
An Efficient Service Discovery Algorithm for Counting Bloom Filter-Based
Service Registry

Shuxing Cheng, Carl K.Chang
Department of Computer Science

Iowa State University
Ames, IA 50011, USA

{scheng, chang}@cs.iastate.edu

Liang-Jie Zhang
IBM T.J. Watson Research Center

Hawthorne, NY 10532, USA
zhanglj@us.ibm.com

Abstract

The Service registry, the yellow pages of Service-
Oriented Architecture (SOA), plays a central role in SOA-
based service systems. The service registry has to be scal-
able to manage large number of services along with their
requirements on storage and discovery. Based on our previ-
ous work on feature-based services quantification, we char-
acterize services according to their diverse functional and
non-functional requirements, and represent them as string
formats which can be stored, probed, and indexed by effi-
cient data structures, such as hash table and Bloom filter.
Then, we propose a comprehensive service-storage solution
using the counting Bloom filter (CBF). The application of
CBF enables us to structure candidate services into sepa-
rate groups, resulting in an accelerated services discovery
process. The contributions of this research work include a
new approach to manage large number of services based
on quantified service features, and a storage architecture
design to support service discovery. Experimental results
strongly support these claims.

1. Introduction

The SOA-based design enables service vendors to pro-
duce flexible business applications by reusing and aggre-
gating existing service assets in an on-demand manner [14].
Guided by the SOA design philosophy, a service provider
packages existing applications into services with standard-
ized interfaces and publishes them into the service registry.
The service registry maintains a record for each registered
service, which contains various types of pertinent informa-
tion such as the corresponding service provider and Quality
of Service (QoS) attributes. Such information enables the
published service to be discovered and invoked by a service
composition engine. However, the proliferation of Web ser-

vices and their diverse applications cause the problem of
service explosion: the number of registered services keeps
increasing, making management of the service registry an
extremely challenging task. This issue has not been fully
explored in the current service registry design [14].

In our previous work [13], we characterized the services
through quantifiable features, and classified services into
separate clusters based on well-established pattern recog-
nition algorithms. This services clustering leads to a hierar-
chical services management scheme to support the large-
scale SOA applications. In this paper, we continue our
work by applying feature-based service characterization to
service discovery and service registry design. Based on
feature-based service characterization, we encode both the
registered services and incoming service requests as bit
strings, and thus provide a new approach to solve the service
discovery problem using string matching. Furthermore, we
propose a service-storage architecture based on efficient yet
widely-applicable data structures that support the storage
and fast lookup of string data types. During the structural
design of the storage architecture, we keep track of the re-
lationships between services and their respective providers,
and take into account the influences of both the functional
and non-functional requirements in the services discovery
process. All of these design considerations are reflected in
the service discovery protocol based on the proposed stor-
age architecture.

The remainder of the paper is structured as follows: In
section 2 we briefly introduce basic concepts of Web ser-
vices in relation to business processes and associated re-
quirements analysis in order to provide the necessary back-
ground of our research. Specifically, in section 2.2, we re-
view the previous work on quantifying services as the foun-
dation of the current work. In section 3, we introduce a
services-storage architecture and describe its design in de-
tail. Finally, in section 4, we delineate our research contri-
butions, and conclude the paper with discussions and future

work.

2. Preliminaries

In the SOA-based service systems, the registry services
can be classified into different service groups with each
group sharing the same functionality. From the perspective
of delivered functionality, each service group is identified as
a service task, denoted as STi. For clarification purposes,
we use Si = {ASi

1, . . . , ASi
j , . . . , ASi

N} to denote the ser-
vice group corresponding to STi, where ASi

j represents the
j-th service being able to finish the service task STi, and N
is the size of Si. The scenario of N > 1 indicates that the
service task STi is able to be realized by multiple candidate
services, which can differ in their respective QoS attributes
and other service features.

2.1. Requirements Analysis of Service Dis-
covery

SOA design principles enable the creation of a plat-
form independent composable service infrastructure that
facilitates collaboration across different business domains.
This collaboration is realized through service composition,
which aggregates a variety of services into a business pro-
cess to meet the customer’s requirement [15]. Figure 1 il-
lustrates a business process consisting of eight service tasks.
The arcs in the graph represent the business logic embedded
in this business process.

Figure 1. A Business Process Example

From the perspective of requirements analysis in the
SOA design practice, service discovery is separated into
two phases. In the first phase, a collection of ser-
vice tasks is determined to fulfill the functional require-
ments of the requested business process based on the
function-class decomposition [4]. As shown in Figure 1,
{ST1, ST2, . . . , ST8} is the set of selected service tasks.
In the second phase, the SOA solution designers decide
which service is going to be invoked for each service task
selected in the first phase. The selection criterion in the
second phase is to meet the non-functional requirements,
which are framed as either global or local. The localized
non-functional requirements focus on a single service task,

whereas the global non-functional requirements relate to
the performance metrics at the business process level, such
as the end-to-end response time [12]. A variety of ap-
proaches have been proposed to decompose the global per-
formance metrics into local performance thresholds. Within
the realm of this research, we assume that all of the listed
non-functional requirements have been either specified as
or decomposed into the local ones [6]. Accordingly, after
determining the collection of service tasks to constitute the
requested business process, the service discovery is to it-
erate over the corresponding service groups and search a
service within each group in order to match the associated
localized non-functional requirements.

2.2. Quantifying Services With Features

Each service is characterized by a set of features with
a wide range of attributes. In practice, typical service fea-
tures include Services Accessibility, Services Cost, Services
Reliability and Services Response Time [13]. The services
belonging to the same service group share the same feature
set used for characterization purposes. Each selected fea-
ture is associated with a numerical scale with which we can
quantify a particular service. In the following example, we
quantify the response time (RT) in the scale of “1-5”. A ser-
vice with smaller response time is assigned a higher score.
This quantification procedure differs in accordance with the

Table 1. Quantification Procedure of RT
Quantitative range of RT RT score

RT ≤ 10s 5
10s < RT ≤ 20s 4
20s < RT ≤ 30s 3
30s < RT ≤ 40s 2

RT > 40s 1

studied feature. In [13], we discussed a similar procedure
for quantifying services reliability. The numerically scored
service features can be represented as a bit string based on
binary notation scheme. For instance, the l-th feature of
ASi

j , i.e., bsi,j
l , stands for the service response time and gets

a numerical score of 5 in the above quantification procedure,
which is hence encoded as a binary bit string of 0101. Here-
after, we use bsi,j

l to denote the bit string corresponding to
the l-th feature for characterizing service ASi

j . The identity
labels for ASi

j is moved to the superscript of bsi,j
l for iden-

tification purpose. By considering all of the related features,
the service is also represented as a bit string, the congrega-
tion of a collection of bit strings, each of which corresponds
to a single feature.

ASi
j ↔ bsi,j

1 . . . bsi,j
l . . . bsi,j

n (1)

In Eq.1, the whole string bsi,j
1 . . . bsi,j

l . . . bsi,j
n is called a

feature configuration, which encodes every related feature
for service ASi

j . This is also the information published to
the service registry and is available to the service discovery
process.

This feature-based bit string representation scheme
works not only for the registry services, but also for the
service requests. The customers’ various requirements are
represented as the targeting score for the corresponding fea-
tures used to characterize services. The service discovery
process is hereby transformed into a classical string match-
ing problem, which has been studied extensively [5]. From
this point of view, the feature-based service representation
scheme provides a new approach to solve the service dis-
covery problem based on well-established algorithmic so-
lutions. A string matching-based service discovery solution
requires comparison of every candidate service against the
request. Accordingly, the total computational cost depends
on both the number of comparison operations and the per-
formance of each string matching operation. The algorithm
design for the string matching problem is beyond the re-
search scope of this paper. Our research focus is the storage
architecture design for the service registry that can reduce
the number of comparison operations.

3. A Scalable Storage Architecture to Support
Service Storage and Service Discovery

With respect to a given service infrastructure, the num-
ber of service tasks in terms of offered functionalities are
limited; however,the number of services in terms of their
feature configurations can become much bigger. This is a
reasonable hypothesis because a service provider is able to
provide multiple services with different feature configura-
tions. For instance, a server can serve requests with dif-
ferent response time values. Consider a service task char-
acterized by 6 features, and each feature is scored on a
scale of “1-5”. Potentially, there will be 56 different fea-
ture configurations for this single service task. The large
number of various services resulting from the combinato-
rial feature configurations are published to the service reg-
istry as candidates for the service discovery. Formally, we
use T = {ST1, . . . , STm} to denote the set of service tasks
under a service infrastructure. According to the discussion
at the beginning of section 2, every service task STi corre-
sponds to a service group, denoted as Si. The union of Si,
i.e.,

⋃i=m
i=1 Si, is denoted as G.

From the perspective of storage architecture design, T
and G are stored separately, and the storage requirement for
T is less demanding than the one for G, due to the fact that
a single service task can have multiple candidate services.
The mapping relationship between STi ∈ T and Si ⊆ G
suggests that the former can be used to index the latter. In

the storage architecture design, keeping track of the map-
ping relationship between service task and the correspond-
ing service group is important to support the service discov-
ery process, which is separated into two sequential steps as
discussed in section 2.1.

In this section, we construct a hybrid storage architecture
(HSA) that is able to store a large amount of services while
supporting an efficient service discovery process. HSA, il-
lustrated in Figure 2, is composed of an service task array
used to store the set T , and a collection of storage units
used to store the set G. Due to the limited number of ser-

Figure 2. Hybrid Storage Architecture for Ser-
vice Registry

vice tasks, the service task array is based on the normal data
structure, such as array. The i-th entry of the service task
array stores the identity of a service task, e.g., STi, and
maintains a pointer to the storage unit i, which stores the
service group Si. Due to the large size of Si, the focus of
this section centers around the design of these storage units.
In our research, we propose to use counting Bloom filter,
a probabilistic data structure, to build the storage unit for
every service group while supporting the service discovery
process.

3.1. Standard Bloom Filters and Counting
Bloom Filters

A standard Bloom filter (BF) is a hashing-based data
structure representing a set of elements [1]. Compared to
the hash table, BF can reduce the space requirement further
and allows the use of simpler hash functions, which saves
computational cost for lookup-intensive operations [2][7].
A BF is composed of a bit array denoted as B and g in-
dependent hash functions H = {h1(), . . . , hg()}. The
bit array B is of length q and is initialized as 0 for all
of the entries. Each hash function maps an element in
A = {a1, a2, . . . , an} to an array entry. Hereafter, we use
BFA to denote the BF for set A, and use BA to denote the
related bit array. Algorithm 1 lists the procedures of con-
structing a Bloom filter representing a given set, and Fig-
ure 3 shows the constructed BFA for set A.

Algorithm 1 Constructing Bloom filter for setA(‖A‖ = n)
1: for i = 0 to q do
2: BA[i] = 0;
3: end for
4: for i = 0 to n do
5: for j = 0 to g do
6: p = hj(ai);
7: if BA[p] = 0 then
8: BA[p] = 1;
9: end if

10: end for
11: end for

Figure 3. A Bloom Filter Example

BF has two structural properties resulting from its con-
struction scheme.

Property 1: If a ∈ A, then the construction process
should mark every hashed position in the bit array with 1.
Accordingly, for a given query a, if any of the hashed posi-
tions in BA for a is found to be 0, then a /∈ A.

Property 2: With respect to BFA representing set A
and a query a /∈ A, it is possible to find that every hashed
position of a having been marked with 1 in BA.

Given an element a and a set A, determining whether
a ∈ A is called set membership evaluation, which is used
in a lot of applications. A trivial approach for the set mem-
bership evaluation is to compare each element belonging to
A with a until we find a match, which involves a compu-
tational complexity of O(‖A‖), where ‖A‖ represents the
size of set A. Instead of comparing each element of A with
a, the BF-based set membership evaluation computes every
hashed position of a and checks whether it has been marked
with 1. In accordance with Property 1, an all negative an-
swer can be used to remove the possibility of a ∈ A with
certainty. On the other hand, implied by Property 2, an all
positive answer cannot ensure that a ∈ A due to the possi-
bilities of overlaps in the hashed positions among different
elements belonging to A. This issue is known as false pos-
itive yielded by BF-based set membership evaluation [2].
The false positive rate will decrease exponentially when g
increases, which makes the influences of false positive neg-
ligible in real applications [2].

The overlaps in the hashed positions among different el-
ements make it unable to support BF-based deleting oper-

ation on a set. For instance, deleting ai from A requires
the BF to reset every hashed position BA[hl(ai)] : ∀l =
1, . . . , g to zero. If hl(aj) = 1 for j 6= i, then the deleting
operation of ai will affect the associated hashed position of
another element aj , which results in an incorrect BF rep-
resentation for aj , whose g hashed positions should always
be marked “1”. To address this issue, counting Bloom fil-
ter (CBF), an extension to the BF, is developed by setting
the entry attribute as a counter value rather than a bit as in
BF [8]. During the construction of a CBF, every hashed po-
sition for an element is increased by “1” rather than marked
with “1”. A counterpart of Figure 3 is shown in Figure 4,
which illustrates the CBF representation for set A. The
value of each array entry equals the number of input arcs,
i.e., the number of elements hashed into this entry. Besides
the capability of supporting the deleting operation, the in-
troduction of counter values also enables the CBF to keep
track of the number of elements having been hashed into
a given position. This property will be used in the latter
for the CBF-based storage unit design. The set membership
evaluation based on a CBF is similar to the BF: if any of the
g hashed position of query a is found to be 0 in BA, then
a /∈ A.

Figure 4. A Counting Bloom Filter Example

3.2. Storage Unit Design Based on Count-
ing Bloom Filter

In this section, we will discuss the storage unit design
for the service groups. Each unit stores a service group for
a given service task, and consists of two parts: CBF-based
counter value array and a collection of linked lists. Each
linked list is indexed by an array entry of CBF. Compared
to the normal CBF, each entry not only stores the counter
value, but also contains a pointer to the associated linked
list. This storage design is based on the concept proposed
in [11], which is called pruned fast Hash table in the orig-
inal paper. The major structural property of this design is
the placement of element. With respect to an element and
the set of corresponding hashed positions, the element will
be stored in the linked list whose length is the smallest ac-
cording to the counter values of these hashed positions. In
Figure 5, we use the organization of the storage unit for ser-
vice group S1 as an illustrative example.

Figure 5. CBF-based Storage Unit for Service
Group S1

S1 has four different services, which are denoted as
AS1

1 , AS1
2 , AS1

3 and AS1
4 respectively. AS1

2 is provided by
SP3, AS1

3 is provided by SP1, and SP2 is able to deliver
two different services AS1

1 and AS1
4 . Here, SPi stands for

the identity of a service provider. In order to fulfill the func-
tionality of service discovery, the HSA needs to keep track
of the chaining relationships connecting service task, ser-
vice, and service provider. This motivates our extension
of the classical CBF configuration. As shown in Figure 5,
each node in the attached list stores the bit string repre-
senting a service and its associated service provider. There
are three hashed positions for AS1

3 , which are 3, 7 and 10.
The associated counter values are B[3] = 2, B[7] = 3 and
B[10] = 2 respectively. The smallest counter value among
the hashed positions of AS1

3 is B[3], and thus the element
is placed in the linked list pointed by B[3]. Note that the
counter value stored in an array entry does not necessar-
ily reflect the true length of its attached linked list. For
instance, B[5] = 3, but its attached linked list is empty.
Algorithm 2 illustrates the operation of inserting a service
into the storage unit for its corresponding service group.

In Algorithm 2, i is the identity of the targeting storage
unit for the service group Si corresponding to STi. Due to
variances among different service groups, the correspond-
ing CBFs are heterogeneous in their respective parameter
settings. Thus, we use gi to represent the number of hash
functions used by BF i and hi

y to represent the y-th hash
function. The operation of line 7 is to locate the linked
list with the smallest counter value among gi hashed posi-
tions for service ASi

j . In line 8, listm represents the linked
list pointed by the m-th array entry, and SP (ASi

j) stands

Algorithm 2 Insert service and index it with the corre-
sponding service task

1: Input: STi, ASi
j

2: Initialize p as a zero array of size gi;
3: for y = 1 to gi do
4: p[y] = hi

y(ASi
j);

5: Bi[p[y]] = Bi[p[y]] + 1;
6: end for
7: m = argmin(Bi[p[y]]),∀y = 1, . . . , gi;
8: Attach a node consisting of ASi

j and SP (ASi
j) to listm

of BF i;

for the service provider for ASi
j , which also needs to be

stored. Algorithm 3 lists the HSA-based service discovery
protocol, which is divided into two phases: determining the
storage unit for the service group that can fulfill the func-
tional requirements of a service request, and discover the
service that can fulfill the non-functional requirements of
a service request from the storage unit obtained in the first
phase. This two-phase protocol matches the service discov-
ery process discussed at the end of section 2.1.

In Algorithm 3, RSt denotes the requested service task.
RSf denotes the bit string representing the requested ser-
vice, which stands for the customer’s requirement on the
service. The operations listed between line 2 and line 6 be-
long to the first phase of HSA-based service discovery pro-
tocol. As we discussed above, the i-th entry of the service
task array stores the identity of a service task. The operation
of FindIndex iterates over the service task array and returns
the task identity that matches the requested service task. A
returned null value of c indicates that there does not have
a service group being able to meet the functional require-
ments of request. The array of p stores the hashed positions
for the request. In accordance with the membership evalu-
ation criterion of CBF, we check whether the request RSf

belongs to the service group based on the smallest counter
values in array p, which is the operation listed at line 11. A
positive answer indicates that it is possible to have a candi-
date service matching the request. This operation is a fast
lookup without 100% guarantee due to the false positive of
CBF. A positive feedback leads to the searching operation
by traversing the associated linked list. Note that the small-
est element of p not only works for evaluating the element
membership but also helps selecting the linked list to be
searched. LinkedListSearch represents a standard search-
ing operation over a linked list. The returned node is de-
noted as d, and d.sp stands for the service provider identity
stored in d. A returned null node indicates that there is no
match to the request and the original positive feedback is
caused by false positive.

Algorithm 3 is composed of three major operations: (1)
the operation of FindIndex determines the particular ser-

Algorithm 3 Service discovery based on HSA
1: Input: RSt, RSf

2: c = FindIndex(RSt);
3: if c = null then
4: print “There is no match to the requested service

task.”
5: return
6: else
7: Initialize p as a zero array of size gc;
8: for i = 1 to gc do
9: p[i] = hc

i (RSf);
10: end for
11: y = argmin(Bc[p[m]]), ∀m = 1, . . . , gc;
12: if p[y] = 0 then
13: print “There is no match to the requested ser-

vice.”
14: return
15: else
16: d ← LinkedListSearch(listp[y], RSf);
17: if d 6= null then
18: print “d.sp is the service provider.”
19: return
20: else
21: print “There is no match to the requested ser-

vice.”
22: return
23: end if
24: end if
25: end if

vice task for fulfilling the requested functional requirement,
the computational cost of which depends on the number of
registered service tasks; (2) the operations at lines 8 − 14
perform the membership evaluation and chooses the linked
list to be searched, the computational cost of which de-
pends on the number of hash functions, i.e., gc; (3) the
computational cost of searching operation of LinkedList-
Search depends on the length of the linked list bounded
by p[y]. Among these three operations, LinkedListSearch
contributes the most to the total computational cost because
neither the number of registered service tasks nor the num-
ber of hash functions will be a big value.

3.3. Performance Analysis of the Service
Discovery Process Based on HSA

As we discussed at the end of Section 2, the bit string-
based service discovery process requires the comparison
operations conducted between the service request and ev-
ery candidate service. Our design motivation is hereby to
reduce the number of these kinds of comparison operations.
We use the expected number of comparison operations as

the evaluation metric. The benchmark service discovery
process is performed on a normal storage unit. Without any
assisted information, the position of a candidate service on
the linked list is random and assumed to follow the uniform
distribution. Suppose there are n candidate services, then
the expected number of comparison operations is n

2 . On
the other hand, the proposed storage unit design is a com-
bination of a linked list with the CBF-based counter value
array, which decides which linked list to be placed for a
given service based on the hashed positions. As shown in
Algorithm 3, if every hashed position is discovered to be
non-empty, then we will search the linked list pointed by
the entry whose counter value is the smallest among all of
the hashed positions. Accordingly, the number of compari-
son operations for our approach is bounded by the counter
values. In the following, we list the derivation procedure for
the expected counter value based on probabilistic analysis.

E[V] = E[E[V |g̃ = i]] (2)

Eq.2 computes E[V] using iterated expectation [3].
E[V |g̃ = i] represents the conditional expectation of E[V]
when there have i different hashed positions, and is esti-
mated as ng

i since the hashed positions are assumed to fol-
low uniform distribution. We use g̃ to denote the number
of different hashed positions in order to differentiate it with
g, i.e., the number of hash functions to be used. P(g̃ = i)
represents the probability that g hashed functions produce i
different positions, which is computed in Eq.3.

P(g̃ = i) =
(

q

i

)∑i
a=0(−1)a

(
i
a

)
(i− a)g

qg
(3)

In Eq.3, the item of
(
q
i

)
represents the number of combi-

nations of choosing i positions from q available entries of
the counter value array; the item of

∑i
a=0(−1)a

(
i
a

)
(i− a)g

represents the number of permutations of putting g hashed
results into i positions and none of these i positions is
empty, which is derived based on the generating function
for permutation [10]; the item of qg represents the number
of combinations of g hashed positions. Submitting Eq.3 into
Eq.2, we have

E[V] = E[E[V |g̃ = i]]

=
g∑

i=1

E[V |g̃ = i]P(g̃ = i)

=
g∑

i=1

ng

i

(
q

i

)∑i
a=0(−1)a

(
i
a

)
(i− a)g

qg
(4)

Eq.4 shows that E[V] is a function of n and g, which are
the parameters of the CBF. Due to the complexities of Eq.4,
it is quite difficult to get the analytical solution of E[V] and
compare it with n/2 directly when n is large. Therefore,

we conduct a simulation- based experimental study to com-
pare the expected counter value with the benchmark value
of n/2. For illustration purposes, we report both the ex-
pected counter value and the expected length of the linked
list to be searched.

Table 2. Expected Counter Value
20000 services (n=20000)

q = 90 q = 95 q = 100 q=105 q=110
g = 4 848 794 761 729 695
g = 6 1269 1211 1120 1099 1036
g = 8 1688 1603 1515 1427 1367

40000 services (n=40000)
q = 90 q = 95 q = 100 q=105 q=110

g = 4 1725 1598 1540 1471 1407
g = 6 2562 2449 2303 2204 2109
g = 8 3352 3229 3092 2867 2776

Table 3. Expected Length of the Linked List
to be Searched

20000 services (n=20000)
q = 90 q = 95 q = 100 q=105 q=110

g = 4 493 459 442 438 431
g = 6 672 673 583 563 558
g = 8 887 851 804 806 740

40000 services (n=40000)
q = 90 q = 95 q = 100 q=105 q=110

g = 4 997 968 842 873 825
g = 6 1343 1323 1285 1105 1064
g = 8 1707 1704 1653 1587 1437

In the experiment, we investigate a variety of parame-
ter settings for the CBF along with two different numbers
of services. Table 2 reports the expected counter value,
whereas Table 3 reports the expected length of the linked
list to be searched. The experimental results show that each
expected length of the linked list to be searched is smaller
than the corresponding expected counter value, and in some
cases the differences are large. Therefore, it is a conser-
vative yet applicable approach to use the expected counter
value as the estimation of the expected length of the linked
list to be searched, which directly controls the number of
comparison operations.

Based on Table 2 and Table 3, a larger size of counter
value array for the CBF, i.e., q, reduces both the expected
counter value and the expected length of the linked list to be
searched. This is due to the fact that a larger counter value
array allows more linked lists to be built, which leads to a
more distributed storage configuration. Although the total

storage requirement is still the same, the expected number
of comparison operations can be reduced accordingly. In
practice, the counter value array of CBF can be maintained
in a high-bandwidth and small on-chip memory [11]. This
makes the computation of hash functions very fast, which
is critical to a lot of hashing-based applications. For in-
stance, we can block the request very quickly if we get a
negative answer from the CBF-based set membership eval-
uation. This feature enables the customer to decide whether
to modify the request or just quit the market in a very short
time period, which is a desirable characteristic in a compet-
itive business environment. On the other hand, the size of
on-chip memory limits the size of counter value array that
we can use.

The construction scheme of CBF results in an increase in
the counter values when we use more hash functions. This
fact is reflected in the results shown in both tables. Never-
theless, Bloom filter theory suggests that the false positive
rate decreases exponentially when we increase the number
of hash functions. According to Algorithm 3, the HSA-
based service discovery protocol decides whether to block
the request based on the CBF-based set membership eval-
uation. A small false positive rate is always desirable for
this kind of functionality. Therefore, choosing the number
of hash functions should be treated as a design trade-off that
balances different factors.

Overall, as shown in Table 2 and Table 3, both the ex-
pected counter value and the expected length of the linked
list to be searched are much smaller than the number of
comparison operations of the benchmark case, which is
n/2. This shows that a carefully designed service storage
architecture can provide a better lookup structure than a
trivial one.

4. Conclusions and Discussions

From the perspective of service science and engineer-
ing, our contributions in this paper are threefold. First, af-
ter discussing our previous work on feature-based service
quantification, we distinguish between the concepts of ser-
vice tasks and services in terms of functional requirements
and non-functional requirements. The quantification result
is used to represent services as bit strings that can be used
to reframe the service discovery process as a string match-
ing problem, which provides a new approach to support the
service discovery. Further, we propose a hybrid storage ar-
chitecture and detail its design based on CBF. Rather than
focusing on the storage solution only, we also formalize the
service discovery protocol based on the proposed architec-
ture. Overall, our work centers on two essential functional-
ities that have to be considered in a systematic service reg-
istry design: the structure of service storage and the related
service discovery protocol.

The proposed storage architecture still has several limi-
tations that need to be lifted in the future research. Regard-
ing the HSA, the counter values and the associated linked
lists for each storage unit are configured when building CBF
based on the existing service group. If a service is newly
created and is required to be added into the related stor-
age unit, then the CBF and its related linked lists have to
be rebuilt in order to allow the service discovery protocol
perform correctly. This rebuilding operation will cost a lot
of computational resources if there are frequent service in-
sertions. An incremental insertion algorithm, proposed by
Song et.al [11], can be applied to support dynamic element
insertion. Another approach is to design storage unit based
on dynamic Bloom filter, which supports the dynamic set
management and aims to control the false positive rate even
the set size increases [9].

In [13], we developed a pattern recognition-based ser-
vice clustering scheme to organize the services in an hierar-
chical structure to accelerate the service discovery process.
Service clustering enables us to classify a group of services
into different clusters based on a collection of features for
characterizing the services. This technique can be used to
refine the HSA design. Instead of using a single CBF-based
storage unit to store the whole service group corresponding
to a given service task, we can build a set of storage units
with each of which storing a service cluster rather than a
larger service group. Hence, the service discovery process
will be performed on a smaller sized storage unit. This in-
creased granularity can improve the performance of service
discovery by reducing the number of comparison operations
further.

In the future research, we will test these designs on an
experimental Web services management platform and eval-
uate the performance using real-world examples, which can
offer a variety of challenges. These challenges can lead us
to develop a more scalable and robust storage architecture
for the service registry.

References

[1] B.Bloom. Space/time tradeoffs in hash coding with allow-
able errrors. Communications of the ACM, 13(7):422–426,
1970.

[2] A. Broder and M. Mitzenmacher. Network Applications of
Bloom Filters: A Survey. Internet Mathematics, 1(4):485–
509, 2002.

[3] G. Casella and R. L. Berger. Statistical Inference. Duxbury
Press, 2001.

[4] C. K. Chang, J. Cleland-Haung, S. Hua, and A. Kuntzmann-
Combelles. Function-Class Decomposition: A Hybrid Soft-
ware Engineering Method. IEEE Computer, 34(12):87–93,
2001.

[5] C. Charras and T. Lecroq. Handbook of Exact String Match-
ing Algorithms. College Publications, 2004.

[6] Y. Chen, S. Lyer, X. Liu, D. Milojicic, and A. Sahai. Trans-
lating Service Level Objectives to Lower Level Policies for
Multi-tier Services. Cluster Computing, 11(3):299–311,
2008.

[7] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest Prefix Matching Using Bloom Filters. IEEE/ACM
Trans. Netw., 14(2):397–409, 2006.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
Cache: a Scalable Wide-area Web Cache Sharing Protocol.
IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

[9] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and Network
Applications of Dynamic Bloom Filters. In INFOCOM,
2006.

[10] P. A. MacMahon. Combinatory Analysis. Dover Publica-
tions, 2004.

[11] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood.
Fast Hash Table Lookup Using Extended Bloom Filter: An
Aid to Network Processing. In SIGCOMM, pages 181–192,
2005.

[12] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-Aware Middleware
for Web Services Composition. IEEE Trans. Softw. Eng.,
30(5):311–327, 2004.

[13] L. J. Zhang, S. Cheng, Y.-M. Chee, A. Allam, and Q. Zhou.
Pattern Recognition Based Adaptive Categorization Tech-
nique and Solution for Services Selection. In Proceedings of
the 2nd IEEE Asia-Pacific Service Computing Conference,
pages 535–543, 2007.

[14] L. J. Zhang, J.Zhang, and H.Cai. Services Computing.
Springer and Tsinghua University Press, 2007.

[15] L. J. Zhang and B. Li. Requirements Driven Dynamic Ser-
vices Composition for Web Services and Grid Solutions.
Journal of Grid Computing, 2(2):121–140, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/221586903

