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ABSTRACT: Hybrid gas turbine−fuel cell systems have immense potential for high
efficiency in electrical power generation with cleaner emissions compared with fossil-
fueled power generation. A systematic controlled variable (CV) selection method is
deployed for a hybrid gas turbine−fuel cell system in the HyPer (hybrid performance)
facility at the U.S. Department of Energy’s National Energy Technology Laboratory
(NETL) for maximizing its economic and control performance. A three-stage approach is
used for the CV selection comprising a priori analysis, multiobjective optimization, and a
posteriori analysis. The a priori analysis helps to screen off several candidate CVs, thus
reducing the size of the combinatorial optimization problem for multiobjective CV
selection. For optimal CV selection, a transfer function model of the HyPer facility is
identified. By considering several candidate models, the final transfer function model is
selected using Akaike’s Final Prediction Error criterion. Experimental data from the
HyPer facility are used to estimate the noise in the measurement data. For solving the
combinatorial multiobjective optimization problem for CV selection, a multiagent
optimization platform comprising simulated annealing, genetic algorithm, and efficient ant colony optimization algorithms is used.
Pareto-optimal CV sets exhibit a high trade-off between the economic and control objective. The a posteriori analysis is undertaken
for several top Pareto-optimal CV sets. An optimal CV set is selected that shows the best compromise between process economics
and controllability under both nominal and off-design conditions.

1. INTRODUCTION

In the quest for highly efficient and cleaner power production
systems, various advanced power cycles are being investigated.
One such system is the gas turbine (GT)−solid oxide fuel cell
(SOFC) hybrid system where a GT is synergistically coupled
with an SOFC. SOFCs1 are small-dimensional, stationary,
high-temperature, low-noise power generation devices with
immense potential to replace currently used combustion-based
power generation systems. SOFCs mainly consist of an anode,
a cathode, and a solid oxide electrolyte sandwiched in between.
While fuel is fed to the anode, air is fed to the cathode side.
These electrodes are connected externally by an electrical
circuit. Extensive details on modeling of SOFC systems can be
found in the literature.2,3

The GT-SOFC system promises very high theoretical energy
efficiencies when compared with other systems.4,5They can be
considered as part of the polygeneration systems where
integration of multiple processes are considered for coproduc-
ing multiple products such as heat, power, and chemicals.
These systems enable system flexibility and efficient resource
utilization. By feeding the fuel cell hybrid systems with the
syngas from the coal-fed integrated gasification-combined cycle

power systems, advanced coal-based power generation with
higher efficiency and cleaner emission can be accomplished.5

Fuel cell hybrid systems are not only attractive for stationary
applications but also for mobile systems such as ships and
aircrafts.
While high efficiency is desired for maximizing the economic

performance of the GT-SOFC system, sufficient controllability
must be ensured for this challenging system. While compressor
surge must be prevented, fluctuations in temperature of the
inlet air to the SOFC must be minimized as this can cause
dramatic degradation in the fuel cell due to thermal stress.
Therefore, optimal selection of controlled variables (CVs) for
this system with due consideration of trade-offs between the
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economic and control performance would be an important
step toward commercialization of this technology.
Optimal selection of the primary CVs is one of the most

important aspects of control structure design.6 CV selection is
focused on selecting optimal variables to be controlled, rather
than how to control these variables. Importance of the optimal
CV selection has been discussed in detail in a number of
reviews on control structure design.7−9

Typically, CV selection has been done following process
heuristics.10,11 There are three main issues with these heuristic-
based approaches. First, these heuristics cannot be applied to
novel processes for which there is lack of process knowledge or
experience such as the GT-SOFC systems. Even if the entire
process is not novel, but if only a section or an equipment item
as part of a plant is replaced or modified, re-evaluation of the
CV sets is desired. For example, if only the fuel cell is replaced
by a different technology in the hybrid system, optimal CVs
can be different. Second, the CVs selected based on heuristics
do not necessarily ensure that both the process economics and
controllability are maximized especially in the face of
disturbances. Third, the economic objective for process control
and/or process operating constraints can change with time.
This can lead to a change in the optimal CVs. However,
optimal selection of CVs by evaluating all possible combina-
tions of candidate CVs may be challenging for systems where
there are a large number of candidate CVs. Therefore, not only
a systematic approach to CV selection is desired, but also it is
desired that the CV selection algorithm can be solved within
some reasonable amount of time for systems with a large
number of possible combinations of CV sets.
A number of properties are desired for the optimal CVs. If

the setpoints of the CVs remain fixed at the predetermined
setpoints irrespective of changes in disturbances, then it will be
desired that the selected CV sets result in minimal loss from
the optimal operation (loss here is defined as the difference
between the optimal value of the operational objective function
and its value when the CVs are kept at the predetermined
setpoints). This is known as the self-optimizing property.12 In
addition, the CVs should possess the following properties:

• Low sensitivity to disturbances

• Ease of measurement and control

A systematic approach to obtaining optimal CVs has been
proposed by Skogestad.12 The approach was further
modified13 by proposing a three-stage procedure: a priori
analysis, CV selection, and a posteriori analysis. In the a priori
analysis, prescreening criteria are applied to eliminate CVs that
would result in a poor servo or regulatory control performance.
Candidate CVs obtained from the a priori analysis are
evaluated at the second stage for selecting the optimal CV
set(s). At this stage, if only a measure of process economics is
considered as the objective for CV selection, it can lead to
infeasible and/or uncontrollable CV sets. The authors13

proposed incorporating measures of controllability, loop
interaction, and dead time along with process economics in
the CV selection algorithm. Finally, in the last step, the
obtained candidate CVs are examined in the a posteriori
analysis to evaluate the controllability and/or economic
performance under off-design conditions.
The major computational expense in the CV selection

problem is in the second stage, where the combinatorial
optimization problem is solved. This stage seeks to find the
Pareto-optimal solution by considering the trade-off between

the economic and control performances. For maximizing
economic performance in the face of disturbances, typically
self-optimizing performance of the CV sets is maximized.14−16

In addition, the selected CV sets should satisfy some desired
levels of controllability. For maximizing the controllability, the
minimum singular value of the appropriately scaled gain matrix
is maximized.13 Time delay and loop interaction using relative
gain array analysis are used as constraints in the optimization.
The combinatorial optimization problem is typically solved
using the branch and bound algorithm. One of the efficient
algorithms in the literature is a bidirectional branch and bound
algorithm, which is complete, nonredundant, and exhaus-
tive.15−17 However, for large-scale systems that suffer from
combinatorial explosion of possibilities, the bidirectional
branch and bound algorithm can take long time to solve the
combinatorial optimization problem. While the CV selection
algorithm is executed offline, it is desired that the algorithm be
executed fast especially for systems where the algorithm needs
to be executed frequently. The CV selection algorithm should
be re-executed under several scenarios. First, it needs to be
executed if the process and/or disturbance model changes
and/or a list of CVs, MVs: manipulated variables, and/or DVs:
disturbance variables change or their bounds change due to
addition or removal of equipment items, including control
elements, and/or addition or removal of measurements, and/
or changes in the plant operating conditions. Second, the CV
selection algorithm needs to be re-executed if the operational
objective of the process plant changes. In this work, an
approach that employs metaheuristic algorithms in a multi-
agent18 is considered for solving the combinatorial optimiza-
tion problem. The main advantage of the multiagent
techniques is the exploration and exploitation principle of
metaheuristic algorithms where a solution space is continu-
ously explored and the current best solutions are exploited to
further search the feasible region for better solutions than the
incumbent.19 The technique consists of separate independent
agents, which are coordinated by a master agent. These agents
share solutions and learn from one another at the end of every
iteration, which leads to faster convergence in comparison with
the traditional techniques in literature.
While the CV selection algorithms have been applied to

various chemical systems, to the best of our knowledge, there is
no work in the literature on the optimal CV selection for the
GT-SOFC system. The specific GT-SOFC system that is
investigated here is the HyPer (hybrid performance) facility at
the U.S. Department of Energy’s National Energy Technology
Laboratory (NETL) in Morgantown, West Virginia, USA.4

Despite several studies on the dynamics of the HyPer facility
and its interaction with the hardware,4,5,20−22 the CVs for this
process are currently selected heuristically. The HyPer facility
is a cyber-physical system23,24 where a software model is used
for representing the SOFC. In this system, the cyber
component can be modified or replaced or can be arranged
in different configurations with the existing physical
components and can be used for representing novel power
cycle configurations.
It should be noted that the primary CV selection step is part

of the top stage of the control system design approach.13,14

This step is followed by the secondary CV selection25 and then
the control system design that involves decision about
decentralized versus centralized controllers followed by the
design of the controllers. Once the design of the entire control
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system is completed, then its performance can be evaluated by
performing transient studies.

2. OVERVIEW OF CONTROLLED VARIABLE
SELECTION

The proposed methodology of designing a control structure for
a complete chemical plant follows a rigorous approach as
detailed.13 There are three stages in this approacha priori
analysis, selection of the Pareto-optimal CV sets, and lastly, a
posteriori analysis.
2.1. A Priori Analysis. The goal of the a priori analysis is

formulation of the objective function, identification of
disturbances and manipulated variables and quantification of
their bounds, identification of active constraints, and finally
prescreening off of poor candidate CVs. First, an objective
function J must be determined based on the operational
objective of the process. The objective function is typically a
cost function, a profit function, or a measure of plant efficiency
that is desired to be optimized. This is chosen to benchmark
the effect of selecting different sets of variables on the
economics of the process. Next, constraints (mainly opera-
tional and regulatory), manipulated variables (degrees of
freedom), and disturbances are identified. Optimization is
performed with respect to the identified degrees of freedom
and due consideration of the constraints. This optimization
process is carried out under nominal conditions as well as
under disturbances. These optimization studies yield a number
of important information. First, information about the optimal
variation of the input and output variables is obtained. This
information is used to construct scaling matrices for outputs
and inputs, given by eqs 1 and 2, respectively.

= | − |D c cdiag(max( ))y
nom d

(1)

= | − |D u udiag(max( ))u
nom d

(2)

In eqs 1 and 2, the superscript “nom” and “d” denote the
nominal and disturbance conditions, respectively, “c” repre-
sents the CVs, and “u” represents the MVs. These scaling
matrices are used in the next stage where the optimization is
formulated.
Second, these optimization studies yield information about

the active constraints, if any. These constraints are active in all
optimization studies while considering nominal and disturb-
ance conditions. These active constraints must be selected as
CVs. Suitable MVs are selected from the available list, so that
these CVs can be maintained within tight bounds. If there are
additional MVs that can be used as degrees of freedom, then
additional CVs are selected. Selecting these additional CVs is
the focus of the remainder of this article.
For selecting the additional CVs, first, a list of remaining

candidate CVs is generated. From this list, prescreening criteria
are used to eliminate some of variables in order to eliminate
infeasible or poor CVs, thus reducing the size of the
combinatorial optimization in the next step. These prescreen-
ing criteria can be user-dependent. Generally, it would be
desired to eliminate the variables that exhibit weak servo
performance and/or are strongly affected by disturbances. Let
ny, nu, nd represent dimensions of measurements, manipulated
variables, and disturbances, respectively. For applying these
criteria, a linear process model is obtained from the process
under nominal conditions as shown in eq 3 with ∈ ×Gp

n ny u

as the process gain matrix and ∈ ×Gd
n ny d as the disturbance

gain matrix. These gain matrices are scaled such that all
elements of inputs u, outputs y, and disturbances d have a
maximum magnitude of 1 (eq 4). The prescreening criteria are
mathematically stated in eqs 4−6. If the inequality in eq 5 is
not satisfied, no input can control the output variable yj within
the bounds. In addition, the candidate CVs yj that have high
dead time, represented by κ(ui, yj)beyond a threshold χj
with respect to the available manipulated variables ui can also
be prescreened off using eq 6. The prescreening step can
reduce the initial list of candidate CVs significantly, thus
decreasing the size of the combinatorial optimization in the
following step.

= +y G u G dp d (3)

= ∀
∞

G i( ) 1p i (4)

≥ ∀
∞ ∞G G i( ) ( )p i d i (5)

κ χ≤u y( , )i j j (6)

2.2. Selection of the Pareto-Optimal CV Sets. If the
optimal setpoints of the selected CVs are computed for
nominal operating conditions, these precomputed optimal
setpoints become suboptimal whenever disturbances change
from the nominal point. Thus, CVs are sought such that
whenever disturbances change, the deviation between the
actual value of the objective function J and its optimal value is
minimized. This deviation is denoted as a loss function (JL) as
given by eq 7.

= −J J c d J d( , ) ( )L opt (7)

In eq 7, J(c, d) denotes the value of the operational objective
function J when CVs “c” are kept constant, while Jopt(c, d)
represents the optimal value of the operational objective
function J in the face of the disturbance d. It should be noted
that if d were nominal, then JL would be zero. It is desired to
select CVs that minimize JL in the face of disturbances.
Two forms of loss functions have been proposed in the

literature: a worst case loss function14 and an average loss
function.26 The average loss function as given in eq 8 is
considered in this work. As discussed,26 the average loss
function is superoptimal in the sense that it also minimizes the
worst case loss function. For more details on the discussion of
the average loss function and worst-case loss function,
interested readers are referred to ref 26. The average loss
function takes into account the magnitude of the expected
disturbances, given by a diagonal matrix ∈ ×Md

n nd d that is
constructed based on the magnitudes of disturbances as
quantified during the a priori analysis. The average loss
function includes the magnitude of the expected control or
implementation error, given by the diagonal matrix

∈ ×Mn
n ny y to capture the impact of poor control perform-

ance and/or measurement error. Since the design of controllers
is done at a later stage, performance of the controllers is hard
to quantify during control structure design. Measurement error
can be estimated if plant operational data are available as
shown later in this paper for this specific application. In the
absence of any measurement data and knowledge of the
expected control system performance, the matrix Mn can be
constructed based on the conservatism that a user would like
to exercise in the CV selection due to poor control system
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performance and measurement error.1 In eq 8, ∈ ×Juu
n nu u

represents the second order derivative of the cost function with
inputs, while ∈ ×Jud

n nu d represents the second order

derivative with respect to inputs and disturbances. The degree
of freedom, that is, the number of manipulated variables, is
denoted as nu. The number of disturbances is denoted as nd.
The selection matrix ∈ ×H n nu y reduces the full gain matrix
to the selected gain matrix of the chosen CV. For single
variable selection, the matrix H must satisfy eq 9.

=
+

−− −

J
n n

J HG HG J J HG M HM

1
6( )

( ) ((( ) ) )

L
u d

uu
1/2

p
1

p uu
1

ud d d n F

2

(8)

In eq 8, subscript “F” denotes the Frobenius norm. More
details on the loss function and the derivation can be
found.14,13,26

=HH IT
nu (9)

In addition to minimizing loss in optimality of the objective
function, the CVs must possess acceptable controllability. First,
a scaled gain matrix Ĝ is generated as shown in eq 10 where it
is scaled with respect to the optimal variation of the input and
output variables as defined in eqs 1 and 2. The inverse of the
minimum singular value of the scaled steady-state gain matrix
is considered as the controllability function Jc as shown in eq
11. This represents the minimum gain from input to output for
any input direction and is a measure of the difficulty in steering
the process to a desired state using the available degrees of
freedom.

̂ = −G D G Dy
1

p u (10)

σ= ̲ ̂−J c G( ) ( )c
1

(11)

The optimization problem is formulated as follows:

{ }J H J Hmin ( ), ( )
H L c

Subject to

σ

=
+

−

= ̲ ̂

̂ =

− − −

−

−

J H
n n

J J J HG M J HM

J H HG

G D G D

( )
1

6( )
( (HG) ) (HG)

( ) ( )

L
u d

uu
1/2

uu
1

ud
1

d d uu
1/2 1

n F

2

c
1

y
1

p u

(12)

While the proposed approach in this paper utilizes linear
gain matrices around nominal points, the authors have a
paper27 in review for extending the CV selection to fully
nonlinear models.

2.3. Optimization. For the optimal selection of additional
primary CVs, a constrained multiobjective mixed integer
nonlinear programming (MINLP) problem given by eq 12 is
solved by evaluating the trade-off between the economic
performance and controllability of the CVs. A parallelized
multiobjective branch and bound algorithm was imple-
mented13 in order to solve the optimization defined in eq
12. This algorithm runs on a distributed computing server for
computational efficiency; however, since this is completely
exhaustive, this algorithm is inefficient for speedy enumeration
of CV sets.
The multiagent optimization (MAOP) framework used in

this paper uses a combination of different metaheuristic
strategies (agents) such as the efficient ant colony,28 simulated
annealing,29 and genetic algorithm.30 The multiagent frame-
work allows for the exploitation/combination of these methods
and algorithms into a single framework, which further
improves the speed of convergence (see Figures 1 and 2).
This multiagent framework supports the cooperation of these
individual agents predefined by protocols surrounding
information sharing and exchange of data.
Each agent in the framework is designed to individually solve

large-scale optimization problems.31 Each agent/system
possesses deterministic, stochastic, and heuristic algorithmic
procedures. In the multiagent framework, each agent is defined
by a set of distinct parameters, which include an algorithmic
procedure, a communication protocol between the algorithmic
procedure and the global information sharing environment,
and the specific initialization procedure and solution retrieval
mechanisms. The communication protocol determines the
behavior of an agent and what type of information it shares
with other agents. An agent in this sense is an autonomous and
separate software entity that interacts with other members of
the multiagent framework. The multiagent framework there-

Figure 1. MAOP framework with four agents.
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fore exhibits the individual characteristics of the autonomous
agents and the superior properties that arise from the
interaction of the individual agents.
The multiagent framework includes the representation of the

problem to be solved (including objective function and
constraints), global sharing (that includes all local solutions
from individual agents and solution metadata) memory
environment, pool of algorithmic solvers, scheduler that
allocates the resource and execution of the algorithmic agents
to solve the tasks, and processing and retrieval of final solution.
In contrast to conventional methods, the combination of
several agents/algorithms in a pool allows for exploitation of
the strengths of each algorithm. At the end of a preset number
of iterations, the agents share the best results from their local
memory with one another in the global information sharing
environment, which allows the agents learn from one another,
thus improving the speed of convergence to a global optimum.
Additionally, should an agent become stuck at local optima, it
can glean better results from other agents during this
communication session. Readers are referred to ref 32 for a

detailed discussion on the MAOP such as information sharing,
global optimality, and convergence.

2.4. Posteriori Analysis. The a posteriori analysis entails
evaluating the CV sets selected from the previous stage. This
includes analysis of controllability under off-design conditions
in order to evaluate CV sets that perform poorly. These CV
sets are excluded as they would sacrifice process economics
and controllability once the process departs from nominal
conditions. It should be observed that minimization of the
average loss given in eq 8 evaluates the economic performance
across the values of the disturbances considered. However, it is
pertinent to examine controllability as well.

3. GT-SOFC HYBRID SYSTEM
The GT-SOFC HyPer facility at the NETL has the capacity of
reproducing power dynamcis of systems in a range of 300−900
kW. In this system, other than the single-shaft GT and a high-
performance exhaust gas recuperator, several pressure vessels
are used to capture the transeint effects of the physical volumes
and flow resistances of the cyber-physical fuel cell, combustors,
and its related chanelling and piping. The GT is an auxiliary
power unit that is of Garrett Series 85 type and consists of a
two-stage radial compressor. The HyPer facility utilizes two
recuperators with countercurrent flow to preheat the air
entering into the pressure vessel that faciliates to simulate the
fuel cell cathode volume. The cyber system includes a real-time
fuel cell model that is used to control the natural gas burner
that simulates the thermal output of an SOFC. The real-time
fuel cell model runs on a dSpace platform, which is generally
used for hardware in the loop applications.

3.1. Process Description. The HyPer facility is as shown
in Figure 3 and consists of a virtual fuel cell and the following
subsystems:

1. Compressor/turbine model

2. Heat exchangers

3. Bypass valves

Figure 2. Agent in the MAOP framework.

Figure 3. Configuration of the HyPer facility.
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4. Pressure vessels (an air plenum, a combustor, and a
postcombustor)

The description of each subsystem is given in Sections 3.1.1
through 3.1.4. For brevity, all model equations for the
subsystems are omitted here and can be found in ref 33.
3.1.1. Compressor/Turbine. This unit (auxiliary power unit)

consists of a turbine and a compressor in a single-shaft
assembly capable of producing 400 Hz of synchronous power.
The compressor is a double-stage centrifugal compressor
driven by the 120 kW turbine that is encased within the
compressor scroll. The turbine nominally operates at 40,500
rpm. At this speed, approximately 2 kg/s of compressed air
exits the compressor at a pressure ratio of 4.34

3.1.2. Heat Recuperation. The HyPer facility consists of a
combustor and an air plenum that is used to reproduce the
heat effluent and stack volume of the virtual 300 kW SOFC.
The thermal efficiency of the facility is improved using heat
exchangers (HX) to recover waste heat from the turbine
exhaust to increase the temperature of the compressed air to
the fuel cell stack. This closes the loop on the recuperated
cycle.
For the purpose of heat recovery, two parallel counter-

current heat exchangers are used. These primary heat
recuperators transfer waste heat from the turbine exhaust to
the compressed air before it enters the SOFC cathode. This
significantly increases the temperature of the compressed air,
thus reducing fuel requirements in the combustor. The typical
effectiveness of the heat exchangers is 89% with cold-side and
hot-side pressure losses of 2.5 and 3%, respectively. The
maximum temperature for both sides is approximately 894 and
900 K for flows of about 1.83 and 1.77 kg/s, respectively.
3.1.3. Bypass Valves. The hardware configuration setup

uses bypass valves within flow loops parallel to the mainstream
flow pathways for the control of airflow to the air plenum. In
order to minimize pressure losses in the system, no valves are
used between the main pressure loop and the gas turbine.
Currently, three parallel air flow control loops are being
implemented in the HyPer facility, and these are the cold-air
(CA) bypass valve, the bleed-air (BA) bypass valve, and finally,
the hot-air (HA) bypass valve. These valves possess unique
characteristics and attributes in controlling the system
performance and efficiency. The bypass valves are used to
mitigate the thermal management of the system and optimize
the fuel cell−gas turbine performance during transient
operations. The BA valve has also been shown to increase
compressor discharge pressure and to increase stall margins.
The HA valve on the other hand is effectively used to decrease
cathode inlet flow. Additionally, it can lower the pressure drop

by 10%. Lastly, the CA valve was shown to have a strong effect
on the cathode airflow, decreasing the turbine inlet temper-
ature and increasing the compressor surge margin.4,35

3.1.4. Pressure Vessels (Air Plenum, Combustor, and
Postcombustor). The air plenum primarily serves as an SOFC
volume and piping manifold. This pressure vessel is 2.0 m3 in
capacity. Similarly, the postcombustor as well as its associated
piping is a pressure vessel with a volume of 0.78 m3. These
vessels are meant to simulate the residence time of the fuel cell
either by use of metallic floats or apertures. The vessel as well
as its channeling is created using 2.54 cm Incaloy 800AT and is
intended to work at temperatures as high as 1200 K at a
pressure of 310 kPag. It should be noted that the combustor
simulates heat generation from the fuel cell and is controlled
by fuel flow rates as seen in the virtual component of Figure 3.
More details of the facility, piping, configuration, and process
description can be found in ref 33. (see Figure 4 for flowsheet).

3.2. Setup of the CV Selection Problem. Figure 4 shows
a flowsheet of how the model is laid out in Simulink, where
each block represents a set of equations describing the
subsystems, including equations for pressure drop calculations
for flow through the piping network.
First, a list of candidate CVs and a list of available

manipulated variables are enumerated as shown in Tables 1
and 2. The a priori analysis consists of prescreening off
candidate CVs based on process insight and eqs 4−6. In the
turbine/compressor subsection as shown in Figure 4, the
turbine speed is a candidate CV and all other variables
(including the pressure and temperature of the compressor and
turbine exhaust) within this subsection are dependent on the
turbine speed (due to the coupling of the turbine and
compressor on the single-shaft assembly). The electric load is a
disturbance and depends on the power demand of the grid
(load bank for this specific example, see Figure 3). In the heat
exchanger subsection, the available candidate CV is the
temperature to the plenum. In the air plenum, the temperature
is a candidate CV. Similarly, in the combustor subsystem, the
temperature is a candidate CV. The mass flow rate to the
postcombustor depends on the HA bypass, the CA bypass, and
the mass flow rate to the plenum. The mass flow rate to the
postcombustor and the mass flow rate to the plenum are both
included as candidates; similarly, the temperature in the
postcombustor is considered as a candidate. The initial sets of
candidate CVs reduce from an initial list of 21 (Table 1) to 12
(Table 3) upon a priori analysis. This includes removal of CVs
with poor controllability and high dead time according to eqs 5
and 6. The available degrees of freedom and disturbances are
listed in Table 2.

Figure 4. Simulink flowsheet for the HyPer facility.
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3.2.1. Gain Matrices. In order to obtain the gain matrices as
defined in eq 3, pseudo random binary sequence (PRBS)
signals are designed for this multiple-input multiple-output
system.36 The design seeks to ensure persistence of excitation
and statistical independence between the input(s) and

disturbance(s). The frequency range of interest [ω̅*, ω̅*] is
given by

ω
βτ

ω
α

τ
ω*̅ = ≤ ̅ ≤ = ̅*

1

s dom
H

s

dom
L

(13)

where αs is the fractional closed loop speed of the response of
the process, βs is an integer representing the number of time
constants that correspond to the settling time that is defined in
this work as the time taken by the output(s) to reach and stay
within 5% of the final value. The fastest (lowest) dominant
time constant is represented by τdom

H , while the slowest
(highest) dominant time constant is represented by τdom

L . To
ensure excitation in the desired frequency range, the switching
time of the PRBS is calculated to satisfy eq 14.36 Eq 15 is used
to calculate the number of switches.
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In eqs 14 and 15, nr is the number of shift registers and Tsw is
the switching time. The PRBS sequence is repeated after NsTsw
time units. The parameters αs and βs are specified to be 2.0 and
3.0, respectively. The PRBS is designed with the following
parameters estimated from open loop tests: τdom

L = 50 s and
τdom
H = 150 s. The input−output data are divided into model
calibration and validation data.
The nominal values of the steady-state operating conditions

were obtained33 as 13.5 g/s, 45 kW, 14%, 40%, and 40% for
the fuel flow rate, load bank, BA valve opening, CA valve
opening, and HA bypass opening, respectively. Various
candidate transfer function models are considered that differ
in poles, zeros, and time delays. Parameters of the transfer
function models are estimated using the outputs and
corresponding PRBS inputs. The transfer function model is
then validated using the data generated with a different set of
PRBS input signals for the manipulated variables and the
disturbances. Akaike’s final prediction error criterion as shown
in eq 16 is used as the criterion for model selection:
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In eq 16, N is the number of values in the estimation data set,
ϵ(t) is the vector or prediction errors, nθ is the number of
estimated parameters, and θ̂N is the vector of estimated
parameters. Figures 5 and 6 show the comparison between the
process (the Simulink model) and the model (the transfer
function model) for the validation data set for two outputs
temperature to the plenum and temperature to the turbine.

3.2.2. Estimation of Implementation Error. The imple-
mentation error captured by the diagonal matrix Mn in eq 12
can be due to the measurement noise and other uncertain-
ties.26 This must therefore be estimated. For the HyPer facility,
it was assumed that the implementation error would solely
stem forth from the measurement data. The experimental data
from the HyPer facility is used to estimate the noise similar to
the work of Garcia.37 Suppose the true value of a measured
variable denoted by ̂ ∈ y ny , then the measured data ∈ y ny

are given by

Table 1. List of All Candidate CVs and their Respective
Subsystem

s/n subsystem candidate CVs

1. compressor/turbine subsystem air mass flow rate to the
compressor

2. flue gas mass flow rate to
the turbine

3. compressor pressure
4. compressor temperature
5. turbine pressure
6. turbine temperature
7. turbine speed
8. heat recuperation subsystem temperature to the plenum
9. exhaust turbine

temperature
10. pressure vessels (air plenum, combustor,

postcombustor)
mass flow rate to the heat
exchanger

11. mass flow rate to the
combustor

12. air plenum temperature
13. air plenum density
14. air plenum pressure
15. mass flow rate to the

combustor
16. combustor temperature
17. mass flow rate to the

postcombustor
18. postcombustor

temperature
19. postcombustor pressure
20. mass flow rate to the

turbine
21. temperature to the turbine

Table 2. List of Manipulated Variables and Disturbances

s/n category description

1. manipulated variables temperature from the turbine
2. mass flow rate cold air
3. mass flow rate hot air
4. mass flow rate bleed air
5. disturbances fuel flow rate
6. electric load

Table 3. Candidate CVs in the HyPer Facility

controlled variable description

ṁin, pl mass flow rate to the plenum
Tin, pl temperature to the plenum
Tpl temperature in the plenum
Tin, turb inlet temperature to the turbine
Tpc temperature in the postcombustor
Tcom temperature in the combustor
ω turbine speed
ṁin, HX mass flow rate to the heat exchanger
ṁin, pc mass flow rate to the postcombustor
ṁCA mass flow rate cold air
ṁHA mass flow rate hot air
ṁBA mass flow rate bleed air
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ε= ̂ +y y (17)

In order to evaluate the magnitude of variance ε ε[ ] T ,
certain assumptions about the noise characteristics are
necessary. For this problem, it is assumed that the noise is
Gaussian and the variance of the noise is estimated from the
residuals ε when the data are fit using a discretized smoothing
spline.37 Data smoothing is achieved through the minimization
of the residual sum of squares (RSS) and a penalty for
smoothness P(ŷ) as given by eq 18. The degree of smoothing is
controlled by the parameter s. The penalty is given as the
tridiagonal matrix D, which is the second order difference
matrix.

̂ = + ̂ = − ̂ + ̂F y sP y y y s Dy( ) RSS ( ) 2 2
(18)

Minimizing eq 18 with respect to ŷ yields

+ ̂ = ̂ =I sD D y Hy y( )n
T

(19)

The parameter s is chosen to minimize the generalized cross-
validation (GCV) score as proposed,38 and this is given by

= ≡
− −s

n
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1 ( )/1
y

2
(20)

where the RSS is given by ∥y − ŷ∥2 in eq 18. Trace is denoted
by tr. The number of samples is n. The estimated data ŷ are

obtained using discrete cosine transform (DCT); thus, the
noise variance is obtained as
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where λi ∀ i = 1, ..., ny , which are the eigenvalues of the matrix
Λ obtained from the eigenvalues decomposition D, that is, D =
UΛU−1. This algorithm is applied to the experimental data
from the HyPer facility. Estimated noise variances are shown in
Table 4, while comparison of smoothed data and raw data of
some of the measured variables is shown in Figure 7.

3.2.3. Cost Function. The economic cost function for the
HyPer facility is represented by the operating costs minus the
income from selling power to the grid as shown in eq 22. The
compressor work and losses in terms of equivalent electricity
are denoted by Ẇcomp and Ẇloss, respectively. Electric power
generated by the GT and SOFC are given by Ẇelec, turb and
Ẇelec, FC, respectively. The fuel flow denoted by Q̇ is expressed
in terms of flow of the equivalent LHV calorific value. Both the
price of electricity and price of natural gas are obtained from
the U.S. Energy Information Administration (EIA) http://
www.eia.gov/electricity/monthly/pdf/epm.pdf. The cost of
electricity is 10.07 cent/kWh. The cost of natural gas is

Figure 5. Comparison of model response (dash dot black) and process data (star blue) for temperature to the plenum.

Figure 6. Comparison of model response (dash dot black) and process data (star blue) for temperature to the turbine.
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obtained to be $2.45/MMBtu, which translates to $0.84 cent/
kWh.
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It can be observed in eq 8 that the second order derivative of
the cost function with respect to inputs and with respect to
inputs and disturbances are needed. The cost function in eq 22
is not an explicit function of the input “u” and disturbances
“d”; thus, the cost is evaluated from the data obtained from the
process, and this cost is regressed to a second order quadratic
function in the input space (see Table 2 for manipulated

variables “u” and disturbances “d”). Therefore, the parameters
of the cost function to be employed in the CV selection Juu, Jud
are determined.

3.3. Selection of Pareto Sets with Multiagent
Optimization. The optimization as defined in eq 12 was
implemented on an Intel Xeon CPU E-5-1620 v2 with 32 GB
RAM using the heterogeneous multiagent framework with
three agents: efficient ant colony optimization, simulated
annealing, and genetic algorithm. The heterogeneous multi-
agent optimization framework is programed in MATLAB. A
framework ID is allocated to the MAOP solver that indicates
which agents are to be utilized in the solution. Each agent is
initialized with local parameter settings and is only accessed by
the agents. Contrarily, global parameters are accessed by all the
agents in the memory sharing environment. The termination
criteria for the framework are the maximum global iteration
MaxIter and/or the global tolerance Eps, which is the
minimum allowable difference between any two consecutive
solutions within a fixed number of consecutive iterations
denoted as ConIter. The termination criteria for the local
agents follow a similar approach. All the agents are cast into the
multiagent framework with parameters as described in Table 5.
For this specific problem, the metaheuristic algorithms with

three agents are found to match exactly with the results
obtained using the branch and bound optimization at least for
the top 20 CV sets. The metaheuristic algorithms take
approximately 57 s per solution totaling 15 min, while the

Table 4. Estimates of Noise Variance for Candidate CVs

s/n candidate controlled variable

noise variancevariable description

1. ṁin, pl mass flow rate to the plenum 3.9652E-10
2. Tin, pl temperature to the plenum 5.1549E-4
3. Tpl temperature in the plenum 3.1992E-3
4. Tin, turb inlet temperature to the turbine 6.0983E-3
5. Tpc temperature in the post-combustor 7.2492E-3
6. Tcom temperature in the combustor 7.2492E-3
7. ω turbine speed 1.0E4
8. ṁin, HX mass flow rate to the heat exchanger 3.9652E-10
9. ṁin, pc mass flow rate to the postcombustor 3.9652E-10

Figure 7. Comparison showing smoothed data and noisy data.
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branch and bound optimization executes with a runtime of
more than four times than the multiagent optimization
framework. While for this specific problem, the savings in
computational time do not appear to be large especially for an
offline algorithm, it should be noted that this difference can
grow up to be unacceptable. For example, if the metaheuristic
algorithms take 12 h, while the branch and bound algorithm
takes 2 days, it may not be acceptable. Furthermore, as the
combinatorial problem grows in size, the MAOP algorithm can
save considerable time as its computational expense does not
grow as much like the branch and bound algorithm. For
example, in one of our previous papers where a much larger
combinatorial optimization problem was solved for 5.14 × 109

candidate combinations, the computational expense of the
MAOP algorithm with three agents executed on an Intel Xeon
CPU E-5-1620 v2 with 32GB RAM was compared with that of
a nonparallelized branch and bound algorithm executed in the
same desktop and a parallelized branch and bound algorithm
deployed on a MATLAB-distributed computing platform with
54 workers (Bankole et al., 2019). It was observed that the
MAOP resulted in about a 90% reduction in execution time in
comparison with the nonparallelized branch and bound
algorithm and a 23% reduction in comparison with a
parallelized branch and bound algorithm.
Top 16 CV sets obtained from the multiobjective

optimization are shown in Table 6. Based on these results, it

is observed that the CVs with the most self-optimizing
performance are the mass flow rate to the plenum (1), the
temperature in the plenum (2), and the temperature in the
postcombustor (5), that is, set C0:[1,2,5]. This is because of
the low expected value of the economic loss ($34.75/h) and a
high minimum singular value compared with other CV sets.
Therefore, it exhibits the best compromise of economics and

controllability at the nominal conditions. A Pareto plot of all
CV sets is given in Figure 8. The sets at the top of the table are

represented in the lower right corner of Figure 8, and they
represent lower economic loss and higher controllability.
Contrarily, CV sets at the bottom of Table 6 are depicted
toward the left portion of Figure 8. It should be noted that
some CV sets such as C8−C11 that offer a great economic
performance exhibit poor controllability and therefore cannot
be selected.
It can be seen that all sets have some form of mass flow rate

control. The control of the mass flow rate is important in the
HyPer facility due to the coupled nature of the mass flow rate
and power production. In addition, if the mass flow rate is not
controlled, it can lead to compressor surge and stall under
limiting conditions. Second, most sets include more than one
temperature. Control of temperature is crucial for the HyPer
facility. The turbine and the fuel cell are coupled via the exit
temperature of the flue gas from the turbine; therefore, the
control of temperature especially the postcombustor temper-
ature is crucial as this drives the turbine speed. If the
temperature from the postcombustor is high, this would lead to
a high turbine speed, which in turn drives the compressor at
higher speed as they are connected by the same shaft.
Consequently, this leads to increased airflow to the fuel cell
leading to an overcool. Alternatively, if the temperature to the
fuel cell is rather high, this will shorten the fuel cell life span.
Therefore, fluctuations in temperature are undesirable as it
leads to thermal stress on the fuel cell.4 This, therefore,
imposes the need for energy sinks and sources to offset such
transients; therefore, the bypass valves are highly pertinent.

3.4. Posteriori Analysis. In this section, the top results of
the Pareto sets are analyzed by considering off-design
conditions. This is done by changing the values of the
disturbances (the electric load and the fuel flow rate) from the
preset nominal conditions ranging from 80% of the nominal

Table 5. Parameters for the Agents

simulated annealing

initial temperature quenching factor maximum success MaxIter maximum consecutive rejection stop temperature

1 0.9 20 200 30 1e-6

genetic algorithm population mutation rate selection MaxIter ConIter Eps
100 0.0075 0.55 1000 20 1e-5

efficient ant colony number of ants pheromone evaporation solution Archive MaxIter ConIter Eps
10 0.7 50 2000 10 1e-5

Table 6. Top 16 Pareto CV Sets

controlled variable set controlled variable econ($/h) controllability (σ̲)

C0 1,2,5 34.75 1.00
C1 2,5,8 35.65 0.99
C2 1,3,5 36.26 0.91
C3 3,5,8 37.22 0.90
C4 2,5,9 31.46 0.76
C5 3,5,9 33.97 0.75
C6 3,5,7 81.33 0.77
C7 2,5,7 85.78 0.28
C8 1,3,6 31.61 0.76
C9 1,2,6 34.64 0.28
C10 3,6,8 37.31 0.25
C11 2,6,8 40.79 0.25
C12 3,6,9 74.44 0.32
C13 2,6,9 75.72 0.32
C14 1,5,7 162.71 0.38
C15 5,7,8 197.11 0.37

Figure 8. Pareto plots of the controlled variable selection problem.
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value of disturbances to 120% in steps of 10%. Then, the
process is run till it achieves the steady state and the gain
matrices are once again identified. This process is repeated
under multiple off-design conditions, and the defined
controllability function Jc(c) (inverse of the minimum singular
value σ̲ of the scaled gain matrix Ĝ) is evaluated for the CV sets
from the Pareto list in Table 6 (see eqs 10 and 11). For brevity,
only the three sets that perform best under off-design
conditions are shown in Figure 9. These are sets C0, C1,
and C7. Due to the inherent nonlinearity of the process, it can
be seen in Figure 9a,b that the minimum singular value is not
monotonic as the disturbances vary from 80% of the nominal
to 120%. It can be inferred that set C1 is the best CV set to be
chosen as it has the highest average controllability of 0.706
across the disturbance variation compared with C0 and C7
with 0.675 and 0.585, respectively. This set has the best
compromise between process economics and controllability,
considering nominal conditions as well as off-design con-
ditions.

4. CONCLUSIONS

In this work, a multiobjetive CV selection approach is applied
to a GT-SOFC system by applying a three-stage approacha
priori analysis, CV selection, and a posteriori analysis. Several
variables were prescreened off during the a priori analysis.
Output data are generated from the Simulink model of the
HyPer facility by applying PRBS input signals. Parameters of
various candidate transfer function models are estimated using
the input−output data, and the final model is selected based on
Akaike’s Final Prediction Error criterion. The identified model
is then validated using the data generated with a different set of
PRBS input signals for the manipulated variables and the
disturbances. The implementation error is estimated by
comparing the experimental data from the HyPer facility and
assuming that it solely stems from the measurement noise; the
measurement noise is Gaussian, and the measurement data
follow a discretized smoothing spline. A multiagent meta-
heuristic platform that allows for the exploitation/combination
of various agents and uses a combination of efficient ant
colony, simulated annealing, and genetic algorithm is used for
solving the multiobjective optimization problem. The multi-
agent optimization framework takes less than one-fourth of the

time taken by the traditional branch and bound algorithm used
for CV selection, yet it leads to solutions that have little loss in
optimality compared with the solution obtained using the
branch and bound algorithm. The Pareto-optimal CV sets
show a high trade-off between the economic loss and
controllability, but it was found that each of them contain at
least one mass flow variable and typically two temperature
variables with few exceptions. Top 16 Pareto-optimal CV sets
are extracted for the a posteriori analysis by evaluating their
performance under off-design conditions of the disturbances,
namely, electric loads and fuel flow rates. It was observed that
the CV set that is ranked second under nominal conditions is
the preferred CV set because it shows the best compromise
between process economics and controllability under both
nominal and off-design conditions.
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