
Counting Butterflies from a Large Bipartite Graph Stream∗

Seyed-Vahid Sanei-Mehri†, Yu Zhang†, Ahmet Erdem Sarıyüce‡, Srikanta Tirthapura†

Abstract

We consider the estimation of properties on massive bipar-

tite graph streams, where each edge represents a connection

between entities in two different partitions. We present sub-

linear-space one-pass algorithms for accurately estimating

the number of butterflies in the graph stream. Our estimates

have provable guarantees on their quality, and experiments

show promising tradeoffs between space and accuracy. We

also present extensions to sliding windows. While there are

many works on counting subgraphs within unipartite graph

streams, our work seems to be one of the few to effectively

handle bipartite graph streams.

1 Introduction

The discovery and counting of certain structural prop-
erties in a graph have emerged as key metrics to enhance
the understanding of complex networks. Also recog-
nized as graphlets or higher-order structures, graph mo-
tifs are important building blocks to characterize net-
works. The discovery and counting of motifs in a graph
are one of the most important graph mining tasks and
have captured tremendous attention in social networks,
spam/fraud detection, and link recommendation.

Since a triangle is the smallest non-trivial complete
subgraph, it plays a crucial role in the analysis of uni-
partite networks. For example, the number of triangles
in a network is used in measuring the clustering coef-
ficient or transitivity ratio. There has been extensive
work on counting the number of triangles in a static
graph [6, 9, 24] and a dynamic graph [4, 8, 9, 12, 14, 19,
21, 22, 24, 26, 34, 42, 43, 46–48, 50]. Due to the massive
scale of real-life networks, and rapid rate of growth, it
is imperative to develop agile methods that are capa-
ble of processing using memory sub-linear in the stream
size. In many cases, an approximate answer to a query
is sufficient, and we can obtain favorable tradeoffs with
respect to memory, speed of processing, and accuracy.

We focus on mining from bipartite graph streams.
A bipartite graph consists of two disjoint node sets
L and R, and each edge in the graph connects a
node in L with a node in R. Bipartite graphs are

∗Supported by NSF grants 1725702, 1527541
†{vas,yuz1988,snt}@iastate.edu, Iowa State University
‡erdem@buffalo.edu, University at Buffalo

widely used in modeling real-world relationships. For
instance, relationships between authors and papers can
be modeled as a bipartite graph, where authors form one
node partition, papers form the other node partition,
and an author has an edge to each paper that she
published. In web search and data mining, bipartite
graphs have been used to model relations between
queries and URLs in query logs [25], matching users to
advertisements in computational advertising [2,29], and
author-paper relations in the scientific literature [15].
In computational biology, bipartite graphs are used to
model enzyme-reaction links in metabolic pathways and
gene-disease associations [35]. Other examples include
user-product relations, word-document affiliations, and
actor-movie networks. Bipartite graphs can be used
to represent hypergraphs that capture many-to-many
relations among entities, through having the hyperedges
in one partition, and the elements in another partition.

While the literature is rich in methods for discovery
of motifs in unipartite networks, these do not directly
apply to bipartite networks. For instance, the number of
triangles is not a useful metric, since a bipartite graph
is triangle-free. Instead, the most basic motif which
models cohesion in a bipartite network is the complete
2 × 2 biclique, also known as a butterfly [5, 39, 40] or a
rectangle [49]. The butterfly has been used in defining
the clustering coefficient in a bipartite graph [27,38] and
can be considered as playing the same role in bipartite
networks as the triangle did in unipartite networks – a
building block for community structure.

1.1 Our Contributions: We present one-pass
streaming algorithms for estimating the total num-
ber of butterflies in a bipartite graph stream. Our
algorithms use a fixed-size underlying storage that is
sub-linear in the size of the stream, and continuously
maintain an estimate of the number of butterflies as
more edges arrive in the stream. The estimates are
updated quickly as new edges arrive. Our algorithms
are simple to implement, backed up by theoretical
guarantees, and have good practical performance.

– Infinite Window Streaming. We first present
algorithms for estimating the number of butterflies
within an infinite window consisting of all edges seen

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:1

81
2.

03
39

8v
1

 [
cs

.D
S]

 8
 D

ec
 2

01
8

so far in the stream. The first of these algorithms
Res, is based on maintaining a random sample of the
edges seen so far, followed by measuring the number of
butterflies in the sample. The technical difficulty lies
in the analysis of the variance of this estimator. While
the sample is such that different edges in the sample
are chosen with only weak dependence on each other1,
the occurrence of different butterflies in the sample
depends on each other in complex ways, and an analysis
needs to consider the ways in which multiple butterflies
interact, in order to derive a bound on the variance.
We then present an improvement called IRes, which
leads to a better accuracy (i.e., smaller variance) than
Res using the same memory, but has a larger runtime
per element. We further present Ada algorithm that
provides a different type of tradeoff, with an accuracy
comparable to Res, but a smaller runtime per element.
We present an analysis showing that each estimator is
unbiased and give provable guarantees on the variance
of each estimator.

– Sliding Window Streaming. We next present
extensions of our algorithm to the sliding window
model [7, 11, 18] which considers aggregation over the
set of the W most recent edges in the stream.

– Experimental Evaluation. We present an evalua-
tion of the performance of our algorithms on real-world
graph streams. Our results show that proposed algo-
rithms are able to achieve a relative error of less than
1% using samples of size approximately 100K edges
on graphs that have ten millions of edges and more
than a trillion butterflies. Our methods enjoy different
tradeoffs between memory space, estimation accuracy,
and runtime performance that make them practical for
real-world applications with different requirements.

1.2 Related Works
Network motifs. Network motifs are small subgraphs
that are defined on a few nodes and edges. Unlike
graph communities or dense subgraphs, whose sizes do
not have to be bounded, network motifs are typically
subgraphs with less than six nodes. A similar concept is
graphlets [37]. Network motif detection and counting is
now an indispensable tool in network analysis [33]. The
distribution of motif counts in a network, as well as the
number of motifs that a node takes part in, help char-
acterize the roles of networks and nodes [32]. Motifs
and graphlets have been used in numerous applications
in networking, web and social network analysis, and

1this is due to the fact that we employ sampling without

replacement, which results in the dependence between pairs of
edges

computational biology [9, 16,17,20,30,31,41,44,45,49].

Butterfly Counting. There have been relatively few
works on counting motifs in a bipartite graph. Wang
et al. [49] presented exact algorithms for butterfly
counting in static graphs that outperform generic
matrix multiplication based methods [6]. Sanei-Mehri
et al. [39] proposed exact and randomized algorithms
for large static bipartite graphs. Both these works have
considered static graphs and not graph streams.

Motif Counting in Graphs. There are a number of
algorithms known for triangle counting for unipartite
streaming graphs [4, 8, 9, 12, 14, 19, 21, 22, 24, 26, 34,
42, 43, 46, 47, 50]. There has been some recent work
on counting 4-vertex [3] and 5-vertex subgraphs [36],
but these works focus on exact counting and are not
designed for streaming graphs. Note that butterfly
is a 4-cycle and there are some previous studies that
counts cycles in unipartite graph streams [10, 13, 23,
28]. Bordino et al. [10] presents 4-cycle counting
algorithms for graphs, but these take three passes
through data, while we focus on single-pass streaming
algorithms. Buriol et al. [13] consider 3,3-biclique
counting in unipartite graph streams. They use the
incidence stream model, where all edges incident to a
given vertex arrive together, where as we work in the
more general model (sometimes called the adjacency
stream model), where the edges of the graph can
arrive in an arbitrary order. Algorithms designed for
incidence streams do not apply directly to our model.
Manjunath et al. [28] and Kane et al. [23] introduce
algorithms to count arbitrary size cycles in unipartite
graph streams. These algorithms are based on sketches
that use complex random variables, and to the best of
our knowledge, these have not been implemented. In
contrast, our algorithms are very easy to implement and
evaluate.

2 Preliminaries

We consider simple unweighted and undirected bipar-
tite graphs, without multiple edges between the same
pair of vertices. Let G = (V,E) be a bipartite graph
with vertices V and edges E. The vertex set V of G
is partitioned into two disjoint sets L and R. The edge
set E ⊆ L × R, so each edge e connects one vertex in
set L and the other in set R. A butterfly is subgraph
on four vertices {a, b, x, y} ⊂ V , where a, b ∈ L and
x, y ∈ R such that edges (a, x), (a, y), (b, x) and (b, y)
exist in the edge set E.

A graph stream is a sequence of edges S = e1, e2, . . .
where ei is the i-th edge in the stream. For t > 0,
let S(t) denote the first t edges of the stream and let

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

1e+05 2e+05 3e+05 4e+05 5e+05

Edge

0

2.5e+06

5e+06

7.5e+06

1e+07

#
B

u
tt

er
fli

es

(a) Lkml

1e+06 2e+06 3e+06 4e+06 5e+06

Edge

0

5e+10

1e+11

#
B

u
tt

er
fli

es

(b) En-wiki

2e+06 4e+06 6e+06 8e+06 1e+07

Edge

0

5e+11

1e+12

#
B

u
tt

er
fli

es

(c) Movie-lens

5e+05 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Edge

0

1e+10

2e+10

3e+10

#
B

u
tt

er
fli

es

(d) Digg

Figure 1: Number of butterflies as a function of stream size.

G(t) = (V (t), E(t)) denote the graph formed by the first
t edges, i.e. G(t) = {e1, e2, . . . , et}. For 0 ≤ i ≤ j ≤ t,
let S(t)(i, j) denote the substream from ei to ej (both
inclusive) and graph G(i, j) = {ei, ei+1, . . . , ej}.

Our algorithms return estimates of the number of
butterflies. These estimates are random variables that
are unbiased, i.e their expectation equals the desired
subgraph count. We also bound their variance, which
conveys how tightly the estimate is concentrated around
its expectation. Our results do not assume a specific
distribution of inputs. Instead, the input graph stream,
including the set of edges and their order of arrivals,
could be generated by an adversary. The randomness is
solely internal to the algorithm, using random number
generators.

Infinite Window: For any t > 0 and a stream S, the
goal for butterfly counting over an infinite window is to
continuously maintain (an estimate of) the number of
butterflies in the graph G(t), as t changes. Throughout
this paper, we denote ./(t) the set of all butterflies in the
graph G(t) (when t is clear from the context, we simplify
the notation by ./) and denote | ./(t)| as the number of
butterflies in G(t).

Sliding Window: A sequence-based sliding window
is defined as the set of a specific number of most recent
edges. For t > 0 and window size W , when observing
edge et, this is the set of edges et−W+1, et−W+2, . . . et.
Our goal is to maintain the number of butterflies that
are constructed out of edges within this window. A gen-
eralization of sequence-based window is a timestamp-
based sliding window, defined as the set of edges whose
timestamps are most recent. Here, the window size does
not correspond to a specific number of edges, but in-
stead to a range of timestamps.
Networks and Experimental Setup. We present exper-
imental results right after each algorithm description.
We selected different types of real-world temporal bipar-
tite networks from publicly available KONECT repos-
itory2. Basic properties of the networks are summa-
rized in ??. Lkml is the bipartite network of users and
threads in the Linux Kernel Mailing list and each edge
represents a timestamped post by a user. En-wiki is the

2http://konect.uni-koblenz.de/

Graphs #E #V(Left) #V(Right) | ./| Description

Lkml 599,858 42,045 337,509 10M Thread posts by users

En-wiki 5,573,038 29,348 2,094,520 113B Page edits by editors

Movie-lens 10,000,054 69,878 10,677 1.1T Movie ratings by users

Digg 3,010,898 139,409 3553 29B Votes for stories by users

Table 1: Properties of the bipartite graphs. | ./| repre-
sents the total number of butterflies in a graph.
edit network of the English Wiktionary and contains the
edit activities of editors on pages. Movie-lens is the
movie ratings by users for movies. Digg has the voting
activities of users for news stories in the news aggrega-
tor website Digg.com. Note that, first three networks
had multiple edges between the same node pairs and
we simplified those by considering only the first inter-
action occurring between a node pair. Edges are read
from the stream in the order of timestamps. ?? presents
the number of butterflies with the increasing stream size
(with respect to timestamps) for all graphs. We imple-
mented all the streaming algorithms in C++ and the
source code is available at [1]. We used gcc compiler
with the optimization level O3. We used a machine
equipped with a 2.0 GHz 8-Core Intel E5 2650 and 64.0
GB memory to run the experiments..

3 Streaming Algorithms for Infinite Windows

We present streaming algorithms for estimating the
number of butterflies over an infinite window, i.e. all
edges seen so far. We introduce fast randomized algo-
rithms, Res, IRes, and Ada, which maintain an unbi-
ased estimate of number of butterflies in an edge stream
and use a sample (reservoir) with a fixed size. Our algo-
rithms use a helper procedure, eBFC (e, E), which re-
turns the number of local butterflies that contain edge e
in the graph induced by edge set E – see supplementary
material for more details.

We define two formulas, Ψx(t) and pz to help with
the analysis. Ψx(t) is the extrapolation factor needed
for butterfly count estimates. When t ≤ M , Ψx(t)
is 1. When t > M , it is adjusted to accommodate
last x edges in the stream, and is defined as Ψx(t) =

max{1,
∏x−1

i=0 (t − i)/(M − i)} where M is the size of
reservoir and x ≤ t. For z = 0, 1, 2, let pz denote the
number of butterfly pairs that have z edges in common.
Note that two distinct butterflies in a bipartite graph

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1: Res (S,M): Reservoir sampling

Input: Edge stream S for reservoir of size M (≥ 8)
Output: | ./(t)|, estimate number of butterflies at t

1 R← ∅, t← 0, β ← 0
2 for each edge e from stream S do
3 t← t+ 1
4 if t ≤M then
5 R← R∪ e
6 β ← β + eBFC (e,R)

7 else if coin (M/t) is Head then
8 e′ ← a random edge from R
9 β ← β − eBFC (e′,R)

10 R← (R \ {e′}) ∪ e
11 β ← β + eBFC (e,R)

12 | ./(t)| ← β ×Ψ4(t)

cannot have three edges in common – if they do, they
will have to share the fourth edge also.

3.1 Reservoir Sampling (Res): We start with the
simple algorithm based on reservoir sampling, Res,
which serves as a baseline for the other more involved
algorithms. The intuition behind Res is to sample
edges uniformly using a fixed-size reservoir, which en-
sures that the set of edges is chosen uniformly without
replacement from the stream so far. ?? presents the Res
algorithm. Each time an edge is inserted into the reser-
voir, the butterfly count is updated (Lines 4-6). Note
that, each butterfly is counted only once, by the last
edge which completes the butterfly formation. Once the
reservoir is full, each insertion into the reservoir results
in a deletion of an edge, upon which the butterfly count
is adjusted by excluding those butterflies that contain
the deleted edge (Lines 7-11). At a given time t, to-
tal number of butterflies in the edge stream seen so far
can be estimated by extrapolating the butterfly count
of reservoir by Ψ4(t), which accounts for the probability
of sampling the four edges that form the butterfly.

We show that Res yields an unbiased estimate of

./(G(t)). Let Y
(t)
Res is the return value of Res at time t.

Lemma 1. E
[
Y

(t)
Res

]
= | ./(t)|

Proof. Suppose that butterflies in ./(t) are numbered

from 1 to | ./(t)|. Let X
(t)
i (1 ≤ i ≤ | ./(t)|) be a

random variable equal to 1 if the ith in ./(t) appears

in the reservoir R, otherwise X
(t)
i is 0. Let X(t) =∑| ./(t)|

i=1 X
(t)
i . Therefore, we have Y

(t)
Res = Ψ4(t) ·X(t). In

the case that t ≤M , all edges of the stream are selected
and maintained in R. Therefore, we have X(t) =

∣∣ ./(t)
∣∣.

As t ≤M , we derive Y
(t)
Res =

∣∣ ./(t)
∣∣.

When t > M , each edge is sampled uniformly at
random since we use reservoir sampling approach. We
know that each butterfly has four edges. Therefore,

E
[
X

(t)
i

]
= Pr

[
X

(t)
i = 1

]
=

(
t−4
M−4

)(
t
4

) = (Ψ4(t))
−1

With the linearity of expectation, we obtain that

E
[
X(t)

]
=
∑| ./(t)|

i=1 E
[
X

(t)
i

]
=
∣∣ ./(t)

∣∣× (Ψ4(t))
−1

. There-

fore, E
[
Y

(t)
Res

]
=
∣∣ ./(t)

∣∣.
In the next lemma, we show the variance of ??. For
an integer z (0 ≤ z ≤ 2), let hRes

z (t) = Ψ4(t) ×∏7−z
k=4

(
M−k
t−k

)
− 1. As also previously mentioned, pz

represents the number of pairs of butterflies with z edges
in common.

Lemma 2. Variance of Y
(t)
Res is 0 for t ≤M . For t > M ;

Var
[
Y

(t)
Res

]
= | ./(t)| (Ψ4(t)− 1) + 2 ·

2∑
z=0

pz · hRes
z (t)

Proof. For an integer i(1 ≤ i ≤ | ./(t)|). We have

Var[X
(t)
i] = E[X

(t)
i

2
]−E2[X

(t)
i] = (Ψ4(t))−1−(Ψ4(t))−2.

Var
[
Y

(t)
Res

]
= Var

Ψ4(t)

| ./(t)|∑
i=1

X
(t)
i

= (Ψ4(t))

2

| ./
(t)|∑

i=1

Var[X
(t)
i] +

∑
j 6=i

Cov
[
X

(t)
i X

(t)
j

]
=
∣∣∣ ./(t)

∣∣∣ (Ψ4(t)− 1)

+ (Ψ4(t))
2 ×

∑
j 6=i

(
E
[
X

(t)
i X

(t)
j

]
− E

[
X

(t)
i

]
E
[
X

(t)
j

])
Consider the case that ith and jth butterflies in

./(t) do not share any edge. We have E[X
(t)
i X

(t)
j] =

Pr[X
(t)
i = 1] Pr[X

(t)
j |X

(t)
i] = (Ψ4(t))−1 ×

∏7
k=4

M−k
t−k .

Therefore, (Ψ4(t))2 · (E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j]) =

Ψ4(t)×
∏7

k=4 (M−k
t−k)− 1.

When ith and jth butterflies have one edge in com-

mon, we get E[X
(t)
i X

(t)
j] = (Ψ4(t))−1 ·

∏6
k=4

M−k
t−k .

Therefore, (Ψ4(t))2 · (E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j]) =

Ψ4(t)×
∏6

k=4 (M−k
t−k)− 1.

Lastly, if ith and jth butterflies have two edges in com-

mon, we derive E[X
(t)
i X

(t)
j] = (Ψ4(t))−1 ·

∏5
k=4

M−k
t−k .

Therefore, (Ψ4(t))2 · (E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j]) =

Ψ4(t) ×
∏5

k=4 (M−k
t−k) − 1. Substituting hRes

z (t) and pz
in the variance of Res completes the proof.

Accuracy of estimates on real-world networks:
Here we present the estimation errors of Res on real-
world bipartite graph streams. The estimation error is
the relative error of an estimate. If the true value of the

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

5e+04 1e+05 2e+05 4e+05

Reservoir Size

0

5

10

15

20

E
rr

or
(%

)

Ada
Res
IRes

8.5 16.9 33.9 67.8

Sample Rate(%)

(a) Lkml

5e+04 1e+05 2e+05

Reservoir Size

0

5

10

15

E
rr

or
(%

)

Ada
Res
IRes

0.9 1.8 3.6

Sample Rate(%)

(b) En-wiki

5e+04 1e+05 2e+05 4e+05

Reservoir Size

0

1

2

3

4

5

E
rr

or
(%

)

Ada
Res
IRes

0.5 1.0 2.0 4.0

Sample Rate(%)

(c) Movie-lens

5e+04 1e+05 2e+05 4e+05

Reservoir Size

0

1

2

3

4

5

E
rr

or
(%

)

Ada
Res
IRes

1.7 3.3 6.7 13.3

Sample Rate(%)

(d) Digg

Figure 2: Accuracy of estimates by Res, IRes, and Ada algorithms as a function of reservoir (sample) size. On
the bottom x-axis is the sample size and on the top x-axis is the sample rate, defined as the ratio of the sample
size to the stream size

1e+05 2e+05 3e+05 4e+05 5e+05

Edges

0.0

2.5

5.0

7.5

10.0

12.5

E
rr

or
(%

)

Res
IRes
Ada

(a) Lkml

1e+06 2e+06 3e+06 4e+06 5e+06

Edges

0.0

2.5

5.0

7.5

10.0

E
rr

or
(%

)

Res
IRes
Ada

(b) En-wiki

2e+06 4e+06 6e+06 8e+06 1e+07

Edges

1

2

3

4

E
rr

or
(%

)

Res
IRes
Ada

(c) Movie-lens

5e+05 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Edges

1

2

3

4

E
rr

or
(%

)

Res
IRes
Ada

(d) Digg

Figure 3: Accuracy of estimations by Res, IRes, and Ada as a function of stream size. Reservoir size is 100K
for all graphs.

butterfly count is x > 0, then the error of an estimate

x̂ is defined as |x−x̂|x . We usually show these as percent
error. ?? shows the estimation accuracies of Res for the
entire graph stream when different reservoir (sample)
sizes are used (ignore other algorithms for now). Larger
reservoirs yield better accuracies, as expected. Res
can keep the estimation error around 1% for Lkml,
Movie-lens, and Digg networks by storing only 100K
edges in the reservoir. This corresponds to the 16.7%,
3.3% and 0.9% of the total graph sizes for Lkml, Digg
and Movie-lens networks, respectively. For En-wiki

network, 3% error can be obtained with 200K edges –
3.6% of the graph size.

?? presents the accuracies of estimates while the
graphs are being streamed. We observe a modest
increase in the error rate with the increasing stream
size. Res has a 0.6% error rate right after the reservoir
gets full and it manages to keep it below 2% until the
end. Trends are similar in other networks. We also
observe some interesting rises and falls (e.g., Digg) with
the increasing stream size, which might be due to the
inhomogeneous distribution of butterfly formation in
different time periods.

3.2 Improved Reservoir Sampling (IRes): We
present an algorithm IRes, that improves the accuracy
over Res by considering the contribution of every edge
in the stream. As shown in ??, upon receiving a new
edge e, regardless of whether or not e is sampled, the
estimated is updated by considering the number of
butterflies that e forms along with the edges currently

in the reservoir. Intuitively speaking, this approach
manages to detect more butterflies than Res, since
a butterfly is counted if the first three edges of the
butterfly have been sampled at the time the fourth edge
arrives. Whereas in Res, all four edges have to be
sampled for the butterfly to be detected. In ????, we
show the expectation and variance of ?? respectively.

Let Y
(t)
IRes be the return value of IRes.

Lemma 3. E[Y
(t)
IRes] = | ./(t)|

Suppose that at time t, butterflies in the stream so
far are ordered based on the time stamp of their last
edges from 1 to | ./(t)|. For example, if i > j, the
last edge of ith butterfly does not arrive before the last
edge of jth butterfly in the stream. Let ti denote the
appearance time of the last edge of ith butterfly on the

stream (1 ≤ i ≤ | ./(t)|). Let X
(t)
i be an indicator random

Algorithm 2: IRes (S,M): Improved Res

Input: Edge stream S for reservoir of size M (≥ 8)
Output: | ./(t)|, estimate number of butterflies at t

1 R ← ∅, t← 0, β ← 0
2 for each edge e from stream S do
3 t← t+ 1
4 β ← β + Ψ3(t− 1)× eBFC (e,R∪ e)
5 if t ≤M then R ← R∪ e
6 else if coin (M/t) is Head then
7 e′ ← a random edge from R
8 R ← (R \ {e′}) ∪ e

9 | ./(t)| ← β

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

1e+05 2e+05 3e+05 4e+05 5e+05

Edges

0

50

100

150

T
im

e(
se

c)

Res
IRes
Ada

(a) Lkml

1e+06 2e+06 3e+06 4e+06 5e+06

Edges

0

2000

4000

6000

T
im

e(
se

c)

Res
IRes
Ada

(b) En-wiki

2e+06 4e+06 6e+06 8e+06 1e+07

Edges

500

1000

1500

2000

T
im

e(
se

c)

Res
IRes
Ada

(c) Movie-lens

5e+05 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Edges

200

400

600

800

T
im

e(
se

c)

Res
IRes
Ada

(d) Digg

Figure 4: Runtime behavior of Res, IRes, and Ada algorithms as a function of stream size when the reservoir
size is 100K.

5e+04 1e+05 2e+05 4e+05

Reservoir Size

0

5e+03

1e+04

1.5e+04

2e+04

2.5e+04

T
h

ro
u

gh
p

u
t

Res
IRes
Ada

(a) Lkml

5e+04 1e+05 2e+05

Reservoir Size

0

1e+04

2e+04

3e+04

4e+04

T
h

ro
u

gh
p

u
t

Res
IRes
Ada

(b) En-wiki

5e+04 1e+05 2e+05 4e+05

Reservoir Size

0

2e+04

4e+04

6e+04

8e+04

1e+05

T
h

ro
u

gh
p

u
t

Res
IRes
Ada

(c) Movie-lens

5e+04 1e+05 2e+05 4e+05

Reservoir Size

0

2e+04

4e+04

6e+04

T
h

ro
u

gh
p

u
t

Res
IRes
Ada

(d) Digg

Figure 5: Throughput of Res, IRes, and Ada algorithms as a function of reservoir size.

variable to show whether the first three edges of the ith

butterfly are found in the reservoir R.

Lemma 4. If t ≤ M , the variance of Y
(t)
IRes is 0, oth-

erwise we have Var
[
Y

(t)
IRes

]
=
∑| ./(t)|

i=1 (Ψ3(ti − 1)− 1) +

2×
∑

j<i

(
E
[
X

(t)
i X

(t)
j

]
− 1
)

Without loss of generality, we assume that i > j. If ith

and jth butterflies do not share any edge, E[X
(t)
i X

(t)
j]−

1 ≤ 0. If they share only one edge, E[X
(t)
i X

(t)
j] − 1 ≤

Ψ1(ti − 1). If they share two edges, E[X
(t)
i X

(t)
j] − 1 ≤

Ψ2(ti − 1).

The proofs of ???? are moved to supplementary
material due to space constraints.
Comparison of Variances of Res and IRes. Here,
we compare the variances of ????. Consider the case
that the current time t > M . The first term in the
variance of Y

(t)
Res and Y

(t)
IRes involve individual butterflies.

Suppose the butterflies are numbered in some order.
The contribution of the ith butterfly to the variance

of Y
(t)
Res is | ./(t)|(Ψ4(t) − 1) and its contribution to the

variance of Y
(t)
IRes is

∑| ./(t)|
i=1 (Ψ3(ti − 1) − 1), where ti is

the time of arrival of the last edge of the butterfly, which
could be much smaller than the current time t. Hence,

the first term in the variance of Y
(t)
IRes is smaller than the

first term in Y
(t)
Res.

In the second term of variances, we consider the

contributions of butterfly pairs to the variances of Y
(t)
IRes

and Y
(t)
Res. Let i and j range over all pairs of butterflies

that appear on stream at time t. Without loss of
generality, assume that i > j, which means that the
last edge of ith butterfly does not arrive before the last

edge of jth butterfly on the stream. Let ti denote the
appearance time of the last edge of ith butterfly on the
stream (1 < i ≤ | ./(t)|). If butterflies i and j do not

share an edge, the covariance of Y
(t)
IRes is a non-positive

value while the covariance of Y
(t)
Res is non-negative. If

they share exactly one edge, the covariance of Y
(t)
IRes is

based on the last edge of the ith butterfly and isO(ti/M)

while the covariance of Y
(t)
Res is O(t/M). If they share

two edges, the covariance of Y
(t)
IRes is O((ti/M)2), and

the covariance of Y
(t)
Res is O((t/M)2). Thus, we verify

that the variance of Y
(t)
IRes cannot be greater than Y

(t)
Res.

Accuracy of estimates: As expected, we see from ??
and ?? that IRes has better accuracy that Res for any
reservoir (sample) size on all graphs in ??. In En-wiki

network, for instance, error rate of IRes is 4% when the
reservoir size is 50K while Res is able to give only 15%.
For larger reservoir sizes, better accuracies are obtained,
reaching around 1% for 200K reservoir size.
Runtime: The better accuracy of IRes comes at the
cost of increased runtime performance (??). Note that
the number of local butterfly computations in IRes
equals the number of edges. On the other hand, Res
shows a stable trend after the reservoir gets full, since
the probability of an edge being sampled, and hence of
a local butterfly computation decreases with time. ??
presents the throughput (edges processed per second)
and Res has a significantly larger throughput than IRes
on all graphs for all reservoir (sample) sizes, reaching
up to 8.5× higher throughput on En-wiki. Another
observation is that throughput numbers decrease with
the increasing reservoir (sample) sizes for all graphs and
algorithms, because the cost of local butterfly counting

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3: Ada (S,M): Adaptive sampling

Input: Edge stream S for reservoir of size M (≥ 8)
Output: | ./(t)|, estimate number of butterflies at t

1 p← 1,R← ∅, t← 0, β ← 0
2 for each edge e from stream do
3 t← t+ 1
4 if |R| = M then
5 p← p/2
6 Keep any edge in R with probability 0.5
7 β ← p−4 × | ./(R)| // # butterflies in R
8 if coin (p) is Head then
9 R← R∪ e

10 β ← β + p−4 × eBFC (e,R)

11 | ./(t)| ← β

increases with the reservoir size.

3.3 Adaptive Sampling (Ada): Better accuracy of
IRes, with respect to Res, comes with a larger run-
time cost and this tradeoff can be leveraged by certain
applications that do not have strong performance re-
quirements. On the other end of the spectrum, how-
ever, some applications with fast edge streams might
require higher throughput. Is there an algorithm that
yield higher throughputs than Res without sacrificing
accuracy by much? Note that the error rates by Res
algorithms is around 1% for many cases and sacrificing
another 1% or 2% might be okay for applications with
fast edge streams as long as the throughput rate can
match the incoming stream rate.

We present an adaptive sampling algorithm Ada
where the sampling probability is adapted with respect
to the stream size. In Ada, edges are selected and
inserted to a reservoir with a sampling probability,
which is set to 1 until the reservoir gets full. When
there is no space in reservoir to add more edges, the
sampling probability is reduced by a factor of half, and
each edge in the reservoir is discarded with probability
0.5. It means that on expectation, only 50% of edges are
kept in reservoir. At this step, the number of butterflies
in the reservoir is recomputed. ?? outlines the Ada
algorithm. Note that since we need to find the total
number of butterflies in the reservoir (in ??), we can
use a batch Algorithm ExactBFC of [39] which is a
fast method for counting the total number of butterflies
compared to performing eBFC for every single edge. In
??, we show that Ada maintains an unbiased estimate

of number of butterflies in the edge stream. Let Y
(t)
Ada

denote the estimate of butterfly count of ?? (??) at time
t. Let p(t) denote the sampling probability at time t.

Lemma 5. E[Y
(t)
Ada] = | ./(t)|

Let hAda
z (t) = (p(t))−z−1 for 0 ≤ z ≤ 2, and pz be the

number of pair of butterflies with z edges in common.

Lemma 6. If t ≤ M , the variance of Y
(t)
Ada is 0, other-

wise we have;

Var[Y
(t)
Ada] = | ./(t)|((p(t))−4 − 1) + 2×

2∑
z=0

pz · hAda
z (t)

Due to space constraints, proofs of ???? are moved to
supplementary material.
Runtime and accuracy: From Figures 4 and 5, we
see that Ada is significantly faster than Res and IRes
on all graphs. With the increasing stream size, total
runtime stabilizes earlier than the other alternatives.
3.29× and 3.09× speedups are observed in Movie-lens

and Digg networks with respect to Res algorithm. Re-
sults for throughput rates show the significant speedup
of Ada as well. The accuracy of Ada is comparable
with Res on En-wiki, Movie-lens, and Digg networks.
In Lkml network, Res performs significantly better than
Ada when the reservoir size is 100K (??). However, the
difference disappears when the reservoir size becomes
400K (??).

4 Sliding Window

We present the algorithm for a Sequence-based Sliding
Window Butterfly Counting (SeqSW), and defer the
algorithm for a time-based window to the appendix.
As the sequence-based window contains a fix number
of edges, we can sample every new edge with the same
probability and use the sample edges to estimate the
number of butterflies. We extend our Algorithm Res
to use a fixed sampling rate when the stream size is
larger than the window size, and present a description
in Algorithm 4. Due to space constraints, we present
the algorithm for handling a time-based sliding window
in supplementary material.

Algorithm 4: SeqSW (S,M, W): Seq-based SW

Input: Edge stream S, sampled edge set size M (≥ 8),
window size W (≥M)

Output: | ./(t)W |, estimate number of butterflies in
window W at t

1 R ← Ø, t← 0, β ← 0, p← 1
2 for each edge e from stream S do
3 t← t+ 1
4 r ← unif(0, 1)
5 β ← β + eBFC (e,R)
6 R← R∪ (e, r, t) // edge with prob and index

7 p← min(t,M)/min(t,W)
8 if R 3 (e′, r′, t′) s.t. (t′ ≤ (t−W) ∨ r′ > p) then
9 β ← β − eBFC (e′,R)

10 R ← R \ (e′, r′, t′)

11 | ./(t)W | ← β/p4

Lemma 7. The space cost of R in Algorithm 4 is no
greater than M in expectation and Pr(|R| ≥ 2M) ≤

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

(
e
4

)M
. Let | ./(t)W | denote the number of butterflies in

the window of recent W edges. Algorithm 4 returns an

unbiased estimate of | ./(t)W | with variance

Var(β/p4) = | ./(W)| · (p−4 − 1) + 2

2∑
z=0

pz,W · (p−z − 1)

where pz,W is the number of pairs of butterflies in
window that each pair is having z edges in common
(0 ≤ z ≤ 2).

Proof. Consider the value of probability p in under
different cases on number of edges received. When
t ≤ M , probability p is 1, the number of edges in R
is strictly no greater than M . When M < t ≤ W ,
p = M

t and E(|R|) = t · Mt = M . When t > W , p = M
W ,

the number of edges to be sampled is the window size
W , E(|R|) = W · MW = M .

So at any time, we prove that E(R) ≤ M . Consider
the case m > M , E(|R|) = M . Note that the process
of keeping an edge in R is a Bernoulli trial, by Chernoff

bound we have Pr(|R| > 2 · E(|R|)) ≤
(
e
4

)E(|R|)
Thus,

Pr(|R| > 2M) <
(
e
4

)M
, our claim on space bound of R

is proved.
At any given time, each edge (in the window) is in the

sampled edge set R with probability p, E(β) = | ./(t)W | ·p4,
Algorithm 4 returns an unbiased number of butterflies
in window. We rely on an analysis similar to the analysis
of Algorithm Ada, to derive a bound on the variance.

Accuracy: We compute the estimation error by fixing
the window size W ito 500, 000 edges and varying the
size of samples M to be 5%, 10% and 20% of the window
size W (Figure 6). We observe that the accuracy
improves with a larger sample rate, for example when
sample rate is 20% the result on dataset Digg shows the
error is always less than 2%, however when sample rate
is 5%, the error is almost above 2% and can reach up to
5%. From Lemma 7, variance of the estimate becomes
smaller when the sampling rate increases.

5 Conclusion

We presented one-pass streaming algorithms for esti-
mating the number of butterflies in a bipartite graph
stream. Our algorithms are primarily based on sam-
pling the edges of the graph stream, and building esti-
mators using these sampled edges; in some cases such
as IRes, we consider interactions between edges that
are not sampled along with those that are sampled. We
provide three algorithms Res, IRes, and Ada, with dif-
ferent tradeoffs for accuracy, memory, and runtime. We
also considered the sliding window model. Our experi-
ments show good accuracy on large real-world graphs;

for instance, relative error less than 2.5% using a sam-
ple size of 100K edges for graphs with millions of edges.
This work is one of the first to explore streaming motif
counting on bipartite graphs, and leads to many follow-
up questions. (1) Can these be extended to estimate
general motif counts on bipartite graph streams? (2) Is
it possible to combine the benefits of improved accuracy
as in IRes, with faster runtime as in Ada, into a single
algorithm? (3) Can the algorithms take the benefit of
multi-pass and external memory models?

References

[1] https://github.com/yuz1988/stream-bfly-counting.

[2] G. Aggarwal et al. Biobjective online bipartite matching. In

WINE, pages 218–231, 2014.
[3] N. Ahmed et al. Efficient graphlet counting for large

networks. In ICDM, pages 1–10, 2015.

[4] N. Ahmed et al. On sampling from massive graph streams.
Proc. VLDB Endow., 10(11):1430–1441, August 2017.

[5] S. Aksoy et al. Measuring and modeling bipartite graphs with

community structure. J. Complex Networks, 5(4), 2017.
[6] N. Alon et al. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.

[7] B. Babcock, M. Datar, and R. Motwani. Sampling from a
moving window over streaming data. In SODA, 2002.

[8] Z. Bar-Yossef et al. Reductions in streaming algorithms,
with an app. to counting triangles in graphs. In SODA, 2002.

[9] L. Becchetti et al. Efficient algorithms for large-scale local

triangle counting. TKDD, 4(3):13:1–13:28, October 2010.
[10] I. Bordino et al. Mining large networks with subgraph

counting. In ICDM, pages 737–742, 2008.

[11] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal
sampling from sliding windows. In PODS, 2009.

[12] L. Bulteau et al. Triangle counting in dynamic graph

streams. Algorithmica, 76(1):259–278, September 2016.
[13] Luciana S. Buriol et al. Estimating clustering indexes in

data streams. In ESA, 2007.

[14] X. Chen and J. Lui. A unified framework to estimate
global and local graphlet counts for streaming graphs. In

ASONAM, 2017.
[15] H. Deng et al. A generalized co-hits algorithm and its

application to bipartite graphs. In SIGKDD, 2009.

[16] F. Faisal et al. Global network alignment in the context
of aging. IEEE/ACM Tran. Comp. Biology and Bioinfo.,

12(1):40–52, 2015.
[17] F. Faisal and T. Milenković. Dynamic networks reveal key

players in aging. Bioinformatics, 30(12), 2014.

[18] P. B. Gibbons and S. Tirthapura. Distributed streams

algorithms for sliding windows. In SPAA, pages 63–72, 2002.
[19] G. Han and H. Sethu. Edge sample and discard: A new

algorithm for counting triangles in large dynamic graphs. In
ASONAM, 2017.

[20] H. Ho et al. Protein interaction network topology uncovers

melanogenesis regulatory network components within func-

tional genomics datasets. BMC systems biology, 4(1), 2010.
[21] M. Jha et al. Path sampling: A fast and provable method

for estimating 4-vertex subgraph counts. In WWW, 2015.
[22] H. Jowhari and M. Ghodsi. New streaming algorithms for

counting triangles in graphs. In COCOON, 2005.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/yuz1988/stream-bfly-counting

0 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

Edges

0

5

10

15

20

E
rr

or
(%

)

5% sample rate
10% sample rate
20% sample rate

(a) Lkml

0 1e+06 2e+06 3e+06

Edges

0

10

20

E
rr

or
(%

)

(b) En-wiki

0 2e+06 4e+06 6e+06 8e+06 1e+07

Edges

0

1

2

3

4

E
rr

or
(%

)

(c) Movie-lens

0 1e+06 2e+06 3e+06 4e+06 5e+06

Edges

0

1

2

3

4

5

E
rr

or
(%

)

(d) Digg

Figure 6: Error to the exact number of butterflies in the sliding window vs. number of edges received, window size
is 500, 000 edges and size of the sampled edge set M is set to 5%, 10% and 20% to the window size respectively.

[23] Daniel M. Kane et al. Counting arbitrary subgraphs in data

streams. In ICALP, pages 598–609, 2012.
[24] M. Kolountzakis et al. Efficient triangle counting in large

graphs via degree-based vertex partitioning. Internet Math-

ematics, 8(1-2):161–185, 2012.
[25] L. Li et al. Query-url bipartite based approach to personal-

ized query recommendation. In AAAI, 2008.

[26] Y. Lim and U Kang. Mascot: Memory-efficient and accurate
sampling for counting local triangles in graph streams. In

SIGKDD, 2015.

[27] P. Lind, M. González, and H. Herrmann. Cycles and
clustering in bipartite networks. Phys. Rev. E, 72, 2005.

[28] M. Manjunath et al. Approximate counting of cycles in
streams. In ESA, 2011.

[29] A. Mehta. Online matching and ad allocation. Foundations

and Trends in Theoretical Comp. Sci., 8(4), 2013.
[30] T. Milenković et al. Optimal network alignment with

graphlet degree vectors. Cancer informatics, 9, 2010.

[31] T. Milenković et al. Dominating biological networks. PloS
one, 6(8), 2011.

[32] T. Milenković and N. Pržulj. Uncovering biological network

function via graphlet degree signatures. Cancer informatics,
6, 2008.

[33] R. Milo et al. Network motifs: Simple building blocks of

complex networks. Science, 298(5594), 2002.
[34] A. Pavan et al. Counting and sampling triangles from a

graph stream. Proc. VLDB Endow., 6(14), September 2013.
[35] G. Pavlopoulos et al. Bipartite graphs in systems biology

and medicine: a survey of methods and applications. Giga-

Science, 7(4), 2018.
[36] A. Pinar et al. ESCAPE: Efficiently Counting All 5-Vertex

Subgraphs. In WWW, 2017.

[37] N. Pržulj. Biological network comparison using graphlet
degree distribution. Bioinformatics, 23(2), 2007.

[38] G. Robins and M. Alexander. Small worlds among interlock-

ing directors: Network structure and distance in bipartite
graphs. Comp. & Math. Org. Theory, 10(1):69–94, 2004.

[39] S. Sanei-Mehri et al. Butterfly counting in bipartite net-
works. In SIGKDD, 2018.

[40] A. E. Sarıyüce and A. Pinar. Peeling bipartite networks for

dense subgraph discovery. In WSDM, 2018.
[41] D. Schiöberg et al. Evolution of directed triangle motifs in

the Google+ OSN. CoRR, abs/1502.04321, 2015.

[42] K. Shin et al. Think before you discard: accurate triangle count-
ing in graph streams with deletions. In ECML,PKDD, 2018.

[43] K. Shin et al. Tri-Fly: Distributed estimation of global and

local triangle counts in graph streams. In PAKDD, 2018.
[44] O. Singh et al. Graphlet signature-based scoring method to

estimate protein–ligand binding affinity. Royal Society open

science, 1(4), 2014.

[45] R. Solava et al. Graphlet-based edge clustering reveals

pathogen-interacting proteins. Bioinformatics, 28(18), 2012.

[46] L. Stefani et al. Tiered sampling: An efficient method
for approximate counting sparse motifs in massive graph

streams. In IEEE Big Data, 2017.
[47] L. Stefani et al. Triest: Counting local and global triangles

in fully dynamic streams with fixed memory size. TKDD,

11(4), 2017.
[48] K. Tangwongsan et al. Parallel triangle counting in massive

streaming graphs. In CIKM, 2013.

[49] J. Wang, A. Fu, and J. Cheng. Rectangle counting in large
bipartite graphs. In IEEE Big Data, 2014.

[50] P. Wang et al. Approximately counting triangles in large

graph streams including edge duplicates with a fixed memory
usage. PVLDB, 2017.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Supplementary Material.

Local Butterfly Counting. For a given bipartite
graph G and a given edge e, we define ?? which counts
the number of butterflies containing e. In ?? for a vertex
u in G, Γu maintains the neighbors of u in G. VE is the
vertex set that is induced by the edge set E.

Algorithm 5: eBFC (e, E): Butterfly # per-edge

Input: An edge e = 〈u, v〉 ∈ E in G = (VE , E)
Output: βe, number of butterflies that contain e

1 βe ← 0
2 for w ∈ Γu \ {v} do
3 for x ∈ Γw do if x ∈ Γv \ {u} then βe ← βe + 1

4 return βe

Proof of ??.
Let all butterflies in ./(t) are ordered based on the time

stamp of their last edges from 1 to | ./(t)|. For example,
if i > j, the time step of last edge ith butterflies does
not appear before the last edge of jth butterfly.

Let ti denote the appearance time of the last edge
of ith butterfly on the stream (1 ≤ i ≤ | ./(t)|). Let

X
(t)
i (1 ≤ i ≤ | ./(t)|) be a random variable and takes

Ψ3(ti − 1) if all edges of ith butterflies, except the last
edge, found in the reservoir R at time ti − 1, otherwise

X
(t)
i is 0.
If t ≤ M , all edges are maintained in R. Therefore,

E[Y
(t)
IRes] = | ./(t)|. In the other case, we show that the

estimate of IRes at any time t > M is unbiased.
At time ti − 1 when the last edge of ith butterfly

arrives, X
(t)
i is equal to Ψ3(ti − 1) if three other edges

of the butterfly appears in the reservoir R. Therefore,

Pr[X
(t)
i = Ψ3(ti − 1)] = 1/Ψ3(ti − 1).

According to ??, we can verify that Y
(t)
IRes =∑t

i=1X
(t)
i . Using linearity of expectation, we can

derive that E[Y
(t)
IRes] =

∑t
i=1 E[X

(t)
i] = | ./(t)|.

Proof of ??.
At time t, for an integer i(1 ≤ i ≤ | ./(t)|), we have

Var[X
(t)
i] = E[(X

(t)
i)2]− E2[X

(t)
i] = Ψ3(ti − 1)− 1.

Var[Y
(t)
IRes] = Var

| ./(t)|∑
i=1

X
(t)
i

=

| ./(t)|∑
i=1

Var[X
(t)
i] +

∑
i6=j

Cov
[
X

(t)
i X

(t)
j

]
≤ | ./(t)| (Ψ3(ti − 1)− 1) + 2×

∑
j<i

Cov
[
X

(t)
i , X

(t)
j

]
= | ./(t)| (Ψ3(ti − 1)− 1) + 2×

∑
j<i

(
E
[
X

(t)
i X

(t)
j

]
− 1
)

Here, we define some notations used in the analysis of
our proof for ??. Suppose that all butterflies appeared
on stream at time t are ordered by the time step of
their last edges. Let ti denote the time stamp of last
edge of the ith butterfly. Then, if i > j, we have
ti ≥ tj . Let also the ith butterfly contains four edges
{ei1, ei2, ei3, ei4}, ordered by their time appearance on the
stream. Similarly, the jth butterfly includes four edges
{ej1, e

j
2, e

j
3, e

j
4}, sorted by their time step, they appear

on the stream. We also denote σ(t) ∈ {0, 1}. σ(t) is 1
if t− 1 ≤M , otherwise it is zero.

Let i and j range over all pairs of butterflies at time
t. Without loss of generality, we assume that i > j. To
compute the the contribution of ith and jth butterflies

to the variance of Y
(t)
IRes, we consider three cases:

– If ith and jth butterflies have no edge in com-
mon, we can show that they have non-positive

contribution to the variance of Y
(t)
IRes. We prove this

claim by considering different scenarios.
If we have tej1

< tej2
< tej3

< tej4
< tei1 < tei2 <

tei3 < tei4 , two events X
(t)
i and X

(t)
j are independent.

Therefore, we have E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j] = 0.

Consider the case that for k ∈ {1, 2, 3}, the time
step of edges ei1, · · · , eik are found before te4j on the

stream. For simplicity, we define the following events
to consider this case. Let an event Ek

1 indicate that
the edges ei1, · · · , eik are maintained in the reservoir R
at the time step tej4

. Let Ek
2 denote the event that the

edge eik+1 is inserted to R at time teik+1
, if k < 3. If

k = 3, Ek
2 happens with probability 1. Let E3 indicate

edges ei1, e
i
1, and ei3 are maintained in the reservoir R at

time tei4 . Therefore, it is verified that for some integer

k ∈ {1, 2, 3}, we have X
(t)
i = ∩2z=1E

k
z .

Therefore, we have Pr[X
(t)
i |X

(t)
j] = Pr[Ek

1 ∩ Ek
2 ∩

E3|X(t)
j] = Pr[Ek

1 |X
(t)
j] · Pr[Ek

2 ∩ E3|Ek
1 ∩ X

(t)
j]. If

tei4 − 1 ≤ M , by ??, we know that all edges are

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

maintained. Therefore, Pr[Ek
1 |X

(t)
j] = 1.

If tei4 − 1 > M , we have

Pr[Ek
1 |X

(t)
j] =

(t
e
j
4
−4−k

M−3−k

)
(t

e
j
4
−4

M−3

) =

k−1∏
z=0

M − 3− z
tej4
− 4− z

We also know that

Pr[Ek
1] =

(t
e
j
4
−1−k

M−k

)
(t

e
j
4
−1

M

) =

k−1∏
z=0

M − z
tej4
− 1− z

By comparing each term in
∏k−1

z=0
M−3−z
t
e
j
4
−4−z and∏k−1

z=0
M−z

t
e
j
4
−1−z , it is verified that Pr[Ek

1 |X
(t)
j] ≤ Pr[Ek

1].

In addition, we know that both Ek
2 and E3 are

independent from the event X
(t)
j . It implies

that Pr[X
(t)
i |X

(t)
j] ≤ Pr[Ek

1] · Pr[Ek
2 ∩ E3|Ek

1] =

Pr[Ek
1 ∩ Ek

2 ∩ E3] = Pr[X
(t)
i]. Therefore

E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j] ≤ 0.

Here, we consider the case that two butterflies
share an edge c.

If the edge c is the last edge of ith butterfly, other 6
edges of two butterflies should be kept in the reservoir

R. Therefore, we have Pr[X
(t)
i ∩ X(t)

j] = 1/Ψ6(ti −
1). Therefore, Pr[X

(t)
i ∩ X

(t)
j] ≤ Pr[X

(t)
i] Pr[X

(t)
j].

Therefore, E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j] ≤ 0.

In the case that tej1
< tej2

< tej3
< tc < tei2 < tei3 < tei4 ,

events X
(t)
j and X

(t)
i are independent. Therefore, we

have E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j] = 0.

If the common edge c is the last edge of jth butterfly
but second or third edge of the ith butterfly appear

before tc, we have Pr[X
(t)
i |X

(t)
j] ≤ Pr[X

(t)
i]. This is

because at time tc, all first three edges of jth butterfly
should be maintained in the reservoir. It decreases the
probability of selecting and maintaining edges of ith

butterfly in R, which arrive before the edge c. Then,

we have E[X
(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j] ≤ 0 for this case.

In the case that the common edge c is not the last
edge among edges of jth butterfly and is the first edge
of ith butterfly, we considered the following events: (1)
Let E1 denote that the common edge c is not deleted
from the reservoir between the time steps tj and tei2−1.

(2) Suppose E2 indicate that the ei2 is selected and
inserted toR, and the edge c is not removed fromR. (3)
Let E3 denote the common edge c and the edge ei2 are
maintained in R between time steps tei2 + 1 and tei3 − 1.

(4) An event E4 happens when the edge ei3 is inserted
to R, and edges c and at that time step, ei2 are are not

removed from R. (5) Lastly, an event E5 shows that
none of the edges c, ei2, or ei3 are removed from R till
time step ti − 1. In the

Pr[E1|X(t)
j] =

t
ei2
−1∏

z=max{tj ,M+1}

((
1−

M

z

)
+
M

z

(
M − 1

M

))

=

t
ei2
−1∏

z=max{tj ,M+1}

z − 1

z
=

max{tj ,M}
max {M, tei2

− 1}

Pr[E2|E1 ∩X(t)
j] =

M

max {tei2 ,M}

M − σ(tei2
)

M

Pr[E3|E2 ∩ E1 ∩X(t)
j]

=

t
ei3
−1∏

z=max{t
ei2

+1,M+1}

((
1−

M

z

)
+
M

z

(
M − 2

M

))

=

t
ei3
−1∏

z=max{t
ei2

+1,M+1}

z − 2

z

=
max {tei2 ,M}max {tei2 − 1,M − 1}

max {tei3 − 2,M − 1}max {tei3 − 1,M}

Pr[E4|E3 ∩ E2 ∩ E1 ∩X(t)
j] =

M

max {tei3 ,M}

M − 2 · σ(tei3
)

M

Pr[E5|E4 ∩ E3 ∩ E2 ∩ E1 ∩X(t)
j] =

ti−1∏
z=max{t

ei3
+1,M+1}

((
1−

M

z

)
+
M

z

(
M − 3

M

))

=

ti−1∏
z=max{t

ei3
+1,M+1}

z − 3

z

=
max {tei3 ,M}max {tei3 − 1,M − 1}max {tei3 − 2,M − 2}

max {ti − 3,M − 2}max {ti − 2,M − 1}max {ti − 1,M}

Pr[X
(t)
i |X

(t)
j] =

5∏
i=1

Pr[Ei|
i−1⋂
j=1

Ej ∩X
(t)
j]

≤
1

Ψ3(ti − 1)

max{X(t)
j ,M}
M

Pr[X
(t)
i ∩X(t)

j] ≤
1

Ψ3(tj − 1)Ψ3(ti − 1)

max{X(t)
j ,M}
M

Therefore, we get E[X
(t)
i X

(t)
j] ≤

max{X(t)
j ,M}
M

Here, we consider the case that two ith and jth

butterflies have two edges c1 and c2 in common. Let
an edge x be the first edge of ith butterfly which is not
shared with the jth butterfly. For the case that tx > tj ,

we define the following events to compute E[X
(t)
i X

(t)
j]:

(1) Let E1 denote the event that the common edges
c1 and c2 are removed from R among the time steps

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

tj and tx − 1. (2) Let E2 denote the event that the
edge x is added to the reservoir while c1 and c2 are
not discarded from the reservoir at time tx. (3) An
event E3 indicates that the edges all c1, c2 and x are
maintained in R between the time steps tx + 1 and
tj − 1. Therefore, we have

Pr[E1|X(t)
j] =

tx−1∏
z=max{tj ,M+1}

((
1−

M

z

)
+
M

z

(
M − 2

M

))

=

tx−1∏
z=max{tj ,M+1}

z − 2

z

=
max{ti,M}max{ti − 1,M − 1}

max {M, tx − 1}max {M − 1, tx − 2}

Pr[E2|E1 ∩X(t)
j] =

M

max {tx,M}
M − 2 · σ(tx)

M

Pr[E3|E2 ∩ E1 ∩X(t)
j]

=

ti−1∏
z=max{t

ei3
+1,M+1}

((
1−

M

z

)
+
M

z

(
M − 3

M

))

=

ti−1∏
z=max{tx+1,M+1}

z − 3

z

=
max {tx,M}max {tx − 1,M − 1}max {tx − 2,M − 2}

max {ti − 3,M − 2}max {ti − 2,M − 1}max {ti − 1,M}

E[X
(t)
i X

(t)
j] ≤

max{ti, X
(t)
i }max{ti − 1, X

(t)
i − 1}

(X
(t)
i − 2)(X

(t)
i − 1)

=
max{ti(ti − 1),M(M − 1)}

(M − 2)(M − 1)
In the other case, when the edge x of the ith butterfly

arrives before tc2, the presence of edges of j in R
decreases the probability of choosing and inserting edge
x to the reservoir. Therefore, the probability of event

X
(t)
i ∩X

(t)
j is smaller than the probability of events in

the previous case. Therefore, we can derive when two

ith and jth butterflies share two edges E[X
(t)
i X

(t)
j] ≤

max{ti(ti−1),M(M−1)}
(M−2)(M−1) , where i > j.

Proof of ??

Proof. Let p(t) be the sampling probability of ?? at time
t. Suppose that butterflies in ./(t) are numbered from 1

to | ./(t)|. Let X
(t)
i (1 ≤ i ≤ | ./(t)|) be a random variable

and is 1 if the ith butterfly in ./(t) appears in the reser-

voir R, otherwise X
(t)
i is 0. Let X(t) =

∑| ./(t)|
i=1 X

(t)
i .

Therefore, we have Y
(t)
Ada = (p(t))−4 ·X(t).

In the case that t ≤ M , all edges of the stream are
sampled. In this case p(t) is 1 and X(t) =

∣∣ ./(t)
∣∣. Thus,

Y
(t)
Ada =

∣∣ ./(t)
∣∣.

If t > M , each edge appears in the reservoir R with

probability p(t). Therefore, we get

E
[
X

(t)
i

]
= Pr

[
X

(t)
i = 1

]
=
(
p(t)
)4

With the linearity of expectation, we get E
[
X(t)

]
=∑| ./(t)|

i=1 E
[
X

(t)
i

]
=
∣∣ ./(t)

∣∣×(p(t))−4. As Y
(t)
Ada = (p(t))−4 ·

X(t), then we get E[Y
(t)
Ada] =

∣∣ ./(t)
∣∣.

Proof of ??.

Var[Y
(t)
Ada] = Var

(p(t))−4
| ./(t)|∑
i=1

X
(t)
i

= (p(t))−8

| ./(t)|∑
i=1

Var[X
(t)
i] +

∑
i6=j

Cov[X
(t)
i , X

(t)
j]

= | ./(t)|((p(t))−4 − 1) + (p(t))−8

∑
i6=j

Cov[X
(t)
i , X

(t)
j]

= | ./(t)|((p(t))−4 − 1)

+ (p(t))−8

∑
i 6=j

(
E[X

(t)
i X

(t)
j]− E[X

(t)
i]E[X

(t)
j]
)

If ith and jth butterflies do not share any edge, we have:

E[X
(t)
i X

(t)
j] = (p(t))4 Pr(X

(t)
i |X

(t)
j) = (p(t))8

Therefore, in this case, (p(t))−8 × (E[X
(t)
i X

(t)
j] −

E[X
(t)
i]E[X

(t)
j]) = 0.

If ith and jth butterflies share exactly one edge we
have:

E[X
(t)
i X

(t)
j] = (p(t))4 Pr(X

(t)
i |X

(t)
j) = (p(t))7

Therefore, we derive (p(t))−8 × (E[X
(t)
i X

(t)
j] −

E[X
(t)
i]E[X

(t)
j]) = (p(t))−1 − 1.

If ith and jth butterflies have two edges in common
we get:

E[X
(t)
i X

(t)
j] = (p(t))4 Pr(X

(t)
i |X

(t)
j) = (p(t))6

Therefore, we derive (p(t))−8 × (E[X
(t)
i X

(t)
j] −

E[X
(t)
i]E[X

(t)
j]) = (p(t))−2 − 1.

By definition of hAda
z (t) and pz, it is verified that

Var[Y
(t)
Ada] = | ./(t)|((p(t))−4 − 1) + 2×

∑2
z=0 pz · hAda

z (t)

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Timestamp-based Sliding Window Butterfly
Counting (TimeSW). Comparing to the sequence-
based sliding window, counting the number of butter-
flies in timestamp-based sliding window is more chal-
lenging, due to the number of edges in window can vary
over different time. At one timestamp, there may ar-
rive either a burst of many edges or even no edges at
all. In fact, the sequence sliding window can be seen as
a special case of timestamp sliding window such that
at each timestamp, there is exactly one edge arrives
from the stream. In many cases, we want to answer the
queries with variable length histories, where the window
length is only known during the query time, but with
upper bound Wmax. Our algorithm maintains T dif-
ferent queues, each contains edge samples from recent
stream, the value of T is related with Wmax and will
be decided later. The sampling rates of different queues
are ranging from 1, 1/2, 1/4, . . . , 1/2T−1. Each queue is
with the same capacity M edges and once the queue is
full, it will pop out the least recent edge and add the
new edge. Thus to answer a query, the number of queues
T should be no less than d1 + log2Wmax − log2Me.

Algorithm 6: TimeSW (S, M , Wmax): Time-based
SW
Input: Edge stream S, sampled edge set size M (≥ 8),

maximum window size Wmax (≥M)

Output: | ./(t)w |, estimate number of butterflies in time
window w at time c

1 T ← d1 + log2Wmax − log2Me
// Maintain T sampled edge sets, R1, . . . ,RT ; di

records the time of most recent discarded

edge in Ri

2 ∀i ≤ T, Ri ← Ø, di ← 0
3 for each edge e from stream S at time t do
4 l← 0
5 do
6 R` ← R` ∪ (e, t)
7 if |R`| > M then
8 R` ← R` \ (e′, t′) s.t. t′ = min{R`} t
9 di ← t

10 `← `+ 1

11 while coin (1
2
) is Head

// Upone a query at time c, window size w
12 `∗ ← argmini{di | di ≥ (c− w)}
13 A ← {(e, t′) ∈ R`∗ s.t. t′ > (c− w)}
14 | ./(t)w | ← ./(A)/24(`∗−1)

Lemma 8. Suppose the maximum window size given
by the query is Wmax, Algorithm 6 uses space O(M ·
logWmax). The returned butterflies | ./(t)w | is unbiased.

Proof. Algorithm 6 maintains O(logWmax) queues and
each has capacity M , the space cost follows. Once a

query on butterfly number in window W is received,
Algorithm 6 selects the sampled edge set at level `∗
where each edge is sampled by probability 2`∗−1, the
estimate number of butterflies is unbiased.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	1.1 Our Contributions:
	1.2 Related Works

	2 Preliminaries
	3 Streaming Algorithms for Infinite Windows
	3.1 Reservoir Sampling (Res):
	3.2 Improved Reservoir Sampling (IRes):
	3.3 Adaptive Sampling (Ada):

	4 Sliding Window
	5 Conclusion

