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ABSTRACT

Web Services are heterogeneously developed software components invoked over the network viz.

the Internet. Their main objective is to provide desired outputs in exchange of specified inputs. In

the setting of service oriented architecture, Web services play a vital role by allowing computations

to be carried out in a distributed fashion via communication between services over the network. This

is commonly referred to as Web service composition. Service composition amounts to investigating

whether (and how) various services can be utilized in tandem to develop new services desired by a

client.

A wide range of problems needs to be addressed before service composition can be deployed in

practice. These problems range from developing standard language representation for composite ser-

vices to resolving semantic/vocabulary mismatch between services participating in a composition. In

this dissertation we study the problem of synthesis of a mediator/choreographer in Web service com-

position for a given set of services and a goal. Services and goal are represented using i/o automata.

The central theme of our technique relies on generating i/o automata representation of all possible

choreographed behaviors of existing services (captured in form of universal service automaton, a con-

cept introduced) and verifying that the goal can be simulated by the universal set of choreographed

behaviors.

Such a technique is subject to state-space explosion. In light of this, we have developed a tabled-

logic programming technique which generates and explores compositions in a goal-directed fashion to

prove/disprove the existence of choreographer and to infer whether the desired functionality is real-

izable. We present a prototype implementation and show the practical applicability of our technique

using composition problems with the corresponding computational savings in terms of number of states

and transitions explored.
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However, such a centralized choreography mechanism can involve communication/computation

overhead that can be reduced through its decentralized realization. With this as motivation, we next

study the problem of synthesizing a decentralized choreography strategy that will have an optimum

overhead for service composition by developing a set of site-specific choreographers working concur-

rently to implement a desired goal service. Each communication/computation is quantified by a cost.

We develop algorithms that takes as input the existing services, the goal service, the costs and pro-

duces as an output a set of site-specific choreographers that optimally realize the goal service using the

existing services. The optimization would be different in cases of the goal automaton without loops

(workflow) or with loops (certain operations can be repeated any number of times)

The contribution of this work lies in the automata-theoretic formal approach to the formulation and

the systematic solution of the choreographer synthesis problem as well as formulation of the optimal

decentralized choreographer synthesis problem and its solution. The contributions include a method-

ology for computing cost of automata (with or without cycles), given cost of its transitions, and a

generalized solution of the optimized decentralization service composition problem.
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CHAPTER 1. Web Services Overview: Architecture and Technologies

1.1 Introduction

Service-Oriented Architecture (SOA) is an application architecture in which all functions, or ser-

vices, are defined using a description language and has interfaces that can be invoked to perform busi-

ness processes. Each interaction is independent of each and every other interaction and the interconnect

protocols of the communicating devices (i.e., the infrastructure components that determine the commu-

nication system do not affect the interfaces). A service in SOA must adhere to the two principles. The

interface for interacting with the external world should be platform independent. Secondly, the service

should be available for invocation by other services. In this fast growing market of software reuse, Web

Services are a rapidly evolving technology having many facets. They are the torch bearer of SOA. Web

Services use the three pronged principle of find, bind and publish as described in Figure 1.1. First a

service is published, and clients can search or find the service they want and then dynamically or stat-

ically bind to the service. Next, we we introduce the infrastructure required for web services starting

with the various standards.

1.2 Web Service Standards

There are a lot of standards, some still emerging for different aspects such as security, reliability,

management. Here we introduce the core of them driving traditional web services. As can be seen

in Figure 1.1(b), at the transport layer established protocols can be used for transferring Web Services

payload. Typically, HTTP(S) is used for internet based Web Services communication. For publishing

purposes, UDDI detailed in the next section is used. Here, Web Services are registered using the

following services and protocols.
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SOAP
Service

Service

Service

Provider

RequestorRepository

BindPublish

Find

SOAP
/HTTP

SOAP
/HTTP

/HTTP

CompositionBPEL, WS−CDL ...

Standards (Security, SLA ...)

WSDL, UDDI ...

XML based technologies (SOAP ...)

Protocols (HTTP, FTP, JMS, SMTP ...)Transport

Encoding

Publishing

QoS

(a) (b)

Figure 1.1: (a) Architecture of Web Services (b) Web Services Stack

1.2.1 UDDI[2]

Universal Description, Discovery, and Integration (UDDI) is a protocol for describing available

Web services components. This standard allows businesses to register with an Internet directory that

will help them advertise their services, so companies can find one another and conduct transactions

over the Web. This registration and lookup task is done using XML and HTTP(S)-based mechanisms.

UDDI is a mechanism for clients to dynamically find other web services. Using a UDDI interface,

businesses can connect to services provided by external business partners. An UDDI registry can be

thought of as a CORBA trader, or a DNS lookup service for business applications. A UDDI registry

has two kinds of clients: businesses that want to publish a service (and its usage interfaces), and clients

who want to obtain certain services to fulfil their goals and bind programmatically to them. UDDI is

layered over SOAP[5] and assumes that requests and responses are UDDI objects sent around as SOAP

messages. A typical query is as follows.

Example 1 Suppose CCNService is provided by a business CCN Corp. CCNService takes as input

social security number (SSN) and produces as output the credit card number (CCN). Then the following

query, when placed inside the body of the SOAP envelope, returns details on CCN Corp.

<find_business generic="1.0" xmlns="urn:uddi-org:api"> <name>CCN

Corp</name> </find_business>
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The result is a detailed listing of <businessInfo> elements currently registered for CCN Corp,

which includes information about the UDDI service itself.

<businessList generic="1.0"

operator="CCN Corporation"

truncated="false"

xmlns="urn:uddi-org:api">

<businessInfos>

<businessInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3">

<name>CCN Corporation</name>

<description xml:lang="en">

Providing CCN query solutions

</description>

<serviceInfos>

<serviceInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"

serviceKey="1FFE1F71-2AF3-45FB-B788-09AF7FF151A4">

<name>Web services providing service 1</name>

</serviceInfo>

<serviceInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"

serviceKey="A8E4999A-21A3-47FA-802E-EE50A88B266F">

<name>Web services providing service 2</name>

</serviceInfo>

</serviceInfos>

</businessInfo>

</businessInfos>

</businessList>
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1.2.2 SOAP[5]

Simple Object Access Protocol (SOAP) is the pervasive protocol for wrapping Web Services pay-

loads for messages through transport layer. This standard is used for binding to clients as well as

publishing to a UDDI Service. A soap message consists of three parts: an envelope that defines a

framework for describing what is in a message and how to process it, a set of encoding rules for ex-

pressing instances of application-defined datatypes, and a convention for representing remote procedure

calls and responses. SOAP makes object access simple by allowing applications to invoke object meth-

ods or functions, residing on remote servers. A SOAP application creates a request block in XML,

supplying the data needed by the remote method as well as the location of the remote object itself. We

would require the mechanism to both wrap into and unwrap from SOAP messages at both participants

of the binding. The body of the SOAP envelope would contain its payload, which can be interpreted

with the XML schema associated with it.

Example 2 A SOAP enveloped request to the CCNService service would be as follows:

POST /CCNService HTTP/1.1 Host: www.ccnserviceserver.com

Content-Type: text/xml; charset="utf-8" Content-Length: n

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetCCN

xmlns:m="Some-URI">

<SSN>XXXXXX</SSN>

</m:GetCCN>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
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A SOAP enveloped response to the CCNService service:

HTTP/1.1 200 OK Content-Type: text/xml; charset="utf-8"

Content-Length: n

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:GetCCNResponse

xmlns:m="Some-URI">

<CCN>YYYYYYY</CCN>

</m:GetCCNResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

1.2.3 WSDL[3]

While publishing services, a cogent description is required to lend itself to discovery. For this

purpose, Web Services Description Language (WSDL), is the accepted standard. It is a template for

how services should be described and bound by clients. Once, the developer exposes a function through

the services, WSDL is used to generate the interfacing points of the service. It may be a bunch of files

(WSDL, WSDD etc), which together establish what the service does and how to access it, similar to

IDL (Interface Definition Language) used for remote invocation procedures such as in CORBA.

The repository where the services are published such as UDDI would list the corresponding WSDLs

describing the services. It would have the information about how to find it, bind and invoke the service.

In WSDL, custom abstract definitions of data, ports for binding pave the way for reuse. [3] summarizes

the various aspects as follows.

• Types : A container for data type definitions using some type system (such as XSD).
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• Message : An abstract, typed definition of the data being communicated.

• Operation : An abstract description of an action supported by the service.

• Port Type : An abstract set of operations supported by one or more endpoints.

• Binding : A concrete protocol and data format specification for a particular port type.

• Port : A single endpoint defined as a combination of a binding and a network address.

• Service : A collection of related endpoints.

Example 3 For the example service, the WSDL would be as follows:

<?xml version="1.0"?> <definitions name="CCN"

targetNamespace="http://example.com/ccnservice.wsdl"

xmlns:tns="http://example.com/ccnservice.wsdl"

xmlns:xsd1="http://example.com/ccnservice.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="http://example.com/ccnservice.xsd"

xmlns="http://www.w3.org/1999/XMLSchema">

<element name="SSN">

<complexType>

<all>

<element name="ssn" type="string"/>

</all>

</complexType>

</element>

<element name="CCN">

<complexType>

<all>
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<element name="ccn" type="string"/>

</all>

</complexType>

</element>

</schema>

</types>

<message name="GetCCNInput">

<part name="body" element="xsd1:SSN"/>

</message>

<message name="GetCCNOutput">

<part name="body" element="xsd1:CCN"/>

</message>

<portType name="CCNServicePortType">

<operation name="GetCCN">

<input message="tns:GetCCNInput"/>

<output message="tns:GetCCNOutput"/>

</operation>

</portType>

<binding name="CCNServiceSoapBinding"

type="tns:CCNServicePortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetCCN">

<soap:operation

soapAction="http://example.com/GetCCN"/>
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<input>

<soap:body use="literal"

namespace="http://example.com/ccn.xsd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="literal"

namespace="http://example.com/ccn.xsd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="CCNService">

<documentation>provides CCN from SSN</documentation>

<port name="CCNServicePort" binding="tns:CCNServiceBinding">

<soap:address location="http://example.com/ccnservice"/>

</port>

</service>

</definitions>

<binding name="CCNServiceBinding"

type="CCNServiceType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getCCN">

<soap:operation
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soapAction="http://www.getCCN.com/GetCCN"/>

<input>

<soap:body type="InMessageRequest"

namespace="urn:ccn"

encoding="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body type="OutMessageResponse"

encoding="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="CCNService">

<documentation>provides CCN from SSN

</documentation>

<port name="CCNServicePort"

binding="tns:CCNServiceBinding">

<soap:address location="http://example.com/ccnservice"/>

</port>

</service>

</definitions>

1.2.4 Technologies

Once the mechanism to publish, find and bind services falls in place, different layers can be intro-

duced to weave a network of many such services in the real world. Based on the elements described

earlier, the Web Services world has evolved to use complex technologies and new protocols for differ-

ent aspects, such as security, quality of service as described in the technology stack in Figure 1.1(b).

There are many IDEs to create web services in a semi-automated manner (generating the interface files
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automatically from minimal user input) and once a service provider creates a web service, it can be

published in a ebXML registry, like UDDI registry described above. The core architectural foundations

of Web services are based on XML which are being developed in parallel by different vendors. Rep-

resentational state transfer (REST) [81] can be used for a model dealing away with the complexity of

SOAP. The web services conforming to REST are said to have a RESTful design. There are a number

of mechanisms for constructing Web services. Microsoft prefers object-oriented language C# as the de-

velopment language for Web services and .NET framework. The back end database such as a Microsoft

SQL Server. Similarly, Sun Microsystems has its own set of technologies and tools for facilitating Web

services development. Java Servlets, Java Server Pages (JSPs), Enterprise JavaBeans (EJB) architec-

ture and other Java 2 Enterprise Edition (J2EE) technologies can be used for developing Web services,

such as is developing Java APIs for XML-based remote procedure calls and for looking up services in

XML registries JAX/RPC (Java API for XML Remote Procedure Calls) and JAXR (Java API for XML

Registries). IBM have also pitched in with Web Services Toolkit (EETTK), WSDL Toolkit, and Web

Services Development Environment (WSDE). Oracle had developed a plug-in for Business Process

Execution Language (BPEL) which provides a layer facilitating composing Web Services manually.

They provide IDEs for drag and drop of service interfaces and composing them into a workflow. There

are a host of tools for composition which will be summarized in the next chapter.

1.3 Semantic Web Services

Though Web Services had a major impact on enterprise business since its inception, the technolo-

gies described so far provide more of a syntactic level description of their functionalities. To lend

meaning to the attributes of communication, metadata has been extensively used as is the norm in

XML based protocols. But this would limit the boundaries to knowing what a service does, and how

to invoke it or who published it. But, to practically compose services without manual intervention in

complex business scenarios the Web Services paradigm needs to satisfy a broader goal of having ma-

chine readable semantics. Otherwise inter-operability is largely limited. Thus, Semantic Web Services

(SWS) have evolved by providing rich formal descriptions of their capabilities. This would help in

automating various tasks in an open environment [68]. This is part of a broader aspect of research in
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classifying data according to semantics which has led to the emergence of semantic web. In the next

section, we briefly explore what a semantic web service would entail.

1.3.1 OWL-S

OWL-S (previously DAML-S])[8] consists of a set of ontologies designed for describing and rea-

soning over service descriptions. It leverages the Resource Description Framework (RDF) . RDF is a

data model describing relations between different resources. This is aided by the RDF schema which

provides the associated vocabulary. The origin of this approach can be traced to AI, where it was used

for describing Agent functionality in Multi-Agent Systems and in Planners for solving high level goals.

OWL comes in different flavors of expressiveness such as OWL-Lite, OWL-DL, and OWL-Full. When

adapted in the context of Web Services, it can be split into three ontologies the Profile, Process Model

and Grounding. The Profile, which is used for finding services. The inputs, outputs, preconditions and

effects of the function performed by the service along with some manual inputs such as its name, quality

of service parameters are used to determine the service description. While inputs and outputs directly

pertain to the service preconditions and effects pertain to the environment of execution. Preconditions

are facts that should be asserted for the service to execute and effects are the facts that become asserted

after the execution of the service. Profiles contribute to a universe of Profile Taxonomy from which

other profiles can be derived. The process model is used for validating the composition of services.

Processes can be of three types. Atomic processes are indivisible units having inputs and outputs.

simple processes are the layer of abstractions detailing how to use the service. They are like a shell

which have to be associated with atomic processes through discovery or dynamic binding to bind to a

physical service. Composite processes can be hierarchically combined workflows of Atomic, Simple

as well as other composite processes. Service grounding addresses the means to access a service by

defining communication protocols, message formats etc.

1.3.2 WSMF

The Web Service Modeling Framework (WSMF) [9] provides a model for capturing the myriad

aspects related to Web services. The model stresses loose coupling of the different components and a
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mediator to enable communication among the components as needed. In our research we would use the

term choreographer. Service mediation can be termed as Choreography meaning the view from out-

side how messages are exchanged between different components, or Orchestration is like a composer’s

view to compose services to realize a particular goal. The WSMF framework believes in scalability

in supporting more data structures; adding business logics and message exchange protocols. The main

elements of WSMF are ontologies standardizing the terminology used by the elements; goal reposito-

ries containing composition capabilities which should be realized by choreographing the services ; the

description of the services themselves and mediators for realizing the goals. WSMF led to the projects,

Semantic Web enabled Web Services (SWWS) [7]; and WSMO (Web Service Modeling Ontology)

[6]. SWWS looks into providing a framework for description, discovery and mediation. WSMO is

concerned with formalizing the service ontology defining goals, mediators and services. WSMO uses

F-logic as the language for describing the various aspects and the inter-operability issues are handled

in mediators to follow the philosophy of loose coupling.

1.4 Benefits of Web Services

Web Services as a form of SOA has manifold benefits. The most noticeable aspect in the SOA

paradigm is the fact that custom made functions can be exposed to a network for discovery by others.

Thus the functions become accessible via standard protocols such as HTTP. This opens up the idea of

collaborating of services to make up newer services.

Heterogeneously developed functions in different languages can be participants in a collaborated

Web Services development. The low coupling aspect allows any function that is needed for a com-

position to be invoked as on the uppermost layer Web Services would follow the same protocol. This

makes the collaboration platform and technology independent. Of course, a collaboration would require

matching in terms of the service level agreements as well as semantic matching.

Standardized protocols as described in the Web Services stack, for transport, messaging, description

and discovery aid the development of Web Services. These make the job of developing new services

easier by offering the layer of abstraction they provide. Internet being the primary method of transport

allows for a cheaper alternative than proprietary B2B solutions. Similarly, flexibility is another key
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Figure 1.2: Automated composition

freedom offered to Web Services developers. One can use their own reliable transport mechanism for

communication and their choice of languages and platforms for development. Web Services can be im-

plemented from over ftp protocols to following a RESTful design as mentioned earlier. Similarly, Web

Services discovery make it easier to find new opportunities in expanding business easier. Web Services

being self-describing modules make development time short, by allowing loose coupled components to

be made simultaneously.

Web Services have opened up the world of new business collaborations by making it easier to pub-

lish and discover services. Support of technologies such as EAI, EDI, B2B, Portals for distributed

computing helps leveraging existing businesses to spread into other technologies. Thus, legacy appli-

cations can still be used fitted with Web Services interfaces, and at the same time those applications

can be changed or modernized in the back end to ring in new technologies.

1.5 Research Goals

There has been number of aspects of research in Web Services. These range from theoretical

research for modeling semantics of data exchange, services to efficient implementation of services

using standard technologies. Given the volume of Services, a natural thing would be to compose

new services from existing ones. Since, in essence, the paradigm involves data exchange in the core,

match making and ensuring following of standards is an important issue. There has been a plethora
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of specifications and they are undergoing constant changes for arriving at an international standard.

The specifications are generally built upon XML. But a more important aspect is to formalize the

process of composition of services. Thus, ongoing research is also focused on how to develop the

core model for SOA, whatever the agreed specifications may be. Web Services choreography refers

to the collaborative approach, where each party involved in the process describes the part they play

in the interaction. Choreography tracks the sequence of messages that may involve multiple parties

and multiple sources. It is associated with the public message exchanges that occur between multiple

Web services. In Figure 1.2, Web Services are modeled as automata and composed for realizing newer

services. The first task involves conversion from a high level language for describing services such as

WSDL, BPEL, OWL to the model of choice. External constraints such as a communication cost model

can serve as conditions to be met by the composition. After composing the services, the output model

needs to be transformed into the language suited for discovery and use. And, inside the composition

framework, the problem of the mediation of services is tackled - How can we know if a goal is realizable

or not? If at all, what will be the model of the choreographer? If there are multiple choreographers

possible, how can we minimize the communication and computation overhead to choose an optimal

choreography scheme? These are the major questions addressed in this dissertation.
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CHAPTER 2. Composing Web Services through Choreography: Overview and Prior

Work

2.1 Centralized Choreography

Centralized Choreography of services refer to the cooperative interaction of services with a single

mediator. The central mediator participates in all the messages exchanges between a service and an-

other service or the end user. The main research goal of Composing services is to find the existence

and extraction of the mediator referred to as the Choreographer. A number of approaches has been

developed in the recent past to detect and/or synthesize choreography based composition of services.

The techniques range from manual development of choreography to more rigorous automated proce-

dures that rely on formal methods. The techniques applying formal methods to service composition are

typically based on automata theory, dynamic logic and AI planning. In the following we discuss some

of the representative works in this domain.

In [21] the authors describe services as automata extended with queue and allow exchange of mes-

sages between services in an asynchronous fashion. A global watcher is developed to keep track of

messages being exchanged in the composition to detect whether a specified goal service is realiz-

able. Subsequently in [22] the authors use Spin model checker [54] to verify whether a composition

correctly replicates the required goal. Also in [48], they have dealt with verification of service conver-

sations. The message passing framework is extended in [19] which uses satisfiability of propositional

dynamic logic to detect the existence of a choreographer. The work is further generalized in [20] where

non-determinism in the service behavior is considered. A similar approach on service composition is

presented in [56], where the main objective is to create a choreographer which makes the composition

behavior bisimulation equivalent to the goal. [34] introduces the concept of lookahead for choreogra-

phers to plan ahead in delegating activities, based on the approach in [33].
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Several works investigated the applicability of AI planning techniques for service composition.

These works apply techniques ranging from rule based planning [38], Situation Calculus [28, 45], query

planning [43] and theorem proving [31], model checking [27, 42, 26]. In essence, the techniques reduce

the problem of composition to that of planning a desired execution of workflows. The underlying basis

in the planning domain also rely on state transition systems with states, actions and observations. The

services communicate through messaging which again emphasizes input-output behavior of services.

2.1.1 Tools

There are a number of tools/frameworks for facilitating composition of services. Some of these

provide a new IDE or a plug-in to existing tools to orchestrate or choreograph the services manually.

Others address the issue of automated composition through tools, based on various representations

of services. In [69], the authors provide a tool where the control flow logic in mediated composite

services specified in BPEL is verified against the design specified using Message Sequence Charts

(MSC) and finite state processes. In [52], finite automata are augmented with XML messages and

XPath expressions as the basis for verifying temporal properties of the conversations of composite

web services. SWORD [70] provides a composition model that can instantiate and execute generated

plans using AI techniques. The execution model includes a filter mechanism for user interactions and

any other necessary intermediate computation. Among Planning based tools in the domain, MBP [27]

provides synthesis, validation and simulation. Subsequently, other tools [25, 66, 51, 58] which use

hierarchical planning, PDDL were also developed. [13, 10, 11] provide a summary of the research

based tools which have been developed till now.

Logic based solution to address service composition problems is not new. In [28], the authors apply

the golog language based on Situation Calculus for composing services. [60] uses structural synthesis

of program for composition whereas [59, 31] uses theorem provers. [12] uses Linear Logic to realize a

semantic composition. [74] proposes a methodology to build web services.

Recently, [50] provides extension of the work in [51] to compare on-the-fly and once-for-all process

level composition. Here, the authors refer to on-the-fly as composing available services to serve one-

shot user request on an “as needed” basis, whereas, once-for-all composition builds a composition
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which can serve multiple user requests. Research on formalism for composition based on process

algebra approach has been the focus in [71],[72], [73]. In [65], the authors describe a tool which

builds on the METEOR-S Web Service composition framework by adding the abstract process designer,

constraint analyzer, optimizer and binder module. In [64], the authors provide several visual facilities

to ease the definition of a business process such as multiple views of a process, syntactic and semantic

awareness, filtering, logical zooming capabilities and hierarchical representations. [67] introduces a

lightweight tool for specification, composition and execution. In [61], the authors provide a tool for

composing on the fly in a pervasive computing environment. In [62], authors provide a tool for analysis

of BPEL composed services.

2.2 Decentralized Choreography

The centralized mechanism of a single choreographer entails invoking services and relaying mes-

sages for all the required computation or communication transactions. However, in most practical

scenarios, there is a cost associated with each computation and communication and as such, it is im-

portant to identify a choreography mechanism which incurs the minimum overall cost. The cost can

be defined in terms of network bandwidth, congestion, or pure monetary value for using some network

or service. In one of the subsequent chapters, we address the problem of minimizing the overall cost

of choreography by synthesizing an optimum decentralized choreography strategy. Decentralization

amounts to generating multiple choreographers; one for each service in the composition. The objec-

tive is to eliminate the requirement of a single choreographer’s (typically located at the client site)

involvement in every computation or communication transaction.

So far, a lot of work had undergone to realize automatic composition of web services. Service

composition referred to as orchestration or choreography in the literature normally follows the approach

of peer to peer communication or a centralized mediator. Automated composition has been addressed

in representative work such as [51, 47, 19, 56, 13]. Decentralization deals between these two extremes.

Peer to peer web service communication is the version without any intermediary and it has been pursued

in works such as [47]. The merits of distributing the data storage, execution structure is discussed in

[78]. Workflow partitioning of state chart models have been dealt earlier in [76]. Thus in essence,
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decentralization techniques are applied to models which are nothing but graph structures. Such schemes

based on partitioning a Program Dependence Graph has been shown in [75]. Following the same path,

the decentralizing the execution of web services has been dealt in [40]. In the recent past, they have

introduced a composition tool called Synthy. [39] proposes a complete decentralization scheme with

service invocation triggers to route traffic efficiently. More recently, in [79] a formal model is proposed

which handles synchronization and concurrency constraints in decentralizing service compositions.

Decentralization entails security constraints and such issues are addressed in recent works [77].

In contrast to the program partitioning approach, our work is based on optimizing cost in an au-

tomata theoretic setting and not directly partitioning executable code. The approach will yield the

optimal decentralization scheme, which can then be implemented in the language chosen. Unlike the

program partitioning schemes our approach can be applied at the modeling level of service composi-

tion.

Decentralization of computation mainly aims to move away from the simple mediator based ap-

proach to a more sophisticated scheme. [80] gives an overview of recent and ongoing approaches, such

as BondFlow, Symphony, OSIRIS. Decentralization of composition has been researched in authors in

[40] based on program dependence and graph partitioning. The industry standard workflow models are

moving from simple centralized scheme towards a more loosely coupled approach by distributing the

workflow, more suited to lightweight mobile technologies [83, 84, 87, 88]. [85] talks about late binding

of services for communication optimization. To this effect, [86] proposes a hybrid model specifying

centralized control-flow and distributed data-flow. [89] introduces a peer-to-peer approach of service

communication, from a centralized specification. In contrast our approach guarantees the minimization

of the overall cost, the valuation of which can be generic and context based. No manual intervention

for obtaining the optimal solution is necessary as our approach is automated.

Similar to the existing work, we use transition system based representation of services, more specif-

ically, we use i/o automaton to capture the input output interfaces of each service. In fact, as noted in

[49] treating a Web service as an automaton comes naturally, as it is equipped with i/o capabilities and

from the point of view of composition, we are interested in the i/o functionality of the automaton. One

of the distinguishing aspect of our technique is that the proposed automata theoretic approach provides
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valuable insights to the composition problem with respect to the capabilities of the choreographer.

We provide a uniform solution methodology to the choreographer existence problem for centralized as

well as decentralized settings. We provide algorithms to realize goals which are loop-free and are like

workflows and also to realize goals which have loops.
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CHAPTER 3. Centralized Choreography: Formulation, Existence and Synthesis

Driving Problem. In this chapter, we investigate automata-theoretic approach to address the

problem: given a set of services and a goal, is it possible to generate a choreographer which can com-

municate with the services to realize the goal? In our technique, we consider existence and synthesis

of two types of choreographers: simple choreographer and transducing choreographer. Simple chore-

ographer is only capable of relaying output from one service to input of another, i.e., choreographer

does not buffer any output for later use. On the other hand, transducing choreographer is capable of

storing already seen inputs and outputs and using them to provide inputs to services at a later stage.

The phenomenon is referred to as inducing as the choreographer can induce a service to respond to a

stored input. Furthermore, the transducing choreographer can consume or absorb outputs from services

that are not necessary to realize the goal. This is referred to as hiding. In short, the transducing chore-

ographers can store, use and ignore inputs and outputs to and from services as and when necessary.

Our Solution. Given a set of services, our solution relies on identifying all possible behaviors

that can be realized from the services using a simple or transducing choreographer. If the goal behavior

is simulated by all possible composed behavior, we infer that synthesizing a choreographer is possible

for the said goal; otherwise choreographer does not exist.

3.1 Illustrative Example

Consider the sequence diagrams in Figure 3.1; (a) and (b) which show the input-output behavior

of two existing services. The sequence of activities can be obtained by top-down scanning of the

corresponding diagram. S1 takes as input social security number (SSN) and produces as output the

credit card number (CCN); while S2 takes as input CCN twice and outputs credit approval (Appr) and
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Figure 3.1: (a) Service S1, (b) Service S2, (c) Required Service SG and (d) Composed Services.
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Figure 3.2: Automata: Services (a) A1, (b) A2.

loan approval (Loan). The inputs to the services (when functioning on their own) come from their

environment and outputs are provided to the environment. By environment, we mean the client or user

who is using the services.

Assume that the developer wants to create a new service (referred to as goal service) SG which takes

as input SSN from the client and outputs Loan (Figure 3.1(c)). The existing services S1 and S2 do

not provide the required SG. However, an intermediary or a choreographer can be synthesized which

relays and controls information between S1 and S2 and replicates the input-output behavior of SG.

Figure 3.1(d) shows the choreographed S1 and S2. Note that the choreographer acts as the environment

of the services; it relays the SSN input from the client to S1 and stores the CCN output from S1. It does

not relay CCN to the client (it hides this output), instead the choreographer provides CCN as input to S2

to obtain the outputs Appr and Loan. Finally, the choreographer sends the Loan to the client. The
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objective is to identify the conditions under which such a choreographer can be synthesized given a set

of existing services and a goal.

3.2 Preliminaries

3.2.1 Services as Automata

We describe the (goal and component) services as input/output automata whose states represent the

configuration of the services and interstate transitions define the way in which the services evolve from

one configuration to another. Each transition is enabled in the presence of a specific input and results

in a specific output. Formally, input/output automaton is defined as follows:

Definition 1 (I/O Automaton) An i/o automaton A is defined by a tuple (X, X0, I, O, T ), where, X

is the set of states, X0 ⊆ X is the set of initial states, I is the set of inputs, O is the set of outputs and

T ⊆ X × I × O ×X is the set of transitions. An element of T represented by t = (x, i, o, x′) is such

that x ∈ X is the origin state of the transition, i ∈ I is the input to the transition, o ∈ O is the output

of the transition and x′ ∈ X is the destination state of the transition. We will often use x
i/o−−→ x′ to

denote (x, i, o, x′) ∈ T .

Example 4 Consider the automata representation of services (Figure 3.1(a,b)) in Figure 3.2. The

input-labels of each transition in Figure 3.2 are the inputs to the services from their corresponding

environment, while the output-labels are the outputs provided by the service following an input. The

sequencing in the service automata can be obtained from the sequence of input-output in its sequence

diagram. WLOG we assume that the input and output always alternate1.

3.2.2 Role of a Choreographer

Recall that the problem of service composition is to identify whether a set of existing services can

be used to realize a specified goal (a new service). The goal can be represented by an i/o automaton

and an existing service is said to realize the goal if all possible behaviors of the goal is also present in

the service.
1A sequence of inputs followed by outputs can be easily represented if transition labels are sequence-based.
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SSN/Loan
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Figure 3.3: Automaton: Goal AG.

Typically however, a goal cannot be realized from one service. For example, consider the goal

automaton in Figure 3.3. It cannot be realized from any of the services in Figure 3.2(a,b). In such cases,

a choreographer is required to control the services such that their composition with the choreographer

realizes the specified goal. In our setting there are two important features of such a composition: (a)

a service does not communicate with the client or other services directly and (b) the choreographer

cannot produce any input on its own; instead it relies on services or the client for the inputs. For

example, the service automaton A1 in Figure 3.2(a) requires an input SSN and provides an output CCN.

A choreographer can transfer the SSN input from the client or another service to A1 and can transfer

the CCN from A1 to the client or another service can consume it.

The main idea behind choreographer synthesis is to a realize each goal-transition by executing cer-

tain service-transitions in a certain sequence, and relaying the inputs/outputs of the service-transitions

in accordance to that sequence. The input to the first service-transition in the sequence is the same

as the goal-transition input, the output from the last service-transition in the sequence is the same as

goal-transition output, and the output from any other service-transition is the same as the input to the

next service-transition in the sequence. Such a goal-transition is said to belong to the closure of the se-

quence of service-transitions. We can also project such a sequence of service-transitions on individual

services to obtain a set of sequences, each one of which belongs to a single service. We then say that

the goal-transition is realizable from that set of sequences. The set of all possible service-transition

sequences are first obtained by taking the interleaving product of the service-automata. A “closure”

operation is then performed over the sequences of service-transitions (obtained through interleaving)

to identify the goal-transitions that a certain sequence of service-transitions is able to realize. In the

following we formalize these notions.

Before proceeding to formally define a choreographer, we present the notational convention and

background definitions. We will use α, β, µ, ν and their subscripted versions to define sequences.
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Concatenation will be denoted by “.” (dot). For any two strings α and β, α ¹ β denotes that α is a

prefix of β.

Definition 2 (Interleaving product of sequences) The interleaving product of sequences (‖) is de-

fined inductively as: ε ‖ α = α ‖ ε = α; (i/o.µ) ‖ (i′/o′.ν) = i/o.(µ‖i′/o′.ν) + i′/o′(i/o.µ ‖ ν).

Definition 3 (Closure) The closure of a string α = i1/o1.i2/o2 . . . in/on ∈ (I × O)∗, denoted by

CL(α), is equal to




i1/o1 . . . im−1/om−1.im/ok.ik+1/ok+1 . . . in/on |
∃m < k : ∀j, m ≤ j < k : ij+1 = oj





For example,

CL(a/b.b/c.c/d) = {a/b.b/c.c/d, a/c.c/d, a/d, a/b.b/d}

Definition 4 (Realizability) A given α ∈ (I×O)∗ is said to be realizable from {βn | βn ∈ (In×On)∗},

where I ⊆ ⋃
n In and O ⊆ ⋃

n On, if and only if ∃µ ∈‖n≤N βn : α ∈ CL(µ), where ‖ denotes

interleaving product.

Let α = a/d, β1 = a/b.c/d and β2 = b/c. Then β1 ‖ β2 = {a/b.c/d.b/c, a/b.b/c.c/d, b/c.a/b.c/d}
and there exists a sequence µ = a/b.b/c.c/d in the above set, the closure of which includes a/d (see

example after Definition 3). As α ∈ CL(µ), α is said to be realizable from {β1, β2}.

Using the definition of closure and realizability, we next define the notion of a choreographer, which

maps a sequence belonging to a goal to a set of sequences, one for each available service. The mapping

must be causal (i.e., prefix-preserving) for it to be implementable and also must satisfy the requirement

of realizability.

Definition 5 (Choreographer) Given a goal automaton G = (Xg, X
0
g , Ig, Og, Tg) and N service

automata of the form An = (Xn, X0
n, In, On, Tn) for n ≤ N such that Ig ⊆

⋃
n In and Og ⊆

⋃
n On,

a choreographer is function of the form C : (Ig ×Og)∗ →
∏

n≤N

(In ×On)∗ such that

1. ∀µ, ν ∈ (Ig ×Og)∗ :µ ¹ ν ⇒ ∀n ≤ N : Cn(µ) ¹ Cn(ν)
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Figure 3.4: (a) A1‖A2-automaton and (b) U-automaton.

2. ∀µ ∈ (Ig ×Og)∗ :µ is realizable from {Cn(µ)}

We present below the automata-theoretic approach to verify the existence of a choreographer for a

given set of the services and a specified goal.

3.3 Existence of Choreographer

We first consider the case where the choreographer is capable of only relaying output from one

service to input of another. It does not store and/or reuse any inputs from the client or outputs from the

existing services. The functionality is denoted by the closure defined in Definition 3.

To identify the existence of such a choreographer, we first define an interleaving product automaton

from the existing service automata. This automaton captures all possible interleaved behavior of the

participating service automata.

Definition 6 (Interleaving Product) Given a set of service automata A1, A2, . . . , AN where An =

(Xn, X0
n, In, On, Tn) for 1 ≤ n ≤ N , the interleaving product of {An} is defined as an automaton

‖nAn = (X, X0, I, O, T ), where, X ⊆ X1×X2×. . . XN is the set of states, X0 = X0
1×X0

2×. . . X0
N

is the set of initial states, I =
⋃

1≤n≤N

In is the set of inputs and O =
⋃

1≤n≤N

On is the set of outputs.

Finally, T ⊆ X × I ×O ×X is the set of transitions such that

(x1, . . . , xN )
i/o−−→ (x′1, . . . , x

′
N ) ∈ T ⇔

∃i ≤ N : xi
i/o−−→ x′i ∈ Ti ∧ ∀j ≤ N, j 6= i : x′j = xj
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Example 5 Figure 3.4(a) shows the automaton ‖nAn obtained from service automata A1 and A2 in

Figures 3.2(a) and (b). Each state in the ‖nAn is annotated with the tuple (i, j) where i represents the

state of A1 and j represents the state of A2.

The ‖nAn represents the set of behaviors that can be realizable from the interleaving of services

Ans. To identify the sequences that can be obtained through some choreography, we define the opera-

tion closure of an automaton, which follows from the Definition 3.

Definition 7 (Closure of I/O Automaton) Given an i/o automaton A = (X,X0, I, O, T ), the closure

of A, denoted by A∗, is defined as (X, X0, I, O, T ∗) where

x
i1/ok−−−→ x′ ∈ T ∗ ⇔ ∃k :




x
i1/o1−−−→ x2 ∈ T ∧

x2
i2/o2−−−→ x3 ∈ T ∧

. . .

xk
ik/ok−−−→ x′ ∈ T ∧

∀1 < j ≤ k : ij = oj−1




The universal service automaton, denoted U, is defined as the closure of the service-product automaton,

i.e., U := (‖nAn)∗.

Note the above definition of closure ensures that for all µ ∈ A, CL(µ) ⊆ A∗.

Example 6 Going back to the example services A1 and A2 in Figures 3.2(a) and (b), the corresponding

U-automaton obtained from ‖nAn of Figure 3.4(a) is shown in Figure 3.4(b). Observe that the U-

automaton also includes transitions that can be realized when a choreographer relays output of one

service to the input of the other. For example, the transition (1, 1)
SSN/Appr−−−−−−→ (2, 2) is generated from

the transitions (1, 1)
SSN/CCN−−−−−→ (2, 1) and (2, 1)

CCN/Appr−−−−−−→ (2, 2). It captures the situation when a

choreographer sends the SSN input (from client) to A1 at state 1 and relays the CCN output from A1 to

the input of A2 at its state 1. As a result, both A1 and A2 move from their corresponding states 1 to 2.

U-automaton contains all possible choreographed behavior of the services. Proceeding further, the goal

automaton AG is realizable from the services using some choreographer if and only if all possible

behavior of AG is simulated by U-automaton.
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Definition 8 (Simulation [55]) Given an i/o automaton A = (X, X0, I, O, T ), for all x1 and x2 in

X , x1 is simulated by x2 if they are related by the largest simulation relation denoted by x1 v x2 and

defined as: x1 v x2 ⇔ [∀x′1 : x1
i/o−−→ x′1 ⇒ (∃x′2 : x2

i/o−−→ x′2 ∧ x′1 v x′2)]

An i/o automaton A1 = (X1, X
0
1 , I1, O1, T1) is said to be simulated by A2 = (X2, X

0
2 , I2, O2, T2),

denoted by A1 v A2, if all states in X0
1 is simulated by some state in X0

2 .

Theorem 1 Given a goal AG and a set of services A1, A2, . . . , AN , the goal can be realizable from

the composition of Ans with a choreographer if and only if AG v U where U is the closure of the ‖nAn

obtained from {An}.

Proof: Let AG = (Xg, X
0
g , Ig, Og, Tg) and U = (X,X0, I, O, T ∗).

AG v U ⇔ ∀x0
g ∈ X0

g : ∃x0 ∈ X0 : x0
g v x0

⇔



∀x1

g : x0
g

i1/o1−−−→ x1
g ∈ Tg ⇒

∃x1 : x0 i1/o1−−−→ x1 ∈ T ∗ ∧ x1
g v x1




Therefore,

AG v U ⇔ ∀µ = i1/o1.i2/o2 . . . im/om

s.t. ∀1 ≤ l ≤ m : xl−1
g

il/ol−−−→ xl
g ∈ Tg

∃ν = µ s.t. ∀1 ≤ l ≤ m : xl−1 il/ol−−−→ xl ∈ T ∗

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m : xl−1 il/ol−−−→ xl ∈ T ∗

⇔ ∃k :




xl−1 il/o1−−−→ x2 ∈ T ∧

x2
i2/o2−−−→ x3 ∈ T ∧

. . .

xk
ik/ol−−−→ xl ∈ T ∧

∀1 < j ≤ k : ij = oj−1




From Definitions 6 and 7
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⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m : ∃k :

il/ol ∈ CL(il/o1.i2/o2 . . . ik/ol)

From Definition 3

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m :

il/ol ∈ CL(C1(il/ol)‖C2(il/ol) . . . ‖CN (il/ol))

where C1(il/ol) is the sequence of transitions from A1

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m : il/ol ∈ CL(‖n≤NCn(il/ol))

It can be easily seen from Definitions 6 and 7

il/ol ∈ CL(‖n≤NCn(il/ol)) ∧
il/ol.il+1/ol+1 ∈ CL(‖n≤NCn(il/ol.il+1/ol+1))

⇒ ∀n ≤ N : Cn(il/ol) ¹ Cn(il/ol.il+1/ol+1)

(3.1)

Proceeding further,

AG v U ⇔ ∀µ = i1/o1.i2/o2 . . . im/om

µ ∈ CL(‖n≤NCn(µ))

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

µ is realizable from {Cn(µ)}
From Definition 4

⇔ ∃C : (Ig ×Og)∗ →
∏

n≤N

(In ×On)∗

From Equation 3.1 and Definition 5

Example 7 Note that the goal in Figure 3.3 is not simulated by U-automaton and therefore, there exists

no choreographer which can realize AG from A1 and A2. If the requirement of a goal was to generate

an Appr output for SSN input, it can be simulated by U-automaton in Figure 3.4(b).
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Figure 3.5: (a) (‖H
n An)-automaton and (b) UT -automaton.

3.4 Transducing Choreographer

In the previous section, we considered a choreographer which is capable of relaying output from

one service to the input of another. However, it is not capable of storing the inputs and outputs. The

stored information can be used to provide inputs to services at any time. In this section, we consider

the choreographer that is capable of such functionality. The added functionality allows choreographer

to perform inducing and hiding of actions. Inducing refers to the case where the choreographer uses

some stored information to supply required input to a service while hiding refers to the case where the

choreographer absorbs outputs from the services and does not provide it to the client (hidden from the

client).

We will refer to such a choreographer as transducing choreographer. To identify the behavior

that can be realized using a transducing choreographer, we will extend the definition of closure of a

sequence (see Definition 3) which in turn will enhance the definition of realizability (Definition 4) and

empower the choreographer.

Note that, sequence now has a context consisting of the history that led a choreographer to see this

sequence. The history of a sequence keeps track of the set of inputs and outputs that can be used by the

choreographer to transduce the said sequence.
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Definition 9 (Transduced-Closure) Given a sequence α = i1/o1.i2/o2 . . . in/on ∈ (I × O)∗, its

transduced closure, denoted by CLT(α), is equal to




i1/o1 . . . im−1/om−1.im/ok.ik+1/ok+1 . . . in/on |
∃m < k : ∀j,m ≤ j < k : ij+1 ∈ {il, ol | l ≤ j}





For example for CLT(a/b.a/c) = {a/b.a/c, a/c}. Using the notion of transduced-closure, we next

define the notion of transduced-realizability.

Definition 10 (Transduced-Realizability) α ∈ (I × O)∗ is said to be transducively-realizable from

{βn | βn ∈ (In ×On)∗} if ∃µ ∈‖n≤N βn : α ∈ CLT(µ).

A transducing choreographer that uses inducing and hiding (w.r.t. inputs and outputs seen in past)

besides “chaining” is defined as follows.

Definition 11 (Transducing-Choreographer) Given a goal automaton G = (Xg, X
0
g , Ig, Og, Tg)

and N service automaton of the form An = (Xn, X0
n, In, On, Tn) for n ≤ N such that Ig ⊆

⋃
n In and

Og ⊆
⋃

n On, a transducing-choreographer is function of the form CT : (Ig×Og)∗ →
∏

n≤N

(In×On)∗

satisfying

1. ∀µ, ν ∈ (Ig ×Og)∗ :µ ¹ ν ⇒ ∀n ≤ N : CT
n(µ) ¹ CT

n(ν)

2. ∀µ ∈ (Ig ×Og)∗ :µ is transducively-realizable from {CT
n(µ)}

Transducing choreographer is more powerful than the simple choreographer as the former is capable

of choreographing more functionality (see Definition 9) from the existing services than the later.

Proceeding in a fashion similar to the one followed in Section 3.3, we first define an interleaving

product with history, which maintains a history set of the seen inputs and outputs with each state.

Definition 12 (Interleaving Product with History) Given a set of service automata A1, A2, . . . , AN

where An = (Xn, X0
n, In, On, Tn) for 1 ≤ n ≤ N , the interleaving product with history is defined to

be the automaton ‖H
n An = (XH , X0

H , I, O, TH) where XH ⊆ X1 × X2 × . . . × XN × 2I∪O where
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I =
⋃

n≤N

I and O =
⋃

n≤N

O; X0
H = X0

1 ×X0
2 × . . .×X0

N × {∅} and TH ⊆ XH × I ×O×XH such

that

(x1, . . . , xN , h)
i/o−−→ (x′1, . . . , x

′
N , h′) ∈ TH ⇔


∃i ≤ N : xi

i/o−−→ x′i ∈ Ti ∧

∀j ≤ N, j 6= i : x′j = xj ∧ h′ = h ∪ {i, o}




The (‖H
n An)-automaton is similar to (‖nAn)-automaton with the exception that the history of i/o are

tracked at each state (so these can be used for internal inducing even when there is no external input).

Example 8 Figure 3.5(a) shows the (‖H
n An)-automaton generated from A1 and A2 in Figures 3.2(a,b).

Every state is labeled by the states of A1 and A2 and also shows that inputs and outputs that a trans-

ducing choreographer can use. For example at the start state (1, 1), the choreographer does not have

any stored information as it has no history of interaction while if the services are at state (2, 2), the

choreographer contains the information on SSN, CCN, Appr obtained from its prior interactions.

The (‖H
n An)-automaton represents the information available to a transducing choreographer. To iden-

tify the sequences that can be choreographed by chaining along with inducing and hiding the transitions

available in the (‖H
n An)-automaton, we define the operation of transduced-closure.

Definition 13 (Transduced-Closure of Automaton) Given an automaton with history AH = (XH , X0
H ,

I, O, TH), the transduced-closure of AH is the automaton UT = (XH , X0
H , I, O, T ∗H) where (x, h)

i/o−−→
(xk, hk) ∈ T ∗H if and only if

∃k :




(x, h)
i/o1−−→ (x1, h1) ∈ TH ∧

(x1, h1)
i1/o2−−−→ (x2, h2) ∈ TH ∧

. . .

(xk−1, hk−1)
ik−1/o−−−−→ (xk, hk) ∈ TH

∧ ∀1 ≤ j < k : ij ∈ hj




(3.2)

Example 9 Consider the UT -automaton (Figure 3.5(b)) obtained from the (‖H
n An)-automaton in Fig-

ure 3.5(a). UT -automaton contains transitions that can be realizable from using the history information
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Appr/LoanSSN/CCN
c2c1 c3 c4

CCN/Appr

Figure 3.6: Transducing choreographer.

at each state. The newly added transitions are labeled with [i/o]. State (1, 1) has a transition to state

(1, 3) on [CCN/Loan]. The transition is obtained from the transitions (1, 1) CCN/Appr−−−−−−→ (1, 2) and

(1, 2) CCN/Loan−−−−−−→ (1, 3). After the first transition, both CCN and Appr are available for future input

at state (1, 2). The second transition from (1, 2) therefore does not rely on the environment to provide

its enabling input; the input can be provided by a transducing choreographer by using the CCN from

the information stored at (1, 2). The second transition produces the output Loan. Similar transition is

added from (2, 1) to (2, 3) on [CCN/Loan], following which (1, 1)
[SSN/Loan]−−−−−−−→ (2, 3) is also added

to UT -automaton.

Theorem 2 Given a goal AG and a set of services A1, A2, . . . , AN , the goal can be realizable from

the composition of Ans with a transducing choreographer if and only if AG v UT where UT is the

transduced-closure of the (‖H
n An)-automaton obtained by taking interleaving product with history of

the automata {An}s.

Proof: Let AG = (Xg, X
0
g , Ig, Og, Tg) and UT = (XH , X0

H , I, O, T ∗H).

AG v UT ⇔ ∀x0
g ∈ X0

g : ∃(x0, h0) ∈ X0
H : x0

g v x0, h0

⇔



∀x1

g : x0
g

i1/o1−−−→ x1
g ∈ Tg ⇒

∃x1 : x0 i1/o1−−−→ x1 ∈ T ∗ ∧ x1
g v x1






33

Therefore,

AG v UT ⇔ ∀µ = i1/o1.i2/o2 . . . im/om

s.t. ∀1 ≤ l ≤ m : xl−1
g

il/ol−−−→ xl
g ∈ Tg

∃ν = µ s.t. ∀1 ≤ l ≤ m :

(xl−1, hl−1)
il/ol−−−→ (xl, hl) ∈ T ∗H

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m:(xl−1, hl−1)
il/ol−−−→ (xl, hl) ∈ T ∗H

⇔ ∃k:




(xl−1, hl−1)
il/o1−−−→ (x1, h1) ∈ TH ∧

(x1, h1)
i1/o2−−−→ (x2, h2) ∈ TH ∧

. . .

(xk−1, hk−1)
ik−1/ol−−−−→ (xl, hl) ∈ TH

∧ ∀1 ≤ j < k : ij ∈ hj




From Definitions 12 and 13

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m : ∃k :

il/ol ∈ CLT(il/o1.i2/o2 . . . ik/ol)

From Definition 9

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m :

il/ol ∈ CLT(CT
1 (il/ol)‖ . . . ‖CT

N (il/ol))

where CT
1 (il/ol) is the sequence of

transitions from A1

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

∀1 ≤ l ≤ m : il/ol ∈ CLT(‖n≤NCT
n (il/ol))
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It can be easily seen from Definitions 12 and 13

il/ol ∈ CLT(‖n≤NCT
n (il/ol)) ∧

il/ol.il+1/ol+1 ∈ CLT(‖n≤NCT
n (il/ol.il+1/ol+1))

⇒ ∀n ≤ N : CT
n (il/ol) ¹ CT

n (il/ol.il+1/ol+1)

(3.3)

Proceeding further,

AG v UT ⇔ ∀µ = i1/o1.i2/o2 . . . im/om

µ ∈ CLT(‖n≤NCT
n (µ))

⇔ ∀µ = i1/o1.i2/o2 . . . im/om

µ is transducively-realizable from {CT
n (µ)}

From Definition 10

⇔ ∃CT : (Ig ×Og)∗ →
∏

n≤N

(In ×On)∗

From Equation 3.3 and Definition 11

Example 10 For the Definition 11, if each goal sequence is executable in the UT -automaton, then it is

inferred that the goal is realizable from the existing services using a transducing choreographer. This

is verified using the simulation relation (Definition 8). In the current example the UT automaton in

Figure 3.5(b) simulates the goal in Figure 3.3. Therefore, the goal can be realizable from the existing

service automata A1 and A2 (Figure 3.2) by using a transducing choreographer. The choreographer

first relays the SSN information from the client to A1 and then uses the CCN output from A1 as input

to A2 twice to get the appropriate output Loan which is then relayed to the client. The transducing

choreographer is shown in Figure 5.15.

Once it is verified that the goal service is simulated by the universal service automaton (U or UT

as the case may be), a choreographer can be synthesized by first identifying for each goal transition

a corresponding simulating transition in the universal service automaton, and next identifying the set

of service transition sequences that realize it. (Note the information about the set of service transition

sequences realizing a transition of the universal service automaton is embedded in its definition.) The

text of this chapter forms the basis of [14].
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CHAPTER 4. Centralized Choreography: On-the-fly Computation

4.1 Preliminaries on Logic Programming

XSB [1], developed at SUNY, Stony Brook is based on Prolong-style SLD resolution with tabling.

Tabling, which is essentially a memorizing technique, allows XSB to compute least model solutions of

normal logic programs and avoid repeated subcomputations. XSB relations/predicates are defined as

R :- R1, R2, ..., Rn. S :- S1; S2; ...; Sun.

where relation R evaluates to true if all (conjunction) the relations R1, R2, . . ., Rn evaluates to true. On

the other hand, relation S evaluates to true if at least one of (disjunction) the relation S1, S2, . . ., Sun

evaluates to true. A relation with no right hand side(rhs) of :- is referred to as fact.

Consider a simple encoding of a graph in XSB. The edges in the graph are defined as edge-facts of

the form as shown in Figure 4.1(a). The reachability between states in the above graph can be encoded

in XSB as reach-relations (Figure 4.1(a)). The predicate reach is defined using two rules. The first

rule states that a state is reachable from another if there is an edge between the two. Observe that, S and

T are variables1 which are existentially quantified. The second rule computes the transitive closure: a

state T is reachable from S if there is an edge from S to S1 and T is reachable from S1.

If we want to find all the reachable states from s0, we evaluate the query reach(s0, Ans) using

the above program; on termination, the variable Ans evaluates (bounded) to state reachable from s0.

Figure 4.1(b) presents the execution tree of the above query. Using the first rule, reach(s0,s0) and

reach(s0, s1) evaluates to true. However, evaluation of the second rule fails to terminate because

reach(s0, Ans) invokes edge(s0,s0) followed by reach(s0, Ans).
1Upper-case alphabets denote logical variables and lower case alphabets denote constants.
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edge(s0, s0). edge(s0, s1). edge(s1, s0). edge(s2, s1). edge(s3,
s2).

reach(S, T) :- edge(S, T). reach(S, T) :- edge(S, S1), reach(S1, T).

(a) reach program in XSB

FAIL

reach(s0, Ans)

edge(s0, S1), reach(S1, Ans)edge(s0, Ans)
Ans = s0
Ans = s1

reach(s0, Ans)

S1 = s0

FAIL

S1 = s1 reach(s1, Ans)

edge(s1, Ans)
Ans = s0

edge(s1, S1), reach(S1, Ans)

S1 = s0

reach(s0, Ans)

(b) Evaluation tree for reach(s0, Ans)

Figure 4.1: Reachability in XSB

Tabling in XSB. This can be avoided by using tabling feature of XSB and using the directive

:- table reach/2. The directive ensures that the least model of the relation reach is computed. In

the current context, reach(s0,Ans) will fail if it leads to invocation of reach(s0, Ans). Whenever

a failure occurs along an execution path, XSB backtracks automatically to the last choice point to

evaluate and execute along an alternate path if possible. In Figure 4.1(b), reach(s0, Ans) leads

to edge(s0, S1), reach(S1, Ans) which grounds S1 to s0 as edge(s0,s0) is a fact and fails on

reach(s0, Ans). It then backtracks and selects another fact from edge: edge(s0, s1) and continues

with the evaluation of reach(s1, Ans). If there is no choice point available, the predicate execution

terminates and returns the evaluation of variable (in this case Ans) if there is one; otherwise the predicate

is said to be unsatisfiable. The invocation reach(s0, Ans) terminates and correctly produces the

results for Ans. Observe that, states that are not reachable from s0 are never explored in the above

execution, because the execution of any recursive reach predicate occurs in a goal-directed fashion for

a specific valuation of the first argument (source state).
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4.2 Local and On-the-fly Algorithm

4.2.1 Logical Encoding

Encoding I/O Automata. The i/o automaton for a service is described as logic program using

facts describing the transitions and the start state. For example, automata A1 and A2 from Figure 3.2

are encoded as:

servicetrans(s1, (ssn, ccn), s2).

startservice(s1). %% start state of A1

servicetrans(t1, (ccn, appr), t2). servicetrans(t2, (ccn, loan),

t3).

startservice(t1). %% start state of A2

startcompose([s1,t1]). %% for interleaving product

where s1 and s2 are the states in A1 and t1, t2 and t3 are states in A2. The predicate servicetrans

has three arguments; the first argument denotes source state of the transition, the second argument is

a tuple denoting the input and the output associated with the transition and the last argument denotes

destination state of the transition. Similarly, the goal i/o automaton (Figure 3.3) is encoded as:

goaltrans(g1, (ssn, loan), g2). startgoal(g1).

Encoding Interleaving Product. The interleaving product of the services (Definition 12) is en-

coded as XSB relations:

partrans(([St|Sts], Hist), (I, O),

([NewSt|Sts], NewHist)) :-

servicetrans(St, (I, O), NewSt),

append([I, O], Hist, NewHist).

partrans( ([St|Sts], Hist), (I, O),

( [St|NewSts], NewHist) ) :-

partrans( (Sts, Hist), (I, O), (NewSts, NewHist)).
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There are two rules defining the relation partrans. First, consider the Rule 1 and the first argument

of partrans. The first argument denotes tuple: list of service states and the associated history. List in

XSB is represented as [St|Sts] where St represents the first element (head) of the list and Sts repre-

sents the rest (tail) of the list. Therefore Rule 1 states that there exists a transition in the interleaving

product if the service-state present at the head of the list has a transition and the rest of service-states

remain unaltered. Furthermore, the history set Hist is updated to NewHist to include I and O using

the append predicate. Rule 2, on the other hand, states that there exists a transition in the interleaving

product if any service-state in the tail of the list has a transition. Note that, we just encoded the rules

for transition relation of the interleaving product and do not actually generate the product graph.

Encoding Transduced Closure. The transduced closure transition relation (Definition 22) is

similarly encoded as follows:

closuretrans((Sts, Hist), (I, O),

(NewSts, NewHist)) :-

partrans((Sts, Hist), (I, O), (NewSts, NewHist)).

closuretrans((Sts, Hist), (I, O),

(NewSts, NewHist)) :-

partrans((Sts, Hist), (I, _), (StsTemp, HistTemp)),

histtrans((StsTemp, HistTemp), (_, O),

(NewSts, NewHist)).

The first rule states that there is a transduced closure transition if there is an interleaved product

transition. The second rule states that a transduced closure transition exists if there is an interleaved

product transition followed by a sequence of transitions (computed by histtrans described below)

where inputs are provided from the history set HistTemp. The notation “_” denotes variable whose

valuation is not captured in the evaluation. Observe that, I in closuretrans is obtained from partrans

and O is obtained from histtrans. The rule follows directly the Definition 22 where histtrans is

computing ∃k : (s1, h1)
i1/o2−−−→ (s2, h2)

i2,o3−−−→ . . .
ik−1,o−−−−→ (sk, hk) ∧ ∀1 ≤ j ≤ k : ij ∈ hj

(Equation 3.2). The definition is explained in details below:
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histtrans((Sts, Hist), (I, O), (NewSts, NewHist)) :-

partrans((Sts, Hist), (I, O), (NewSts, NewHist)),

member(I, Hist).

histtrans((Sts, Hist), (I, O), (NewSts, NewHist)) :-

partrans((Sts, Hist), (I, _), (StsTemp, HistTemp)),

member(I, Hist),

histtrans((StsTemp, HistTemp), (_, O),

(NewSts, NewHist)).

The rules are similar to closuretrans. The first rule corresponds to the base case: (sk−1, hk−1)
ik−1,o−−−−→

(sk, hk) while the second rule corresponds to the transitivity. In each rule, the inputs of partrans are

provided by the Hist (predicate member(I, Hist) evaluates to true if I is present in Hist).

Encoding Simulation Relation. The final step of the choreographer existence problem is to

verify simulation of the goal automaton by the transduced closure automaton. Recall from Definition 8,

two states are said to be simulation equivalent if and only if they are related by the largest simulation

relation v: s1 v s2 ⇒ [∀t1 : s1
i/o−−→ t1 ⇒ (∃t2 : s2

i/o−−→ t2 ∧ t1 v t2) ]. However, evaluation of

logic program results in the least model computation. In order to encode simulation as logic program,

we consider the negation of the above relation, i.e., two states are said to be not simulation equivalent

if and only if they are related by the least not-simulation relation 6v (dual of v) defined as follows:

s1 6v s2 ⇐ [∃t1 : s1
i/o−−→ t1 ∧ (∀t2 : s2

i/o−−→ t2 ⇒ t1 6v t2)] (4.1)

Therefore, from Theorem 3 a goal AG is not realizable from choreographed UT if and only if AG 6v UT .

The above equation can be directly encoded in XSB as:

:- table nsim/2. nsim(S1, S2) :-

goaltrans(S1, A, T1),

forall(closuretrans(S2, A, T2), nsim(T1, T2)).

forall(closuretrans(S2, A, T2), nsim(T1, T2)) :-

closuretrans(S2, A, T2),

(nsim(T1, T2) -> fail; !, fail).

forall(_, _).
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The predicate nsim(S1,S2) corresponds to S1 6v S2 relation. It evaluates to true when there exists a

transition in the goal AG from S1 which is not simulated by any transition (denoted by closuretrans)

in UT from S2. Observe that, the predicate is “tabled” (Section 4.1) which ensures that evaluation of

nsim corresponds to the least solution for 6v relation (Equation 4.1).

The predicate forall corresponds to ∀t2 : s2
i/o−−→ t2 ⇒ t1 6v t2 in Equation 4.1. The evaluation

of forall can be explained as follows. It identifies a matching closuretrans (on same i/o as the goal

transition) and verifies whether nsim(T1, T2) holds true. If nsim(T1, T2) evaluates to true, it fails

and backtracks to obtain another result for closuretrans; otherwise it fails and does not backtrack—

backtracking is terminated using the operator “!”, referred to as cut. If closuretrans evaluates to false,

then predicate forall succeeds via the second rule, in which case the instance of nsim that invoked the

forall also succeeds.

Given the service and goal automata, the existence of choreographer is verified by invoking nsim(GoalState,

(ServiceStates, [])) where startgoal(GoalState) and statecompose(ServiceStates) evalu-

ates to true. The empty list [] associated with ServiceStates denotes that the history-set is empty

initially. If nsim(GoalState, (ServiceStates, [])) evaluates to true then the choreographer does

not exist; otherwise it does.

Once the existence of a choreographer is established, we analyze the transitions explored to prove

the existence and the states in the UT -automaton that are similar to states in goal automaton to synthe-

size the choreographer. This ensures that synthesis of choreographer also explores only the transitions

that are required to prove its existence.

4.2.2 Example Run

In the example, in order to verify the existence of a choreographer, we invoke nsim(g1, ([s1,t1],[]))

where g1 is the start state of the goal and ([s1,t1],[]) is the start state of UT -automaton correspond-

ing to the services. The execution trace is presented in Figure 4.2. Each step shows the expansion of

a predicate by the rhs of its rule. Some expansions are shown with grounding of variable when a pred-

icate is satisfied. For example nsim, at the root, is expanded to conjunction of predicates goaltrans

and forall. The predicate goaltrans evaluates to true and grounds the valuation of the variable A to
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partrans([s2, t2), [ssn, ccn, appr]), (I2, loan), T2), member(I2, [ssn, ccn, appr]),

goaltrans(g1, A, T1), forall(closuretrans(([s1,t1],[]), A, T2), nsim(T1, T2))

nsim(g1, ([s1,t1], []))

closuretrans(([s1,t1], []), (ssn, loan), T2), ( nsim(g2, T2) −>  fail;  !, fail ) 

forall(closuretrans(([s1,t1],[]), (ssn, loan), T2), nsim(g2, T2))

A = (ssn, loan), T1 = g2  

FAIL −> fail; !, fail !, fail. FAIL

nsim(g2, ([s2, t3], [ssn, ccn, appr, loan])) −> fail; !, fail
T2 = t3

histtrans(([s2,t2], [ssn, ccn, appr]),  (_, loan), T2), ( nsim(g2, T2) −> fail; !, fail ) 

servicetrans((t1, (I, O), T5), append([I, O], [ssn, ccn], Hist), member(I, [ssn, ccn]),

FAIL

partrans(([s2,t1], [ssn, ccn]), (I, O), T4), member(I, [ssn, ccn]), histrans(T4, (_, loan), T2),

partrans(([s2, t1], [ssn, ccn]), (_, loan), T2), (nsim(g2, T2) −> fail; !, fail)
FAIL

histtrans(([s2,t1], [ssn, ccn]), (_, loan), T2), ( nsim(g2, T2) −> fail; !, fail )

servicetrans(s1, (ssn, ccn), s2), append([ssn, ccn], [], Hist),

partrans(([s1,t1], []), (ssn, _), T3), histtrans(T3, (_, loan), T2), ( nsim(g2, T2) −> fail; !, fail )

partrans(([s1,t1],[]),(ssn,loan),T2),
FAIL

(nsim(g2, T2) −> fail; !, fail)

servicetrans((s2, (I, O), ST), append([I, O], [ssn, ccn], Hist), member(I, [ssn, ccn]),

histtrans(T3, (_, loan), T2), (nsim(g2, T2) −> fail; !, fail)
Hist = [ssn, ccn], T3 = ([s2,t1], [ssn, ccn])

(nsim(g2, T2) −> fail; !, fail)

                                                      histtrans(([ST,t1], Hist), (_, loan), T2), nsim(g2, T2) −> fail; !, fail)

partrans(([t1], [ssn, ccn]), (I, O), (T5, Hist)), member(I, [ssn, ccn]), 
histrans(([s2,T5],Hist),(_,loan),T2), (nsim(g2, T2) −> fail; !, fail)

T5 = t2
                                        histrans(([s2, T5], Hist), (_, loan), T2), (nsim(g2, T2) −> fail;  !, fail)                          

(nsim(g2, T2) −> fail; !, fail)

Figure 4.2: Execution tree.

(ssn,loan) and T1 to g2 (corresponding to the goal transition). Whenever a failure is encountered,

backtracking is performed from the last choice point. For example, first invocation of closuretrans

fails due to failure to satisfy partrans—there is no transition defined from ((s1, t1), []) on in-

put ssn and output loan. As a result, prolog engine backtracks to obtain an alternate way to satisfy

closuretrans via the second rule of closuretrans. Finally, a query to predicate nsim(g2, ([s2,

t2], [ssn,ccn,appr,loan])) is made which fails as there is goal-transition from g2. This leads the

execution to evaluate “!, fail”, i.e., go over a cut and as mentioned above backtracking is stopped.

This implies that for a goal transition sequence, a sequence of transitions in the UT -automaton is ob-



42

tained that simulates the goal transition sequence. his leads to As a result, nsim(g1, ([s1,t1],[]))

fails, i.e., g1 is simulated by ([s1,t1], []) which proves that a choreographer exists.

Observe that, 3 transitions in UT -automaton are explored

(s1, t1)∅] SSN/CCN−−−−−−−→ [(s2, t1){SSN, CCN},

(s2, t1){SSN, CCN} CCN/Appr−−−−−−−→ (s2, t2){SSN, CCN, Appr}

(s2, t2){SSN, CCN, Appr} CCN/Loan−−−−−−−→ (s2, t3){SSN, CCN, Appr}

instead of the entire automaton, because the evaluation proceeds in a goal-directed fashion and does

not explore transitions that are not triggered by SSN as input from the start state of the UT -automaton.

4.3 Experimental Results

We evaluate the technique using common use cases. The first example is an travel reservation

service, modified from [4], where the aim is to develop a composite service (a) for reserving trans-

portation (car-rental) from source address to the origin airport, from destination airport to destination

hotel and (b) for buying the airline tickets and (c) for booking accommodation (hotel). The composition

is realized from pre-existing services one each for car-rental, air-ticket purchase and hotel reservation.

Note that the car-rental service is used twice in the example, once to reserve car from source address

to the source airport and then to reserve car from destination airport to the hotel. The second example

involves ordering, buying and shipping items, simplified from [19]. The choreographer in this case

uses individual services to do credit check, item availability check and shipping. Finally, we have also

experimented with a loan approval service where the goal is approval for a specific loan amount given

the credit information of the user. Once the credit check is validated, approval of specific amount may

depend on approval from several different branches of loan office. We increased the number of states

and transitions in the goal as well as the number of services by varying the number of branches that

need to approve a loan.

For each of the above examples, Table 4.1 presents the size of the goal, number of existing services

involved in realizing the goal, size of the UT -automaton, number of transitions explored by our local

and on-the-fly algorithm and the size of the choreographer generated. The table shows that the number

of states and transitions generated and explored is much less than the total number of states and tran-
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Name
Goal Size No. of

Services
UT size Transitions

Gen. & Expl.
Choreographer

States Trans. States Trans States Trans

Travel
Reservation

9 8 4 400 9659 28 15 14

Purchase &
Ship

4 3 3 32 183 8 8 7

Loan 1 7 6 4 48 610 6 7 6
Loan 2 9 8 5 144 4548 8 8 8
Loan 3 11 10 6 432 26712 10 9 10

Table 4.1: Experimental Results.

sitions in the UT -automaton providing strong testimony that our local and on-the-fly algorithm can be

effectively applied in practical setting. This chapter forms the basis for [15] as also [18].
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CHAPTER 5. Optimum Decentralization: Formulation and Synthesis

As mentioned in the previous chapters, Web Services composition, that composes existing services

to realize a target service known as the goal service has followed two kinds of methodology. One

which depends on a centralized mediator (often referred to as the choreographer) to realize a goal

service. In this chapter, we explore the other approach which is decentralized choreography where

mediators are placed physically close to the services as well as the client for optimality of performance

(of computation and communication costs) [39, 40].

There is a cost associated with using the service, as well as a cost for communicating messages

to and from the services; the first being the computation cost and the second the communication cost.

The cost is contextual and may be represented in terms of monetary value, response time or network

usage. For example, a bookstore service can charge a fee for using their search service. This involves

searching in their database and producing the result. Overall cost for realizing a goal service can be

computed by assigning appropriate weights to represent the computation and the communication costs.

Illustrative Example. We present a brief overview of the problem along with our solution mech-

anism using the following running example obtained from [40]. There are three existing services (Fig-

ure 5.1(a)) S1, S2 and S3. S1 takes as input name of a person (nP) and provides his/her address (aP).

Service S2 can perform all input/output operations of S1. In addition, it can take as input name of a

point of interest or business (nC) and output its address (aC). And finally, S3 takes as input two addresses

and computes the route (r) between them. The developer wants to create a new service, G, for a client

which takes (nP) and (nC) as inputs and provides the route between them (Figure 5.1(b)). The existing

centralized solutions will develop a single choreographer; one such choreographer C0 is presented in

Figure 5.1(c). Observe that the choreographer acts as an intermediary between all the services and the
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Figure 5.1: (a) Existing Services, (b) goal service & cost metrics, (c) centralized and (d) decentralized choreog-
raphy
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Figure 5.2: i/o-automata representation

client. This bottleneck may cause degradation of performance due to large delay between the request

and response from and to the client. It may also cause additional traffic in terms of exchanged messages

thereby consuming available bandwidth unnecessarily and possibly delaying other network intensive

operations.

Now consider that the cost of communication (in terms of network traffic, bandwidth etc.) between

the client and services and between any services are as in the table of Figure 5.1(b). In the table we

refer to the client site as s0. It is desirable to develop a mechanism such that all the messages are not

required to be relayed via a centralized choreographer such as C0. Instead multiple choreographers

are deployed at servers which are at close proximity (physically or in terms of request/response delay)
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to the existing services. The objective is to implement the goal service with minimum possible cost

(following the cost table) where message exchanges do not necessarily require relaying through C0.

A possible solution for the current example is presented in Figure 5.1(d) where in addition to C0,

three choreographers C1, C2, and C3 are deployed near the existing service sites. Observe that, the

messages (aP and aC) are not required by the client and as such they are not sent to C0. Also, observe

that service S2 is not used to obtain the aP from input nP. This is because the cost of communication

between the client and S2 and between S2 and S3 is more than the corresponding communication cost

for service S1. In short, four choreographers are used to minimize the cost of exchanging input/output

messages between the services and the client.

Objective. The objective of designing an optimal decentralization choreography scheme requires

designing the behaviors of each site-specific choreographer such that an overall cost of choreography

(as measured using communication and computation costs) is minimized. Note some site-specific

choreographers may not be needed and their behaviors may turn out to be empty.

Proposed solution. The solution proposed in this paper has two steps. In the first step, we

identify whether there exists a choreographed composition of existing services such that the given

goal service, represented as i/o-automata (Section 5.4), can be realized. This is solved by computing

the universal (all possible) choreographed behaviors (via interleaving and transduced-closure) that can

be realized from the existing services and verifying (via simulation) whether the goal behavior can

be subsumed by the universal behaviors (Section 5.5). The next step (Section 5.6) is to synthesize

the choreographer at each service site such that an overall communication and computation cost of

realizing the goal service is minimized. For this, the transitions in the universal composite behaviors

of the existing services, that subsume the goal behavior, is annotated with their cost valuations. For

example the cost of the composite behaviors as presented in Figure 5.1(c) is equal to the sum of the

cost of exchanging messages between C0 and S1 twice, between C0 and S2 twice, and between C0 and

S3 thrice. We identify the cost of all possible choreographed compositions and select the one which

has the minimum cost by way of a backward search (as in dynamic programming).
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The contributions in this chapter can be summarized as follows. This is a first approach which

presents an automated solution to optimum decentralized choreography for Web services composition.

Our approach is based on I/O-automata representation of the services and the goal, and identifies ap-

propriate choreography scheme using the notions of universal service (obtained as a transduced-closure

of given services), simulation relation and optimal worst-case path-cost computation for a graph. The

contributions in this chapter have been published in [16].

Figure 5.2 presents the I/O-automata models for the three services and goal described in Figure

5.1(a, b). The automaton Ai (i = 1, 2, 3) corresponds to the ith service and the automaton A0 corre-

sponds to the goal. The start states of the automata have curved arrows pointed to them.

5.1 Choreographer Existence

The individual services can be used to implement a goal service by realizing each input/output

computations of the goal as a sequence of input/output computations of the existing services such

that the input (resp., output) of the first (resp., last) computation in the sequence is the same as the

input (resp., output) of the goal. In order to execute an input/output computation, input to a service

is provided by the services or client which have seen and/or stored the said input. In other words, the

input to a service comes from the “history” of information present in another service or the client. To

formalize these concepts we define the notion of interleaving product with distributed history.

5.1.1 Product with Distributed History

We allow a choreographer to be associated with each service site and the client site. Suppose there

are N services located at sites 1, . . . , N . The service at site-n (n ∈ {1, . . . , N}) is modeled as an

I/O-automaton An = (Sn, S0
n, In, On, ∆n). We designate site-0 as the site interfacing with the client.

Associated with each site-specific choreographer is a site-specific history set consisting of the inputs

and outputs seen and stored.

A certain input/output transition of the desired goal service, can be implemented by executing a

sequence of input/output transitions at various sites. To facilitate the computation of all such sequences

we define the notion of interleaving product with distributed history. A local history set of a site
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consists of all inputs and outputs that it has seen in past. (Elements in this local history set can be

used to supply the input of a transition to be executed in future; this will become clear in subsequent

discussions.)

In the interleaving product, exactly one site participates in the execution of each transition, and

accordingly each transition is tagged with a site-index n, that identifies the participant site. Execution

of such a transition at site-n augments its local history by the input-output pair of the transition. The

following definition of Interleaving Product With Distributed History (‖ ~H
n An) captures all possible in-

terleaved behaviors of the service automata and the associated distributed histories. Note the distributed

history is essential for the synthesis of a decentralized choreographer. Only a centralized history was

considered in the earlier chapter. In the following, the notation ~v(n) is used to denote the nth element

of a vector/tuple ~v.

Definition 14 (‖ ~H
n An Automaton) Given service automata {An = (Sn, S0

n, In, On, ∆n)|1 ≤ n ≤
N}, their interleaving product with distributed history is defined as the I/O-automaton ‖ ~H

n An = (~S ×
~H, ~S0 × ~H0, I0, O0, ∆ ~H) where ~S =

∏N
n=1 Sn, ~S0 =

∏N
n=1 S0

n,

~H =
∏N

n=1 2In∪On , ~H0 =
∏N

n=1{∅},

I0 =
⋃N

n=1 In, O0 =
⋃N

n=1 On, and

(~s,~h)
i/o−−→
n

(~s′, ~h′) ∈ ∆ ~H if and only if

~s(n)
i/o−−→ ~s′(n) ∈ ∆n ∧ ~h′(n) = ~h(n) ∪ {i, o} ∧

∀m 6= n : ~s′(m) = ~s(m) ∧ ~h′(m) = ~h(m).

In the definition of ∆ ~H , the first conjunct states that whenever a constituent service makes a move, the

‖ ~H
n An automaton also makes a move with the same transition label. The second conjunct states that

the local history of the participant service is updated with the input and output transition labels. The

third and fourth conjuncts state the facts that other services do not change states or their corresponding

local histories. Thus, if a service gets the input i and produces output o, its local history is enriched by

{i, o}. The above definition paves the way for chaining input/output computations which we capture

using the transduced-closure operation defined in the next subsection.
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Figure 5.3: Interleaving Product Automaton, ‖ ~H
n An

Example 11 Figure 5.3 depicts a part of the automaton || ~Hn An for A1, A2 and A3 presented in Fig-

ure 5.2. Observe that, the history of the start state is empty. Every state is shown with the local

history associated with it and transitions are labeled with the participating service responsible for the

transition. Thus, s1{}t1{}r1{} changes its configuration to s1{}t1{nC,aC}r1{} as A2 makes a move.

Since it is an interleaving product, any of the 3 services can make a move. For example, if A1

makes a move taking input nP and producing output aP, the destination state represents the change in

the configuration of A1 and captures the updated local history, showing that {nP,aP} are stored at

site-1 for future computations. Also, the location where the service is invoked, is labeled below the

transitions. Note that, the configuration of the service involved in the input and output only changes

and the configuration of the other services remain intact during a transition.

5.1.2 Transduced Closure Automaton

The transduced-closure operation is applied on the interleaving product automaton with distributed

history to compute the universe of all services that can be implemented by choreographing the existing

services. A site can get data from its own local history or from the local history of another site to

execute future transitions. There is a cost associated with any such communication of data, and we use

c(n,m) ∈ <+, where <+ is the set of nonnegative reals, to denote the (cheapest) cost of communicat-

ing a data from site-n to site-m. The cost can be any numeric valuation quantifying various aspects of

communication; e.g., network traffic, distance between servers, number of hops for each communica-



50

[nP,aP]

nP/aP nC/aCs1{nP,aP}
t1{}r1{} t1{},r2{aP}

s1{nP,aP} s1{nP,aP}
t1{nC,aC},r2{aP}

s1{nP,aP}aC/raP/ ε

[nP,aP] [nP,aP,nC,aC]

C1;

nP/ s1{nP,aP}
t1{},r2{aP}
[nP]

nC/aC
s1{nP,aP}

t1{nC,aC},r2{aP}
[nP,nC,aC]

aC/r

C2; γ2

nC/r

nC/r

C2; γ2

s1{nP,aP} t1{nC,aC},
r3{aP,aC,r}}
[nP,nC,aC,r]

s1{nP,aP} t1{nC,aC},
r3{aP,aC,r}} [nP,aP,nC,r]

r3{aP,aC,r}}
[nP,aP,nC,aC,r]

r3{aP,aC,r}} [nP,nC,r]
s1{nP,aP} t1{nC,aC},

C3; γ3 C4; γ4

C5; γ5 C6; γ6 C7; C8; γ8

nC/aC

nP/aP aP/ ε

t1{}r1{}

s1{nP,aP}

s1{}

t1{nC,aC}r1{}t1{nC,aC}
s1{}r1{}

nC/aC

[] [nP,aP]

γ1

ε

t1{nC,aC},

[nC,aC] [nP,aP,nC,aC]

nP/ε
s1{nP,aP}
t1{nC,aC},r2{aP}
[nP,nC,aC]

aC/r s1{nP,aP} t1{nC,aC},
r3{aP,aC,r}}
[nP,nC,aC,r]

γ7

C9; γ9 C10; γ10

C11;γ11 C12; γ12

C14; γ14

C15; γ15

nP/aP nC/aCs1{} aC/raP/ ε

[nP,aP]

nP/

[nP]

nC/aC

[nP,nC,aC]

aC/r

C2; γ2

nC/r

nC/r

r3{aP,aC,r}}
[nP,nC,aC,r]

r3{aP,aC,r}} [nP,aP,nC,r]

r3{aP,aC,r}}
[nP,aP,nC,aC,r]

r3{aP,aC,r}} [nP,nC,r]

ε
γ16

t1{nP,aP}r1{}
[nP,aP,nC,aC]

s1{},r2{aP} s1{},t1{nP,aP,nC,aC}
t1{nP,aP,nC,aC}

s1{}

s1{}

s1{}

t1{nP,aP,nC,aC},

t1{nP,aP}
s1{}r2{aP}

s1{},r2{aP}
t1{nP,aP}

s1{}, r2{aP}
t1{nP,aP,nC,aC}

t1{nP,aP,nC,aC},

t1{nP,aP,nC,aC},

C16; γ17 γ18

C19;γ19

γ21 γ22

C17; C18;

C20; γ20 C21; C22; C23;γ23

Figure 5.4: Transduced Closure Automaton, U

tion. Note that, communication between a pair of sites n and m will in general involve multiple options

(such as different routes either directly between n and m or via intermediate nodes), and c(n,m) de-

notes the cheapest option. The Table in Figure 5.1(b) presents the communication costs one site to

another for our example. Since, each site is equipped with local history to store data, utilizing them,

a sequence of input/output computations can be performed by the various site-services without the in-

tervention of the client-site choreographer. The inputs for a computation should be produced from the

history of the nearest site repository, whereas the outputs are sent to the client-site only when needed.

The universe of all target or goal services that can be accomplished in this manner is computed via
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the transduced-closure of an automaton with distributed history ((‖ ~H
n An)T ), defined as follows. Note

this definition is significantly different from the notion of transduced-closure introduced in the previous

chapters, for it is designed to support decentralization and optimality. It might be noted that the union

of all local histories would give us the global history which was introduced earlier in the centralized

solution.

Definition 15 ((‖ ~H
n An)T Automaton) Given an interleaving product automaton with distributed his-

tory ‖ ~H
n An = (~S × ~H, ~S0 × ~H0, I0, O0, ∆ ~H) of {An|1 ≤ n ≤ N}, its transduced-closure is the

automaton (‖ ~H
n An)T = (~S × (2I0∪O0 × ~H), ~S0 × (∅ × ~H0), I0, O0,∆T

~H
), where (~s, (h0,~h))

i/o−−→
c,γ

(~s′, (h′0, ~h′)) ∈ ∆T
~H

if and only if

1. ∃m.




(~s,~h)
i/o1−−→
n1

(~s2,~h2) ∈ ∆ ~H ∧

(~s2,~h2)
i2/o2−−−→

n2

(~s3,~h3) ∈ ∆ ~H ∧ . . .

(~sm,~hm)
im/o−−−→
nm

(~s′, ~h′) ∈ ∆ ~H ∧

∀2 ≤ k ≤ m : ik ∈ h0 ∪
⋃

1≤n≤N

~hk(n)




2. h′0 = h0 ∪ {i, o}

3. c :=




m∑

k=2

MIN



{c(n, nk) | 1 ≤ n ≤ N : ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}




+ c(0, n1) + c(nm, 0)




4. γ = (src2, . . . , srcm) where for 2 ≤ k ≤ m:

srck := arg


MIN



{c(n, nk) | 1 ≤ n ≤ N : ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}







We call U := (‖ ~H
n An)T to be the universal service automaton corresponding to the service-automata

{An | 1 ≤ n ≤ N}.

Observe that, in the above definition, the states of U are represented by the states of ‖ ~H
n An coupled

with elements from 2I∪O. The extra elements represent a history set of the client-site, i.e., the inputs
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and outputs seen by the client-site choreographer. The above definition states that every transition in

‖ ~H
n An is also a transition in the U automaton. Additionally, U automaton includes transduced-closure

of transitions. The transduced-closure of a sequence of service-transitions is possible when certain

conditions are satisfied. The first condition of the states that the source state, the input, the destination

state, and the output of the transduced-closure transition matches respectively with the source state and

the input of the first transition in the sequence, and destination state and the output of the last transition

in the sequence. Furthermore, the input of each transition in the sequence should be present in some

local history associated with its source state.

The second condition states that the history at the client site is updated by the input and output of

the transduced-closure transition (since such a transition implements a goal transition whose input and

output are relayed by the client-site choreographer). The third condition computes the overall cost of

a transduced-closure transition as the sum of the costs of all the individual transitions in the sequence.

The last condition identifies the site from which the input of an intermediate transition is obtained—it

is the site possessing the input in its local history and nearest (in terms of communication cost) to the

site executing the transition. Each transduced-closure transition is annotated with its cost c and the

tuple γ of the nearest sources from where the inputs (for the sequence of transitions implementing the

transduced-closure transition) are obtained.

Example 12 Figure 5.4 depicts a part of the transduced closure automaton U obtained from ‖ ~H
n An

(Figure 5.3) of A1, A2 and A3 (Figure 5.2). The history at the client site, h0 is shown within [ ]. The

dotted transition corresponds to the transitions obtained via the transduced-closure of a sequence of

transitions. E.g., the transition s1{}t1{}r1{}[] nP/ε−−−→
40,1

s1{nP, aP}t1{}r2{aP}[nP] is obtained from

s1{}t1{}r1{} nP/aP−−−−→
1

s1{nP,aP}t1{}r1{} aP/ε−−−→
3

s1{nP,aP}t1{}r2{aP}. Note that the history of the

source state of the second transition has aP available at site-1. Thus src2 = 1. The cost of this

transduced-closure transition is c = c(0, 1) + c(1, 3) + c(3, 0) = 5 + 15 + 20 = 40. For simplicity, in

the example we have depicted the communication costs, though, the computation costs at corresponding

sites if present can be added to this cost for obtaining the cost labels of transitions.
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5.1.3 Realizability of goal

A given goal service A0 is realizable from the existing services under a centralized/decentralized

choreographer if and only if all input/output behaviors of A0 are also present in the universal service

automaton U. Note that the inputs in A0 come from the client and the outputs from A0 go to the client.

Similarly the transition labels in U have inputs coming from the client and the outputs going to the

client. The realizability of a goal using the existing services is verified using checking whether A0 is

simulated by U.

Definition 16 (Simulation [55]) Given a goal automaton A0 = (S0, S
0
0 , I0, O0, ∆0) and an universal

service automata U = (SU , S0
U , I0, O0,∆U ), a state s1 ∈ S0 is simulated by a state s2 ∈ SU if

and only if they are related by the largest simulation relation denoted by s1 v s2 and defined as:

s1 v s2 ⇒ [∀t1 : s1
i/o−−→ t1 ∈ ∆0 ⇒ (∃t2 : s2

i/o−−→
c,γ

t2 ∈ ∆U ∧ t1 v t2) ]. A0 is said to be simulated

by U, denoted by A0 v U, if all states in S0
0 are simulated by some state in S0

U .

Then we have the following result.

Theorem 3 Given a goal A0 and a set of services {An | 1 ≤ n ≤ N}, the goal is realizable from the

choreography of {An | 1 ≤ n ≤ N} if and only if A0 v U where U is the transduced-closure of the

(‖ ~H
n An)-automaton, and (‖ ~H

n An) is the interleaving product with distributed history of the automata

{An | 1 ≤ n ≤ N}.

Example 13 It can be seen that the goal A0 given in Figure 5.2 is simulated by the U automaton in the

Figure 5.4. Thus A0 can be realized by choreographing the services A1, A2, A3 of Figure 5.2.

It can be verified that A0 v U holds if and only if A0 v A0 × U holds, where A0 × U denotes

“simulating synchronous product” of A0 and U as defined below:

Definition 17 (Simulating Synchronous Product) Given a goal A0 = (S0, S
0
0 , I0, O0,∆0) and an

universal service automaton U = (SU , S0
U , I0, O0, ∆U ), their simulating synchronous product is the

automaton A0 × U = (S0 × SU , S0
0 × S0

U , I0, O0, ∆×), where

(s0, su)
i/o−−→
c,γ

(s′0, s
′
u) ∈ ∆× ⇔





s0
i/o−−→ s′0 ∧ su

i/o−−→
c,γ

s′u

∧ s0 v su ∧ s′0 v s′u.




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(a)

Label Sources Label Sources Label Sources
γ1 - γ2 - γ3 -
γ4 - γ5 - γ6 -
γ7 - γ8 - γ9 -
γ10 - γ11 - γ12 -
γ13 1 γ14 - γ15 -
γ16 2 γ17 2 γ18 1
γ19 - γ20 2 γ21 -
γ22 - γ23 2 γ24 2

(b)

C19;

nP/ε
C2;

nC/r

C1;γ1 γ2

g3,s1{nP,aP},
t1{nC,aC},
r3{aP,aC,r}}
[nP,nC,r]

g2,s1{nP,aP},
t1{},r2{aP}
[nP]

g1,s1{}
t1{}r1{}
[]

nP/ε nC/r

γ16 γ19
[nP,nC,r]

[nP]

g2,s1{},r2{aP},
t1{nP,aP}

g3,s1{},
t1{nP,aP,nC,aC},
r3{aP,aC,r}}C16;

(c)
[]

nP/ε
C2;

nC/r

C1;γ1 γ2

g3,s1{nP,aP},
t1{nC,aC},
r3{aP,aC,r}}
[nP,nC,r]

g2,s1{nP,aP},
t1{},r2{aP}
[nP]

g1,s1{}
t1{}r1{}

Figure 5.5: (a) Valuations of γis, (b) Simulating synchronous product A0 × U, and (c) Mincost Choreography
Automaton, C.

Usually the size of A0 × U is smaller compared to the size of U (since size of A0 is smaller compared

size of U). Hence it is preferable to check whether A0 v A0×U holds (as opposed to checking whether

A0 v U holds).

Example 14 Figure 5.5(b) shows the simulating synchronous product of the goal automaton A0 in

Figure 5.2 and universal service automaton U in Figure 5.4. It can be seen from inspecting A0×U and

A0 that A0 v A0 × U holds. Here, A0 × U has two paths from the start state both of which can yield

choreographers. From the associated histories in the paths it can be seen that one path uses service

A1 for computing nP/aP and other path uses service A2 for the same. In the following sections we

introduce the algorithm for choosing the optimal solution.
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5.2 Optimum Decentralization for Realizing Acyclic Goals

Realizability of a goal A0 by choreographing a set of services {An | 1 ≤ n ≤ N} is guaranteed

by the satisfaction of A0 v A0 × U. It is possible that A0 can be simulated by A0 × U in multiple

ways since A0 × U can possess multiple subautomata each of which can simulate A0. Thus there can

be multiple realizations of A0, each with its own cost (as defined below). Our goal then is to find an

optimum cost realization of A0, which we approach by finding an optimal cost subautomaton of A0×U
that simulates A0. In what follows next, we assume for simplicity of presentation that A0 is loop-free.

This then implies that A0 × U is also loop-free. We proceed by defining the cost of a subautomaton of

A0 × U.

Definition 18 (Cost of a loop-free Automaton) Given a loop-free I/O-automaton with its each tran-

sition labeled by a cost, we define the cost of a path to be the sum of the costs of all the transitions in

the path. We define the cost of a state to be the maximum cost among all paths originating at that state

and terminating at a deadlocking state (state with no outgoing transitions). The cost of an automaton

is defined to be the maximum cost among all its initial states. We represent the cost of a loop-free

I/O-automaton A as cost(A).

Using the notion of cost from Definition 18, we define the minimum cost choreography automaton for

realizing A0 from {An | 1 ≤ n ≤ N}.

Definition 19 (MinCost Choreography Automaton) Given a goal automaton A0 and an universal

service automaton U such that A0 v A0 × U, the minimum cost for choreography is obtained as the

cost of a subautomaton C of A0 × U such that A0 v C and for all subautomata C ′ of A0 × U with

A0 v C ′, it holds that cost(C) ≤ cost(C ′).

5.2.1 Computing optimum cost for acyclic case

In the following we present an algorithm for computing a subautomaton of A0 × U from which an

optimum choreographer can be extracted. Given a state (s0, su) of A0 × U, a certain goal transition

s0
i/o−−→ s′0 may be simulated by multiple transitions of the type (s0, su)

i/o−−→
c̄,γ̄

(s̄0, s̄u) in A0 × U. The
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algorithm identifies the minimum cost option by searching over all alternatives. The computation starts

from the deadlocking states by assigning their cost to be zero, and recursively proceeds backwards

by assigning costs to the predecessor states. In this example, for the sake of brevity, we consider the

communication costs as described before. The computation costs will be introduced for solving the

case where goals can have loops.

Algorithm 1 cost(s0, su) =




0 if (s0, su) is a deadlocking state

MAX

s0

i/o−−→s′0∈∆0


 MIN

(s0,su)
i/o−−→
c̄,γ̄

(s̄0,s̄u)∈∆×

{c̄ + cost(s̄0, s̄u)}




otherwise





In the above, the first case states that the cost of a deadlocking state (s0, su) is 0 as there is no path

from such a state. In other words, the leaf states of the automaton are assigned cost of 0. The second

case corresponds to non-deadlocking states. The cost of such a state (s0, su) can be understood in two

steps. In the first step (minimization), we identify the cheapest way of simulating a goal transition

s0
i/o−−→ s′0 originating at s0. This corresponds to a transition of A0 × U labeled by i/o having the least

sum of the cost of the transition and the cost of its destination state. In the second step (maximization),

we identify the worst cost of simulating a transition of the type s0
i/o−−→ s′0 originating at s0. Thus, the

second case boils down to a recursive computation where we update the cost of a state starting from

the deadlocking states, taking the cheapest alternatives. Once, all the states are marked to have a cost,

there may be more than one option to simulate a particular sequence of inputs/outputs. We pick the

cheapest way to simulate each such sequence. And the maximum among them would give the cost of

the automaton.

Example 15 For our running example, the automaton C, shown in Figure 5.5(c), represents the op-

timum choreographer (from the two candidate choreographers: Figure 5.5(b)). One choreography

obtains the nP/aP from A1 (service 1) while the other does the same operation using A2 (service 2).

In both case, aP is sent to A3 (service 3) for outputting r. Note that the sum of communication cost
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(a)
<nC:2>

g1
nP/ ε

g2
nC/r

g3
<nP:1>

s1{}
nP/aP

s1{nP,aP}
<aP:3>

ε

t1{}

ε

nC/aC
t1{nC,aC}

<aC:3>

ε

(b) (c)

(d)
<r:0>

r1 r3{aP,aC,r}

ε

aP/ ε

ε

aC/r
r2

{aP}

Figure 5.6: Site-specific Choreographers: (a) C0, (b) C1, (c) C2 and (d) C3.

between client-site and service 1 and between service 1 and service 3 is less than the sum of cost of com-

munication between client-site and service 2 and between service 2 and service 3 (see Figure 5.1(b)).

As a result, the transition simulating nP/ε has two different costs associated with it in Figure 5.5(b): in

one it is the sum of communication cost between client to service 1, service 1 to service 3 and service

3 to client (total: 40); in the other it is the sum of the communication cost between client to service

2, service 2 to service 3 and service 3 to client (total: 45). The first case produces a minimum cost

choreography strategy.

5.2.2 Synthesizing optimum choreographers

Starting from a subautomaton C of A0×U representing an optimum choreography scheme, a set of

site-specific choreographers achieving the optimum cost can be obtained using the following algorithm.

Algorithm 2 (Site-specific Choreographer) Given a minimum cost choreography subautomaton C

of A0 × U, the choreographer at site-n (0 ≤ n ≤ N ) is a communicating I/O-automaton Cn =

(Sn × 2In∪On , S0
n × {∅}, In, On, En, ∆C

n ), where Sn, S0
n, In, On are as in the site-n service or goal

automaton An, while En : Sn × 2In∪On → 2(I0∪O0)×{0,...,N} labels each state of Cn with a set of data

(that Cn should send in this state) along with their destinations. En and ∆C
n are obtained as follows.

Suppose there exists a transition (s0, ~s1, (h0, ~h1))
i/o−−→
c,γ

(s′0, ~sm+1, (h′0,~hm+1)) in C, which implies:
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• ∃m.




(~s,~h)
i/o1−−→
n1

(~s2,~h2) ∈ ∆ ~H ∧

(~s2,~h2)
i2/o2−−−→

n2

(~s3,~h3) ∈ ∆ ~H ∧ . . .

(~sm,~hm)
im/o−−−→
nm

(~sm+1,~hm+1) ∈ ∆ ~H ∧

∀2 ≤ k ≤ m : ik ∈ h0 ∪
⋃

1≤n≤N

~hk(n)




• h′0 = h0 ∪ {i, o}

• c =




m∑

k=2

MIN



{c(n, nk) | 1 ≤ n ≤ N : ik ∈ ~hk(n)}
∪{c(0, nk) | ik ∈ h0}




+ c(0, n1) + c(nm, 0)




• γ = (src2, . . . , srcm) where for 2 ≤ k ≤ m:

srck:=arg


MIN



{c(n, nk) | 1 ≤ n ≤ N : ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}







• s0
i/o−−→ s′0 ∈ ∆0

Then

1. ∀1 < k ≤ m: [(nk = n) ⇒
(~sk(n),~hk(n))

ik/ok−−−→ (~sk+1(n),~hk+1(n)) ∈ ∆C
n ],

2. ∀1 < k ≤ m: [(srck = n) ⇒ (ik, nk) ∈ En(~sk(n),~hk(n))],

3. (nm = n)⇒ (o, 0) ∈ En(~sm+1(n),~hm+1(n)),

4. (i, n1) ∈ E0(s0, h0),

5. (s0, h0)
i/o−−→ (s′0, h

′
0) ∈ ∆C

0 .

Observe that the service-site choreographer Cn is a subautomaton of the “history-augmented” service

automaton An
1, but with the added feature that it can perform certain transmissions at its states (as

1Item 1 ensures that the choreographer at every site is subautomaton of the automaton of the service at that site. For the
client-site choreographer, item 5 ensures that it is a subautomaton of the goal automaton.
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20

r

S1−(Site 1)

aC

nC aP

nP
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5

S2−(Site 2) S3−(Site 3)

15

Client−(Site 0)

Figure 5.7: Decentralized execution

determined by the labeling function En). If the kth service-transition in a transduced-closure transition

is such that nk = n (item 1), it implies that the kth service-transition is executed at site-n, and in which

case site-n performs this computation (and doesn’t initiate any communication). On the other hand if

the kth service-transition is such that srck = n (item 2), then site-n is the source for the input ik, which

it sends to the site-nk (where the kth service-transition is executed). When nm = n (item 3), the last

service-transition in a transduced-closure transition is executed at site-n which sends the output o to

site-0. Similarly, site-0 sends the input i to the site-n1 (item 4) that executes the 1st service-transition

in the sequence.

Example 16 Figure 5.6 shows the various site-specific choreographers as obtained by applying Algo-

rithm 2. The labeling of states as implied by the En function is shown within <>. In Figure 5.6(a), we

obtain the choreographer C0 at the client-site. C0 communicates nP to the choreographer C1 at site-1,

and nC to the site-2 choreographer C2 from the initial and the next successor states, respectively. In

Figure 5.5(a), it can be seen that after C1 (at service 1 site) obtains nP from C0, it computes the output

aP and sends that to C3. Other choreographers can be explained in similar fashion. They realize the

goal in with minimum cost (as per cost table in Figure 5.1(b)) as the choreographers are obtained from

the minimum cost automaton in Figure 5.5(c). A choreographed view of the solution is depicted in

Figure 5.7. The paths are labeled with the cost and the destination of the different messages are shown

by arrows. Note that the optimal path depicted for such a message may not be the direct channel be-
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tween the two concerned services, but may be through other nodes as determined by the routing layer

to achieve that optimal cost. In the solution, nP is sent to C1, whereas it could also have been sent to

the service 2 site. But that would cost more in the overall optimization scheme. nC is sent to C2 and the

outputs are directly sent to C3 which generates r, after getting the two inputs. Finally r is sent back

to C1 at client site. While in this example we depicted the communication costs, in the next section we

will add the computation costs at each service in the overall optimization scheme.

We developed a tool in java which takes as input the various service models with computation costs for

each transition and a cost model for communication among the services, and produces as output the

optimal decentralization scheme as the various communicating automata in the different sites. The tool

is elaborated in the Appendix.
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Figure 5.8: (a) Existing Services, (b) goal service & cost metrics, and (c) decentralized choreography

5.3 Optimal choreography for Goal having cycles

In the preceding sections, we presented the formulation and algorithms for computing the optimum

decentralized choreographed composition for goal services that are loop-free. The end result is a set of

choreographers derived from our algorithm which are to be placed at the corresponding sites where the

participating services reside. In this paper, we consider a generalized scenario where the goal service

can have a sequence of operations which can be repeated any number of times, thus forming a cycle in

its behavioral specification as an automaton. We proceed by introducing the problem with an illustrative

example and provide an overview of our solution mechanism. The example will be used in the rest of

the paper to explain the salient aspects of our technique. The technique forms the basis of [17].

Illustrative Example. Figure 5.8(a) presents sequence diagrams of three services S1, S2 and S3.

S1 takes as input a product name (p) and provides some information (inf) about the product, such as
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Figure 5.9: i/o-automata representation of the services

weight, size etc. Service S2 takes as input the information (inf) about a product and a shipping address

(a) and provides as output the price (prc) for shipping the product to the address (a). The client can

decide to cancel (c) the shipping after the quote (prc) is given out as output. S3 is a service similar

to S2, the difference being it is located somewhere other than S2 and has different computation costs

for its operations and communication costs of inputs and outputs from and to the client are different as

well. Note that S2 and S3 are shown by the same sequence diagram. The developer wants to create a

new service, S0, for a client which takes product (p) and address (a) as inputs and provides the price

(prc) of shipping (p) to (a), which is also depicted in (Figure 5.8(a)).

A decentralized realization of the choreography will use the services S1,S2 and S3 to provide the

goal S0 of the client. This will entail placing choreographers (C0, C1, C2, C3) at the respective sites.

Now consider that the cost of communication (in terms of usage of the network) between the client

and services and between any services (table of Figure 5.8(b-i)). Another table presents the computation

costs for each operation in each of the services and is shown in Figure 5.8(b-ii). Each operation is

showed in its input/output format, depicting the input required to do the operation and the output

available after the operation. The cost here can be viewed as the charge for using that operation of the

service. Observe that, the computation costs for the same operation by services S2 and S3 are different.

We assume without loss of generality, the communication and computation costs are normalized to the

same unit of measure.

Objective. Given a set of services, a goal, and communication and computation costs, our ob-

jective is to devise an optimal decentralization choreography scheme that will realize the goal from the

existing services by incurring the minimum cost. To satisfy the above objective, multiple choreogra-

phers are deployed at servers which are at close proximity (physically or in terms of request/response
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delay) to the existing services. Not all sites may have choreographers in this scheme as they may not

participate in the optimal choreography scheme.

A possible choreography scheme is shown in Figure 5.8(c). It may be noted that the service S3

remains unused in the scheme. This is because both services S2 and S3 provide the same functionality.

Thus, any one of them can be used to realize the goal. The realization of the goal involves the commu-

nication of p from C0 at the client site to C1 at site 1, inf from the choreographer C1 to C2 which is the

choreographer at site 2, a from C0 to C2, and finally output prc from C2 to C0. Moreover the client can

input a request c to cancel order, which similarly needs to be communicated to C2. If S3 is to be used,

the communication needs to be between the choreographers C0,C1 and the choreographer C3 deployed

at site 3. If S2 is used, the overall cost of the cancelation operation from the perspective of the client

would be communication cost from C0 to C2 added to the computation cost at S2, which is 4+36 = 40.

If instead S3 is used, then by similar calculations the cost would turn out to be 3 + 57 = 60. The cost

of the composite behaviors as presented in Figure 5.8(c) is equal to the sum of the cost of exchanging

messages as shown between C0, C1 and C3 and the respective computation costs at S1 and S2 to produce

the desired outputs. Weighing the communication costs and the computation costs for each operation,

S2 might be a cheaper alternative than S3.

Proposed solution. All services and the goal are represented by i/o-automata (Figure 5.9). Ob-

serve that each of the automata (services and goal) possess loops. The states enclosed in double-circle

denote final states. For a goal service, reaching any final state signifies completion of a task. In con-

trast, being at a non-final state signifies a pending task. Furthermore, if a final state in the goal is

non-deadlocking, another task initiates from that final state and its completion occurs when a subse-

quent final state is reached. Note that it is the goal service that defines task-completions in terms of

its final states. When a final state is reached in the goal, any state can be reached in the services used

to realize the goal. For this reason any state in the given services is treated final. The objective of

optimization is to choreograph the existing services in such a way that regardless of the history of evo-

lution, any pending task is completed in a minimal cost (the worst cost between any state and its nearest

reachable final states is minimized).

To solve the above problem, we follow our approach of computing the interleaving product and
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transduced closure of the services, which generates all the choreographed behaviors of the existing

services (in form of a “universal automaton”). Then, we check using simulation whether the goal

behaviors are subsumed by the universal automaton behaviors. The universal automaton is constructed

to keep track of the costs for computations at respective sites as well as of communications from one site

to another. This is done by annotating the transitions with the cost required to realize them. An optimum

solution is derived as an optimum cost subautomaton of the universal automaton that simulates the goal

automaton. As mentioned above the objective function is to ensure that regardless of the history of

evolution, the worst cost from any state to its nearest reachable final state is minimized. We reduce the

search space by taking the synchronous product of the universal automaton with the goal automaton,

and compute an optimum subautomaton of this product automaton. Using the optimum subautomaton,

we next obtain the choreographers at the service sites simply by applying projection operations.

The contributions of this section can be summarized as follows. This is a first approach which

presents an automated solution to optimum decentralized choreography for Web services composition,

where loops are considered in the goal service. In the absence of loops in the goal specification, the

optimum cost computation is already obtained at this point, i.e., no further iteration is required. In the

presence of loops however, it is possible that the goal specification doesn’t terminate at a final state,

and thus the cost of such a final state is non-zero. So there is a possibility of lowering the overall cost

if the “payoff” of reaching a final state (namely lowering of costs of other states by completing tasks

through reaching the final state) is overshadowed by the “penalty” of reaching it (namely incurring the

cost of the final state). Thus further iterations are required to explore this trade-off, which makes the

algorithm for specification with loops non-trivially different from the loop-free specifications, where a

straightforward backward search starting from terminating states suffices.

5.4 Services as I/O-automata with Final States

As described in the earlier chapters, the behaviors of a Web service can be described as a set of

sequences of input and output computations it can perform. The states in an i/o-automaton represent the

configuration of a service and the inter-state transitions represent the changes from one configuration to

another. The transitions are labeled with input/output actions. We alter the definition of i/o automaton
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to accommodate the final states.

Definition 20 (I/O Automaton) An i/o-automaton A is defined by a tuple (S, S0, SF , I, O,∆), where,

S is the set of states, S0 ⊆ S is the set of initial states, SF ⊆ S is the set of final states, I is the set

of inputs, O is the set of outputs, and ∆ ⊆ S × (I ∪ {ε}) × (O ∪ {ε}) × S is the set of transitions.

An element of ∆, represented by (s, i, o, s′), is such that s ∈ S is the origin state of the transition,

i ∈ I ∪ {ε} is the input to the transition, o ∈ O ∪ {ε} is the output of the transition, and s′ ∈ S is the

destination state of the transition. We use s
i/o−−→ s′ to denote (s, i, o, s′) ∈ ∆.

Figure 5.9 presents the i/o-automata models for the three services and goal described in Figure 5.8(a).

The automaton Ai (i = 1, 2, 3) corresponds to the i-th service and the automaton A0 corresponds to

the goal. The start states of the automata have curved arrows pointed to them and the final states are

marked with double-circles.

5.5 Choreographer Existence

Each operation of a service is depicted as an input/output operation (transition) of the correspond-

ing i/o-automaton. In order to realize the goal, each input/output operation of the goal needs to be

realized by a sequence of input/output operations of the existing services, such that the input of the

goal transition matches with the first input of the sequence and the output matches with the last out-

put of the sequence. The inputs provided to a service and the outputs computed by that service can

be stored at the corresponding service-site for future use (for use as inputs for future computations or

for relaying to other services or to the client). This stored information is referred to as the local his-

tory of the service-site. To formalize these concepts we define the notion of interleaving product with

distributed history.

5.5.1 Product with Distributed History

Similar to the acyclic case, the service at site-n (n ∈ {1, . . . , N}) is modeled as an i/o-automaton

An = (Sn, S0
n, Sn, In, On, ∆n). Note that here, each state is treated a final state (and so the third

tuple-element is the same as the first tuple-element), since after reaching any state the service may no
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longer be required for realizing the goal. We designate site-0 as the site interfacing with the client or

the goal service.

We beef up Definition 14 with the introduction of final states as follows:

Definition 21 [‖ ~H
n An Automaton]Given service automata {An = (Sn, S0

n, Sn, In, On,∆n)|1 ≤ n ≤
N}, their interleaving product with distributed history is defined as the i/o-automaton ‖ ~H

n An = (~S ×
~H, ~S0 × ~H0, ~S × ~H, I0, O0,∆ ~H) where

~S =
∏N

n=1 Sn, ~S0 =
∏N

n=1 S0
n,

~H =
∏N

n=1 2In∪On , ~H0 =
∏N

n=1{∅},

I0 =
⋃N

n=1 In, O0 =
⋃N

n=1 On, and

(~s,~h)
i/o−−→
n

(~s′, ~h′) ∈ ∆ ~H if and only if

~s(n)
i/o−−→ ~s′(n) ∈ ∆n ∧ ~h′(n) = ~h(n) ∪ {i, o} ∧

∀m 6= n : ~s′(m) = ~s(m) ∧ ~h′(m) = ~h(m).

Note that all states in the interleaving product are final states as the constituent states of those states

from the individual services are also final states.

Example 17 Figure 5.10 depicts a part of the automaton || ~Hn An for A1, A2 and A3 presented in Fig-

ure 5.9. Observe that, the history of the start state is empty. Every state is shown with the local history

associated with it and transitions are labeled with the participating service responsible for the transi-

tion. For example s1{}t1{}r1{} changes its configuration to s1{p,inf}t1{}r1{} when A1 makes a

transition, and that transition is annotated with the site-index 1.

5.5.2 Transduced Closure Automaton

In this example we explicitly show the communication and computation costs for the operations

performed. The table in Figure 5.8(b-i) presents the communication cost for our example. Utilizing

the local histories, a sequence of input/output computations can be performed by the various site-

services without the intervention of the client-site choreographer. The inputs for these computations
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Figure 5.10: Interleaving Product Automaton ‖ ~H
n An

are produced from the history of the nearest site repository, whereas the outputs are sent to the client-

site only when needed. Further note that the following differs from Definition 15 as each transition

also incurs a computation cost (for our example it is summarized in Table 5.8(b-ii)). We will denote

the computation cost of a transition s
i/o−−→ s′ as w(s

i/o−−→ s′). The universe of all choreographed

behavior of existing services that can be accomplished in the manner described above is computed via

the transduced-closure of the automaton with distributed history ((‖ ~H
n An)T ), and is defined as follows.

Definition 22 ((‖ ~H
n An)T Automaton) Given an interleaving product automaton with distributed his-

tory ‖ ~H
n An = (~S × ~H, ~S0 × ~H0, ~S × ~H, I0, O0,∆ ~H) of {An|1 ≤ n ≤ N}, its transduced-closure is

the automaton (‖ ~H
n An)T = (~S × (2I0∪O0 × ~H), ~S0 × ({∅} × ~H0), ~S × (2I0∪O0 × ~H), I0, O0, ∆T

~H
),

where (~s, (h0,~h))
i/o−−→
c,γ

(~s′, (h′0, ~h′)) ∈ ∆T
~H

if and only if
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Figure 5.11: Transduced Closure Automaton U

1. ∃m.




(~s,~h)
i1/o1−−−→

n1

(~s2,~h2) ∈ ∆ ~H ∧

(~s2,~h2)
i2/o2−−−→

n2

(~s3,~h3) ∈ ∆ ~H ∧ . . .

(~sm,~hm)
im/om−−−−→

nm

(~s′, ~h′) ∈ ∆ ~H ∧

∀2 ≤ k ≤ m : ik ∈ h0 ∪
⋃

1≤n≤N

~hk(n),

i1 = i, om = o



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2. h′0 = h0 ∪ {i, o}

3. c :=





c(0, n1) + w(~s(n1)
i/o1−−→ ~s2(n1))

m∑

k=2




MIN




{c(n, nk) | 1 ≤ n ≤ N :

ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}




+ w(~sk(nk)
ik/ok−−−→ ~sk+1(nk))




+ c(nm, 0)

4. γ = (src2, . . . , srcm) where for 2 ≤ k ≤ m:

srck := arg




MIN



{c(n, nk) | 1 ≤ n ≤ N : ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}




+ w(~sk(nk)
ik/ok−−−→ ~sk+1(nk))




We call U := (‖ ~H
n An)T to be the universal service automaton corresponding to the service-automata

{An | 1 ≤ n ≤ N}.

In this definition the clauses are explained similar to the definition 15. Here, the third condition com-

putes the overall cost of a transduced-closure transition as the sum of the costs of all the individual

transitions in the sequence. This involves summation over all the computation costs of the transitions

involved and the minimum possible communication cost to procure the inputs.

Example 18 Figure 5.11 depicts a part of the transduced closure automaton U obtained from ‖ ~H
n An

(Figure 5.10) of A1, A2 and A3 (Figure 5.9). The history at the client site, h0 is shown within [ ].

The dotted transitions correspond to the transitions obtained via the transduced-closure of a sequence

of transitions. E.g., the transition s1{}t1{}r1{}[] p/ε−−→
10,1

s1{p,inf}t1{}r2{inf}[p] is obtained from

the transduced-closure of s1{}t1{}r1{} p/inf−−−−→
1

s1{p,inf}t1{}r1{} inf/ε−−−−→
3

s1{p,inf}t1{}r2{inf}.

Note that the history of the source state of the second transition has inf available at site-1. Thus

src2 = 1. The cost of this transduced-closure transition is c = 4 + 2 (computation costs for the

transitions involved)+c(0, 1) + c(1, 3) (communication costs) = 10. Note that the ε output does not

need to be communicated and hence the communication cost associated with it is not added.
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Figure 5.12: (a) Valuations of γ’s, (b) Simulating synchronous product A0 × U, (c) Mincost Choreography C.
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5.5.3 Realizability of cyclic goal

A goal service is specified as an input/output-automaton, A0 = (S0, S
0
0 , SF

0 , I0, O0, ∆0). Note

that I0 = ∪N
n=1In and O0 = ∪N

n=1On (see Definition 21), i.e., the inputs/outputs of the goal are the

union of the inputs/outputs of the existing services. States in SF
0 designate the final states, reaching

which signifies the completion of a task. In contrast, being at a non-final state signifies a pending task.

Since no further execution is possible beyond a deadlocking state (which has no outgoing transition),

it is natural to require that a deadlocking state is a final state (otherwise certain tasks can never be

completed).

Example 19 The goal A0 given in Figure 5.9 is simulated by the U automaton in the Figure 5.11. Thus

A0 can be realized by choreographing the services A1, A2, A3 of Figure 5.9.

Since, the size of A0 × U is usually smaller compared to the size of U (since size of A0 is smaller

compared size of U), we verify, whether A0 v A0 × U or not.

Example 20 Figure 5.12(b) shows the simulating synchronous product of the goal automaton A0 in

Figure 5.9 and the universal service automaton U in Figure 5.11. It can be seen from inspecting A0×U
and A0 that A0 v A0×U holds. Here, A0×U has two paths from the start state both of which can yield

choreographers. From the associated histories in the paths it can be seen that one path uses automaton

A2 for computing the transitions inf/ε, a/prc as well as c/ε and other path uses service A3 for the

same. In the following sections we introduce the algorithm for choosing the optimal solution.

5.6 Optimum Decentralization

For optimal decentralization, we need to find out the composition where the overall communication

and computation costs are minimized. This entails finding the optimal subautomaton as there might be

several of them simulating the same sequence of inputs/outputs. Note that the cost of an automaton will

be different than in Definition 18, since simply adding costs of transitions would amount to an infinity

trace for paths having loops. The objective of optimization is to choreograph the existing services in

such a way that regardless of the history of evolution, any pending task is completed in a minimal cost
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Algorithm 3 (MinCost Choreography)

Initialization: (k = 0)

costk(s0, su) =




0 if (s0, su) is a deadlocking state

MAX

s0

i/o−−→s′0∈∆0


 MIN

(s0,su)
i/o−−→
c̄,γ̄

(s̄0,s̄u)∈∆×

{ {c̄ + costk(s̄0, s̄u) | (s̄0, s̄u) /∈ SF
0 × SU}

∪{c̄ | (s̄0, s̄u) ∈ SF
0 × SU}

}


otherwise

costk = MAX{costk(s0, su) | (s0, su) ∈ S0 × SU}
Iteration: (k ≥ 1)

costk(s0, su) =




0 if (s0, su) is a deadlocking state

MAX

s0

i/o−−→s′0∈∆0


 MIN

(s0,su)
i/o−−→
c̄,γ̄

(s̄0,s̄u)∈∆×




{c̄ + costk(s̄0, s̄u) | (s̄0, s̄u) /∈ SF

0 × SU}
∪{c̄ | (s̄0, s̄u) ∈ SF

0 × SU ,∀m < k : costm(s0, su) 6= costm}
∪{∞ | (s̄0, s̄u) ∈ SF

0 × SU , ∃m < k : costm(s0, su) = costm}








otherwise

costk = MAX{costk(s0, su) | (s0, su) ∈ S0 × SU , ∀m < k : costm(s0, su) 6= costm}
Termination: If costk < costk−1, set k := k + 1 and repeat Iteration step; otherwise stop and output

costk−1.

Figure 5.13: Algorithm for computing minimum cost choreography
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(the worst cost between any state and its nearest reachable final states is minimized). With this in mind,

we define the cost of a subautomaton of A0 × U as follows.

Definition 23 (Cost of an Automaton) Given an i/o -automaton with each of its transitions labeled by

some cost, we define the cost of a path to be the sum of the costs of all the transitions in that path.

We define the cost of a state to be the maximum cost among all paths originating at that state and

terminating at a final state. The cost of an automaton is defined to be the maximum cost among all its

states.

We refer to the cost of an i/o-automaton A as cost(A). From Definition 23, we define the minimum

cost choreography automaton for realizing A0 from {An | 1 ≤ n ≤ N} as defined in Definition 19

5.6.1 Computing optimum cost

In this section, we introduce the algorithm for computing a subautomaton of A0 × U for obtaining

the optimal choreographer. Given a state (s0, su) of A0 × U, a certain goal transition s0
i/o−−→ s′0 may

be simulated by multiple transitions of the form (s0, su)
i/o−−→
c̄,γ̄

(s̄0, s̄u) in A0 × U, and the algorithm

given below selects the least expensive option. This is done by associating a cost with each state

(s0, su) ∈ S0 × SU that represents the worst cost among all paths, rooted at the state and ending at

final states, needed to simulate the state s0. The cost of states are assigned iteratively, and recursively

within each iteration (see Algorithm 3).

In Algorithm 3 (Figure 5.13), the cost of a deadlocking state (s0, su) is set to be zero as there is

no computation or communication cost is incurred from such a state. The computation of the cost of a

non-deadlocking state (s0, su) in the initialization phase (k = 0) can be understood in two steps.

1. In the first step (minimization), we identify the cheapest way of simulating a goal transition

s0
i/o−−→ s′0 originating at s0. This corresponds to a transition of A0× U labeled by i/o having the

least sum of the cost of the transition and the cost of its destination state. If the destination state

is a final state, then it does not contribute any cost since reaching it results in the completion of a

task.
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2. In the second step (maximization), we identify the worst cost of simulating a transition of the

type s0
i/o−−→ s′0 originating at s0.

The maximum cost of any state as computed in the initialization phase is denoted cost0. It labels the

cost of each state with the least cost to reach the nearest final state, simulating a goal path. Note that

for acyclic paths, the final state will be deadlocking having a cost zero. For cyclic paths, another set of

tasks start from the final states and will give assign it a non-zero cost.

The kth iteration (k ≥ 1) explores the possibility of reducing the overall cost by way of avoiding

reaching the worst-costing final states of the earlier iterations. Doing this results in raising the cost

of all the other states (since they no longer have access to the worst-costing final states of the earlier

iterations), but the overall cost may still reduce since the costs of the worst-costing states of the earlier

iterations no longer affect the overall cost. The worst-costing final states of the earlier iterations are

avoided by simply setting their cost contribution to be infinity. This is the only difference between the

0th iteration, and the subsequent iterations. A new iteration is executed only if the current iteration

results in a reduction in the overall cost compared to the previous iteration.

Remark 1 The cost computation in each iteration is recursive for each k ≥ 0 (the formula for state

cost given in Algorithm 3 can be viewed to be of form: costk(·, ·) = fn({costk(·, ·)})), and we seek

to compute the least-fixed point of the recursion. Note the least-fixed point exists since the mapping

given by fn({costk(·, ·)}) is non-decreasing and hence monotone. The least fixed point computation

for any iteration k ≥ 0 can be accomplished by initially assigning a zero cost to all the states, and next

repeatedly updating their cost values by using the formula for costk(·, ·) given in Algorithm 3. The

updates will be repeated at most |S0| × |SU | times, by which time they will either converge (to finite

values), or continue to rise and in which case the overall cost will diverge (to infinity eventually). In

either case, the recursive computation of the kth iteration can be terminated. The algorithm continues

to a next iteration if k = 0 or the overall cost of the kth iteration is smaller than that of the previous

iteration.

When there are no cycles between an initial or a final state and its nearest reachable final states

(this will be the case for example when all cycles in the goal service possess a final state), the recursive

computation of the kth iteration (k ≥ 0) can be performed alternatively by maintaining a working-set
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of states. The initial working-set will consist of the one-step backward reachable states of the final

states, and each time the cost of all the states in the working set is computed using the formula of

Algorithm 3, the working set will be enlarged to include its one-step backward reachable states. The

recursive computation of the kth iteration will end when all states are included in the working-set. It

can be concluded that the kth iteration will require O(|S0| × |SU |) number of computations. Further

since in each iteration at least one final state is avoided (by forcing its cost contribution to be infinity),

there can be at most O(|SF
0 | × |SU |) number of iterations. Thus the overall computational complexity

of Algorithm 3 is O(|S0| × |SF
0 | × |SU |2).

Remark 2 While Algorithm 3 works for general services and goals, a finite-cost optimum solution

will exist if all cycles in the goal service either possess a final state or cost zero to simulate. (Otherwise

the optimal cost will be ∞, and in which case any decentralized choreographer is an optimum one.)

Theorem 4 Given A0×U, where A0 and U are goal and universal service automata respectively, Algo-

rithm 3 in Figure 5.13 terminates with the cost equaling that of a mincost choreography subautomaton

C of A0 × U.

Proof: The proof is based on the facts that (a) in any iteration k ≥ 0, the cost of a state is optimum

under the constraint that the worst-costing final states of the earlier iterations are forced to remain

unreachable, and (b) the iteration terminates when forcing the unreachability of the worst-costing final

state of the last iteration ends up raising the overall cost.

Now we argue the correctness of assertion (a). In the kth iteration any state (s0, su), that is not

forced to become unreachable, must simulate all transitions defined at s0. Hence the cost of (s0, su) is

the worst over all transitions defined at s0 that must be simulated, which accounts for the maximization

operation in the formula of Algorithm 3. For each transition defined at s0, there may be multiple options

to simulate it, and the least cost option is selected by the algorithm by choosing an appropriate successor

(s̄0, s̄u) such that the cost of the successor together with the cost of the transition from (s0, su) to

(s̄0, s̄u) is minimized, which accounts for the minimization operation in the formula of Algorithm 3.

If the successor (s̄0, s̄u) is a final state, its cost contribution is zero if its reachability is allowed, and is

infinity otherwise. Accordingly, the cost of (s0, su) is the worst over all transitions at s0 that must be
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simulated, and for each such transition, best among all successors that can be reached to simulate that

transition (where the best cost is given by the least combined cost of the transition together with the

cost of the successor state). It is clear that for any iteration k ≥ 0, the formula given in Algorithm 3 (in

form of mapping costk(·, ·) = fn({costk(·, ·)})) is a correct formula. Then the assertion (a) stated

above follows from the fact that we compute the least-fixed point of the mapping (see Remark 1), and

hence any cost value smaller than costk(s0, su) is not possible (given that costk(s0, su) must satisfy

the formula of Algorithm 3 as established above).

(b) In the kth iteration, a state (s0, su) becoming unreachable, means the cost valuation of that state

is assigned from c to ∞. Consider the case, where there are other ways to simulate s0. Then, in the

k + 1th iteration, the cost valuation of (s0, s
′
u) viz. c′ and would contribute to the calculation of the

overall cost of the choreography automaton. Clearly, c′ < c, because (s0, su) was made unreachable

instead of (s0, s
′
u) in the previous iteration. Since, other cost valuations not depending on the new

assignment remain the same, costk+1 < costk. Hence iterations will continue. Since, there are a

finite number of services, there will be finite number of ways to simulate a goal state s0. Hence, after

finite number of iterations, a state (s0, su) will be forced to be unreachable, where there are no other

ways to simulate s0. Then the cost contribution of that node becomes ∞ and hence the Algorithm 3

will render the cost of the root node as ∞. This cost, viz. ∞ being higher than the previous iteration

cost, will terminate the algorithm. This concludes the proof.

Example 21 Figure 5.14 depicts the computation of Algorithm 3 as applied to our running example.

The simulating synchronous product A0×U is shown in Figure 5.12(b). As can be seen from Figure 5.9,

the goal service possesses a cycle, and the cycle contains a final state. So in this case, the cost of

completing a task starting from any state is finite (since the paths from any state to its nearest final

states are cycle-free).

Notice that A0 × U has one initial state, and two final states. Upon starting from the initial state,

when a final state is reached a certain task of the goal is completed. If the final state reached is non-

deadlocking, a new task begins from this state and its completion occurs when a subsequent final state

is reached. Thus A0 × U can execute three distinct tasks, starting from either the initial state or one of

the final states. In order to simplify the illustration of the algorithm, the graph of A0×U is accordingly
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split into three subgraphs (that are trees), one for each task, as shown in the top half of Figure 5.14.

For k = 0, the cost of each state is computed using the formula of Algorithm 3 following the method

discussed in Remark 1. The leaf nodes of the trees are final states representing completion of tasks.

Since no further computation or communication is required once a task is completed, the leaf nodes

are associated with zero costs. (Note in Algorithm 3, the fact that the cost contribution of leaf nodes is

zero is implicitly encoded in the second term of the union appearing inside the minimization operation,

in which any state cost is not included.) The state s1{p,inf}t1{}r2{inf}[p] is one-step backward

reachable from the final states or the leaf nodes. Applying the formula given in Algorithm 3, we

obtain the cost of s1{p,inf}t1{}r2{inf}[p] as 20. Similarly the cost of s1{p,inf}t2{inf}r1{}[p]

is obtained to be 30. Next at the initial state s1{}t1{}r1{}[], Algorithm 3 picks the least cost option to

simulate the transition p/ε and labels the cost of the initial state as 20+10 = 30 (the other option costs

30 + 10 = 40 which is more expensive). The thickened edges represent the least expensive options.

Also, in the 0th iteration, the cost of each final state, which represents the cost of executing another

task starting from the corresponding final state, is computed. This is depicted by the cost labels of the

other two trees of the initialization step. The two final states bear the costs of 90 and 80 respectively.

Thus the overall cost is given by cost0 = MAX(30, 90, 80) = 90.

For k = 1, the worst-costing node having the cost of 90 is avoided by forcing its cost contribution as

a leaf node to be∞ (as opposed to zero in the initialization step). Also since this node is to be avoided,

it can no longer act as a restarting point of a task, and hence there are only two trees to consider in

Iteration 1. The cost of each states is computed as before. In this iteration, the initial state has the cost

of 40 since it is forced to select the the only available option to simulate the transition on p/ε. This

choice is depicted by the thickened edges. While the cost of the initial node rises, the overall cost drops

and is given by cost1 = MAX(40, 80) = 80. A reduction in the overall cost leads to execution of the

next iteration (k = 2) (not shown in the figure). In this iteration the worst-costing state having the cost

of 80 is avoided by forcing its cost contribution as a leaf node to be ∞. Also this node cannot serve

as a restarting point of a task, and so in Iteration 2 there is only one tree (rooted at the initial state) to

consider. As both its leaf nodes have a cost contribution of ∞, it is easy to see that cost2 = ∞. Since

cost2 exceeds cost1, Algorithm 3 terminates with the optimum solution provided by Iteration 1.
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Figure 5.14: Iterations of Algorithm 3
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Figure 5.15: Site specific Choreography Automata: (a) C0, (b) C1, (c) C3 and (d) C2

Example 22 For our running example, the automaton C, shown in Figure 5.12(c), represents the op-

timum choreographer (from among the two candidate choreographers embedded in Figure 5.12(b)).

One choreography scheme simulates the transition on p/ε using A1 and A2 while the other scheme

simulates the same transition using A1 and A3. Note that the two schemes cost differently, and our

algorithm selects the least expensive option by selecting A2..

5.6.2 Synthesizing optimum choreographers

Starting from a subautomaton C of A0 × U representing an optimum choreography scheme, our

objective is to synthesize choreographers at each site such that the transduced closure of their prod-

uct replicates C. In addition to normal i/o-behavior at each transition, a site-specific choreographer

also needs to record information regarding the i/o’s that must be sent from one choreographer to an-

other for minimal cost communication. Site-specific choreographers are obtained using the mechanism

described in Algorithm, 2.

Example 23 Figure 5.15(a, b, c, d) shows the various site-specific choreographers as obtained by ap-

plying Algorithm 3. The labeling of states as implied by the En function is shown within <>. In

Figure 5.15(a), we obtain the choreographer C0 at the client-site. C0 communicates p to the choreog-

rapher C1 at site-1, and a and c to the site-2 choreographer C2 from the initial and the next successor
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states, respectively. Other choreographers can be explained in similar fashion. They realize the goal

in with minimum cost (as per cost tables in Figure 5.8(b)) as the choreographers are obtained from the

minimum cost automaton in Figure 5.12(c).
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CHAPTER 6. Conclusion and Future Work

6.1 Concluding Remarks

We have reduced the problem of verifying the existence of a choreographer to a simulation problem

over i/o automata. The solution relies on the construction of appropriate universal-service automaton,

U-automaton or UT -automaton, as the case may be. One of the future avenues of research is to investi-

gate applicability of local, on-the-fly algorithms to solve the problem. Such algorithms will explore the

state-space of the universal-service automaton as and when needed and will stop exploration whenever

the proof of existence of choreographer is obtained.

The implementation was done with a local and on-the-fly technique for verifying the existence

choreographer and synthesizing it. This is achieved by logical encoding of choreographer-based com-

position problems and evaluating the logic program in a goal-directed fashion. The results prove that

our technique is promising and can be used effectively in practical settings. One of the future avenues of

research is to develop heuristics to further assist and guide local exploration of the composite services.

Then we addressed the problem of decentralizing the choreography of web services for achieving

cost benefits. We have systematically formulated this problem and presented algorithms for finding an

optimal decentralized scheme of choreography. The state space exploration of the Universal Automa-

ton has been reduced by taking the simulating synchronous product with the goal. An algorithm for

finding an optimum decentralized choreography scheme is presented that for every possible configura-

tion minimizes the worst cost over all behaviors required to realize the goal service. Another algorithm

computes the site-specific choreographers by distributing the optimum choreography scheme com-

puted by the first algorithm. The paper presents a first automated technique for solving the optimum

decentralized choreography problem, in which the goal service is allowed to have cycles. Thus, in the

architectural framework shown in Figure 1.2, our scheme fits as the engine of the composition and as
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constraints we considered optimizing a cost model.

6.2 Future Directions

Automated composition of Web Services is still to mature for wide acceptance in the industry. In

future the prototype of optimization implemented can be applied to real scenarios with the possible

additional handling of standard programming control constructs such as for,if-then-else,while. Also,

this would entail conversion of standard composition languages such as WS-BPEL, WS-CDL to our

automata models and reconversion of the composition result back to the standard language modes.

Based on the composition schemes as necessary in future, our theoretical approach can be extended

for further advancements. The automata model can be strengthened with guard conditions emulating

control flows. Our work assumes an exact match of inputs and outputs in the user specifications with

the services available in the repository, whereas the user may want outputs which can be any subset

of the available outputs from the services. The inputs provided can be more than what is required, in

which case a subset of user inputs has to be matched. Another direction along the same lines is the

partial realization of the user’s goal when it cannot be met fully. Optimal partial realization of the

goal would address the problem of constructing a composition which is least dissimilar with Goal, than

other realizations possible from given services. A complete automation would also require semantic

matching of service interfaces, as well as considering other aspects for communication such as security,

service level agreements, which have also been a much pursued topic of research.
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APPENDIX

Implementation Results

The optimal decentralization tool accepts a set of service specifications and the goal specification

and if a choreographer exists gives as output the optimal decentralized realization of the goal.

The choreography scheme with acyclic goals first implements the composition algorithm which

calculates the synchronous product of the Universal Automaton and the Goal. All the i/o automata

are stored in graph data structures, classes are defined for states, and each state maintains transition

labels leading to successors. We explore the each goal transition and search for its realization in the

product in a depth-first manner. It maintains the distributed history for each state in a Set data structure

along the realization of the transition. Once, all transitions of the goal are explored and realized, it is

concluded that a choreographer exists. Note that, the product holds the intermediate states interleaved

for the transduced realization of a transition. This is essential for extraction of the choreographer by

projecting the interleaving to various service sites.

Then the optimization Algorithm 1 is applied to extract the optimal branch of the product. For

this, we find the critical path determining the cost of the minimum cost choreography automaton.

Maintaining the cost of the automaton, the other optimal paths are marked so that all goal transitions

are simulated. The costlier paths to simulate are eliminated. This trims the automaton to yield the

minimum cost choreography scheme.

Finally, applying Algorithm 2, we get the projection of the minimum cost choreography automaton

on different sites. This yields the site-specific choreographers. Since the intermediate states for real-

izing a goal transition are stored in the graph for the automaton, extracting the site-specific automata

amounts to finding the transitions specific to the concerned site in the optimal realization graph.

The service automata and the goal are encoded similar to what is described in 4.2.
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service_trans(s, (a,b), s’),c.

In the above service transition, s signifies the start state, a, the input of the transition, b, the output, s’,

the destination state and c the computation cost. The communications cost C between site A and B are

listed as (A,B=C). Here is the encoded input of the example used earlier.

%% service 1 Address

service_trans(s1, (nP,aP), s1),1.

start_service(s1).

end_service

%% service 2 Address

service_trans(t1, (nP, aP), t1),1.

service_trans(t1, (nC, aC), t1),1.

start_service(t1).

end_service

%% service 3 Route

service_trans(r1, (aP, eps), r2),1.

service_trans(r2, (aC, r), r3),1.

start_service(r1).

end_service

%% goal

service_trans(g1, (nP, eps), g2).

service_trans(g2, (nC, r), g3).

start_goal(g1).

end_goal

start_communication_costs

(0,1=5)(0,2=10)(0,3=20)

(1,0=5)(1,2=10)(1,3=15)

(2,0=10)(2,1=10)(2,3=15)

(3,0=20)(3,1=15)(3,2=15)



85

end_communication_costs

The output is as follows:

A0 X U:

<2> t1{[]}s1{[aP, nP]}r2{[aP, eps]}g2{[eps, nP]}{42} -nC(from:0)/aC(1)->

<5> t1{[aC, nC]}s1{[aP, nP]}r2{[aP, eps]}g2g3{[eps, nP, nC]}

<4> t1{[aP, nP]}s1{[]}r2{[aP, eps]}g2{[eps, nP]}{47} -nC(from:0)/aC(1)->

<7> t1{[aC, aP, nP, nC]}s1{[]}r2{[aP, eps]}g2g3{[eps, nP, nC]}

<8> t1{[aC, aP, nP, nC]}s1{[]}r3{[aC, aP, r, eps]}g3{[r, eps, nP, nC]}{94}

<6> t1{[aC, nC]}s1{[aP, nP]}r3{[aC, aP, r, eps]}g3{[r, eps, nP, nC]}{89}

<1> t1{[]}s1{[aP, nP]}r1{[]}g1g2{[nP]}{6} -aP(from:1)/eps(1)->

<2> t1{[]}s1{[aP, nP]}r2{[aP, eps]}g2{[eps, nP]}

<3> t1{[aP, nP]}s1{[]}r1{[]}g1g2{[nP]}{11} -aP(from:2)/eps(1)->

<4> t1{[aP, nP]}s1{[]}r2{[aP, eps]}g2{[eps, nP]}

<7> t1{[aC, aP, nP, nC]}s1{[]}r2{[aP, eps]}g2g3{[eps, nP, nC]}{58} -aC(from:2)/r(1)->

<8> t1{[aC, aP, nP, nC]}s1{[]}r3{[aC, aP, r, eps]}g3{[r, eps, nP, nC]}

<5> t1{[aC, nC]}s1{[aP, nP]}r2{[aP, eps]}g2g3{[eps, nP, nC]}{53} -aC(from:2)/r(1)->

<6> t1{[aC, nC]}s1{[aP, nP]}r3{[aC, aP, r, eps]}g3{[r, eps, nP, nC]}

<0> t1{[]}s1{[]}r1{[]}g1{[]}{0} -nP(from:0)/aP(1)->

<1> t1{[]}s1{[aP, nP]}r1{[]}g1g2{[nP]}

<0> t1{[]}s1{[]}r1{[]}g1{[]}{0} -nP(from:0)/aP(1)->

<3> t1{[aP, nP]}s1{[]}r1{[]}g1g2{[nP]}

Optimal Choreography:
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<5> t1{[aC, nC]}s1{[aP, nP]}r2{[aP, eps]}g2g3{[eps, nP, nC]}{53} -aC(from:2)/r(1)->

<6> t1{[aC, nC]}s1{[aP, nP]}r3{[aC, aP, r, eps]}g3{[r, eps, nP, nC]}

<1> t1{[]}s1{[aP, nP]}r1{[]}g1g2{[nP]}{6} -aP(from:1)/eps(1)->

<2> t1{[]}s1{[aP, nP]}r2{[aP, eps]}g2{[eps, nP]}

<6> t1{[aC, nC]}s1{[aP, nP]}r3{[aC, aP, r, eps]}g3{[r, eps, nP, nC]}{89}

<2> t1{[]}s1{[aP, nP]}r2{[aP, eps]}g2{[eps, nP]}{42} -nC(from:0)/aC(1)->

<5> t1{[aC, nC]}s1{[aP, nP]}r2{[aP, eps]}g2g3{[eps, nP, nC]}

<0> t1{[]}s1{[]}r1{[]}g1{[]}{0} -nP(from:0)/aP(1)->

<1> t1{[]}s1{[aP, nP]}r1{[]}g1g2{[nP]}

Decentralized Choreographers:

<t1:> {[]} -nC/aC(1)-> <t1:3> {[aC, nC]}

<t1:3> {[aC, nC]}

<s1:> {[]} -nP/aP(1)-> <s1:3> {[aP, nP]}

<s1:3> {[aP, nP]}

<r1:> {[]} -aP/eps(1)-> <r2:0> {[aP, eps]}

<r2:0> {[aP, eps]} -aC/r(1)-> <r3:0> {[aC, aP, r, eps]}

<r3:0> {[aC, aP, r, eps]}

<g1:1> {[]} -nP/eps()-> <g2:2> {[eps, nP]}

<g2:2> {[eps, nP]} -nC/r()-> <g3:> {[r, eps, nP, nC]}

<g3:> {[r, eps, nP, nC]}
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