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ABSTRACT

Thanks to the rise of machine learning (ML) and its vast applications, recent years have wit-

nessed a rapid growth of large-scale distributed ML frameworks, which exploit the massive paral-

lelism of computing clusters to expedite ML training jobs. However, the proliferation of large-scale

distributed ML frameworks also introduces many unique technical challenges in computing system

design and optimization. In a networked computing cluster that supports a large number of train-

ing jobs, a central question is how to design efficient scheduling algorithms to allocate workers and

parameter servers across different machines to minimize the overall training time. Toward this end,

in this paper, we develop an online scheduling algorithm that jointly optimizes resource allocation

and locality decisions. Our main contributions are three-fold: i) We develop a new analytical model

that considers both resource allocation and locality; ii) Based on an equivalent reformulation and

close observations on the worker-parameter server locality configurations, we transform the problem

into a mixed cover/packing integer program, which enables approximation algorithm design; iii)

We propose a meticulously designed randomized rounding approximation algorithm and rigorously

prove its performance. Collectively, our results contribute to a comprehensive and fundamental

understanding of distributed ML system optimization and algorithm design.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Fueled by the rapid growth of data analytics and machine learning (ML) applications, recent

years have witnessed an ever-increasing hunger for computing power. However, with the celebrated

Moore’s law nearing its end, it has been widely recognized that the only viable solution to sustain

such computing power needs is to exploit parallelism at both machine and chip scales. Indeed,

the recent success of deep learning (a revival of artificial neural networks but with a much larger

number of hidden layers) is enabled by the use of distributed ML frameworks, which exploit the

massive parallelism over large-scale computing clusters and the abundance of GPU resources. These

distributed ML frameworks have significantly accelerated the training of deep neural network (DNN)

for many applications (e.g., image and voice recognition, natural language processing, etc.). To

date, prevailing distributed ML frameworks include TensorFlowAbadi et al. (2016), MXNetChen

et al. (2016), Cognitive ToolKit (CNTK), CaffeJia et al. (2014), to name just a few.

However, the proliferation of distributed ML frameworks also introduces many unique technical

challenges on large-scale computing system design and network resource optimization. Particularly,

due to the decentralized nature, at the heart of distributed learning system optimization lies the

problem of scheduling ML jobs and resource provisioning across different machines to minimize the

total training time. Such scheduling problems involve dynamic and combinatorial virtual-machine-

based worker and parameter server allocations, which are inherently NP-hard. Also, the allocations

of workers and parameter servers should take locality into careful considerations, since co-located

workers and parameter servers can avoid costly network communication overhead. However, locality

optimization adds yet another layer of difficulty in scheduling algorithm design. Exacerbating the

problem is the fact that the future arrival times of training jobs at an ML computing cluster are hard

to predict, which necessitates online algorithm design without the knowledge of future job arrivals.
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So far in the literature, there remains a lack of holistic theoretical studies that address all the

aforementioned challenges. Most of the existing scheduling schemes are based on simple heuristics

without performance guarantee (see Section 2.1 for more in-depth discussions). This motivates

us to fill this gap in this paper and pursue efficient online scheduling designs for distributed ML

resource optimization, which offer provable performance guarantee.

The main contribution of this paper is that we develop an online scheduling algorithmic frame-

work that jointly yields resource scheduling and locality optimization decisions with strong com-

petitive ratio performance. Furthermore, we reveal interesting insights on how distributed ML

frameworks affect online resource scheduling optimization. Our main technical results are summa-

rized as follows:

• By abstracting the architectures of prevailing distributed ML frameworks, we formulate an online

resource scheduling optimization problem that: i) models the training of ML jobs based on

asynchronous stochastic gradient descent method; and ii) explicitly takes locality optimization

into considerations. We show that, due to the heterogeneous internal (between virtual machines)

and external (between physical machines) communications, the locality-aware scheduling problem

contains non-deterministic constraints and is far more complex compared to the existing works

that are locality-oblivious (see, e.g., Chun et al. (2016); Bao et al. (2018)).

• To solve the locality-aware scheduling problem, we develop an equivalent problem reformulation to

enable subsequent developments of online approximation algorithms. Specifically, upon carefully

examining the locality configurations of worker-server relationships, we are able to transform the

original problem to a special-structured integer nonlinear program with mixed cover/packing-

type constraints, whose salient features enable low-complexity approximation algorithm design

with provable performance.

• To tackle the integer nonlinear problem with mixed cover/packing-type constraints, we propose an

approximation algorithm based on a meticulously designed randomized rounding scheme and then

rigorously prove its performance. We note that the results of our randomized rounding scheme

is general and could be of independent theoretical interest. Finally, by putting all algorithmic
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designs together, we construct a primal-dual online resource scheduling (PD-ORS) scheme, which

has an overall approximation ratio that only logarithmically depends on ML jobs characteristics

(e.g., required epochs, data chunks, mini-batches, etc.).

Collectively, our results contribute to a comprehensive and fundamental understanding of dis-

tributed machine learning systems optimization. The remainder of this paper is organized as follows.

In Section 2.1, we review the literature to put our work in comparative perspectives. Section 3.1

introduces the system model and problem formulation. Section 3.2 presents our algorithms and

their performance analysis. Section 4.1 presents numerical results and Section 5.1 concludes this

paper.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Related Work

As mentioned in Section 1.1, due to the high computational load of ML applications, many

distributed ML frameworks have been proposed to leverage modern large-scale computing clusters.

From an abstraction standpoint, a common architecture behind these distributed ML frameworks

is the provisioning of virtual-machine-based parameter servers and workers. Coupled with the

iterative ML training phase based on asynchronous stochastic gradient descent (Async-SGD), the

interactions between machines in the computing cluster are significantly different from those in

traditional cloud computing platforms. As a result, existing job scheduling algorithms for cloud

systems (see, e.g., Huang et al. (2015); Chen and Liu (2017) and references therein) do not work

well for distributed ML frameworks.

In the distributed ML systems literature, most of the early attempts (see, e.g., Li et al. (2014);

Chilimbi et al. (2014) and references therein) only considered static allocation of workers and pa-

rameter servers. To our knowledge, the first work on understanding the performance of distributed

ML frameworks is Yan et al. (2015), where Yan et al. developed analytical models to quantify the

impacts of models-data partitioning and system provisioning for DNN. Subsequently, Chun et al.

Chun et al. (2016) developed heuristic dynamic system reconfiguration algorithms to allocate work-

ers and parameter servers to minimize the runtime, but without providing optimality guarantee.

In the literature, the first dynamic distributed scheduling algorithm with optimality guarantee is

reported in Sun et al. (2017), where Sun et al. used standard mixed integer linear program (MILP)

solver to dynamically compute the worker-parameter server partition solutions. However, due to

the NP-hardness of MILP, this approach cannot be scaled up to handle large-size distributed ML

systems in practice.
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The most related work to ours is Bao et al. (2018), where Bao et al. developed an online

primal-dual approximation algorithm called OASiS to solve the scheduling problem for distributed

ML systems. However, our work differs from Bao et al. (2018) in the following key aspects: In

Bao et al. (2018), the workers and parameter servers are allocated on two strictly separated sets of

physical machines. In other words, no worker and parameter server can share the same physical

machine in their setting. By stark contrast, in this work, we allow workers and parameter servers

to be co-located on the same physical machine to increase communication and resource utilization

efficiency. As will be shown later, the co-location setting leads to an integer non-convex optimization

problem with non-deterministic constraints, which is much harder than that in Bao et al. (2018)

and necessitates new algorithm designs. More importantly, we consider the setting with co-located

workers and parameter servers because it is the reality for ML frameworks in practice (see, e.g.,

Chen et al. (2016)). The co-location setting was considered inPeng et al. (2018) recently. However,

the scheduling algorithm therein is a heuristic and does not provide performance guarantee. This

motivates us to develop new algorithms with provable performance to fill this gap.
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CHAPTER 3. METHODS AND PROCEDURES

3.1 System Model and Problem Formulation

In this section, we first provide a quick overview on the architecture of distributed ML frame-

works to familiarize readers with the necessary background. Then, we will introduce our analytical

modes for ML jobs and resource constraints, as well as the overall problem formulation.

1) Distributed Machine Learning: A Primer. As illustrated in Fig. 3.1, a distributed ML

system is usually implemented over a connected computing cluster that contains multiple physical

machines. Conceptually, the key components of a distributed ML system include parameter servers,

workers, and the training dataset. Parameter servers and workers are usually implemented on

virtual machines and could spread over multiple physical machines, as shown in Fig. 3.2. In

practice, parameters of the same job are evenly divided among its parameter servers. The training

dataset of an ML job is stored in a database and divided into equal-sized data chunks. Each data

chunk contains multiple equal-sized mini-batches.

To date, most distributed ML frameworks adopt the asynchronous stochastic gradient descent

method (Async-SGD) as the default training algorithm due to its low-complexity. Under Async-

SGD, the interactions between workers and parameter servers are illustrated in Fig 3.3: Once

becoming idle, a worker will request the current values of the parameters (e.g., the weights of

a DNN) from all parameter servers. Meanwhile, the worker retrieves a new data chunk from the

database. During the training stage, each worker processes one mini-batch from the data chunk at a

time to compute a gradient (i.e., directions and magnitudes of parameter changes). For example, in

a DNN model, gradients can be computed by the well-known “back-propagation” approach. Upon

finishing a mini-batch, the worker sends the gradient back to parameter servers and then continues

to work on the next mini-batch. After finishing the current data chunk, the worker will repeat

the same process on a new data chunk. On the parameter server side, parameters are updated
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SGD on a distributed ML system.

psh psp

wh

machine h machine p

Figure 3.4: bi(h, p)’s value is locality-dependent
(internal or external).

as w[k] = w[k − 1] + αkg[k], where w[k], αk, and g[k] denote the parameter values, step-size, and

stochastic gradient in the k-th update, respectively.

We can further see from Fig. 3.3 that the training progress at different workers is not synchro-

nized: Each parameter server updates its parameters without coordinating with other parameter

servers, hence the name Async-SGD. It has been shown that Async-SGD achieves the sameO(1/
√
k)

convergence rate as its synchronous counterpartLian et al. (2015); Huo and Huang (2017), while

avoiding technical complexities such as maintaining a common clock, bottlenecks due to slower

machine(s), periodic spikes of information exchanges and congestions, etc. Upon understanding

distributed ML systems, we will develop analytical models to facilitate scheduling algorithm de-

sign.

2) Learning Job Modeling: In this paper, we consider a time-slotted system. The scheduling

time-horizon is denoted as T with |T | = T . We use I to represent the set of training jobs and

let ai denote the arrival time-slot of job i ∈ I. We let H represent the set of physical machines.
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We use wih[t], sih[t] ∈ Z+ to represent the numbers of workers and parameter servers on machine

h ∈ H in each time-slot t ≥ ai, respectively. Further, we let Pi[t] , {h ∈ H|sih[t] > 0} and

Wi[t],{h∈H|wih[t]>0} denote the sets of machines having parameter servers and workers for job

i in time-slot t, respectively.

We use a binary variable xi ∈ {0, 1} to indicate whether job i is admitted (xi = 1) or not

(xi = 0). We use τi to denote the training time for each mini-batch of job i. We let bi(h, p) denote

the data rate of the link between a worker for job i (on machine h) and a parameter server (on

machine p). As shown in Fig. 3.4, the value of bi(h, p) is locality-dependent:

bi(h, p) =


b
(i)
i , if h = p,

b
(e)
i , otherwise,

where b
(i)
i and b

(e)
i denote the internal and external rates, respectively, with b

(i)
i � b

(e)
i in practice.

Let gi denote the size of gradient and parameters of job i. Then, τi + 2gi
minp∈Pi[t] bi(h,p)

is the total

amount of time to train a mini-batch on machine h and then communicate the result with its

parameter server(s). The number of mini-batches trained on machine h for job i in time-slot t can

then be computed as: wih[t]/(τi + 2gi
minp∈Pi[t] bi(h,p)

).

Suppose that, for job i, there are Ki data chunks available for training with Mi mini-batches

per data chunk. In ML systems, an epoch is defined as a round of training that exhausts all data

chunks. We let Ei denote the number of epochs needed by job i. Then, the total number of mini-

batches to be processed for job i over the entire training process is EiKiMi. To make sure that

there are sufficient workers allocated for job i over the entire training horizon, we have:

∑
t∈T

∑
h∈H

wih[t]

τi + 2gi
minp∈Pi[t] bi(h,p)

≥ xiEiKiMi, ∀i ∈ I. (3.1)

We note that, with co-located workers and parameter servers on each machine, Eq. (3.1) is non-

deterministic due to the existence of the min{·} operator. As will be shown later, this non-

determistic constraint makes the scheduling design far more complicated than related worksLi

et al. (2014); Chilimbi et al. (2014); Chun et al. (2016); Bao et al. (2018).
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To model that the largest number of assigned concurrent workers is no more than the number

of data chunks in each time slot (otherwise, some workers will be idle), we have:

∑
h∈H

wih[t] ≤ xiKi, ∀i ∈ I, ai ≤ t ≤ T. (3.2)

3) Resource Constraint Modeling: We let R denote the set of resources (e.g., CPU/GPU,

memory, storage, etc.). Let αri and βri be the amount of type-r resource required by a worker and

a parameter server for job i, respectively. Let Crh be the capacity of type-r resource on machine h.

To ensure the allocated resources do not exceed type-r’s limit, we have:

∑
i∈I

(αriwih[t] + βri sih[t]) ≤ Crh,∀t ∈ T , r ∈ R, h ∈ H. (3.3)

In a distributed ML system, the parameter servers should not be the bottleneck during gradi-

ent/parameter exchanges. To this end, we let Bi denote the communication data rate of job i’s

parameter server. Then, we have:

∑
h∈Wi[t]

∑
p∈Pi[t]

wih[t]bi(h, p) ≤
∑

h∈Pi[t]

sih[t]Bi, ∀i ∈ I, t ∈ T . (3.4)

In practice, the number of parameter servers is upper bounded by the number of workers in each

time slot for any job. This can be modeled as follows:

∑
h∈Pi[t]

sih[t] ≤
∑

h∈Wi[t]

wih[t], ∀i ∈ I, t ∈ T . (3.5)

Note that for job i, its completion time t̃i corresponds to the latest time-slot where there remain

some active workers allocated for it. Therefore, we have:

t̃i = arg max
t∈T

{∑
h∈H

wih[t] > 0

}
, ∀i ∈ I. (3.6)

To ensure that no workers and parameter servers are allocated before job i’s arrival, we have:

wih[t] = sih[t] = 0, ∀i ∈ I, h ∈ H, t < ai. (3.7)

4) Objective Function and Problem Statement: Let ui(t̃i − ai) be the utility function

for job i, which is non-increasing with respect to the training time t̃i − ai. That is, the more time
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job i takes to finish, the less the utility gain it will obtain. In this paper, our goal is to maximize

the overall utility for all jobs. Putting all constraints and the objective function together, the

offline (with knowledge of ai, ∀i) distributed ML resource scheduling problem (DMLRS) can be

formulated as:

DMLRS: Maximize
x,w,s

∑
i∈I

xiui(t̃i − ai)

subject to Constraints (3.1) – (3.7).

For quick reference, we summarize the key notations used in this paper in Table 3.1. It can be

seen that Problem DMLRS is an integer nonlinear program, which is NP-hard in generalHochbaum

(1997). Also, Problem DMLRS involves two non-deterministic constraints in (3.1) and (3.6), which

are not amenable for conventional optimization techniques. Moreover, the arrivals {ai, ∀i} are

unknown, which necessitates online optimization. Overcoming these challenges constitutes the

main subjects in the next section.

3.2 Solution Approach and Online Scheduling Algorithm Design

In this section, we structure the key components of our online scheduling algorithm design for

solving Problem DMLRS into three steps from Sections 3.2.1 to 3.2.3. Theoretical performance

results are provided in Section 3.2.4.

3.2.1 Handling Non-Deterministic Completion Time Constraint (3.6)

The first obstacle in solving Problem DMLRS stems from the non-deterministic “argmax”

structure in constraint (3.6). In the literature, a commonly used technique to handle argmax-type

constraints is via an equivalent reformulation that enumerates all possible schedules in the system

(see, e.g., Bao et al. (2018)).

Specifically, we let Πi be the set of all feasible schedules for job i ∈ I that satisfy constraints

(3.1), (3.2), (3.4), and (3.5). Each schedule πi ∈ Πi is defined by the numbers of workers wπiht and

parameter servers sπiht allocated for job i on machine h in each time-slot t, i.e., πi, {wπiht, s
πi
ht, ∀t∈
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T , h ∈ H}. We define a binary variable xπi ∈ {0, 1} that is equal to 1 if job i is admitted and

scheduled according to πi or 0 otherwise. We let t̃πi denote job i’s completion time under schedule

πi. Then, one can equivalently reformulate Problem DMLSR as:

R-DMLRS:

Maximize
x

∑
i∈I

∑
πi∈Πi

xπiui(t̃πi − ai)

subject to
∑
i∈I

∑
πi∈Γ(t,h)

(αriw
πi
ht + βri s

πi
ht)xπi ≤ C

r
h, (3.8)

∀t ∈ T , r ∈ R, h ∈ H,∑
πi∈Πi

xπi ≤ 1, ∀i ∈ I, (3.9)

xπi ∈ {0, 1}, ∀i ∈ I, πi ∈ Πi,

where we use Γ(t, h) to represent the set of feasible schedules that use machine h to deploy workers

or parameter servers in time-slot t. Constraint (3.8) guarantees that, in any time-slot t and on any

machine h, the total amount of consumed type-r resources will not exceed the capacity limit Crh.

Constraint (3.9) ensures that, for each job i, at most one feasible schedule from Πi will be selected.

It is easy to see that the constraints in Problem R-DMLRS are equivalent to those in Problem

DMLSR. Hence, a feasible solution to Problem R-DMLRS has a corresponding feasible solution to

the original Problem DMLSR, and vice versa. Yet, the non-deterministic constraint (3.6) no longer

exists in Problem R-DMLSR.

However, it remains difficult to directly solve Problem R-DMLSR since it has an exponential

number of binary decision variables (xπi ’s) due to the combinatorial nature of the problem. In

this paper, we adopt a primal-dual online algorithmic framework, which is an effective approach to

address this kind of challenge in the literature (see, e.g., Buchbinder and (Seffi) Naor (2009); Bao

et al. (2018)).
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3.2.2 Online Primal-Dual Framework for Problem R-DMLSR

The fundamental rationale behind the primal-dual approach is that, in the dual of Problem R-

DMLSR, the number of dual variables is polynomial. Meanwhile, although there are an exponential

number of constraints in the dual problem, one only needs to be concerned with the set of active

(binding) constraints, which are easier to deal with.

To see this, we associate two sets of dual variables (prices) prh[t] ≥ 0, ∀t ∈ T , h ∈ H, r ∈ R and

λi > 0, i ∈ I, with constraints (3.8) and (3.9), respectively. Then, following the standard procedure

of dualization and relaxing the integrality constraints, we obtain the following dual problem:

D-R-DMLRS:

Minimize
λ,p

∑
i∈I

λi +
∑
t∈T

∑
h∈H

∑
r∈R

prh[t]Crh (3.10)

subject to λi ≥ ui(t̃πi − ai)−
∑

t∈T (πi)

∑
h∈H(πi[t])

∑
r∈R

(αriw
πi
ht

+ βri s
πi
ht)p

r
h[t], ∀i ∈ I, πi ∈ Πi, (3.11)

prh[t] ≥ 0, ∀t ∈ T , h ∈ H, r ∈ R,

λi ≥ 0, ∀i ∈ I,

where T (πi) denotes the time-slots utilized by schedule πi and H(πi[t]) denotes the set of machines

containing workers and/or parameter servers under πi in time-slot t. Here, prh[t] can be viewed as

the price for type-r resource in time t, and λi can be viewed as the payoff of admitting job i under

πi.

Next, we examine the structural properties of Problem D-R-DMLRS. To minimize (3.10), we

tend to reduce λi and prh[t] as much as possible until they hit zero. However, as λi and prh[t] decrease,

the left-hand-side (LHS) and right-hand-side (RHS) of (3.11) decreases and increases, respectively

(note that ui(t̃πi−ai) is a constant given πi). Therefore, λi will eventually drop to a value λ∗i , which

is equal to maximum of the RHS of (3.11) achieved by some schedule π∗i and dual price pr∗h [t], i.e.,

λ∗i =ui(t̃π∗i − ai)−
∑

t∈T (π∗i )

∑
h∈H(π∗i [t])

∑
r∈R

(αriw
π∗i
ht +βri s

π∗i
ht )p

r∗
h [t].
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This optimality structural insight implies that Problem D-R-DMLRS is equivalent to finding an

optimal schedule π∗i and dual price pr∗h [t] to maximize the RHS of (3.11), which motivates the general

primal-dual online resource scheduling (PD-ORS) framework in Algorithm 1 (also seeBuchbinder

and (Seffi) Naor (2009); Bao et al. (2018)):

Algorithm 1: Primal-Dual Online Resource Scheduling (PD-ORS).

Initialization:

1. Let wih[t] = 0, sih[t] = 0, ∀i, t, h. Let ρrh[t] = 0, ∀h, r, t. Choose some appropriate initial values

for prh[0].

Main Loop:

2. Upon the arrival of job i, determine a schedule π∗i to maximize the RHS of (3.11) and its

corresponding payoff λi using Algorithm 2 (to be specified).

3. If λi > 0, set xi = 1. Set wih[t] and sih[t] according to schedule π∗i , ∀t ∈ T (π∗i ), h ∈ H(π∗i [t]).

Update ρrh[t] ← ρrh[t] + αriwih[t] + βri sih[t], ∀t ∈ T (π∗i ), h ∈ H(π∗i [t]), r ∈ R. Update prh[t] =

Qrh(ρrh[t]), ∀t ∈ T (π∗i ), h ∈ H(π∗i [t]), r ∈ R. Schedule job i according to π∗i and go to Step 2.

4. If λi ≤ 0, set xi = 0 and reject job i and go to Step 2.

The intuition of Algorithm 1 is as follows: By the complementary slackness condition of the

Karush-Kuhn-Tucker (KKT) conditionsBazaraa et al. (2006), the primal constraint (3.9) must be

tight when dual variable λi > 0, which implies that xi = 1 (Step 3) in the original Problem DMLSR.

Otherwise, if λi = 0, then the RHS of (3.11) is non-positive, meaning the utility is low compared

to the cost of resource consumption under schedule π∗i . Therefore, we should reject job i (xi = 0

in Step 4).

However, in order for the PD-ORS algorithm to work, two challenging components need to be

specified:

• How to determine an optimal schedule π∗i in Step 2? Due to the exponential size of Πi, it is

intractable to enumerate all feasible schedules in Πi. In fact, we will show later that this sub-

problem is an NP-hard integer programming problem with mixed cover/packing-type constraints,

meaning that we can at best pursue approximate solutions unless P = NP;
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• How to design the cost update function Qrh(·) for prh[t]? Note that since jobs arrive in an online

fashion, we do not have the knowledge of their future arrivals. Therefore, even if we know π∗i , we

cannot directly compute prh[t] from the linear program (LP) implied by Problem D-R-DMLRS.

In what follows, we will first focus on designing Qrh(·) and defer the finding of π∗i to Section 3.2.3.

For the design of Qrh(·), we adopt the existing approach in the literature Buchbinder and (Seffi) Naor

(2009); Bao et al. (2018) and consider the following choice of Qrh(·):

Qrh(ρrh[t]) = L(U r/L)
ρrh[t]

Cr
h , (3.12)

where constants U r, ∀r, and L are defined as:

U r , max
i∈I

ui(dEiMi(τi + 2gi/b
(i)
i )e − ai)

αri + βri
, ∀r ∈ R, (3.13)

L ,
1

2µ
min
i∈I

ui(T − ai)∑
r∈RdEiKiMi(τi + 2gi/b

(e)
i )e(αri + βri )

. (3.14)

The scaling factor µ in the definition of L satisfies 1
µ ≤

dEiKiMi(τi+2gi/b
(e)
i )e

∑
r∈R(αri+β

r
i )

T
∑
h∈H

∑
r∈R C

r
h

. U r repre-

sents the maximum unit-resource job utility to deploy workers and parameter servers with type-r

resource . Here, ui(dEiMi(τi + 2ei/b
(i)
i )e − ai) is the largest utility job i can achieve by using the

maximum number of co-located workers and parameter servers (hence communicating rate is b
(i)
i ) at

all times during all Ei epochs, so that dEiMi(τi+2ei/b
(i)
i )e−ai is the fastest possible job completion

time. Similarly, L represents the minimum unit-time unit-resource job utility among all jobs, with

ui(T − ai) being the smallest utility for job i, and workers and parameter servers communicate at

slow external rate b
(e)
i .

The Qrh(·) function has three important properties (proofs follow similarly from Buchbinder

and (Seffi) Naor (2009); Bao et al. (2018) and are omitted due to space limitaton): i) At t = 0,

ρrh[0] = 0, ∀h ∈ H, r ∈ R. Hence, the price prh[0] = L is the lowest, ∀h, r, and any job can be

admitted; ii) As the amount of allocated resources increases, the price increases exponentially fast

to quickly reject early coming jobs with lower utility, so as to reserve resources for later arrived

jobs with higher utility; iii) When some type-r resource is exhausted, i.e., ρrh[t] = Crh, ∃r ∈ R,
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Figure 3.10: Values of minp∈Pi[t]
2gi

bi(h,p)
under various settings of Pi[t] and Wi[t]. Clearly, minp∈Pi[t]

2gi
bi(h,p)

= 2gi/b
(i)
i if and

only if under setting (d).

Qrh[Crh] = U r and no job that requires type-r resources will be admitted since the U r is the highest

price.

3.2.3 Determining π∗i in Step 2 of Algorithm 1

Now, we focus on the subproblem of finding a schedule π∗i in Step 2 of Algorithm 1 to maximize

the RHS of (3.11), i.e.,

Find-Sch:

Max
t̃i,w,s

ui(t̃i − ai)−
∑
t∈T

∑
h∈H

∑
r∈R

prh[t](αriwih[t] + βri sih[t])

s.t. αriwih[t] + βri sih[t] ≤ Ĉrh[t], ∀t ∈ T , r ∈ R, h ∈ H,

Constraints (3.1)(3.2)(3.4)-(3.7) for xi = 1,

where Ĉrh[t] , Crh − ρrh[t]. However, Problem Find-Sch is a challenging integer nonlinear optimiza-

tion problem with non-deterministic constraints in (3.1). In what follows, we will address these

challenges one by one.
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1) Handling nonlinear ui(·) function: Observe that, given t̃i, Problem FindSch can be

simplified as follows:

Minimize
w,s

∑
t∈[ai,t̃i]

∑
h∈H

∑
r∈R

prh[t](αriwih[t] + βri sih[t]) (3.15)

subject to
∑

t∈[ai,t̃i]

∑
h∈H

wih[t]

τi + minp∈Pi[t]
2gi

bi(h,p)

≥ ViMi, (3.16)

αriwih[t]+βri sih[t]≤ Ĉrh[t],∀r, h,∀t∈ [ai, t̃i], (3.17)

Constraints (3.2)(3.4)(3.5) for all t ∈ [ai, t̃i],

where Vi , EiKi represents the total training workload. Note that in Problem (3.15), the only

coupling constraint is (3.16). This observation leads to a dynamic programming approach to solve

Problem (3.15): First, consider the following problem if training workload in a time-slot t is known

(denoted as Vi[t]):

Minimize
wih[t],sih[t],∀h

∑
h∈H

∑
r∈R

prh[t](αriwih[t] + βri sih[t]) (3.18)

subject to
∑
h∈H

wih[t]

τi + minp∈Pi[t]
2gi

bi(h,p)

≥ Vi[t]Mi, (3.19)

Constraints (3.2)(3.4)(3.5)(3.17) for the given t.

Let Θ(t̃i, Vi) and θ(t, Vi[t]) denote the optimal values of Problems (3.15) and (3.18), respectively.

Then, Problem (3.15) is equivalent to the following dynamic program (DP):

Θ(t̃i, Vi) = min
v∈[0,Vi]

{
θ(t̃i, v) + Θ(t̃i − 1, Vi − v)

}
. (3.20)

Then, by enumerating all t̃i ∈ [ai, T ] and solving the dynamic program Θ(t̃i, Vi) in (3.20) for every

choice of t̃i, we can solve Problem Find-Sch and determine the optimal schedule π∗i . We summarize

this procedure in Algorithm 2 and Algorithm 3:

Algorithm 2: Determine π∗i in Step 2 of Algorithm 1.

Initialization:

1. Let t̃i=ai. Let λi=0, π∗i =∅, wih[t]=sih[t]=0, ∀t, h.

Main Loop:
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2. Compute Θ(t̃i, Vi) by solving the DP in (3.20) using Algorithm 3. Denote the resulted schedule

as πi. Let λ′i = ui(t̃i − ai)−Θ(t̃i, Vi). If λ′i > λi, let λi ← λ′i and π∗i ← πi.

3. Let t̃i ← t̃i + 1. If t̃i > T , stop; otherwise, go to Step 2.

Algorithm 3: Dynamic Programming for Solving Θ(t̃i, Vi).

Initialization:

1. Let cost-min = ∞, πi = ∅, and v = 0.

Main Loop:

2. Compute θ(t̃i, v) using Algorithm 4 (to be specified). Denote the resulted cost and schedule as

cost-v and π̂i.

3. Compute Θ(t̃i − 1, Vi − v) by calling Algorithm 3 itself. Denote the resulted cost and schedule

as cost-rest and π̃i.

4. If cost-min > cost-v + cost-rest then cost-min = cost-v + cost-rest and let πi ← π̂i ∪ π̃i.

5. Let v ← v + 1. If v > Vi stop; otherwise go to Step 2.

2) Solving θ(t, v) (i.e., Problem (3.18)): In Algorithm 3, a key unresolved question is how

to compute θ(t, v) in Step 2 (i.e., solving Problem (3.18)). To solve (3.18), a main obstacle is the

non-deterministic constraint in (3.19), where bi(h, p) can be either b
(i)
i or b

(e)
i . Therefore, we need

to handle both cases in minp∈Pi[t]
2sih[t]gi∑

h∈Hsih[t]bi(h,p)
. To this end, we observe a simple fact about

minp∈Pi[t]
2gi

bi(h,p)
(also see Fig. 3.10), which will be useful in our subsequent analysis (proof omitted

due to its simplicity):

Fact 1 The function minp∈Pi[t](2gi/bi(h, p)) = 2gi/b
(i)
i if and only if |Pi[t]| = |Wi[t]| = 1 and

Pi[t] =Wi[t]; otherwise, minp∈Pi[t](2gi/bi(h, p)) = 2gi/b
(e)
i .

2-1) Internal communication: To design an algorithm to handle cases with internal communi-

cation rate b
(i)
i , we start from analyzing the optimality structure of Problem (3.18). We note that if

we temporarily ignore the workload-coupling constraint (3.19), Problem (3.18) can be decomposed
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as follows:

∑
r∈R

∑
h∈H


Min prh[t](αriwih[t] + βri s

r
ih[t]),

s.t. αriwih[t] + βri sih[t] ≤ Ĉrh[t],

Constraints (3.2)(3.4)(3.5) for given r, h

 , (3.21)

in which each summand in (3.21) is an integer linear program (ILP) having a trivial solution

wih[t] = sih[t] = 0, ∀h ∈ H. However, wih[t] = 0, ∀h ∈ H, clearly violates the workload constraint

(3.19). Thus, when (3.21) is optimal, there should be exactly one machine h′ ∈ H with wih′ [t] ≥ 1

and exactly one machine h′′ ∈ H with sih′′ [t] ≥ 1. This observation shows that the optimal

solution of (3.18) tends to favor |Pi[t]| = |Wi[t]| = 1 if workload-coupling constraint (3.19) is not

binding, which matches the internal case condition in Fact 1. This observation suggests that, for

the “b
(i)
i ” case, we should check the workload constraint (3.19) on each machine one by one (i.e.,

ensuring |Pi[t]| = |Wi[t]| = 1 and Pi[t] = Wi[t]). In this setting, the workload constraint (3.19)

becomes wih[t] ≥ Vi[t]Mi(τi + 2gi/b
(i)
i ). After checking all machines, choose, if any, the machine h

that satisfies (3.19) and has the lowest cost. Then, we return the schedule (wih[t], sih[t]) and the

corresponding cost value.

2-2) External communication: For those settings that do not satisfy |Pi[t]| = |Wi[t]| = 1

and Pi[t] = Wi[t], Fact 1 indicates that parameter servers and workers are communicating at ex-

ternal rate b
(e)
i . In this case, the workload constraint (3.19) becomes:

∑
h∈Hwih[t] ≥ Vi[t]Mi(τi +

2sih[t]gi/(
∑

h∈H sih[t]b
(e)
i )). For convenience, we letmw[t] , dVi[t]Mi(τi+2sih[t]gi/(

∑
h ∈ Hsih[t]b

{e}
i ))e

and mp[t] , dmw[t]b
{e}
i /Bie represent the minimum required numbers of workers and parameter

servers given workload Vi[t], respectively. Then, we can rewrite Problem (3.18) as:

Minimize
wih[t],sih[t],∀h

∑
h∈H

pwh [t]wih[t] + psh[t]sih[t] (3.22)

subject to αriwih[t] + βri sih[t] ≤ Ĉrh[t], ∀h, r, (3.23)∑
h∈H

wih[t] ≥ mw[t], (3.24)∑
h∈H

sih[t] ≥ mp[t], (3.25)
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where pwh [t],
∑

r∈R p
r
h[t]αri and psh[t],

∑
r∈R p

r
h[t]βri denote the combined prices of all resources of

allocating worker and parameter server on machine h in time t, respectively.

However, Problem (3.22) is an integer programming problem, it is a problem with generalized

packing and cover type constraints (i.e., integer variables rather than 0-1 variables) in (3.23) and

(3.24)-(3.25), respectively, which is clearly NP-Hard. Also, it is well-known that there are no poly-

nomial time approximation schemes (PTAS) even for the basic set-cover and bin-packing problems

unless P = NP Hochbaum (1997). Hence, we will pursue a constant ratio approximation scheme

to solve Problem (3.22) in this paper.

To this end, we propose a randomized rounding scheme to solve the new relaxed problem:

First, we solve the linear programming relaxation of Problem (3.22). Let {w̄ih[t], s̄ih[t],∀h, t} be

the fractional optimal solution. Let G> 1 be a constant and let w′ih[t] =Gw̄ih[t], s′ih[t] =Gs̄ih[t],

∀h, t. Then, we randomly round {w′ih[t], s′ih[t], ∀h, t} to generate an integer solution:

wih[t] =


dw′ih[t]e, with probability w′ih[t]− bw′ih[t]c,

bw′ih[t]c, with probability dw′ih[t]e − w′ih[t],

(3.26)

sih[t] =

ds
′
ih[t]e, with probability s′ih[t]− bs′ih[t]c,

bs′ih[t]c, with probability ds′ih[t]e − s′ih[t].

(3.27)

We will later prove in Theorem 2 that the approximation ratio of this randomized rounding scheme

in (3.26)-(3.27) enjoys a ratio that logarithmically depends on the problem size.

Finally, summarizing the results in 2-1) and 2-2) yields the following approximation algorithm

for solving Problem (3.18):

Algorithm 4: Solving θ(t, v) (i.e., Problem (3.18)).

Initialization:

1. Let wih[t] = sih[t] = 0, ∀h. Let h = 1. Pick some G > 1.

Let D = dvMi(τi + 2gi/b
(i)
i )e. h∗ = ∅. cost-min=∞.

Handling Internal Communication:

2. If constraint (3.23) is not satisfied, go to Step 7.
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3. If wih[t] < D, wih[t]← wih[t] + 1 and go to Step 2.

4. If wih[t] > Ki, go to Step 7.

5. If wih[t]b
(i)
i >sih[t]Bi, sih[t]←sih[t]+1 and go to Step 2.

6. If cost-min > prh[t](αriwih[t] + βri s
r
ih[t]), then let cost-min= prh[t](αriwih[t] + βri s

r
ih[t]) and h∗ = h.

7. Let h← h+ 1. If h > H, stop; otherwise, go to Step 1.

Handling External Communication:

8. Solve the linear programming relaxation of Problem (3.22) with mw[t] = dvMiτie, mp[t] =

dmw[t]b
(e)
i /Bie. Let {w̄ih[t], s̄ih[t], ∀h, t} be the fractional optimal solution.

9. Let w′ih[t] = Gw̄ih[t], s′ih[t] = Gs̄ih[t], ∀h, t.

10. Generate an integer solution {wih[t], sih[t],∀h, t} following the randomized rounding scheme in

(3.26)-(3.27).

11. If {wih[t], sih[t],∀h, t} is infeasible, go to Step 10.

Final Step:

12. Compare the solutions between internal and external case. Pick the cheaper one between them

and return the cost and the corresponding schedule {wih[t], sih[t],∀h, t}.

In the internal communication part of Algorithm 4, we check each machine one by one. If the

resource capacity constraint (3.23) is satisfied (Step 2), we increase workers to satisfy the learning

workload demand D (Step 3) and also increase parameter servers accordingly (Step 5). If we detect

a machine with lower cost, we update the cost and schedule accordingly (Step 6). After exploring

one machine, we move on to the next (Step 7). The external communication part is based on LP

relaxation (Step 8), randomized rounding (Step 9-11) and heuristic search (Step 12).

3.2.4 Performance Analysis

We now examine the competitive ratio performance of our PD-ORS algorithm. Note that the

key component in PD-ORS is our proposed randomized rounding scheme in (3.26)-(3.27), which
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is in turn the foundation of Algorithm 1. Thus, we first prove the following result about the

randomized rounding:

Consider an integer program with generalized cover/packing constraints: min{c>x : Ax ≥

a,Bx≤b,x∈Zn+}, where A∈Rm×n+ , B∈Rr×n+ , a∈Rm+ , b∈Rr+, and c∈Rn+. Let x̄ be a fractional

optimal solution. Consider the randomized rounding scheme: Let x′ =Gx̄ for some G> 1 (to be

specified). Randomly round x′ to x̂∈Zn+ as: x̂j =dx′je w.p. x′j−bx′jc and x̂j =bx′jc o.w. Then, we

have (see proof in Appendix A):

Lemma 1 (Rounding) Let Wa,min{ai/[A]ij : [A]ij>0} and Wb,min{bi/[B]ij : [B]ij>0}. Let

δ ∈ (0, 1] and define G as:

G , 1 +
ln(3m/δ)

Wa
+

√(
ln(3m/δ)

Wa

)2

+
2 ln(3m/δ)

Wa
.

Then, with probability greater than 1− δ, x̂ achieves a cost at most 3G
δ times the cost of x̄, and x̂

satisfies Pr{(Bx̂)i > bi(1 + ( 3
GWb

)
1
2 )G, ∃i} ≤ δ

3r .

Several important remarks for Lemma 1 are in order: i) The theoretical approximation ratio 3G
δ

is conservative. Our numerical studies show that the approximation ratio performance in reality

is much smaller than 3G
δ ; ii) The probability parameter δ controls the trade-off between approx-

imation ratio and efficiency in finding a feasible rounding solution: A larger δ implies a smaller

approximation ratio, but the probability of obtaining a feasible solution of this ratio is also smaller

(i.e., more rounds of rounding needed). Interestingly, for δ = 1, Lemma 1 indicates that there is

still non-zero probability to achieve an approximation ratio not exceeding 3G; iii) The probabilistic



22

guarantee of the packing constraint (Bx ≤ b) is unavoidable and due to the fundamental hard-

ness of the conflicting cover and packing constraints: A strategy trying to better satisfy the cover

constraints (multiplying a G-factor in here) may increase the probability of violating the packing

constraints; iv) The result in Lemma 1 is for general ILP with mixed cover/packing constraints,

which could be of independent theoretical interest.

By specializing Lemma 1 with parameters in Problem (3.22), we have the following approxima-

tion result for Algorithm 4:

Theorem 2 (Algorithm 4) Let W1,min{mw[t],mp[t]}, W2,min{Ĉrh[t]/αri , Ĉ
r
h[t]/βri , ∀r, h}. Let

δ ∈ (0, 1]. Define G as:

G , 1 +
ln(6/δ)

W1
+

√(
ln(6/δ)

W1

)2

+
2 ln(6/δ)

W1
.

Then, with probability greater than 1−δ, Algorithm 4 obtains a schedule {wih[t], sih[t], ∀t, h} that

has an approximation ratio at most 3G
δ with Pr{LHS(3.23)>Ĉrh[t]G(1+( 3

GW2
)
1
2 )}≤ δ

3HR .

Theorem 2 is a direct consequence of Lemma 1 and we omit the proof for brevity. With

Theorem 2, we can establish the overall competitive ratio result for Algorithm 1 as follows:

Theorem 3 (Competitive Ratio) Let G and δ be as defined in Theorem 2. Let U r and L be as

defined in (3.13) and (3.14), respectively. Then, PD-ORS in Algorithm 1 is 6G
δ minr∈R(1, ln Ur

L )–

competitive.

Theorem 3 can be proved by weak duality and the approximation result in Theorem 2. We

provide a proof in Appendix B. Finally, by combining Algorithms 1-5, it can be shown that the

average time complexity of PD-ORS is O(1
δTK

2
i E

2
iH

4), which is polynomial.
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Table 3.1: List of notations.

I The set of jobs

T System timespan

t̃i Completion time of job i

ai Arrival time of job i

R The set of resource types

Ki Number of data chunks in i

xi Admission decision variable to accept job i or not

ui(·) Job i’s utility function

Ei Number of training epochs for job i

Mi Number of mini-batches in a data chunk for job i

H Set of physical machines

Crh Capacity of type-r resource on server h

αri Type-r resource required by a worker in job i

βri Type-r resource required by a parameter server in job i

wih[t] Number of workers of job i on server h in t

sih[t] Number of parameter servers of job i on server h in t

Bi Bandwidth offered by a parameter server of job i;

bi(h, p)
Bandwidth consumed by a worker of job i, where

bi(h, p) = b
{e}
i , if h 6= p or b

{i}
i , otherwise.

τi Time to train a mini-batch for job i

gi Size of gradients and parameters for job i

Wi[t] Set of physical machines containing workers for job i in t

Pi[t] Machines containing parameter servers for job i in t

xπi Binary decision variable to select schedule π for job i or not

tπi The completion time slot of job i with schedule π

wπih[t] Number of workers on server h in t for job i in schedule π

sπih[t] Number of parameter servers on server h for schedule π in t

Πi Set of all feasible schedules for job i
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CHAPTER 4. RESULTS

4.1 Numerical Results

In this section, we conduct simulation studies to evaluate the efficacy of our proposed PD-

ORS algorithm. In our experiments, we test an ML system with Ei ∈ [50, 150], Mi ∈ [20, 40],

Ki ∈ [5, 20], gi ∈ [50, 100], τi ∈ [0.01, 0.05], bi ∈ [100Mbps, 4Gbps], and Bi = [4Gbps, 20Gbps], all

generated uniformly at random. We consider three types of resources: GPU, memory, and storage.

In our experiments, both worker and parameter servers requested 0 to 4 GPU, 2 to 30 GB memory,

and 4 to 8 GB storage.

We first compare our PD-ORS algorithm with the OASiS algorithm inBao et al. (2018), which

is the most related work to ours and the state-of-the-art of scheduling for distributed ML systems.

As mentioned earlier, the key difference in OASiS is that parameter servers and workers are located

on two strictly separated set of machines. Here, we let H = 30 and T = 100. For OASiS, half

of the machines are parameter servers and the other half are workers. We set b
(i)
i /b

(e)
i = 40. For

fair comparisons, both algorithms adopt the same utility function: ui(t − ai) = 1
1+(t−ai) . The

comparison results are shown in Fig. 3.11. We can see that PD-ORS significantly outperforms

OASiS. For example, with 15 jobs, PD-ORS’s utility value is more than 7 times higher than that

of OASiS.

Next, we investigate the impact of b
(i)
i /b

(e)
i on total utility value and the results are shown in

Fig. 3.12. In this experiment, we let H = 20, T = 50, and vary b
(i)
i /b

(e)
i from 1 to 60. We can see

that the total utility rises rapidly as b
(i)
i /b

(e)
i increases initially, which shows that PD-ORS reacts

aggressively to a large b
(i)
i /b

(e)
i -value. On the other hand, the increase of total utility becomes more

gradual when b
(i)
i /b

(e)
i is greater than 30. This is because beyond this point, most jobs already have

a large number of co-located parameter servers and workers.
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Lastly, we examine the performance of the randomized rounding scheme in Algorithm 4, which is

the key of PD-ORS. We evaluate the efficiency of rounding in terms of how many times of rounding

are needed to obtain a feasible solution and their according approximation ratio. The results are

shown in Figs. 3.13 and 3.14, respectively. In this experiment, we let H = 50 and T = 100, which

implies the total number of possible rounding choices is 250, an astronomical number. We vary the

pre-rounding gain factor G from 1 to 1.01. We can see that the times of rounding initially decreases

and reaches the lowest point at 570 when G = 1.006. This is because cover constraints are easier

to satisfy with a larger G. When G > 1.006, we can see that times of rounding start to increase.

This is because packing constraints are prone to be violated as G gets large. We note that, in all

cases, the times of rounding are less than 1000, for which the runtime is short (especially given the

size of the search space is 250). Also, we can see from Fig. 3.14 that the approximation ratios for

all choices of G are close to 1 (≤ 1.0025), which shows that our randomized rounding scheme is not

only much tighter than than the worse case bound suggested Theorem 3, it is also near-optimal.
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CHAPTER 5. SUMMARY AND DISCUSSION

This is the opening paragraph to my thesis which explains in general terms the concepts and

hypothesis which will be used in my thesis.

With more general information given here than really necessary.

5.1 Conclusion

In this paper, we investigated the problem of online resource scheduling design for large-scale dis-

tributed machine learning systems over computing clusters. We considered the most general setting

where workers and parameter servers can be co-located on the same physical machine. We showed

that this problem is a challenging integer nonlinear programming problem with non-deterministic

constraints. In this paper, we developed an online scheduling algorithm with competitive ratio

guarantee. Our main contributions are three-fold: i) We developed a new analytical model that

jointly considers resource locality and allocation; ii) Through careful examinations of worker-server

configuration relationships, we resolve the locality ambiguity in the model and reduce the problem

to a mixed cover/packing integer program that leads to low-complexity approximation algorithm

design; iii) We proposed a meticulously designed randomized rounding algorithm to solve the mixed

cover/packing integer program and rigorously established its approximation ratio guarantee. Col-

lectively, our results expand the theoretical frontier of optimization algorithm design for distributed

machine learning systems.
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APPENDIX A. PROOF OF LEMMA 1

To prove Lemma 1, consider the probabilities of the following “bad” events: 1) c>x > 3G
δ c>x̄;

2) ∃i such that (Ax̂)i < ai; and 3) ∃i such that (Bx̂)i > bi. Note that events 2) and 3) can be

equivalently rewritten as: 2’) ∃i such that E{(Ax)i
Wa
ai

< Wa} and 3’) ∃i such that E{(Bx)i
Wb
bi
<

Wb}. Since E{x̂}=x′=Gx̄, by linearity of expectation, we have:

E{c>x̂} = c>E{x̂} = c>Gx̄ = Gc>x̄, (A.1)

E
{

(Ax̂)i
Wa

ai

}
= GE

{
(Ax̄)i

Wa

ai

}
≥ GWa, (A.2)

E
{

(Bx̂)i
Wb

bi

}
= GE

{
(Bx̄)i

Wb

bi

}
≤ GWb. (A.3)

Then, by Markov inequality and (A.1), we have Pr
{
c>x̂ > 3G

δ c>x̄
}
≤ δ

3 .

Next, we note that each x̂j can be viewed as a sum of independent random variables in [0, 1]

as follows: The fixed part of bx′jc is a sum of bx′jc random variables with value 1 with probability

1. Then, we have that (Ax̂)i
Wa
ai

= (
∑

j [A]ij x̂j)
Wa
ai

is also a sum of independent random variables

in [0, 1]. Using Chernoff bound, we have Pr{(Ax̂)i
Wa
ai
≤ (1 − ε)GWa} ≤ exp(−ε2GWa

2 ). Setting

(1− ε)G=1, i.e., ε=1− 1
G , we have:

Pr

{
(Ax̂)i

Wa

ai
≤Wa

}
≤ exp

(
−
(

1− 1

G

)2
G
Wa

2

)
. (A.4)

Forcing exp
(
−(1− 1

G)2GWa
2

)
≤ δ
m and solving G, we have:

G , 1 +
ln(3m/δ)

Wa
+

√(
ln(3m/δ)

Wa

)2

+
2 ln(3m/δ)

Wa
. (A.5)

Using (A.3) and Chernoff bound and following similar arguments, we have: Pr{(Bx̂)i
Wb
bi
> (1+

ε)GWb} ≤ exp(−ε2GWb
3 ). Forcing exp

(
−ε2GWb

3

)
= δ

3r and solving for ε, we have ε = ( 3
GWb

ln(3r
δ ))

1
2 .

It follows that Pr{(Bx̂)i
Wb
bi
> (1 + ( 3

GWb
ln(3r

δ ))
1
2 )} ≤ δ

3r , which implies that:

Pr

{
(Bx̂)i >

(
1 +

√
3

GWb
ln
(3r

δ

))
G, ∃i

}
≤ δ

3r
. (A.6)
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By using union bound and (A.4) and (A.6), we have that events 1)–3) occur with probability less

than δ
3 +m · δ

3m + r · δ3r = δ, and the proof is complete.
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APPENDIX B. PROOF SKETCH OF THEOREM 3

Due to space limitation, we provide a proof sketch for Theorem 3 in here. From Theorem 2, we

know that Algorithm 4 is a 3G
δ -approximate algorithm. Then, by induction, we can show that the

dynamic programming approach in Algorithm 3 is also a 3G
δ -approximate algorithm.

Now, let π̂i denote the approximate schedule obtained by Algorithm 2, which inexactly solves

Problem D-R-DMLRS. Let Pi and Di be the primal and dual objective values of Problems R-

DMLRS and D-RMLRS after determining the schedule π̂i in Algorithm 1. Then, we have Pi−Pi−1 =

ui(t̃π̂i − ai). Let λ̂i be the dual price that corresponds to π̂i. Also, we let Θ∗(t̃π̂i , Vi) be the true

minimum cost under t̃π̂i . Suppose that job i is admitted, we then have ui(t̃π̂i −ai)− δ
3GΘ(t̃π̂i , Vi) ≥

ui(t̃π̂i−ai)−Θ∗(t̃π̂i , Vi) ≥ ui(t̃π̂i−ai)−Θ(t̃π̂i , Vi) = λ̂i, which implies ui(t̃π̂i−ai) ≥ λ̂i+ δ
3GΘ(t̃π̂i , Vi).

Also, note that Di −Di−1 = λ̂i +
∑

t

∑
h

∑
r(p

r,i
h [t] − pr,i−1

h [t])Crh. Then, following similar ar-

guments in Buchbinder and (Seffi) Naor (2009); Bao et al. (2018), we can show that the following

allocation-cost relationship holds under price function (3.12): Θ(t̃π̂i , Vi) ≥
δ/3G

minr∈R(1,ln Ur

L
)

∑
t

∑
h

∑
r(p

r,i
h [t]−

pr,i−1
h [t])Crh, which further implies Pi − Pi−1 ≥ δ/3G

minr∈R(1,ln Ur

L
)
(Di −Di−1). Then, by telescoping on

Pi − Pi−1 from 1 to I and using weak duality with the fact that D0 ≤ 1
2OPT (due to the choice of

constant L in the cost function), we reach the final competitive ratio in Theorem 3 and the proof

is complete.
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