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Anisotropic Upper Critical Field of LuNi 2B2C
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The upper critical field,Hc2, of LuNi2B2C has been determined from the temperature dependence
the magnetization. A temperature dependent anisotropy within the basal plane which decreases
a value of 1.1 at 4.5 K to a value of 1.0 atTc and an almost temperature independent out-of-plan
anisotropy have been observed. NearTc the upper critical field along all directions shows a strong
upward curvature. These features ofHc2 can be explained quantitatively using a nonlocal extension
the Ginzburg-Landau equations. The Fermi velocity averages determined from these measuremen
those obtained in band structure calculations are in good agreement. [S0031-9007(97)03913-6]

PACS numbers: 74.60.Ec
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Recently, a new family of rare earth (Re) based s
perconductors with the composition ReNi2B2C has been
discovered, where Re­ Lu, Y, Tm, Er, Ho, and Dy [1].
All members of this family have a body-centered tetra
onal crystal structure composed of alternating layers
Ni2B2 and ReC [2]. The values ofTc range from about
16 K in LuNi2B2C to 6 K in DyNi2B2C and roughly scale
with the de Gennes factor across the series [3,4]. T
magnetic variants, Re­ Er, Ho, Tm, undergo a transition
to antiferromagnetic order within the superconducting st
[3,5,6] whereas in DyNi2B2C the superconducting trans
tion occurs within the antiferromagnetic state [4]. Th
availability of large, high-quality single crystals [6] allow
the study of the interplay of the superconducting and m
netic ground states and their anisotropies. In particular,
interaction of superconductivity and magnetism was p
posed as the origin of a vortex lattices (VL) with squa
symmetry for magnetic fields along the tetragonal axis o
served in ErNi2B2C using small angle neutron scatterin
(SANS) [7]. The observation of similar square lattic
in nonmagnetic LuNi2B2C using scanning tunneling mi
croscopy (STM) [8] and SANS [9] indicates a differen
origin in this material. In recent theoretical work bas
on the London model [10] and on the Ginzburg-Land
(GL) model [11] it was shown that anisotropic energy co
tributions arising from nonlocal corrections of sufficie
strength can stabilize a square vortex lattice. Within G
theory the anisotropy ofHc2 in the basal plane can b
correlated with the occurrence of a square VL, with t
square lattice being stable for anisotropiesH

k100l
c2 yH

k110l
c2

larger than approximately 1.03.
Here, we present measurements of the upper crit

field as determined from the temperature dependence o
magnetization. Along all orientations,Hc2 has an upward
curvature nearTc. We observe a temperature depende
anisotropy within the basal plane decreases from a va
of H

k100l
c2 yH

k110l
c2 ­ 1.1 at 4.5 K to 1.0 atTc. The aver-
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age out-of-plane anisotropy0.5sHk100l
c2 1 H

k110l
c2 dyH

k001l
c2 is

essentially temperature independent with a value of 1.1
The angular dependence ofHc2 within the basal plane as
well as the curvature ofHc2 can be described quantitatively
with a nonlocal extension [12] of Gorkov’s derivation [13]
of the GL equations. Fermi velocity averages determine
from the measurements presented here are in good agr
ment with those obtained from recent band structure ca
culations [14,15]. These unusual features of the upp
critical field as well as the occurrence of a square vorte
lattice arise from two materials properties: the anisotrop
Fermi surface and the high purity of the samples whic
allows microscopic Fermi surface anisotropy to manifes
itself in macroscopic phenomena through nonlocal effect

The sample studied here has a mass of 2.95 mg a
Tc ­ 15.8 K. It was grown using Ni2B [6] flux and is a
piece of the crystal that was used in STM studies of th
square VL [8]. Figure 1(a) shows the temperature depe
dence of the magnetization in various fields applied pa
allel to k100l. Data fork010l and k001l are qualitatively
similar. In contrast to high-temperature superconducto
in which fluctuation effects cause a substantial broade
ing of the transition with increasing field, the transition
curves for LuNi2B2C shift to lower temperatures in an al-
most parallel fashion.Hc2 is determined using the linear
extrapolations indicated in the figure. Figure 1(b) show
the temperature dependence of the magnetization in a fie
of 3 T applied alongk100l, k110l, andk001l, respectively.
An anisotropy among all three orientations is clearly see
The results are summarized in the phase diagram in Fig.
Hc2 for the three orientations has an upward curvatur
near Tc which below about 10 K crosses over into a
linear temperature dependence. These results are c
sistent with similar findings on single crystal YNi2B2C
[16] and polycrystalline YNi2B2C [17] and LuNi2B2C
[18]. The in-plane anisotropyH

k100l
c2 yH

k110l
c2 and the av-

erage out-of-plane anisotropy0.5sHk100l
c2 1 H

k110l
c2 dyH

k001l
c2
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FIG. 1. (a) Temperature dependence of the magnetizatio
several fields applied parallel to thek100l direction. The
upper critical field is determined through linear extrapolatio
as indicated in the figure. (b) Temperature depende
of the magnetization in a field of 3 T applied along th
crystallographick100l, k110l, andk001l directions.

are shown in the inset. The out-of-plane anisotropy
essentially temperature independent at a value of 1
whereas the in-plane anisotropy decreases from abou
to 1.0 on approachingTc. The valueH

k100l
c2 yH

k110l
c2 ø

1.03 is reached around 14 K, indicating that below th
temperature a VL with square symmetry can exist [8,1
Anisotropy due to nonlocal effects disappears while
proachingTc, whereas anisotropy caused by anisotro
effective masses is temperature independent in stan
GL theory. Therefore, the out-of-plane anisotropy
1.16 while approachingTc corresponds to an effectiv
mass anisotropy ofmk001lymk100l ­ 1.34, which is in good
agreement with the value 1.35 predicted from band str
ture calculations [14,15]. In spite of the layered structu
the electronic anisotropy of LuNi2B2C is rather weak. It
is, however, significantly larger than the value of 1.01 o
served in YNi2B2C [19].

Local GL theory including effective mass anisotrop
does not account for the occurrence of anisotropy in
tetragonal basal plane nor for the positive curvature
Hc2sT d. These results are reminiscent of anisotropic
in
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FIG. 2. Temperature dependence of the upper critical fi
along the three crystallographic directions. The solid lines
fits according to Eqs. (1) and (2) as described in the text a
the dotted lines are fits including as1 2 TyTcd3 term. The
inset shows the temperature dependence of the in-plane and
average out-of-plane anisotropies. The dashed line is a gu
to the eye; the solid line is a fit to Eqs. (1) and (2).

fects previously observed in cubic materials such as cl
Nb, V [20] and V3Si [21] or in the basal plane of uniaxia
materials such as Cs0.1WO2.9F0.1 [22]. These effects arise
from nonlocal effects [12,23] which in sufficiently clea
materials become observable when the transport m
free path becomes larger than the superconducting co
ence length. Within microscopic theory nonlocal corre
tions have been incorporated into Gorkov’s derivation
the GL equations through terms of the formkjsvPdncj2l
sn $ 2d for cubic [12,23] as well as for uniaxial system
[24]. Here,v is the Fermi velocity,P ­ = 2 2piyF0A
is the gauge invariant derivative,c is the superconducting
order parameter, andk· · ·l represents the average over th
Fermi surface. The anisotropy arising from these corr
tions is determined by the anisotropy of the Fermi surfa
and/or of the superconducting pairing interaction. For t
case of isotropic pairing interactions and for the cle
limit Hc2 within the tetragonal basal plane is given by

Ha
c2sT , fd ­ ha

c2t

"
1 1

√
2

3
2

1 0.3406C

!
t

1 0.3406At coss4fd

#
, (1)

with t ­ 1 2 TyTc. f is measured with respect to
the k100l direction. This relation contains nonloca
corrections in lowest ordersn ­ 2d and the tempera-
ture dependence up to second order int. A similar
relation has recently been applied for the study
the upper critical field of La2xSrxCuO4 [25]. Here,
2ha

c2yTc is the initial slope of the upper critica
field. C and A contain averages of the Fermi velocity
C ­ s2kn2

xn2
z l 1 kn4

z ldykn2
z l2 1 0.75skn4

x l 1 kn2
xn2

z ldykn2
x l2
1739
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and A ­ skn4
xl 2 3kn2

xn2
yldy4kn2

xl2. The term containing
C contributes an isotropic upward curvature toHc2,
whereas the term withA provides an anisotropic upward
curvature. For a spherical Fermi surface,C ­ 4.8 and
A ­ 0.0. Within a phenomenological approach it wa
shown [8] that the in-plane anisotropy ofHc2 is related
to the stability of the square vortex lattice.

The expression corresponding to Eq. (1) forHc2 along
k001l is given by

Hc
c2sTd ­ hc

c2t

"
1 1

√
2

3
2

1 0.3406D

!
t

#
, (2)

with D ­ 2skn4
x l 1 kn2

xn2
yldykn2

x l2.
In the following the parametershc2a , hc2c , A, C, andD

appearing in Eqs. (1) and (2) are determined from fits to t
data. Equations (1) and (2) represent expansions valid n
Tc whose exact range of applicability is not knowna priori.
In addition, a direct fit to Eq. (1) requires the simultaneo
determination of three coefficients. Therefore, it is mo
convenient to first findA andC by evaluating the relative
basal plane anisotropyG ­ sH k100l

c2 2 H
k110l
c2 dysHk100l

c2 1

H
k110l
c2 d ­ 0.3406Atyf1 1 s21.5 1 0.3406Cdtg as shown

in Fig. 3. A least-squares fit, indicated by the solid lin
describes the data well over the entire temperature ran
The values forC and A are C ­ 9.4 and A ­ 0.43,
respectively, which change to 9.1 and 0.42 when restrict
the fitted temperature range tot , 0.35. From band
structure calculations [14,15] the corresponding values
C ­ 8.1 andA ­ 0.63, in reasonable agreement with ou
upper critical field analysis.

The reduced anisotropy as compared to the band str
ture prediction can be accounted for by the impurity sc
tering that is present in the sample. Using the Dru
formula as a transport mean free pathl ø 320 Å can
be estimated from the residual resistivity of1.7 mV cm
measured on a third piece of the original crystal [26
and from the band structure value for the Fermi v

FIG. 3. Temperature dependence of G ­ sH k100l
c2 2

H
k110l
c2 dysH k100l

c2 1 H
k110l
c2 d. The solid line is a least-squares fi

according to Eq. (1). The inset showsH
k100l
c2 2 H

k110l
c2 as a

function of s1 2 TyTcd2.
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locity y ­ ky2l1y2 ­ 2.3 107 cmysec and the density of
states of 4.8 statesy(eV primitive cell) [14,15]. The su-
perconducting coherence lengthj0 can be estimated using
j0 ­ hyypD, giving j0 ­ 200 Å with D ­ 2.2 meV
[8]. Alternatively, j0 can be deduced from the initial
slope of the upper critical field which is not affecte
by nonlocal effects:j0 ­ 0.54f2F0yTcsdHc2ydT dg1y2 ø
130 Å. Thus, an impurity parameter ofa ­ 0.88j0yl ø
0.5 identifies our LuNi2B2C samples as approaching th
clean limit.

hc2a is determined from fitting the experimenta
data above 9 K to the expressionH

k100l
c2 2 H

k110l
c2 ­

0.6812ha
c2At2 as shown in the inset of Fig. 3, yielding

hc2a ­ 5.1 T. Deviations from the simple quadratic
temperature dependence below 9 K are related to
fact that Eqs. (1) and (2) do not capture the downwa
curvature ofHc2 which is observed at low temperatures
The average out-of-plane anisotropy can be fitted w
Eqs. (1) and (2) (see inset of Fig. 2) yieldingD ­ 9.5.
The value from band structure calculations isD ­ 9.3.
Since D and C are almost identical the out-of-plane
anisotropy is essentially temperature independent w
ha

c2yhc
c2 ­ 1.16 representing the conventional effectiv

mass anisotropy. The temperature dependences ofHc2

predicted by Eqs. (1) and (2) using the paramete
determined above are shown as solid lines in Fig.
The absolute values, the curvature and anisotropy of
experimental data at temperatures above 10 K is w
described, whereas at lower temperatures the abso
values ofHc2 are significantly overestimated as discusse
above. The fit of the low-temperature data ofHc2 can
be significantly improved by incorporating a termEt2

in the square brackets in Eqs. (1) and (2) as shown
the dotted lines in Fig. 2. This term arises from th
next order in the GL expansion (see Ref. [23]) as we
as from nonlocal effects. The explicit expression forE
contains isotropic (in the basal plane) and coss4fd and
coss8fd dependent contributions as well as Fermi surfa
averages of second, fourth, and sixth order [24] where t
sixth order averages have not yet been determined fr
band structure calculations. The numerical values ofE
determined from the fits in Fig. 2 are21.2 for k100l,
20.95 for k110l, and 21.1 for k001l. In this fitting
procedure the values ofA ­ 0.5, C ­ 9.7, andD ­ 10.2
are essentially the same as those determined from
high-temperature regime.

The importance of terms arising from higher orde
nonlocal corrections to the basal plane anisotropy can
inferred independently from the presence of contributio
proportional to coss8fd in the angular dependence ofHc2

as shown in Fig. 4 at 6 and 10 K. The dashed lin
are the predictions according to Eq. (1) with values f
hc2a , C, and A as determined in Fig. 3. The angula
dependence can be reproduced well, however, there
systematic deviations. Slightly improved fits includin
a term m4 coss8fd in the square brackets of Eq. (1
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FIG. 4. Angular dependence of the upper critical field with
the tetragonal basal plane at 6 and at 10 K. The dashed li
are fits according to the expression in the text, the solid lin
are fits including a term proportional to coss8fd.

are shown as solid lines with fit coefficients given in th
figure. It is found that the amplitude of the coss8fd
term, m4, is one order of magnitude smaller than th
of the coss4fd term, 0.3406tA, indicating that in the
temperature range studied here higher order terms
relatively unimportant in the analysis of the in-plan
anisotropy ofHc2.

In conclusion, the determination of the upper critic
field of LuNi2B2C from the temperature dependence of th
magnetization reveals a pronounced, temperature dep
dent anisotropy within the tetragonal basal plane reach
1.1 at 4.5 K and an almost temperature independent o
of-plane anisotropy of 1.16. NearTc the upper critical
field along all directions shows a strong upward curv
ture. These features ofHc2 can be explained quantita
tively using nonlocal extensions of the GL equations. T
Fermi velocity averages determined from these measu
ments and those obtained in band structure calculati
are in good agreement. In LuNi2B2C nonlocal effects aris-
ing from the anisotropic Fermi surface and low electron
scattering lead to the observed features of the upper c
cal field and to a square (rather than hexagonal) vor
lattice.
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