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ABSTRACT

For α a positive irrational, we consider the uniform subalgebra Aα of C(T2) consisting of

those functions f satisfying f̂(m,n) = 0 whenever m+αn < 0. For positive irrationals α, β, we

determine when Aα and Aβ are isometrically isomorphic. Furthermore, we describe the group

Aut(Aα) of isometric automorphisms of Aα. Finally we show how an explicit representation of

Aut(Aα) can be derived from Pell’s equations.



1

CHAPTER 1. INTRODUCTION

For α a positive irrational, let Aα be the subalgebra of continuous functions on the two-

torus whose Fourier transform vanishes at (m,n) if m+αn < 0. These algebras were studied by

Wermer and others ([1], [2]), who proved properties such as maximality and characterized the

Gelfand space. One of the major themes of current work in operator algebras is classification,

but none of the properties which were investigated earlier distinguished between Aα and Aβ,

if β is another positive irrational. In this work, we address this question. We also determine

the automorphism group of Aα.

In chapter 2, we provide basic definitions, theorems, and notations that we use in this work

and some known results about the algebra Aα.

In chapter 3, we show that the Gelfand space of Aα is {(z, w) ∈ D̄× D̄ : |z|α = |w|}.

In chapter 4, we give the form of an isometric isomorphism of Aα → Aβ (Theorem 4.0.9). It

follows that the cardinality of the isomorphism class is countable. Corollary 4.0.10 shows that

there is a group invariant: let Gα be the dense subgroup of R consisting of {m+nα : m,n ∈ Z}.

We show thatAα andAβ are isometrically isomorphic if and only if there is a group isomorphism

Gα → Gβ which maps Gα ∩ R+ → Gβ ∩ R+.

In chapter 5, we examine the group of isometric automorphisms ofAα. If α is not a quadratic

irrational, then Aut(Aα) ∼= T2. However, if α is a quadratic irrational, then Aut(Aα) is isomor-

phic to a semidirect product of T2 with Z (Theorem 5.1.9). We also give an explicit form for

the automorphism group of Aα, where α is a quadratic irrational (Proposition 5.2.1, Proposi-

tion 5.2.2, and Proposition 5.2.3).

The material in chapter 2 is standard, but from chapter 3 on the material is original work.
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CHAPTER 2. BACKGROUND

In this chapter, we provide basic definitions, theorems, and notations that we use for entire

work. Definitions and theorems in this chapter are taken from [4], [5], and [11].

In this work, vector spaces are complex vector spaces.

2.1 Banach algebras

Definition 2.1.1. Let X be a vector space. A function ‖ · ‖ : X → R+ ∪ {0} is said to be a

norm on X if

1. ‖x‖ = 0 if and only if x = 0;

2. ‖αx‖ = |α|‖x‖ for any α ∈ C and x ∈ X;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ X.

A vector space equipped with a norm is called a normed linear space.

Definition 2.1.2. An algebra is a vector spaceA equipped with a multiplication map · : A → A

such that

1. a · (b+ c) = a · b+ a · c for any a, b, c ∈ A;

2. (a+ b) · c = a · c+ b · c for any a, b, c ∈ A;

3. (αa) · (βb) = (αβ)(a · b) for any α, β ∈ C and a, b ∈ A.

We usually write ab instead of a · b.

Definition 2.1.3. A subspace B of an algebra A is said to be a subalgebra of A if bb′ ∈ B for

any b, b′ ∈ B.
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Note that a subalgebra B of A is also an algebra with the multiplication on B given by the

restriction of the multiplication on A.

Definition 2.1.4. An algebra A is a normed algebra if the norm on A is submultiplicative,

i.e.,

‖ab‖ ≤ ‖a‖‖b‖, for any a, b ∈ A.

Definition 2.1.5. A normed algebra A is a unital normed algebra if there exists an element

1 ∈ A such that 1a = a = a1 for all a ∈ A and ‖1‖ = 1. If this element 1 exists, then it is

unique. 1 is called the unit.

Note that, a subalgebra of a unital normed algebra may not be a unital normed algebra.

Also, if B is a unital normed subalgebra of A, the unit of B may not be the same as the unit

of A.

Definition 2.1.6. Let A be a unital normed algebra. Then a ∈ A is invertible if there exists

b ∈ A such that ab = 1 = ba. In this case b is unique and we write b = a−1.

Theorem 2.1.7. If A is a normed algebra, then the multiplicative map is jointly continuous.

Definition 2.1.8. A complete normed algebra is called a Banach algebra.

Note that a closed subalgebra of a Banach algebra is also a Banach algebra.

Definition 2.1.9. A complete unital normed algebra is called a unital Banach algebra.

Definition 2.1.10. An algebra A is said to be commutative or abelian if ab = ba, for any

a, b ∈ A.

Definition 2.1.11. A subspace I of an algebra A is said to be a left ideal in A if

for any a ∈ A and b ∈ I, ab ∈ I.

Definition 2.1.12. A subspace I of an algebra A is said to be a right ideal in A if

for any a ∈ A and b ∈ I, ba ∈ I.
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Definition 2.1.13. An ideal in an algebra A is a subspace of A that is both left and right

ideal in A.

Definition 2.1.14. An ideal I in an algebra A is a proper ideal if I 6= A.

Definition 2.1.15. A proper ideal M in A is said to be a maximal ideal in A if for any ideal

J in A

if M ⊆ J ( A, then J = M.

Definition 2.1.16. Let A and B be algebras. Then a map ϕ : A → B is called an (algebra)

homomorphism if

1. ϕ(αa) = αϕ(a) for any α ∈ C, and a ∈ A;

2. ϕ(a+ b) = ϕ(a) + ϕ(b) for any a, b ∈ A;

3. ϕ(ab) = ϕ(a)ϕ(b) for any a, b ∈ A..

The third property is called multiplicative.

Definition 2.1.17. An algebra homomorphism is an (algebra) isomorphism if it is a bijection.

Definition 2.1.18. Let A be an algebra. An isomorphism φ : A → A is called an automor-

phism.

Definition 2.1.19. Algebras A and B is said to be isomorphic if there exists an isomorphism

between A and B. We denote this by A ∼= B.

Definition 2.1.20. Let A and B be normed algebras. A map ϕ : A → B is

an isometric isomorphism if it is an isomorphism and

‖ϕ(a)‖ = ‖a‖, for all a ∈ A.

In this case, we say that A is isometrically isomorphic to B.

Definition 2.1.21. Let A be an algebra. A linear functional ϕ : A → C is called

multiplicative if

ϕ(ab) = ϕ(a)ϕ(b), for any a, b ∈ A.
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Definition 2.1.22. Let A be an abelian Banach algebra. The Gelfand space of A is the set of

all non-zero multiplicative linear functionals on A. We will denote this set by ∆(A).

Theorem 2.1.23. Let A be a unital abelian Banach algebra. Then if τ ∈ ∆(A), then ‖τ‖ = 1.

Theorem 2.1.24. Let A be a unital abelian algebra and M a set of all maximal ideals in A.

Then ∆(A) is non-empty and the map φ : ∆(A)→M defined by

φ(τ) = ker(τ)

is a bijection from Ω(A) to M.

From Theorem 2.1.24 , ∆(A) is also called the maximal ideal space of A.

2.2 C*-algebras

Definition 2.2.1. Let A be an algebra. An involution on A is a conjugate linear map a 7→ a∗

such that

(a∗)∗ = a and (ab)∗ = b∗a∗

for all a, b ∈ A. (A, ∗) is called a *-algebra.

Definition 2.2.2. A *-algebra A is called a Banach *-algebra if the norm on A is complete,

submultiplicative and ‖a∗‖ = ‖a‖ for all a ∈ A.

Definition 2.2.3. A C*-algebra is a Banach *-algebra such that ‖a∗a‖ = ‖a‖2 for all a ∈ A.

2.3 Spaces of continuous functions on compact Hausdorff spaces

Let X be a compact Hausdorff space. We will denote set of all continuous functions on

X by C(X). We will equip C(X) with the supremum norm defined by ‖f‖ = sup
x∈X
‖f(x)‖.

Then C(X) is a unital normed algebra (with pointwise addition and pointwise multiplication

of functions). Moreover, C(X) is a unital abelian Banach algebra.

Theorem 2.3.1. Let X be a compact Hausdorff space. Then the Gelfand space ∆(X) is X.
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Definition 2.3.2. Let X be a compact Hausdorff space. A subalgebra A of C(X) is called a

uniform algebra if

1. A is closed in C(X);

2. A separates the points of X, i.e., if x, y ∈ X and x 6= y, then there exists f ∈ A such

that f(x) 6= f(y) ;

3. A contains the constant functions.

Definition 2.3.3. Let X be a compact Hausdorff space. A uniform subalgebra A of C(X)

is a Dirichlet algebra if the real parts of functions in A is dense in the set of all real-valued

continuous functions in C(X).

Definition 2.3.4. Let X be a compact Hausdorff space. A uniform subalgebra A of C(X) is

called maximal if for any closed subalgebra B satifying A ⊂ B ⊂ C(X), then either B = A or

B = C(X).

2.4 Fourier series and double Fourier series

Definition 2.4.1. Let f ∈ L1[−π, π] and n ∈ Z. The nth Fourier coefficient of f is

f̂(n) =
1

2π

∫ π

−π
f(t)e−intdt

and the Fourier series for f is the formal series

∞∑
n=−∞

f̂(n)eint.

Definition 2.4.2. The Partial sums of the Fourier series for f are sn(x) =

n∑
k=−n

f̂(k)eikx, n =

1, 2, . . . .

Definition 2.4.3. The Cesaro means of the Fourier series for f are σn = 1
n(s0 + s1 + · · · +

sn−1), n = 1, 2, . . . .

Theorem 2.4.4. Let f be a continuous function of period 2π. Then σn converges to f uni-

formly.
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Let T2 denote the 2-torus T × T, where T denotes the unit circle. Let dµ be normalized

Lebesgue measure on T2.

Definition 2.4.5. If f : T2 → C is in L2(T2), for (m,n) ∈ Z2, the Fourier coefficient f̂(m,n)

is given by

f̂(m,n) =

∫
T2

f(eis, eit)e−i(ms+nt) dµ

and the Fourier series for f is the formal series

∑
m,n

f̂(m,n)eimxeiny.

Definition 2.4.6. Rectangular partial sums of the Fourier series for f are

SN,M (x, y) =
∑

|n|≤N,|m|≤M

f̂(m,n)eimxeiny,M,N ∈ N.

Definition 2.4.7. σN,M (x, y) = 1
(N+1)(M+1)

∑
|k1|≤N,|k2|≤M

Sk1,k2(x, y) is called Cesaro means of

the Fourier series for f , M,N ∈ N.

Theorem 2.4.8. Let f ∈ L2(T2). If f is continuous, then σM,N converges uniformly to f .

2.5 Disc and bidisc algebras

Let D be the open unit disc {z ∈ C : |z| < 1}. Let D̄ be the closed unit disc {z ∈ C : |z| ≤ 1}

and D̄2 = D̄× D̄ the bidisc.

Definition 2.5.1. The disc algebra is the space

{f : D̄→ C : f is analytic on D and continuous on D}.

We denote this algebra by A(D).

Definition 2.5.2. The bidisc algebra is the space

{f : D̄2 → C : f is bi-analytic on D2 and continuous on D2}.

We denote this algebra by A(D2).
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Note that we can view the disc algebra as a subalgebra of C(T) and the bidisc algebra as

a subalgebra of C(T2), i.e.,

A(D) = {f ∈ C(T) : f̂(n) = 0 whenever n < 0}

and

A(D2) = {f ∈ C(T2) : f̂(m,n) = 0 whenever m < 0 or n < 0}.

Moreover, A(D) is a maximal subalgebra of C(T). Furthermore, it is well-known that the

Gelfand space ∆(A(D)) is D̄ and the Gelfand space ∆(A(D2)) is D̄2.

2.5.1 Factorization for H1 functions

Definition 2.5.3. The space H1 is the space {f : D̄→ C : f(reiθ) is bounded in L1−norm, 0 ≤

r ≤ 1}.

Definition 2.5.4. An inner function is a function g : D̄ → C such that g is analytic on D,

|g(z)| ≤ 1 on D and |g(z)| = 1 almost everywhere on T.

Definition 2.5.5. An outer function is a function F : D̄→ C such that F is analytic function

on D and F has the form

F (z) = λ exp(
1

2π

∫ π

−π

eiθ + z

eiθ − z
f(θ) dθ),

where f is a real-valued function in L1(T) and λ ∈ C, |λ| = 1.

Definition 2.5.6. An analytic function B is called a Blaschke product if B has the form

B(z) = zn
∞∏
i=1

(
ᾱi
|αi|

αi − z
1− ᾱiz

)ni ,

where n, n1, n2, . . . ∈ N∪{0}, αi 6= 0, for all i ∈ N, αi 6= αj if i 6= j, and
∞∏
i=1

|αi|ni is convergent.

Definition 2.5.7. S is said to be a singular function if S is an inner function without zeros

and S(0) > 0.

Theorem 2.5.8. Let f ∈ H1 and f 6= 0. Then f has the form f = BSF where B is a Blaschke

product, S is a singular function and F is an outter function.
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2.6 The algebra Aα

Let α be a positive irrational number. We define Aα to be the set of continuous functions

f : T2 → C with the property that

f̂(m,n) = 0 whenever m+ αn < 0.

By the continuity of the Fourier transform, Aα is a Banach space, and since the product of two

functions in Aα again lies in Aα, it is a Banach algebra under the norm ||f || = sup
(z,w)∈T2

|f(z, w)|.

As a norm-closed subalgebra of the C∗-algebra C(T2), Aα is a commutative operator alge-

bra. It further falls in the category of uniform algebras, as a subalgebra of C(T2) it separates

the points of T2.

For f ∈ C(T2), let f∗ denote the adjoint, i.e., f∗ = f̄ , the complex conjugate. Note that

Aα is antisymmetric, that is, Aα ∩ A∗α = {C · 1}.

The characters of the group T2 will be denoted by χm,n, where

χm,n(z, w) = zmwn, (z, w) ∈ T2.

The characters χm,n for which m+αn ≥ 0 belong to Aα, and linear combinations of characters

in Aα are dense.

Note that Aα is a Dirichlet algebra; that is A +A∗ is dense in C(T2). This is clear, since

A+A∗ contains all the characters of T2.

It is known that Aα is a maximal subalgebra of C(T2) ([2]).
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CHAPTER 3. THE GELFAND SPACE OF THE Aα

In this chapter, we show that ∆(Aα) = {(z, w) ∈ D̄ × D̄ : |z|α = |w|}. We also show that

any point in the set ∆(Aα) ∩ D× D is not in a singleton part.

3.1 Method of rational approximation

Suppose f ∈ Aα has a Fourier series with only finitely many terms, so

f =
N∑
k=1

ck χmk,nk .

Consider the interval I = {t ≥ 0 : mk + tnk ≥ 0, 1 ≤ k ≤ N}. This is an interval containing

α in its interior. Let p, q be positive integers, gcd{p, q} = 1, such that p/q ∈ I. Furthermore,

since the map {(mk, nk) : 1 ≤ k ≤ N} 7→ mk +αnk is one-to-one, one can chose p, q sufficiently

close to α so that the map {(mk, nk) : 1 ≤ k ≤ N} 7→ mk + (p/q)nk is one-to-one. Thus, if we

define the polynomial

F (ζ) = f(ζq, ζp)

then F is a polynomial in ζ with N (non-zero) terms, and f can be recovered from F .

The following observation, which we will refer to as “the method of rational approximation,”

extends the above observation to the Gelfand space ∆(Aα).

Lemma 3.1.1. Let (z0, w0) ∈ D̄ × D̄ be such that |z0|α = |w0|. Then given ε > 0 there is a

rational approximation p/q to α so that there is ζ0, |ζ0| ≤ 1, such that

(ζq0 , ζ
p
0 ) is within ε of (z0, w0)

e.g. |ζq0 − z0|+ |ζp0 − w0| < ε.
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Proof. Define ζ0 to be a qth root of z0 with |ζp0 − w0| ≤ |ζp − w0| as ζ runs through all the qth

roots of z0. It is possible that two qth roots of z0 have the property that their pth powers are

equidistant from w0, in which case choose one arbitrarily.

Observe that ||ζp0 | − |w0|| = ||z0|p/q − |z0|α| can be made arbitrarily small by choosing p/q

sufficiently close to α, and that | arg(ζp0 )− arg(w0)| ≤ π/q which can also be made arbitrarily

small by appropriate choice of p and q.

3.2 The Gelfand space of Aα

In this section, we will show that ∆(Aα) = {(z, w) ∈ D̄ × D̄ : |z|α = |w|}. As the Banach

algebra satisfies

A(D2) ⊂ Aα ⊂ C(T2)

it follows that the Gelfand spaces satisfy the reverse inclusions:

∆(C(T2)) ⊂ ∆(Aα) ⊂ ∆(A(D2).

In other words,

T2 ⊂ ∆(Aα) ⊂ D̄2

Lemma 3.2.1. ∀ε > 0, ∃m′ ∈ Z− and n′ ∈ Z+ such that 0 < m′ + n′α < ε and ∃m′′ ∈ Z+ and

n′′ ∈ Z− such that 0 < m′′ + n′′α < ε.

Proof. Let ε > 0 be given. Assume that 0 < ε ≤ 1. Let A = [0, ε2) and B = [ ε2 , ε). Let

T : [0, 1) → [0, 1) be defined by Tx = x + α (mod 1), x ∈ [0, 1). By ergodicity of T , ∃k ∈

N such that m(T−k(A) ∩ B) > 0. By Poincaré’s Recurrence Theorm, ∃x0 ∈ T−k(A) ∩ B,

∃0 < n1 < n2 < · · · such that Tnix0 ∈ T−k(A) ∩ B. Since x0 ∈ T−k(A), ∃y0 ∈ A such that

x0 = T−ky0. Thus, Tni−ky0 = Tni(T−ky0) = Tnix0 ∈ B for all i ∈ N. Choose i ∈ N such that

ni > k. Then ni − k > 0 and y0 + (ni − k)α = Tni−ky0 ∈ B = [ ε2 , ε). Since y0 ∈ A = [0, ε2),

we have (ni − k)α ∈ [0, ε). Let m′ = −b(ni − k)αc, n′ = ni − k. Then m′ ∈ Z−, n′ ∈ Z+

and m′ + n′α = −b(ni − k)αc + (ni − k)α ∈ [0, ε). Since α is irrational, m′ + n′α 6= 0. Thus

0 < m′ + n′α < ε. Similarly, by inverse transformation (by replacing α by −α), ∃m′′ ∈ Z+ and

n′′ ∈ Z− such that 0 < m′′ + n′′α < ε.
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Note that, by Lemma 3.2.1, we can choose p/q to be less than α in the method of rational

approximation.

Lemma 3.2.2. ∆(Aα) ⊂ {(z, w) ∈ D̄× D̄ : |z|α = |w|}.

Proof. First, let (z0, w0) ∈ {(z, w) ∈ D̄ × D̄ : |z| = 0 or |w| = 0, (z, w) 6= (0, 0)}. WLOG,

assume that z0 = 0 and w0 6= 0. Suppose that the pointwise evaluation at (z0, w0) defines a

multiplicative linear functional Θ on Aα. Then Θ(z) = 0 and Θ(w) = w0. By Lemma 3.2.1,

,∃m′ ∈ Z− and n′ ∈ Z+ such that 0 < m′ + n′α. Then zm
′
wn
′ ∈ Aα. Hence

0 6= wn
′

0 = Θ(wn
′
) = Θ(z−m

′ · zm′wn′) = Θ(z−m
′
)Θ(zm

′
wn
′
) = 0,

a contradiction. Thus (z0, w0) is not in ∆(Aα).

Now, assume that (z0, w0) ∈ D̄× D̄ and |z0|α 6= |w0|.

Case1: 1 > |z0|α > |w0| > 0.

Let |z0| = r. Then |w0| < rα. So ∃ 0 < t < 1 such that |w0| = trα. Since 0 < t < 1,

∃N ∈ N such that t−N > 3. Since 0 < r < 1, ln r < 0. Then − 1
N ln r > 0. By Lemma 3.2.1,

∃m1 ∈ Z+ and n1 ∈ Z− such that 0 < m1 +n1α < − 1
N ln r . Let m = m1N and n = n1N . Then

m+ nα = m1N + n1Nα = N(m1 + n1α) > 0.

Claim: tn > 3 and rm+nα > 1
e .

Since t−N > 3, tn = tn1N = (t−N )−n1 > 3−n1 ≥ 3.

Since m1 + n1α < − 1
N ln r , ln rm+nα = (m + nα) ln r = (m1 + n1α)N ln(r) > −1. Thus

rm+nα = eln rm+nα
> e−1 = 1

e .

Let f(z, w) = zmwn. Then f ∈ Aα and |f(z0, w0)| = |z0|m|w0|n = rmtnrnα = tnrm+nα >

3.1e > 1.

Case2: 1 = |z0|α > |w0| > 0.

Then |z0| = 1 and ∃ 0 < t < 1 such that |w0| = t. By Lemma 3.2.1, ∃m ∈ Z+ and n ∈ Z−

such that 0 < m + nα. Let f(z, w) = zmwn. Then f ∈ Aα and |f(z0, w0)| = |z0|m|w0|n =

|w0|n = tn > 1.

Case3: 0 < |z0|α < |w0| ≤ 1.

Let |z0| = r. Then ∃t > 1 such that |w0| = trα. Since t > 1, ∃N ∈ N such that tN > 3.

Since 0 < r < 1, ln r < 0. Then − 1
N ln r > 0 By Lemma 3.2.1, ∃m1 ∈ Z− and n1 ∈ Z+ such
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that 0 < m1 + n1α < − 1
N ln r . Let m = m1N and n = n1N . Then m+ nα = m1N + n1Nα =

N(m1 + n1α) > 0. Let f(z, w) = zmwn. Then f ∈ Aα and |f(z0, w0)| = |z0|m|w0|n =

rmtnrnα = tnrm+nα = tn1Nrm+nα > tNrm+nα > 3.1e > 1.

Lemma 3.2.3. Let f =
N∑
j=1

cjχmj ,nj , mj + njα > 0, j = 1, 2, . . . , N .Let m,n ∈ Z+ be such

that m
n < α, nmj + mnj > 0, j = 1, 2, . . . , N . Let A = {(z, w) ∈ D̄ × D̄ : |z|α ≤ |w| ≤ |z|

m
n }.

Then f is continuous on A.

Proof. Clearly, f is continuous at every point in A \ {(0, 0)}. We have to show that p is

continuous at the point (0, 0). Let j ∈ {1, 2, . . . , N}. Let h(z, w) = zmjwnj , (z, w) ∈ A. Since

nmj +mnj > 0 and n is positive, mj + m
n nj > 0. Let (z, w) ∈ A.

Obviously, h is continuous at (0, 0) when mj ≥ 0 and nj ≥ 0.

Case mj < 0 and nj > 0.

Then 0 ≤ |h(z, w)| = |z|mj |w|nj ≤ |z|mj (|z|
m
n )nj = |z|mj+

m
n
nj . Since mj + m

n nj > 0, we

have lim
(z,w) →

(z,w)∈A
(0,0)
|h(z, w)| = 0.

Case mj > 0 and nj < 0.

Then 0 ≤ |h(z, w)| = |z|mj |w|nj ≤ |z|mj (|z|α)nj = |z|mj+njα. Since mj + njα > 0, we have

lim
(z,w) →

(z,w)∈A
(0,0)
|h(z, w)| = 0.

Thus h is continuous at (0, 0) and hence f is continuous at (0, 0).

Lemma 3.2.4. Let f =
N∑
j=1

cjχmj ,nj , mj + njα ≥ 0, j = 1, 2, . . . , N . Then max |f | on

|z|α = |w|, |z| ≤ 1, |w| ≤ 1 occurs on |z| = 1.

Proof. Suppose that max |f | on |z|α = |w|, |z| ≤ 1, |w| ≤ 1 occurs at (z0, w0). Choose

m,n ∈ Z+ such that m
n < α, nmj + mnj ≥ 0, ∀j = 1, 2, . . . , N . Let A = {(z, w) ∈ D̄ × D̄ :

|z|α ≤ |w| ≤ |z|
m
n }. By Lemma 3.2.3, f is continuous on A.

Claim: For any ε > 0, there exists (z′, w′) ∈ A, |z′| = 1, so that |f(z′, w′)| > |f(z0, w0)| − ε.

Let ε > 0. Then there is δ > 0 such that |f(z, w)− f(z0, w0)| < ε
2 whenever |z − z0|+ |w−

w0| < δ, (z, w) ∈ A. By Lemma 3.1.1, there is a rational approximation m
n < p

q < α to α so

that there exists ζ0, |ζ0| ≤ 1 such that |ζq0 − z0|+ |ζp0 − w0| < δ. Let F (ζ) = f(ζq, ζp), |ζ| ≤ 1.

Then F is a polynomial in ζ. By Maximum Modulus Principle, there exists ζ ′ such that |ζ ′| = 1
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and |F (ζ)| ≤ |F (ζ ′)|, for all ζ, |ζ| ≤ 1. Let z′ = (ζ ′)q and w′ = (ζ ′)p. Then |z′| = 1 = |w′|.

Hence |f(z′, w′)| = |F (ζ ′)| ≥ |F (ζ0)| = |f(ζq0 , ζ
p
0 )| > |f(z0, w0)| − ε.

Now, for each k ∈ N, by Claim, there exists (zk, wk) ∈ A, |zk| = 1 and |f(zk, wk)| >

|f(z0, w0)|− 1
k . Since {(zk, wk)}k∈N is a sequence in a compact space T2, there exists a convergent

subsequence of {(zk, wk)}k∈N that converges to some point, say, (z′, w′) ∈ T2. Thus |p(z′, w′)| ≥

|p(z0, w0)|.

Now, we will show that {(z, w) ∈ D̄ × D̄ : |z|α = |w|} ⊂ ∆(Aα). Let f ∈ Aα. Let

(z0, w0) ∈ {(z, w) ∈ D̄ × D̄ : |z|α = |w|}. Then there is a sequence {pn}n∈N, pn ∈ Aα and pn

has a Fourier series with only finitely many terms, such that pn → f uniformly as n→∞. So

|f(z0, w0)| = lim
n→∞

|pn(z0, w0)| ≤ lim
n→∞

‖pn‖∞ = ‖f‖∞.

3.3 Parts of ∆(Aα)

If A is a uniform algebra on X, we say that Θ1, Θ2 ∈ ∆(A), belong to the same part of

∆(A) if

||Θ1 −Θ2|| < 2

where the norm is the norm in the dual space of A, that is

||Θ1 −Θ2|| = sup{|Θ1(f)−Θ2(f)| : f ∈ A, ||f || = 1}.

Equivalently, Θ1, Θ2 belong to the same part of ∆(A) if there is a constant c > 0 such that

Harnack’s inequality is valid:

1

c
u(Θ1) ≤ u(Θ2) ≤ cu(Θ1), u ∈ <(A), u > 0.

(See [2].)

For the algebra Aα, it is known that ([1])

1. Each point (z0, w0) in (the Shilov boundary) T2 is in a singleton part;

2. The point (0, 0) is in a singleton part.
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Now, we will show that any point in the set {(z, w) ∈ ∆(Aα) : 0 < |z| < 1} is not in a

singleton part.

Lemma 3.3.1. Let (a, b) ∈ T2. The map

γ : Aα → Aα, γ(f)(z, w) = f(az, bw)

is an isometric automorphism of Aα.

Proof. Clearly γ, or more precisely, the extension of γ to C(T2), is an isometric automorphism of

C(T2). Furthermore, for any f ∈ Aα, a character χm,n appears as a non-zero Fourier coefficient

of f if and only if it appears in γ(f). Thus, γ maps Aα to itself.

Definition 3.3.2. Let A, B be uniform algebras with Gelfand spaces ∆(A),

∆(B) respectively. We will say that a homeomorphism ϕ : ∆(B) → ∆(A) is admissible if

f ◦ ϕ ∈ A whenever f ∈ B.

By Lemma 3.3.1, the homeomorphism of ∆(Aα) given by (z, w) 7→ (az, bw) is admissible

for any (a, b) ∈ T2.

Let (z0, w0), (z1, w1) ∈ ∆(Aα) with 0 < |z0|, |z1| < 1 be such that arg(w0) = arg(w1).

By composing with an admissible homeomorphism, we may suppose that z0, w0 are real and

positive, and so by assumption the same is true for w1.

Write z0 = r0 and z1 = r1e
iθ1 . We will assume z1 belongs to the circle centered at z0 with

radius 1
3r0(1− r0). Then | sin(θ1)| ≤ 1−r0

3 .

We now want to employ the method of rational approximation. Let f be a function in Aα

which has only finitely many nonzero Fourier coefficients and the real part of f is greater than

0. Let u be the real part of f . Let p/q be an approximation to α close enough so that the

method can be applied to f. Let F (ζ) = f(ζq, ζp), |ζ| ≤ 1 and U the real part of F .

Now let ζ0, ζ1 in the ζ− plane corresponding to (z0, w0), (z1, w1) ∈ ∆α. Let ζ ′1 be the real

part of ζ1. A calculation shows that |ζ1 − ζ ′1| ≤ r
1
q

1 | sin( θ1q )| ≤ r
1
q
1
q (1−r0

3 ) ≤ 1
q (1−r0

3 ) ≤ 1
q (1−r0

2 ).
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On the other hand,

|ζ ′1 − ζ0| ≤ max{|r
1
q

0 − (r0 −
r0(1− r0)

3
)
1
q |, |(r0 +

r0(1− r0)

3
)
1
q − r

1
q

0 |}

≤ max{1

q

1

(r0 − r0(1−r0)
3 )

r0(1− r0)

3
,
1

q

1

r0

r0(1− r0)

3
}

= max{1

q

(1− r0)

(2 + r0)
,
1

q

(1− r0)

3
}

≤ 1

q
(
1− r0

2
).

By Pythagorean theorem, we obtain

|ζ1 − ζ0| ≤
1

q
(
1− r0√

2
).

Now U is continuous on |ζ| ≤ 1− r
1
q

0 and harmonic in the interior. Also, 1− r
1
q

0 ≥ 1
q (1− r0).

By Harnack’s inequality (Theorem A.0.10), we have

(
1− 1√

2
1
r0

+ 1√
2

)U(ζ0) ≤ U(ζ1) ≤ (

1
r0

+ 1√
2

1− 1√
2

)U(ζ0).

Thus,

(
1− 1√

2
1
r0

+ 1√
2

)u(ζq0 , ζ
p
0 ) ≤ u(ζq1 , ζ

p
1 ) ≤ (

1
r0

+ 1√
2

1− 1√
2

)u(ζq0 , ζ
p
0 ).

Observe that the set of real parts of functions of Aα which have only finitely many Fourier

coefficients is dense in the set of real parts of functions of Aα. Furthermore, by taking a

sequence pn/qn of rationals converging to α, the method of rational approximation yields that

the corresponding (ζqnj,n, ζ
pn
j,n) converges to (zj , wj).

Thus we can apply Harnack’s inequality to obtain that (z1, w1) belongs to the same part as

(z0, w0).
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CHAPTER 4. ISOMETRIC ISOMORPHISMS OF THE Aα

In this chapter, we show that an isometric isomorphism from Aα to Aβ essentially maps

characters of Aα to the charcters of Aβ (Theorem 4.0.9). In order to prove this theorem, we

use the method of rational approximation from chapter 3. This entails the factorization of

functions in the disc algebra and the form of the Gelfand spaces of Aα and Aβ.

Let pn, qn, n ∈ N be sequences of positive integers such that pn/qn converges to α. Define

a sequence of measures µn on C(T2) by

µn(f) :=

∫
f dµn :=

1

2π

∫ π

−π
f(eiqnθ, eipnθ) dθ.

Let µ denote normalized Lebesgue measure on T2.

Lemma 4.0.3. The sequence {µn} converges in the weak ∗-topology to µ.

Proof. First we show that for any character χ, limn

∫
χdµn =

∫
χdµ. Indeed, if χ = χ0,0 = 1,

then
∫
χdµn = 1 =

∫
χdµ, since the measures are all positive of mass 1. If χ = χm,n with

(m,n) 6= (0, 0), then m + αn 6= 0, so that m + (pk/qk)n 6= 0, for k sufficiently large, hence

mqik + npk 6= 0. Then∫
χdµk =

1

2π

∫ π

−π
ei(mqk+npk)θ dθ = 0 and

∫
χdµ = 0.

Thus the desired result holds for any f ∈ C(T2) which is a finite linear combination of

characters, which is a dense subalgebra of C(T2).

Now by the weak ∗-compactness of unit ball in the dual of C(T2), there is a subnet of

µn which converges, and by the metrizability of the dual space, the subnet can be taken as a

subsequence. By re-labeling, we may denote the convergent subsequence by {µn}.
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Next let f ∈ C(T2), and ε > 0. Let f1 be a Cesaro mean of f such that ||f − f1|| < ε. Then

| lim
n→∞

µn(f)− µ(f)| ≤ | lim
n→∞

µn(f − f1)|+ |µ(f − f1)|

≤ lim
n→∞

µn(ε) + ε

≤ 2ε

Now, the same argument shows that any subsequence of the original sequence {µn} in turn

has a subsequence converging to µ. Thus {µn} converges weak ∗ to µ.

Lemma 4.0.4. (see [5], p. 103) Every invertible function f in C(T) has the form f(z) =

zn exp(g(z)) for n ∈ Z and some function g ∈ C(T). The integer n is uniquely determined.

Lemma 4.0.5. Every invertible function f in C(T2) has the form

f = χm,n exp(g), for some g ∈ C(T2).

Furthermore the character χm,n is uniquely determined.

Proof. Let c = f(1, 1). If 1
cf has the desired form, then so does f. Thus we may assume that

f(1, 1) = 1.

Given f invertible in C(T2), let f1(z) = f(z, 1) and f2(w) = f(1, w). Then f1, f2 ∈ C(T)

and are invertible, so by Lemma 4.0.4 there exist integers m, n, which are uniquely determined,

and functions g1, g2 ∈ C(T) so that f1(z) = zm exp(g1(z)) and f2(w) = wn exp(g2(w)).

Let h(z, w) = z−m exp(−g1(z))w−n exp(−g2(w))f(z, w). Thus h satisfies

h(z, 1) = 1 = h(1, w) for all z, w ∈ T.

We claim that h = exp(k) for some k ∈ C(T2). By Corollary 2.15 of [3], this is equivalent

to showing that h lies in the connected component of the constant function 1 in C(T2).

Now let w0 ∈ T \ {1}, and let t0 ∈ (0, 2π) be such that eit0 = w0. Let hw0 ∈ C(T) be

the function hw0(z) = h(z, w0). Observe that hw0 is path homotopic to the constant 1. Define

γ(t)(·) = h(·, eit), 0 ≤ t ≤ t0 and note that γ(0) is the constant function 1, γ(t0) = hw0 , and

that γ(t)(1) = h(1, et) = 1, t ∈ [0, t0]. We conclude that hw0 lies in the connected component of

the identity of the invertibles in C(T), hence has the form hw0 = exp(kw0) for some kw0 ∈ C(T),
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by Lemma 4.0.4 Now kw0 is not unique, but as hw0(1) = 1, we have that kw0(1) ∈ 2πiZ. If

we specify that kw0(1) = 0, then kw0 is unique. If we do this for each w ∈ T, then the map

w 7→ kw is continuous.

Now we can define a path homotopy F : T2 × [0, 1] → C \ {0} as follows: set F (z, w, t) =

exp(tkw(z)). Then F (z, w, 0) is the constant function 1, F (z, w, 1) = h(z, w), and F (1, 1, t) =

1, t ∈ [0, 1], as k1 = 0. This proves the claim, hence there is a function k ∈ C(T2) such that

h = exp(k).

Lemma 4.0.6. Let f ∈ Aα and suppose f = χm,n exp(g) for some character χm,n and some

g ∈ C(T2). Then both χm,n and exp(g) belong to Aα, and the extension of exp(g) to the Gelfand

space ∆(Aα) does not vanish at the point (0, 0).

Proof. First assume that f is a finite linear combination of characters. By the method of

rational approximation, we can find integers p, q with p/q sufficiently close to α so that the

function F (ζ) = f(ζq, ζp) ∈ A(D). Since f is invertible on T2, it follows F is invertible on T,

so by Lemma 4.0.4 F has the form F (ζ) = ζN exp(G), with N ≥ 0. On the other hand, setting

N1 = mq+np, we have F (ζ) = ζN1 exp(G1), with G1(ζ) = g(ζq, ζp). By the uniqueness assertion

of the Lemma, N1 = N, and hence G − G1 ∈ 2πZ. Now if B is the Blaschke factor (which is

the inner factor) in the inner-outer factorization of F, then B(ζ) = ζN ( ζ−a11−ā1ζ · · ·
ζ−aM
1−āM ζ ) where

0 < |at| < 1, 1 ≤ t ≤M. Furthermore, each factor in the Blaschke product belongs to the disc

algebra, in particular the first factor. Also, exp(G(ζ)) = ( ζ−a11−ā1ζ · · ·
ζ−aM
1−āM ζ )F0(ζ), where F0 is

the outer factor. Since these are in the disc algebra, so is exp(G). Note that since N is the

order of the zero of F at the origin, F (ζ)
ζN

is non-zero at the origin. So, the extension of exp(G)

to the disc does not vanish at the origin.

Next we claim that both χm,n and exp(g) ∈ Aα. Let pk, qk be positive integers such that

{pkqk } converges to α, and let a, b be integers such that a + αb ≥ 0. Let Fk(ζ) = f(ζqk , ζpk) =

ζNk exp(Gk(ζ)). Then∫
T2

χa,b(z, w) exp(g(z, w)) dµ = lim
k

∫
T
ζaqk+bpk exp(Gk(ζ

qk , ζpk)) dθ = 0, ζ = eiθ

for k sufficiently large, as exp(Gk) is in the disc algebra.
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A similar argument shows that χm,n ∈ Aα.

Since the polynomial exp(Gk) is nonzero at the origin, it contains a nonzero multiple of the

constant function as a Fourier coefficient, hence the same is true of exp(g).

Now for the general case, where f = χm,n exp(g) ∈ Aα, we can apply the above argument

to the Cesaro means of f. Note functions in the set χm,n exp(C(T2)) constitute one of the

connected components of the invertible functions in C(T2), and in particular, this set is open,

so that any Cesaro mean sufficiently close to f has this form. Thus considering the Cesaro

means, we obtain a sequence of functions exp(gn) converging to exp(g), such that exp(gn) ∈ Aα

for sufficiently large n. Thus exp(g) ∈ Aα.

Finally, the extension of the function exp(g) to the Gelfand space ∆(Aα) is non-zero at

the point (0, 0). This is due to the nature of the Cesaro approximations: the non-zero Fourier

coefficients of the Cesaro approximants is a subset of the non-zero Fourier coefficients of the

function exp(g). Since all of the Cesaro approximants exp(gn) contain a non-zero multiple of

the constant character, at least for sufficiently large n, the (0, 0) Fourier coefficient of exp(g) is

non-zero.

Lemma 4.0.7. Suppose g ∈ C(T2) is such that exp(g) ∈ Aα, and the extension of exp(g) to

∆(Aα) is never zero. Then exp(g/2) ∈ Aα.

Proof. As in the previous lemma, we begin by assuming that f = exp(g) ∈ Aα is expressible as

a finite linear combination of characters. In that case, f extends to a function on a subset S of

the closed bidisc, S = {(z, w) : |w| = |z|t, a ≤ t ≤ b} where 0 < a < α < b. Since f is nonzero

on ∆(Aα) and uniformly continuous on S, we may assume that f is nonzero on S, possibly by

replacing [a, b] by a smaller interval.

Suppose that p, q are positive integers with a < p/q < b, and set F (ζ) = f(ζq, ζp), so F is in

the disc algebra. If for some |ζ0| < 1, F (ζ0) = 0, then f(z0, w0) = 0, where ζq0 = z0, ζ
p
0 = w0.

But then |w0| = rp0 = |z0|
p
q , |ζ0| = r0. Since p/q ∈ (a, b), it follows that (z0, w0) ∈ S, and hence

0 = F (ζ0) = f(z0, w0), a contradiction.

It follows that F (ζ) is outer. Then, again by factorization, since F (ζ) = exp(G), we obtain

that exp(G/2) is in the disc algebra. ([4])
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To see that exp(g/2) ∈ Aα, let pk
qk

be a sequence of fractions converging to α. Set Fk(ζ) =

exp(Gk(ζ)). By the argument above, we have that exp(Gk/2) is in the disc algebra, at least for

sufficiently large k. Then, for any (m,n) ∈ Z2 with m+ αn ≥ 0, we have∫
T2

χm,n(z, w) exp(
g

2
(z, w)) dµ = lim

k

∫
T
ζmqk+npk exp(

Gk
2

(ζ)) dθ = 0,

ζ = eiθ.

For the general case, where f = exp(g) ∈ Aα, apply the argument above to the Cesaro means

fn of f to get fn = exp(gn) with exp(gn/2) ∈ Aα. Thus exp(gn/2) converges to exp(g/2), so

that it is also in Aα.

Proposition 4.0.8. Suppose χm,n is a character, and g ∈ C(T2) are such that the function

f = χm,n exp(g) ∈ Aα, and f does not vanish on ∆(Aα) \ {(0, 0)}. Then χm,n and g lie in Aα.

Furthermore, if | exp(g)| = 1 on T2, then g is constant.

Proof. Lemma 4.0.6 shows that χm,n ∈ Aα, and exp(g) ∈ Aα does not vanish on ∆(Aα). Then,

by Lemma 4.0.6 and repeated application of Lemma 4.0.7 we obtain that

exp(g), exp(g/2), . . . , exp(g/2k), · · · ∈ Aα.

Now if tk is any sequence of positive reals decreasing to 0, then

g = lim
k→∞

exp(tkg)− 1

tk

where the convergence is in norm. Applying this with tk = 1
2k
, we obtain the desired result.

If | exp(g)| = 1 on T2, then exp(−g) = exp(g∗) = exp(g)∗ ∈ Aα ∩ A∗α = {C · 1}, so, g is

constant.

If Φ : Aα → Aβ is an algebraic isomorphism, there is a weak* homeomorphism ϕ : ∆(Aβ)→

∆(Aα) defined by f(ϕ(z, w)) = Φ(f)(z, w). In other words, ϕ is admissible (Definition 3.3.2).

However, if Φ is an isometric isomorphism, then more is true: ϕ maps the Shilov boundary of

∆(Aβ) to the Shilov boundary of ∆(Aα), and also maps parts of ∆(Aβ) to parts of ∆(Aα).

Thus, ϕ maps T2 to itself, maps the singleton part {(0, 0)} ∈ ∆(Aβ) to the corresponding part

in ∆(Aα), and the set {(z, w) : |w| = |z|β, 0 < |z| < 1} ∈ ∆(Aβ) to the corresponding set

{(z, w) : |w| = |z|α, 0 < |z| < 1} ∈ ∆(Aα).
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Theorem 4.0.9. Φ : Aα → Aβ is an isometric isomorphism if and only if Φ has form

Φ(f) = f ◦ ϕ, where ϕ : ∆(Aβ)→ ∆(Aα) is of the form

(z, w) 7→ (c1z
m1wn1 , c2z

m2wn2)

where cj are unimodular constants, j = 1, 2, and the matrix

A =

m1 n1

m2 n2

 ∈ GL(2,Z)

satisfies m1 + βn1 > 0 and m2 + βn2 = α(m1 + βn1).

Proof. Assume that Φ : Aα → Aβ is an isometric isomorphism. Then there is a homeomorphism

ϕ : ∆(Aβ)→ ∆(Aα) defined by f(ϕ(z, w)) = Φ(f)(z, w). Recall that the characters χ1,0, χ0,1

are the coordinate functions

χ1,0(z, w) = z, χ0,1(z, w) = w.

Set f1 = Φ(χ1,0) = χ1,0 ◦ ϕ, and similarly define f2, with χ0,1 in place of χ1,0, so that

ϕ(z, w) = (f1(z, w), f2(z, w)).

Then fj ∈ Aβ and since the homeomorphism ϕ maps ∆(Aβ) → ∆(Aα) and in particular

maps the Shilov boundary of ∆(Aβ) to the Shilov boundary of ∆(Aα), this implies that |fj | = 1

on T2, j = 1, 2. Furthermore ϕ maps the part (0, 0) ∈ ∆(Aβ) to the part (0, 0) ∈ ∆(Aα). This

implies that fj(z, w) = 0 if and only if (z, w) = (0, 0).

Now since fj is invertible on T2, by Lemma 4.0.5 it has the form fj = χmj ,nj exp(gj), j =

1, 2. By Proposition 4.0.8, exp(gj) is constant, say equal to cj , with |cj | = 1. Since fj =

cjχmj ,nj ∈ Aβ, we have that mj + βnj ≥ 0. And clearly mj + βnj > 0, for fj cannot be

constant.

Since

ϕ(z, w) = (f1(z, w), f2(z, w)) ∈ ∆(Aα)
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we have that

|f2(z, w)| = |f1(z, w)|α

|χm2,n2(z, w) = |χm1,n1(z, w)|α

|zm2wn2 | = |zm1wn1 |α

|z|m2 |z|βn2 = (|z|m1 |z|βn1)α

since |w| = |z|β in ∆(Aβ). Hence m2 + βn2 = α(m1 + βn1).

Furthermore, since ϕ is invertible, the map

T2 → T2, (z, w) 7→ (zm1wn1 , zm2wn2)

is invertible, so that the matrix

A =

m1 n1

m2 n2

 ∈ GL(2,Z).

Conversely, assume that Φ has form in the assumption. By composing Φ with the map in

Lemma 3.3.1, we can assume that c1 = 1 = c2. First, we will show that ϕ : ∆(Aβ) → ∆(Aα)

is well-defined. Let (z, w) ∈ D̄× D̄ be such that |z|β = |w|. Then

|zm1wn1 |α = (|z|m1 |z|βn1)α

= |z|α(m1+βn1)

= |z|m2+βn2

= |z|m2 |z|βn2

= |z|m2 |w|ns

= |zm2wn2 |.

Thus ϕ is well-defined. Let (m,n) ∈ Z2. Since m2 + βn2 = α(m1 + βn1), we have (mm1 +

nm2) + β(mn1 + nm2) = (m + αn)(m1 + βn1). Moreover, since m1 + βn1 > 0, we get the

necessary and sufficient condition :

m+ αn ≥ 0 if and only if (m+ αn)(m1 + βn1) ≥ 0.
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Let χm,n be a character of Aα. Then

(χm,n ◦ ϕ)(z, w) = χm,n(ϕ(z, w)) = χm,n(zm1wn1 , zm2wn2)

= zmm1+nm2wmn1+nm2

= χmm1+nm2,mn1+nm2(z, w).

Clearly, Φ is a homomorphism. Next, we will show that Φ is surjective. Let (m,n) ∈ Z2 be

such that m+ βn ≥ 0.

Claim : χ n2m−m2n
m1n2−m2n1

,
−n1m+m1n
m1n2−m2n1

∈ Aα.

Since A =

m1 n1

m2 n2

 ∈ GL(2,Z), ( n2m−m2n
m1n2−m2n1

, −n1m+m1n
m1n2−m2n1

) ∈ Z2. We will show that

n2m−m2n
m1n2−m2n1

+ α −n1m+m1n
m1n2−m2n1

≥ 0. Since m1 + βn1 > 0, it is enough to show that (m1 +

βn1)( n2m−m2n
m1n2−m2n1

+ α −n1m+m1n
m1n2−m2n1

) ≥ 0.

(m1 + βn1)(
n2m−m2n

m1n2 −m2n1
+ α
−n1m+m1n

m1n2 −m2n1
)

=
(m1 + βn1)(n2m−m2n)− α(m1 + βn1)(n1m−m1n)

m1n2 − n1m2

=
(m1 + βn1)(n2m−m2n)− (m2 + βn2)(n1m−m1n)

m1n2 − n1m2

=
m1n2m−m1m2n+ βn1n2m− βn1m2n− n1m2m− βn1n2m+m1m2n+ βm1n2n

m1n2 − n1m2

=
(m1n2 − n1m2)(m+ βn)

m1n2 − n1m2

= m+ βn

≥ 0.

Thus χ n2m−m2n
m1n2−m2n1

,
−n1m+m1n
m1n2−m2n1

∈ Aα. Moreover,

(χ n2m−m2n
m1n2−m2n1

,
−n1m+m1n
m1n2−m2n1

◦ ϕ)(z, w)

= χ n2m−m2n
m1n2−m2n1

,
−n1m+m1n
m1n2−m2n1

(ϕ(z, w))

= χ n2m−m2n
m1n2−m2n1

,
−n1m+m1n
m1n2−m2n1

(zm1wn1 , zm2wn2)

= z
m1(

n2m−m2n
m1n2−m2n1

)+m2(
−n1m+m1n
m1n2−m2n1

)
w
n1(

n2m−m2n
m1n2−m2n1

)+n2(
−n1m+m1n
m1n2−m2n1

)

= χm,n(z, w).
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Thus Φ is surjective. Next, we will show that Φ is an isometry. Let f ∈ Aα. Since A =m1 n1

m2 n2

 ∈ GL(2,Z), the map

T2 → T2, (z, w) 7→ (zm1wn1 , zm2wn2)

is a bijection. Thus

‖Φ(f)‖ = sup
(z,w)∈T2

|f(zm1wn1 , zm2wn2)|

= sup
(z,w)∈T2

|f(z, w)|

= ‖f‖.

Hence Φ : Aα → Aβ is an isometric isomorphism.

If α is an irrational, let Gα denote the dense additive subgroup {m+ αn : m,n ∈ Z} ⊂ R.

Corollary 4.0.10. Let α, β be positive irrationals. Then the algebras Aα, Aβ are isometrically

isomorphic if and only if the groups Gα, Gβ are order isomorphic. That is, if and only if there

is a group isomorphism from Gα to Gβ which maps positive elements of Gα to positive elements

of Gβ.

Proof. We use the fact that Gα and Gβ are isomorphic to Z2, Aut(Z2) = GL(2,Z) and Theo-

rem 4.0.9.
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CHAPTER 5. ISOMETRIC AUTOMORPHISMS OF THE Aα

Throughout, automorphisms always mean isometric automorphisms. In this chapter, we

will investigate the automorphism group Aut(Aα) of the algebra Aα. By Theorem 4.0.9 from

the previous section to the case β = α, it follows immediately that if α is not quadratic

irrational, then Aut(Aα) ∼= T2. Therefore, we will focus on the case when α is positive quadratic

irrational. For such an α, we show that Aut(Aα) is a semidirect product of T2 and Z. At the

end of this chapter, we show how the solutions of Pell’s equations can be employed to calculate

the automorphism group Aut(Aα).

5.1 The automorphism group of Aα

First, we would like to introduce some notations that we will use throughout this chapter.

For f ∈ C(T2), (c1, c2) ∈ T2, and A =

a b

c d

 ∈ GL(2,Z), let π((c1, c2)), π(A) : C(T2) →

C(T2) be defined by

π((c1, c2))(f)(z, w) = f(c1z, c2w), and

π(A)(f) = f ◦ ϕ,

where ϕ : T2 → T2 is of the form (z, w) 7→ (zawb, zcwd).

Note that we can view π(c) and π(A) as the restrictions of π(c) and π(A) to Aα where

c ∈ T2 and A ∈ GL(2,Z).

Now, for each quadratic irrational α > 0, we want to examine the automorphism group

Aut(Aα) of Aα. To find this automorphism group, we need to know some results about Pell’s

equations and Lie algebra.
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Pell’s equation is a Diophantine equation of the form

x2 − ny2 = 1,

where n is a positive nonsquare integer. This equation is always solvable in integers and has the

trivial solution with x = 1 and y = 0. Moreover, this equation always has nontrivial solutions.

It is well-known that the set of solutions of this equation is given by

{(1, 0), (−1, 0), (xk, yk),(−xk, yk), (xk,−yk), (−xk,−yk) :

xk+1 = x1xk + ny1yk,

yk+1 = x1yk + y1xk,

k = 1, 2, . . .},

where (x1, y1) is the fundamental solution of x2 − ny2 = 1. The fundamental solution of

x2 − ny2 = 1 is the pair (x1, y1), x1 is the smallest positive interger and y1 is the positive

integer that satisfies

x2
1 − ny2

1 = 1.

Now, we look at the equation of the form

x2 − ny2 = −1,

where n is a positive nonsquare integer. This equation is called the negative Pell’s equation.

Note that, this equation may have no solutions in integers. There is a necessary but not

sufficient condition of this equation to have integer solutions that all odd prime factors of n

must be congruent to 1 modulo 4. If this negative Pell’s equation has solutions, then the set

of all solutions is given by

{(x′k, y′k),(−x′k, y′k), (x′k,−y′k), (−x′k,−y′k) :

x′k+1 = (x′21 + ny′21 )x′k + 2nx′1y
′
1y
′
k,

y′k+1 = (x′21 + ny′21 )y′k + 2x′1y
′
1x
′
k,

k = 1, 2, . . .},
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where (x′1, y
′
1) is the fundamental solution of x2 − ny2 = −1. Moreover, the fundamental

solution (x1, y1) of the Pell’s equation x2 − ny2 = 1 can be obtained from the fundamental

solution (x′1, y
′
1) of the negative Pell’s equation x2 − ny2 = −1 by

x1 = x′21 + ny′21 and y1 = 2x′1y
′
1.

Another equations that relates to our problems are the equations of the forms

x2 − ny2 = ±4,

where n is a positive nonsquare integer. The equation x2 − ny2 = 4 is always solvable over

integers. The set of solutions of this equation is given by

{(2, 0), (−2, 0), (xk, yk),(−xk, yk), (xk,−yk), (−xk,−yk) :

xk+1 =
1

2
(x1xk + ny1yk),

yk+1 =
1

2
(x1yk + y1xk),

k = 1, 2, . . .},

where (x1, y1) is the fundamental solution of x2 − ny2 = 4. The equation x2 − ny2 = −4 may

not be solvable over integers. But if it has solutions, then the set of all solutions is

{(x′k, y′k),(−x′k, y′k), (x′k,−y′k), (−x′k,−y′k) :

x′k+1 =
1

4
((x′21 + ny′21 )x′k + 2nx′1y

′
1y
′
k),

y′k+1 =
1

4
((x′21 + ny′21 )y′k + 2x′1y

′
1x
′
k),

k = 1, 2, . . .},

where (x′1, y
′
1) is the fundamental solution of x2 − ny2 = −4. Moreover, the fundamental

solution (x1, y1) of the equation x2 − ny2 = 4 can be obtained from the fundamental solution

(x′1, y
′
1) of x2 − ny2 = −4 by

x1 =
1

2
(x′21 + ny′21 ) and y1 = x′1y

′
1.
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The following Proposition is useful.

Proposition 5.1.1. (see [8]) Let n > 0 be a nonsquare integer. If n 6≡ 0 (mod 4), then any

solution to the equation x2− ny2 = 4, x and y have the same parity. Moreover, if the equation

x2 − ny2 = −4 is solvable, then x and y have the same parity.

Now, we will talk about some basic results from the special linear Lie algebra sl(2,R).

The Lie algebra sl(2,R) consists of all 2×2 matrices with real entries and trace zero. The Lie

bracket is given by [A,B] = AB −BA , for A,B ∈ sl(2,R). It is well-known that (R1, R2, R3)

is a basis for sl(2,R) with properties that R1 = [R2, R3], R2 = [R1, R2], and −R3 = [R1, R3],

where

R1 =
1

2

1 0

0 −1

 , R2 =
1√
2

0 1

0 0

 , and R3 =
1√
2

0 0

1 0

 .
By using this basis and direct calculation, it is easy to show that if [A,B] = 0, then A and B

must be linearly dependent. In other words, if A and B commute in sl(2,R) and B 6= 0, then

there exists k ∈ R such that A = kB. We will use this result to determine the automorphism

group of Aα.

Lemma 5.1.2. Let A,B be matrices in sl(2,R). If B 6= 0 and AB = BA, then ∃ k ∈ R such

that A = kB.

Proof. Since A,B ∈ sl(2,R), ∃ a1, a2, a3, b1, b2, b3 ∈ R so that A = a1R1 + a2R2 + a3R3 and

B = b1R1 + b2R2 + b3R3. Since AB = BA, [A,B] = 0. Thus

0 = [A,B] = [a1R1 + a2R2 + a3R3, b1R1 + b2R2 + b3R3]

= a1b1[R1, R1] + a1b2[R1, R2] + a1b3[R1, R3] + a2b1[R2, R1]+

a2b2[R2, R2] + a2b3[R2, R3] + a3b1[R3, R1] + a3b2[R3, R2]+

a3b3[R3, R3]

= a1b2R2 − a1b3R3 − a2b1R2 + a2b3R1 + a3b1R3 − a3b2R1

= (a2b3 − a3b2)R1 + (a1b2 − a2b1)R2 + (a3b1 − a1b3)R3.

Since R1, R2, R3 are linearly independent, we have

a1b2 = a2b1, a2b3 = a3b2, and a3b1 = a1b3.
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Since B 6= 0, there exists i ∈ {1, 2, 3} such that bi 6= 0. Let k = ai
bi

. Then A = kB.

To find the automorphism group of Aα, when α is positive quadratic irrational, we begin

by using Theorem 4.0.9 in the case β = α to get the following Corollary:

Corollary 5.1.3. Let A =

m1 n1

m2 n2

 ∈ GL(2,Z).Then π(A) is an automorphism of Aα if and

only if the matrix A satisfies m1 + αn1 > 0 and

n1α
2 + (m1 − n2)α−m2 = 0.

Remark 5.1.4. For any matrix A =

m1 n1

m2 n2

 ∈ GL(2,Z) that satisfies conditions in Corol-

lary 5.1.3, A

1

α

 = (m1 + αn1)

1

α

, i.e.,

1

α

 is an eigenvector of A with positive eigenvalue

m1 + αn1.

Lemma 5.1.5. If α is a positive quadratic irrational number, then there exists a non-identity

matrix A ∈ SL(2,Z) such that π(A) is an automorphism of Aα.

Proof. Since α is positive quadratic irrational, α = m+k
√
n

p , where m ∈ Z, k ∈ {−1, 1}, n, p ∈ N,

n is nonsquare, m + k
√
n > 0. Let (x1, y1) be the fundamental solution of the Pell’s equation

x2−np2y2 = 1. Let A =

x1 −mpy1 p2y1

(n−m2)y1 x1 +mpy1

 . Then det(A) = (x1−mpy1)(x1 +mpy1)−

((n−m2)y1)(p2y1) = x2
1−m2p2y2

1−np2y2
1 +m2p2y2

1 = x2
1−np2y2

1 = 1. Thus A is a non-identity

matrix in SL(2,Z). Moreover,

p2y1α
2 + (−2mpy1)α− (n−m2)y1

= p2y1(
m2 + 2mk

√
n+ n

p2
) + (−2mpy1)(

m+ k
√
n

p
)− (n−m2)y1

= m2y1 + 2mk
√
ny1 + ny1 − 2m2y1 − 2mk

√
ny1 − ny1 +my2

1

= 0.

Since x2
1 = 1 + np2y2

1 > np2y2
1 and x1 > 0, we have

(x1 −mpy1) + p2y1α = (x1 −mpy1) + p2y1(
m+ k

√
n

p
) = x1 + k

√
npy1 > 0.

By Corollary 5.1.3, π(A) is an automorphism of Aα.
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Lemma 5.1.6. Let A1, A2 be matrices in GL(2,Z) and α a positive quadratic irrational number.

If π(A1) and π(A2) are automorphisms of Aα, then A1A2 = A2A1.

Proof. Let A1, A2 ∈ GL(2,Z) be such that π(A1) and π(A2) are automorphisms of Aα. Let

H = {A ∈ GL(2,Z) : A

1

α

 = λ

1

α

 , for some λ > 0}. Then H is a subgroup of GL(2,Z).

Let φ : H → R+ be defined by φ(A) = λ. Then kerφ = {I} Thus H is isomorphic to a subgroup

of R+. Hence H is commutative. Since A1, A2 ∈ H, A1A2 = A2A1.

Lemma 5.1.7. Let α be a positive irrational number. Let

H = {A ∈ SL(2,Z) : A

1

α

 = λ

1

α

 , for some λ > 0}.

If A ∈ H with distinct eigenvalues and n is an even number, then An has no square root in

GL(2,Z) \ SL(2,Z).

Proof. Let n be even and λ an eigenvalue of A corresponding to an eigenvector

1

α

. Then 1
λ

is the other eigenvalue of A. We write A = P

λ 0

0 1
λ

P−1, where P ∈ GL(2,R) and the first

column of P is

1

α

. Since n is even, n = 2k for some k ∈ Z. Assume that An has a square

root in GL(2,Z) \ SL(2,Z). Then P

λk 0

0 − 1
λk

P−1 ∈ GL(2,Z). Thus

P

1 0

0 −1

P−1 = P

λk 0

0 − 1
λk

P−1A−k ∈ GL(2,Z).

Note that the only matrix in GL(2,Z) that has an eigenvector

1

α

 with eigenvalue 1 is the

identity matrix. Since P

1 0

0 −1

P−1 ∈ GL(2,Z) has an eigenvector

1

α

 with eigenvalue 1,
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P

1 0

0 −1

P−1 must be the identity matrix. This is a contradiction since

det(P

1 0

0 −1

P−1) = −1.

Hence An has no square root in GL(2,Z) \ SL(2,Z).

Lemma 5.1.8. If α is a positive quadratic irrational number, then there is a matrix A0 ∈

GL(2,Z) such that for any matrix A with π(A) ∈ Aut(Aα), π(A) is of the form (π(A0))n, for

some n ∈ Z.

Proof. By Lemma 5.1.5, there is a non-identity matrix B ∈ SL(2,Z) such that π(B) is an

automorphism of Aα. Since B ∈ SL(2,R), there exist a non-zero matrix S1 ∈ sl(2,R) such

that B = exp(S1). Let H = {A ∈ SL(2,Z) : A

1

α

 = λ

1

α

 , for some λ > 0}. Then

B ∈ H. Let C = {t ∈ R : exp(tS1) ∈ H}. Then C is a closed additive subgroup of R. Let

t0 = inf{t > 0 : exp(tS1) ∈ H}. Then t0 generates the group C. Let A′ = exp(t0S1). Note

that A′ cannot have a square root in SL(2,Z). If A′ has no square root in GL(2,Z), then let

A0 = A′. If A′ has a square root in GL(2,Z), then let A0 be the square root that has positive

eigenvalue with respect to the eigenvector

1

α

.

Let A ∈ GL(2,Z) be such that π(A) ∈ Aut(Aα). If A ∈ SL(2,Z), then there exists

S2 ∈ sl(2,R) such that A = exp(S2). By Lemma 5.1.6, BA = AB. Thus S1S2 = S2S1. By

Lemma 5.1.2, ∃ k ∈ R so that S2 = kS1. Since A ∈ H, k ∈ C. Then ∃ j ∈ Z such that k = jt0

Hence A = (A′)j . Thus A = An0 for some n ∈ Z. If A 6∈ SL(2,Z), then A2 ∈ SL(2,Z). By

similar argument, we have ∃n ∈ Z such that A2 = (A′)n. By Lemma 5.1.7, n must be odd.

Claim: A′ has a square root in GL(2,Z).

Let λ and λ′ be eigenvalues of A and A′ corresponding to an eigenvector

1

α

. By

Lemma 5.1.6, AA′ = A′A. Since both A and A′ are diagonalizable and they commute, A

and A′ are simultaneously diagonalizable. Then we can write A = P

λ 0

0 − 1
λ

P−1 and
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A′ = P

λ′ 0

0 1
λ′

P−1, where P ∈ GL(2,R) and the first column of P is

1

α

. Since A2 = (A′)n,

we have λ2 = (λ′)n. Since n is odd, n = 2k + 1 for some k ∈ Z. Thus λ = (λ′)k+ 1
2 . Hence

P

√λ′ 0

0 − 1√
λ′

P−1 = P

(λ′)−kλ 0

0 − 1
(λ′)−kλ

P−1

= P

 1
(λ′)k

0

0 (λ′)k

P−1P

λ 0

0 − 1
λ

P−1

= (A′)−kA ∈ GL(2,Z).

In this case, A0 is the square root of A′ that has positive eigenvalue with respect to the

eigenvector

1

α

. Thus A = An0 . Hence π(A) = (π(A0))n.

Now, if α is positive quadratic irrational, we know from Theorem 4.0.9 and Lemma 5.1.8

that Aut(Aα) is the set {π(c)π(A)k : c ∈ T2, k ∈ Z} for some non-identity matrix A ∈ GL(2,Z).

For A =

a b

c d

 ∈ GL(2,Z), let ψA : T2 → T2 be defined by ψA((c1, c2)) = (ca1c
b
2, c

c
1c
d
2), for

(c1, c2) ∈ T2. Note that Aut(T2) = {ψA : A ∈ GL(2,Z)}. For each A ∈ GL(2,Z), let T2 oψA Z

denote the semidirect product of T2 and Z, where the group multiplication of T2oψA Z is given

by (c,m).(d, n) = (cψmA (d),m+ n).

Theorem 5.1.9. Let α be a positive irrational. If α is not a quadratic irrational, then from

Theorem 4.0.9 and Corollary 5.1.3, Aut(Aα) ∼= T2. If α is positve quadratic irrational, then

Aut(Aα) ∼= T2 oψA Z for some non-identity matrix A ∈ GL(2,Z).

Proof. Since α is positive quadratic irrational, Aut(Aα) = {π(c)π(A)k : c ∈ T2, k ∈ Z} for some

non-identity matrix A ∈ GL(2,Z). Let Nα denote the subgroup generated by {π(c) : c ∈ T2}

and < π(A) > denote the subgroup generated by π(A). First, we will show that Nα E Aut(Aα).
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Let k ∈ Z and (c1, c2) ∈ T2. Let f ∈ Aα. Let Ak =

a b

c d

. Then

π(A)kπ((c1, c2))π(A)−k(f)(z, w) = π((c1, c2))π(A)−k(f)(zawb, zcwd)

= π(A)−k(f)(c1z
awb, c2z

cwd)

= f(c
d

ad−bc
1 c

− b
ad−bc

2 z
ad−bc
ad−bcw

bd−bd
ad−bc , c

− c
ad−bc

1 c
a

ad−bc
2 z

−ac+ac
ad−bc w

−bc+ad
ad−bc )

= f(c
d

ad−bc
1 c

− b
ad−bc

2 z, c
− c
ad−bc

1 c
a

ad−bc
2 w)

= π((c
d

ad−bc
1 c

− b
ad−bc

2 , c
− c
ad−bc

1 c
a

ad−bc
2 ))(f)(z, w).

Thus π(A)kπ((c1, c2))π(A)−k ∈ Nα. Hence Nα E Aut(Aα). Now we have that Aut(Aα) =

Nα < π(A) > and Nα∩ < π(A) >= {1}. Note that

π(c)π(A)k1π(d)π(A)k2 = π(c)(π(A)k1π(d)π(A)−k1)π(A)k1+k2

= π(c)π(ψ−k1A (d))π(A)k1+k2 ,

for c,d ∈ T2, k1, k2 ∈ Z. Thus Aut(Aα) ∼= T2 oψA Z.

Theorem 5.1.10. Let α, β be positive quadratic irrationals. If Aut(Aα) ∼= T2 oψA Z and

Aut(Aβ) ∼= T2 oψB Z, then Aut(Aα) ∼= Aut(Aβ) if and only if B = C−1AC or B−1 = C−1AC

for some C ∈ GL(2,Z).

Proof. First, we will show that there is no group homomorphism from T2 onto Z. Assume

that there is a group epimorphism φ : T2 → Z. Then ∃ c ∈ T2 such that φ(c) = 1. Since

c ∈ T2, ∃d ∈ T2 so that d2 = c. Thus 1 = φ(c) = φ(d.d) = φ(d) + φ(d) = 2φ(d) Hence

φ(d) = 1
2 , a contradiction. Therefore, there is no such an epimorphism. By Theorem A.0.11,

T2 oψA Z ∼= T2 oψB Z if and only if ψA is conjugate to ψB or ψ−1
B . Thus T2 oψA Z ∼= T2 oψB Z

if and only if A is conjugate to B or B−1, i.e., ∃C ∈ GL(2,Z) such that B = C−1AC or

B−1 = C−1AC.

5.2 Computation of the automorphism group of Aα

In this section, we will find an explicit formula for any matrix A ∈ GL(2,Z) such that

π(A) ∈ Aut(Aα). First, notice that for any positive quadratic irrational number α, we can



35

write α in one of following forms:

(1) α =
√

p
q , p, q ∈ N, and gcd(p, q) = 1,

(2) α = r
s + k

√
p
q , r ∈ Z, p, q, s ∈ N, k ∈ {−1, 1}, gcd(r, s) = 1, and gcd(p, q) = 1.

Note that if
√

p
q is irrational, then pq is nonsquare.

Proposition 5.2.1. Let α be a positive irrational number of the form
√

p
q , where p, q ∈ N, and

gcd(p, q) = 1.

(1) If the equation x2−pqy2 = −1 is not solvable over the integers, then, for any A ∈ GL(2,Z),

π(A) is an automorphism of Aα if and only if A =

 x1 qy1

py1 x1


n

, for some n ∈ Z, where (x1, y1)

is the fundamental solution of the Pell’s equation x2 − pqy2 = 1.

(2) If the equation x2 − pqy2 = −1 is solvable over the integers, then, for any A ∈ GL(2,Z),

π(A) is an automorphism of Aα if and only if A =

 x′1 qy′1

py′1 x′1


n

, for some n ∈ Z, where (x′1, y
′
1)

is the fundamental solution of the negative Pell’s equation x2 − pqy2 = −1.

Proof. Let A =

a b

c d

 ∈ GL(2,Z) such that a+ b
√

p
q > 0 and

b
p

q
+ (a− d)

√
p

q
− c = 0.

Then a = d and c = p
q b. So A is of the form

 a b

p
q b a

. Since A ∈ GL(2,Z) and gcd(p, q) = 1,

q|b. So ∃ j ∈ Z such that b = qj. Thus

A =

 a qj

pj a

 .
If det(A) = 1, then a2 − pqj2 = 1. So a2 = 1 + pqj2 > pqj2 = p

q b
2. Thus |a| > |b|

√
p
q . Since

a + b
√

p
q > 0, a must be positive. In this case, we have to find integers a, j such that a > 0,

a2 − pqj2 = 1.

If det(A) = −1, then a2 − pqj2 = −1. So p
q b

2 = pqj2 = 1 + a2 > a2. Thus |b|
√

p
q > |a|. Since

a+ b
√

p
q > 0, b must be positive, i.e., j must be positive. In this case, we have to find integers
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a, j such that j > 0, a2 − pqj2 = −1.

Case (1) : The equation x2 − pqy2 = −1 is not solvable over the integers.

Then det(A) must be 1. Now, A is of the form

 a qj

pj a

, where a, j ∈ Z such that a > 0

and a2 − pqj2 = 1. Let (x1, y1) be the positive fundamental solution of the Pell’s equation

x2 − pqy2 = 1. Then all nonnegative solutions (x, y) are given by the set

{(1, 0), (xn, yn) : xn+1 = x1xn + pqy1yn, yn+1 = x1yn + y1xn, n = 1, 2, . . .}.

Next, we will show by induction that for any n ∈ N, x1 qy1

py1 x1


n

=

 xn qyn

pyn xn

 .
Basis step: Trivial.

Inductive step: Let n ∈ N. Assume that

 x1 qy1

py1 x1


n

=

 xn qyn

pyn xn

 . Then

 x1 qy1

py1 x1


n+1

=

 xn qyn

pyn xn


 x1 qy1

py1 x1


=

x1xn + pqy1yn qy1xn + qx1yn

px1yn + py1xn pqy1yn + x1xn


=

 xn+1 qyn+1

pyn+1 xn+1

 .
Thus, for any n ∈ N,  x1 qy1

py1 x1


−n

=

 xn q(−yn)

p(−yn) xn

 .

Note that if a = 1 and j = 0, A =

1 0

0 1

. Thus A =

 x1 qy1

py1 x1


n

, for some n ∈ Z.

Case (2) : The equation x2 − pqy2 = −1 is solvable over the integers.
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Then A must be of the form

 a qj

pj a

 where a, j ∈ Z,

a > 0 and a2 − pqj2 = 1

or

j > 0 and a2 − pqj2 = −1.

Let (x′1, y
′
1) be the fundamental solution of the negative Pell’s equation x2 − pqy2 = −1. Then

(x1, y1) = (x′21 + pqy′21 , 2x
′
1y
′
1) is the fundamental solution of x2 − pqy2 = 1. Also, all positive

solutions (x, y) of x2 − pqy2 = −1 are given by the set

{(x′n, y′n) :x′n+1 = (x′21 + pqy′21 )x′n + 2pqx′1y
′
1y
′
n,

y′n+1 = (x′21 + pqy′21 )y′n + 2x′1y
′
1x
′
n, n = 1, 2, . . .}

and all nonnegative solutions (x, y) of x2 − pqy2 = 1 are given by the set

{(1, 0), (xn, yn) : xn+1 = x1xn + pqy1yn, yn+1 = x1yn + y1xn, n = 1, 2, . . .}.

We will show that, for any n ∈ N, x′1 qy′1

py′1 x′1


2n−1

=

 x′n qy′n

py′n x′n

 .

Let n ∈ N. Assume that

 x′1 qy′1

py′1 x′1


2n−1

=

 x′n qy′n

py′n x′n

 . Then

 x′1 qy′1

py′1 x′1


2(n+1)−1

=

 x′1 qy′1

py′1 x′1


2n−1  x′1 qy′1

py′1 x′1


2

=

 x′n qy′n

py′n x′n


x′21 + pqy′21 2qx′1y

′
1

2px′1y
′
1 x′21 + pqy′21


=

(x′21 + pqy′21 )x′n + 2pqx′1y
′
1yn 2qx′1x

′
ny
′
1 + qy′n(x′21 + pqy′21 )

py′n(x′21 + pqy′21 ) + 2px′1x
′
ny
′
1 2pqx′1y

′
1yn + (x′21 + pqy′21 )x′n


=

 x′n+1 qy′n+1

py′n+1 x′n+1

 .
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Hence, for any n ∈ N,  x′1 qy′1

py′1 x′1


2n−1

=

 x′n qy′n

py′n x′n

 .
Thus, for any n ∈ N,  x′1 qy′1

py′1 x′1


−(2n−1)

=

−x′n qy′n

py′n −x′n

 .
We also have, x′1 qy′1

py′1 x′1


2n

=

x′21 + pqy′21 2qx′1y
′
1

2px′1y
′
1 x′21 + pqy′21


n

=

 x1 qy1

py1 x1


n

=

 xn qyn

pyn xn


and  x′1 qy′1

py′1 x′1


−2n

=

 xn q(−yn)

p(−yn) xn

 , n ∈ N.

If a = 1 and j = 0, then A =

1 0

0 1

. Thus A =

 x′1 qy′1

py′1 x′1


n

, for some n ∈ Z.

Proposition 5.2.2. Let α be a positive irrational number of the form r
s + k

√
p
q , where r ∈

Z, p, q, s ∈ N, k ∈ {−1, 1}, s is odd, gcd(r, s) = 1 and gcd(p, q) = 1. Let d1 = gcd(ps2−qr2, qs).

(1) If the equation x2− pqs4

d21
y2 = −1 is not solvable over the integers, then, for any A ∈ GL(2,Z),

π(A) is an automorphism of Aα if and only if A =

− qrs
d1
y1 + x1

qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1


n

, for some

n ∈ Z, where (x1, y1) is the fundamental solution of x2 − pqs4

d21
y2 = 1.

(2) If the equation x2 − pqs4

d21
y2 = −1 is solvable over the integers, then, for any A ∈ GL(2,Z),

π(A) is an automorphism of Aα if and only if A =

− qrs
d1
ky′1 + x′1

qs2

d1
ky′1

(ps
2−qr2
d1

)ky′1
qrs
d1
ky′1 + x′1


n

, for some

n ∈ Z, where (x′1, y
′
1) is the fundamental solution of x2 − pqs4

d21
y2 = −1.

Proof. First, note that qrs
d1
, qs

2

d1
, ps

2−qr2
d1

∈ Z. We will show that pqs4

d21
is a nonsquare integer.

Since d1|(ps2− qr2) and d1|qs2, we have d2
1|(pqs4− q2r2s2). We also have that d2

1|q2r2s2. Thus
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d2
1|pqs4. Since α is irrational,

√
p
q is irrational. Thus pq is nonsquare. Hence pqs4

d21
must be

nonsquare. Now, let A =

a b

c d

 ∈ GL(2,Z) be such that a+ bα > 0 and

bα2 + (a− d)α− c = 0.

Then a− d = −2 rsb and c = (ps
2−qr2
qs2

)b. So A is of the form a b

(ps
2−qr2
qs2

)b a+ 2 rsb

 .
Since A ∈ GL(2,Z) and gcd(2r, s) = 1, we have s|b. Then there exists j ∈ Z such that b = sj.

Now,

A =

 a sj

(ps
2−qr2
qs )j a+ 2rj

 .
Since gcd(ps

2−qr2
d1

, qsd1 ) = 1, qs
d1
|j. So j = qs

d1
l for some l ∈ Z. Thus

A =

 a qs2

d1
l

(ps
2−qr2
d1

)l a+ 2 qrsd1 l

 .
If det(A) = 1, then a2 + 2 qrsd1 la− (ps

2−qr2
d1

) qs
2

d1
l2 = 1. By the quadratic formula,

a = −qrs
d1
l ±

√
pqs4

d2
1

l2 + 1.

If a = − qrs
d1
l +

√
pqs4

d21
l2 + 1, then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l +

√
pqs4

d2
1

l2 + 1 +
qs2

d1
l(
r

s
+ k

√
p

q
)

=

√
pqs4

d2
1

l2 + 1 + k
s2√pq
d1

l > 0.

If a = − qrs
d1
l −

√
pqs4

d21
l2 + 1, then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l −

√
pqs4

d2
1

l2 + 1 +
qs2

d1
l(
r

s
+ k

√
p

q
)

= −

√
pqs4

d2
1

l2 + 1 + k
s2√pq
d1

l < 0.
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Hence a = − qrs
d1
l +

√
pqs4

d21
l2 + 1 . Now A is of the form− qrs

d1
l +

√
pqs4

d21
l2 + 1 qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l +

√
pqs4

d21
l2 + 1

 .
Since A ∈ GL(2,Z),

√
pqs4

d21
l2 + 1 must be an integer. Thus

A =

− qrs
d1
l + x qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

 ,
where x, l ∈ Z, x > 0 and x2 − pqs4

d21
l2 = 1. In this case, we have to find integers x, l such that

x > 0 and x2 − pqs4

d21
l2 = 1.

If det(A) = −1, then a2 + 2 qrsd1 la− (ps
2−qr2
d1

) qs
2

d1
l2 = −1. So

a = −qrs
d1
l ±

√
pqs4

d2
1

l2 − 1.

If a = − qrs
d1
l +

√
pqs4

d21
l2 − 1, then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l +

√
pqs4

d2
1

l2 − 1 +
qs2

d1
l(
r

s
+ k

√
p

q
)

=

√
pqs4

d2
1

l2 − 1 + k
s2√pq
d1

l



< 0 if k = 1 and l < 0

> 0 if k = 1 and l > 0

> 0 if k = −1 and l < 0

< 0 if k = −1 and l > 0

.

If a = − qrs
d1
l −

√
pqs4

d21
l2 − 1, then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l −

√
pqs4

d2
1

l2 − 1 +
qs2

d1
l(
r

s
+ k

√
p

q
)

= −

√
pqs4

d2
1

l2 − 1 + k
s2√pq
d1

l



< 0 if k = 1 and l < 0

> 0 if k = 1 and l > 0

> 0 if k = −1 and l < 0

< 0 if k = −1 and l > 0

.
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Since A ∈ GL(2,Z),
√

pqs4

d21
l2 − 1 must be an integer. If k = 1, then

A =

− qrs
d1
l + x qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

 ,
where x, l ∈ Z, l > 0 and x2 − pqs4

d21
l2 = −1. In this case, we have to find integers x, l such that

l > 0 and x2 − pqs4

d21
l2 = −1. If k = −1, then

A =

− qrs
d1
l + x qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

 ,
where x, l ∈ Z, l < 0 and x2 − pqs4

d21
l2 = −1. In this case, we have to find integers x, l such that

l < 0 and x2 − pqs4

d21
l2 = −1.

Case (1) : The equation x2 − pqs4

d21
y2 = −1 is not solvable over the integers.

Then det(A) must be 1. Thus A =

− qrs
d1
l + x qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

, for some x, l ∈ Z, x > 0 and

x2− pqs4

d21
l2 = 1. Let (x1, y1) be the fundamental solution of the Pell’s equation x2− pqs4

d21
y2 = 1.

Then all nonnegative solutions (x, y) are given by the set

{(1, 0), (xn, yn) :xn+1 = x1xn +
pqs4

d2
1

y1yn,

yn+1 = x1yn + y1xn, n = 1, 2, . . .}.

By induction, for n ∈ N,− qrs
d1
y1 + x1

qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1


n

=

− qrs
d1
yn + xn

qs2

d1
yn

(ps
2−qr2
d1

)yn
qrs
d1
yn + xn

 .
Thus, for each n ∈ N,− qrs

d1
y1 + x1

qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1


−n

=

− qrs
d1

(−yn) + xn
qs2

d1
(−yn)

(ps
2−qr2
d1

)(−yn) qrs
d1

(−yn) + xn

 .

Hence A =

− qrs
d1
y1 + x1

qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1


n

, for some n ∈ Z.

Case (2) : The equation x2 − pqs4

d21
y2 = −1 is solvable over the integers.
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If k = 1, then A must be of the form

− qrs
d1
l + x qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

 where x, l ∈ Z,

x > 0, and x2 − pqs4

d2
1

l2 = 1

or

l > 0, and x2 − pqs4

d2
1

l2 = −1.

If k = −1, then A must be of the form

− qrs
d1
l + x qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

 where x, l ∈ Z,

x > 0, and x2 − pqs4

d2
1

l2 = 1

or

l < 0, and x2 − pqs4

d2
1

l2 = −1.

Let (x′1, y
′
1) be the fundamental solution of the negative Pell’s equation x2− pqs4

d21
y2 = −1. Then

(x1, y1) = (x′21 + pqs4

d21
y′21 , 2x

′
1y
′
1) is the fundamental solution of x2− pqs4

d21
y2 = 1. Also, all positive

solutions (x, y) of x2 − pqs4

d21
y2 = −1 are given by the set

{(x′n, y′n) :x′n+1 = (x′21 +
pqs4

d2
1

y′21 )x′n + 2
pqs4

d2
1

x′1y
′
1y
′
n,

y′n+1 = (x′21 +
pqs4

d2
1

y′21 )y′n + 2x′1y
′
1x
′
n, n = 1, 2, . . .}

and all nonnegative solutions (x, y) of x2 − pqs4

d21
y2 = 1 are given by the set

{(1, 0), (xn, yn) :xn+1 = x1xn +
pqs4

d2
1

y1yn,

yn+1 = x1yn + y1xn, n = 1, 2, . . .}.

Thus A =

− qrs
d1
ky′1 + x′1

qs2

d1
ky′1

(ps
2−qr2
d1

)ky′1
qrs
d1
ky′1 + x′1


n

, for some n ∈ Z.

Proposition 5.2.3. Let α be a positive irrational number of the form r
s + k

√
p
q , where r ∈

Z, p, q, s ∈ N, k ∈ {−1, 1}, s is even, gcd(r, s) = 1 and gcd(p, q) = 1. Let d1 = gcd(ps2 −
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qr2, 2qs).

(1) If d1 | qs and the equation x2 − pqs4

d21
y2 = −1 is not solvable over the integers, then, for any

A ∈ GL(2,Z), π(A) is an automorphism of Aα if and only if A =

− qrs
d1
y1 + x1

qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1


n

,

for some n ∈ Z, where (x1, y1) is the fundamental solution of x2 − pqs4

d21
y2 = 1.

(2) If d1 | qs and the equation x2− pqs4

d21
y2 = −1 is solvable over the integers, then, for any A ∈

GL(2,Z), π(A) is an automorphism of Aα if and only if A =

− qrs
d1
ky′1 + x′1

qs2

d1
ky′1

(ps
2−qr2
d1

)ky′1
qrs
d1
ky′1 + x′1


n

,

for some n ∈ Z, where (x′1, y
′
1) is the fundamental solution of x2 − pqs4

d21
y2 = −1.

(3) If d1 - qs and the equation x2− 4pqs4

d21
l2 = −4 is not solvable over the integers, then, for any

A ∈ GL(2,Z), π(A) is an automorphism of Aα if and only if A =

− qrs
d1
y1 + x1

2
qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1

2


n

,

for some n ∈ Z, where (x1, y1) is the fundamental solution of x2 − 4pqs4

d21
l2 = 4.

(4) If d1 - qs and the equation x2− 4pqs4

d21
l2 = −4 is solvable over the integers, then, for any A ∈

GL(2,Z), π(A) is an automorphism of Aα if and only if A =

− qrs
d1
ky′1 +

x′1
2

qs2

d1
ky′1

(ps
2−qr2
d1

)ky′1
qrs
d1
ky′1 +

x′1
2


n

,

for some n ∈ Z, where (x′1, y
′
1) is the fundamental solution of x2 − 4pqs4

d21
l2 = −4.

Proof. First, note that if d1 | qs, then qrs
d1
, qs

2

d1
, ps

2−qr2
d1

∈ Z. In this case, we will show that pqs4

d21

is a nonsquare integer. Since d1|(ps2−qr2) and d1|qs2, we have d2
1|(pqs4−q2r2s2). We also have

that d2
1|q2r2s2. Thus d2

1|pqs4. Since α is irrational,
√

p
q is irrational. Thus pq is nonsquare.

Hence pqs4

d21
must be nonsquare. Now, if d1 - qs, then ps2−qr2

d1
, qs

2

d1
∈ Z. In this case, we will show

that4pqs4

d21
is a nonsquare integer. Since d1|2qs, d1|4qs2. Since d1|(ps2 − qr2) and d1|4qs2, we

have d2
1|(4pqs4 − 4q2r2s2). We also have that d2

1|4q2r2s2. Thus d2
1|4pqs4. Since α is irrational,√

p
q is irrational. Thus pq is nonsquare. Hence 4pqs4

d21
must be nonsquare.

Now, let A =

a b

c d

 ∈ GL(2,Z) be such that a+ bα > 0 and

bα2 + (a− d)α− c = 0.
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Then a− d = −2 rsb and c = (ps
2−qr2
qs2

)b. So A is of the form a b

(ps
2−qr2
qs2

)b a+ 2 rsb

 .
Since s is even, s

2 ∈ N. Since A ∈ GL(2,Z) and gcd(r, s2) = 1, we have s
2 |b. Then there exists

j ∈ Z such that b = s
2j. Now,

A =

 a s
2j

(ps
2−qr2
2qs )j a+ rj

 .
Since gcd(ps

2−qr2
d1

, 2qs
d1

) = 1, 2qs
d1
|j. So j = 2qs

d1
l for some l ∈ Z. Thus

A =

 a qs2

d1
l

(ps
2−qr2
d1

)l a+ 2 qrsd1 l

 .
Case : d1|qs.

By the same argument in the proof of Proposition 5.2.2,

A =

− qrs
d1
y1 + x1

qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1


n

,

for some n ∈ Z, where (x1, y1) is the fundamental solution of x2 − pqs4

d21
y2 = 1 if the equation

x2 − pqs4

d21
y2 = −1 is not solvable over the integers and

A =

− qrs
d1
ky′1 + x′1

qs2

d1
ky′1

(ps
2−qr2
d1

)ky′1
qrs
d1
ky′1 + x′1


n

,

for some n ∈ Z, where (x′1, y
′
1) is the fundamental solution of x2 − pqs4

d21
y2 = −1 if the equation

x2 − pqs4

d21
y2 = −1 is solvable over the integers.

Case : d1 - qs.

Recall that A =

 a qs2

d1
l

(ps
2−qr2
d1

)l a+ 2 qrsd1 l

, for some j ∈ Z

If det(A) = 1, then a2 + 2 qrsd1 la− (ps
2−qr2
d1

) qs
2

d1
l2 = 1. By the quadratic formula,

a = −qrs
d1
l ±

√
4pqs4

d21
l2 + 4

2
.



45

If a = − qrs
d1
l +

√
4pqs4

d21
l2+4

2 , then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l +

√
4pqs4

d21
l2 + 4

2
+
qs2

d1
l(
r

s
+ k

√
p

q
)

=

√
pqs4

d2
1

l2 + 1 + k
s2√pq
d1

l > 0.

If a = − qrs
d1
l −

√
4pqs4

d21
l2+4

2 , then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l −

√
4pqs4

d21
l2 + 4

2
+
qs2

d1
l(
r

s
+ k

√
p

q
)

= −

√
pqs4

d2
1

l2 + 1 + k
s2√pq
d1

l < 0.

Hence a = − qrs
d1
l +

√
4pqs4

d21
l2+4

2 . Now A is of the form−
qrs
d1
l +

√
4pqs4

d21
l2+4

2
qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l +

√
4pqs4

d21
l2+4

2

 .
Since d1 - qs and d1 | 2qs, d1 must be even. Since gcd(r, s) = 1 and s is even, r must be odd.

Since d1 = gcd(ps2−qr2, 2qs) and d1 is even, q must be even. Since gcd(p, q) = 1 and q is even,

p must be odd. Now we write s = 2m1n1, q = 2m2n2, where m1,m2 ∈ N and n1, n2 are odd

integers. Since d1 - qs and d1 | 2qs, d1 = 2m1+m2+1n3 for some odd integer n3 and n3 |n1n2.

Since n1, n2, n3 are odd and n3 |n1n2, n1n2
n3

is an odd integer. Now we have

qrs

d1
=

2m2n2r2
m1n1

2m1+m2+1n3
=
r(n1n2

n3
)

2
.

Thus A is of the form 
−r(n1n2

n3
)l+

√
4pqs4

d21
l2+4

2
qs2

d1
l

(ps
2−qr2
d1

)l
r(
n1n2
n3

)l+

√
4pqs4

d21
l2+4

2

 .
Since A ∈ GL(2,Z),

√
4pqs4

d21
l2 + 4 must be an integer. Thus

A =

−r(
n1n2
n3

)l+x

2
qs2

d1
l

(ps
2−qr2
d1

)l
r(
n1n2
n3

)l+x

2

 .
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where x, l ∈ Z, x > 0 and x2 − 4pqs4

d21
l2 = 4.

Since
−r(n1n2

n3
)l+x

2 and
r(
n1n2
n3

)l+x

2 must be integers and r, n1n2
n3

are odd, x and l must have the

same parity. We want to show that 4pqs4

d21
6≡ 0 (mod 4), i.e., we have to show that d2

1 - pqs4. Since

d1 | ps2 − qr2 and d1 = 2m1+m2+1n3, we have 2m1+m2+1 | ps2 − qr2. Let m = min{2m1,m2}.

Then

ps2 − qr2 = 2m(p
s2

2m
− q

2m
r).

Since m = min{2m1,m2}, p s
2

2m or q
2m r must be odd. Since m ≤ m2 < m1 +m2 + 1, p s

2

2m −
q

2m r

must be even. That is p s
2

2m and q
2m r must be odd. Thus m = m2 = 2m1. Now we have

pqs4 = p2m2n224m1n4
1 = 2m2+4m1pn2n

4
1

and

d2
1 = 22m1+2m2+2n2

3.

Since m2 + 4m1 = 2m2 + 2m1 + 1 < 2m1 + 2m2 + 2, d2
1 - pqs4. Thus 4pqs4

d21
6≡ 0 (mod 4). By

Proposition 5.1.1, x and l that satisfy the equation x2− 4pqs4

d21
l2 = 4 have the same parity. Thus,

in this case, we have to find integers x, l such that x > 0 and x2 − 4pqs4

d21
l2 = 4.

If det(A) = −1, then a2 + 2 qrsd1 la− (ps
2−qr2
d1

) qs
2

d1
l2 = −1. So

a = −qrs
d1
l ±

√
4pqs4

d21
l2 − 4

2
.

If a = − qrs
d1
l +

√
4pqs4

d21
l2−4

2 , then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l +

√
4pqs4

d21
l2 − 4

2
+
qs2

d1
l(
r

s
+ k

√
p

q
)

=

√
pqs4

d2
1

l2 − 1 + k
s2√pq
d1

l



< 0 if k = 1 and l < 0

> 0 if k = 1 and l > 0

> 0 if k = −1 and l < 0

< 0 if k = −1 and l > 0

.
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If a = − qrs
d1
l −

√
4pqs4

d21
l2−4

2 , then

a+ b(
r

s
+ k

√
p

q
) = −qrs

d1
l −

√
4pqs4

d21
l2 − 4

2
+
qs2

d1
l(
r

s
+ k

√
p

q
)

= −

√
pqs4

d2
1

l2 − 1 + k
s2√pq
d1

l



< 0 if k = 1 and l < 0

> 0 if k = 1 and l > 0

> 0 if k = −1 and l < 0

< 0 if k = −1 and l > 0

.

Thus, if k = 1, then A is of the form−
qrs
d1
l ±

√
4pqs4

d21
l2−4

2
qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l ±

√
4pqs4

d21
l2−4

2

 , l > 0.

If k = −1, then A is of the form−
qrs
d1
l ±

√
4pqs4

d21
l2−4

2
qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l ±

√
4pqs4

d21
l2−4

2

 , l < 0.

Since A ∈ GL(2,Z) and qrs
d1

=
r(
n1n2
n3

)

2 ,
√

4pqs4

d21
l2 − 4 must be an integer. If k = 1, then

A =

− qrs
d1
l + x

2
qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

2

 ,
where x, l ∈ Z, l > 0 and x2 − 4pqs4

d21
l2 = −4.

If k = −1, then

A =

− qrs
d1
l + x

2
qs2

d1
l

(ps
2−qr2
d1

)l qrs
d1
l + x

2

 ,
where x, l ∈ Z, l < 0 and x2 − 4pqs4

d21
l2 = −4.

By the same argument as above, if x, l ∈ Z satisfying x2 − 4pqs4

d21
l2 = −4, − qrs

d1
l + x

2 and

qrs
d1
l + x

2 are integers. Thus, in this case, we have to find integers x, l such that kl > 0 and
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x2 − 4pqs4

d21
l2 = −4.

By the same argument in the proof of Proposition 5.2.2, we have

A =

− qrs
d1
y1 + x1

2
qs2

d1
y1

(ps
2−qr2
d1

)y1
qrs
d1
y1 + x1

2


n

,

for some n ∈ Z, where (x1, y1) is the fundamental solution of x2 − 4pqs4

d21
l2 = 4 if the equation

x2 − 4pqs4

d21
l2 = −4 is not solvable over the integers and

A =

− qrs
d1
ky′1 +

x′1
2

qs2

d1
ky′1

(ps
2−qr2
d1

)ky′1
qrs
d1
ky′1 +

x′1
2


n

,

for some n ∈ Z, where (x′1, y
′
1) is the fundamental solution of x2 − 4pqs4

d21
l2 = −4 if the equation

x2 − 4pqs4

d21
l2 = −4 is solvable over the integers.

Example 5.2.4. α =
√

5.

The fundamental solution of the equation x2 − 5y2 = −1 is (x′1, y
′
1) = (2, 1). Thus any

matrix A in GL(2,Z) that π(A) is automorphisms of A√5 is of the form A =

2 1

5 2


n

, n ∈ Z,

i.e., π(A) is an automorphism of A√5 if and only if A =

2 1

5 2


n

for some n ∈ Z.

Example 5.2.5. α =
√

7.

Since 7 6≡ 1( mod 4), the equation x2 − 7y2 = −1 is not solvable over integers. So we

look at the fundamental solution of the equation x2 − 7y2 = 1. Since (x1, y1) = (8, 3) is the

fundamental solution of x2 − 7y2 = 1, any matrix A in GL(2,Z) that π(A) is automorphisms

of A√7 is of the form A =

 8 3

21 8


n

, n ∈ Z.

Example 5.2.6. α = 1+
√

7
3 .

Since (x1, y1) = (8, 3) is the fundamental solution of x2 − 7y2 = 1, by Proposition 5.2.2,

any matrix A in GL(2,Z) that π(A) is automorphisms of A 1+
√
7

3

is of the form A =

5 9

6 11


n

,

n ∈ Z.
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Example 5.2.7. α = 1+
√

5
2 .

The fundamental solution of the equation x2 − 5y2 = −4 is (x′1, y
′
1) = (1, 1). By Propo-

sition 5.2.3, any matrix A in GL(2,Z) that π(A) is automorphisms of A 1+
√
5

2

is of the form

A =

0 1

1 1


n

, n ∈ Z

Note that

2 1

5 2

 is not conjugate to

0 1

1 1

 nor

−1 1

1 0

 =

0 1

1 1


−1

since they don’t

have the same trace. By Theorem 5.1.10, A√5 is not isomorphic to A 1+
√
5

2

.

Example 5.2.8. Let A =

−1 1

3 −2

. Then A ∈ GL(2,Z). Moreover, −1 + (1+
√

7
3 )1 =

−2+
√

7
3 > 0, and

3 + (
1 +
√

7

3
)(−2) =

7− 2
√

7

3

=
√

7(
−2 +

√
7

3
)

=
√

7(−1 + (
1 +
√

7

3
)(1)).

Thus, by Theorem 4.0.9, A√7 is isomorphic to A 1+
√
7

3

.
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APPENDIX . ADDITIONAL THEOREMS

Theorem A.0.9. (Poincaré’s Recurrence Theorem) (see [14]) Let (X,B,m) be a probability

space. Let T : X → X be such that m(E) = m(T−1(E)) for any E ∈ B. Let F ∈ B be such

that m(F ) > 0. Then there is a sequence n1 < n2 < . . ., n1, n2, . . . ∈ N such that Tni(x) ∈ F

for almost all points x ∈ F , for all i ∈ N.

Theorem A.0.10. (Harnack’s Inequality) (see [12]) Let u : B̄(a,R) → R be a continuous

function. If u is harmonic in B(a,R), and u ≥ 0, then

R− r
R+ r

u(a) ≤ u(a+ reiθ) ≤ R+ r

R− r
u(a),

where 0 ≤ r < R, θ ∈ R.

Theorem A.0.11. (see [9], p.364) Let G be a group. For each ϕ ∈ Aut(G), let G oϕ Z

denote the semidirect product of G and Z, where the group multiplication of G oϕ Z is given

by (x,m).(y, n) = (xϕm(y),m + n). Let Φ : Aut(G) → Aut(G)/ Inn(G) be the canonical map.

Suppose that there is no group epimorphism from G onto Z. Let ϕ and ψ ∈ Aut(G). Then

G oϕ Z and G oψ Z are isomorphic if and only if Φ(ϕ) is conjugate to Φ(ψ) or Φ(ψ)−1 in

Aut(G)/ Inn(G).
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