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INTRODUCTION 

A quick and accurate method of measuring elastic and viscoelastic constants of a 
material is the essential fIrst step for characterizing the material. This is more challenging 
for composite materials because unlike homogeneous metals and ceramics the material 
properties change from specimen to specimen for composite materials as the volume 
fraction of fIbers and their orientations change. Anisotropic properties of composite 
materials add another difficulty in the measurement technique, since anisotropy increases 
the number of independent material constants. Polymer composites exhibit a high degree of 
attenuation in the matrix material; as a result, these composite materials cannot be assumed 
to be pure elastic material, so they should be modeled as viscoelastic materials by making 
the material constants complex. The real part is associated with the elastic behavior and the 
imaginary part is associated with the viscoelastic or attenuative behavior of the material. The 
number of independent material constants for a unidirectional (UD) composite, which is 
transversely isotropic, is ten (fIve real and fIve imaginary). Naturally, it is not practical and 
almost impossible to measure all these material constants by the traditional engineering 
method of applying stresses and measuring strains in different directions. Because of the 
measurement diffIculty the imaginary parts of the material constants are often ignored. 
However, it should be mentioned here that it is important to measure the imaginary 
components of material constants because porosity and microcracking in the matrix due to 
material fatigue and aging affect the attenuation more than the elastic properties. In other 
words, the imaginary components of the material constants are a better indicator of material 
aging compared to the real components. Hence, an effIcient technique to measure both real 
and imaginary components of the material constants is warranted and developed in this 
paper. 
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Figure 1. Experimental setup for bulk wave and transfer function techniques for material 
characterization. 

BACKGROUND 

In recent years, during the last two decades, several investigators attempted to 
measure material properties of composites by propagating bulk or body waves and Lamb 
waves through a composite plate. Rokhlin and his associates [1-3], as well as Hosten and 
his co-investigators [4-5] propagated bulk waves through the plate for this purpose. It is 
possible to propagate quasi-longitudinal (QL) and quasi-transverse (QT) bulk waves 
through a plate by simply rotating the plate with respect to the transmitting and receiving 
transducers by a goniometer, as shown in Fig. 1. 

The angle of incidence (9 in Fig. 1) of the ultrasonic beam changes as the plate is 

rotated. In this manner simply by changing 9 both QL- and QT-waves can be generated and 
propagated in different directions of the plate. At normal incidence only the longitudinal 
wave is generated. For an incident angle greater than the QL critical angle but less than the 
QT critical angle, only the QT waves are generated. For the non zero angle of incidence that 
is less than the QL critical angle, both QL and QT waves are generated. From the difference 
in the arrival times, QL and QT modes can be separated. In this manner slowness values 
(inverse of the wave velocity) in different directions of the plate can be experimentally 
measured. The imaginary parts of the slowness vector are deduced from the attenuation 
measurements [4-5]. Material properties can be obtained from these curves by solving the 
inverse problem. One difficulty with this approach is that it is not possible to experimentally 
obtain the wave speed of both QL and QT modes for all angles. They are generated for only 
limited regions and then extrapolated. This extrapolation may give error for large incident 
angles, for which no experimental values are present. 

This method works only when the plate thickness is larger than the wave length and 
the QL and QT echoes can qe separated. One way to separate these two modes is to increase 
the signal frequency. However, if the frequency is too high then plies and fibers in a 
composite material scatter away the signal and the plate no longer appears to be 
homogeneous. 

Mal and his associates [6-7] measured material properties by inverting the leaky 
Lamb wave dispersion curves. It is possible to measure elastic properties in this manner; 
however, this method is not efficient for measuring the viscoelastic properties because the 
phase velocity dispersion curves are not sensitive enough to the material viscoelasticity. 
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TRANSFER FUNCflON METHOD 

The above mentioned difficulties associated with the experimental measurements of 
the complex material properties can be eliminated by the transfer function method. In this 
technique the entire transmitted waveform received by the receiving transducer is compared 
to the theoretical values in the frequency domain. The transfer function or the transmission 
coefficient as a function of the frequency for different incident angles, is then inverted by 
the simplex algorithm for obtaining the material properties. In this technique the separation 
of QL and QT modes in the time domain is not necessary, hence the plate can be thin 
compared to the signal wave length. Kinra and his associates [8-10] measured thickness 
and wave speeds in isotropic thin plates by the transfer function method for normal 
incidence. In this paper oblique incidence is also considered and both elastic and 
viscoelastic constants of a unidirectional (UD) glass fiber reinforced polymer composite 
plate are obtained. 

EXPERIMENTS AND RESULTS 

The experimental setup is shown in Figure 1. A large transducer is used for 
generating the signal with a plane wave front. The transducer was manufactured by 
Imasonic. It has a center frequency of 3.2 MHz with 20 dB down points at 2 and 5 MHz 
and an 80 mm x 40 mm rectangular front face, the longer axis being aligned parallel to the 
plane of the wave propagation (see Fig. 1). Then the length of the transducer is equal to 
170 wavelengths in water (the coupling medium) at the center frequency, giving a good 
approximation to plane wave conditions [11]. The small transducer on the receiving side is 
a Panametrics transducer (U302) that has a central frequency of 1 MHz. This arrangement 
was chosen so that we can measure the material properties at a lower frequency range (0.5 -
1.5 MHz), although the central frequency of the large transducer is much higher. In this 
manner simply by changing the receiving transducer (which is less expensive because it is 
smaller and commercially readily available) material properties can be determined for 
different frequencies. Since in this case the generated wave front is a plane wave front, 
detecting it by a smaller transducer does not significantly alter the plane wave condition. 

The stress-strain relation for the transversely isotropic and orthotropic solids is 
given by: 

Symm 

o 
o 0 E22 

o IIEl1) o 0 E33 

o 0 El2 • 

C55 0 El3 

C66 t23 

The material constants Cij are complex if the material has attenuation. 

Cij = Cij + iCij 

(1) 

(2) 

The real and imaginary components Cij and C:; are associated with elasticity and 
viscoelasticity of the material, respectively. 

The reference coordinate system is chosen such that the XI axis is normal to the plate 
surface and the X3 direction is aligned with the fiber direction (see Fig. 1). This preliminary 
study emphasizes the measurement of material properties in the XIX3 anisotropic plane. The 
plate is rotated by the goniometer around the X2 axis in steps of few degrees while taking 
readings. 
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Figure 2. Slowness variation as a function of the direction of)nopagation in the composite 
plate specimen for QL mode (solid line) and QT mode (dashed line). 

A glass fiber reinforced composite plate of thickness 5.73 rom and 1.80 gm/cc 
density is taken for the experiment. Wave speeds inside this specimen along different 
directions in the XIX3 plane are obtained from the phase difference [12] between the 
frequency spectra of the reference signal (received signal in absence of the plate) and the 
received signal for different inclined positions of the plate between the two transducers. The 
slowness (inverse of the wave speed) for the QL and QT modes are plotted in polar 
coordinates in Figure 2. Horizontal and vertical axes of this figure represent XI and X3 

directions respectively. Experimentally obtained slowness values for QL and QT modes are 
shown by cross and square markers respectively. Two curves are fitted through these 
experimental values by optimizing the material moduli by the Newton-Raphson technique. 
For the optimized values, given in Table 1, the computed curves for the QL and QT modes 
pass through the experimental points without any visible difference between the 
experimental points and the computed curve. 

In Table 1 Cbij and Clij represent material properties obtained by the bulk wave 
technique, discussed above, and the transfer function technique, discussion follows, 
respectively. 

For measuring the material properties by the transfer function method the 
experimental setup does not change. In this case, the entire signal received by the receiver is 
recorded. The transfer function (frequency spectrum of the received signal divided by that 
of the reference signal which is obtained in absence of the plate) for different inclinations of 
the plate are recorded. Experimental transfer functions for 0°, 10° and 30° incident angles 
are shown by cross markers in top, middle and bottom graphs of Fig. 3. 

OPTIMIZATION BY THE SIMPLEX ALGORITHM 

The material properties (Cli) are optimized by the simplex algorithm [6,13-16] . For 
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this purpose an error function is fIrst defmed in the following manner 

E= t t(vcuv-veuJ (3) 
v=1 u=1 

where v cuv is the modulus of the computed transmission coefficient at frequency fu and 
angle of incidence 6v for an assumed set of material parameters and v,,",v is the experimental 
value for the same frequency and angle of incidence. 

Table 1. Computed material constants in GPa by bulk wave and transfer function techniques 

C.&Method C, ' C,; C,,' C,; C " C,," C,," C13" 
Bulk (Cbij ) 16.4· 37.9 4.4 7.2 0.8 0.9 0.2 0.2 

Transfer ( Cti) 16.6 37.3 4.4 7.3 0.7 1.4 0.2 0.4 

For m number of unknown material parameters the simplex algorithm starts with 
(m+ 1) number of initial guesses of the material parameters, C1ij • Every initial guess 
constitutes a vertex of the simplex geometry. The simplex algorithm computes error from 
Eq.(3) for every vertex point of the simplex. Then it replaces the worst vertex that is 
associated with the maximum error by a new vertex (a new set of material parameters), by 
one of the four operations - reflection, expansion, contraction or shrinkage [13-16]. 
Systematically carrying out these steps it converges to a point which gives minimum error. 
This technique completely avoids the need for numerical differentiation and matrix 
operation. As a result, computationally it is very fast compared with the conventional 
techniques, such as the Newton-Raphson technique. It always converges to some minimum 
error point. However, the point of convergence can be a local minimum (not the point of 
one's interest) or a global or absolute minimum (the point of interest). If one starts with a 
good set of initial guesses, not very far from the true values, then it should converge to the 
absolute minimum, otherwise it may converge to a local minimum point. The probability of 
converging to the absolute minimum increases as the number of unknown parameters 
decreases. 

To keep the number of unknown material parameters small, we first optimize CUI 
from the transfer function for the normal incidence. Normal incidence is not affected by 
other material parameters. In this step of optimization only two unknown material 
parameters, the real and imaginary components of Cll!' are obtained. They were optimized 
by taking 52 frequency points between 0.5 and 1.5 MHz frequency. Except for one point 
near 0.5 MHz the matching between the computed transfer function (solid line) and the 
experimental points (crosses) in Figure 3 is excellent in this region. The converged values 
ofCll ' and Cll " (16.6 and 0.7, shown in Table 1) when compared with the bulk mode 
predicted values (16.4 and 0.8), show that the real part converged very well, but the 
imaginary part has 12.5% difference. To see which of these predictions is the best, the 
transfer function computed with Cbijare also plotted by dashed lines in Figure 3. Both 
predictions fit the experimental data for the normal incidence. However, the transfer 
function method seems slightly better. The matching is bad above 2 MHz because this 
region is beyond the smaIl transducer bandwidth and the experimental data cannot be fully 
trusted. Since both computed transfer functions matched the experimental data well in spite 
of 12.5% difference in the C~; one can conclude that the transfer function is not as sensitive 
to the imaginary part as it is to the real part of Cll . That is why the real part matched better 
than the imaginary part. However, if we completely ignore the imaginary part then the 
experimental data cannot be matched with the theoretical curves very well. Hence, it is 
important to take into account the effect of the material attenuation. 
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Figure 3. Transfer functions for 0" (top), 10° (middle) and 30° (bottom) angles of 
incidence. Experimental data between 0.5 and 1.5 MHz (left of the vertical dotted line) are 
taken for the simplex optimization. 
x : Experimental Data; Solid Line: Computed from C1ij ; Dashed Line Computed from Cbij 

The other three complex material constants in the XIX3 plane must be considered 
simultaneously. For six real unknown parameters, one needs to have a very good estimate 
of the material parameters for converging to the correct values by the simplex algorithm. To 
avoid this difficulty associated with a large number of unknown parameters we first treated 
three imaginary components as known values, and assigned some small values to those and 
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considered only the three real components as the unknown parameters. The simplex 
algorithm does not have much difficulty to optimize only three parameters. To check 
whether it converged to a local or absolute minimum, the optimization is carried out with 
different perturbations (about 40%) or initial guesses. If the convergence points are same 
then it is concluded that it converged to the absolute minimum. After obtaining the real 
constants, the three imaginary constants are optimized. The real and imaginary constants 
thus obtained should be very close to the correct values. Next, this process of optimizing 
three real constants and three imaginary constants can be continued for a few times until the 
fmal convergence is achieved (typically it takes one or two additional iterations), alternately 
all six constants can be optimized at the same time after a good estimate of their values are 
obtained from the fIrst iteration. The fmal converged values of Ct33 , Ct55 and CIl3 are 
given in Table 1. Again one can see good matching between the real components predicted 
by the two techniques but a significant amount of scatter in the imaginary components. 

Transfer functions plotted for 10° and 30° incident angles in Figure 3 show very 
good matching between the experimental and theoretical values in the 0.5 - 1.5 MHz region 
used for the simplex inversion. A careful observation reveals that the matching between the 
solid line and the experimental points appears to be somewhat better than that between the 
dotted line and the experimental points. This suggests that the correct values are probably 
closer to the Ctij than Cbij • One can also notice in the transfer functions that experimental 
values appear to be more attenuated beyond 1.5 MHz compared to the predicted values, 
and matching becomes worse. This is due to the fact that the material properties, specially 
the imaginary components are not completely frequency independent, as we are assuming. 
As a result, theoretical predictions do not match the experimental data for all frequency 
ranges equally well. 

The difference between the experimental and predicted waveforms are 
comparatively less prominent. Figure 4 shows the received waveform for the 100 incident 
angle. Computed waveforms from both Ctij and Cbij values look identical and vary only 
slightly from the experimental values. Hence, it is better to compute the material parameters 
by minimizing the error computed from the mismatch of the transfer functions, as done in 
this paper, than from the mismatch of the waveform. 

CONCLUDING REMARKS 

A new method based on the transfer functions of plates is used in this paper for 
identifying the material properties of viscoelastic anisotropic materials. A comparison 
between the material properties predicted by the bulk: wave technique and by the transfer 
function technique shows that real components (elastic properties) can be accurately 
predicted by both techniques. However, the prediction of the imaginary components are not 
as accurate as the real components. In a relative scale between these two techniques, the 
transfer function technique appears to be more reliable for predicting the viscous properties. 
This can be justifIed from the fact that the transfer function technique works with the 
complete transmitted waveform and the bulk: wave technique works with the amplitude and 
the frrst arrival of the QL and QT modes only. As a result more information is taken into 
account during the signal processing when the transfer function technique is followed. 
More work has to be done te estimate the Cij precision. 

As mentioned before, for the bulk: wave technique the separation of QL and QT 
echoes is essential, but that is not necessary for the transfer function technique. Hence, one 
can work at a relatively low frequency and characterize thin plates when the transfer 
function technique is applied. The bulk: mode technique is very sensitive to the fluctuation 
of the coupling medium properties (temperature gradient, etc ... ). because it takes into 
account also the propagation times of QL and QT pulses in this medium. At the opposite. 
the transfer function technique is only sensitive to what happens inside the plate. 
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Figure 4. Received wavefonn for the 10° angle of incidence. 
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