is either an element of position π or the child of a vertex in π,

the algorithm keeps a reference position(v) that points to a set containing the active position

containing v. This is determined in the following manner:
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• if v is an element of the position π, then position(v) points to an active position that

contains all of the children of v; and

• if v is a child of a vertex in π, then position(v) points to an active position that contains

v.

Also, note that the set position(v) is pointing to is always either the empty set or a singleton.

The purpose for using sets for position(v) is to simplify the code of lines 11, 12 and 21.

In the initialization phase of the algorithm (lines 1-6), for each label ` ∈ L(T ) we construct

a set S` that contains all of the vertices v ∈ V (T ) such that both of the following conditions

hold:

(i) v ∈ Vi for some i ∈ [k], i.e., v is a child of some vertex in position π; and

(ii) ` ∈ L(v), i.e., ` is a label of the subtree rooted at v.

Also, since at the initialization phase, there are no active positions, the position references are

all set to ∅.

The algorithm then turns to the construction phase (lines 7-23), where the positions π` are

constructed. Note that for each vertex v ∈ V (T ), the algorithm also uses a function tree(v)

that returns the unique index i such that v ∈ V (Ti). The algorithm maintains two sets. Set

Π will hold all of the successor positions created, and set I will hold the interesting vertices.

The position π` is built in two phases. Naturally, each position π` is going to hold all those

vertices of G that contain ` in their subtree, and these are precisely the vertices in the set S`.

Thus, in the first phase (the loop in lines 10-13) the algorithm iterates over the elements of S`

to ensure that they are included in the position. While doing so, the algorithm may discover

new positions that need to be merged with π` and it stores these positions in a buffer Z. Now,

for each v ∈ S` it performs the following tests in the specified order:

1. If position(π[tree(v)]) is non-empty, then it points to some position π′ that contains all of

the elements of Vi. Since v ∈ Vi, π′ also contains v. Hence π′ needs to be merged into π`,

and so π′ is added to Z.
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2. If position(π[tree(v)]) is empty, but position(v) is non-empty, then position(v) points to

some other position π′ containing v, and hence π′ needs to be merged into π`. Thus, π′

is added to Z.

3. If both position(π[tree(v)]) and position(π[tree(v)]) are empty, then no position currently

contains v, so we add v to π`.

Note that if tests 1 or 2 succeed, we do not immediately add v to position π`. That is, we add

some position π′ to Z, and so eventually π′ will be merged with π`. After this happens, π` will

contain v.

After processing the set S`, it may be the case that there are active components in Z. These

components need to be merged with π`. This is done in the merge phase of the algorithm (lines

14-21). Let πp be the position being merged with π`. Since πp is being merged with π`, πp will

no longer represent a successor position, so the algorithm first sets active(πp) to false. We now

compare positions π` and πp index by index. If π`[i] = π[i], then π` already contains all of the

children of Vi, so no work needs to be done for index i. If πp[i] = ⊥, then no new vertices need

to be added to π` for index i. Otherwise, either π`[i] = ⊥ or π`[i] 6= ⊥

Case 1. If π`[i] = ⊥, then either πp[i] is a single element of Vi, or πp[i] = π[i]. In either

case, to merge the two positions, we only need to copy the value of πp[i] to π`[i]. Then, we

need to update the position(πp[i]) to now refer to π` instead of πp.

Case 2. If π`[i] 6= ⊥, then it must be the case that both π`[i] and πp[i] each contain an

element of Vi and that these vertices are different. Thus, π`[i] now contains two elements of Vi

and hence must contain all elements of Vi, so we set position(π[i]) to π`, add the two vertices

in π`[i] and πp[i] to the set of interesting vertices, and add any positions containing a child of

Vi to Z, as they now also need to be merged with π`.

Lines 22 and 23 complete the process of constructing π`. This is done by first setting

active(π`) to true since it represents a successor position of G restricted to the labels processed

by the algorithm so far. It then adds π` to the set Π containing all positions constructed so

far.

The algorithm finishes in line 24, after all labels have been processed, by returning the set
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of positions that remain active. We later formally prove (Theorem 19) that these are indeed

the successor positions of G. The algorithm also returns the set I of vertices collected during

the execution of the algorithm. If there is more than one active position in Π, then the set I of

vertices has no meaningful value to us. However, as we show later (Theorem 20), if there is only

one active position in Π, I is indeed a set of interesting vertices for π. The next two theorems

summarize the essential properties of algorithm GetSuccessors. For technical reasons, their

proofs are deferred to Section 3.5.1

Theorem 19. GetSuccessors can be implemented to run in O(kn) time, and in the tuple

(Π, I) returned, Π is exactly the successor positions of each class of the minimum nice partition

P of G.

Theorem 20. If the set Π returned by GetSuccessors is a singleton with Π = {π}, then I

is a set of interesting vertices for π.

3.3.3 Testing for an agreement supertree

We now present algorithm TestAgreement, which takes a position π in a collection T

of phylogenetic trees, and decides if there is an agreement supertree for π (see Algorithm 2).

If there is no agreement supertree for π, the algorithm returns an obstructing position π′ and

a set of interesting vertices for π′. To test for the existence of an agreement supertree for T ,

it suffices to call TestAgreement on the initial position π>. The set of interesting vertices

returned by TestAgreement will be used in the remainder of the algorithms discussed in this

paper.

The algorithm TestAgreement proceeds in a recursive top-down fashion. If the position

π is not reduced, it considers instead the reduced position π ↓, as justified by Lemma 11 below.

Then, it calls GetSuccessors to compute the set Π of successor positions corresponding to

the minimum nice partition of G(T , π). If Π has a single class, the algorithm concludes that

there is no agreement supertree for π. Otherwise, it recursively checks for agreement on the

successor positions π′ ∈ Π. The correctness of this step follows from Lemma 13 below.

Lemma 11. The following statements hold:
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Algorithm 2: TestAgreement(T , π)
Input: A position π in a collection T of trees.

Output: A tuple (B, π′, I) where B is a boolean indicating whether there is an

agreement supertree for π, and, when B is no, π′ is an obstructing position

and I is a set of interesting vertices for π′.
1 π ← π ↓
2 if π = π⊥ then return (yes, ∅, ∅)
3 (Π, I)← GetSuccessors(T , π)

4 if |Π| = 1 then return (no, π, I)

5 foreach π′ ∈ Π do

6 (B, π′′, I)← TestAgreement(T , π′)
7 if B = no then return (no, π′′, I)

8 return (yes, ∅, ∅)

1. There is an agreement supertree for T if and only if there is an agreement supertree for

every position π of T .

2. There is an agreement supertree for a position π of T if and only if there is an agreement

supertree for π ↓.

Proof. Statement 1 holds because (⇒) for any agreement supertree S of T and any position π

of T , S|L(π) is an agreement supertree for π; and (⇐) any agreement supertree for π> is an

agreement supertree for T . Statement 2 holds since (⇒) L(π ↓) ⊆ L(π), so for any supertree

S for π, S|L(π ↓) is a supertree for π ↓; and (⇐) for each i ∈ [k] for which π ↓ [i] 6= π[i], we

have that π[i] is a leaf whose label can be added to a supertree for π ↓ (that is, we simply add

each such leaf as child of the root, to get a supertree for π).

We will need the following characterization of induced subtrees in terms of embeddings.

This lemma follows from the definitions and is stated without proof.

Lemma 12. Let S and T be two phylogenetic trees where L(T ) ⊆ L(S). The following state-

ments are equivalent

1. T is an induced subtree of S.

2. There exists an injective function φ : V (T )→ V (S) with the following properties.

(a) For every p ∈ L(T ), φ(p) is a leaf of S with the same label.
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(b) For every p ∈ I(T ), if q ∈ Ch(p), then φ(q) <S φ(p). Also, for every {u, v} ⊆ Ch(p),

childS(φ(p), φ(u)) 6= childS(φ(p), φ(v)).

We call φ an embedding of T into S.

The following lemma is the central result on which our recursive algorithm is based. Note

that we only have to consider a reduced position π, according to Lemma 11.

Lemma 13. Let π be a reduced position such that π 6= π⊥. The following statements are

equivalent.

1. There is an agreement supertree for π.

2. There exists a nice partition P of G where P has at least two classes, and, for every

X ∈ P , πX has an agreement supertree.

Proof. (=⇒) Suppose that π has an agreement supertree S with L(S) = L(π). By Lemma

12, for every i ∈ [k] there exists an embedding φi of Ti(π[i]) into S. Let r = r(S). As π is a

reduced position different from π⊥, we have |L(S)| = |L(π)| ≥ 2, and thus Ch(r) is not empty.

Let Ch(r) = {u1, . . . , um}. We build a partition P = {C1, . . . , Cm} of V as follows. For every

v ∈ Vi and i ∈ [k], if φi(v) ≤S ui′ for some i′ ∈ [m], then add v to Ci′ . Note that there will

always exist one such ui′ . We now show that P is a nice partition with at least two classes,

and that for every X ∈ P , πX has an agreement supertree.

As S is a phylogenetic tree, we have m ≥ 2 and thus |P | ≥ 2. Let us now show that P

is a nice partition of G. Fix i ∈ [k], and let ri = π[i]. If φi(ri) = r, then by definition of

an embedding the nodes φi(u) (u ∈ Vi) belong to distinct classes of P . On the other hand, if

φi(ri) ≤S uj , then the nodes φi(u) (u ∈ Vi) all belong to Cj . Thus, every class of P is nice.

Consider any u ∈ Ci and v ∈ Cj where i 6= j, with u ∈ Va and v ∈ Vb. Since L(ui)∩L(uj) = ∅,

φa(u) ≤S ui and φb(v) ≤S uj , then L(u) ∩ L(v) = ∅. Thus, vertices of Ci and Cj will be

disconnected in G and P is a nice partition of G.

Lastly, for any i ∈ [m], we show that S(ui) is an agreement supertree for πCi . Observe

that L(S(ui)) = L(Ci), which is equal to L(πCi) by Lemma 9. For any j ∈ [k], we define an

embedding φ′j from Tj(πCi [j]) to S(ui) as follows. For every v ∈ V (Tj(πCi [j])), set φ′j(v) =
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φj(v). Since Ci is a nice set and φj is an embedding, φ′j also satisfies all the properties of an

embedding. Thus, Tj(πCi [j]) is an induced subtree of S(ui).

(⇐=) Let P = {C1, . . . , Cm} and let Si represent the agreement supertree for πCi for every

i ∈ [m], such that L(Si) = L(πCi). We build an agreement supertree S for π as follows. Add an

edge from a vertex r to r(Si) for every i ∈ [m]. Set r to be the root of S. For any 1 ≤ i 6= j ≤ m,

the sets Ci and Cj are disconnected in G. Thus, L(Ci)∩L(Cj) = ∅, and by Lemma 9 it follows

that L(Si) ∩ L(Sj) = ∅. Furthermore, since P is a partition of V , we have
⋃
i L(Ci) = L(V ).

By Lemma 9, we deduce that
⋃
i L(Si) = L(π). Thus, S is a phylogenetic tree with label set

L(π). We will prove that S is an agreement supertree for π by showing that for any i ∈ [k],

Ti(π[i]) is an induced subtree of S. We have the following two cases for vertex π[i].

Case 1: π[i] = πCj [i] for some j ∈ [m]. As Sj is an agreement supertree for πCj , it follows

that the tree Ti(π[i]) is an induced subtree of Sj . Since Sj is an induced subtree of S, Ti(π[i])

is also an induced subtree of S.

Case 2: π[i] 6= πCj [i] for every j ∈ [m]. We build an embedding φi of Ti(π[i]) into S as

follows. By Lemma 12, there exists an embedding φp,q from Tp(πCq [p]) to Sq for every p ∈ [k]

and q ∈ [m]. For every v ∈ V (Ti(π[i])), set φi(v) = φi,j(v) if v ≤Ti πCj [i]. Now, set φi(π[i]) = r.

Let us show that φi is an embedding of Ti(π[i]) into S. First, observe that φi satisfies Conditions

(a)-(b) of Lemma 12 for any v <Ti π[i]. Indeed, for such a v we have v ≤Ti πCj [i] for some

j ∈ [m], and Conditions (a)-(b) hold for φi,j as it is an embedding of Ti(πCj [i]) into Sj . It

remains to verify Condition (b) of Lemma 12 for v = π[i]. For every u child of v, we have

φi(u) = r(Sj) for some j ∈ [m], and thus φi(u) <S φi(v). Moreover, given two children u, u′ of

v, as they belong to different classes of P , childS(φi(v), φi(u)) 6= childS(φi(v), φi(u
′)). Thus, φi

is an embedding of Ti(π[i]) into S and hence, Ti(π[i]) is an induced subtree of S.

Theorem 21 states the runtime and correctness of the TestAgreement algorithm (Algo-

rithm 2).

Theorem 21. TestAgreement can be implemented to run in O(kn2) time and correctly

decides if there is an agreement supertree for a position π in T . If there is no agreement

supertree for π, it returns an obstructing position π′ and a set I of interesting vertices for π′.
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Proof. We first justify the running time of the algorithm. Since at each execution of a recursive

call, the label sets in each position returned by GetSuccessors are disjoint, it follows that the

recursion tree has O(n) leaves. So there are O(n) recursive calls to TestAgreement. Since

each execution of the loop in line 5 results in a recursive call, and the body of the loop takes

O(1) time outside of the recursive call, it follows that the algorithm spends, over all recursive

calls, a total of O(n) time executing lines 5-7. Thus, it suffices to show that each recursive call

spends at most O(kn) time outside of lines 5-7. Clearly, lines 1 and 2 can be done in O(k)

time. The call to GetSuccessors takes O(kn) time by Theorem 19. Line 4 and 8 can clearly

be done in O(1) time.

We now argue for the correctness of the algorithm. We show by induction on the height

of the recursion tree, that TestAgreement(T , π) correctly decides if π has an agreement

supertree, and, in case there is no agreement supertree for π, the position π′′ and set I returned

on line 7 are an obstructing position for T and a set of interesting vertices for π′′. Let P be

the minimum nice partition of G.

There are two base cases: (i) when π = π⊥; and (ii) when P has a single class. In case (i)

there is an agreement supertree for π and the algorithm returns “yes” on line 2. In case (ii), by

Lemma 13, there is no agreement supertree for π. By Theorem 19, the set Π returned in line

3 will be a singleton and π is an obstructing position. By Theorem 20, I is a set of interesting

vertices for π. Line 4 returns π along with the set of interesting vertices returned by the call

to GetSuccessors.

Now suppose that P has more than one class and Π is the set of successor positions re-

turned by GetSuccessors. Then by induction hypothesis, for each π′ ∈ Π, TestAgreement

correctly decides whether there is an agreement supertree for π′. If there is an agreement su-

pertree for each position in Π, then by Lemma 13, there is an agreement supertree for π and

the algorithm returns “yes” on line 8. If there is no agreement supertree for some position

π′ ∈ Π, then by the inductive hypothesis, TestAgreement(T , π′) will answer in the negative,

and also return an obstructing position π′′ and a set of interesting vertices for π′′. By Lemma

11, π′′ is an obstructing position for T , so the algorithm returns π′′ along with the set I of

interesting vertices returned by GetSuccessors.
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3.4 Solving the AST-EC and AST-TR problems

In this section we show that both the AST-EC and AST-TR problems are fixed-parameter

tractable for parameters k and p. Our two algorithms build upon the results of Section 3.3,

in the sense that we use the interesting vertices found by TestAgreeement to identify small

obstructions. These obstructions allow us to solve the problems by a bounded search tree ap-

proach, giving rise to FPT algorithms with running time O((2k)pkn2). This section is organized

as follows. Section 3.4.1 presents an auxiliary algorithm, called Merge, on which we will rely

to construct and prove the correctness of the obstructions for both problems. In Section 3.4.2,

we prove that AST-EC is NP-complete and we give an FPT algorithm for the problem. In

Section 3.4.3, we give an FPT algorithm for AST-TR.

3.4.1 An auxiliary algorithm

We define the closure of a set C ⊆ V as the set 〈C〉G ⊆ V such that: (i) if C ∩ Vi = ∅

then 〈C〉G ∩ Vi = ∅; (ii) if C ∩ Vi = {v}, then 〈C〉G ∩ Vi = {v}; and (iii) if |C ∩ Vi| ≥ 2 then

〈C〉G ∩ Vi = Vi. Our auxiliary algorithm, called Algorithm Merge, takes as input G and a set

I ⊆ V , and proceeds as follows. We maintain a partition P of I. Initially P contains a class {v}

for each v ∈ I. At a given step, suppose that P = {C1, . . . , Cp}. An edge of G is a transverse

edge if it connects two nodes in the closures of two different sets in P . If G contains a transverse

edge joining 〈Ci〉G to 〈Cj〉G for some i, j, then we replace P by P\{Ci, Cj} ∪ {Ci ∪ Cj}, and

we continue.

Lemma 14. Let Q be the minimum nice partition of G. At a given step of Algorithm Merge,

it holds that: for each C ∈ P , there is a K ∈ Q such that 〈C〉G ⊆ K.

Proof. By induction on the number of steps executed by the algorithm. This is clear initially.

Suppose that this holds at the beginning of the pth step, and let us show that this holds at

the end of the pth step. Suppose that this step replaces P by P ′ = P\{Ci, Cj} ∪ {Ci ∪ Cj}.

By induction hypothesis, there exist A,B ∈ Q such that 〈Ci〉G ⊆ A and 〈Cj〉G ⊆ B. By

assumption, G contains a transverse edge between 〈Ci〉G and 〈Cj〉G. As two classes of Q are
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disconnected in G, it follows that A = B, and thus Ci ∪ Cj ⊆ A. As A is a nice set, we obtain

that 〈Ci ∪ Cj〉G ⊆ A.

The crucial property of Algorithm Merge is that, by starting with the interesting vertices,

it will end with P consisting of a single class. This property is stated in the following Lemma,

whose proof is given in Section 3.5.2. The proof relies on an alternative formulation of the

GetSuccessors algorithm, and on the notion of merge forest representing the sequence of

merges performed by the algorithm.

Lemma 15. Suppose that TestAgreement(T , π>) has returned (no, π, I). Then Algorithm

Merge run on G, I ends with the partition {I}.

Note that this fact certifies that the minimum nice partition Q of G is a singleton: by

Lemma 14, it follows that 〈I〉G = V is included in a same class of Q. To check that Q has

a unique class, we can thus use I as the certificate, and Merge as the verification algorithm.

We will repeatedly use this fact in the following sections. Additionally, for settings where we

actually want to use Merge for verification purposes, we will give a O(kn) implementation in

Section 3.4.3 under the name FindObstruction.

3.4.2 Solving the AST-EC problem

The computational complexity of AST-EC does not seem to have been studied before. To

motivate the development of a fixed-parameter algorithm to solve the problem, we first prove

the problem is NP-complete.

We use a recursive parenthesized notation for trees: if ` is a label, ` represents a tree with

a single leaf labelled `; if T1, . . . , Tk are trees, then (T1, . . . , Tk) represents the tree whose root

is unlabelled and has T1, . . . , Tk as child subtrees.

Theorem 22. AST-EC is NP-complete.

Proof. Membership in NP is clear. The NP-hardness is shown by a reduction from the Mul-

ticut problem, which is defined as follows. Given a graph G = (V,E), a set of requests

R ⊆ V × V , and an integer p, the Multicut problem asks if there exists a set S of at most p

edges in E, where, for every uv ∈ R, u and v are in different components of G\S.
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Given an instance I = (G,R, p) of Multicut, we construct an instance I ′ = (T , p) of

AST-EC as follows. The collection T is defined over L := V ∪{x} and consists of: (i) for each

edge e = uv ∈ E, a tree te = ((u, v), x); (ii) for each pair p = uv ∈ R, a tree fp = (u, v, x).

For each e ∈ E, we let γ(e) denote the internal edge of te, we let α(e) denote the parent of u, v

in te, and we let β(e) denote the parent of α(e), x in te. The notation γ(e) induces a bijection

γ : E → Ê(T ); we will use the notation γ(S) and γ−1(S) to denote, respectively, the image

and the inverse image of a set S under γ.

The reduction is clearly doable in polynomial time. To prove its correctness, we show that:

I is a positive instance of Multicut iff I ′ is a positive instance of AST-EC.

Suppose that (G,R) has a minimum multicut S ⊆ E with |S| ≤ p. Let S′ = γ(S), we show

that T /S′ has an agreement supertree. Let C1, . . . , Cm denote the connected components of

G\S. By minimality of S, each edge of S is between two distinct components of G. For every

1 ≤ i ≤ m, let Ti denote a star-tree with leaves labeled by Ci, and let T = (T1, . . . , Tm, x).

We show that T is an agreement supertree of T /S′. First, for each e = uv ∈ E\S, we have

u, v in a same connected component of G\S, and thus te/S
′ = ((u, v), x) is a subtree of T .

Second, for each e = uv ∈ S, we have u, v in different connected components of G\S, and

thus te/S
′ = (u, v, x) is a subtree of T . Third, for each p = uv ∈ R, we have u, v in different

connected components of G\S, and thus fe/S
′ = (u, v, x) is a subtree of T . We conclude that

T is an agreement supertree of T /S′.

Conversely, suppose that there exists S ⊆ Ê(T ) such that |S| ≤ p and T /S has an agree-

ment supertree T . Let S′ = γ−1(S), we show that S′ is a multicut of (G,R). Suppose by

contradiction that G\S′ contains a path P between two endpoints of a request uv ∈ R. Then

P = u0e1u1 . . . ur−1erur with u = u0, v = ur. It follows from Lemma 12 that for every 1 ≤ i ≤ r,

there is an embedding φi of tei into T ; let ai = φi(α(ei)) and bi = φi(β(ei)). Since φi is an

embedding, the nodes childT (bi, ai) and childT (bi, x) are distinct; let us denote them by pi, qi.

As ui occurs in tei and tei+1 , it follows that bi+1 = bi, pi+1 = pi, qi+1 = qi. Denote these nodes

by b, p, q. We then have u0 <T p, ur <T p and x ≤T q, which implies that ((u0, ur), x) is a

subtree of T . But by definition of T , it contains fuv = (u, v, x) as a subtree, contradiction. We

conclude that there is no such path P , and thus S′ is a multicut of (G,R).
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In the remainder of this subsection, we show that AST-EC is fixed-parameter tractable

in parameters k and p. Lemma 16 shows that if a call to TestAgreement(T , π>) answers

negatively, we must contract at least one edge joining an interesting vertex to its parent.

Lemma 16. Suppose that TestAgreement(T , π>) has returned a tuple (no, π, I). In order to

obtain a collection having an agreement supertree, we need to contract one edge {v, parent(v)}

with v ∈ I.

Proof. Assume that we have a set S ⊆ Ê(T ) which contains none of the edges {v, parent(v)}

with v ∈ I; we show that T /S has no agreement supertree. We use the following convention:

when contracting an edge {u, v} with v = parent(u), the resulting vertex is identified with v.

Then, by definition of S, each element of I is still a node of T /S. Define the position π′ in

T /S as follows. If π[i] =⊥, then π′[i] =⊥. If π[i] = u is the parent of two vertices v, w ∈ I,

then π′[i] is the common parent of v, w in Ti/S. Let G′ = G(T /S, π′) = (V ′, E′).

Let us consider an execution E of Algorithm Merge on G and I. We build an execution

E ′ of Algorithm Merge on G′ and I that ends with {I} by mirroring each step of E . Let

PE , PE ′ denote the values of P during E , E ′ respectively. We define E ′ by induction such that

PE = PE ′ holds at each step. Clearly, this holds at the beginning of E , E ′. Suppose that

this holds at the beginning of step s. Then E picks a transverse edge induced by some label

` ∈ L(〈Ci〉G) ∩ L(〈Cj〉G). The important observation is that given C ⊆ I, we have L(〈C〉G) ⊆

L(〈C〉G′) (as L(π[i]) ⊆ L(π′[i]) for every i ∈ [k]). Hence, ` ∈ L(〈Ci〉G′) ∩ L(〈Cj〉G′), and thus

E ′ can pick a transverse edge joining 〈Ci〉G′ and 〈Cj〉G′ . This leads to the merge of Ci and Cj ,

and thus PE = PE ′ at the end of step s.

Applying the induction hypothesis at the last step of E , and using that E ends with the

partition {I} (Lemma 15), we obtain that E ′ ends with the partition {I}. By Lemma 14, if Q

is the minimum nice partition of G′, we have 〈I〉G′ = V ′ in a same component of Q, and thus

T /S has no agreement supertree by Lemmas 11 and 13.

Since TestAgreement returns a set of at most 2k interesting vertices, Lemma 16 leads

to an FPT algorithm for AST-EC using a bounded search tree technique.

Theorem 23. AST-EC can be solved in O((2k)pkn2) time.
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Proof. We use a recursive algorithm SolveAST-EC(T , p). The algorithm answers “no” if p <

0. Otherwise, it runs TestAgreement(T , π>) to decide in O(kn2) if T has an agreement su-

pertree. It answers “yes” in case in positive answer. In case of negative answer, it obtains a set I

of nodes of T ; for each non-leaf vertex v ∈ I, it recursively calls SolveAST-EC(T /{v, parent(v)}, p−

1). The algorithm then answers “yes” iff one of the recursive calls does. The correctness of the

algorithm follows from Lemma 16, and the running time is O((2k)pkn2).

3.4.3 Solving the AST-TR problem

We will say that a set C ⊆ L(T ) is a conflict among T if T |C has no agreement supertree.

Lemma 17 shows that if TestAgreement(T , π>) answers negatively, we can obtain a conflict

among T from the set of interesting vertices.

Lemma 17. Suppose that TestAgreement(T , π>) has returned a tuple (no, π, I). We can

then obtain a set C ⊆ L of size at most 2k − 1 such that T |C has no agreement supertree.

Proof. Consider an execution E of Algorithm Merge on G and I. For each transverse edge

e = uv found by E , pick a label `e ∈ L(u) ∩ L(v), and let C be the resulting set of labels.

Clearly |C| ≤ 2k− 1. Consider a vertex v ∈ I ∩ Vi. Then, during E consider the first time that

{v} is merged with another component. This merge corresponds to some label `v ∈ L(v) ∩ C.

It follows that π[i] is still a node of Ti|C, let v′ denote the child of π[i] in Ti|C that contains

`v. Let I ′ = {v′ : v ∈ I}, and let G′ = G(T |C, π) = (V ′, E′).

We claim that (as in the proof of Lemma 16) the execution E can be simulated by an

execution E ′ of Algorithm Merge on G′ and I ′. Let PE , PE ′ denote the values of P during

E , E ′ respectively. We define E ′ by induction such that the following holds at each step: if

PE = {C1, . . . , Cp}, then PE ′ = {C ′1, . . . , C ′p} with C ′i={v′ : v ∈ Ci}. Clearly, this holds at the

beginning of E , E ′. Suppose that this holds at the beginning of step s. Then E picks a transverse

edge e = uv with u ∈ 〈Ci〉G, v ∈ 〈Cj〉G. Suppose that u ∈ V (Tp) and v ∈ V (Tq). In Tp|C

(resp. Tq|C), there is a child u′ of π[p] (resp. a child v′ of π[q]) that contains `e. The induction

hypothesis implies that u′∈〈C ′i〉G′ and v′∈〈C ′j〉G′ , thus E ′ can pick the transverse edge e′=u′v′

induced by label `e. This leads to merge C ′i and C ′j and thus the induction hypothesis holds at
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the end of step s.

Applying the induction hypothesis at the last step of E , and since E ends with the partition

{I} (Lemma 15), we conclude that E ′ ends with the partition {I ′}. By Lemma 14, if Q is the

minimum nice partition of G′, we have 〈I ′〉G′ = V ′ in a same component of Q, and thus T |C

has no agreement supertree by Lemmas 11 and 13.

We outline an algorithm FindObstruction that takes as input a set of interesting vertices

and returns a conflict among T of size at most 2k − 1. Suppose that I = {v1, . . . , vr}. We

initialize components C1, . . . , Cr with Ci = {vi}, and we let J = {1, . . . , r}. We use a main loop

which performs the r−1 steps of Algorithm Merge. At each step, we have J ⊆ {1, . . . , r}, and

the current partition is represented by the components Ci (i ∈ J), which are called the active

components. We maintain for each ` ∈ L a variable J(`) = {i∈ J : `∈L(〈Ci〉G)}. At a given

step, we have to find a label inducing a transverse edge which joins the closure of two active

components. This amounts to looking for an ` such that |J(`)| ≥ 2. Once such an ` has been

found, we pick two indices i, j ∈J(`), and we merge the components Ci, Cj , letting Ci be the

newly created component, and updating the variables J(`) accordingly. An implementation of

FindObstruction is given in the listing of Algorithm 3.

Lemma 18. Suppose that TestAgreement(T , π>) returns (no, π, I). Then Algorithm

FindObstruction(T , π, I) returns in O(kn) time a conflict among T of size at most 2k − 1.

Proof. We first argue for the correctness. If 2k ≥ n, then the set L returned by the algorithm

is a conflict, as by assumption T has no agreement supertree. Suppose now that 2k < n. By

Lemma 17, it suffices to show that an execution E of Algorithm 3 simulates an execution E ′ of

Algorithm Merge. More precisely, we show the following holds after each step s.

1. There is an execution E ′ of s steps of Algorithm Merge which produces the set of

components Ci (i ∈ J) and, the set of labels R is exactly the set of labels corresponding

to the transverse edges which induced all the s merges in E ′.

2. For each ` ∈ L, J(`) = {i ∈ J : ` ∈ L(〈Ci〉G)}.
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Algorithm 3: FindObstruction(T , π, I)
Input: A collection T = {T1, . . . , Tk} of rooted trees, an obstructing position π in T , a

set I = {v1, . . . , vr} of interesting vertices for π.

Output: A conflict among T .

1 if 2k ≥ n then return L

2 R← ∅ ; J ← {1, . . . , r}
3 for i from 1 to r do

4 Ci ← {vi}
5 foreach ` ∈ L(vi) do J(`)← J(`) ∪ {i}
6 for s from 1 to r − 1 do

7 Pick ` ∈ L such that |J(`)| ≥ 2, and choose i, j ∈ J(`)

8 R← R ∪ {`}
9 for ` ∈ L do

10 if j ∈ J(`) then J(`)← J(`)\{j} ∪ {i}
11 for p from 1 to k do

12 if Ci ∩ Vp 6= ∅ and Cj ∩ Vp 6= ∅ then

13 foreach ` ∈ L(π[p]) do J(`)← J(`) ∪ {i}
14 Ci ← Ci ∪ Cj , J ← J\{j}
15 return R

This is shown by induction on s. The initialization of the variables Ci and J(`) in Lines 3-5

ensure that this is true initially. Suppose that this holds at the beginning of step s. The choice

of ` and i, j in Line 7 ensures that ` ∈ L(〈Ci〉G) ∩L(〈Cj〉G), and thus there exists a transverse

edge e between 〈Ci〉G and 〈Cj〉G, induced by the label `. The update of Ci ← Ci ∪ Cj and

J ← J\{j} reflect the merge of Ci and Cj , and thus we can simulate step s of Algorithm

Merge which would choose transverse edge e and merge Ci and Cj . This establishes Point 1,

and the update of J(`) in Lines 9-13 ensures that Point 2 is preserved.

We now justify the running time. Let us assume that 2k < n, as otherwise the algorithm

takes O(1) time. We implement the sets J(`) by bit arrays, allowing in constant time the

following operations: (i) insertion or deletion of an element, (ii) obtaining the size of the set. It

follows that Lines 3-5 take O(rn) = O(kn) time. Let us now analyze the time taken by the s-th

iteration of the loop in Lines 6-14. Let Ks denote the set of indices p for which the condition

of Line 12 holds. Then Lines 7-10 take O(n) time, Lines 11-13 take O(k + |Ks|n) time, and

Line 14 takes O(k) time. Overall, Lines 7-14 take O(n + |Ks|n) time as k = O(n). Observe

that the sets Ks are disjoint for s = 1, . . . , r − 1, and thus
∑

s |Ks| = O(k). It follows that the
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loop of Lines 6-14 take O(rn + kn) = O(kn) time, and we conclude that the whole algorithm

runs in O(kn) time.

Theorem 24. AST-TR can be solved in O((2k)pkn2) time.

Proof. We use a recursive algorithm SolveAST-TR(T , p). The algorithm answers “no” if

p < 0. Otherwise, it runs TestAgreement(T , π>) to decide in O(kn2) if T has an agreement

supertree. It answers “yes” in case of positive answer. In case of negative answer, it obtains

a position π and a set I of interesting nodes for π. It calls FindObstruction(T , π, I) to

obtain in O(kn) time a conflict C among T of size at most 2k − 1. Then, for each ` ∈ C, it

recursively calls SolveAST-TR(T |(L(T ) \ {`}), p− 1), and it answers “yes” if and only if one

of the recursive calls does. The correctness follows from Lemma 18, and the running time is

O((2k)pkn2).

3.5 Deferred proofs

3.5.1 Proofs of Section 3.3.2

The proof of Theorem 19 relies on three lemmas. Lemma 19 justifies the running time of

the algorithm, while Lemmas 20 and 21 prove its correctness.

Lemma 19. The implementation of GetSuccessors given in Algorithm 1 runs in O(kn)

time.

Proof. Clearly, line 1 takes O(n) time. Each iteration of the outer loop in lines 2-6 takes a

total of O(n) time, since each label can be in the subtree of at most one child of π[i], and there

are k iterations, for a total of O(kn) time spent on lines 2-6. Line 7 takes O(1) time.

We now argue that the algorithm spends a total of O(kn) time on lines 8-24. The loop in

line 8 executes O(n) times. Since any given label can be in a given tree at most once, we have

that each |S`| ≤ k for each ` ∈ L(π). Hence the loop in line 10 executes O(k) times for each

execution of the outer loop in line 8, and takes constant time per iteration. Since lines 9, 22,

and 23 take constant time, we have that the algorithm spends a total of O(kn) time on lines

8-13, and lines 22-23.
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We consider lines 14-21 separately. Since we create a total of n positions, and once a

position’s active flag is set to false it is never again set to true, we have that the while loop of

line 14 executes a total of at most n times during the execution of the entire algorithm. The

loop in line 16 executes k times and takes O(1) time if the test in line 17 is true, and O(n) time

if the test in line 17 is false. However, the test in line 17 can be false at most k times during

the entire execution of the algorithm. Hence the algorithm spends a total of O(kn) executing

lines 14-17 and O(kn) time executing lines 18-21.

Since there are at most n positions created, line 24 takes O(n) time. This completes the

analysis of the runtime of GetSuccessors, showing that it takes O(kn) time.

Consider an execution of GetSuccessors(T , π), and let G = G(T , π) as before. Observe

that Lines 1-6 ensure that for each ` ∈ L, S` = {v ∈ V : ` ∈ L(v)}. Suppose that Loop 8-21

examines the labels in the order `1, . . . , `n. Given 0 ≤ i ≤ n, let Li = {`1, . . . , `i}. Let Gi

denote the graph with vertex set V , and which contains an edge uv iff L(u) ∩ L(v) intersects

Li. Let Qi denote the minimum nice partition of Gi, and let Pi denote the set of nice partitions

of Gi. In the following, we let ` = `i+1.

Lemma 20. Qi is finer than Qi+1. Furthermore, let S denote the set of classes C ∈ Qi which

contain a vertex in S`. Then the classes of S are included in a same class K` of Qi+1, and

Qi+1 = Qi\Q′ ∪ {K`}, where Q′ is the set of classes of Qi included in K`.

Proof. We first show that Qi is finer than Qi+1. Observe that a nice partition of Gi+1 is also

a nice partition of Gi, as E(Gi) ⊆ E(Gi+1). It follows that Qi = uP∈PiP v uP∈Pi+1P = Qi+1,

where the inclusion holds as Pi+1 ⊆ Pi. We deduce that each class of Qi is included in a class of

Qi+1. Now, the classes of S must be included in a same class K` of Qi+1, as two classes of Qi+1

are disconnected. Let Q′ be the set of classes of Qi included in K`. Then, Qi+1 is obtained

from Qi by merging together the classes of Q′, and possibly some other classes. Suppose by

contradiction that Qi+1 6= Qi\Q′ ∪ {K`}, then there is a class K ′ of Qi+1 distinct of K` and

which is not a class of Qi. Let C1, . . . , Cm be the classes of Qi included in K ′, with m ≥ 2.

Let R = Qi+1\{K ′} ∪ {C1, . . . , Cm}. Then Qi is finer than R and thus R is a nice partition

of Gi. On the other hand, R is not a nice partition of Gi+1 by minimality of Qi+1. It follows
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that Gi+1 contains an edge joining two classes Cp, Cq; as R is a nice partition of Gi, this edge

must be induced by `. But K` is the only class of Qi+1 which intersects S`, contradiction. We

conclude that Qi+1 = Qi\Q′ ∪ {K`}.

A successor of π is a position π′ such that for every i ∈ [k], either π′[i] =⊥, or π′[i] ∈ Vi,

or π′[i] = π[i]. Given π′ successor of π, we define the corresponding component Cπ ⊆ V , such

that: if π′[i] =⊥ then Cπ ∩ Vi = ∅; if π′[i] = v ∈ Vi then Cπ ∩ Vi = {v}; if π′[i] = π[i] then

Cπ ∩ Vi = Vi. Let Πi denote the set of active positions of Π at the end of step i of Loop 8-21.

The construction of each position π` in Lines 14-21 ensures that Πi is a set of successors of

π. Let Pi denote the family containing (i) the sets Cπ′ for π′ ∈ Πi, (ii) the singletons {v} for

v ∈ V such that there is no π′ ∈ Πi with v ∈ Cπ′ .

Lemma 21. For every i (0 ≤ i ≤ n), it holds that Pi = Qi at the end of step i of the loop in

lines 8-21.

Proof. Let us show that this holds initially. We have Π0 = ∅, V0 = ∅, and thus P0 consists of

the singletons {v} for v ∈ V . This is clearly equal to Q0 as G0 is the empty graph. Let us

now assume that this holds at the end of step i, let us consider step i + 1 and let ` = `i+1.

By the induction hypothesis, we have Pi = Qi. By Lemma 20, we have Qi+1 = Qi\Q′ ∪ {K`},

where Q′ is the set of classes of Qi included in K`. Let S denote the set of components of Qi

corresponding (i) to positions added to Z in Lines 11-12, (ii) to singleton components {v} for v

examined at Line 13. Consider step j of Loop 14-21. At a given step, let πj` denote the current

value of π`, let Cj` denote the corresponding component, let Zj be the set of elements of Z, and

let Zjf be the set of elements π ∈ Z with active(π) = false. Let Dj
` denote the set of vertices

v ∈ Cj` such that there is no π′ ∈ Πi with v ∈ Cπ′ .

Claim 1. At step j of Loop 14-21, we have:

(a) Dj
` ∪
⋃
π′∈Zjf

Cπ′ is included in Cj` ;

(b) Cj` is included in Dj
` ∪
⋃
π′∈Zj Cπ′ and in K`;

(c) for each π′ ∈ Zj , Cπ′ ⊆ K`.
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Proof. Let us verify that this holds for j = 0. Observe that C0
` = D0

` , as each vertex v

added to C0
` is obtained in Line 13 and has position(v) = ∅. Point (a) is an equality. Points

(b) and (c) follow from the fact that the components of S are included in K`, according to the

definition of K` in Lemma 20.

Let us now verify it for j + 1, assuming that it holds for j. Suppose that step j + 1

examines position π′ ∈ Zj . Let Z ′ be the set of positions added at Line 21 during this step.

Lines 16-21 compute πj+1
` such that Cj+1

` = 〈Cj` ∪ Cπ′〉Gi+1 . By the induction hypothesis,

Dj
`∪
⋃
π′∈Zjf

Cπ′ ⊆ Cj` ⊆ C
j+1
` ; by definition, Dj+1

` ⊆ Cj+1
` and Cπ′ ⊆ Cj+1

` ; as Zj+1
f = Zjf∪{π′},

we deduce that Point (a) holds. Let us show Point (b). As Cj` ⊆ K` and Cπ′ ⊆ K` by the

induction hypothesis, it follows that Cj` ∪ Cπ′ ⊆ K`, and thus Cj+1
` ⊆ K` as K` is a nice

set. Now, observe that for every v ∈ Cj+1
` \Cj` we have either v ∈ Dj+1

` (if position(v) = ∅

at Line 21) or v ∈ Cπ′ for some π′ ∈ Z ′ (if position(v) = {π′} at Line 21). It follows that

Cj+1
` ⊆ Cj` ∪D

j+1
` ∪⋃π′∈Z′ Cπ′ ⊆ D

j+1
` ∪⋃π′∈Zj Cπ′ (using the induction hypothesis), and thus

Point (b) holds. Let us show Point (c). Observe that for each π′ ∈ Z ′, Cπ′ intersects Cj+1
` . As

Cj+1
` ⊆ K` and as Cπ′ is a class of Qi, it follows that Cπ′ ⊆ K`. ♦

Suppose that we have reached Line 23. Let Π′ be the set of positions in Z at this step,

then Πi+1 = Πi\Π′ ∪ {π`}. Thus, we have Pi+1 = Pi\P ′ ∪ {C`}, where C` is the component

corresponding to π`. Recall that Qi+1 = Qi\Q′ ∪ {K`} and that Pi = Qi. To show that

Pi+1 = Qi+1, we will prove that (i) C` ⊆ K`, (ii) Pi+1 is a nice partition of Gi+1.

(i) C` ⊆ K`. Indeed, by applying Claim 1 at the last step of Loop 14-21, we obtain that

C` ⊆ K` by Point (b).

(ii) Pi+1 is a nice partition of Gi+1. We first show that Pi+1 is a partition of V . Let

D` denote the value of Dj
` at the last step of Loop 14-21. Note that Pi+1 = Pi\P ′ ∪ {C`},

where P ′ contains (i) the singleton components {v} for v ∈ D`, (ii) the set of components

corresponding to the positions in Z. Let X denote the union of the components in P ′, observe

that X = D` ∪
⋃
π∈Z Cπ. By Points (a) and (b) of Claim 1, we have X = C`. As Pi is a

partition of V , we obtain that Pi+1 is a partition of V .

We now show that Pi+1 is nice. Each class of Pi+1 is nice, as it is either a class of Pi

(which is a nice partition of Gi), or the set C` (which is nice). Suppose that Pi+1 contains
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two classes C,C ′ that are connected. As Pi is a nice partition of Gi finer than Pi+1, it holds

that Pi+1 is a nice partition of Gi. Thus, C and C ′ are disconnected in Gi, and they must be

connected in Gi+1 by an edge induced by `. But C` is the only class of Pi+1 which intersects

S`, a contradiction.

The proof of Theorem 19 follows directly from Lemmas 19, 20, and 21.

We conclude this section with a proof of Theorem 20. Recall that when the set of successor

positions returned by GetSuccessors is a singleton, the algorithm returns a set of vertices

I along with the obstructing position π. Theorem 20 states that, in this case, the vertices in

I are interesting for π. We have delayed the proof of this theorem until now for expository

reasons: It is not until Section 3.4 that we developed the machinery required for the proof.

of Theorem 20. The following properties of Algorithm Merge demonstrate that the set I sat-

isfies the definition of interesting vertices:

• Each vertex in I starts in its own class.

• At each step of the algorithm a transverse edge is found and two of the classes are merged.

Let K = {i ∈ [k] : π[i] 6=⊥}. By Lemma 15, Algorithm Merge run on G and I returns {I}.

Since there are |I| = 2|K| initial classes, it follows that 2|K| − 1 transverse edges are needed

to merge them into a single class. Furthermore, since each interesting vertex is initially the

unique element in its class, it must be an endpoint of the transverse edge found that merged

that class with the final class. Thus, the set of transverse edges used by Algorithm Merge

prove that I is indeed a set of interesting vertices.

3.5.2 Proof of Lemma 15

For convenience, we introduce an abstract version of GetSuccessors called Algorithm A.

The algorithm takes as input T and the position π, and it returns a partition P of V , and a set I

of interesting vertices. For each ` ∈ L, the algorithm constructs the set S` = {v ∈ V : ` ∈ L(v)}.

Initially, P consists of the singletons {v} for v ∈ V , and I = ∅. Then, the algorithm successively
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examines each label ` ∈ L. When examining `, it constructs a set Z ⊆ P and K ⊆ V in two

steps. It starts with Z = ∅ and K = ∅, and it does the following.

• Phase A: for each C ∈ P intersecting S`, add C to Z.

• Phase B: while Z contains an unprocessed class C, extract C from Z and do the following.

For every i ∈ [k], if K and C respectively contain a vertex x and a vertex y where x, y ∈ Vi,

then add x, y to I, and for every v ∈ Vi\{x, y} add to Z the class C ′ ∈ P that contains

v. Then let K ← 〈K ∪ C〉G.

• At the end of Phase B, let P ′ be the set of classes of P which have been added to Z. Let

P ← P\P ′ ∪ {K}.

It is not difficult to see that Algorithm A is equivalent to Algorithm GetSuccessors, so

for every execution of GetSuccessors producing the set of vertices I, there is a corresponding

execution of Algorithm A which produces I. An execution of Algorithm A can be represented

by a merge forest. This is an ordered rooted forestM, where each node u ofM is associated to

a component Ku produced by the algorithm, such that at each step of Algorithm A the roots of

M correspond to the classes of P . M is constructed as follows. At the beginning of Algorithm

A, M consists of one isolated node for each class of P . When Algorithm A examines label `,

let P ′ be the set produced at the end of Phase B and let K be the class added to P , thenM is

updated by adding a vertex u with Ku = K, and by adding an arc (u, v) for each root v of M

corresponding to a class Kv ∈ P ′. Then, the new children of u correspond to the classes added

to Z, and they are ordered according to the first time when they were added to Z.

We state below some simple properties of the merge forest. The following lemma can be

proved by a similar argument as in the proof of Lemma 21.

Lemma 22. Let u be an internal node of M with children u1, . . . , up. Then {Ku1 , . . . ,Kup}

is a partition of Ku.

Let i ∈ [k], and let u be a node of M. We say that u merges Vi if Vi ⊆ Ku but there is no

child v of u with Vi ⊆ Kv. Suppose that u merges Vi. Given x ∈ Vi, we let Cx(u) denote the

child v of u such that x ∈ Kv. We let Ch(u) denote the ordered list of children of u in M.
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Lemma 23. Suppose that u merges Vi. Then I contains two vertices x, y ∈ Vi, and for every

z ∈ Vi\I, Cx(u), Cy(u) precede Cz(u) in Ch(u).

We are now in position to prove Lemma 15.

of Lemma 15. By definition of π and I, it holds that GetSuccessors(T , π) has returned

({π}, I). It follows that there is a corresponding execution of Algorithm A on T , π which

returns ({V }, I). Let M be the merge forest corresponding to this execution, then M has a

single root r with Kr = V . Consider an execution of Algorithm Merge on G, I. We show that

as long as P contains at least two classes, the algorithm finds a transverse edge. Suppose that

P = {C1, . . . , Cp} with p ≥ 2, we thus need to find a transverse edge joining 〈Ci〉G and 〈Cj〉G
for some i, j.

We will need the following definitions. Let v be a node of M. Given x ∈ Kv, we color x

with color 1 ≤ i ≤ p if x ∈ 〈Ci〉G. We say that v is split if Kv contains two colored vertices

of different colors. We say that v is full if for each i ∈ [k], if Kv ∩ Vi = {x} then x is colored.

For every i ∈ [k] such that Vi ⊆ Kv, the vertices of Vi\I are called secondary vertices of Kv.

Given v′ child of v in M, we say that v′ is a secondary child of v if there exists i ∈ [k] such

that Kv′ ∩Vi = {x} with x secondary vertex of Kv; otherwise, we say that v′ is a primary child

of v.

Let S be the set of nodes of M that are split and full. Observe that the root r of M is in

S. Indeed, r is split as Kr contains all interesting nodes and as p ≥ 2; r is full as there is no

i ∈ [k] such that |Kr ∩ Vi| = 1. Let u be a deepest node of S, and let u1, . . . , um be its ordered

list of children. We say that a node v of M is monochromatic (with color c) iff all vertices of

Kv have the same color c.

Claim 1. If v is a primary child of u, then v is added during Phase A of Algorithm A.

Furthermore, v is full and monochromatic.

Proof. For the first point, observe that if v is added during Phase B of Algorithm A then

Kv contains a secondary vertex of Ku and thus v is a secondary child of u. Let us now show the

second point. Suppose by contradiction that v is not full. Then there is some i ∈ [k] such that

Kv ∩Vi = {x} with x uncolored. As u is full, we cannot have Ku ∩Vi = {x} and thus Vi ⊆ Ku.
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As x is uncolored, we have x ∈ Vi\I, and thus x is a secondary vertex of Ku. We conclude that

v is a secondary child of u, contradiction. It follows that v is full, and by choice of u it cannot

be split. Thus, all colored vertices of Kv have the same color c. Now, if Kv ∩ Vi = {x} then x

has color c (as Kv is full), and if Vi ⊆ Kv then the two vertices of Vi ∩ I have color c, which

implies that all vertices of Vi have color c. It follows that v is monochromatic with color c. ♦

By Claim 1, each primary child ui of u is monochromatic with color ci.

Claim 2. There exist two primary children ui, uj of u such that ci 6= cj .

Proof. By way of contradiction, assume that all primary children have the same color c.

We show by induction on 1 ≤ j ≤ m that uj is monochromatic with color c. This holds if uj

is a primary child of u, so let us assume that uj is a secondary child of u. Let J ⊆ Kuj be the

set of vertices x ∈ Kuj such that Kuj ∩ Vi = {x} for some i ∈ [k], and let J ′ ⊆ J be the set of

vertices of J that are secondary vertices of Ku. Then J ′ 6= ∅ as uj is a secondary child of u.

Consider z ∈ J ′ and suppose that Kuj ∩ Vi = {z}. As z is a secondary vertex of Ku, we then

have Vi ⊆ Ku. Then u merges Vi, and by Lemma 23 it follows that I contains two elements

x, y ∈ Vi. Let up, uq be the children of u such that x ∈ Kup , y ∈ Kuq . We have p, q < j by

Lemma 23. We can thus apply the induction hypothesis to obtain that x, y have color c, which

implies that z has color c. We obtain that all vertices of J ′ have color c. On the other hand, all

vertices of J\J ′ are colored, as u is full. We conclude that uj is full, with some vertex having

color c. By choice of u, its child uj cannot be split. A similar reasoning as in the proof of

Claim 1 shows that uj is monochromatic with color c. This concludes the induction, and we

obtain that all children of u are monochromatic with color c. By Lemma 22, we obtain that u

is monochromatic with color c, contradicting the assumption that u is split. ♦

Claim 2 yields two primary children ui, uj of different colors c, c′. By Claim 1, they are

added during Phase A of Algorithm A, and thus the label that is examined in the iteration of

Algorithm A when Ku is built induces an edge between Kui and Kuj . We have thus shown the

existence of a transverse edge between 〈Cc〉G and 〈Cc′〉G, which concludes the proof.
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3.6 Concluding Remarks

We have given O((2k)pkn2) time algorithms for both the AST-EC and AST-TR problems,

thus showing they are fixed-parameter tractable for parameters k and p. We remark here that

the bound of 2k − 1 given for the obstruction set of AST-TR (Lemmas 17 and 18) is tight.

Our proof that AST-EC is NP-hard relies on a reduction from the parameterized Multi-

cut problem to the AST-EC problem parameterized by p. As Multicut is fixed-parameter

tractable [10, 56], this leaves open the question of whether AST-EC could be fixed-parameter

tractable in p only. It is known that AST-TR is fixed-parameter intractable for parameter p

[6].

Our focus here was on agreement supertrees. A compatible supertree is one that contains

a refinement of each of the input trees. There are natural analogs of AST-EC and AST-TR

for compatible supertrees. For binary input trees, compatibility is equivalent to agreement,

so the results of [34] imply fixed-parameter tractability. However, for input trees of arbitrary

degree, we have established that any upper bound on the cardinality of an obstruction set is

at least c2k. Hence, the techniques given here are unlikely to imply efficient fixed-parameter

tractability for the analogs of AST-TR and AST-EC to compatible supertrees.

There are also analogs of both AST-EC and AST-TR to unrooted trees. Although Maxi-

mum Agreement Supertree (Smast) has been studied for unrooted trees [6, 40], the AST-

EC and AST-TR problems for unrooted trees do not seem to have been studied before.
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CHAPTER 4. The Tile Assembly Model and Discrete Fractals

In this chapter we give a brief introduction to the Tile Assembly Model (TAM) and Discrete

Fractals that is sufficient for understanding the results presented in Chapters 5 and 6. For a

more thorough introduction to the TAM see [84, 65]. Our notation for the TAM follows that

of [51] but is tailored somewhat to our objectives.

4.1 Notation and Terminology

We work in the discrete Euclidean plane Z2. We write U2 for the set of all unit vectors in

Z2. We often refer to the elements of U2 as the cardinal directions, and write ~uN for (0, 1), ~uS

for (0,−1), ~uE for (1, 0), and ~uW for (−1, 0).

For any set S ⊆ N2, let S|m denote the set {(x, y) ∈ S : x < m and y < m}. For u, v ∈ N,

let S|m[u, v] = {(x, y) : (x− u, y − v) ∈ S|m}, i.e., the set S|m translated to (u, v).

Let X and Y be sets. We write [X]2 for the set of all 2-element subsets of X. For a partial

function f : X 99K Y , we write f(x)↓ if x ∈ dom f and f(x)↑ otherwise. We write X∆Y for

the symmetric difference of X and Y . For a Boolean expression φ, we write [[φ]] for the value

of φ, i.e., [[φ]] = 1 when φ is true, and [[φ]] = 0 when φ is false.

All graphs here are undirected graphs of the form G = (V,E), where V ⊆ Z2 is a set of

vertices and E ⊆ [V ]2 is a set of edges. A grid graph is a graph where each {~m,~n} ∈ E satisfies

~m − ~n ∈ U2. If E contains every {~m,~n} ∈ [V ]2 such that ~m − ~n ∈ U2, we say it is the full

grid graph on V , written G#
V . A cut of a graph is a partition of V into two subsets. A binding

function on a graph is a function β : E → N. If β is a binding function on G and C is a cut of

G, then the binding strength of β on C is

βC =
∑
{β(e) | e ∈ E and e ∩ C0 6= ∅ and e ∩ C1 6= ∅} ,
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and the binding strength of β on G is

βG = min {βC | C is a cut of G}.

A binding graph is an ordered triple (V,E, β), where β is a binding function on (V,E). For

τ ∈ N, a binding graph (V,E, β) is τ -stable when β(V,E) ≥ τ .

4.2 The Tile Assembly Model

Rothemund and Winfree [65, 84] introduced the Tile Assembly Model (TAM), a constructive

version of Wang tiling [82], in order to study the growth of DNA crystals. The TAM models

the self-assembly of unit square tiles that can be translated, but not rotated, so that each tile

has a well defined “side ~u ” for each ~u ∈ U2. Each side ~u of t has a glue t(~u) = (colt(~u), strt(~u))

where colt(~u) ∈ Σ∗ (for some fixed alphabet Σ) is the glue color, and strt(~u) ∈ N is the glue

strength (usually 0, 1, or 2). Two tiles with the same glue on each side are of the same tile

type. Two tiles placed next to each other interact if the glues on their abutting sides match in

both color and strength. Intuitively, a tile models a DNA double crossover molecule and the

glues correspond to the “sticky ends” on the four arms of the molecule.

Figure 4.1 gives an example illustration of a tile. Glue strengths are represented by lines

that are dotted for 0, solid for 1, and solid with notches for 2. Glue colors are drawn in the

interior of the tile on the corresponding side. In this example t(~uN) = (a, 1), t(~uE) = (b, 1),

t(~uS) = (λ, 0) where λ represents the empty string, and t(~uW) = (c, 2). Also, we sometimes

give a label to a tile type. This label does not play a role in the TAM, it is only to make

referring to tiles of that type more convenient.

L

a

bc

t(~uN)

t(~uE)

t(~uS)

t(~uW)

label (optional)

Figure 4.1: An example illustration of a tile.
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Let T be a set of tile types. A T -configuration is a partial function α : Z2 99K T . For

~m,~n ∈ domα, the tiles at these locations interact with strength

strα(~m,~n) = [[~n− ~m ∈ U2]] · strα(~m)(~n− ~m) · [[α(~m)(~n− ~m) = α(~n)(~m− ~n)]].

The binding graph of α is Gα = (domα,E, β), where

E =
{
{~m,~n} ∈ [V ]2 | strα(~m,~n) > 0

}
,

and for all {~m,~n} ∈ E, β({~m,~n}) = strα(~m,~n). For τ ∈ N, α is τ -stable if Gα is τ -stable. We

write AτT for the set of all τ -stable T -configurations. Let α, α′ ∈ AτT . If domα ⊆ domα′ and

α(~m) = α′(~m) for all ~m ∈ domα, then α is a subconfiguration of α′ and we write α v α′. If

|domα′ \ domα| = 1, then α′ is a single-tile-extension of α and we write α′ = α + (~m 7→ t)

where {~m} = domα′ \ domα and t = α′(~m). For each t ∈ T , the τ -t-frontier of α is

∂τt α =
{
~m ∈ Z2\domα | (Σ~u∈U2

strα+(~m 7→t)(~m, ~m+ ~u)) ≥ τ
}
, and

the τ -frontier of α is

∂τα =
⋃
t∈T

∂τt α.

We say α is terminal when ∂τα = ∅.

A tile assembly system (TAS) is an ordered triple T = (T, σ, τ) where T is a finite set of

tile types called the tileset, the seed assembly σ ∈ AτT is such that domσ = ~0, and τ ∈ N is the

temperature. In this thesis we will always have that τ = 2. We will also assume that the tile

assembly system contains an infinite number of tiles of each type, and each type occurs at the

same concentration.

The process starts with the seed assembly and growth occurs by single tiles attaching one

at a time. A tile can attach at a site where the summed strength of the glues on sides that

interact with the existing structure is at least the temperature. More formally, an assembly

sequence in T is a sequence ~α = (αi | 0 ≤ i < k) where α0 = σ, k ∈ Z+ ∪ {∞} and for each

0 ≤ i < k, αi+1 = αi + (~m 7→ t) for some t ∈ T and ~m ∈ ∂τt αi. The result of ~α, written res ~α,

is the unique α ∈ AτT satisfying domα =
⋃

0≤i<k domαi and for each 0 ≤ i < k, αi v α. We
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write σ −→ α if there exists an assembly sequence ~α in T such that α = res ~α. The set of

producible assemblies is

A [T ] = {α ∈ AτT | σ −→ α}

and the set of terminal assemblies is

A� [T ] = {α ∈ A [T ] | ∂τα = ∅} .

T is directed if |A� [T ] | = 1.

A set X ⊆ Z2 weakly self-assembles in a TAS T if the tileset T can be partitioned into

two subsets, conventionally called the “black” tiles and “white” tiles, and in every terminal

assembly of T , the set of locations at which black tiles have been placed is exactly X. We say

X weakly self-assembles if X weakly self-assembles in some TAS.

A set X strictly self-assembles in T if every α ∈ A� [T ] satisfies domα = X, i.e., if in every

terminal assembly of T the set of locations at which tiles have been placed is exactly X. We

say X strictly self-assembles if X strictly self-assembles in some TAS.

Let T = (T, σ, τ) be a TAS, ~α = (αi | 0 ≤ i < k) be an assembly sequence in T , and

α = res ~α. For each ~m ∈ Z2, the ~α-index of ~m is

i~α(~m) = min {i ∈ N | ~m ∈ domαi} .

If ~m,~n ∈ domα and i~α(~m) < i~α(~n), we say ~m precedes ~n in ~α, and write ~m ≺~α ~n. For

X ⊆ domα, α restricted to X, written α�X, is the unique T -configuration satisfying (α�X)vα

and dom (α�X)=X.

4.2.1 Local Determinism

Winfree and Soloveichik [76] introduced local determinism as a way to prove that a TAS is

directed. Let T = (T, σ, τ) be a TAS, ~α = (αi | 0 ≤ i < k) be an assembly sequence in T , and

α = res ~α. For each ~m ∈ domα, define [76] the sets

IN~α(~m) = {~u ∈ U2 | ~m+ ~u ≺~α ~m and strαi~α(~m)
(~m, ~m+ ~u) > 0}, and

OUT~α(~m) = {~u ∈ U2 | −~u ∈ IN~α(~m+ ~u)}.

Then, ~α is locally deterministic [76] if the following three conditions hold.
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(1) For all ~m ∈ domα \ domα0, ∑
~u∈IN~α(~m)

strαi~α(~m)
(~m, ~m+ ~u) = τ.

(2) For all ~m ∈ domα \ domα0 and t ∈ T \ {α(~m)},

~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))).

(3) ∂τα = ∅.

Conceptually, (1) requires that each tile added in ~α “just barely” binds to the existing assembly;

(2) holds when the tiles at ~m and ~m + OUT~α(~m) are removed from α, no other tile type can

attach to the assembly at location ~m; and (3) requires that α is terminal. A TAS is locally

deterministic if it has a locally deterministic assembly sequence. Soloveichik and Winfree [76]

proved every locally deterministic TAS is directed.

4.3 Discrete Fractals

In this thesis we will be concerned with approximating fractal structures with strict self-

assembly. Fractals are normally bounded and have the same structure at arbitrarily small

scales. The TAM models the self-assembly of tiles, which are discrete objects, so structures

that self-assemble are fundamentally discrete. Thus, when considering the self-assembly of a

fractal, we use a discrete version which is unbounded and has the same detail at arbitrarily

large scales.

Our primary concern will be with a subset of the discrete numerically self-similar fractals.

A discrete fractal is an unbounded subset F of the Euclidean plane that has the same structure

at arbitrarily large scales. In all the examples we consider, F will be a subset of N2.

Definition 1. For any integer p > 1, let K be a nonempty, proper subset of N2|p. The discrete

self-similar fractal with p×p kernel K is the setF defined by

F |p = K,

F |pk+1 =
⋃

(s,t)∈K
F |pk [spk, tpk].
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4.3.1 Zeta-Dimension

A fractal dimension is a measure of how completely a fractal fills space. The most commonly

used fractal dimension for discrete fractals is zeta-dimension. Although the origins of zeta-

dimension lie in eighteenth and nineteenth century number theory, namely Euler’s zeta-function

[26], it has been rediscovered many times by researchers in a variety of fields. See [21] for a

review of the origins of zeta-dimension, the development of its basic theory, and the connections

between zeta-dimension and classical fractal dimensions.

In this thesis we use the entropy characterization of zeta-dimension [14]. For each ~m ∈ Z2,

let ||~m|| be the Euclidean distance from the origin to ~m, i.e., if ~m = (m1,m2) then ||~m|| =√
m2

1 +m2
2. For A ⊆ Z2 and I ⊆ [0,∞), let AI = {~m ∈ A | ||~m|| ∈ I}. Then, the ζ-dimension

(zeta-dimension) of a set A ⊆ Z2 is

Dimζ(A) = lim sup
n→∞

log2 |A[0,n]|
log2 n

.

By routine calculus it follows that

Dimζ(A) = lim sup
n→∞

log2 |A[0,2n)|
n

. (4.1)

Note that ζ-dimension has the following functional properties of a fractal dimension [21].

Observation 3. Let A,B ⊆ Z2. Then,

(1) A ⊆ B =⇒ Dimζ(A) ≤ Dimζ(B) (monotonicity), and

(2) Dimζ(A ∪B) = max {Dimζ(A),Dimζ(B)} (stability).

It is easy to verify using Definition 1 that if F is a fractal with p × p kernel K, then

Dimζ(F ) = logp |K|.

4.3.2 Approximate Self-Assembly of a Discrete Fractal

We now formally define the notion of approximating a fractal structure with strict self-

assembly.
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Definition 2. Let S be a subset of Z2. An in-place approximation of S in the aTAM is a

set X ⊃ S that strictly self-assembles in the aTAM in such a way that specially labeled tiles

appear at exactly the positions corresponding to points in S and X has exactly the same fractal

dimension as S.

That is, the approximation X contains additional elements occupying the “negative space”

of S, as illustrated in Fig. 6.5, but the space occupied by these additional elements is negligible

in the sense that it does not increase the fractal dimension of the resulting structure. It is also

the case that the tile types that occupy the additional space are distinct from the tile types

used to assembly the intended fractal structure.
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CHAPTER 5. Approximate Self-Assembly of the Sierpinski Triangle

Modified from a paper published in Theory of Computing Systems

Jack H. Lutz and Brad Shutters

Abstract

The Tile Assembly Model is a Turing universal model that Winfree introduced in order to

study the nanoscale self-assembly of complex DNA crystals. Winfree exhibited a self-assembly

that tiles the first quadrant of the Cartesian plane with specially labeled tiles appearing at

exactly the positions of points in the Sierpinski triangle. More recently, Lathrop, Lutz, and

Summers proved that the Sierpinski triangle cannot self-assemble in the “strict” sense in which

tiles are not allowed to appear at positions outside the target structure. Here we investigate

the strict self-assembly of sets that approximate the Sierpinski triangle. We show that every

set that does strictly self-assemble disagrees with the Sierpinski triangle on a set with fractal

dimension at least that of the Sierpinski triangle (≈ 1.585), and that no subset of the Sierpinski

triangle with fractal dimension greater than 1 strictly self-assembles. We show that our bounds

are tight, even when restricted to supersets of the Sierpinski triangle, by presenting a strict

self-assembly that adds communication fibers to the fractal structure without disturbing it. To

verify this strict self-assembly we develop a generalization of the local determinism method of

Soloveichik and Winfree.

5.1 Introduction

Self-assembly is a process in which simple objects autonomously combine to form complex

structures as a consequence of specific, local interactions among the objects themselves. It
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occurs spontaneously in nature as well as in engineered systems and is a fundamental principle

of structural organization at all scales. Since the pioneering work of Seeman [69], the self-

assembly of DNA molecules has developed into a field with rich interactions between the theory

of computing (the information processing properties of DNA) and geometry (the structural

properties of DNA), and with many applications to nanotechnology [70].

Winfree [84] introduced the Tile Assembly Model (TAM) as a mathematical model of self-

assembly in order to study the growth of complex DNA crystals. The TAM is a constructive

version of Wang tiling [81, 82] that models the self-assembly of unit square tiles that can be

translated, but not rotated. A tile has a glue on each side that is made up of a color and an

integer strength (usually 0, 1, or 2). Intuitively, a tile models a DNA double crossover molecule

and the glues correspond to the “sticky ends” on the four arms of the molecule. Two tiles

with the same glue on each side are of the same tile type. Two tiles placed next to each other

interact if the glues on their abutting sides match in both color and strength.

A tile assembly system (TAS) is a finite set of tile types, a single tile for the seed, and a

specified integer temperature (usually 2). The process starts with the seed tile placed at the

origin, and growth occurs by single tiles attaching one at a time. A tile can attach at a site

where the summed strengths of the glues on sides that interact with the existing structure is

at least the temperature. The assembly is terminal when no more tiles can attach. A TAS is

directed if it always results in a unique terminal assembly. Winfree proved the TAM is Turing

universal [84]. The TAM is described formally in Section 4.2.

This paper is concerned with the self-assembly of fractals. Structures that self-assemble in

naturally occurring biological systems are often fractals, which have advantages for materials

transport, heat exchange, information processing, and robustness [7]. There are two types of

fractals, continuous and discrete. Continuous fractals are typically bounded and exhibit the

same structure at arbitrarily small scales. In contrast, discrete fractals are unbounded and

exhibit the same structure at arbitrarily large scales. Many fractals have both continuous and

discrete ”versions” that share the same fractal dimension and other properties [79]. This duality

is a topic of ongoing investigation [83, 4, 41, 60].

The TAM models the bottom-up self-assembly of discrete tiles, so structures that self-
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assemble in the TAM are discrete. We thus restrict our attention to fractals that are discrete.

There are two main notions of the self-assembly of such a fractal. In weak self-assembly one

typically causes a two-dimensional surface to self-assemble with the desired fractal appearing

as a labeled subset of the surface. In contrast, strict self-assembly requires the fractal, and

nothing else, to self-assemble. For many purposes, strict self-assembly is needed in order to

achieve the above mentioned advantages of fractal structures.

The Sierpinski triangle is a canonical starting point for many investigations of fractals, and

this is certainly true for self-assembly. Winfree [19] showed that the Sierpinski triangle weakly

self-assembles, and Rothemund, Papadakis, and Winfree [66] achieved a molecular implemen-

tation of this self-assembly. More recently, Lathrop, Lutz, and Summers [51] proved that the

Sierpinski triangle cannot strictly self-assemble. Patitz and Summers [62] then exhibited a

large class of fractals that cannot strictly self-assemble. It appears to be a challenging ques-

tion whether these results–or ours–hold more generally. Even the Sierpinski carpet, a natural

“next” fractal to consider after the Sierpinski triangle, is a case in point. Kautz and Lathrop

[46] have shown that the Sierpinski carpet weakly self-assembles, but its strict self-assembly

remains an open question. In fact, at the time of this writing, it is not known whether any

nontrivial self-similar discrete fractal strictly self-assembles.

This has motivated the development of techniques to approximate self-similar fractals with

strict self-assembly. The only previously known technique, introduced by Lathrop, Lutz, and

Summers [51], and later generalized by Patitz and Summers [62], enables strict self-assembly

of the intended fractal structure by adding communication fibers that shift successive stages

of the fractal. However, this results in a structure that only visually resembles, but does not

contain, the intended fractal structure.

In this paper we address a quantitative question: given that the Sierpinski triangle S cannot

strictly self-assemble, how closely can strict self-assembly approximate S? That is, if X is a

set that does strictly self-assemble, how small can the fractal dimension–a measure of how

completely a fractal fills space–of the symmetric difference X∆ S be? Our first main theorem

says that the fractal dimension of X∆ S is at least the fractal dimension of S.

To gain further insight, we restrict our attention to subsets of S and show that here the
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limitation is even more severe. Any subset of the Sierpinski triangle that strictly self-assembles

must have fractal dimension 0 or 1. Roughly speaking, the axes that bound S form the largest

subset of S that strictly self-assembles. Hence, S cannot even be approximated “closely” with

strict self-assembly.

Our second main theorem shows that our first main theorem is tight, even when restricted

to supersets of S. To prove this we demonstrate the existence of a set X with the following

three properties.

(1) S ⊆ X.

(2) The fractal dimension of X∆ S is the fractal dimension of S.

(3) X strictly self-assembles in the Tile Assembly Model.

What we have achieved here is a means of fibering S in place, i.e., adding the needed commu-

nication fibers (the set X \S) without disturbing the set S. To the best of our knowledge, this

is the first such construction for a self-similar fractal.

The local determinism method of Soloveichik and Winfree [76] is a common technique for

proving a TAS is directed. However, the TAS in the proof of our second main theorem uses

a blocking technique that prevents it from being locally deterministic. We thus introduce

conditional determinism, a generalization of local determinism, to verify this TAS is directed.

The proof techniques used here, along with our blocking technique (and thus our gener-

alization of local determinism), are likely to be useful in the design and analysis of other tile

assembly systems that approximate self-similar fractals. Our fibering technique may be a useful

example for other contexts where one seeks to enhance the “internal bandwidth” of a set in a

distortion-free manner.

The self-assembly of large complex systems is a long-term objective of nanotechnology [64].

DNA tile assembly may–at least in its present form–be too fault-prone to directly achieve this

objective. Nevertheless DNA tile assembly and the Tile Assembly Model have given us the

beginnings of a general theory of self-assembly, its potentialities, and its limitations. We hope

that our results lead to a more general understanding of the self- assembly and approximate

self-assembly of fractal structures.
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5.2 Preliminaries

5.2.1 Notation and Terminology

We now review finite-tree depth [51]. Let G=(V,E) be a graph and let D ⊆ V . For r ∈ V ,

the D-r-rooted subgraph of G is the graph GD,r=(VD,r, ED,r), where

VD,r = {v ∈ V | r is on every path from v to (any vertex in) D}

and ED,r = E ∩ [VD,r]
2. A D-subtree of G is a rooted tree B with root r ∈ V such that

B = GD,r. The finite-tree depth of G relative to D is

ft−depthD(G) = sup {depth(B) | B is a finite D-subtree of G} .

Intuitively, given a set D of vertices of G (which is in practice the domain of the seed assembly),

the D-subtree of G is a rooted tree in G that consists of all vertices of G that lie at or on the

far side of the root from D.

5.2.2 The Sierpinski Triangle

The Sierpinski triangle, a.k.a. the Sierpinski gasket or the Sierpinski sieve, is a self-similar

fractal named after the Polish mathematician Waclaw Sierpiński who first described it [75]. It

is formed by starting with a solid triangle and removing the middle fourth. This process is

continued ad infinitum on all remaining triangles. See Figure 5.1 for an illustration of the this

process.

This continuous version of the Sierpinski triangle is bounded and has the same detail at

arbitrarily small scales. Since the TAM models the bottom-up self-assembly of tiles, which are

discrete objects, structures that self-assemble in the TAM are fundamentally discrete. There-

fore, we shall focus on the strict self-assembly of a discrete version of the Sierpinski triangle

that is unbounded and has the same detail at arbitrarily large scales.

Figure 5.1: The first five stages of the continuous Sierpinski triangle.
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Figure 5.2: Stages 0 through 4 of the discrete Sierpinski triangle.

Formally, the discrete Sierpinski triangle is a set of points in Z2. Let V = {(1, 0), (0, 1)}

and define the sets S0,S1, . . . by the recursion

S0 = {(0, 0)} , and

Si+1 = Si ∪ (Si + 2iV ),

(5.1)

where A+ cB = {~m+ c~n | ~m ∈ A and ~n ∈ B}. The discrete Sierpinski triangle is the set

S =

∞⋃
i=0

Si. (5.2)

We often refer to Si as the ith stage of S. Note that S can also be defined as the nonzero

residues modulo 2 of Pascal’s triangle [9]. It is also a numerically self-similar fractal [46]. See

Figure 5.2 for an illustration.

Using equation 5.1 it is easy to give a formula for the cardinality of the ith stage of S.

Observation 4. For each n ∈ N, |Sn| = 3n.

Then, using Observation 4 and Equations (4.1) and (5.1), we can easily calculate the ζ-

dimension of S.

Observation 5. Dimζ(S) = log2 3.

Winfree [84] proved that S weakly self-assembles in the TAM. Rothemund, Papadakis, and

Winfree [66] later achieved a molecular implementation of this self-assembly. More recently,

Lathrop, Lutz, and Summers [51] proved that S cannot strictly self-assemble in the TAM.

Theorem 25 (Lathrop, Lutz, and Summers [51]). S cannot strictly self-assemble in the Tile

Assembly Model.
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5.3 Limitations on Approximating the Sierpinski Triangle

In this section we present our first main theorem. We show that every set that strictly

self-assembles disagrees with S on a set with ζ-dimension at least that of S. We then show

that for subsets of S, the limitation is even more severe.

Our lower bound is proven by establishing a bound on the number of tile types needed

for the self-assembly of Sn (Lemma 26). We then calculate the ζ-dimension of the symmetric

difference of a terminal assembly with Sn (Theorem 26) using a recursive argument, and show

that it works out to the ζ-dimension of the S.

We first show that in any τ -stable assembly in the configuration of some stage of S, each

tile that attaches during the assembly sequence does so by interacting with exactly one tile.

Hence, all of the interactions are between pairs of tiles that interact with a strength of at least

the temperature τ on their abutting side.

Lemma 24. Let T be a set of tile types, τ, n ∈ N, and α ∈ AτT such that domα = Sn. For each

~m ∈ domα and ~u ∈ U2, if ~m+ ~u ∈ domα, then α(~m)(~u) = α(~m+ ~u)(−~u) and strα(~m)(~u) ≥ τ.

Proof. Assume the hypothesis with T , τ , α, and n as witness. Let ~m ∈ domα and ~u ∈ U2 such

that ~m + ~u ∈ domα. It suffices to show that strα(~m, ~m + ~u) ≥ τ . Let Gα = (V,E, β) be the

binding graph of α. Note that since domα = Sn, (V,E) is a tree rooted at the origin and since

α is τ -stable, β(V,E) ≥ τ . So, it suffices to show that β((~m, ~m+ ~u)) ≥ τ .

Since (V,E) is a tree, and ~m and ~m + ~u are adjacent in (V,E), either ~m is on the path

from the origin to ~m + ~u or ~m + ~u is on the path from the origin to ~m. Without loss of

generality, assume ~m is on the path from the origin to ~m+~u (otherwise, the the theorem holds

for ~m′ = ~m+ ~u and ~u′ = −~u). Let C = (C0, C1) be the unique cut of G such that

C1 = {~n ∈ domα | ~m+ ~u is on a path in G from the origin to ~n} , and

C0 = V \ C1.

Then, ~m ∈ C0 and ~m+~u ∈ C1. Furthermore, since (V,E) is a tree, (~m, ~m+~u) ∈ E is the unique

edge across C. But then, βC = β((~m, ~m+~u)), and since βC ≥ β(V,E) ≥ τ , β((~m, ~m+~u)) ≥ τ .
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m n m n

6∈ S3

(a) Case 1. The figure on the left shows an ex-
ample α where ~m = (2, 0) and ~n = (5, 0). α(~m)
and α(~n) are green, α(~m + ~uE) is orange, and
α(~m + 2~uE) is yellow. The figure on the right
shows the β corresponding to this α.

m

n n

6∈ S3

(b) Case 3. The figure on the left
shows an example α where ~m = (2, 0)
and ~n = (0, 5). The tileα(~m +
~uW) is orange. The figure on
the right shows theβ corresponding to thisα.

Figure 5.3: Illustrating the proof of Lemma 25 for n = 3.

Lemma 24 allows us to show that all of the boundary tiles of a terminal assembly in the

configuration of some stage of S are each a unique tile type via a pumping argument used in

the proof of Lemma 25.

Lemma 25. If Sn strictly self-assembles in a TAS (T, σ, τ), then |T | ≥ 2n+1 − 1.

Proof. Assume the hypothesis with n ∈ N and TAS T = (T, σ, τ) as witness. Let α ∈ A� [T ].

If n = 0 the lemma is trivially true, so assume n > 1. Let A = Ah ∪ Av, where Ah =

{(i, 0) | 0 ≤ i < 2n} and Av = {(0, i) | 0 ≤ i < 2n} . Conceptually, Ah (and Av) represent the

left (and right) boundary of Sn. Let TA = {α(~m) | ~m ∈ A} be the set of all tile types placed

at locations in A. Clearly, TA ⊆ T , so it suffices to show that |TA| ≥ 2n+1 − 1. Suppose

|TA| < 2n+1 − 1. By (5.1) and α ∈ A� [T ], ~m ∈ domα for all ~m ∈ A. Then, there exist a

~m,~n ∈ A such that ~m 6= ~n and α(~m) = α(~n). Either ~m,~n ∈ Ah, ~m,~n ∈ Av, or ~m ∈ Ah \ {~0}

and ~n ∈ Av \ {~0}. In each case we show that Sn does not strictly self-assemble in T .

Case 1. Suppose ~m,~n ∈ Ah. Without loss of generality, let ~m = (i, 0) and ~n = (j, 0) where

0 ≤ i < j < 2n. Let β be the unique T -configuration such that for all ~k = (k1, k2) ∈ N,

β(~k) =



↑ if k1 > 2n or k2 6= 0

α(~k) if k1 < j

α(~m+ ((k1 − j) mod (j − i), 0)) otherwise.

See Figure 5.3a for an illustration. By (5.1) and j > 0, ~n + ~uW ∈ domα. So, by

Lemma 24, α(~n)(~uW) = α(~n + ~uW)(~uE) and strα(~n)(~uW) ≥ τ . But since α(~n) = α(~m),
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α(~m)(~uW) = α(~n + ~uW)(~uE) and strα(~m)(~uW) ≥ τ . So, β ∈ A [T ]. Then, there exists a

γ ∈ A� [T ] such that β v γ and since β((2n, 0)) ↓, γ((2n, 0)) ↓. But (2n, 0) 6∈ Sn. So, Sn

does not strictly self-assemble in T .

Case 2. The case for ~m,~n ∈ Av is similar to Case 1.

Case 3. Suppose ~m ∈ Ah \ {~0} and ~n ∈ Av \ {~0}. Let ~m = (i, 0) and ~n = (0, j), where

i, j ∈ {1, . . . , 2n − 1}. Let β be the unique T -configuration such that for all ~k = (k1, k2) ∈

N,

β(~k) =



α(~k) if k1 = 0 and k2 ≤ j or k2 = 0 and k1 ≤ i

α(~m+ ~uW) if k1 = −1 and k2 = j

↑ otherwise.

See Figure 5.3b for an illustration. By (5.1) and i > 0, ~m + ~uW ∈ domα. So, by

Lemma 24, α(~m)(~uW) = α(~m+ ~uW)(~uE) and strα(~m)(~uW) ≥ τ . But since α(~m) = α(~n),

α(~n)(~uW) = α(~m + ~uW)(~uE) and strα(~n)(~uW) ≥ τ . So, β ∈ A [T ]. Then, there exists a

γ ∈ A� [T ] such that β v γ and since β((−1, j)) ↓, γ((−1, j)) ↓. But (−1, j) 6∈ Sn. So,

Sn does not strictly self-assemble in T .

Even if we only require that Sn appear somewhere in the terminal assembly (not necessarily

at the origin), we still have an exponential lower bound on the minimum number of tile types

needed. To show this we use the ruler function ρ : Z+ → N defined by the recurrence ρ(2k+1) =

0 and ρ(2k) = ρ(k) + 1 for all k ∈ N. The value of ρ(n) is the exponent of the largest power of

2 that divides n, or equivalently, ρ(n) is the number of 0’s lying to the right of the rightmost 1

in the binary representation of n [32]. Now, for each i ∈ N, the width of the longest horizontal

bar rooted at (0, i) and the height of the tallest vertical bar rooted at (i, 0) in S is 2ρ(i)−1 [51].

Lemma 26. Let n ∈ N and ~m ∈ Z2. If T = (T, σ, τ) is a TAS such that for every α ∈ A� [T ],

domα ∩ (~m+ {0, . . . , 2n − 1}2) = ~m+ Sn, then |T | ≥ 2n − 2.

Proof. Assume the hypothesis with n ∈ N, ~m = (m1,m2) ∈ Z2, and TAS T = (T, σ, τ) as

witness. Let α ∈ A� [T ]. Suppose |T | < 2n − 2. We will construct a TAS T ′ = (T ′, σ′, τ) in

which Sn strictly self-assembles but with |T ′| ≤ 2n+1 − 2, thus contradicting Lemma 25.
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The TAS T ′ = (T ′, σ′, τ) is constructed as follows. We will assume that none of the glue

colors on tiles in T use digits. Thus, we can safely assume that the following algorithm doesn’t

introduce any unwanted interactions.

(1) For every ~n ∈ ~m+
{

1, 2, . . . , 2n−1 − 1
}2

, if α(~n) ↓, then α(~n) ∈ T ′.

(2) Let i = 2n−1. There exists tiles hi, vi ∈ T ′ such that

hi(~uN) = vi(~uN) = α(~m+ (2n−1, 1))(~uS), vi(~uS) = hi(~uW) = (i− 1, τ),

hi(~uE) = vi(~uE) = α(~m+ (1, 2n−1))(~uW), and vi(~uW) = hi(~uS) = (0, 0).

(3) For each 0 < i < 2n−1, there exists tiles vi, hi ∈ T ′ such that

vi(~uW) = hi(~uS) = (0, 0), vi(~uE) =


α(~m+ (2n−1 − 2ρ(i) + 1, 2n−1)) ρ(i) > 0

(0, 0) ρ(i) = 0,

vi(~uN) = hi(~uE) = (i, τ), hi(~uN) =


α(~m+ (2n−1, 2n−1 − 2ρ(i) + 1)) ρ(i) > 0

(0, 0) ρ(i) = 0,

and vi(~uS) = hi(~uW) = (i− 1, τ).

(4) There exists a tile σ′ ∈ T ′ such that

σ′(~uN) = σ′(~uE) = (0, τ) and σ′(~uS) = σ′(~uW) = (0, 0).

Each tile type added to T ′ in step (1) is also a tile type in T , so, by assumption, we add

at most 2n − 3 tile types to T ′ in step (1). Then, 2 tile types are added to T ′ in step (2),

(a) The assembly α for some arbi-
trary ~m. Tile types added to T ′ in
step (1) are blue.

(b) The assembly α′ such that domα′ = Sn. Tile
types added to T ′ in step (2) are orange, step (3)
yellow, and step (4) green.

Figure 5.4: Illustrating the proof of Lemma 26 for n = 3.
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2n − 2 tile types are added to T ′ in step (3). and 1 tile type is added to T ′ in step (4). Thus,

|T ′| ≤ 2n+1 − 2. But, by using equation (5.1) and the ruler function properties, it is easy to

verify that Sn strictly self-assembles in T ′. This contradicts Lemma 25. Thus, no such TAS

exists.

We now have the necessary machinery to prove our first main theorem which says that

every set that strictly self-assembles disagrees with S on a set with fractal dimension at least

that of S. Hence, S cannot even be approximated closely with strict self-assembly.

Theorem 26. If X ⊆ Z2 strictly self-assembles, then Dimζ(X∆ S) ≥ Dimζ(S).

Proof. Assume the hypothesis with X ⊆ Z2 and TAS T = (T, σ, τ) as witness. Let V =

{(0, 0), (0, 1), (1, 0)} and n = dlog2 (|T |+ 2) + 1e. Since X strictly self-assembles in T , for

every α ∈ A� [T ], X = domα. Let d : Z2 × N→ N where

d(~m, k) =
∣∣∣(X ∩ (~m+ {0, . . . , 2n+k − 1}2)) ∆ (~m+ Sn+k)

∣∣∣ (5.3)

for all ~m ∈ Z2 and k ∈ N. Then, by (5.1), d(~m, k) ≥ ∑~v∈V d(~m + 2n+k−1~v, k − 1). Since

|T | < 2n − 2, by Lemma 26, for all ~m ∈ Z2, X ∩ (~m + {0, . . . , 2n − 1}2) 6= ~m + Sn. So, for all

~m ∈ Z2, d(~m, 0) ≥ 1. Then, the recurrence solves to

d(~m, k) ≥ 3k (5.4)

for all ~m ∈ Z2. So,

Dimζ(X∆ S)
(4.1)
= lim sup

n→∞

log |X[0,2n)|
n

(5.3)
= lim sup

k→∞

log d(~0, k)

n+ k

(5.4)
= lim sup

k→∞

log 3k

n+ k
= log2 3.

By Observation 5, the theorem holds.

To gain further insight, we now consider the strict self-assembly of subsets of S, and show

that here the limitation is even more severe. We first give an upper bound on the number of

tiles located within a given distance of the seed tile in any strict self-assembly of a subset of S.

We use the a theorem from [51] that for any structure to strictly self-assemble, the number of

tile types used is at least the finite-tree depth of the structure.
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Theorem 27 (Lathrop, Lutz, and Summers [51]). If X ⊆ Z2 strictly self-assembles in a TAS

(T, σ, τ), then |T | ≥ ft−depthdomσ(G#
X).

It easily follows that in any strict self-assembly of a subset of S, not too many tiles can be

placed far from the boundary.

Corollary 7. If X ⊆ S strictly self-assembles in a TAS (T, σ, τ), then for all ~m = (m1,m2) ∈

Z2 such that m1 ≥ |T | and m2 ≥ |T |, ~m 6∈ X.

Lemma 27. If X ⊆ S strictly self-assembles in a TAS (T, σ, τ), then for every n ∈ N, |X[0,n]| ≤

2|T |(n+ 1).

Proof. Assume the hypothesis with X ⊆ Z2 and T = (T, σ, τ) as witness. Let α ∈ A� [T ] and

let n ∈ N. If n ≤ |T | the theorem is trivially true, so assume n > |T |. Let A = {0, . . . , |T | − 1}2,

B = {0, . . . , |T | − 1}×{|T |, . . . , n}, C = {|T |, . . . , n} × {0, . . . , |T | − 1}, and D = {|T |, . . . , n}2.

It is clear that A,B,C,D is a partition of {0, . . . , n}2. Then,

|X[0,n]| = | {0, . . . , n}2 ∩ domα| since X ⊆ N2

= |A ∩ domα|+ |B ∩ domα|+ |C ∩ domα| by Corollary 7

≤ |T |2 + 2|T |(n− |T |+ 1)

≤ 2|T |(n+ 1).

|T |

|T |

A

B

C

D

Figure 5.5: Illustrating the partition used in the proof of Lemma 27.

Theorem 28. If X ⊆ S strictly self-assembles, then Dimζ(X) ∈ {0, 1}.

Proof. Assume the hypothesis with X ⊆ S and TAS (T, σ, τ) as witness. By Lemma 27,

|X[0,n]| ≤ 2|T |(n + 1). Then, Dimζ(X) ≤ 1. But, the binding graph of any α ∈ AτT must be
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connected and any infinite connected structure has ζ-dimension at least 1. It follows that either

Dimζ(X) = 1 or X is finite, in which case X has ζ-dimension 0. So, Dimζ(X) ∈ {0, 1}.

Note that boundary of S is a subset of S that strictly self-assembles and has ζ-dimension 1.

A single tile placed at the origin is a subset of S that strictly self-assembles and has ζ-dimension

0. Hence, Theorem 28 is trivially tight.

5.4 Conditional Determinism

The method of local determinism introduced by Soloveichik and Winfree [76] is a common

technique for showing that a TAS is directed. However, there exists very natural constructions

that are directed but not locally deterministic. Consider the TAS TB = (TB, σB, 1) of Figure

5.6. Clearly, there is only one assembly sequence ~α in TB such that res ~α is terminal. Hence,

TB is directed. However, ~α fails condition (2) of local determinism at the location (0, 1). The

culprit is the blocking technique used by this TAS which is marked by a red X in Figure 5.6b.

Since ~α is the only possible locally deterministic assembly sequence in TB, then TB is not a

locally deterministic TAS. Thus, new techniques are needed to show this TAS is directed.

4

3 2

1

3

2

σ
1 45 5

(a) The tile set TB .

3

2 4

3

2

1

45

σ
1

(b) res (~α). The site of the block-
ing is marked with a red X.

5

OUT

IN

4

3

45

σ
1

(c) ~α fails condition (2) of local deter-
minism for the location (0, 1).

Figure 5.6: The TAS TB = (TB, σB, 1) which uses a blocking technique.

In this section we give sufficient conditions for proving such a TAS is directed. First, we

introduce some new notation. For ~m,~n ∈ Z2, if ~m ≺~α ~n for every assembly sequence ~α in a

TAS T , then we say ~m precedes ~n in T , and we write ~m ≺T ~n. For each ~m ∈ Z2, we define the

set

DEPT (~m) = {~u ∈ U | ~m ≺T ~m+ ~u} .
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Now, let T be a TAS, ~α an assembly sequence in T , and α = res ~α. Then, ~α is conditionally

deterministic if the following three conditions hold.

(1) For all ~m ∈ domα \ domα0,
∑

~u∈IN~α(~m) strαi~α(~m)
(~m, ~m+ ~u) = τ .

(2) For all ~m ∈ domα \ domα0 and all t ∈ T \ {α(~m)},

~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))).

(3) ∂τα = ∅.

Note that conditions (1) and (3) are the same as in the definition of local determinism. Con-

ceptually, (1) requires that each tile added in ~α “just barely” binds to the existing assembly;

(2) holds when the tiles at ~m and ~m + OUT~α(~m) + DEPT (~m) are removed from α, no other

tile type can attach to the assembly at location ~m; and (3) requires that α is terminal. A TAS

is conditionally deterministic if it has a conditionally deterministic assembly sequence.

Our first theorem shows that conditional determinism is a weaker notion than local deter-

minism.

Theorem 29. Every locally deterministic TAS is conditionally deterministic.

Proof. Let T be a locally deterministic TAS with ~α = (αi | 0 ≤ i < k) as witness. Let

α = res (~α). It suffices to show that ~α is a conditionally deterministic assembly sequence. Since

conditions (1) and (3) in the definitions of both local determinism and conditional determinism

are the same, it suffices to show that condition (2) in the definition of conditional determism

holds for ~α. Since ~α is locally deterministic, by condition (2) of local determinism, for all

~m ∈ domα \ domα0 and all t ∈ T \ {α(~m)},

~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))).

Then, since OUT~α(~m) ⊆ OUT~α(~m) ∪ DEPT (~m), it follows that for all ~m ∈ domα \ domα0

and all t ∈ T \ {α(~m)},

~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))).

Hence, ~α is a conditionally deterministic assembly sequence in T .
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We now show that although conditional determinism is weaker than local determinism, it

is strong enough to show a TAS is directed.

Theorem 30. Every conditionally deterministic TAS is directed.

Proof. Our proof is similar to the proof in [76] that every locally deterministic TAS is directed.

Let T = (T, σ, τ) be a conditionally deterministic TAS with ~α = (αi | 0 ≤ i < k) as witness.

Let α = res (~α) and note that α ∈ A� [T ]. To see that T is directed, it suffices to show that

for all β ∈ A� [T ], β v α.

Let β ∈ A� [T ]. Then, there is an assembly sequence ~β = (βj | 0 ≤ j < l) in T such that

β0 = σ and β = res (~β). To see that β v α, it suffices to show that for each 0 ≤ j < k, the

following conditions hold:

(1) IN
~β(domβj+1 \ domβj) = IN~α(domβj+1 \ domβj), and

(2) β(domβj+1 \ domβj) = α(domβj+1 \ domβj).

Suppose there exists a 0 ≤ j < k such that either condition (1) or condition (2) fails.

Let i be the smallest such j. To prove the theorem, it suffices to show no such i exists. Let

~bi = domβi+1 \ domβi. Consider any ~u ∈ IN
~β(~bi). It is clear that −~u ∈ OUT

~β(~bi + ~u), so

−~u 6∈ IN
~β(~bi + ~u). Either ~bi + ~u ∈ domσ or there exists an h < i such that ~bh = ~bi + ~u.

Case 1. Suppose ~bi + ~u ∈ domσ. Then, since both ~α and ~β are assembly sequences in

T , IN
~β(~bi + ~u) = IN~α(~bi + ~u) = ∅. Then, −~u 6∈ IN~α(~bi + ~u). So, ~u 6∈ OUT~α(~bi). Also,

i~β(~bi + ~u) = 0, so ~bi 6≺T ~bi + ~u. Then, ~u 6∈ DEPT (~bi).

Case 2. Suppose there exists an h < i such that ~bh = ~bi + ~u. Then, by condition (1),

IN
~β(~bi + ~u) = IN~α(~bi + ~u). Then, −~u 6∈ IN~α(~bi + ~u). So, ~u 6∈ OUT~α(~bi). Also, h ≺~β i, so

~bi 6≺T ~bi + ~u. Then, ~u 6∈ DEPT (~bi).

In either case,

IN
~β(~bi) ∩ (OUT~α(~bi) ∪DEPT (~bi)) = ∅. (i)
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Since for all ~m ∈ domβi, βi(~m) = α(~m), then for all ~u ∈ U2,

strβi+1
(~bi,~bi + ~u) ≤ strα(~bi,~bi + ~u). (ii)

Then, by (i) and (ii),

Σ
~u∈IN~β(~bi)

strβi+1
(~bi,~bi + ~u) ≤ Σ

~u∈U2\(OUT~α(~bi)∪DEPT (~bi))
strα(~bi,~bi + ~u).

But, by property (2) of conditional determinism, the only type of tile that can attach to βi at

location ~bi is α(~bi). Thus, β(~bi) = α(~bi).

So it must be the case that IN
~β(~bi) 6= IN~α(~bi). By property (1) of conditional determinism,

there must be some ~u ∈ IN
~β(~bi) \ IN~α(~bi). Since ~u ∈ IN

~β(~bi), ~bi + ~u ∈ domβi, so β(~bi + ~u) =

α(~bi + ~u). We’ve already established that β(~bi) = α(~bi). So, By property (2) of conditional

determinism, it must be the case that i~α(~bi + ~u) > i~α(~bi). So, ~u 6∈ IN~α(~bi). But then −~u ∈

IN~α(~bi + ~u), and so ~u ∈ OUT~α(~bi). But, by (i), this is impossible. Therefore, no such i

exists.

It is now a straightforward task to show that the TAS of Figure 5.6 is directed.

5.5 Fibering the Sierpinski Triangle in Place

In this section we present our second main theorem. We construct a TAS in which a

superset of S with the same ζ-dimension strictly self-assembles. Thus, our first main theorem

is tight, even when restricted to supersets of S. To prove this we define a new fractal, the laced

Sierpinski triangle, denoted L. We show that S ⊆ L, Dimζ(L∆ S) = Dimζ(S), and that L

strictly self-assembles in the Tile Assembly Model.

Formally, the laced Sierpinski triangle is a set of points in Z2. Our goal is to define

the sets L0,L1, . . . such that each Li is the ith stage in our construction of L. We will

break each Li up into disjoint subsets representing the different “types” of fibers added to

S that allow L to strictly self-assemble. Let V = {(0, 1), (1, 0)}, W = {(0, 0)} ∪ V , and
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S Cap Fiber Test Fiber Counter Fiber

Figure 5.7: Stage 6 of the laced Sierpinski triangle.

X = {(0, 2), (2, 0), (−1, 1), (1,−1)} ∪W. Then, we define the sets C0, C1, . . . by

Ci =



∅ if i < 2

2i−1(1, 1) +W if i = 2

(2i−1(1, 1) +X) ∪ ⋃
w∈W

(2i−1w + Ci−1) otherwise.

(5.5)

Intuitively, each Ci is the set of cap fibers in Li. For each i ∈ N, let

Φi =

i−2⋃
j=1

2i−2j⋃
k=2j+1

{
(2i − j, k), (k, 2i − j)

}
. (5.6)

Note that Φi = ∅ for i < 3. Then, we define the sets N0, N1, . . . by

Ni =


∅ if i < 3

Φi ∪Ni−1 ∪
⋃
v∈V

(2i−1v + (Ni−1 − Φi−1)) otherwise.

(5.7)
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Intuitively, Ni is the set of counter fibers that run along the top and right sides of the empty

triangles that form in the negative space around the interior of Si+1. For each i ∈ N, let

Ψi =
i−1⋃
j=3

2i−j⋃
k=2i−2j+3

{
(2j − 1, k), (2j , k), (k, 2j − 1), (k, 2j)

}
. (5.8)

Note that Ψi = ∅ for i < 4. Then, we define the sets T0, T1, . . . ⊆ Z2 by

Ti =


∅ if i < 4

Ψi ∪ Ti−1 ∪
⋃
v∈V

(2i−1v + (Ti−1 −Ψi−1)) otherwise.

(5.9)

Intuitively, Ti is the set of test fibers between the counter fibers and cap fibers in Li. Now, for

each i ∈ N, let

Li = Si ∪ Ci ∪Ni ∪ Ti. (5.10)

Then, the laced Sierpinski triangle is the set

L =
∞⋃
i=0

Li. (5.11)

We often refer to Li as the ith stage of L. See Figure 5.7 for an illustration. From equation

(5.10), it is clear that L is a superset of S.

Observation 6. S ⊆ L.

We now show that the ζ-dimension of L∆ S (hence also of L) is the same as the ζ-dimension

of S.

Theorem 31. Dimζ(L∆ S) = Dimζ(S).

Proof. Since S ⊆ L, it suffices to show that Dimζ(L\S) = Dimζ(S). By (5.10), for each n ∈ N,

|(L \ S)[0,2n)| = |Cn|+ |Nn|+ |Tn|. By (5.5),

|Cn| =



0 if n < 2

3 if n = 2

3|Cn−1|+ 7 otherwise.
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Solving this recurrence for n ≥ 2 gives |Cn| = 6.5 · 3n−2 − 3.5. By (5.6), for n ≥ 2, |Φn| =

2n+1(n− 3) + 8. Then, by (5.7),

|Nn| =



0 if n < 3

8 if n = 3

3|Nn−1|+ |Φn| − 2|Φn−1| otherwise.

Solving this recurrence for n ≥ 2 gives |Nn| = 4 · 3n−1 − 2n+2 + 4. By (5.8), for n ≥ 3,

|Ψn| = 2n+2 − 2n2 − 6n+ 4. Then, by (5.9),

|Tn| =


0 if n ≤ 3

3|Tn−1|+ |Ψn| − 2|Ψn−1| otherwise.

Solving this recurrence for n ≥ 3 gives |Tn| = 3n−3(n+ 16.5)− 3n2 − 9n+ 34.5. Then,

Dimζ(L∆ S) = lim sup
n→∞

log2(|Cn|+ |Nn|+ |Tn|)
n

= lim sup
n→∞

log2(3
n−3(n+ 72)− 2n+2 − 3n(n+ 3) + 35)

n

= log2 3

= Dimζ(S) by Observation 5.

It remains to show that L strictly self-assembles. Our proof is constructive in that we exhibit

a TAS in which L strictly self-assembles. We begin by explaining the general techniques used

to fiber S in place, i.e., strictly self-assembly a superset of S without disturbing the set S, and

then delve into the details of a TAS implementing those techniques.

Conceptually, the communication fibers added to S enable a superset of Si+1 to strictly self-

assemble when given a superset of Si as input. By (5.1), Si+1 can be constructed by placing a

copy of Si on top and to the right of itself. This is achieved by copying the left boundary of Si

to the right of Si, and the bottom boundary of Si to the top of Si. These communication fibers

are divided into three functional groups. To ensure that the newly added bars are of the proper

length, counter fibers control their attachment. The counter fibers increment until they have

reached the same height as the middle point of the largest diagonal in Si, and then decrement
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counters

test

caps

Figure 5.8: Fibering S in place.

to zero. To know where the middle point is, the counter fibers initiate the attachment of test

fibers which grow back to Si, test whether the middle point is reached, and return the result

to the counters. However, if Si has not yet fully attached, the test fibers will read from the

wrong location. Nor can the test fibers wait until Si has completed attaching before returning

to the counters, because the test fibers would have to know where to wait! The solution to this

is the diagonal cap fibers that attach along the largest diagonal in S on the side opposite the

seed. The purpose of the diagonal cap fibers is to force the necessary part of Si to complete

attaching before its middle is read by the test fibers. Then, a blocking technique can be used

for the test fibers. The bottom row of the test fibers runs from the counters until blocked by

the cap fibers. This attachment forms a path on which information can propagate from the

diagonals back to the counters in a controlled manner. This is achieved by the diagonal cap

fibers that attach along the largest diagonal in S on the side opposite the seed. They force the

necessary part of Si to complete attaching before the counters for Si+1 can begin to attach.

Then, a blocking technique is used for the test fibers. The bottom row of the test fibers runs
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from the counters until blocked by the cap fibers. This attachment forms a path on which

information can propagate from the diagonals back to the counters in a controlled manner. See

Figure 5.8 for an illustration. We now describe how the self-assembly determines the center of

Si. A location is at the center of Si when it sits directly above the left boundary of the Si−1

structure on the right part of Si and directly to the right of the bottom boundary of the Si−1

structure on the top part of Si. This is computed in our construction by assigning to each

bar of S a boolean value that is true (represented in Figure 5.8 by orange) only if it meets the

criteria above. Every new bar that attaches to an existing bar will carry a true value unless

it is the unique bar that attaches at the halfway point. Then, when two true bars meet, it is

always at a location in the middle of the largest diagonal of some stage of S. When this is the

case, it is noted by the diagonal cap fibers so it can be passed to the test fibers. Note that

every bar that attaches on the boundary has a true value.

We now construct a TAS TL that implements the techniques described. Let TL = (TL, σL, 2)

be a TAS such that the set TL has ninety-five tile types as illustrated in Figure 5.9, and σL is

a tile of type S from Figure 5.9.

There are five tile types to assemble the boundary of S, two for the bottom boundary and

two for the left boundary. The bottom boundary is assembled by a tile with a west glue color

of 0 attaching to the east side of S and a tile with a west glue color of 1 attaching to the

east side of it. This process continues ad infinitum. The left boundary assembles in a similar

fashion. See Figure 5.10 for an illustration.

The are thirty-two tile types to assemble the horizontal and vertical bars in the interior

of S, sixteen for the vertical bars and sixteen for the horizontal bars. Here, we focus on the

assembly of a vertical bar. A horizontal bar assembles in a similar fashion. The glue colors on

the north and south sides of the tiles in a vertical bar are made up of the characters +, -, *, T,

and F. Tiles used for the bottom half of a vertical bar use the + and cause the counter that

assembles next to the bar to increment. Tiles used for the top half of a vertical bar use the

- and cause the counter to decrement. A tile with a * in its south glue color also has a * for

its east glue color. The * will be used by the cap tiles to know when to stop attaching. The

T or F in the north and south glue colors propagates through the entire bar. When a location
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Figure 5.9: The tile set TL of the TAS TL.

~m has a tile with a T in the glue color of both its south and west sides it means that ~m is the

middle point of the largest diagonal to which it belongs and the cap tiles start their assembly

at location ~m. The west side of alternating tiles in the vertical bar have a glue color of either

T, F, or @. These glues allow the vertical bar to receive feedback from the counters. A T glue

color tells the bar that it is at half of its intended height, at which point the bar switches from

instructing the counter to increment to instructing the counter to decrement. An @ glue color

instructs the bar to complete its assembly. An F glue allows the bar continue assembling. The

east side of these tiles also starts the growth of new horizontal bars. If the tile abuts a glue of
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Figure 5.10: Example assembly of the horizontal and vertical bars of S.

color T (or F) on the counter, then it negates this value for the horizontal bar originating on its

east side. See Figures 5.10 and 5.12 for an illustration.

The cap tiles are fibers that sit on top of the diagonals of S. There are eighteen tile types to

assemble the cap tiles. Each diagonal of S has a vertical (horizontal) bar directly to the right

(above) it. The height (length) of these bars can be computed directly from knowledge of the

location of the middle of this diagonal. The test tiles will handle the two way communication

between the caps and the counters so that this information can be used in the assembly of the

bars. The cap tiles also delay the assembly of these bars until the assembly of the relevant part

of the diagonal has been completed. This allows for the blocking behavior needed for proper

assembly of these two-way communication fibers. The middle point of the diagonal will always

be at the unique location that has a tile with a T in the glue color on both its south and west

sides. When tiles meeting this criteria are present, a cap tile will attach to the assembly at
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Figure 5.11: Example assembly of the cap fibers in L.

that location. This will trigger the assembly of cap tiles both up and down the diagonal. The

growth of the cap tiles are controlled by the * glue colors on the tops (right sides) of the vertical

(horizontal) bars making up the diagonal. They first attach to a tile having a * in its glue color

on the abutting side, and then to a tile having a T or F in its glue color on the abutting side,

then the process repeats. When a * glue color is not present, the cap tiles cease their assembly.

See Figure 5.11 for an illustration.

There are thirty-four tile types to assemble the binary counter fibers that assemble adjacent

to the bars of S, seventeen for the vertical counters and seventeen for the horizontal counters.

The counters assemble in a zig-zag fashion. Alternating rows go from east to west (zig) and west

to east (zag). The zig row either increments or decrements the value of the counter depending

on the glue color on the abutting side of the tile on the bar of S. During the increment phase

of the counter, if the counter is at a value that is one less than a power of two, then it initiates

the two-way communication with the cap fibers by presenting a tst glue. The result of the test,

either a T or F glue color, is propagated back to the bar. If the counter is not at a power of

two, then the zag row returns the value F. During the decrement phase of the counter, if the

counter is at a power of two, the zag row is triggered by a @- glue color, which instructs the
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Figure 5.12: Example assembly of the counter fibers in L.

counter to shrink in width by one. See Figure 5.12 for an illustration.

There are six tile types to assemble the test fibers. Three for the vertical tests and three for

the horizontal tests. These fibers allow for the two-way communication between the counter

fibers and cap fibers. The request made by the counter fibers is sent along the bottom row of

the test fibers and the response is returned along the top row of the test fibers. Because the

counters do not assemble until the assembly of the corresponding caps have completed, we can

be sure that the bottom row will not continue indefinitely – it will be blocked by the cap fibers.

See Figure 5.13 for an illustration. We conclude with the following theorems which prove that

L strictly self-assembles in the Tile Assembly Model.

We now show that TL satisifies the conditions for the generalization of local determinism
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Figure 5.13: Example assembly of the test fibers in L.

we introduced in Section 5.4.

Theorem 32. TL is conditionally deterministic.

Proof. Let ~α = (αi | 0 ≤ i < k) be any assembly sequence in TL such that res (~α) is terminal.

It should be clear that there is such an assembly sequence and that k = ∞. First, we make

the following observations that the reason that TL is not locally deterministic is because of the

locations in α at which there is a tile of type ut or dt (of Figure 5.9).

1. For each 0 ≤ i < k, the unique tile type t = α(~m), where ~m ∈ domαi+1 \domαi, attaches

to αi with a strength of exactly 2.

2. For each location ~m ∈ domα \ domα0 such that α(~m) = ut , either

~m+ ~uN ∈ ∂τ
ht

(α � (domα \ ({~m} ∪ (~m+ OUT~α(~m)))))

or

∂τ (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅,

and for all t ∈ TL \
{

ut , ht
}

,

∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅.

3. For each location ~m ∈ domα \ domα0 such that α(~m) = dt ,

~m+ ~uE ∈ ∂τvt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m)))))

or

∂τ (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅,
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and all t ∈ TL \
{

ut , ht
}

,

∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅.

4. For each location ~m ∈ domα\domα0 such that α(~m) 6∈
{

ut , dt
}

, and all t ∈ TL\{α(~m)},

∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅.

5. ∂τα = ∅.

Thus, ~α satisfies conditions (1) and (3) of both local determinism and conditional determinism.

What prevents ~α from satisfying condition (2) of local determinism is the second and third

observation above. So, it suffices to show that

1. For each location ~m ∈ domα \ domα0 such that α(~m) = ut ,

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅, and

2. For each location ~m ∈ domα \ domα0 such that α(~m) = dt ,

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅.

We will argue that (2) holds. The argument that (1) holds is similar. Let ~m ∈ domα \ domα0

such that α(~m) = dt . By construction, it must be the case that either α(~m + ~uE) ↑ or

α(~m+ ~uE) ↓. If α(~m+ ~uE) ↑ then it follows that

∂τ (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅, so

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅.

If α(~m+~uE) ↓ then the tile at α(~m+~uE) must have attached along the bottom row of the test

fibers initiated by the vertical bar directly to the right of ~m (i.e., α(~m+ ~uE) = vt ). However,

as illustrated in Figure 5.12, the second tile from the bottom uses the bottom right location

of these caps as an input side. Hence, the vertical bar can not assemble above this point

until all of the down caps along this diagonal have assembled. Thus, ~m ≺TL ~m + ~uE. Hence,

~m+ ~uE ∈ DEPT (~m). Thus,

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅.
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We now show that L strictly self-assembles in TL.

Theorem 33. L strictly self-assembles in TL.

Proof. We say some set of locations X ⊆ L “properly assembles” if the intended tile type was

placed at each location in the set, and no tile is placed at a location in Z2 \ L. By Theorem

32 and Theorem 30, |A� [TL] | = 1. Pick the unique α ∈ A� [TL]. It suffices to show that

domα = L. We make the following claims about TL.

(1) If Li assembles properly, then Si+1 assembles properly. To see this note that Si ⊆ Li.

Then, the same mechanics used to assemble Si are used to assemble (2i, 0) + Si and

(0, 2i) + Si. Then, by (5.1), Si+1 assembles properly.

(2) If Si assembles properly, then Ci assemble properly. To see this Let ~m = (2i−1, 2i−1).

Note that the tallest (widest) vertical (horizontal) bar of Si originates from the boundary

and hence propagates a T glue color throughout its assembly. Then, ~m+ ~uS and ~m+ ~uW

have a glue color of T on its ~uN and ~uE sides respectively. Thus, Ci are allowed to begin

their assembly at location ~m and since all of the smaller horizontal and vertical bars of

Si assemble properly, the caps will assemble up and down the longest diagonal in Si.

(3) If Ci assembles properly, then the largest horizontal and vertical bar of Si+1 along with Ni

and Ti assemble properly. To see this note that the longest vertical and widest horizontal

bar of Si+1 cannot grow very far until Ci has completed assembling (see Figure 5.12 for

an illustration). At this point the proper assembly of these bars depends upon the proper

assembly of Ni. But for Ni to assemble properly only depends on Ti to assemble properly,

which in turn depends on Ci to assemble properly.

Our proof by induction easily follows from these claims. It is easy to see that L0, L1, L2, L3

properly assemble in TL. It suffices to show that if Li properly assembles in TL, then Li+1

properly assembles in TL. Suppose Li has properly assembled in TL. Then, by claim (1), Si+1

assembles properly. Then, by claim (2), Ci+1 assemble properly. Then, by claim (3), Ni+1 and

Ti+1 assemble properly. Hence Li+1 assembles properly.

It is also interesting to note that S also weakly self-assembles in TL.
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Observation 7. S weakly self-assembles in TL.

Instructions for simulating TL with the ISU TAS [61] are available at [54].

We conclude this section by presenting our second main theorem which shows that the

bound given in our first main theorem, Theorem 26 is tight.

Theorem 34. There exists a set X ⊆ Z2 with the following properties.

(1) S ⊆ X.

(2) Dimζ(X∆ S) = Dimζ(S).

(3) X strictly self-assembles in the Tile Assembly Model.

Proof. Let X = L. By Observation 6, condition (1) is satisfied. By Theorem 31 and Observa-

tion 3, condition (2) is satisfied. By Theorem 33 condition (3) is satisfied.

5.6 Open Questions

Our results show that in the case of the Sierpinski triangle, no set “close” to the Sier-

pinski triangle strictly self-assembles. Given that no self-similar fractal is known to strictly

self-assemble, a natural question is whether there exists a self-similar fractal that can be ap-

proximated closely. Is there a set X that strictly self-assembles and a self-similar fractal F such

that Dimζ(X∆F ) < Dimζ(F )?

We demonstrated a distortion-free fibering technique that enables a superset of the Sierpin-

ski triangle to strictly self-assemble without increasing the fractal dimension of the intended

structure. However, this technique depends on properties unique to the Sierpinski triangle and

does not generalize to a large class of fractals. Is there a distortion-free fibering technique that

generalizes to a large class of fractals without increasing the fractal dimension of the intended

structure?

We gave an extension of local determinism sufficient for showing a blocking tile assembly

system is directed. However, the relative order of when certain tiles attach in every assembly

sequence must be established. In contrast, local determinism requires only the analysis of a
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single assembly sequence. Is there a set of conditions that only requires the analysis of a single

assembly sequence that is sufficient for showing a blocking tile assembly system is directed?
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CHAPTER 6. Self-Assembling Rulers for Approximating Generalized

Sierpinski Carpets

Modified from a paper to be published in Algorithmica

Steven M. Kautz and Brad Shutters

Abstract

Discrete self-similar fractals have been used as test cases for self-assembly, both in the

laboratory and in mathematical models, ever since Winfree exhibited a tile assembly system

in which the Sierpinski triangle self-assembles. For strict self-assembly, where tiles are not

allowed to be placed outside the target structure, it is an open question whether any self-similar

fractal can self-assemble. This has motivated the development of techniques to approximate

fractals with strict self-assembly. Ideally, such an approximation would produce a structure

with the same fractal dimension as the intended fractal, but with specially labeled tiles at

positions corresponding to points in the fractal. We show that the Sierpinski carpet, along

with an infinite class of related fractals, can approximately self-assemble in this manner. Our

construction takes a set of parameters specifying a target fractal and creates a tile assembly

system in which the fractal approximately self-assembles. This construction introduces rulers

and readers to control the self-assembly of a fractal structure without distorting it. To verify

the fractal dimension of the resulting assemblies, we prove a result on the dimension of sets

embedded into discrete fractals. We also give a conjecture on the limitations of approximating

self-similar fractals.
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6.1 Introduction

Fractal structures are ubiquitous in nature but difficult to engineer using top-down tech-

niques. The bottom-up approach of tile self-assembly, relying on Brownian motion and coop-

erative binding to allow simple objects to assemble into complexes, could prove to be a useful

technology for engineering fractal structures. Carbone and Seeman [16] have stated that “gen-

erating fractal structures by self-assembly is a major challenge for nanotechnology.” In this

paper, our motivation is to use fractals as challenging test cases for self-assembly with the hope

of discovering general self-assembly techniques that may prove useful in other constructions.

We will work in the abstract Tile Assembly Model (aTAM), a constructive version of Wang

tiling [81, 82] introduced by Rothemund and Winfree as a mathematical model of self-assembly

[65, 84]. There are two main notions of the self-assembly of a fractal in the aTAM. In weak self-

assembly, one typically causes a two-dimensional surface to self-assemble with the desired fractal

appearing as a labeled subset of the surface. Winfree [84] exhibited a tile assembly system

in which the Sierpinski triangle weakly self-assembles. Kautz and Lathrop [46] showed that

an infinite class of related fractals, including the Sierpinski carpet, can weakly self-assemble.

However, in weak self-assembly the result is not a fractal structure, but rather a surface upon

which the fractal pattern is “painted.” In contrast, strict self-assembly requires only the fractal,

and nothing else, to self-assemble. For structures with low fractal dimension, strict self-assembly

requires significantly fewer physical tiles. However, due to the aperiodic arrangement of fractals,

their strict self-assembly is fundamentally a more challenging problem than their weak self-

assembly. Indeed, Lathrop, Lutz, and Summers [51] proved that the Sierpinski triangle cannot

strictly self-assemble in the aTAM; and Patitz and Summers [62] extended this result to an

infinite class of related fractals. It is an open question whether any fractal can strictly self-

assemble in a model of self-assembly such as the aTAM.1 This has motivated the development

of techniques to approximate fractal structures with strict self-assembly.

Lathrop, Lutz, and Summers [51] and Patitz and Summers [62] developed a technique to

1Carbone and Seeman proposed an approach to the self-assembly of the Sierpinski carpet using specially
designed molecules and a process requiring physical intervention at each successive stage of the fractal [15].
However, there is no direct translation of their approach into a model of self-assembly such as the aTAM.
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approximate fractal structures by introducing communication fibers that shift the successive

stages of the fractal. Although this technique results in a structure with the same fractal

dimension as the intended fractal, the fractal pattern cannot be observed in specially labeled

tiles. In fact, the resulting structure does not even contain the intended fractal structure.

Ideally, an approximation of a fractal F would be an in-place approximation, i.e., a set X ⊃ F

with the same fractal dimension as F that strictly self-assembles in such a way that those

tiles corresponding to F are specially labeled. Lutz and Shutters [53] exhibited a construction

in which the Sierpinski triangle approximately self-assembles in-place. Prior to the results

presented here, this was the only known non-trivial self-similar fractal to have an in-place

approximation.

Our main result is that every generalized Sierpinski carpet has an in-place approximation in

the aTAM. We exhibit a construction that takes a set of parameters specifying a target fractal

and creates a tile assembly system in which the fractal approximately self-assembles.

Our construction introduces rulers and readers to control the self-assembly of a fractal

structure without distorting it. Many tile assembly systems make use of optimal counters [17]

for controlling a growing assembly [1, 51, 62, 67, 76]. For example, a set of counter tiles may

grow eastward along the north side of another structure and count as it grows (as in Fig. 6.6a)

to determine the width of the southern structure. If the final value N of the counter needs

to be advertised not on the east edge of the counter, but on the north, this can be achieved

by adding well-known rotator tiles that rotate the value 90 degrees counterclockwise, but this

extends the length of the counter by logN tiles. The rotation can also be achieved by specially

marking the glue of the logN -to-last tile of the southern structure to begin rotation “in place”

with the counting, but this requires that the southern structure come “pre-marked,” which is

not always possible. We introduce rulers and readers to solve this problem. They should be

useful in other constructions. We provide a simulation [47] of our construction in the ISU TAS

[61].

Constructing an in-place approximation X of a fractal F requires analysis of the set of

added points X \ F to show that the dimension of X is the same as that of F . In order to

characterize the set X \ F we develop a notion of embedded fractals and prove a very general,
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and somewhat surprising, new result about their fractal dimensions. Given a subset G of the

first quadrant and a fractal F , we define the embedding of G in F as the set X that is obtained,

loosely speaking, by filling each empty square in F with a translated copy of G that is truncated

to fill the available space. (Fig. 6.4 illustrates the embedding of the Sierpinski triangle in the

Sierpinski carpet.) The goal is to use knowledge of the dimension of G to analyze the dimension

of the approximation X. Our theorem establishes that the dimension of the set X \ F , and

therefore of the set X, is always the maximum of the dimensions of F and G. As a simple

example, if G is a single point, then the embedding X consists of F with just one point added

to each empty square. Since G has dimension zero, we can conclude that the dimension of

the set of added points X \ F is equal to the dimension of F itself. Similarly, the structure in

Fig. 6.4 has dimension log3 8, the same as that of the Sierpinski carpet. To the best of our

knowledge, this is the first time that embedded fractals have been considered. We conclude

by showing that this theorem provides strong evidence of a conjecture on the limitations of

approximating fractal structures in the aTAM.

6.2 Preliminaries

6.2.1 Notation and Terminology

In this chapter we will build tile assembly systems by specifying a sequence of instructions

used to create the tile types in the tile set of the system. To do so, we will use a special

notation for a tile type as in Fig. 6.1. Strengths are represented by notches and colors by

strings on the corresponding side and rendered in red when the value is specified externally

(in a construction). Tiles may optionally contain a character or colored dot in the middle for

labeling purposes.

a pw

c

cu

Figure 6.1: Example illustration of a tile used in a construction.
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(a) F |33 , a = b = c = 1, p = 3 (b) F |52 , a = b = c = 1, p = 5 (c) F |52 , a = c = 1, b = 3, p = 5

Figure 6.2: Some generalized Sierpinski carpets.

6.2.2 Generalized Sierpinski Carpets

Certain fractals can be derived from the following numerical relationship, shown in [46] and

independently in [63].

Theorem 35. Let a, b, c ≥ 0 and let p be a prime. Let M : N2 → {0, 1, . . . p − 1} be defined

by M [0, 0] ≡ 1, M [0, j] ≡ aj for j > 0, M [i, 0] ≡ bi for i > 0, and

M [i, j] ≡ aM [i, j − 1] + bM [i− 1, j] + cM [i− 1, j − 1] for i, j > 0,

where the equivalences are modulo p. Define S ⊆ N2 by (x, y) ∈ S ⇐⇒ M [x, y] 6≡ 0 mod p.

Then S is a discrete self-similar fractal with p× p kernel S|p.

Definition 3. Let p > 2 be a prime and let a, b, and c be positive integers not congruent to

zero modulo p. If a, b, and c are not congruent to 0 modulo p, the fractal defined by Theorem

35 is a generalized Sierpinski carpet.

Fig. 6.2 shows some examples of generalized Sierpinski carpets.

Theorem 36. Every generalized Sierpinski carpet weakly self-assembles.

Theorem 36 was shown in [46]. The proof exhibits a general construction of the required

tileset from the parameters a, b, c, and p. Fig. 6.3 illustrates this construction, where the

“black” tiles are those with nonzero labels and the “white” tiles have label w = 0.
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WeakCarpetTileset(a, b, c, p)
parameters: integers a, b, c and a prime p

1 include (c) as the seed.

2 foreach j ∈ {0, . . . , p− 1}

3 include (a) with y = j and w = by mod p.

4 include (d) with x = j and w = ax mod p.

5 foreach (x, y, z) ∈ {0, ..., p− 1}3

6 include (b) with w = (ax+ by + cz) mod p.

w
w w

y

y

(a) Left

w
wx w

y

yz
xz

(b) Interior

1
1 1

(c) Seed

w
wx

wx

(d) Bottom

Figure 6.3: Weak self-assembly of a generalized Sierpinski carpet.

6.3 Embedded Fractals

We now present a general result on sets embedded in discrete fractals, which will be used in

Section 6.4 to establish the fractal dimension of the assemblies resulting from our construction.

One of the tasks involved in applying Definition 2 is to show that the additional elements X \S

do not increase the dimension of the approximation. In many cases X \ S can be described by

taking restrictions G|i of a known set G and replicating and translating them into empty i× i

regions of S. This idea is captured in the following definition.

Definition 4. Let F be a discrete fractal with p×p kernel K and let G be any nonempty subset

of the first quadrant. Assume in the following that 0 ≤ s, t < p. Then the embedding of G in

F is the set W defined by the recurrence

W |p = F |p ∪
⋃

(s,t) 6∈KF
G|1[s, t],

W |pk+1 =
⋃

(s,t)∈KF
W |pk [spk, tpk] ∪

⋃
(s,t)6∈KF

G|pk [spk, tpk].

For example, the illustration in Fig. 6.4 shows the Sierpinski triangle embedded in the

Sierpinski carpet. Our goal is to use knowledge of the dimension of G to analyze the dimension

of the entire structure W . The result below characterizes the dimension of the added points,

W \ F , and hence the dimension of W , when the restrictions G|i are replicated and translated

into the empty regions of F . Notice that G itself does not need to be a fractal.
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Figure 6.4: The Sierpinski triangle embedded in the Sierpinski carpet.

Theorem 37. Let F be a self-similar fractal with kernel K, G a nonempty subset of N2, and

W the embedding of G in F . Then, Dimζ(W \ F ) = max(Dimζ(F ),Dimζ(G)).

By Lemma 29 below, we can also conclude the following, where F , G, and W are as in

Theorem 37.

Corollary 8. Dimζ(W ) = max(Dimζ(F ),Dimζ(G)).

It is also possible to define a reflected embedding as in Definition 4 in which the elements of

G|pk are reflected across the negative main diagonal y = pk − 1− x, and the proof of Theorem

37 still applies. What is seen in Fig. 6.5 is actually the union of two embeddings into the

Sierpinski carpet S, one for a set G representing the “rulers” and “readers” (described in

Section 6.4 and shown in gray, blue, and red in the figure) and one for a reflected embedding of

a set H representing the “decrementers” (shown in yellow). By Observation 3, the dimension of

the resulting set is still max(Dimζ(S),Dimζ(G),Dimζ(H)). Since Dimζ(G) = 1 by Theorem 40,

and likewise Dimζ(H) = 1, we can conclude that the dimension of the set S with the embedded

rulers, readers, and decrementers is still Dimζ(S).

The remainder of this section is devoted to the proof of Theorem 37.

Lemma 28. Dimζ(W \ F ) ≥ Dimζ(F ).
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Proof. Assume that F has p× p kernel K and let d = |K|. Since G is nonempty there is some

M such that G|pM is nonempty, and hence

∣∣W |pk+1

∣∣ = d
∣∣W |pk ∣∣+ (p2 − d)

∣∣G|pk ∣∣ ≥ d∣∣W |pk ∣∣+ 1

for all k ≥M . It follows that for all k > M

∣∣W |pk ∣∣ ≥ dk +
k−M∑
i=0

di ≥ dk + dk−M

and since
∣∣F |pk ∣∣ = dk,

∣∣W |pk \ F |pk ∣∣ ≥ dk−M

and

lim
k

logp d
k−M

k
= logp d = Dimζ(F ).

Lemma 29. Dimζ(W \ F ) = Dimζ(W )

Proof. Since F ⊆W , W = W ∪ F = W \ F ∪ F ,

Dimζ(W ) = Dimζ(W \ F ∪ F ) = max(Dimζ(W \ F ),Dimζ(F )) = Dimζ(W \ F )

using Lemma 28 for the last equality.

Lemma 30. Let S be a subset of the plane with Dimζ(S) = logp d for some p > 1. Then for

any ε > 0,
∣∣S|pk ∣∣ ≥ d(1−ε)k for infinitely many k.

Proof. Suppose that for some ε0 > 0,
∣∣S|pk ∣∣ < d(1−ε0)k for all sufficiently large k; then

Dimζ(S) = lim sup
k

logp
∣∣S|pk ∣∣
k

≤ lim sup
k

logp d
(1−ε0)k

k
= (1− ε0) logp d.

Lemma 31. Let S be a subset of the plane with Dimζ(S) = logp d for some p > 1. Then for

any ε > 0,
∣∣S|pk ∣∣ ≤ d(1+ε)k for all but finitely many k.
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Proof. Suppose that for some ε0 > 0,
∣∣S|pk ∣∣ > d(1+ε0)k for infinitely many k; then

Dimζ(S) = lim sup
k

logp
∣∣S|pk ∣∣
k

≥ lim sup
k

logp d
(1+ε0)k

k
= (1 + ε0) logp d.

Lemma 32. Let a, b, c be positive constants and f a monotone function such that f(k) ≥ bk

for infinitely many k. Define the recurrences

v(k + 1) = av(k) + cbk,

w(k + 1) = aw(k) + cf(k).

Then there exists a sequence k0 < k1 < · · · and a constant M ≥ 1 such that Mw(kt+1) ≥ v(kt)

for all t ≥ 0.

Proof. Let k0 < k1 < · · · be a sequence of integers such that f(kt) ≥ bkt for all t ≥ 0. We can

assume wlog that kt+1 − kt ≥ kt − kt−1 for all t > 0. Using the fact that f is monotone, so

f(kt + i) ≥ bkt for all i, it is not difficult to verify that

w(kt+1) ≥ a(kt+1−kt)w(kt) + cbkt
kt+1−kt−1∑

i=0

ai = a(kt+1−kt)w(kt) + cbkt

(
a(kt+1−kt) − 1

a− 1

)
and that

v(kt+1) ≤ a(kt+1−kt)v(kt) + cbkt+1

(
a(kt+1−kt) − 1

a− 1

)
.

Choose M ≥ 1 so that v(k0) ≤Mw(k1). If we assume for an induction that v(kt−1) ≤Mw(kt),

then

v(kt) ≤ a(kt−kt−1)v(kt−1) + cbkt

(
a(kt−kt−1) − 1

a− 1

)

≤ a(kt−kt−1)Mw(kt) + cbkt

(
a(kt−kt−1) − 1

a− 1

)

≤ a(kt+1−kt)Mw(kt) + cbkt

(
a(kt+1−kt) − 1

a− 1

)

≤ a(kt+1−kt)Mw(kt) +Mcbkt

(
a(kt+1−kt) − 1

a− 1

)
≤ Mw(kt+1).
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We are now ready to prove Theorem 37.

Proof. (Of Theorem 37) Since Dimζ(W \ F ) = Dimζ(W ) by Lemma 29, and Dimζ(W \ F ) ≥

Dimζ(F ) by Lemma 28, to complete the proof it will suffice to show that

Dimζ(W ) ≤ max(Dimζ(F ),Dimζ(G)) and (6.1)

Dimζ(W ) ≥ Dimζ(G). (6.2)

Let a = |K| and c = (p2 − a).
∣∣W |pk+1

∣∣ is defined by the recurrence

w(k + 1) = aw(k) + c
∣∣G|pk ∣∣

where
∣∣W |p∣∣ = p2 if (0, 0) ∈ G and

∣∣W |p∣∣ = a if (0, 0) 6∈ G, and

Dimζ(W ) = lim sup
k

logpw(k)

k
. (6.3)

We first show the upper bound (6.1). Consider the relation

v(k + 1) = av(k) + cbk, (6.4)

which has a solution of the form c1a
k−1 + c2a

k + c3b
k for some constants c1, c2, c3. It follows

that

lim
k

logp v(k)

k
=

 logp a if a ≥ b

logp b if b > a

Choose d such that Dimζ(G) = logp d and recall that Dimζ(F ) = logp a. Given any ε > 0, let

b = d(1+ε). Note that if d < a we can assume wlog that ε is small enough that d(1+ε) < a also.

By Lemma 31, there exists a k0 such that
∣∣G|pk ∣∣ ≤ bk for all k ≥ k0. Choose a constant M ≥ 1

such that w(k0) ≤Mv(k0), and hence w(k) ≤Mv(k) for all k ≥ k0. It follows that

lim sup
k

logpw(k)

k
≤ lim

k

logpMv(k)

k
.

In the case Dimζ(F ) > Dimζ(G), we have a > b, so the limit is logp a = Dimζ(F ). If Dimζ(G) ≥

Dimζ(F ), the limit is (1 + ε) logp d, and since ε was arbitrary, the limit is bounded by logp d =

Dimζ(G). Thus

Dimζ(W ) ≤ max(logp a, logp d) = max(Dimζ(F ),Dimζ(G)).
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We now turn to the lower bound (6.2). Without loss of generality we can assume that

Dimζ(F ) < Dimζ(G) and verify that in this case, Dimζ(W ) ≥ Dimζ(G). Let ε > 0. As before

choose d so that Dimζ(G) = logp d, let b = d(1−ε) and define v as in 6.4. By Lemma 30,∣∣G|pk ∣∣ ≥ bk for infinitely many k. Since
∣∣G|pk ∣∣ is also a monotone function of k, by Lemma 32

there is a sequence k0 < k1 < · · · and a positive constant m = 1
M such that w(kt+1) ≥ mv(kt)

for all t ≥ 0. Since

lim
t

logpmv(kt)

kt
= logp b = (1− ε) logp d

we have

lim sup
t

logp v(kt)

kt
≥ (1− ε) logp d.

Since ε was arbitrary it follows that Dimζ(W ) ≥ logp d = Dimζ(G).

6.4 Approximating Generalized Sierpinski Carpets

In this section we present our main result:

Theorem 38. Every generalized Sierpinski carpet F has an in-place approximation in the

aTAM.

Our proof includes a construction that, given parameters a, b, c, and p specifying a general-

ized Sierpinski carpet, produces a TAS in which the approximating set X strictly self-assembles.

The majority of this section is devoted to explaining this construction. We also note that in

the tile types given in the constructions that follow, tile types that will be placed at positions

corresponding to points in the intended fractal structure will be illustrated with a black dot in

the middle.

A key observation, one that follows from the definition of a generalized Sierpinski carpet, is

that in an assembly produced by the construction of Fig. 6.3, all the “white” tiles (tiles with

label zero) occur in nonoverlapping, nonadjacent pk × pk blocks of “white” tiles. The main

idea of the constructions we present here is to replace the blocks of “white” tiles in the TAS

produced by the construction of Fig. 6.3 with a set of communication tiles that are sufficient

for the “black” tiles to self-assemble, but which occupy a relatively insignificant fraction of
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Carpet Tile

Trigger Tile

Ruler Tile

Reader Tile

Decrementer Tile

Figure 6.5: Rulers, readers, and decrementers embedded in the Sierpinski carpet.

the original pk × pk block of “white” tiles. These communication tiles are divided into three

functional groups: rulers, readers, and decrementers. The ruler tiles assemble against the

bottom and left sides of the block in such a way that the reader tiles can determine the size of

the right and top sides of the square. The decrementer tiles then use this value to complete the

square. See Fig. 6.5 for an illustration. Each of the ruler, reader, and decrementer tiles will

need two sets of tile types, one for the tiles that assemble along the bottom and right sides of

the square (which we call the “horizontal” tile types) and one for the tiles that assemble along

the left and top sides of the square (which we call the “vertical” tile types). We will define the

horizontal tile types along with a transformation V such that given a tileset T , V(T ) consists

of the tiles in T with the south and west glues swapped and the north and east glues swapped.
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6.4.1 The Ruler Tiles

Most nontrivial tile assembly systems make use of counters [17] for controlling the growing

assembly, for example see [1, 53, 51, 62, 67, 76]. When the value on the counter needs to be

read perpendicular to the direction of the counter’s growth, a turn operation is needed (see Fig.

6.6). However, this turn operation requires the counter to continue for logb n more steps where

b is the base of the counter and n is the current value. For the self-assembly of squares and

other simple shapes this does not pose a problem because the counter can be signaled logb n

steps prior to the location at which its value is needed. But for the self-assembly of complex

fractal structures, this is usually difficult and often impossible.

We thus introduce rulers, which are the key to our constructions, as a new mechanism for

measuring distances in a growing assembly. By exploiting the interplay between the geometry

of the assembling structure and the coding of the glues on the tiles, the rulers will allow for

this desired corner turning operation without the need for additional space in the direction of

the measurement.

The behavior of the ruler tiles is encapsulated by the ruler function [32]. For each integer

b ≥ 2, the base b ruler function ρ
b

: Z+ → N is defined by the recurrence

ρ
b
(n) =


0 if n = bk + i for some k ∈ N and 0 < i < b

ρ
b
(k) + 1 if n = bk for some k ∈ Z+.

(6.5)

Intuitively, ρ
b
(n) is the exponent of the largest power of b that divides n.

It is an easy proof that the ruler structure of Fig. 6.6 cannot strictly self-assemble similar

to the proof in [51] that the Sierpinski triangle cannot strictly self-assemble. Our goal then is
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Figure 6.6: Corner turn operation for a base 2 counter and ruler.
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to develop a notion of a ruler that does strictly self-assemble. We do so by adding tiles to the

structure to allow the ruler bars to communicate with their neighbors. We will also double the

height of the bars for reasons that will become clear when we we discuss the reading mechanism

later in this section. For each integer b ≥ 2 and n ∈ Z+, let

Bb,n =

2ρ
b
(n)⋃

i=0

{(n, i)} and Tb,n =

tb(n)⋃
i=1

n−1⋃
j=n−bi+1

{(j, 2i− 1), (j, 2i)}

where tb(n) = ρ
b
(n)−[[n ∈ {bk : k ∈ N}]]. Intuitively, each Bb,n is a bar of height 2ρ

b
(n) and Tb,n

is the set of communication fibers added to the structure to allow Bb,n to properly assemble.

Then, we define sets

Rb,n =

n⋃
i=1

Bb,i ∪ Tb,i and Rb =

∞⋃
n=1

Rb,n.

We refer to Rb,n as the nth stage of a base b ruler and Rb as the infinite base b ruler.

Theorem 39. For each base b ≥ 2, there exists a tile set Tb such that for all n ∈ Z+, there is

a seed assembly σ for which Rb,n strictly self-assembles in the tile assembly system (Tb, σ, 2).

Proof. The following discussion shows that there exists an assembly sequence for Tb,n in which

Rb,n strictly self-assembles. It is an easy excercise to show that this assembly sequence is locally

deterministic, and thus directed.

For a given base b and n ∈ Z+, let Tb,n = (Tb, σ, 2) where Tb = RulerTileset(b), domσ =

{1, . . . , n} × {0} and σ is constructed from the tile types in Fig. 6.7i such that for each

1 ≤ i ≤ n, the tile at (i, 0) has a B as its north glue color when i = b, M as its north glue color

when i = kb for some k > 1, and T as its north glue color otherwise.

To explain the assembly sequence of Tb,n, we decompose the bars of the ruler into series.

Each series consists of a group of b− 1 bars, all of the same height. The series begins with the

first bar at that height following a bar of greater height. The series ends when a bar of greater

height appears. We also give special attention to the first series of a given height to appear in

the ruler. As a concrete example, see Fig. 6.7j which illustrates an assembly sequence for T3,54.

An assembly sequence in Tb,n mainly consists of “bar” tiles (i.e. Fig.s 6.7a – 6.7e) attaching

to the seed configuration σ. The bar tiles that attach to the seed configuration at location
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RulerTileset(b)
parameters: a base b

1 include (a), (e) & (f).

2 foreach x ∈ {0, . . . , b− 1}

3 y ← x+ 1.

4 if y = b then include (b).

5 if y < b then include (c).

6 if x > 0 & y < b then include (d).

7 include (g).

8 if x > 0 then include (h).
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(i) Tile types for ruler seed configuration.

seed configuration

M1 M2 H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2

M1 M2 H0 H1 H2

M1first series of that height later series of that height

(j) Example assembly sequence of base 3 ruler.

Figure 6.7: Tileset for a ruler.

(b, 1) are of the type 6.7e. For each location (kb, 1) where k > 1, the bar that assembles at that

location consists of alternating tiles of type 6.7a and then one of the types in 6.7b – 6.7d, or, if B

is the first bar of that height, both of the types in 6.7e. To determine which tile should attach,

the 6.7a tile type initiates the assembly of communication tiles (i.e. 6.7f) which assemble to

the nearest bar L to the left of the assembling bar B that is at least the current height h of B.

Once these communication tiles find L, they allow L to return a signal representing its “bar

type” using tile types of 6.7g – 6.7h. The type of tile to attach next to B is determined from

the returned signal as follows.

• Hx (0≤x<b−1): Then L is either a bar of height greater than h+ 1 (when x = 0) or L is

the xth bar in a series of height h+ 1 (when x > 0). In either case, B is the x+ 1st bar

in a series of height h+ 1. B’s assembly completes with a 6.7c tile type (with y = x+ 1)

attaching.
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• Hx (x= b−1): Then L is the last bar in a series of height h + 1, so B’s height is greater

than h+ 1. B’s assembly continues to height h+ 2 by the left tile type of 6.7b attaching

and then a 6.7a tile type attaching and the communication process repeats.

• Mx (x<b−1): Then L is the xth bar and B is the x+ 1st bar in the first series of height

h+ 1. B’s assembly completes with a 6.7d attaching (with y = x+ 1).

• Mx (x= b−1): Then L is the last bar in the first series of height h + 1, so B is the first

bar of height h + 3. B’s assembly continues to height h + 3 with the two 6.7e tile types

attaching.

Our motivation in developing rulers is to embed them in fractal structures to enable strict

self-assembly. By Theorem 37 of Section 6.3, if we are to do so without increasing the fractal

dimension of the resulting structure, it is important that rulers have a small ζ-dimension. We

show that the ζ-dimension of a ruler is the same as that of a line.

Theorem 40. For each b ≥ 2, the ζ-dimension of Rb is 1.

Proof. Since the ζ-dimension of any infinite connected set is at least 1, it suffices to show that

the ζ-dimension of each Rb ≤ 1. Let V2(n) be as in (4.1). It is clear that

Rb ∩ V2(n) ⊆ {0, . . . , n} × {0, . . . , 2 blogb nc}.

Then,

Dimζ(Rb)
(4.1)
= lim sup

n→∞

log |Rb ∩ V2(0, n)|
log n

≤ lim sup
n→∞

log(3n log n)

log n
= 1.

We now discuss how the rulers are embedded in the self-assembly of a generalized Sierpinski

carpet. We replace the seed configuration of Tb,n with a set of ground tiles that bind to the

“black” tiles along the south and west sides of each block of “white” tiles in the carpet. These

tiles are defined in Fig. 6.8. Each ruler will begin its assembly on the north or east side of a

ruler seed tile, defined in Fig. 6.11e and illustrated in Fig. 6.5. The ground tiles continue to

attach along the bottom or left side of the square, but cannot extend past the square, a fact
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which depends on the nature of the glues that can occur on the “black” tiles.

The ground tiles for a base b ruler assemble in cycles of b tile types. The first cycle has

glue colors beginning with R on the tile types east and west sides. The remaining cycles have

glue colors beginning with S on the tile types east and west sides. At the end of the first cycle,

the tile type that attaches has a M for a glue color on the north side, causing the initial bar to

assemble. The remaining cycles all end with a tile type having a B for a glue color on the north

side, causing a bar to assemble that uses communication with previous bars to determine its

intended height.

We will find it useful later to isolate the property that characterizes the seed for a self-

assembling ruler.

Definition 5. Assume a fixed base b.

1. Let s = {ti}0≤i<k be a horizontal sequence of k tiles. The sequence s is a valid ruler

ground sequence if for all i < k, the tile ti has a B as its north glue color when i = b,

M as its north glue color when i = kb for some k > 1, and T as its north glue color

otherwise.

2. Let s = {ti}0≤i<k be a vertical sequence of k tiles. The sequence s is a valid vertical ruler

ground sequence if for all i < k, the tile ti has a B as its east glue color when i = b, M as

its east glue color when i = kb for some k > 1, and T as its east glue color otherwise.

GroundTileset(p, y, z)
parameters: a prime p and inte-
gers y, z

1 foreach j ∈ {0, 1, . . . , p− 2}

2 k ← j + 1.

3 include (a) & (b).

4 k ← p− 1.

5 include (c) & (d).
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(a) 1st cycle
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(b) cycle
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(c) 1st bar
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(d) bar

Figure 6.8: Tileset for ground of ruler embedded in a carpet.
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6.4.2 The Reader Tiles

Once a ruler embedded along the bottom edge of the square has completed its assembly, its

value needs to be read so that the right side of the square can properly assemble. The purpose

of the reader is to broadcast the ruler’s value along the north sides of the reader tiles once they

have assembled to the height of the highest bar. In principle, the growth of a reader is similar

to the growth of a ruler bar, in that its height is controlled by communication with the ruler

bars to its left, using the same communication tiles used within the ruler (i.e. Fig. 6.7f – 6.7h).

The difference is that each time a signal is returned, another base p digit is added to the left

of the growing reader. The readers used in the present construction are particularly simple

because the length of the embedded ruler, not including the ruler seed, is always one less than

a power of p. However, since the height of the right side of the square is the same as the length

of the bottom, we want the value on the reader to be the length of the ruler, less the height of

the reader itself. This is accomplished by combining a decrement operation with the growth of

the rightmost tiles of the reader. An example is shown in Fig. 6.9i for a base 3 ruler of length

80; note that the value encoded in the north glues of the reader tiles is 74 (in base 3), which is

81 less 7, the height of the reader itself.

The growth of a reader is initiated by a reader trigger tile which has one of the three forms

shown in Fig.s 6.11g, 6.11i, and 6.11k. The remaining tiles for the reader are shown in Fig.

6.9. The tiles in Fig. 6.9a – 6.9c will form the reader bar along its rightmost side; note that

the glues on the east sides of these tiles are consistent with the glues of the “black” tiles from

the construction of Fig. 6.3. The reader then assembles in a zig-zag fashion and its assembly

is controlled by the ruler bar. Each time a tile attaches to the reader bar, the value on the

reader is decremented by 1. If the value on the reader bar is either 0 or 1 and when necessary a

decrement signal is sent along the zig tiles to decrement the higher order bits of the value. Each

group of two tiles that attach to the reader bar represent a trip to the ruler and back. The zag

row returns which type of ruler bar was found. If an H bar was found, the reader continues. If

an M bar was found, the reader completes and initiates the assembly of the decrementer tiles.
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ReaderTileset(b,w,y)
parameters: a prime b and
integers w, y

1 foreach j ∈ {0, . . . , b− 1}

2 k ← (j − 1) mod b.

3 if j ≤ 1 then include (a).

4 if j > 1 then include (b).

5 include (c), (g), & (e).

7 if j ≥ 1 then include (f).

8 k ← b− 1.

8 include (h) & (d).
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(i) Example assembly of a base 3 reader.

Figure 6.9: Tileset for reader tiles embedded into a carpet.

6.4.3 The Decrementer Tiles

Once the reader is assembled, we have the length pk of the ruler, less the height of the reader

itself, encoded in the glues on the north sides of the reader tiles. A tileset that assembles

upwards from the reader to exactly the desired height pk is constructed in Fig. 6.10. The

decrementer works in the same zig-zag fashion as the reader. We also note that the non-bar

tile types of the reader (i.e. Fig. 6.9d – 6.9e) are used. The decrementer shrinks in width

whenever the most significant bit becomes 0, and the topmost p tiles of the main decrementer

bar are hardcoded. Note that there are multiple forms for Fig. 6.10d–6.10h, the tiles along the

right side of the decrementer, because their east glues have to interact with the glues of the

“black” tiles from the original construction of Fig. 6.3.

We now can formalize the fact that given an appropriate ruler ground sequence of length
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DecrementTileset(p, w, y)
parameters: a prime p and integers
w, y

1 foreach j ∈ {0, . . . , p− 1}

2 k ← (j − 1) mod p.

3 if j ≤ 1 then include (d).

4 if j > 1 then include (e).

5 include (f).

6 if j ≥ 2 then include (g).

7 if j > 0 then include (a) & (b) .

8 include (h) & (c).
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Figure 6.10: Tileset for decrementer tiles embedded into carpet.

pk plus a reader trigger, a ruler, reader, and decrementer of height pk will strictly self-assemble

above the ruler ground sequence.

Lemma 33. (a) Let α be an assembly and let i, j ≥ 0. Suppose that α(i, j) is a ruler trigger

as in Fig. 6.11(e), α(i + 1, j), . . . , α(i + pk − 1, j) is a valid ruler ground sequence, and

t = α(i + pk, j) is a reader trigger as shown in Fig. 6.11(f)–(g). Assume also that α

is undefined for all (i′, j′) with i′ > i and i′ ≥ j′ > j. Then there exists an assembly

sequence with result α′, where α → α′, for a ruler, reader and decrementer of height pk,

where α′(i + pk, j), α′(i + pk, j + 1), . . . , α′(i + pk, j + pk − 1) contains the rightmost bar

of the reader/decrementer.

(b) (Same as (a), but for a vertical ruler.)

6.4.4 Putting it All Together

The construction of the complete tileset for approximating a generalized Sierpinski carpet

is shown in Fig. 6.11. The set we intend to assemble using the tileset of Fig. 6.11 is illustrated

in Fig. 6.5, where the locations of the tiles of Fig. 6.11 are shown in black. Each block of

“white” tiles from the original assembly produced by the construction of Fig. 6.3 is removed,
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along with the “black” tiles directly adjacent to its right and upper sides, and the block is

replaced by a pair of rulers, readers, and decrementers forming the border of the block.

CarpetApproximationTileset(a, b, c, p)
parameters: a prime p and integers a, b, c

1 n← p− 1.

2 include (a) which is the seed tile.

3 foreach j ∈ {1, 2, . . . , n}
4 include (b) with y=j and w=bymodp.

5 include (c) with x=j and w=axmodp.

6 foreach (x, y, z)∈{0, 1, . . . , n}3
7 w←(ax+by+cz)modp.

8 if w>0, x>0 and y>0 then

9 include (d).

10 if w=0, x>0 and y>0 then

11 include (e).

12 if w=0, x=0 and y>0 then

13 include GroundTileset(p,y,z).

14 if w=0, x>0 and y=0 then

15 include V(GroundTileset(p,x,z)).

16 if w>0, x=0, y>0 and z>0 then

17 include (f) & (g).

18 if w>0, x>0, y=0 and z>0 then

19 include (h) & (i).

20 if w>0, x=0, y=0 and z>0 then

21 include (j) & (k).

22 if w>0, x=0, y>0, z=0 then

23 include ReaderTileset(p,w,y)

24 include DecrementTileset(p,w,y).

25 if w>0, x>0, y=0, z=0 then

26 include V(ReaderTileset(p,w,x))

27 include V(DecrementTileset(p,w,x)).

28 include RulerTileset(p)

29 include V(RulerTileset((p)).
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Figure 6.11: Constructing a tileset for approximating a generalized Sierpinski carpet.

The tiles in Fig. 6.11a – 6.11d are identical to those from the construction of Fig. 6.3,

excluding those tiles with w= 0, x= 0, or y= 0. These tiles are added in lines 2 – 9. The case

w=0, x>0, and y>0 indicates the lower left hand corner of a “white” block, and the tile type

of Fig. 6.11e added in line 11 is used to trigger both a horizontal and vertical ruler. If w= 0,

x= 0, and y > 0, the position of the tile is along the bottom of a white block, where the tile

types added in lines 12 – 13 assemble into a ruler ground. The case w= 0, x> 0, and y= 0 is

similar for a vertical ruler. If w>0, x= 0, y>0, and z>0 the tile’s position is at the bottom

left corner of a black block abutting a white block on its left. If this block is of size 1 × 1 or
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p × p then the height of the right side of the white block is hardcoded into the tile set by the

tile types of Fig. 6.11f. Otherwise, we need to trigger a horizontal reader to assemble the right

side of the white block to the proper height, which is triggered by the tile type of Fig. 6.11g.

The case w > 0, x > 0, y = 0, and z > 0 is similar for a vertical reader using the tile type of

Fig. 6.11i. A special situation arises when w > 0, x = 0, y = 0, and z > 0, indicating the lower

left corner of a black block with a white block to its left and a white block below. This causes

two ruler ends to meet, so we need the special tiles of Fig. 6.11k to deal with triggering both

vertical and horizontal readers for the two blocks at once. All of these cases are handled by the

tiles added in lines 16 – 21. If w>0, x=0, y>0 and z=0, then the position is along the right

side of a white block and is part of the main bar for the reader and decrementer. Likewise, if

w > 0, x > 0, y = 0 and z = 0 the position is along the top side of a white block forming the

reader and decrementer for a vertical reader. These tiles are added in lines 22 – 27. Finally, we

add the tile types for the ruler bars in line 28 – 29.

6.4.5 Proof of Correctness

Let F be a generalized Sierpinski carpet, let X denote the set informally described above

and pictured in Fig. 6.5, and let T denote the TAS (T, σ, 2), where T is the tileset defined by

Fig. 6.11 and σ is the seed tile of Fig. 6.11a. Theorem 38 is established via the following steps:

1. Precisely define the set X.

2. Define a T -assembly sequence whose terminal assembly is X.

3. Show that T is directed, i.e., the terminal assembly is unique.

4. Show that F ⊂ X and Dimζ(F ) = Dimζ(X).

Steps 1 and 2 are established by Lemma 39(b). Verification of step 3 is routine. For step 4 we

appeal to Corollary 8.

We first define some notation and terminology that will be useful in the proof. Let ~uN ,

~uS , ~uE , ~uW denote the four unit vectors in the plane that are parallel to the coordinate axes,

viewed as four cardinal directions. Given a tile t, and one of these unit vectors ~u, let colt(~u)

denote the glue color on the side of t in direction ~u. Note that in our construction the glue
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color is frequently an integer or pair of integers, as seen in Fig. 6.3, where a pair such as (w, y)

is shown as “wy” in the illustrations.

Given a TAS T = (T, σ, τ) and an assembly α : Z2 → T , let α[x, y] denote the subassembly

of α with its origin at (x, y), that is, α[x, y](~m) = α(~v+ ~m), where ~v = (x, y) and ~m ∈ N2. Note

that in context we treat α[x, y] as an “alias” for α, that is, if in the description of an assembly

sequence a tile t is added to α[x, y] at location ~m, we assume the tile t is added to α at location

~v+ ~m. Similarly, we write α[x, y | k] to denote a square k× k block of tiles consisting of α[x, y]

restricted to ~m ∈ {0, 1, . . . , k−1}2. We refer to α[x, y | k] as a block of size k in α. Note that as

for a subassembly α[x, y], α[x, y | k] need not be defined for all locations ~m ∈ {0, 1, . . . , k−1}2.

Given an assembly or block α, Let Mα denote the matrix of labels for the tiles in α, that

is, Mα(~m) is the label on α(~m) if α(~m) is defined and has a label, and Mα(~m) is undefined

otherwise. For the the tile types of Figures 6.9, 6.10, and 6.11 that are illustrated with a black

dot, the label is the parameter “w”. For all other tile types, the label is zero.

Given a block β of size k, we define the south border as the sequence of tiles {ti}0≤i<k ∈ T k

where ti = β(i, 0), provided that β(i, 0) is defined for all 0 ≤ i < k. Let Σ denote the

set of possible glue colors for the tileset T . The south border glue sequence is the sequence

{colti(~uN )}0<i<k ∈ Σn−1, i.e., the sequence of glue colors on the north sides of the tiles in

the south border (excluding the tile at the lower left corner). Similarly we define the west

border by ti = β(0, i) and the west border glue sequence as the corresponding sequence of

glue colors on the east sides, {colti(~uE)}0<i<k. The north border is the sequence {ti}0≤i<k
defined by ti = β(i, k − 1) and the north border glue sequence is {colti(~uN )}0≤i<k. The east

border is the sequence {ti}0≤i<k defined by ti = β(k− 1, i) and the east border glue sequence is

{colti(~uE)}0≤i<k.

Throughout the discussion that follows, let p > 2 be a prime and let a, b, and c be integers

not congruent to zero modulo p.

Our work will be simplified by exploiting the numerical self-similarity of the generalized

Sierpinski carpets and the known facts about their self-assembly. Let TL denote the tileset

defined by Fig. 6.3, let TL = (TL, σL, 2), and let αL be its terminal assembly. Assume that

each tile is labeled by an integer in {0, 1, . . . , p− 1} which is the value w as shown in Fig. 6.3.
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As noted in Section 6.2.2, the set of points

S = {(x, y)|MαL(x, y) 6= 0}

is a generalized Sierpinski carpet. We will refer to the tiles in TL as the legacy tiles and αL as

the legacy assembly of S. We define a legacy n-block as follows:

• The block αL[0, 0 | p] is a legacy 1-block of size p.

• For k ≥ 1 and 0 ≤ s, t < p, αL[spk, tpk | pk] is a legacy n-block of size pk, where

n = MαL(s, t).

Let Σ = {0, 1, . . . , p − 1} ∪ {0, 1, . . . , p − 1}2 denote the set of all glue colors in the legacy

tileset. Note that for all tiles except the seed and the border tiles, the glue color is an ordered

pair of integers.

We review a number of basic facts about the legacy assembly and the legacy n-blocks,

proved in [46]. The first lemma shows that a legacy n-block can be viewed as a legacy 1-block

to which a scaling factor of n has been applied to the labels. The next lemma describes the

border tiles and border glue sequences.

Lemma 34. If β0 is a legacy n-block of size pk and β1 is legacy 1-block of size pk, then

Mβ0(x, y) ≡ nMβ1(x, y) (mod p).

Lemma 35. 1. Let β be a legacy n-block of size pk, and let {ti}0≤i<pk be the south border.

The labels on the south border tiles are Mβ(ti) = nai mod p for i = 0, 1, . . . pk − 1, and

the south border glue sequence is

colti(~uN ) = (nai mod p, nai−1 mod p) for 1 ≤ i < pk (6.6)

colt0(~uN ) =

 n if t0 is a left edge tile

(n, x) otherwise

for some x < p.

2. Let β be a legacy n-block of size pk, and let {tj}0≤j<pk be the west border. The labels on

the west border tiles are Mβ(tj) = nbj mod p for j = 0, 1, . . . pk − 1, and the west border
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glue sequence is

coltj (~uE) = (nbj mod p, nbj−1 mod p) for 1 ≤ j < pk (6.7)

colt0(~uE) =

 n if t0 is a bottom edge tile

(n, y) otherwise

for some y < p.

3. Let β be a legacy n-block of size pk, and let {ti}0≤i<pk be the north border and let ni =

Mβ(ti) denote the label on ti, for 0 ≤ i < pk. Then n0 = n and the labels on the north

border tiles satisfy the relation bni + cni−1 ≡ 0 (mod p) for 1 ≤ i < pk, and the north

border glue sequence is

colti(~uN ) = (bni, cni−1) for 1 ≤ i < pk, and (6.8)

colt0(~uN ) =

 n if t0 is a left edge tile

(n, x) otherwise

for some x < p.

4. Let β be a legacy n-block of size pk, and let {tj}0≤j<pk be the east border and let nj =

Mβ(tj) denote the label on tj, for 0 ≤ j < pk. Then n0 = n and the labels on the east

border tiles satisfy the relation anj + cnj−1 ≡ 0 (mod p) for 1 ≤ j < pk, and the east

border glue sequence is

coltj (~uE) = (anj , cnj−1) for 1 ≤ j < pk, and (6.9)

colt0(~uE) =

 n if t0 is a bottom edge tile

(n, y) otherwise

for some y < p.

It is a consequence of the facts listed above that for given n and k, all legacy n-blocks of

size pk must be identical except for the south and west border tiles, since every such block has

the same south and west border glue sequences, and these completely determine the remaining

tiles in the block. Note also that for any legacy n-block β of size pk,

Mβ(0, 0) = Mβ(pk − 1, 0) = Mβ(0, pk − 1) = Mβ(pk − 1, pk − 1) = n.
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Another fact we will need is that 0-blocks are never adjacent and never occupy the border

of a larger block. Parts (a) and (b) can be found in [46] and (c) is proven in [63].

Lemma 36. Let β be a legacy 1-block of size p, that is, β is the kernel of a generalized Sierpinski

carpet. Then

(a) for all 0 ≤ i < p, Mβ(i, 0) 6= 0 and Mβ(i, p− 1) 6= 0.

(b) for all 0 ≤ j < p, Mβ(0, j) 6= 0 and Mβ(p− 1, j) 6= 0.

(c) for any 0, i, j < p, if Mβ(i, j) = 0 then Mβ(i+1, j) 6= 0, Mβ(i−1, j) 6= 0, Mβ(i, j+1) 6= 0,

and Mβ(i, j − 1) 6= 0

Given a sequence s of pk tiles, we say that

1. s has a valid n-block south border glue sequence if it satisfies 6.6.

2. s has a valid n-block west border glue sequence if it satisfies 6.7.

3. s has a valid n-block north border glue sequence if it satisfies 6.8.

4. s has a valid n-block east border glue sequence if it satisfies 6.9.

The following observation is a simple consequence of Lemma 35, asserting that valid south

or west glue sequences are periodic.

Lemma 37. Suppose s is a sequence of pk tiles with a valid n-block south (respectively, west)

border glue sequence. Let 0 < j < k and let i ≤ pk − pj. Let m be the label on the tile s(i).

Then the subsequence s(i), . . . , s(i+pj−1) has a valid m-block south (respectively, west) border

glue sequence.

We next return to the assembly of the readers and decrementers described in Lemma 33.

Note that the south glues of the ruler ground tile set of Fig. 6.8 are designed to match the glues

of n-block north border glue sequence, so that given a block β with a valid n-block north border

glue sequence, plus a ruler trigger as in Fig. 6.11e, a ruler ground sequence will self-assemble

above the north border of β. Likewise, a vertical ruler ground sequence will self-assemble along
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the east side of a block with a valid east border glue sequence. A block of size pk consisting

of just the ruler trigger and the horizontal and vertical ruler ground sequences will be called

a pre-0-block of size pk with parameters (x, y), where x and y are the values appearing in the

colors of the ruler trigger tile as shown in Fig. 6.11e.

The next step is to observe that once the reader and decrementer assembles on the ruler

ground sequence, the the main reader and decrementer bar has a valid west border glue sequence

and therefore interacts correctly with the interior tiles of Fig. 6.11d. Likewise, the reader and

decrementer bar for the vertical ruler has a valid south border glue sequence.

Lemma 38. (a) Assume the notation and hypotheses of Lemma 33(a). Assume also that

the reader trigger t has south glue colt(~uS) = (v, y) for some v, y < p. Then the reader and

decrementer bar has a valid w-block west border glue sequence, where w = bv + cy.

(b) Assume the notation and hypotheses of Lemma 33(b). Assume also that the reader

trigger t has west glue colt(~uW ) = (u, x) for some u, x < p. Then the reader and decrementer

bar has a valid w-block south border glue sequence, where w = au+ cx.

Based on the above we can define the following:

A partial 0-block of size pk and parameters (x, y, v) is the result of applying Lemma 38(a) to

a pre-0-block with parameters (x, y), where (v, y) is the south glue of the reader trigger. (Note

that although we refer to the result as a block of size pk, in fact it includes the west border of

the adjacent block to the right.)

A full 0-block of size pk and parameters (x, y, u, v) is the result of applying Lemma 38(b) to

a partial 0-block with parameters (x, y, v), where (u, x) is the west glue of the reader trigger.

Finally, a 0-block is the restriction of a full 0-block to 0 ≤ i, j < pk.

For n 6= 0, let βL be a legacy n-block. A pre n-block of size pk is a block β of size pk such

that

1. For 0 ≤ i < p, β(i, 0) is defined and Mβ(i, 0) = MβL(i, 0).

2. The south border of β has a valid n-block south glue sequence.

3. For 0 ≤ j < p, β(0, j) is defined and Mβ(0, j) = MβL(0, j).
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4. The west border of β has a valid n-block west glue sequence.

5. For all i, j > 0, β(i, j) is undefined.

For n 6= 0, an n-block β is defined as a transformation of a legacy n-block βL, with the

following properties.

1. If βL(i, j) 6= 0, then β(i, j) is defined and Mβ(i, j) = MβL(i, j).

2. If βL(i, j) = 0, choose i′, j′, k′ such that β′ = βL[i′, j′ | pk′ ] is the maximal legacy 0-block

containing (i, j); then β[i′, j′ | pk′ ] is a 0-block.

3. The north border has a valid n-block north glue sequence.

4. The east border has a valid n-block east glue sequence.

The algorithm given in Fig. 6.12 gives an assembly sequence for an n-block of size p, given

a pre-n-block of size p. Note that the labels on all tiles in KernelBlock are the same as those on

a legacy n-block and that the east border has a valid east border glue sequence and the north

border has a valid north border glue sequence.

We can now present the main lemma from which Theorem 38 follows, which inductively

defines the construction of the infinite generalized Sierpinski carpet.

Definition 6. Let M denote the p× p matrix of labels for αL[0, 0 | p]. Let s, t < p and k > 0.

An assembly α is (s, t)-correct at level pk+1 if the following conditions hold.

1. For all (i, j) with i ≤ s and j < t, α[ipk, jpk | pk] is a M(i, j)-block.

2. For all (i, j) with p > i > s and j < t− 1, α[ipk, jpk | pk] is a M(i, j)-block.

3. For all (i, j) with i ≤ s and j = t, and for all (i, j) with p > i > s and j = t− 1

(a) if M(i, j) 6= 0, α[ipk, jpk | pk] is a M(i, j)-block

(b) if M(i, j) = 0, α[ipk, jpk | pk] is a partial 0-block.

4. For all other i, j < p, the block α[ipk, jpk | pk] is completely undefined.

5. For all i, j ≥ pk+1, α(i, j) is undefined.



130

KernelBlock(n, α, i, j)
parameters: an assembly α such that α[i, j | p] is a pre-n-block of size p
returns: an assembly α′ such that α→ α′ and α′[i, j | p] is an n-block of size p

Let β = α[i, j | p]
Let M denote the matrix of labels for αL[0, 0 | p]
for j = 1, . . . , p− 1

for i = 1, . . . , p− 1

Let x = M(i− 1, j), y = M(i, j − 1), z = M(i− 1, j − 1)

Let w = ax+ by + cz (mod p).

Case 1: x 6= 0, y 6= 0 (implies w 6= 0).

Place the appropriate legacy tile at β(i, j).

Case 2: x 6= 0, y = 0 (implies w 6= 0).

Place a vertical ruler end (Fig. 6.11(h)) at β(i, j).

Case 3: w = 0 (implies x 6= 0, y 6= 0).

Place a ruler trigger (Fig. 6.11(e)) at β(i, j).

Case 4: x = 0.

Subcase 1: y 6= 0. Place a horizontal ruler end (Fig. 6.11(f)) at β(i, j).

Subcase 2: y = 0. Place a special ruler end (Fig. 6.11(j)) at β(i, j).

Figure 6.12: Assembly sequence for an n-block of size p.

Lemma 39. (a) For every k ≥ 0, s, t < p, and n 6= 0, if α is an assembly and α[spk, tpk] is a

pre-n-block in α of size pk, there is an assembly sequence α→ α′ such that α′[spk, tpk | pk]

is an n-block, and such that no new tiles are placed outside of α[spk, tpk | pk]

(b) For k > 1, if α is an assembly for which α[0, 0 | pk−1] is a 1-block of size pk−1, α(i, j)

is undefined for i, j ≥ pk−1, and for which the south and west borders consist only of

legacy edge tiles (Fig. 6.11b–6.11c), then there is an assembly α′ with α → α′ such that

α′[0, 0 | pk] is a 1-block of size pk, α(i, j) is undefined for i, j ≥ pk, and for which the

south and west borders consist only of legacy edge tiles.

Proof. Let M denote the p× p matrix of labels for αL[0, 0 | p].

If k = 1, then for (a) the required assembly sequence is given by the algorithm in Fig. 6.12.

For (b), let α be the assembly with |dom (α)| = 1 and α(0, 0) equal to the legacy seed tile. Then

there is an assembly sequence in which we attach the legacy bottom edge tiles up to (p− 1, 0)

and the legacy left edge tiles up to (0, p− 1), and then apply the algorithm in Fig. 6.12.
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Let k ≥ 1 and assume for an induction that (a) and (b) hold for all k′ ≤ k. Let n 6= 0

and let α′ be an assembly such that α′[spk+1, tpk+1] is a pre-n-block of size pk+1. Let α denote

α′[spk+1, tpk+1], the subassembly within which all our work will take place.

We inductively define a sequence of assemblies

α→ α0,0 → α1,0 · · · → αp−1,0 → α0,1 → α1,1 · · · → αp−1,1 → α0,2 · · · → αp−1,p−1

maintaining the invariant that αi,j is (i, j)-correct at level pk.

1. By Lemma 37, α[0, 0] is itself a pre-n-block of size pk. Let α0,0 be the result of applying

the induction hypothesis to α[0, 0]; then α[0, 0 | pk] is a n-block, and α0,0 is (0, 0)-correct

at level pk.

2. For i = 1, . . . , p− 1:

Let x = M(i − 1, 0), and w = M(i, 0). Note x 6= 0 and w 6= 0. Let β = α[ipk, 0 | pk].

By Lemma 37, the south border of β has a valid w-block south border glue sequence.

α[(i− 1)pk, 0 | pk] is an x-block of size pk, and therefore has a valid x-block east border

glue sequence. Define the subassembly β′ as follows: for the next pk − 1 steps in the

assembly sequence, attach the appropriate legacy tiles at β(0, 1), β(0, 2), . . . β(0, pk − 1).

Now β′ has a valid w-block west border glue sequence, i.e., β′[0, 0] is a pre-w-block of size

pk. Let αi,0 be the result of applying the induction hypothesis to β′.

3. For j = 1, . . . , p− 1:

(a) Let y = M(0, j−1), and w = M(0, j). Note y 6= 0 and w 6= 0. Let β = α[0, jpk | pk].

By Lemma 37, the west border of β′ has a valid w-block west border glue sequence.

α[0, (j−1)pk | pk] is a y-block of size pk and therefore has a valid y-block north border

glue sequence. Define the subassembly β′ as follows: for the next pk steps in the

assembly sequence, attach the appropriate legacy tiles at β(1, 0), β(2, 0), . . . β(pk −

1, 0). Now β′ has a valid w-block south border glue sequence, i.e., β′ is a pre-w-block

of size pk. Let α0,j be the result of applying the induction hypothesis to β′.
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(b) For i = 1, . . . , p− 1:

Let x = M(i − 1, j), y = M(i, j − 1) z = M(i − 1, j − 1), and w = M(i, j). Let

β = α[ipk, jpk | pk].

Case 1: x 6= 0, y 6= 0 (implies w 6= 0). Then α[(i − 1)pk, jpk | pk] is an x-block of size

pk and α[ipk, (j − 1)pk | pk] is a y-block of size pk. Define the subassembly β′

by attaching the appropriate legacy tiles along the south and west border of β,

and let αi,j be the result of applying the induction hypothesis to β′.

Case 2: x 6= 0, y = 0 (implies w 6= 0). Then α[(i − 1)pk, jpk | pk] is an x-block of

size pk and α[ipk, (j − 1)pk | pk] is a partial 0-block of size pk. Define the

subassembly β′ as follows: First attach a vertical reader trigger with parameters

(x, z, w), as shown in Fig. 6.11(h)–(i), at β(0, 0). Then apply Lemma 38(b)

to α[ipk, (j − 1)pk | pk], which provides the south border of β′. Then attach

appropriate legacy tiles as the west border; now β′ is a pre-w block of size pk.

Let αi,j be the result of applying the induction hypothesis to β′.

Case 3: w = 0 (implies x 6= 0, y 6= 0). Define the assembly β′ as follows: First attach a

ruler trigger with parameters (x, y, z), as shown in Fig. 6.11(e), at β(0, 0), and

then assemble a ruler ground sequence (Fig. 6.8) along the south border of β.

Likewise assemble a vertical ruler ground sequence along the west border of β.

Then β′ is a pre-0-block of size pk.

Case 4: x = 0.

Subcase 1: y 6= 0. Define the subassembly β′ as follows: First, attach a horizontal reader

trigger with south glue (y, z), as shown in Fig. 6.11(f)–(g), at β(0, 0). Then

apply Lemma 38(a) to the block α[(i− 1)pk, jpk | pk], which constructs the

west border of β′ with a valid w-block west border glue sequence. Attach

appropriate legacy tiles along the south border of β′. Now β′ is a pre-w-

block of size pk. Let αi,j be the result of applying the induction hypothesis

to β′.

Subcase 2: y = 0. Define the subassembly β′ as follows: First attach an instance of the
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special reader trigger of Fig. 6.11(j)–(k) at β(0, 0). Apply Lemma 38(a) to

the block α[(i−1)pk, jpk | pk], which constructs the west border of β′. Then

apply Lemma 38(b) to the block α[ipk, (j − 1)pk | pk], which constructs the

south border of β′. Now β′ is a pre-w-block of size pk. Let αi,j be the result

of applying the induction hypothesis to β′.

Since αp−1,p−1 is (p − 1, p − 1)-correct at level pk+1, (a) is established. For (b), it is sufficient

to extend the legacy edge tiles to length pk+1, let the resulting assembly be denoted α0,0, and

apply the argument above starting with step 2.

To complete the proof of Theorem 38, note that Lemma 39(b) shows the existence of an

assembly sequence for the in-place approximation. We omit the verification that the assem-

bly sequence is locally deterministic and therefore directed. The dimension of the assembled

structure is established using Theorem 37; in particular see the remarks following Corollary 8.

6.5 Conclusion

We have shown that for every generalized Sierpinski carpet F there exists an in-place

approximation of F , that is, a set X ⊇ F with the same fractal dimension as F that strictly

self-assembles in such a way that those tiles corresponding to the set F are recognizably labeled.

Moreover, there is an algorithm that produces the tileset for the approximation X from the

four parameters a, b, c, and p specifying F . As part of the construction we introduced rulers

and the corresponding readers as a new way to control the growth of an assembly. To analyze

the dimension of the approximation X we introduced the concept of an embedded fractal and

showed that whenever a set G is embedded in a self-similar fractal F , the dimension of the

resulting set is always max(Dimζ(G),Dimζ(F )).

It is unknown whether any self-similar fractal self-assembles in the aTAM, and in fact it

is known that the discrete Sierpinski triangle cannot self-assemble [51]. Lutz and Shutters

[53] showed in addition that there is a limitation on how closely the Sierpinski triangle can

be approximated: if X is any set that strictly self-assembles, and S is the Sierpinski triangle,

then Dimζ(X ∆S) ≥ Dimζ(S), where ∆ denotes the symmetric difference. In particular, any
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in-place approximation X of S has the property that the set of “extra” points X \ S used in

the approximation has dimension at least as great as the dimension of S itself.

Theorem 37 suggests the following line of reasoning: if a discrete self-similar fractal F does

not strictly self-assemble, it may be possible to construct an in-place approximation X as we

have done for the generalized Sierpinski carpets. X must add some additional points to the

empty squares in F . Theorem 37 shows that if only a single point is added to each of the empty

squares of F , then Dimζ(X \ F ) = Dimζ(F ).

Conjecture 3. For every self-similar fractal F ⊂ Z2 either F strictly self-assembles, or, for

every in-place approximation X of F , Dimζ(X \ F ) ≥ Dimζ(F ).
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CHAPTER 7. General Conclusion

This dissertation has addressed several problems at the interface between computation and

biology. In particular we looked at the multi-state perfect phylogeny problem and the tree

compatibility problem in computational phylogenetics, and we also looked at approximating

fractal structures in the tile assembly model. In this chapter we give some concluding remarks

with regards to these results along with some ideas for further study.

In Chapter 2 we looked at multi-state character compatibility, and gave an alternative

characterization of the sets of pairwise compatible three-state characters that are incompatible.

We also gave an O(m2n+ p) time algorithm to enumerate all p minimal obstruction sets to the

compatibility of a set of 3-state characters. One direction for future research is to design an

efficient algorithm for counting or enumerating all perfect phylogenies for a compatible set of

three-state characters. Gusfield and Wu [37] reduced the three-state perfect phylogeny problem

to 2-SAT. Counting all solutions for an instance of 2-SAT is #P-complete [80, 49]. However, it

is possible that the characterization of compatible sets of three-state characters given here can

be used to design more efficient algorithms for counting and enumerating three-state perfect

phylogenies.

Also in Chapter 2, we proved quadratic lower bounds on the maximum cardinality of a mini-

mal obstruction set to the compatibility of a set of r-state characters. Finding any upper bound

on the maximum cardinality of such a set remains a central open question in computational

phylogenetics. However, since DNA sequences naturally give rise to four-state characters, the

four-state character compatibility problem is of particular importance. Further analysis of the

characterization of four-state character compatibility given by Kannan and Warnow [43] may

lead to an upper bound for the four-state case.

In Chapter 3 we looked at the tree compatibility problem. In particular, we studied the
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agreement supertree approach for combining rooted phylogenetic trees when the input trees do

not fully agree on the relative positions of the taxa. We considered two approaches for dealing

with such conflicting input trees: edge contraction and taxon removal. For both problems

we gave FPT algorithms for the problem parameterized by the number of input trees and the

number of edges contracted or taxa removed. It is known that taxon removal is fixed-parameter

intractable if only the number of taxa removed is parameterized. However, no such analogous

result is known for edge contraction. Another direction for future research would be to extend

our results for agreement to the compatibility case where the supertree is not required to be

homeomorphic to the input trees, i.e., it is allowed to be a refinement of each of the input

trees. However, the exponential lower bound on the size of the obstructions for compatible

supertrees mentioned in Chapter 3 makes it likely that entirely new techniques will be needed

for developing FPT algorithms form compatible supertrees. One further direction would be to

study the case for unrooted trees. The difficulty here would be in finding an analogue to the

auxiliary graph described in Section 3.3.1 for unrooted input trees.

In Chapters 5 and 6 we studied the approximate self-assembly of the Sierpinski triangle

and the Sierpinski carpet. Several interesting open questions about the self-assembly of fractal

structures remain. The most central one being to exhibit a fractal that can strictly self-assemble,

or prove that none exists. Another related line of research is to find limits on approximating

the Sierpinski carpet analogous to what was given here for the Sierpinski triangle. Although

studying the self-assembly of fractals is interesting in its own right, the study of self-similar

fractals given here yielded many insights into more general self-assembly systems. In particular,

the notion of conditional determinism for proving the correctness of our approximation of the

Sierpinski triangle, and the rulers and readers used in the construction of the Sierpinski carpet.

It is likely that further study of the self-assembly of fractal structures will give rise to more

insights into general self-assembly systems.
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2011, pages 459–468. ACM, 2011.

[11] David Bryant. Optimal agreement supertrees. In Computational Biology, volume 2066 of

Lecture Notes in Computer Science, pages 24–31. Springer, 2001.

[12] Peter Buneman. The recovery of trees from measurements of dissimilarity. In Mathematics

in the Archeological and Historical Sciences, pages 387–395. Edinburgh University Press,

1971.

[13] Peter Buneman. A characterization of rigid circuit graphs. Discrete Mathematics, 9:205–

212, 1974.

[14] Eugene Cahen. Sur la fonction ζ(s) de Riemann et sur des fonctions analogues. Annales
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