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Abstract 

This paper presents a novel general-purpose simulation analysis application 

that combines concurrent operations simulation with the advanced data 

interrogation and user interaction capabilities of immersive virtual reality systems. 

The application allows for interactive modification of the simulation parameters, 

while providing the users with the available simulation information by effectively 

placing the operator in the midst of the environment being simulated. The major 

contribution of this research is the total integration of the immersive virtual reality 

environment with the simulation, allowing users in the environment to 

interactively change the inputs to the simulation as it is running. Implementation 

and functionality details of the developed application are presented. The 

experience of using the application to analyze a manufacturing operation in a 

collaborative scenario is also discussed. 

 

Keywords: Concurrent operations simulation • Virtual reality 

1 Introduction 

The use of simulation models for the analysis of manufacturing operations is 

growing worldwide. Simulation has been shown to be an effective tool that can 

determine the impact of one system component on another, and, as a result, 

identify manufacturing issues early in the design process in order to avoid 

unnecessary capital investment and significant rework of a manufacturing process.  

Most simulation models are linked to animation tools, which permit the 

analysis and evaluation of system performance and simulation results in either a 

two- or a three-dimensional environment. These tools, however, often confine 

designers to viewing post-processed simulation results using the traditional two-

dimensional computer interfaces, such as the monitor, keyboard and mouse, with 

limited options for making real-time changes to the simulation scenario [1]. 

Furthermore, although many of the discrete-event simulators do offer the 

possibility of interaction, they lack the ability to place the user of the simulator in 

an immersive 3D representation of the simulated scenario [2]. The potential to 

directly link operations simulation to an immersive virtual reality (VR) 

environment and to allow users to interactively change the simulation while in 

process opens exciting avenues for exploring complex interactions between model 

users, objects and operations being simulated. 

1.1 Operations simulation 

In its broadest sense, computer simulation is the process of designing a 

mathematical-logical model of a real system and experimenting with this model 

on a computer [3]. Discrete event simulation, also known as operations 

simulation, is characterized by changes in the model state that take place at only a 

discrete set of simulated time points [4]. Such models rely on the “transaction-

flow world view”, where the entire system is represented with discrete units of 

traffic that move between distinct points of the system, while competing for 

scarce resources. This method is used to determine assembly line bottlenecks, 

machine tool usage, material handling problems, etc. It is commonly applied to a 

multitude of industrial and scientific scenarios, including but not limited to 

manufacturing, transportation, health care, and information processing.  
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Despite the fact that operations simulation has existed since the early 1960s, 

industry, in general, has yet to take full advantage of the potential of simulation 

analysis. In most companies, simulation analysis is used only to plan and verify 

the most risky or expensive processes. Once a simulation has been created, a team 

of people are assembled to discuss the facilities, tooling and assembly line issues 

that result from the simulation. The success of operations simulation relies on the 

ability of the users to anticipate multiple issues that could occur on the assembly 

line. Communication between team members with different expertise (tool 

designers, ergonomists, facilities planning and maintenance, product designers) is 

crucial in identifying costly errors that potentially would be identified by the 

simulation. In this research, virtual reality is used to provide a common 

communication medium to facilitate deep understanding that crosses expertise 

boundaries between team members. 

 

1.2 Virtual reality in manufacturing operations simulation 
 

Virtual reality is defined as the technology that enables the creation of a 

computer-generated three-dimensional environment which can be interactively 

experienced and manipulated by the participants [7]. According to Stuart [8], a 

virtual environment (VE) is a human-computer interface capable of providing 

“interactive immersive multisensory 3-D synthetic environments.” In these 

systems position sensors are used to track the user’s motions and to update the 

visual and auditory displays in real-time, allowing the participants to interact with 

the computer generated environment as if it were the real environment. Interacting 

in a VE provides all members of the team with the ability to visualize and interact 

in a natural way by moving around in the environment. The VE removes the 

traditional interface of keyboard, mouse and monitor, allowing users to easily 

investigate 3D geometry without having to become experts at manipulating 

models in the simulation software. With this support, users can more readily draw 

on their domain-level expertise in product design, tooling design, facilities 

planning and maintenance, etc. and contribute to the team discussion at a deeper 

level of understanding. 

Several simulation packages that claim to utilize the VR approach to 

operations simulation currently exist [9, 10]. However, the majority of these 

programs rely on the traditional two-dimensional (2D) computer interfaces, such 

as the monitor, keyboard and mouse, to view the 3D models of the simulated 

environment. Interaction with the environment and the data-interrogation methods 

remain essentially unchanged from the standard interaction with 2D schematic 

representation of the simulated manufacturing operations. 

One of the few research projects aimed at the investigation of the benefits of a 

VE in the context of operations simulation was undertaken by Kesavadas and 

Ernzer [11] at the University of Buffalo. They have developed the VR-Fact 

program – a virtual environment for modeling and designing factories and shop 

floors. VR-Fact was created for quick implementation of factory design 

algorithms ranging from plant layout to factory flow analysis. The program’s 

features were primarily focused on the design of shop floor arrangements using 

the Cellular Manufacturing (CM) System method. Interaction is supported 

through the use of a head-mounted display or stereo glasses with a computer 

monitor. To support team based simulation assessment, this software would need 

networking capabilities to support multiple users with head-mounted displays or 

multiple instances of stereo glasses with computer monitors. 
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Kelsick and Vance [12] at Iowa State University developed a VE which 

served as a post processor to operations simulation data. The developed program, 

VRFactory, used results from a commercial discrete event simulation program, 

SLAM II, to drive a virtual environment animation, implemented in a projection-

based VR system with multiple screens. The VE easily supported team 

discussions of the operations simulation results because of the use of multiple 

projection screens. Three-dimensional computer models of manufacturing 

equipment and products were used to allow investigation of how various changes 

to the manufacturing cell affect part production. Participants would identify 

different scenarios, run the operations simulation software, and then enter the VE 

to watch and query the system as time advanced. Changes identified by the team 

would be fed into the simulation offline, a new scenario would be generated and 

the team would again enter the VE to examine the new results. The key feature of 

this application was the ability of the application to read and implement the 

discrete event actions into the VE, the ability of the participants to navigate to any 

place within the VE to watch the 3D virtual simulation and the ability of the 

participants to interactively query any product on the assembly line at any time as 

to it’s status. 

Operation of the VRFactory demonstrated that immersion in the virtual 

factory facilitated the exploration of design changes and their effect on the 

simulation. The users were also successful communicating among the team 

members concerning implications of specific design changes on each others 

expertise domain. The VRFactory program was written as a proof of concept 

demonstration and therefore it lacked the ability to perform analysis of any other 

simulation scenario of interest. 

The research presented here takes the VE a step further by coupling the 

simulation and the visualization directly, allowing changes to the operations 

simulation to occur right in the VE. 

2 Simulation framework  

This section describes the design framework for the interactive VE to support 

operations simulation. 

2.1 Concurrent simulation 

Strassburger et al. [13] identifies four significant features related to the task of 

coupling simulations and visualizations: 

 

 Temporal parallelism between simulation and visualization; 

 Interaction between simulation and visualization; 

 Hardware platforms on which the simulation and visualization operate; 

 Visualization tool autonomy 

 

These features and the associated options are summarized in Table 1. 
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Feature

Temporal Parallelism Concurrent Post-run

Simulation and visualization 

run temporally parallel

Visualization run 

temporally after the 

simulation

Interaction Bidirectional Unidirectional

Simulation and visualization 

each react to the other tool’s 

commands

Only visualization 

reacts to the 

simulation’s commands

Hardware Platform Monolithic/Homogeneous Distributed

Simulation and visualization 

run on one platform

Simulation and 

visualization operate on 

different hardware 

platforms

Integrated External

Visualization tool is 

integrated in the simulation 

tool

Visualization tool works 

independently of the 

simulation tool

Characteristic

Visualization Tool 

Autonomy

 

Table 1 Classification of the simulation/visualization coupling [13]. 

 

 In this research, to achieve the goal of creating an interactive VE for 

operations simulation, a temporally parallel concurrent simulation, which is also 

bidirectionally interactive, is the desired model, as it allows the assembler to 

observe in real time the effects of his or her actions on the simulation sequence. 

Furthermore, for flexibility in configuration, a distributed hardware platform will 

be designed. Finally, since VEs and simulation software have different 

computational and visualization requirements, the visualization tool will work 

independently of the simulation tool.  

2.2 Simulation Software 

The ALiSS (Assembly Line Solution Set) software was chosen as the 

simulation software; however, the methods described here can be used to interface 

any simulation software that includes both modules for operations simulation and 

also for animation. ALiSS is an integrated software package developed by Deere 

& Company that links a customized user interface with discrete event simulation 

code and animation software. ALiSS incorporates two commercial simulation 

software packages from Wolverine Software Corporation™: SLX and Proof 

Animation. SLX [5] stands for Simulation Language with eXtensibility, and is a 

classical simulation stand-alone tool that includes a programming language with a 

C-like syntax. SLX’s ultra-fast compiler translates models at nearly 90,000 lines 

per second, making it one of the faster simulation language on the market. The 

speed of SLX allows for concurrent simulation/animation execution. Proof 

Animation™ [6] is a stand-alone animation package. A screen shot from a Proof 

Animation is shown in Figure 1.  Since the display of moving objects in Proof 

Animation™ is proportional to time, the movement in a Proof Animation™ is 

smooth and continuous, unlike other animation packages that resort to a ‘paint-

repaint’ method resulting in motion that has incremental jumps in object 

positioning. 
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Fig. 1 Sample of a Proof Animation™ scenario. 

 

2.3 Data communication 

To address the need for bidirectional communication, a flexible linkage 

between the outputs of the simulation and the immersive virtual reality 

environment has been implemented. To accommodate the requirements of a VR-

enabled application, a brand new SLX module was developed and integrated into 

the existing simulation code. The new module is able to extract relevant 

information from the simulation and pass it to an output concurrent simulation 

buffer for real-time interaction or a standalone ASCII file (later referenced to as 

VRF file) for post-processing. The new module does not interfere with the 

simulation itself, and can easily be deactivated if the specific simulation does not 

require the collection of relevant information for virtual reality visualization. 

Relevant information is extracted by interrogating simulation variables and 

main active objects (parts assembled, tasks performed, and assemblers working) 

during any simulation run. Such information includes: time when each assembler 

arrives and leaves a given working location, or starts and ends a given task; when 

each part arrives and leaves a given station, or is loaded on or unloaded from a 

given material handling system; and the status (e.g., busy, idle) of a given 

assembler, a given part, or a given material handling system, etc. 

A procedure has been specifically developed to allow users to choose whether 

to process all the information relative to a single simulation run, or to limit it to a 

selected area of the simulated assembly line. Such a procedure reduces memory 

requirements and improves system performances in the VR system when the VR 

visualization is not extended to the whole assembly line. 

2.4 Simulation interruption 

Previous approaches to link virtual reality and discrete event simulation 

resulted in environments that displayed animations of simulation results. In this 

research, the intent is to create a virtual environment where the user can modify 
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the simulation while participating in the animation of the simulation results in the 

virtual environment. A key aspect to achieving this goal is the development of a 

method to interrupt the simulation animation, enter additional inputs, and restart 

the simulation. Synchronizing the simulation and the virtual environment is also a 

critical task. 

According to Strassburger et al. [13], fluent interaction between commercial 

discrete event simulation software and immersive VE is inherently dependent on 

the ability to synchronize the two components. Unidirectional time-stepped (equal 

time steps) or event-stepped (advancement corresponds to actual event-time 

stamps) logical time advancement are traditionally utilized in the concurrent 

simulation implementation cases. This, however, can potentially result in the VE 

exhausting the available simulation data if the discrete event simulation software 

requires extensive computation time for a given simulation step, forcing a pause 

in the visualization flow within the environment in order to gain access to new 

data. One of the ways to address this problem is with standard buffer-based 

synchronization. In this method, simulation results are accumulated in a buffer 

waiting to feed into the visualization engine. If the buffer is at its maximum 

command capacity, the simulation stops the data flow until buffer space is 

available, thus avoiding any visual delays.  

This approach relies on the ability of the simulation to produce data faster than 

the data can be visualized. However, using a standard buffer approach fails to 

maintain an uninterrupted animation when the simulation time becomes longer 

than the time required for visualization/animation since the buffer capacity is 

based on the number of stored commands and does not explicitly control the time 

difference. In the standard approach the time difference varies and is simply equal 

to the difference between the largest and the smallest timestamp of the buffered 

simulation data. 

To accommodate the unique requirements of concurrent bidirectional coupling 

of simulation and the visualization software, self-adapting buffers (SAB) were 

implemented [13]. This is a buffering strategy that adjusts the buffer size based on 

visualization time intervals. The buffer holds visualization commands within a 

relatively small time interval, yet contains sufficient number of commands for 

fluid and continuous visualization. This method supports a variable buffer size 

that is directly linked to the current visualization speed in the VE, i.e. greater 

visualization speed results in a larger accumulation buffer time span size.   

Using self-adapting buffers, the VE controls the data flow between the system 

components, not the simulation. The minimum time difference between any two 

commands stored in the buffer is not enforced, so the total number of such 

commands can vary greatly. However, the maximum time difference between two 

subsequent commands, as well as the overall time span contained in the buffer, is 

strictly enforced. The former is achieved using “dummy” commands that ensure a 

constant flow of visualization data but do not affect the state of the visualization 

environment. When a command is deleted from the buffer by the visualization 

module the remaining time interval is calculated. If it is smaller than the desired 

buffer size, a supplementary advancement request command is sent to the 

simulation, identifying the necessary time advance. The ultimate goal is to ensure 

that the buffer always contains an adequate number of visualization commands 

necessary for the specified buffer size time interval.  

The approach results in a buffer that can properly react to changes in the 

system, including user interaction, network communication delays and changes in 

the visualization requirement [13]. Furthermore, it is able to adapt to the current 
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visualization speed by increasing or decreasing the buffer size time interval with 

increased or decreased visualization speed respectively. 

2.5 Interactive Virtual Reality Environment 

The virtual reality simulation program is written in the C++ programming 

language. Creation of the computer graphics objects is achieved with the SGI 

OpenGL PerformerTM, a software development environment that supports 

implementation of high performance graphics applications and is built atop the 

industry standard OpenGL® graphics library [14]. The immersive VE is managed 

with the Open Source VRJuggler virtual reality software library [15]. The 

application was designed to be used in multi-screen projection-based fully-

immersive VR systems. In particular this application takes advantage of the most 

common hardware configurations of such systems, including wireless wands and 

tracking systems for interaction with the VE. However, due to VRJuggler’s 

extensibility, the application can be run in any VR system with minimum effort. 

 

The functionality of the VR engine is supplied by the following subsystems: 

 

 Graphics module: used for generation and display of the three-dimensional 

objects in the VE such as the models of the assembly parts and vehicles 

and the program interface; 

 Data processing module: responsible for interpretation of the simulation 

results; it also processes the standard Proof Animation layout files, which 

contain the motion path information; 

 Logical module: determines the behavior of the objects in the environment 

on the frame-by-frame basis, including motion of the parts and vehicles 

along the paths, animation of the assembly operations, update of the 

objects’ statuses, etc.; 

 Interaction module: supplies the ability to control the program’s 

functionality with a dedicated VR interface, interrogate the simulation 

objects, and modify the simulation parameters. 

 

One of the criteria specified for the application was the ability to recreate the 

assembly environment that is being simulated with the highest level of realism 

possible. Therefore, actual CAD models of the parts, vehicles and assembly 

fixtures are used in the VE by the graphics module of the program.  

A dedicated model-part association input file is used to identify the particular 

3D model that will be used to represent a simulated part or a vehicle in the VE. 

The file also provides information about the scale of the model and its initial 

translation and rotation, which could be used to correct for improperly positioned 

models. This approach ensures that the differences between the physical assembly 

environment and its virtual representation are minimal. Furthermore, the realistic 

representation of the assembly workspace makes it well-suited for implementation 

into the future virtual laboratory for assemblers’ training. 

The data processing module contains routines for interpreting the VRF and 

layout files - the primary simulation data files. The layout file contains the 

description of the paths that will constrain the motion of the parts and the vehicles 

during the simulation sequence as well as the definitions of the individual 

segments comprising each path. Motion characteristics associated with individual 

paths, such as the time it takes for the part or the vehicle to complete the path, or 

the initial position of the object on the path, are provided in the VRF file. 



9 

The VR data stream, produced by the operations simulation code, contains 

descriptions of all the major events that take place during the simulation time 

span. Every event or combination of events is preceded by a time stamp, 

identifying the time elapsed from the beginning of the simulation. During the 

program’s operation each time entry is processed for any events that are to take 

place. Figure 2 depicts the main execution sequence of the VE program. 

 

 

Fig. 2 Application execution loop. 

 

The update of the VE refers to the time spent rendering the scene during each 

frame of the program’s operation. This time is closely related to the graphical 

state of the environment. The realistic geometry models of the parts, vehicles, 

assemblers, and the assembly lines increase the immersion factor of the 

application considerably. It is normally desirable to utilize standard CAD 

geometry models provided by the industrial partners for visualization of the 

simulated objects. This streamlines the implementation process and avoids 

intermediate data conversion steps. However, such models often contain 

exceedingly high-resolution geometry data, which is not always necessary for 

realistic representation in the VE. The extraneous data often leads to the reduction 

in the performance of the application, due to the additional processing 

requirements. 

In order to boost the application’s performance to an acceptable level the total 

number of polygons simultaneously rendered by the system had to be decreased. 

The intention of this project was to continue using the standard CAD geometry 

models, provided by the Deere & Company engineering services. Therefore, 

level-of-detail (LOD) management was developed and implemented. A low 

resolution model of an object (e.g. vehicle) that has relatively few polygons is 

normally used. As the distance between the user and the model is reduced, the 

resolution of the model is gradually increased up to the maximum available level. 

This approach has resulted in a significant reduction in rendering time and the 

corresponding improvement of the application’s performance. 

The amount of time spent rendering each frame is determined precisely using 

the system clock. That value is then used to compute the current simulation time, 

Establish 

communication 

Process events 

New time 
entry? 

Retrieve 
simulation data 

from buffer 

Get simulation time 

Update VR  
environment 

Yes 

No Buffer size 
OK? 

Request more data 

Load 3D model 

geometry  

Yes 

No 
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which, in turn, is used as the reference value while processing the current contents 

of the simulation buffer. Before the next frame is drawn, successive time entries 

and the associated simulation events in the buffer are processed up to the current 

simulation time value. The events could include creation and destruction of the 

parts and vehicles, changes in status of the objects and assemblers, positional 

placement commands, etc. 

The logical module of the application is responsible for keeping the behavior 

of the simulated assembly objects consistent between the discrete events 

contained in the data stream originating at the simulation analysis package. For 

instance, it handles the motion of the parts and vehicles along the paths. The 

motion of an object in the environment is specified by assigning the object to one 

of the existing paths, indicating its initial location on the path, and identifying the 

time it takes for the object to reach the end of the path. From this point in time, the 

location of the object is updated by the logical module every frame according to 

the current simulation time, and the object will proceed to the end of the path and 

remain there until further instructions are provided. This normal procedure is 

aborted if any additional events associated with the object occur while the object 

is moving along the path. Such events can include attachment of an assembly part 

to a vehicle, in which case the motion of the part will be controlled by that of the 

vehicle, or an encounter of another object on the given path, in which case the 

motion of all the objects on the path is coordinated in order to keep a certain 

clearance between the objects. 

The logical module also ensures that the status of the assembly objects 

remains consistent throughout the simulation. For example, the assembly tasks are 

normally assigned to the assemblers. At that point the program determines which 

part the assembler is currently working on and updates the part’s status 

accordingly in order to make the assembly task data available in case the part is 

interrogated by the users of the application. Furthermore, the logical module 

coordinates the graphical states of the assembly objects according to the current 

status of the assembly process. For instance, it changes the color of the assembler 

visualization models to indicate whether the assembler is busy, waiting for the 

next task, or away from the assembly station. Similar actions are performed in 

order to correctly represent the parts and the vehicles in the virtual environment. 

A set of virtual menus is one of the components of the interaction module. 

They provide full control over the application’s functionality. The location of a 

menu is determined from the position and orientation of the interaction device, a 

wireless wand in this case, so that the menu appears attached to the device. This 

allows the users to keep the menu system from being obstructed by the objects in 

the environment. The menu system is toggled and navigated with the wand’s 

buttons. Menus can be also used to control the amount of information 

simultaneously displayed in the virtual environment. For instance, users can 

toggle on and off all the data labels associated with the assemblers or the parts. 

A key component of this work is the ability of the participant to stop the 

assembly, enter a new time for a task and restart the assembly sequence. 

Simulation status modification and/or data interrogation of the individual objects 

in the environment is performed with the wireless wand. By selecting an 

appropriate menu option and subsequently depressing the wand’s trigger button in 

the immediate vicinity of a part or an assembler, the user can influence the 

duration of the current assembly simulation task by either terminating the task 

ahead of the default time or allowing it to proceed past its default termination 

threshold. These actions are designed to simulate a real-world assembler 
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completing his or her assigned task(s) ahead of the schedule, or, on the contrary, 

requiring additional time to carry out the activities (Figure 3). The new time 

values are then provided to the simulation package and used to reevaluate future 

simulation events.  

The menu system can also be used to toggle the data label containing all the 

information associated with an object in the simulation environment. Complete 

range of the simulation data for individual simulation objects (assemblers, parts, 

vehicles) or for the entire assembly line can be accessed at any time by the users. 

In case of the part this information includes part type, model type, its unique 

simulation ID, its status (busy, delayed, or idle), current task performed on the 

part, and an alphanumeric message that identifies the cause of a delay for the part 

if such situation occurs. Assembler data tags contain the unique simulation ID, the 

current task, as well as his/her utilization value – a number (variable between 

0.00% and 100.00%) quantifying the ratio between total time the assembler spent 

working and total time the assembler was allocated to work. 

 

 

Fig. 3 Interactive assembly task modification. 

 

In order to access areas of the simulated environment located beyond the 

physical extents of the VR facility, users are provided with the ability to translate 

in any direction with variable speed. Since some VR facilities lack the rear screen, 

navigational controls also include the ability to rotate the simulated environment 

around the current position of the user. This allows the users to investigate areas 

of the virtual environment otherwise located outside of their visual range. 

3 Industrial Case Study 

A tractor assembly line was chosen to test the effectiveness of simulation VE. 

An ALiSS model of the entire line was generated to provide system information 

and event timing to the virtual reality environment. The assembly line consists of 

15 work stations plus over 50 subassembly stations. Served by an overhead 
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electrified monorail system of 10 carriers, and an automated guided vehicle 

(AGV) system comprised of 7 vehicles; the line is manned by 28 assemblers 

working in a single 8-hour shift and flexing between work stations. 

The focus of this test is on a single station, which consists of three floor 

assembly fixtures, tasked with assembling the tractor frame and the tractor 

transaxle; however, the simulation and visualization method presented here does 

not impose explicit restrictions on the scope of the simulation scenario. The focus 

area encompassed the primary components representative of the entire work 

environment (assembler tasks, assembly part flow, detailed geometry models), 

and thus was found suitable for the functionality evaluation. 

The simulated sequence of events starts by loading an empty monorail carrier 

with the next transaxle to be built as determined from the current production line-

up. Once the main frame assembly is positioned in a fixture, the corresponding 

transaxle is lowered onto the frame where the two components are ‘mated’ to 

form the chassis. An overhead bridge crane moves the frame assembly between 

the three fixtures associated with the workstation. After the assemblers mate the 

adjoining parts, the entire chassis assembly is raised up to the monorail carrier, 

that travels to the AGV line where it queues up and awaits unload by the next 

available AGV. After unload, the empty monorail carrier returns to the transaxle 

load area.  

 

 

Fig. 4 Collaborative investigation of the simulated environment. 

 

The simulation framework has been installed at both six-screen (see Figure 4) 

and four-screen virtual reality systems, and extensive testing and validation has 

been performed. Several simulation scenarios were investigated, including those 

with properly allocated and timed assembly tasks and those with artificial 

bottlenecks in the simulation flow. Special emphasis was made on utilizing the 

immersive simulation environment for collaborative work with large user groups 

(5-10 people). Users were able to impact the outcomes of the specific simulation 

cases by interactively modifying the simulation parameters, creating and/or 

resolving potential impediments. Based on the feedback from the users, 

particularly those with no significant background in the operations simulation 

field, they were able to quickly comprehend the details of the simulated activities 

and identify the problematic areas on the assembly lines when compared to the 

traditional visualization methods (i.e., Proof Animation as shown in Figure 1). 

The experience of using the application to analyze the aforementioned 

manufacturing operations indicates that it provides good situational awareness and 
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overall comprehension of the simulation scenario at hand.  While a specific 

assembly line was investigated for the purposes of this research work, the 

developed simulation framework is capable of analyzing any number of 

simulation scenarios of arbitrary size, as long as the appropriate data (part and 

environment models, simulation parameters) is available. 

4 Conclusions and Future Work 

A method to support interactive manufacturing operations simulation in an 

immersive virtual environment has been presented. The method was implemented 

and tested using an industrial application. The overall design advances the state-

of-the-art by supporting concurrent (temporally coupled) simulation, rather than 

using the VE as a post processor to the simulation data. A significant contribution 

is in providing the users with the ability to easily modify the simulation 

parameters while immersed in the VE. The simulation can be interrupted, a new 

time step inserted for a task, and the simulation can be restarted. A method of self-

adapting buffers supported synchronization between the simulation and the 

visualization software guaranteeing a smooth visual animation.  

The use of self-adapting buffers serves to cushion the interactive VE from 

excessive simulation time. The simulation engine steps along and fills the 

visualization buffer with time-stamped data. Selection of a maximum time for the 

visualization buffer is currently performed on a trial and error basis. If the VE 

experiences delays, the visualization buffer time needs to be increased. However, 

as the visualization buffer time increases, the ability of the participants to 

effectively halt the simulation, enter a new task time and restart the simulation 

could get compromised. Additional testing is needed to explore the optimum 

selection of visualization buffer time for various simulation scenarios to avoid 

delays in the animation, yet support simulation interruption. 

The long-term vision is to develop a Virtual Reality training environment and 

laboratory for production assemblers. Potential benefits of achieving this vision 

would include understanding and applying the relationship between product 

quality, assembler training, and product optionality. To accomplish this goal this 

project has successfully linked results from an operations simulation application 

to an immersive Virtual Reality, by establishing a communication link from the 

simulation directly to the VE. The next step towards a fully immersive assembler 

training laboratory is effectively inserting support for the assembler to actually 

assemble the virtual models within the VE. If this could be performed in near real 

time, the framework would provide an effective testbed for evaluation of work 

standards in assembly processes. 
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