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ABSTRACT

For « a positive irrational, we consider the uniform subalgebra A, of C(T?) consisting of
those functions f satisfying f (m,n) = 0 whenever m+an < 0. For positive irrationals «, (3, we
determine when A, and Ag are isometrically isomorphic. Furthermore, we describe the group
Aut(A,) of isometric automorphisms of A,. Finally we show how an explicit representation of

Aut(A,) can be derived from Pell’s equations.



CHAPTER 1. INTRODUCTION

For « a positive irrational, let A, be the subalgebra of continuous functions on the two-
torus whose Fourier transform vanishes at (m,n) if m+an < 0. These algebras were studied by
Wermer and others ([1], [2]), who proved properties such as maximality and characterized the
Gelfand space. One of the major themes of current work in operator algebras is classification,
but none of the properties which were investigated earlier distinguished between A, and Ag,
if 5 is another positive irrational. In this work, we address this question. We also determine
the automorphism group of A,.

In chapter 2, we provide basic definitions, theorems, and notations that we use in this work
and some known results about the algebra A,.

In chapter 3, we show that the Gelfand space of A, is {(z,w) € D x D : |2]* = |w|}.

In chapter 4, we give the form of an isometric isomorphism of A, — Ag (Theorem 4.0.9). It
follows that the cardinality of the isomorphism class is countable. Corollary 4.0.10 shows that
there is a group invariant: let G, be the dense subgroup of R consisting of {m+na : m,n € Z}.
We show that A, and Ag are isometrically isomorphic if and only if there is a group isomorphism
G, — Gp which maps G, "Rt — GgNRT.

In chapter 5, we examine the group of isometric automorphisms of A,,. If a is not a quadratic
irrational, then Aut(A,) = T?. However, if a is a quadratic irrational, then Aut(A,) is isomor-
phic to a semidirect product of T? with Z (Theorem 5.1.9). We also give an explicit form for
the automorphism group of A,, where « is a quadratic irrational (Proposition 5.2.1, Proposi-
tion 5.2.2, and Proposition 5.2.3).

The material in chapter 2 is standard, but from chapter 3 on the material is original work.



CHAPTER 2. BACKGROUND

In this chapter, we provide basic definitions, theorems, and notations that we use for entire
work. Definitions and theorems in this chapter are taken from [4], [5], and [11].

In this work, vector spaces are complex vector spaces.

2.1 Banach algebras

Definition 2.1.1. Let X be a vector space. A function || - || : X — RT U {0} is said to be a

norm on X if
1. ||z|| = 0 if and only if x = 0;
2. ||ax|| = |a|||z| for any a € C and z € X
3. llz+yll < ol + lyll for any a,y € X.
A vector space equipped with a norm is called a normed linear space.

Definition 2.1.2. An algebra is a vector space A equipped with a multiplication map - : 4 — A

such that
l.a-(b+c¢)=a-b+a-cforany a,b,c € A,
2. (a+b)-c=a-c+b-cforany a,b,ce A;
3. (aa) - (Bb) = (aB)(a-b) for any «, 8 € C and a,b € A.
We usually write ab instead of a - b.

Definition 2.1.3. A subspace B of an algebra A is said to be a subalgebra of A if bb’ € B for

any b, b € B.



Note that a subalgebra B of A is also an algebra with the multiplication on B given by the

restriction of the multiplication on A.

Definition 2.1.4. An algebra A is a normed algebra if the norm on A is submultiplicative,

ie.,

labl| < [lal[[[b]l, for any a,b € A.

Definition 2.1.5. A normed algebra A is a unital normed algebra if there exists an element
1 € A such that la = a = al for all a € A and ||1| = 1. If this element 1 exists, then it is

unique. 1 is called the unit.

Note that, a subalgebra of a unital normed algebra may not be a unital normed algebra.
Also, if B is a unital normed subalgebra of A, the unit of B may not be the same as the unit

of A.

Definition 2.1.6. Let A be a unital normed algebra. Then a € A is invertible if there exists

b € A such that ab =1 = ba. In this case b is unique and we write b = a~!.

Theorem 2.1.7. If A is a normed algebra, then the multiplicative map is jointly continuous.
Definition 2.1.8. A complete normed algebra is called a Banach algebra.

Note that a closed subalgebra of a Banach algebra is also a Banach algebra.
Definition 2.1.9. A complete unital normed algebra is called a unital Banach algebra.

Definition 2.1.10. An algebra A is said to be commutative or abelian if ab = ba, for any

a,be A

Definition 2.1.11. A subspace I of an algebra A is said to be a left ideal in A if
forany a € Aand b € I,ab € I.
Definition 2.1.12. A subspace I of an algebra A is said to be a right ideal in A if

for any a € A and b € I,ba € I.



Definition 2.1.13. An ideal in an algebra A is a subspace of A that is both left and right

ideal in A.
Definition 2.1.14. An ideal I in an algebra A is a proper ideal if I # A.

Definition 2.1.15. A proper ideal M in A is said to be a mazimal ideal in A if for any ideal

Jin A
it M CJC A, then J =M.

Definition 2.1.16. Let A and B be algebras. Then a map ¢ : A — B is called an (algebra)

homomorphism if
1. p(aa) = ap(a) for any o € C, and a € A,
2. p(a+0b) =p(a)+ ¢(b) for any a,b € A,
3. p(ab) = ¢(a)p(b) for any a,b € A..
The third property is called multiplicative.
Definition 2.1.17. An algebra homomorphism is an (algebra) isomorphism if it is a bijection.

Definition 2.1.18. Let A be an algebra. An isomorphism ¢ : A — A is called an automor-

phism.

Definition 2.1.19. Algebras A and B is said to be isomorphic if there exists an isomorphism

between A and B. We denote this by A = B.

Definition 2.1.20. Let A and B be normed algebras. A map ¢ : A — B is

an isometric isomorphism if it is an isomorphism and
le(a)ll = [lal, for all a € A.

In this case, we say that A is isometrically isomorphic to B.

Definition 2.1.21. Let A be an algebra. A linear functional ¢ : A — C is called

multiplicative if

w(ab) = p(a)p(b), for any a,b € A.



Definition 2.1.22. Let A be an abelian Banach algebra. The Gelfand space of A is the set of

all non-zero multiplicative linear functionals on \A. We will denote this set by A(A).
Theorem 2.1.23. Let A be a unital abelian Banach algebra. Then if T € A(A), then ||7]| = 1.

Theorem 2.1.24. Let A be a unital abelian algebra and M a set of all mazximal ideals in A.
Then A(A) is non-empty and the map ¢ : A(A) — M defined by

¢(7) = ker(7)
is a bijection from Q(A) to M.

From Theorem 2.1.24 ; A(A) is also called the maximal ideal space of A.

2.2 C*-algebras

Definition 2.2.1. Let A be an algebra. An involution on A is a conjugate linear map a — a*

such that
()" = a and (ab)* = b*a”
for all a,b € A. (A, x) is called a *-algebra.

Definition 2.2.2. A *-algebra A is called a Banach *-algebra if the norm on A is complete,

submultiplicative and ||a*|| = ||a|| for all a € A.

Definition 2.2.3. A C*-algebra is a Banach *-algebra such that ||a*al| = ||a||? for all a € A.

2.3 Spaces of continuous functions on compact Hausdorff spaces

Let X be a compact Hausdorff space. We will denote set of all continuous functions on

X by C(X). We will equip C(X) with the supremum norm defined by | f|| = sup ||f(z)]-
rzeX

Then C'(X) is a unital normed algebra (with pointwise addition and pointwise multiplication

of functions). Moreover, C'(X) is a unital abelian Banach algebra.

Theorem 2.3.1. Let X be a compact Hausdorff space. Then the Gelfand space A(X) is X.



Definition 2.3.2. Let X be a compact Hausdorff space. A subalgebra A of C(X) is called a

uniform algebra if
1. Ais closed in C'(X);

2. A separates the points of X, i.e., if z,y € X and = # y, then there exists f € A such
that f(z) # f(y) ;

3. A contains the constant functions.

Definition 2.3.3. Let X be a compact Hausdorff space. A uniform subalgebra A of C(X)
is a Dirichlet algebra if the real parts of functions in A is dense in the set of all real-valued

continuous functions in C'(X).

Definition 2.3.4. Let X be a compact Hausdorff space. A uniform subalgebra A of C'(X) is
called maximal if for any closed subalgebra B satifying A C B C C(X), then either B = A or
B=C(X).

2.4 Fourier series and double Fourier series
Definition 2.4.1. Let f € L'[—7, 7] and n € Z. The nth Fourier coefficient of f is

fo =5 [ e mar

and the Fourier series for f is the formal series

Z f(n)eint‘

n=—oo

Definition 2.4.2. The Partial sums of the Fourier series for f are s,(z)

I
>
—
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1,2,....

Definition 2.4.3. The Cesaro means of the Fourier series for f are o, = %(50 +81+ -+

Sp—1),n=1,2,....

Theorem 2.4.4. Let f be a continuous function of period 2mw. Then o, converges to f uni-

formly.



Let T? denote the 2-torus T x T, where T denotes the unit circle. Let dy be normalized

Lebesgue measure on T?.

Definition 2.4.5. If f : T2 — C is in L?(T?), for (m,n) € Z?, the Fourier coefficient f(m,n)

is given by
Fommy = [ (e etyemitmssnt) g
T
and the Fourier series for f is the formal series
Z f(m, n)eimxeiny.
m,n
Definition 2.4.6. Rectangular partial sums of the Fourier series for f are

Snm(z,y) = Z f(m,n)e™e™ M, N € N.
[n|<N,Jm|<M

Definition 2.4.7. oy (2z,y) = m Z Sky ks (2, y) is called Cesaro means of
k1| <N, k2| <M
the Fourier series for f, M, N € N.

Theorem 2.4.8. Let f € L2(T?). If f is continuous, then om,N converges uniformly to f.

2.5 Disc and bidisc algebras

Let D be the open unit disc {z € C : |2| < 1}. Let D be the closed unit disc {z € C : |2] < 1}

and D? = D x D the bidisc.
Definition 2.5.1. The disc algebra is the space
{f:D — C: f is analytic on D and continuous on D}.

We denote this algebra by A(D).

Definition 2.5.2. The bidisc algebra is the space
{f:D? - C: f is bi-analytic on D? and continuous on EQ}.

We denote this algebra by .A(D?).



Note that we can view the disc algebra as a subalgebra of C'(T) and the bidisc algebra as
a subalgebra of C(T?), i.e.,

A(D) = {f € C(T) : f(n) = 0 whenever n < 0}
and
A(D?) = {f € C(T?) : f(m,n) = 0 whenever m < 0 or n < 0}.
Moreover, A(D) is a maximal subalgebra of C'(T). Furthermore, it is well-known that the
Gelfand space A(A(D)) is D and the Gelfand space A(A(D?)) is D2,

2.5.1 Factorization for H! functions

Definition 2.5.3. The space H' is the space {f : D — C : f(re') is bounded in L' —norm, 0 <

r <1}

Definition 2.5.4. An inner function is a function g : D — C such that g is analytic on D,

lg(z)] <1 on D and |g(z)| =1 almost everywhere on T.

Definition 2.5.5. An outer function is a function F : D — C such that F is analytic function

on D and F' has the form

T ei@ P
F) =dexnly- [ S5 116)db),

21 J_. e — 2

where f is a real-valued function in L'(T) and A € C, |\ = 1.

Definition 2.5.6. An analytic function B is called a Blaschke product if B has the form

B(z) = o [[(-2L 2= 2y,

e |Oéz’ 1— a2z

o0
where n,n1,ng,... € NU{0}, a; #0, forall i € N, o; # o if i # j, and H |a;|™ is convergent.
i=1

Definition 2.5.7. S is said to be a singular function if S is an inner function without zeros

and S(0) > 0.

Theorem 2.5.8. Let f € H' and f # 0. Then f has the form f = BSF where B is a Blaschke

product, S is a singular function and F is an outter function.



2.6 The algebra A,

Let « be a positive irrational number. We define A, to be the set of continuous functions

f: T? — C with the property that

A~

f(m,n) =0 whenever m + an < 0.

By the continuity of the Fourier transform, A, is a Banach space, and since the product of two
functions in A, again lies in A,, it is a Banach algebra under the norm ||f|| = sup . |f(z,w)|.
As a norm-closed subalgebra of the C*-algebra C(T?), A, is a commutatix(f:?;grator alge-
bra. It further falls in the category of uniform algebras, as a subalgebra of C(T?) it separates
the points of T2,
For f € C(T?), let f* denote the adjoint, i.e., f* = f, the complex conjugate. Note that
A, is antisymmetric, that is, A, N AL = {C - 1}.

The characters of the group T? will be denoted by Xm.n, where
Xmon (2, 0) = 2™w"™, (z,w) € T?.

The characters Xy, for which m 4 an > 0 belong to A,, and linear combinations of characters
in A, are dense.

Note that A, is a Dirichlet algebra; that is A + A* is dense in C(T?). This is clear, since
A+ A* contains all the characters of T2.

It is known that A, is a maximal subalgebra of C(T?) ([2]).
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CHAPTER 3. THE GELFAND SPACE OF THE A,

In this chapter, we show that A(A,) = {(z,w) € D x D : |2|* = |w|}. We also show that

any point in the set A(A,) N D x D is not in a singleton part.

3.1 Method of rational approximation

Suppose f € A, has a Fourier series with only finitely many terms, so

N
f = Z Ck ka,nk-
k=1

Consider the interval I = {t > 0: my, +tng >0, 1 < k < N}. This is an interval containing
« in its interior. Let p, ¢ be positive integers, ged{p, ¢} = 1, such that p/q € I. Furthermore,
since the map {(mg,ng) : 1 <k < N} — my + any is one-to-one, one can chose p, ¢ sufficiently
close to a so that the map {(mg,ng) : 1 <k < N} — my + (p/q)ny is one-to-one. Thus, if we

define the polynomial
F(¢) = f(¢%¢P)

then F' is a polynomial in ¢ with N (non-zero) terms, and f can be recovered from F'.
The following observation, which we will refer to as “the method of rational approximation,”

extends the above observation to the Gelfand space A(Ay).

Lemma 3.1.1. Let (29, wp) € D x D be such that |29|* = |wo|. Then given ¢ > 0 there is a

rational approximation p/q to a so that there is (o, |Co| < 1, such that
(¢d,¢) is within € of (20, wo)

e.g. 1¢g — 2ol + |¢§ — wo| < e.
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Proof. Define (y to be a ¢*® root of 2o with |} — wo| < |¢P — wp| as ¢ runs through all the ¢'!
roots of zg. It is possible that two ¢ roots of zy have the property that their pt* powers are
equidistant from wg, in which case choose one arbitrarily.

Observe that ||¢5] — |wol| = ||20[?/ — |20|%| can be made arbitrarily small by choosing p/q
sufficiently close to «, and that |arg(¢}) — arg(wo)| < 7/q which can also be made arbitrarily

small by appropriate choice of p and gq. O

3.2 The Gelfand space of A,

In this section, we will show that A(A,) = {(z,w) € D x D : [2|% = |w|}. As the Banach
algebra satisfies

A(D?) C A, C C(T?)

it follows that the Gelfand spaces satisfy the reverse inclusions:
A(C(T?) € A(Ay) C A(A(D?).

In other words,

T? ¢ A(A,) C D?

Lemma 3.2.1. Ve > 0, Im' € Z~ and n’ € Z* such that 0 < m' +n'a < € and Im” € Z and

n" € Z= such that 0 < m” +n"a < e.

Proof. Let € > 0 be given. Assume that 0 < € < 1. Let A = [0,5) and B = [§,¢). Let
T :[0,1) — [0,1) be defined by Tz = x + a (mod 1), € [0,1). By ergodicity of T, Ik €
N such that m(T%(A) N B) > 0. By Poincaré’s Recurrence Theorm, Jzy € T*(A) N B,
30 < n1 < ng < --- such that T%xg € T~*(A) N B. Since zo € T7%(A), Jyo € A such that
xg = T Fyg. Thus, T Fyy = T (T *yy) = Tz € B for all i € N. Choose i € N such that
n; > k. Then n; —k > 0 and yo + (n; — k)a = T Fyy € B = [§,€). Since yp € A = [0, 5),
we have (n; — k)a € [0,¢). Let m' = —|(n; — k)a], n’ = n; — k. Then m’ € Z~, n' € Z*
and m' + n'a = —|(n; — k)a| + (n; — k)a € [0,¢€). Since « is irrational, m’ + n’a # 0. Thus
0 < m'+n'a < e. Similarly, by inverse transformation (by replacing a by —a), Im” € Z* and

n"” € Z~ such that 0 < m” + n"a < e. O
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Note that, by Lemma 3.2.1, we can choose p/q to be less than « in the method of rational

approximation.
Lemma 3.2.2. A(A,) C {(z,w) €D xD: |2]* = |w]|}.

Proof. First, let (20, wp) € {(z,w) € Dx D : |z] = 0or |w]| = 0, (2,w) # (0,0)}. WLOG,
assume that zp = 0 and wy # 0. Suppose that the pointwise evaluation at (zp,wp) defines a
multiplicative linear functional © on A,. Then O(z) = 0 and ©(w) = wp. By Lemma 3.2.1,
,3m’ € Z~ and n’ € ZT such that 0 < m’ + n’a. Then 2™ w" € A,. Hence

/

04wy =0@w")=03:""".

a contradiction. Thus (zg,wp) is not in A(A,).
Now, assume that (zo,wp) € D x D and |zp|® # |wo.
Casel: 1 > |z0|* > |wo| > 0.

Let |z9] = r. Then |wg|] < r*. So 30 < t < 1 such that |wg| = tr®. Since 0 < t < 1,
N € N such that =~ > 3. Since 0 < r < 1, In7 < 0. Then —ﬁ > (0. By Lemma 3.2.1,
Im, € Z* and ny € Z~ such that 0 < m; +nja < —ﬁ. Let m = miN and n = n1N. Then
m+na=mN+nNa= N(mj +nia) > 0.

Claim: " > 3 and 7™t > %

Since t=V > 3, t" = N = (t=N)7m > 37m > 3,

Since m1 + nia < —51—, ™ = (m + na)lnr = (my + n1a)NIn(r) > —1. Thus

,rm—i-na — elnr"”””‘ > e—l 1
Let f(z,w) = 2z™w". Then f € A, and |f(20,wo)| = |20/ |wo|™ = r™t"r"™® = ¢hymtne >
1
311,

Case2: 1= |z0|* > |wp| > 0.

Then |zp| =1 and 30 < ¢ < 1 such that |wg| = ¢. By Lemma 3.2.1, 3m € Z* and n € Z~
such that 0 < m + na. Let f(z,w) = z™w"™. Then f € A, and |f(z0,wo)| = |z0|™|wo|™ =
lwo|™ =" > 1.

Case3: 0 < |z0|* < |wp| < 1.
Let |29| = r. Then 3t > 1 such that |wg| = tr®. Since t > 1, IN € N such that tV > 3.

Since 0 < r < 1, Inr < 0. Then — > 0 By Lemma 3.2.1, 3m; € Z~ and n; € ZT such

_1
Nlnr
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that 0 < m1 + na < —ﬁ. Let m = miN and n = niN. Then m +na = miN +niNa =

N(mi + nia) > 0. Let f(z,w) = z™w"™ Then f € A, and |f(z0,w0)| = |z0/™|wo|™ =
PR = gnpmine — g Npmana o g Npmtna o, 3 Lo O
e
N
Lemma 3.2.3. Let f = ZCijj,nj7 m; +nja >0, j =1,2,...,N.Let m,n € Z" be such
j=1

m
n

that ™ < o, nmj+mnj; >0, j=1,2,...,N. Let A={(z,w) € DxD: |2|* < |w] < |z|n}.

Then f is continuous on A.

Proof. Clearly, f is continuous at every point in A \ {(0,0)}. We have to show that p is
continuous at the point (0,0). Let j € {1,2,...,N}. Let h(z,w) = 2" w", (z,w) € A. Since
nmj +mn; > 0 and n is positive, m; + ™n; > 0. Let (z,w) € A.
Obviously, h is continuous at (0,0) when m; > 0 and n; > 0.
Case mj < 0 and n; > 0.

Then 0 < |h(z,w)| = [2|™iw|" < |2|™(|2]% )% = [2[™T%". Since m; + Zn; > 0, we

have lim |h(z,w)| = 0.
(va) — (070)
(z,w)€EA

Case mj > 0 and n; < 0.
Then 0 < |h(z,w)| = |2]™|w|™ < |z|™i(]z|*)" = |z|™i T Since m; + nja > 0, we have

lim |h(z,w)| = 0.

(z,w) —  (0,0)

(z,w)€EA
Thus h is continuous at (0,0) and hence f is continuous at (0, 0). O
N
Lemma 3.2.4. Let [ = ZCijj,nj, mj +njo > 0, j = 1,2,...,N. Then maz |f| on
j=1

|2|* = |w|, |z| <1, |w| <1 occurs on |z| = 1.

Proof. Suppose that max |f| on |z|* = |w|, |z|] < 1, |w|] < 1 occurs at (zg,wp). Choose
m,n € Z* such that 2 < o, nmj + mn; > 0,Vj = 1,2,...,N. Let A = {(z,w) € DxD:
|2]* < Jw| < |z|" }. By Lemma 3.2.3, f is continuous on A.
Claim: For any € > 0, there exists (2/,w’) € A, |2/| =1, so that |f(2/,w')| > |f(20, wo)| — €.
Let € > 0. Then there is § > 0 such that |f(z,w) — f(z0,wo)| < § whenever |z — 2| + |w —
wo| < 9, (2,w) € A. By Lemma 3.1.1, there is a rational approximation ™ < g < ato aso
that there exists (o, |Co] < 1 such that [¢§ — 20| + |¢} — wo| < &. Let F(¢) = f(¢%,¢P), [¢] < 1.

Then F is a polynomial in (. By Maximum Modulus Principle, there exists ¢’ such that |[¢'| =1
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and |F(Q)] < |F(¢)], for all ¢, |¢] < 1. Let 2/ = ({")? and w’ = ({')P. Then || =1 = |uv/'|.
Hence | (2, u)| = |[F(¢)| 2 [F(Go)| = |F(Ch )| > £ (20, w0)] — <.

Now, for each k € N, by Claim, there exists (zx,wx) € A, |zix| = 1 and |f(zk, wx)| >
| f (20, wo)|—3%. Since {(zx, wi)}ren is a sequence in a compact space T?, there exists a convergent

subsequence of {(2x, wy) }ren that converges to some point, say, (2/,w’) € T2. Thus |p(2/,w’)| >

|p(20, wo)|- O

Now, we will show that {(z,w) € D x D : [2|% = |w|} C A(A,). Let f € A,. Let
(20, w0) € {(z,w) € D x D : |2|* = |w|}. Then there is a sequence {p,}nen, Pn € Aa and p,
has a Fourier series with only finitely many terms, such that p,, — f uniformly as n — oc. So

|f(z0,wo)| = Hm |pn(20,wo)] < Hm ||pnllec = || f]loo-

3.3 Parts of A(A,)

If A is a uniform algebra on X, we say that ©1, ©2 € A(A), belong to the same part of
A(A) if
H@1 — @2” <2

where the norm is the norm in the dual space of A, that is
101 = O2f| = sup{|©1(f) — ©2(f)| : f € A IfI| = 1}

Equivalently, ©1, ©2 belong to the same part of A(A) if there is a constant ¢ > 0 such that

Harnack’s inequality is valid:

%u(@l) < u(@) < cul®1), ueR(A), u> 0.

(See [2].)

For the algebra A, it is known that ([1])
1. Each point (29, wp) in (the Shilov boundary) T? is in a singleton part;

2. The point (0,0) is in a singleton part.
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Now, we will show that any point in the set {(z,w) € A(A,) : 0 < |z] < 1} is not in a

singleton part.

Lemma 3.3.1. Let (a,b) € T2. The map
v Ag = Aa, 7(f)<27w) = f(az7bw)
is an isometric automorphism of Ag.

Proof. Clearly v, or more precisely, the extension of 7y to C(T?), is an isometric automorphism of
C(T?). Furthermore, for any f € A, a character Xm,n @ppears as a non-zero Fourier coefficient

of f if and only if it appears in v(f). Thus, v maps A, to itself. O

Definition 3.3.2. Let A, B be uniform algebras with Gelfand spaces A(A),
A(B) respectively. We will say that a homeomorphism ¢ : A(B) — A(A) is admissible if

fop e Awhenever f € B.

By Lemma 3.3.1, the homeomorphism of A(A,) given by (z,w) — (az,bw) is admissible
for any (a,b) € T?.

Let (z0,wo), (21,w1) € A(Aq) with 0 < |20, |21] < 1 be such that arg(wy) = arg(w:).
By composing with an admissible homeomorphism, we may suppose that zp, wg are real and
positive, and so by assumption the same is true for w;.

Write zg = 1o and z; = re?1. We will assume z; belongs to the circle centered at zg with
radius 7o(1 — o). Then |sin(6;)| < 5.

We now want to employ the method of rational approximation. Let f be a function in A,
which has only finitely many nonzero Fourier coefficients and the real part of f is greater than
0. Let u be the real part of f. Let p/q be an approximation to « close enough so that the
method can be applied to f. Let F({) = f(¢%,¢P), |¢| <1 and U the real part of F.

Now let (p, (1 in the (— plane corresponding to (zp,wp), (211, wy) € A,. Let (] be the real

1

1 q
part of (3. A calculation shows that |(; — (]| < rf]sin(%ﬂ < %(1_%) < %(1_%) < %(1_%)



16

On the other hand,

i ro(l —7g). L ro(l —7g). L 1
16— Gol < maxirg — ro — "0 g 4 Ty
<rnax{} 1 ro(1 —19) }lTo(l—To)}
- q(rg— im0y 3 Tgrg 3

}(1—7"0) 1(1—7“0)

q(2+m0) q 3
11—

< 5

}

= max{

By Pythagorean theorem, we obtain

1—7"0
V2

1 1
Now U is continuous on |¢| < 1—r§ and harmonic in the interior. Also, 1 —r{ > %(1 —70).

1
|C1 — ol < 5( )-

By Harnack’s inequality (Theorem A.0.10), we have

-

1— 1
—Y2VU(G) <UG) < (’”107

"

S

3=

Thus,

1

Tl ) < ulcl ) < (

1
; T (@),

V2

(

S‘H —_
S

Observe that the set of real parts of functions of A, which have only finitely many Fourier
coefficients is dense in the set of real parts of functions of A,. Furthermore, by taking a

sequence py, /gy, of rationals converging to «, the method of rational approximation yields that

qn

the corresponding ((;7,, Cf’;l) converges to (z;,w;).

Thus we can apply Harnack’s inequality to obtain that (z1,w;) belongs to the same part as

(20, wp).
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CHAPTER 4. ISOMETRIC ISOMORPHISMS OF THE A,

In this chapter, we show that an isometric isomorphism from A, to Az essentially maps
characters of A, to the charcters of Ag (Theorem 4.0.9). In order to prove this theorem, we
use the method of rational approximation from chapter 3. This entails the factorization of
functions in the disc algebra and the form of the Gelfand spaces of A, and Ag.

Let pn, gn, n € N be sequences of positive integers such that p,/q, converges to a. Define

a sequence of measures p, on C(T?) by

tn(f) ::/fdun = 1/ f(eiqng,eip"‘g) do.

27 J_,

Let y denote normalized Lebesgue measure on T2.
Lemma 4.0.3. The sequence {u,} converges in the weak x-topology to p.

Proof. First we show that for any character x,lim,, [ x dp, = [ x du. Indeed, if x = x0,0 = 1,
then [ xdp, = 1 = [ xdp, since the measures are all positive of mass 1. If x = Xy,n with
(m,n) # (0,0), then m + an # 0, so that m + (pr/qx)n # 0, for k sufficiently large, hence

mq;k + npy # 0. Then

1 T
/Xde: = — et maxtnpe)? 4o — 0 and /Xdu =0.

2 J_,

Thus the desired result holds for any f € C(T?) which is a finite linear combination of
characters, which is a dense subalgebra of C(T?).

Now by the weak *-compactness of unit ball in the dual of C(T?), there is a subnet of
1n which converges, and by the metrizability of the dual space, the subnet can be taken as a

subsequence. By re-labeling, we may denote the convergent subsequence by {1, }.
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Next let f € C(T?), and € > 0. Let f; be a Cesaro mean of f such that ||f — f1|| < . Then

| im g (f) = p(F)] < | T g (f = fO)l 4+ [6(f = f1)]

< lim pp(e) +¢

n—o0

< 2e

Now, the same argument shows that any subsequence of the original sequence {p,,} in turn

has a subsequence converging to p. Thus {u,} converges weak * to p. ]

Lemma 4.0.4. (see [5], p. 103) Every invertible function f in C(T) has the form f(z) =

2" exp(g(z)) for n € Z and some function g € C(T). The integer n is uniquely determined.

Lemma 4.0.5. Every invertible function f in C(T?) has the form

f = Xmnexp(g), for some g € C(T?).
Furthermore the character Xmn s uniquely determined.

Proof. Let ¢ = f(1,1). If % f has the desired form, then so does f. Thus we may assume that
f(1,1)=1.

Given f invertible in C(T?), let fi(z) = f(2,1) and fo(w) = f(1,w). Then fi, fo € C(T)
and are invertible, so by Lemma 4.0.4 there exist integers m, n, which are uniquely determined,
and functions g1, g2 € C(T) so that fi(z) = 2™ exp(g1(2)) and fa(w) = w™ exp(ga(w)).

Let h(z,w) = 27" exp(—g1(z))w™ " exp(—ga2(w)) f(z,w). Thus h satisfies
h(z,1) =1=h(1,w) for all z, w e T.

We claim that h = exp(k) for some k € C(T?). By Corollary 2.15 of [3], this is equivalent
to showing that h lies in the connected component of the constant function 1 in C(T?).

Now let wy € T\ {1}, and let ¢, € (0,27) be such that e = wg. Let hy, € C(T) be
the function hy,,(2) = h(z,wp). Observe that hy, is path homotopic to the constant 1. Define
Y(t)(-) = h(-,e"), 0 <t <ty and note that v(0) is the constant function 1, v(tg) = hy,, and
that v(t)(1) = h(1,¢e!) =1, t € [0,t]. We conclude that hy, lies in the connected component of

the identity of the invertibles in C'(T), hence has the form h,,, = exp(kw,) for some k,,, € C(T),
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by Lemma 4.0.4 Now ky, is not unique, but as hy,,(1) = 1, we have that k(1) € 2mi Z. If
we specify that ky,(1) = 0, then ky, is unique. If we do this for each w € T, then the map
w +— k,, 1S continuous.

Now we can define a path homotopy F : T2 x [0,1] — C \ {0} as follows: set F(z,w,t) =
exp(tky(z)). Then F(z,w,0) is the constant function 1, F(z,w,1) = h(z,w), and F(1,1,t) =
1, t € [0,1], as k; = 0. This proves the claim, hence there is a function & € C(T?) such that

h = exp(k). O

Lemma 4.0.6. Let f € A, and suppose f = xmnexp(g) for some character xXmn and some
g € C(T?). Then both Xm.n and exp(g) belong to Aa, and the extension of exp(g) to the Gelfand

space A(Ay) does not vanish at the point (0,0).

Proof. First assume that f is a finite linear combination of characters. By the method of
rational approximation, we can find integers p,q with p/q sufficiently close to « so that the
function F(¢) = f(¢?,¢P) € A(D). Since f is invertible on T2, it follows F is invertible on T,
so by Lemma 4.0.4 F has the form F(¢) = ¢V exp(G), with N > 0. On the other hand, setting
Ny = mg+np, we have F(¢) = (M exp(G1), with G1(¢) = g(¢%, ¢P). By the uniqueness assertion
of the Lemma, N; = N, and hence G — G € 27Z. Now if B is the Blaschke factor (which is
the inner factor) in the inner-outer factorization of F, then B(¢) = ¢V (f—_Tallc e f__Ta]iV;C) where

0 < |a <1, 1 <t < M. Furthermore, each factor in the Blaschke product belongs to the disc

algebra, in particular the first factor. Also, exp(G(¢)) = (1C—_;11( e 1C—_<’;lz\1/1MC)FO(O’ where Fj is

the outer factor. Since these are in the disc algebra, so is exp(G). Note that since N is the
order of the zero of F' at the origin, % is non-zero at the origin. So, the extension of exp(G)
to the disc does not vanish at the origin.

Next we claim that both x,, , and exp(g) € Aq. Let pi, gi be positive integers such that
{2—:} converges to «, and let a,b be integers such that a + ab > 0. Let Fj(¢) = f({%,(Pr) =

(N exp(Gg(¢)). Then

/ Xab(2, w) exp(g(z,w)) dp = lim/ Caqk+bpk exp(Gg(C¥,¢P*))do =0, ¢ = et?
T2 k T

for k sufficiently large, as exp(Gy) is in the disc algebra.
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A similar argument shows that X, € Aq.

Since the polynomial exp(Gy) is nonzero at the origin, it contains a nonzero multiple of the
constant function as a Fourier coefficient, hence the same is true of exp(g).

Now for the general case, where f = xmnexp(g) € Aq, we can apply the above argument
to the Cesaro means of f. Note functions in the set Ymn exp(C(T?)) constitute one of the
connected components of the invertible functions in C(T?), and in particular, this set is open,
so that any Cesaro mean sufficiently close to f has this form. Thus considering the Cesaro
means, we obtain a sequence of functions exp(gy) converging to exp(g), such that exp(g,) € Aq
for sufficiently large n. Thus exp(g) € A,.

Finally, the extension of the function exp(g) to the Gelfand space A(A,) is non-zero at
the point (0,0). This is due to the nature of the Cesaro approximations: the non-zero Fourier
coefficients of the Cesaro approximants is a subset of the non-zero Fourier coefficients of the
function exp(g). Since all of the Cesaro approximants exp(g,) contain a non-zero multiple of
the constant character, at least for sufficiently large n, the (0,0) Fourier coefficient of exp(g) is

non-zero. O

Lemma 4.0.7. Suppose g € C(T?) is such that exp(g) € Aqa, and the extension of exp(g) to

A(Ay) is never zero. Then exp(g/2) € Aq.

Proof. As in the previous lemma, we begin by assuming that f = exp(g) € A, is expressible as
a finite linear combination of characters. In that case, f extends to a function on a subset S of
the closed bidisc, S = {(z,w) : |w| = |2|!, a <t < b} where 0 < a < a < b. Since f is nonzero
on A(A,) and uniformly continuous on S, we may assume that f is nonzero on S, possibly by
replacing [a, b] by a smaller interval.

Suppose that p, ¢ are positive integers with a < p/q < b, and set F({) = f(¢%,(P), so F is in
the disc algebra. If for some |(o] < 1, F((p) = 0, then f(z0,wo) = 0, where {J = 2y, ¢} = wo.
But then |wy| = rf) = ]20\5, |Co| = ro. Since p/q € (a,b), it follows that (29, wp) € S, and hence
0= F(¢o) = f(z0,wp), a contradiction.

It follows that F'(¢) is outer. Then, again by factorization, since F'(¢) = exp(G), we obtain

that exp(G/2) is in the disc algebra. ([4])
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To see that exp(g/2) € Aq, let 22 be a sequence of fractions converging to a. Set Fy(¢) =
exp(Gk(()). By the argument above, we have that exp(Gj/2) is in the disc algebra, at least for

sufficiently large k. Then, for any (m,n) € Z? with m 4+ an > 0, we have

G
L o) expl ey di =tim [ ¢mtn exp(SE () ao =,

¢ =e".
For the general case, where f = exp(g) € Aa, apply the argument above to the Cesaro means
fn of f to get f,, = exp(gn) with exp(gn/2) € Aq. Thus exp(g,/2) converges to exp(g/2), so

that it is also in A,,. O

Proposition 4.0.8. Suppose Xmn is a character, and g € C(T?) are such that the function
[ =xmmnexp(g) € Aa, and f does not vanish on A(Ay) \{(0,0)}. Then Xmn and g lie in Aq,.

Furthermore, if |exp(g)| = 1 on T2, then g is constant.

Proof. Lemma 4.0.6 shows that x,,, € Aq, and exp(g) € A, does not vanish on A(A,). Then,

by Lemma 4.0.6 and repeated application of Lemma 4.0.7 we obtain that

exp(g), exp(g/2), ...,exp(g/2%), - € Aq.

Now if ¢ is any sequence of positive reals decreasing to 0, then

g= lim O(kg) —1

k—o0 tr
where the convergence is in norm. Applying this with ¢, = 2%, we obtain the desired result.
If |exp(g)| = 1 on T?, then exp(—g) = exp(g*) = exp(g)* € As N A% = {C -1}, so, g is

constant. O

If & : A, — Ag is an algebraic isomorphism, there is a weak* homeomorphism ¢ : A(Ag) —
A(A,) defined by f(¢(z,w)) = ®(f)(z,w). In other words, ¢ is admissible (Definition 3.3.2).
However, if ® is an isometric isomorphism, then more is true: ¢ maps the Shilov boundary of
A(Ag) to the Shilov boundary of A(A,), and also maps parts of A(Ag) to parts of A(Ay).
Thus, ¢ maps T? to itself, maps the singleton part {(0,0)} € A(Ag) to the corresponding part
in A(A,), and the set {(z,w) : |w| = |2/°,0 < |2| < 1} € A(Ap) to the corresponding set

{(z,w) : |w| =]2]%,0 < |2| <1} € A(Ay).
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Theorem 4.0.9. ® : A, — Ag is an isometric isomorphism if and only if ® has form

O(f) = fop, where p : A(Ag) = A(Ay) is of the form
(z,w) = (c12™w", cp2™2w"?)
where c; are unimodular constants, j = 1,2, and the matriz

mi1 N
A= € GL(2,Z)

mz N2

satisfies my + Bny > 0 and ma + fng = a(my + Bny).

Proof. Assume that ® : A, — Ag is an isometric isomorphism. Then there is a homeomorphism
v : A(Ag) = A(A,) defined by f(¢(z,w)) = ®(f)(z,w). Recall that the characters x1,0, Xo0,1

are the coordinate functions
X1,0(z,w) =2, xo0,1(2,w)=w.

Set fi = ®(x10) = Xx10° ¢, and similarly define fo, with xo1 in place of X1, so that
p(z,w) = (fi(z,w), f2(z,w)).

Then f; € Ag and since the homeomorphism ¢ maps A(Ag) — A(A,) and in particular
maps the Shilov boundary of A(Ag) to the Shilov boundary of A(A,), this implies that |f;| = 1
on T?, j = 1,2. Furthermore ¢ maps the part (0,0) € A(Ag) to the part (0,0) € A(Ay). This
implies that f;(z,w) = 0 if and only if (z,w) = (0,0).

Now since f; is invertible on T?, by Lemma 4.0.5 it has the form f; = Xmj.n; €xp(g5), J =
1,2. By Proposition 4.0.8, exp(g;) is constant, say equal to ¢;, with |¢;| = 1. Since f; =
CjXmjn; € Ag, we have that m; + 8n; > 0. And clearly m; + 8n; > 0, for f; cannot be
constant.

Since

(P(Z?w) = (fl(z7w>7 fQ(va)) S A(Aa)
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we have that

| fa(z,w)| = | f1(z,w)|*
|Xm2,n2(zaw) = ‘Xml,m (z’w)|a

27| =

‘Zml w™ |a

|22 272 = (|2 [2]7")°

since |w| = |2|® in A(Ag). Hence ma + Bns = a(my + Bny).

Furthermore, since ¢ is invertible, the map
T2 = T2, (z,w) — (Z™w™, 2™w"™?)
is invertible, so that the matrix

mi1 N
A= € GL(2,7Z).
mo N9

Conversely, assume that ® has form in the assumption. By composing ® with the map in
Lemma 3.3.1, we can assume that ¢; = 1 = ¢o. First, we will show that ¢ : A(Ag) = A(Aq)

is well-defined. Let (z,w) € D x D be such that |z|f8 = |w|. Then
22 = (|2 |2

— |Z|a(m1+6m)

— ‘Z|m2+ﬁn2

= JefmalelPre

= ="

= [zM2w"2|.

Thus ¢ is well-defined. Let (m,n) € Z2. Since mg + Bny = a(my + Bn1), we have (mmq +
nmg) + S(mny + nmg) = (m + an)(mi + Bny1). Moreover, since mj + fn; > 0, we get the

necessary and sufficient condition :

m + an > 0 if and only if (m + an)(m1 + Bn1) > 0.
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Let xm,n be a character of A,. Then

mi, 1 ,ma2, N2
;2" w"?)

(Xmn © 9)(2,0) = Xmn(P(2, W) = Xmn (2™ w

mmi+nmsz,, mni+nmso

=z w

= Xmmi+nma,mni+nma (Za w)'

Clearly, ® is a homomorphism. Next, we will show that ® is surjective. Let (m,n) € Z? be
such that m + Bn > 0.

Claim: X nom-—mon —n1m+m1n E Aa.

ming—magny’ming—mang

mi1 N
Since A = € GL(2,7), (Gam—men ' —mmitmin) c 72  We will show that

minz2—maoni’ Mming—msani

mz m2

a2 + a;?é;”_tgln’; > 0. Since m; + fny > 0, it is enough to show that (m; +

ﬁnl)( n2m—maon T —n1m+m1n) > 0.

minz2—mani ming—many’/ —

nom — maon —nim +min
a

(ma + Bna)(
ming — Mony ming — mony
_(m1 + Bny)(nem — man) — a(my + Bny)(nim — min)

ming —nimsa
(m1 + pn1)(nam — man) — (mg + Bng)(nim — min)
ming — nN1mo
minom — mimsan + Bninom — Bnimen — nimaem — Bninem + mimsen + Bmingn
ming — nimsa

(ming — nima)(m + Bn)
ming — nN1mo

=m -+ fn

> 0.

Thus X nom—mon —nim+min E AO&- MOI‘GOVGI‘,

ming—mgny’ming—mang

(X ngm—mon 7n1m+m1n O (p)(Z, w)

ming—magny’ming—mang

= X _ngm-—mgn  —nymtmin (@(sz))

ming—mgny’mijng—magnj

m n m n
= X nom—mon —nim+min (Z 1w l,z 2w 2)
mjng—many’ming—maong

nom-—mon —nijm+min ) ( nom-—mon )+n2( —nimtmin )

1
mina—many minga—many ming—mani

m ( )+ma(

=2z ming—maniy

= Xm,n(zv w)
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Thus @ is surjective. Next, we will show that ® is an isometry. Let f € A,. Since A =

mp N
€ GL(2,7Z), the map

ma2 N2

T2 = T2, (z,w) — (Z™w™, 2™2w"™)
is a bijection. Thus

H(I)(f)” = sup ‘f(zmlwn17zm2wn2)‘
(z,w)€T?

= sup |[f(z,w)|
(z,w)€T?

= [I£II

Hence ® : A, — Ap is an isometric isomorphism. O
If v is an irrational, let G, denote the dense additive subgroup {m +an: m,n € Z} C R.

Corollary 4.0.10. Let o, 3 be positive irrationals. Then the algebras A,, Ag are isometrically
isomorphic if and only if the groups G, Gg are order isomorphic. That is, if and only if there

is a group isomorphism from G, to Gg which maps positive elements of G, to positive elements

of Gg.

Proof. We use the fact that G, and G are isomorphic to Z?, Aut(Z?) = GL(2,Z) and Theo-

rem 4.0.9. 0
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CHAPTER 5. ISOMETRIC AUTOMORPHISMS OF THE A,

Throughout, automorphisms always mean isometric automorphisms. In this chapter, we
will investigate the automorphism group Aut(A4,) of the algebra A,. By Theorem 4.0.9 from
the previous section to the case § = «, it follows immediately that if a is not quadratic
irrational, then Aut(A,) = T2. Therefore, we will focus on the case when « is positive quadratic
irrational. For such an «, we show that Aut(A,) is a semidirect product of T? and Z. At the
end of this chapter, we show how the solutions of Pell’s equations can be employed to calculate

the automorphism group Aut(A,).

5.1 The automorphism group of A,

First, we would like to introduce some notations that we will use throughout this chapter.

a b
For f € C(T?), (c1,c2) € T2, and A = € GL(2,Z), let n((c1,c2)),m(A) : CO(T?) —
c d

C(T?) be defined by

m((c1,¢2))(f)(z,w) = f(c12,cow), and

m(A)(f) = foe,

where ¢ : T2 — T? is of the form (z,w) — (2%w°, z¢w?).

Note that we can view 7(c) and 7(A) as the restrictions of 7(c) and w(A) to A, where
ceT? and A € GL(2,Z).

Now, for each quadratic irrational o > 0, we want to examine the automorphism group

Aut(A,) of A,. To find this automorphism group, we need to know some results about Pell’s

equations and Lie algebra.
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Pell’s equation is a Diophantine equation of the form

z? —ny2 =1,

where n is a positive nonsquare integer. This equation is always solvable in integers and has the
trivial solution with £ = 1 and y = 0. Moreover, this equation always has nontrivial solutions.

It is well-known that the set of solutions of this equation is given by

{(17 0)7 (_17 0)7 (wka yk)7(_xk7 Z/k); (wlm —Z/k); (_xka _yk) :
Tht1 = T12k + NY1Yk,
Yk+1 = T1Yk + Y1k,

k=1,2,...},

where (x1,91) is the fundamental solution of #? — ny? = 1. The fundamental solution of
2?2 — ny? = 1 is the pair (x1,%1), o1 is the smallest positive interger and y; is the positive

integer that satisfies

x% —ny% =1

Now, we look at the equation of the form

i ny2 = -1,

where n is a positive nonsquare integer. This equation is called the negative Pell’s equation.
Note that, this equation may have no solutions in integers. There is a necessary but not
sufficient condition of this equation to have integer solutions that all odd prime factors of n
must be congruent to 1 modulo 4. If this negative Pell’s equation has solutions, then the set

of all solutions is given by

{ (@ vi) s (=20, Uk) (@ —Uk), (=%, —yk) -
Thyy = (@ + nyP)al, + 2nayiy;.,
/A

Yir1 = (2 + ny?)yg + 2zyy 7,

k=1,2,...},
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where (x],y}) is the fundamental solution of 22 — ny? = —1. Moreover, the fundamental

2

solution (x1,%1) of the Pell’s equation 22 — ny? = 1 can be obtained from the fundamental

2—ny2:—1by

solution (z/,y}) of the negative Pell’s equation x
12 2 _ /)
z1 =] +ny)” and y1 = 227y;.

Another equations that relates to our problems are the equations of the forms

2 —ny? = 4,

2

where n is a positive nonsquare integer. The equation 2 — ny? = 4 is always solvable over

integers. The set of solutions of this equation is given by

{(2,0),(=2,0), (xx, y&) (=&, Y&)» (T, —Y&), (—Tk, —Yk)
1

Th41 = 5(1‘1% + ny1Yk),
1
Yk+1 = 5(951% + y1zk),
k=1,2,...},

2

where (r1,%1) is the fundamental solution of 22 — ny? = 4. The equation 2% — ny? = —4 may

not be solvable over integers. But if it has solutions, then the set of all solutions is

{(m;m y;c)v(_x;cv yl::)’ ($§f7 _yl::)v (—x;c, _y;c) :
1
S = S0P + mu)at + 2natuih)

1
%H=4Wf+wﬁ%+hwﬁm

k=1,2,...1,

where (2],}) is the fundamental solution of 2> — ny? = —4. Moreover, the fundamental

2

solution (z1,y1) of the equation 22 — ny? = 4 can be obtained from the fundamental solution

(2, 94) of 22 —ny? = —4 by

1
v = (@ + my) and gy = .
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The following Proposition is useful.

Proposition 5.1.1. (see [8]) Let n > 0 be a nonsquare integer. If n # 0 (mod 4), then any

2

solution to the equation x> —ny? = 4, x and y have the same parity. Moreover, if the equation

22 — ny? = —4 is solvable, then = and y have the same parity.

Now, we will talk about some basic results from the special linear Lie algebra s[(2,R).
The Lie algebra s[(2, R) consists of all 2x2 matrices with real entries and trace zero. The Lie
bracket is given by [A, B] = AB — BA , for A, B € sl(2,R). It is well-known that (R, Ra, R3)
is a basis for s[(2,R) with properties that R; = [Re, R3], Ro = [R1, R2], and —R3 = [R1, R3],
where
1 0 1 |0 1 1 |10 O

R = — , and R3 = —
0 -1 V2 0 0 V2 1 0

By using this basis and direct calculation, it is easy to show that if [A, B] = 0, then A and B
must be linearly dependent. In other words, if A and B commute in sl(2,R) and B # 0, then
there exists k € R such that A = kB. We will use this result to determine the automorphism

group of A,,.

Lemma 5.1.2. Let A, B be matrices in sl(2,R). If B # 0 and AB = BA, then 3k € R such

that A = kB.
Proof. Since A, B € sl(2,R), Jay,az,a3,b1,b2,b3 € R so that A = a; Ry + asR2 + a3Rs and
B =01R1 + byRo + byRs. Since AB = BA, [A, B] = 0. Thus
0=[A, B] =[a1R1 + agRs + a3R3,b1 Ry + baRo + b3 R3]
= a1b1[R1, R1] + a1b2[R1, Ra] + a1b3[R1, R3] + a2b1[R2, R1]+
asba|Ra, Ro] + a2bs[Ra, R3] + asb1[Rs, R1] + agba[Rs, Ra|+
asbs[Rs, Rs]
= a1bo Ry — a1bgR3 — asbi Ro + asbsR1 + asbi Rs — asbo Ry
= (agbsz — agba) Ry + (a1by — agby)Re + (asby — a1bs) Rs.
Since Ri, Ro, R3 are linearly independent, we have

(llbg = azbl, CL2b3 = agbg, and a3b1 = albg.
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Since B # 0, there exists i € {1,2,3} such that b; # 0. Let k = ‘;—Z Then A = kB. O

To find the automorphism group of A,, when « is positive quadratic irrational, we begin
by using Theorem 4.0.9 in the case 5 = « to get the following Corollary:

m1
Corollary 5.1.3. Let A = € GL(2,Z).Then w(A) is an automorphism of A, if and

mo N9
only if the matrix A satisfies my + any > 0 and

nia? + (my — na)a — mg = 0.

mi1 N
Remark 5.1.4. For any matrix A = € GL(2,Z) that satisfies conditions in Corol-
ma nNa
1 1
lary 5.1.3, A = (m1 + any) , l.e., is an eigenvector of A with positive eigenvalue
e e o

mi1 + ani.

Lemma 5.1.5. If a is a positive quadratic irrational number, then there exists a non-identity

matriz A € SL(2,7Z) such that w(A) is an automorphism of Aq.

Proof. Since « is positive quadratic irrational, a = m+£*/ﬁ, wherem € Z, k € {—1,1},n,p € N,
n is nonsquare, m + k+/n > 0. Let (z1,y1) be the fundamental solution of the Pell’s equation

2
L1 — mpy1 Py
2?2 —np?y? = 1. Let A = . Then det(A) = (x1 —mpy1)(z1+mpy1) —

(n—m%yr 1+ mpyr

((n—m2)y1)(p?y1) = 22 —m?py? —npy? + m?p?yd = 22 —np*y? = 1. Thus A is a non-identity

matrix in SL(2,Z). Moreover,

PPy1a® 4+ (—2mpyr ) — (n — m?)y;

m? + 2mk/n +n

= p’ui( 0 )+ (—2mpy1)(w) — (n—m)y

= m*y1 + 2mkv/nyy + ny1 — 2m>y1 — 2mky/ny1 — ny1 + my?
=0.
Since 27 =1 + np2y% > any% and x; > 0, we have

) =11 + kv/npyr > 0.

m + k/n
(z1 — mpy1) + PPy = (1 — mpyr) +p2y1(pf

By Corollary 5.1.3, m(A) is an automorphism of A,,. O
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Lemma 5.1.6. Let Ay, Ay be matrices in GL(2,7Z) and « a positive quadratic irrational number.

If 7(A1) and 7(As2) are automorphisms of A, then A1Ay = Ay A;.

Proof. Let A1, A2 € GL(2,Z) be such that 7(A4;) and 7(Az) are automorphisms of A,. Let

1 1
H={AeGL(2,Z): A = , for some A > 0}. Then H is a subgroup of GL(2,7Z).

(e (6

Let ¢ : H — R™ be defined by ¢(A) = X. Then ker ¢ = {I} Thus H is isomorphic to a subgroup

of RT. Hence H is commutative. Since A1, Ay € H, A1 Ay = AxA;. O
Lemma 5.1.7. Let a be a positive irrational number. Let

1 1
H={AeSL(2,Z): A = , for some X\ > 0}.

@ e
If A € H with distinct eigenvalues and n is an even number, then A™ has no square root in

GL(2,2)\ SL(2,2).

1

Proof. Let n be even and A an eigenvalue of A corresponding to an eigenvector . Then %
o

A0
is the other eigenvalue of A. We write A = P P~! where P € GL(2,R) and the first

U
1
column of P is . Since n is even, n = 2k for some k € Z. Assume that A™ has a square
@
Mo
root in GL(2,Z) \ SL(2,Z). Then P P~' € GL(2,Z). Thus
0 —5
1 0 . AP -
P P =P PAT" € GL(2,7Z).
0 —1 0 —3F
1
Note that the only matrix in GL(2,7Z) that has an eigenvector with eigenvalue 1 is the
o
1 0 1
identity matrix. Since P P! € GL(2,7) has an eigenvector with eigenvalue 1,

0 -1 I}
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1 0
P P~! must be the identity matrix. This is a contradiction since
0 -1
1 0 L
det(P P =-1.
0 —1
Hence A™ has no square root in GL(2,Z) \ SL(2,Z). O

Lemma 5.1.8. If a is a positive quadratic irrational number, then there is a matriz Ay €
GL(2,Z) such that for any matriv A with 7(A) € Aut(Ay), w(A) is of the form (m(Ap))", for

some n € 7.

Proof. By Lemma 5.1.5, there is a non-identity matrix B € SL(2,7Z) such that n(B) is an

automorphism of A,. Since B € SL(2,R), there exist a non-zero matrix S, € s((2,R) such

1 1
that B = exp(S1). Let H = {A € SL(2,Z) : A = A , for some A > 0}. Then

a a
B e H. Let C = {t € R : exp(tS1) € H}. Then C is a closed additive subgroup of R. Let

to = inf{t > 0 : exp(tS1) € H}. Then ty generates the group C. Let A’ = exp(tpS1). Note
that A’ cannot have a square root in SL(2,7Z). If A’ has no square root in GL(2,Z), then let

Ay = A, If A’ has a square root in GL(2,Z), then let Ay be the square root that has positive
1

eigenvalue with respect to the eigenvector
e

Let A € GL(2,Z) be such that 7(A4) € Aut(A,). If A € SL(2,Z), then there exists
Sy € sl(2,R) such that A = exp(S3). By Lemma 5.1.6, BA = AB. Thus 5152 = S251. By
Lemma 5.1.2, 3k € R so that So = kS1. Since A € H, k € C. Then 35 € Z such that k = jtg
Hence A = (A’)). Thus A = AJ for some n € Z. If A ¢ SL(2,Z), then A% € SL(2,Z). By
similar argument, we have 3n € Z such that A? = (A’)". By Lemma 5.1.7, n must be odd.

Claim: A’ has a square root in GL(2,Z).

1
Let A and )\ be eigenvalues of A and A’ corresponding to an eigenvector . By
a
Lemma 5.1.6, AA" = A’A. Since both A and A’ are diagonalizable and they commute, A
A0
and A’ are simultaneously diagonalizable. Then we can write A = P P~ and
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1
1 where P € GL(2,R) and the first column of P is . Since A? = (A")",
1
N (0%

we have A2 = (\)™. Since n is odd, n = 2k + 1 for some k € Z. Thus \ = ()\’)k“'%. Hence

VN0 (N)7FX 0
P pl=p p!
1 1
0 -5 0 V)"
1
_p | Y pap |t O
0 (W) 0 —%

=(A)*AeGL(2,7).

In this case, Ay is the square root of A’ that has positive eigenvalue with respect to the

1
eigenvector . Thus A = Af. Hence 7(A) = (7(Ap))". O

«

Now, if « is positive quadratic irrational, we know from Theorem 4.0.9 and Lemma 5.1.8

that Aut(Ag) is the set {m(c)m(A)* : c € T? k € Z} for some non-identity matrix A € GL(2,7).

a b
For A = € GL(2,7), let 14 : T? — T? be defined by 4 ((c1,c2)) = (cich, c§cd), for
c d

(c1,¢2) € T?. Note that Aut(T?) = {¢4 : A € GL(2,Z)}. For each A € GL(2,Z), let T? xy, Z

denote the semidirect product of T? and Z, where the group multiplication of T? X, , Z is given

by (c,m).(d,n) = (cy’{(d), m + n).

Theorem 5.1.9. Let o be a positive irrational. If o is not a quadratic irrational, then from
Theorem 4.0.9 and Corollary 5.1.3, Aut(Ay) = T2. If « is positve quadratic irrational, then

Aut(Ay) 2 T? xy, Z for some non-identity matriz A € GL(2,Z).

Proof. Since a is positive quadratic irrational, Aut(Ay) = {7 (c)7(A)* : c € T?, k € Z} for some
non-identity matrix A € GL(2,Z). Let N, denote the subgroup generated by {r(c) : c € T?}

and < m(A) > denote the subgroup generated by m(A). First, we will show that N, < Aut(A,).
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a b
Let k € Z and (c1,c2) € T?. Let f € A,. Let AF = . Then

(A ((er, e2))m(A) () (2 w) = (e, e2))m(A) () (2w, 2w
= 7(A)7F(f) (e 2%, eazfw?)

d b c a
—=— ——~_  ad—bc bd—bd —_——c— —£ __  —ac+tac —bc+ad
= f(cfdibc 02 ad—be z ad—bc q ad—bc s Cl ad—be Céld*bc 2z ad—bc q ad—bc )

d __ b __c a
_ ad—bc ad—bc ad—bc ,ad—bc
= flef" e Z,Cq ¢ w)

d __ b __c a
— 7_[_((Ciwlfbc 02 ad—bc , C]_ adfbccézdfbc))(f)(z, w)

Thus 7(A)*r((c1,c2))m(A)™* € N,. Hence N, < Aut(A,). Now we have that Aut(A,) =

N, < m(A) > and NN < 7(A) >= {1}. Note that

m(c)m(A)* 17 (d)m(A)2 = m(c)(m(A) m(d)m(A)~H)m(A) e

= m(c)m(t, " (d))m(A)FHh,
for c¢,d € T?, k1, ko € Z. Thus Aut(Ay) = T? %y, Z. O

Theorem 5.1.10. Let «,f3 be positive quadratic irrationals. If Aut(Ay) = T? %y, Z and
Aut(Ag) = T? %y, Z, then Aut(Ay) = Aut(Ag) if and only if B=C1AC or B~ = C7'AC
for some C € GL(2,Z).

Proof. First, we will show that there is no group homomorphism from T? onto Z. Assume
that there is a group epimorphism ¢ : T? — Z. Then 3¢ € T? such that ¢(c) = 1. Since
c € T?, 3d € T? so that d?> = c. Thus 1 = ¢(c) = ¢(d.d) = ¢(d) + ¢(d) = 2¢(d) Hence
o(d) = %, a contradiction. Therefore, there is no such an epimorphism. By Theorem A.0.11,
T2 Xy, Z = T? Xy, Z if and only if ¢4 is conjugate to ¢ or 5" Thus T? x,,, Z = T? x4, Z
if and only if A is conjugate to B or B~!, i.e., 3C € GL(2,Z) such that B = C~'AC or
Bl =CtAC. O

5.2 Computation of the automorphism group of A,

In this section, we will find an explicit formula for any matrix A € GL(2,Z) such that

m(A) € Aut(A,). First, notice that for any positive quadratic irrational number «, we can
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write « in one of following forms:
(1) a= %, p,q € N, and ged(p, q) = 1,
2a=I+k g, r€Z,p,qs €N, ke {-1,1}, ged(r,s) = 1, and ged(p, q) = 1.

Note that if \/g is irrational, then pq is nonsquare.

Proposition 5.2.1. Let « be a positive irrational number of the form \/g, where p,q € N, and

ged(p, q) = 1.
(1) If the equation z* — pqy? = —1 is not solvable over the integers, then, for any A € GL(2,7),
n
. . . . 1 qy1
w(A) is an automorphism of A, if and only if A = , for some n € Z, where (x1,y1)
pyr T
is the fundamental solution of the Pell’s equation x> — pqy® = 1.

(2) If the equation x® — pqy® = —1 is solvable over the integers, then, for any A € GL(2,7),
n

x/ qy/
w(A) is an automorphism of A if and only if A = ! ! , for some n € Z, where (),y})
py1 T
is the fundamental solution of the negative Pell’s equation x> — pqy® = —1.
a b
Proof. Let A = € GL(2,7Z) such that a + b\/g > 0 and
c d

bg—i—(a—d) b=
q q

a b
Then a = d and ¢ = gb. So A is of the form . Since A € GL(2,Z) and ged(p,q) =1,

Py oa
qlb. So 3j € Z such that b = ¢j. Thus
a qj
A= J
pj a

If det(A) = 1, then a® — pgj? = 1. So a? = 1 + pqj? > pqj? = %bQ. Thus |a| > |b\\/§. Since
a+ b\/g > 0, a must be positive. In this case, we have to find integers a,j such that a > 0,
a* —pgj* = 1.

If det(A) = —1, then a® — pgj? = —1. So §b2 =pqj? =1+ a? > a®. Thus |b\\/§ > |a|. Since

a+ b\/% > 0, b must be positive, i.e., j must be positive. In this case, we have to find integers
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a,j such that j > 0, a® — pgj? = —1.
Case (1) : The equation 2> — pgy? = —1 is not solvable over the integers.
: a qj :
Then det(A) must be 1. Now, A is of the form , where a,j € Z such that a > 0
pj a
and a® — pgj? = 1. Let (x1,71) be the positive fundamental solution of the Pell’s equation

22 — pqy? = 1. Then all nonnegative solutions (x,%) are given by the set

{(17 0)7 ($myn) CTp+l = T1Tn +pqy1yn7yn+1 = T1Yn + Y1Tp, N = 17 27 .. }

Next, we will show by induction that for any n € N,

n

Ty oqyif [ Tn qYn
py1r  T1 PYn ITn
Basis step: Trivial.
n
1 qy1 T ay
Inductive step: Let n € N. Assume that =" "1, Then
byr T1 PYyn Tn
n+1 r
1 4y | Tn Yn 1 4y
py1r 1 PYn  Tn py1r 1

T1Tn + PQY1Yn  QY1Tn + qT1Yn

DPT1Yn + PY1Tn  PAY1Yn + T1Tn

Tn+1  qYn+1

PYn+1  Tn41

Thus, for any n € N,

—n

z1oaqn| | @ a(—yw)
py1 w1 p(=yn)  Tn
n
‘ ' 1 0 1 9y
Note that if a=1and j =0, A = . Thus A = , for some n € Z.
01 py1 T

Case (2) : The equation z2 — pgy? = —1 is solvable over the integers.
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a qj
Then A must be of the form where a,j € Z,
pj a
a>0and a® —pgj® =1
or

j >0 and a® — pgj® = —1.
Let (2, ") be the fundamental solution of the negative Pell’s equation 22 — pqy? = —1. Then
1Y
(r1,71) = (@2 + pqy??, 22 y}) is the fundamental solution of 22 — pqy? = 1. Also, all positive
solutions (%) of 22 — pqy? = —1 are given by the set
{(@h, yn) sy = (@ + pay?)a, + 2pgziyiuy,
yé+4,::($? +’qu?)yé'+’2$ﬁyi$%’n'=:172a~-}
and all nonnegative solutions (z,y) of 22 — pqy? = 1 are given by the set
{(1,0), (T, Yn) : Tn+1 = T1%n + PQYLYn, Ynt+1 = T1Yn + Y12n,n = 1,2, .. .}

We will show that, for any n € N,

2n—1
Ty A
pyy @ Y, T
2n—1 A
o qy T, qy,
Let n € N. Assume that ! ! = " "1 . Then
pyp T py, T,
2(n+1)-1 | 2n—1 12
T qy) R o qy)
pyy py, T T

Looayn| 2R Hpqy? 2qa 04

Py T, 2pxiyy 2 + payf

(22 + pay)zl, + 20\ yiyn  2q220Y) + qylh (2R + payi?)

pyn (22 + pay?) + 2pxial Yy 2pqxyiyn + (2 + pay?)al,

/ /
$n+1 qyn+1

/ /
PYn+1 Tnta
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Hence, for any n € N,

2n—1
T q |
pyy @ PYn T
Thus, for any n € N,
(2n—1)
T | v
pyp @ PYn T,
We also have,
2n n n
voqyy| e 4pey? 27hyi | | moan| 7. awn
Py, @ 2pahyy @+ payy py1 a1 PYn  Tn
and
—2n
Ty zn  a(—yn)
= ,neN
pyL @ p(=yn)  Tn
n
10 T qyy
Ifa=1and j =0, then A = . Thus A = , for some n € Z. O
01 pyy @
Proposition 5.2.2. Let « be a positive irrational number of the form T + k , where r €

Z,p,q,s €N, k€ {—1,1}, s is odd, ged(r,s) = 1 and gcd(p, q) = 1. Let di = ged(ps® —qr?, gs).

(1) If the equation xQ—pg; y? = —1 is not solvable over the integers, then, for any A € GL(2,7),
1

n

- Y1t ﬁyl
w(A) is an automorphism of Ay if and only if A = = , for some
(e quT Jyi - Pyt
n € 7, where (x1,y1) is the fundamental solution of x* — pqs y =1.
(2) If the equation x> — pg; y? = —1 is solvable over the mtegers, then, for any A € GL(2,7),
n
qrs kyl o ﬁkyﬂ
m(A) is an automorphism of Ay if and only if A = @ , for some
(2 Sk
n € Z, where (x,y}) is the fundamental solution of x> — pg; y? = —1.

2 2 4
Proof. First, note that 4>, % P2 € Z. We will show that P>~ is a nonsquare integer.
1

Since d|(ps® — qr?) and dy|qs?, we have d?|(pgs* — ¢*r%s?). We also have that d?|¢?r?s%. Thus
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d3|pgs*. Since « is irrational, \/; is irrational. Thus pq is nonsquare. Hence % d2 must be

nonsquare. Now, let A = € GL(2,Z) be such that a + ba > 0 and

c d
ba? + (a —d)a —c = 0.
Then a —d = —2%b and ¢ = (5~ S_qr )b. So A is of the form

a b
(22 a+ 27
Since A € GL(2,Z) and gcd(2r, s) = 1, we have s|b. Then there exists j € Z such that b = sj.
Now,
a sJ

(e

2

Since gcd(psz;lqr, &)=1,2|j. So j= T for some | € Z. Thus
a 2]
d
A= 1
(elar?y; 2420
d @+ dy

(#)%ZQ = 1. By the quadratic formula,

qrs [ pgst
=]+ /=241
a & d2 +

Ifa=— qrsl—i—,/pqs 1241, then

qrs pgs
b=+ ky[=) = =220+ | S 2 1+ (= + &
a+(+\/;) d1+d2++d1(+\/;)

2
SVPL
dy

If det(A) = 1, then a? + 24]a —

4
PIZ 12 41 4 &
1

Ifa:—%sl—,/l%‘fp—l-l,then
1

qrs pgs
b k =—-"I- P41+ k
a+(+\/;) a d2++d1(+\[q)

/ 52
pgs* S57v/P4q
—P+1+k I <0.
d2 + 1+ & <
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Hence a = qrsl + w/pgl—flz + 1. Now A is of the form
1

2
— Loy 4 [P 41 4y
(ps d_lqr )l qrsl+ /qu l2_|_1

Since A € GL(2,7Z), , /pg—‘;4l2 + 1 must be an integer. Thus
1

qrs qs?
A I+ d—ll

(L d_lqr )l %‘”l +x
where 2,0 € Z,z > 0 and 22 — 7’3—34l2 = 1. In this case, we have to find integers x,[ such that
1

4
x>0andx2—pg—§l2:1.
1

If det(A) = —1, then a® +2%%1a — (P2777) 2212 — 1. So

4
o=-L% 4 |00

A &
Ifa= —wl—l—\/l%‘fp—l, then
1

qrs pqS
btk D) = =y [P g By
a+(+\/;) i & +d1(+\/;)

(

2 —1.

<0 ifk=1landl<0

§2 >0 ifk=1land!>0
N I/ .
ds dq )
ifk=—-1landl <0

>0

<0 ifk=—-1land!>0

\

If a = =42 —  /PS712 — 1, then
1

qTS pqs
b k = ——]— 2—14+ 21 k
a+(+\/;) - +d1(+\/;>

<0 ifk=1landl<0

pq34 2\/]971 >0 ifk=1and!>0
= — 2[—1+k l )
di di :
ifk=—-1landl<0

>0

<0 ifk=—-1land!>0
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Since A € GL(2,Z), 4 /pqs4 2 — 1 must be an integer. If k = 1, then

wa, w
(L )N Pl
where z,1 € Z,1 > 0 and 2% — pfl—leﬂ = —1. In this case, we have to find integers x, [ such that
[ >0 and z? pqs 12——1. If K = —1, then
) R Lt
A — dy dy
(Bt w3y g
where 2,1 € Z,1 < 0 and 2% — 1’3—5412 = —1. In this case, we have to find integers x, [ such that
1
l<0andx2—pfl—§412:—1.
1
Case (1) : The equation z? — 2 g; y? = —1 is not solvable over the integers.
) P L
Then det(A) must be 1. Thus A = 1 & , for some x,l € Z,x > 0 and
(eloay arsp gy
d d
P pg?l 12 =1. Let (x1,y1) be the fundamental solution of the Pell’s equation x? — pg; y? =1.

Then all nonnegative solutions (x,y) are given by the set

st

{(1,0), (wn, yn) :Tpy1 = T120 + %ylynv
1

By induction, for n € N,

Yntl = T1Yn + Y1Tn,n = 1,2,...}.

2
~Cy+r Loy R
2 2 B _
@y || (2, 2y g,
Thus, for each n € N,
qrs gs? " qrs qs?
Gyt o B — I (=yn) + 20 I(_yn)
2 o o 2 92
(%)yl %;Syl + 21 (%)(_yn) qm( Yn) + Tn
— Ly + a0 ﬁyl '
Hence A = a1 , for some n € Z.
(u)yl Ty + o
Case (2) : The equation x? — pg; y? = —1 is solvable over the integers.
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R
If k = 1, then A must be of the form ! !

where x,l € Z,
(pszl;(IT‘Q )l %l + T
1 1

4
#>0, and 2? - PL 2 =1
dl
or
4
>0, and 2® = 2L 12— 1.
dl
ST
dy di

If kK = —1, then A must be of the form where z,l € Z,

(ps2d,1qr )l qTSl—F.’IJ

4
x>0, anda:Q—qu =1
d
1
or
2 pgs* 2
1 <0, and 2° — —-1" = -1
d
1
Let (z),y}) be the fundamental solution of the negative Pell’s equation 22 — pg; y?> = —1. Then
1,1 +pq2 Y2, 22" ") is the fundamental solution of 2 pq‘; y? = 1. Also, all positive
2 Y14y a2
solutions (x,y) of x2 pfls y? = —1 are given by the set

YR, + 22 1yiy$w

{( {n’yn) n+1 ( Ty + d2

d2
y;H_l (.’L’l + d2 yl )y;—i-?x/ly’lx;wn: 1,2,}

and all nonnegative solutions (x,y) of 22 — P~ qs y = 1 are given by the set

gs*

b
{(1,0), (zn, yn) Tns1 = 2120 + —p Vi,
1
Yntl = T1Yn + Y1Tn,n = 1,2,...}.
n

(Irsky N ﬁky'
Thus A = ! ! di 71 , for some n € Z. O

(B )ky,  kyt + 2]

Proposition 5.2.3. Let « be a positive irrational number of the form T + k , where T €

Z,p,q,s € N, k € {~1,1}, s is even, ged(r,s) = 1 and ged(p,q) = 1. Let di = ged(ps® —
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qr?,2gs).

(1) If dy | gs and the equation z* — pg; y? = —1 is not solvable over the integers, then, for any
n
=y + 1 qdﬁyl
A€ GL(2,Z), 7(A) is an automorphism of A, if and only if A = ! ! ,

(e djqr Jyr Gy +

for some n € Z, where (x1,y1) is the fundamental solution of x? — pqs y =1.

(2) If d1 | qs and the equation x? — pgg y? = —1 is solvable over the integers, then, for any A €
n

e
GL(2,7Z), w(A) is an automorphism of A, if and only if A = ! ,

(B2 Bk 4+

for some n € Z, where (z},y}) is the fundamental solution of x* — pg§4y =-1.
(3) If d1 1 qs and the equation x> — 41%84[2 = —4 is not solvable over the integers, then, for any
1
n
2
q?”Sy _|_ .Tl qul yl

A€ GL(2,Z), n(A) is an automorphism of A if and only if A = ,
<pS (;q”' )yl qT‘Sy + 1'1
for some n € Z, where (x1,y1) is the fundamental solution of 2 — Zl%#lz =4
1

(4) If d1 1 gs and the equation x> 4pqs 12 = —4 is solvable over the integers, then, for any A €

1
n

gs kv + qdﬁky/l
GL(2,Z), w(A) is an automorphism of Ay if and only if A = ! ,
(BT, Bokyl +

for some n € Z, where (z},y}) is the fundamental solution of x* — 4’;#%8[2 = —4.

Proof. First, note that if di | gs, then 4>, %, pszqr € Z. In this case, we will show that P4

d2

is a nonsquare integer. Since di|(ps? —qr?) and dy|gs?, we have d3|(pgs* —¢*r?s?). We also have
that dQ|q2 252, Thus d?|pgs*. Since « is irrational, \/g is irrational. Thus pq is nonsquare.

2_ .2 .2 . .
Hence 243~ must be nonsquare. Now, if d; 1 ¢s, then %, % € Z. In this case, we will show

d2

that4pqs is a nonsquare integer. Since di|2gs, di|4gs®. Since dy|(ps® — qr?) and dy|4qs?, we
have d%](4pqs — 4¢*r?s?). We also have that d3|4q?r?s?. Thus d3|4pgs®. Since « is irrational,

.. . . 4
\/g is irrational. Thus pq is nonsquare. Hence % must be nonsquare.
1

a b
Now, let A = € GL(2,7) be such that a + ba > 0 and
c d

ba? + (a —d)a —c=0.
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Then a —d = —2%b and ¢ = ( Sq_qr )b. So A is of the form

a b

(B0 a+25b

Since s is even, 5 € N. Since A € GL(2,Z) and ged(r, 5) = 1, we have 3[b. Then there exists

J € Z such that b = 5j. Now,

A= ¢ %j

Since gcd(ﬂ, QdLl) =1, 2q5\] So j = 2qsl for some [ € Z. Thus

A - 2 2 dl
(B0 a4 22

Case : di|gs.

By the same argument in the proof of Proposition 5.2.2,

n

2
A —1= Tt %yl
Bty wy
for some n € Z, where (x1,y1) is the fundamental solution of z? pfl?j y? = 1 if the equation
x? — 73—343/2 = —1 is not solvable over the integers and

1

n
O R R
- ’
(BT kyl Tky) + o

pgst 2

for some n € Z, where (2, y}) is the fundamental solution of 2% — Z Y= —1 if the equation
x? — pg; y? = —1 is solvable over the integers.
Case : dy 1 gs.

5%

a di
ps®—gqr? ars
(B a+ 24700
If det(A) = 1, then a? + 24°1a — (#)%ZQ = 1. By the quadratic formula,

Recall that A = , for some j € Z

dpgsto |
qrs d3
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54
QTS 4’;‘1% o
Ifa=— 1471444444f,then

2

sty
qrs qs®
atb(C ok By="L5 VA Ty
( \/;) dy 2 dy ( \/;)

4pgs? ;o
ars d% 12+4
Ifa=-2%— Y 9 then

dy 2

“ a2 Ta

2
=— l2+1+k VP l<0
\/ d1 dq

/4pq2s4 1244
d .
%l + +—%5—— . Now A is of the form
4pgs? ;o
_ars) 4 Vo as?]
dy

2 dy

4pqs 1244
(pszfqﬂ)l qrsl+ \ d?

dy

NEE S

2

a+b(- +k:\/>)— ars 4 as” (- +k\/>)
q q

Hence a = —

Since d; 1 ¢s and d; | 2¢s, d; must be even. Since ged(r, s) = 1 and s is even, r must be odd.
Since d; = ged(ps? —qr?,2qs) and d; is even, ¢ must be even. Since ged(p, ¢) = 1 and ¢ is even,
p must be odd. Now we write s = 2™ny,q = 2"2ng, where m1, mo € N and ny,ns are odd
integers. Since dy 1 ¢s and dy | 2gs, di = 2™ ™2 F1ns for some odd integer n3 and ng|nins.

ning ng

Since ni,ng,n3 are odd and nz | ning, is an odd integer. Now we have

grs _ 2™nor2™ny _ (%)
dy  2mitmatlp, 2
Thus A is of the form
nin 4 54
—r(ZL 2)l+ pdq2 1244 )
V. 4 as?)
2 di
) I+ 4pgs? 1244
(ps2—qr2)l ™) V o4
d1 2

Since A € GL(2,7Z), , /A‘pdifll2 + 4 must be an integer. Thus
1

77'(711”2 Y+ 2
T ey
A - n1n12
(pegyy TR
di 2
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4
where z,l € Z,z > 0 and z° — 4’?%[2 =4
1
2172V 4z r(TL02) g
d

. - n3 n3
Since 3 an 5

TLan

must be integers and 7, are odd, z and ! must have the

same parity. We want to show that 47?% # 0 (mod 4), i.e., we have to show that d? { pgs*. Since
1

di|ps? — qr? and dy = 2mitmetlps we have 2mitmetl| ps? — gr2. Let m = min{2my, ms}.

Then

2
s q
ps’ —qr’ = 2m(p2*m - 2717")

. . 2 . 2
Since m = min{2my, ma}, pgm or 55 must be odd. Since m < mg < my+ma+1, pgm — g T

must be even. That is pzsm and —r must be odd. Thus m = m9 = 2m;. Now we have
pgst = p2M2ny2tmint = omatimip, g

and

d% — 22?721 +2mo +2n§ .

Since mg + 4my = 2mg + 2my + 1 < 2my + 2ma + 2, d2 { pgs*. Thus 47"75 # 0 (mod 4). B

= 4 have the same parity. Thus,

Proposition 5.1.1, z and [ that satisfy the equation 2% — 4%‘?1[2

4
2_dpgstp gy
1

in this case, we have to find integers x, [ such that z > 0 and =

1

If det(A) = —1, then a® + 245la — (psgd;qﬂ)%l2 =—-1. So

1
4;1;(125 l2 4
1

[ 4pgs? 124
2
Ifa=— qml—i—di,then
4;;(]25412_4
qrs 2 qs®
at+b(-+k D) =-T2 4+ X9 Tl g
¢ \/; " ; o \/;>

;

<0 ifk=1landl<0

pqs4 2\/17(1 >0 ifk=1land!>0
= 2l—1—|—k l .
d3 di :
>0 fk=—-1landl<O0

<0 ifk=—-1land!>0

\
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4pq2s 124
d
qrsy 1
Ifa = o [ 5 , then

dpgst 1o

qrs d3 qs
a+b(-+k = —l—i—i- —I(-+k
Crnfh=-% : CSND

(

<0 ifk=1landl<O
>0 ifk=1and!>0
>0 ifk=—-1andl<0

<0 ifk=—-1land!>0

Thus, if £k = 1, then A is of the form

4pgst 1o
\/ d2l 4 2
sS4 Vo1 a5y
dy

2 dy

pas 24 ,l > “
pSQ ]1”2 l ?’"Sl d%

dy
If Kk = —1, then A is of the form

4pq284 12—4
_aorsp g VoA as?]
dy

2 dy

PR ,1<0.
2_ .2 d2 54
(u)l %15[:& Ny o

di 2

(”1"2

Since A € GL(2,Z) and 4> = %3), ,/4%5412 — 4 must be an integer. If k = 1, then
1

2
qrs qs
[+ 3 ol

(pS Czlqr )l q’l"Sl+ 2

9

where z,l € Z,1 > 0 and 2% — 47&%34112 = —4.
1

If k = —1, then

2
qrs gs
I+ 3 o l

(pS (glqr )l qrsl+ 2

)

where 2,1 € Z,1 < 0 and 2% — 4%8412 = —4.
1

By the same argument as above, if z,l € Z satisfying 22 — A‘pd#lz = -4, -l + 3
1

and

%Sl + 5 are integers. Thus, in this case, we have to find integers z,l such that kI > 0 and
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4
2 _4pgsti2 gy

€ 2
dy

By the same argument in the proof of Proposition 5.2.2, we have

n

2
_ars Z1 gqs”
A= di U1 + D) dr Y1
- 2_ 2 )
bs~™—qr qrs 1
( a )y Nty

for some n € Z, where (z1,y1) is the fundamental solution of x? —

4pd¢234l2 = 4 if the equation
1

4
a? ot

1

—4 is not solvable over the integers and

n
LY S U iy N
A— 4 VYT Erad A
2 2 /
ps“—qr ’ qrs ../ T
( a1 )kyl dy kyl + 5

for some n € Z, where (/,v}) is the fundamental solution of 2% — 4’;#28412 = —4 if the equation
1

2 _ 41@(1284 2=
dl

x —4 is solvable over the integers. O

Example 5.2.4. a = V5.

The fundamental solution of the equation z? — 5y* = —1 is (z},y}) = (2,1). Thus any
n
2 1
matrix A in GL(2,Z) that 7(A) is automorphisms of A s is of the form A = ,n €7,
5 2
n
2 1
i.e., m(A) is an automorphism of A s if and only if A = for some n € Z.
5 2

Example 5.2.5. a = V7.
Since 7 # 1( mod 4), the equation 2 — 7y> = —1 is not solvable over integers. So we
look at the fundamental solution of the equation 2% — 7y% = 1. Since (z1,71) = (8,3) is the

fundamental solution of 22 — 7y? = 1, any matrix A in GL(2,Z) that 7(A) is automorphisms
n

8 3
of A s is of the form A = ,n €.

21 8

1+
3

S

Example 5.2.6. o =

Since (71,y1) = (8,3) is the fundamental solution of 2> — 7y? = 1, by Proposition 5.2.2,
n

5 9
any matrix A in GL(2,Z) that 7(A) is automorphisms of A,, 7 is of the form A = ,
3

6 11
n € 7.
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1+
2

1S

Example 5.2.7. a =
The fundamental solution of the equation z? — 5y? = —4 is (2,y}) = (1,1). By Propo-

sition 5.2.3, any matrix A in GL(2,Z) that m(A) is automorphisms of A, s is of the form

2

n

0 1
A= ,mMEZ
11
-1
2 1 0 1 -1 1 0 1
Note that is not conjugate to nor = since they don’t
5 2 11 1 0 11

have the same trace. By Theorem 5.1.10, A s is not isomorphic to A,, 5.
2

-1 1

Example 5.2.8. Let A = . Then A € GL(2,Z). Moreover, —1 + (1+3

S

1=

J%ﬁ > 0, and

- \ﬁ(_Q‘;\ﬁ

= V7(=1+(

)

1+7
3

)(1))-

Thus, by Theorem 4.0.9, A s is isomorphic to A, 7.
3
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APPENDIX . ADDITIONAL THEOREMS

Theorem A.0.9. (Poincaré’s Recurrence Theorem) (see [14]) Let (X,B, m) be a probability
space. Let T : X — X be such that m(E) = m(T~Y(E)) for any E € B. Let F € B be such
that m(F) > 0. Then there is a sequence ny < na < ..., ni,na,... € N such that T" (x) € F

for almost all points x € F', for all i € N.

Theorem A.0.10. (Harnack’s Inequality) (see [12]) Let u : B(a,R) — R be a continuous

function. If u is harmonic in B(a, R), and u > 0, then

R—T' 0
< Wy <
R_i_ru(a)_u(a—l—re ) < -

where 0 <r < R,0 € R.

Theorem A.0.11. (see [9], p.364) Let G be a group. For each ¢ € Aut(G), let G x, Z
denote the semidirect product of G and Z, where the group multiplication of G X, Z is given
by (z,m).(y,n) = (x™(y),m +n). Let & : Aut(G) — Aut(G)/Inn(G) be the canonical map.
Suppose that there is no group epimorphism from G onto Z. Let ¢ and ¢ € Aut(G). Then
G %y Z and G Xy Z are isomorphic if and only if ®(p) is conjugate to ®(¢) or @(w)fl n
Aut(G)/Inn(G).
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