
1

Coupling of Interactive Manufacturing
Operations Simulation and Immersive Virtual
Reality

Denis V. Dorozhkin

Virtual Reality Applications Center

Department of Mechanical Engineering

Iowa State University

Ames, Iowa 50011

Email: dorodv@iastate.edu

Judy M. Vance

Virtual Reality Applications Center

Department of Mechanical Engineering

Iowa State University

Ames, Iowa 50011

Gordon D. Rehn

Simulation Group, Industrial Engineering

Deere & Company

One John Deere Place

Moline, IL 61265

Marco Lemessi

Simulation Group, Industrial Engineering

Deere & Company

One John Deere Place

Moline, IL 61265

This is a manuscript from Virtual Reality 16 (2010): 15, doi:10.1007/s10055-010-0165-7. Posted with permission. The final
publication is available at Springer via http://dx.doi.org/10.1007/s10055-010-0165-7.

2

Abstract

This paper presents a novel general-purpose simulation analysis application

that combines concurrent operations simulation with the advanced data

interrogation and user interaction capabilities of immersive virtual reality systems.

The application allows for interactive modification of the simulation parameters,

while providing the users with the available simulation information by effectively

placing the operator in the midst of the environment being simulated. The major

contribution of this research is the total integration of the immersive virtual reality

environment with the simulation, allowing users in the environment to

interactively change the inputs to the simulation as it is running. Implementation

and functionality details of the developed application are presented. The

experience of using the application to analyze a manufacturing operation in a

collaborative scenario is also discussed.

Keywords: Concurrent operations simulation • Virtual reality

1 Introduction

The use of simulation models for the analysis of manufacturing operations is

growing worldwide. Simulation has been shown to be an effective tool that can

determine the impact of one system component on another, and, as a result,

identify manufacturing issues early in the design process in order to avoid

unnecessary capital investment and significant rework of a manufacturing process.

Most simulation models are linked to animation tools, which permit the

analysis and evaluation of system performance and simulation results in either a

two- or a three-dimensional environment. These tools, however, often confine

designers to viewing post-processed simulation results using the traditional two-

dimensional computer interfaces, such as the monitor, keyboard and mouse, with

limited options for making real-time changes to the simulation scenario [1].

Furthermore, although many of the discrete-event simulators do offer the

possibility of interaction, they lack the ability to place the user of the simulator in

an immersive 3D representation of the simulated scenario [2]. The potential to

directly link operations simulation to an immersive virtual reality (VR)

environment and to allow users to interactively change the simulation while in

process opens exciting avenues for exploring complex interactions between model

users, objects and operations being simulated.

1.1 Operations simulation

In its broadest sense, computer simulation is the process of designing a

mathematical-logical model of a real system and experimenting with this model

on a computer [3]. Discrete event simulation, also known as operations

simulation, is characterized by changes in the model state that take place at only a

discrete set of simulated time points [4]. Such models rely on the “transaction-

flow world view”, where the entire system is represented with discrete units of

traffic that move between distinct points of the system, while competing for

scarce resources. This method is used to determine assembly line bottlenecks,

machine tool usage, material handling problems, etc. It is commonly applied to a

multitude of industrial and scientific scenarios, including but not limited to

manufacturing, transportation, health care, and information processing.

3

Despite the fact that operations simulation has existed since the early 1960s,

industry, in general, has yet to take full advantage of the potential of simulation

analysis. In most companies, simulation analysis is used only to plan and verify

the most risky or expensive processes. Once a simulation has been created, a team

of people are assembled to discuss the facilities, tooling and assembly line issues

that result from the simulation. The success of operations simulation relies on the

ability of the users to anticipate multiple issues that could occur on the assembly

line. Communication between team members with different expertise (tool

designers, ergonomists, facilities planning and maintenance, product designers) is

crucial in identifying costly errors that potentially would be identified by the

simulation. In this research, virtual reality is used to provide a common

communication medium to facilitate deep understanding that crosses expertise

boundaries between team members.

1.2 Virtual reality in manufacturing operations simulation

Virtual reality is defined as the technology that enables the creation of a

computer-generated three-dimensional environment which can be interactively

experienced and manipulated by the participants [7]. According to Stuart [8], a

virtual environment (VE) is a human-computer interface capable of providing

“interactive immersive multisensory 3-D synthetic environments.” In these

systems position sensors are used to track the user’s motions and to update the

visual and auditory displays in real-time, allowing the participants to interact with

the computer generated environment as if it were the real environment. Interacting

in a VE provides all members of the team with the ability to visualize and interact

in a natural way by moving around in the environment. The VE removes the

traditional interface of keyboard, mouse and monitor, allowing users to easily

investigate 3D geometry without having to become experts at manipulating

models in the simulation software. With this support, users can more readily draw

on their domain-level expertise in product design, tooling design, facilities

planning and maintenance, etc. and contribute to the team discussion at a deeper

level of understanding.

Several simulation packages that claim to utilize the VR approach to

operations simulation currently exist [9, 10]. However, the majority of these

programs rely on the traditional two-dimensional (2D) computer interfaces, such

as the monitor, keyboard and mouse, to view the 3D models of the simulated

environment. Interaction with the environment and the data-interrogation methods

remain essentially unchanged from the standard interaction with 2D schematic

representation of the simulated manufacturing operations.

One of the few research projects aimed at the investigation of the benefits of a

VE in the context of operations simulation was undertaken by Kesavadas and

Ernzer [11] at the University of Buffalo. They have developed the VR-Fact

program – a virtual environment for modeling and designing factories and shop

floors. VR-Fact was created for quick implementation of factory design

algorithms ranging from plant layout to factory flow analysis. The program’s

features were primarily focused on the design of shop floor arrangements using

the Cellular Manufacturing (CM) System method. Interaction is supported

through the use of a head-mounted display or stereo glasses with a computer

monitor. To support team based simulation assessment, this software would need

networking capabilities to support multiple users with head-mounted displays or

multiple instances of stereo glasses with computer monitors.

4

Kelsick and Vance [12] at Iowa State University developed a VE which

served as a post processor to operations simulation data. The developed program,

VRFactory, used results from a commercial discrete event simulation program,

SLAM II, to drive a virtual environment animation, implemented in a projection-

based VR system with multiple screens. The VE easily supported team

discussions of the operations simulation results because of the use of multiple

projection screens. Three-dimensional computer models of manufacturing

equipment and products were used to allow investigation of how various changes

to the manufacturing cell affect part production. Participants would identify

different scenarios, run the operations simulation software, and then enter the VE

to watch and query the system as time advanced. Changes identified by the team

would be fed into the simulation offline, a new scenario would be generated and

the team would again enter the VE to examine the new results. The key feature of

this application was the ability of the application to read and implement the

discrete event actions into the VE, the ability of the participants to navigate to any

place within the VE to watch the 3D virtual simulation and the ability of the

participants to interactively query any product on the assembly line at any time as

to it’s status.

Operation of the VRFactory demonstrated that immersion in the virtual

factory facilitated the exploration of design changes and their effect on the

simulation. The users were also successful communicating among the team

members concerning implications of specific design changes on each others

expertise domain. The VRFactory program was written as a proof of concept

demonstration and therefore it lacked the ability to perform analysis of any other

simulation scenario of interest.

The research presented here takes the VE a step further by coupling the

simulation and the visualization directly, allowing changes to the operations

simulation to occur right in the VE.

2 Simulation framework

This section describes the design framework for the interactive VE to support

operations simulation.

2.1 Concurrent simulation

Strassburger et al. [13] identifies four significant features related to the task of

coupling simulations and visualizations:

 Temporal parallelism between simulation and visualization;

 Interaction between simulation and visualization;

 Hardware platforms on which the simulation and visualization operate;

 Visualization tool autonomy

These features and the associated options are summarized in Table 1.

5

Feature

Temporal Parallelism Concurrent Post-run

Simulation and visualization

run temporally parallel

Visualization run

temporally after the

simulation

Interaction Bidirectional Unidirectional

Simulation and visualization

each react to the other tool’s

commands

Only visualization

reacts to the

simulation’s commands

Hardware Platform Monolithic/Homogeneous Distributed

Simulation and visualization

run on one platform

Simulation and

visualization operate on

different hardware

platforms

Integrated External

Visualization tool is

integrated in the simulation

tool

Visualization tool works

independently of the

simulation tool

Characteristic

Visualization Tool

Autonomy

Table 1 Classification of the simulation/visualization coupling [13].

 In this research, to achieve the goal of creating an interactive VE for

operations simulation, a temporally parallel concurrent simulation, which is also

bidirectionally interactive, is the desired model, as it allows the assembler to

observe in real time the effects of his or her actions on the simulation sequence.

Furthermore, for flexibility in configuration, a distributed hardware platform will

be designed. Finally, since VEs and simulation software have different

computational and visualization requirements, the visualization tool will work

independently of the simulation tool.

2.2 Simulation Software

The ALiSS (Assembly Line Solution Set) software was chosen as the

simulation software; however, the methods described here can be used to interface

any simulation software that includes both modules for operations simulation and

also for animation. ALiSS is an integrated software package developed by Deere

& Company that links a customized user interface with discrete event simulation

code and animation software. ALiSS incorporates two commercial simulation

software packages from Wolverine Software Corporation™: SLX and Proof

Animation. SLX [5] stands for Simulation Language with eXtensibility, and is a

classical simulation stand-alone tool that includes a programming language with a

C-like syntax. SLX’s ultra-fast compiler translates models at nearly 90,000 lines

per second, making it one of the faster simulation language on the market. The

speed of SLX allows for concurrent simulation/animation execution. Proof

Animation™ [6] is a stand-alone animation package. A screen shot from a Proof

Animation is shown in Figure 1. Since the display of moving objects in Proof

Animation™ is proportional to time, the movement in a Proof Animation™ is

smooth and continuous, unlike other animation packages that resort to a ‘paint-

repaint’ method resulting in motion that has incremental jumps in object

positioning.

6

Fig. 1 Sample of a Proof Animation™ scenario.

2.3 Data communication

To address the need for bidirectional communication, a flexible linkage

between the outputs of the simulation and the immersive virtual reality

environment has been implemented. To accommodate the requirements of a VR-

enabled application, a brand new SLX module was developed and integrated into

the existing simulation code. The new module is able to extract relevant

information from the simulation and pass it to an output concurrent simulation

buffer for real-time interaction or a standalone ASCII file (later referenced to as

VRF file) for post-processing. The new module does not interfere with the

simulation itself, and can easily be deactivated if the specific simulation does not

require the collection of relevant information for virtual reality visualization.

Relevant information is extracted by interrogating simulation variables and

main active objects (parts assembled, tasks performed, and assemblers working)

during any simulation run. Such information includes: time when each assembler

arrives and leaves a given working location, or starts and ends a given task; when

each part arrives and leaves a given station, or is loaded on or unloaded from a

given material handling system; and the status (e.g., busy, idle) of a given

assembler, a given part, or a given material handling system, etc.

A procedure has been specifically developed to allow users to choose whether

to process all the information relative to a single simulation run, or to limit it to a

selected area of the simulated assembly line. Such a procedure reduces memory

requirements and improves system performances in the VR system when the VR

visualization is not extended to the whole assembly line.

2.4 Simulation interruption

Previous approaches to link virtual reality and discrete event simulation

resulted in environments that displayed animations of simulation results. In this

research, the intent is to create a virtual environment where the user can modify

7

the simulation while participating in the animation of the simulation results in the

virtual environment. A key aspect to achieving this goal is the development of a

method to interrupt the simulation animation, enter additional inputs, and restart

the simulation. Synchronizing the simulation and the virtual environment is also a

critical task.

According to Strassburger et al. [13], fluent interaction between commercial

discrete event simulation software and immersive VE is inherently dependent on

the ability to synchronize the two components. Unidirectional time-stepped (equal

time steps) or event-stepped (advancement corresponds to actual event-time

stamps) logical time advancement are traditionally utilized in the concurrent

simulation implementation cases. This, however, can potentially result in the VE

exhausting the available simulation data if the discrete event simulation software

requires extensive computation time for a given simulation step, forcing a pause

in the visualization flow within the environment in order to gain access to new

data. One of the ways to address this problem is with standard buffer-based

synchronization. In this method, simulation results are accumulated in a buffer

waiting to feed into the visualization engine. If the buffer is at its maximum

command capacity, the simulation stops the data flow until buffer space is

available, thus avoiding any visual delays.

This approach relies on the ability of the simulation to produce data faster than

the data can be visualized. However, using a standard buffer approach fails to

maintain an uninterrupted animation when the simulation time becomes longer

than the time required for visualization/animation since the buffer capacity is

based on the number of stored commands and does not explicitly control the time

difference. In the standard approach the time difference varies and is simply equal

to the difference between the largest and the smallest timestamp of the buffered

simulation data.

To accommodate the unique requirements of concurrent bidirectional coupling

of simulation and the visualization software, self-adapting buffers (SAB) were

implemented [13]. This is a buffering strategy that adjusts the buffer size based on

visualization time intervals. The buffer holds visualization commands within a

relatively small time interval, yet contains sufficient number of commands for

fluid and continuous visualization. This method supports a variable buffer size

that is directly linked to the current visualization speed in the VE, i.e. greater

visualization speed results in a larger accumulation buffer time span size.

Using self-adapting buffers, the VE controls the data flow between the system

components, not the simulation. The minimum time difference between any two

commands stored in the buffer is not enforced, so the total number of such

commands can vary greatly. However, the maximum time difference between two

subsequent commands, as well as the overall time span contained in the buffer, is

strictly enforced. The former is achieved using “dummy” commands that ensure a

constant flow of visualization data but do not affect the state of the visualization

environment. When a command is deleted from the buffer by the visualization

module the remaining time interval is calculated. If it is smaller than the desired

buffer size, a supplementary advancement request command is sent to the

simulation, identifying the necessary time advance. The ultimate goal is to ensure

that the buffer always contains an adequate number of visualization commands

necessary for the specified buffer size time interval.

The approach results in a buffer that can properly react to changes in the

system, including user interaction, network communication delays and changes in

the visualization requirement [13]. Furthermore, it is able to adapt to the current

8

visualization speed by increasing or decreasing the buffer size time interval with

increased or decreased visualization speed respectively.

2.5 Interactive Virtual Reality Environment

The virtual reality simulation program is written in the C++ programming

language. Creation of the computer graphics objects is achieved with the SGI

OpenGL PerformerTM, a software development environment that supports

implementation of high performance graphics applications and is built atop the

industry standard OpenGL® graphics library [14]. The immersive VE is managed

with the Open Source VRJuggler virtual reality software library [15]. The

application was designed to be used in multi-screen projection-based fully-

immersive VR systems. In particular this application takes advantage of the most

common hardware configurations of such systems, including wireless wands and

tracking systems for interaction with the VE. However, due to VRJuggler’s

extensibility, the application can be run in any VR system with minimum effort.

The functionality of the VR engine is supplied by the following subsystems:

 Graphics module: used for generation and display of the three-dimensional

objects in the VE such as the models of the assembly parts and vehicles

and the program interface;

 Data processing module: responsible for interpretation of the simulation

results; it also processes the standard Proof Animation layout files, which

contain the motion path information;

 Logical module: determines the behavior of the objects in the environment

on the frame-by-frame basis, including motion of the parts and vehicles

along the paths, animation of the assembly operations, update of the

objects’ statuses, etc.;

 Interaction module: supplies the ability to control the program’s

functionality with a dedicated VR interface, interrogate the simulation

objects, and modify the simulation parameters.

One of the criteria specified for the application was the ability to recreate the

assembly environment that is being simulated with the highest level of realism

possible. Therefore, actual CAD models of the parts, vehicles and assembly

fixtures are used in the VE by the graphics module of the program.

A dedicated model-part association input file is used to identify the particular

3D model that will be used to represent a simulated part or a vehicle in the VE.

The file also provides information about the scale of the model and its initial

translation and rotation, which could be used to correct for improperly positioned

models. This approach ensures that the differences between the physical assembly

environment and its virtual representation are minimal. Furthermore, the realistic

representation of the assembly workspace makes it well-suited for implementation

into the future virtual laboratory for assemblers’ training.

The data processing module contains routines for interpreting the VRF and

layout files - the primary simulation data files. The layout file contains the

description of the paths that will constrain the motion of the parts and the vehicles

during the simulation sequence as well as the definitions of the individual

segments comprising each path. Motion characteristics associated with individual

paths, such as the time it takes for the part or the vehicle to complete the path, or

the initial position of the object on the path, are provided in the VRF file.

9

The VR data stream, produced by the operations simulation code, contains

descriptions of all the major events that take place during the simulation time

span. Every event or combination of events is preceded by a time stamp,

identifying the time elapsed from the beginning of the simulation. During the

program’s operation each time entry is processed for any events that are to take

place. Figure 2 depicts the main execution sequence of the VE program.

Fig. 2 Application execution loop.

The update of the VE refers to the time spent rendering the scene during each

frame of the program’s operation. This time is closely related to the graphical

state of the environment. The realistic geometry models of the parts, vehicles,

assemblers, and the assembly lines increase the immersion factor of the

application considerably. It is normally desirable to utilize standard CAD

geometry models provided by the industrial partners for visualization of the

simulated objects. This streamlines the implementation process and avoids

intermediate data conversion steps. However, such models often contain

exceedingly high-resolution geometry data, which is not always necessary for

realistic representation in the VE. The extraneous data often leads to the reduction

in the performance of the application, due to the additional processing

requirements.

In order to boost the application’s performance to an acceptable level the total

number of polygons simultaneously rendered by the system had to be decreased.

The intention of this project was to continue using the standard CAD geometry

models, provided by the Deere & Company engineering services. Therefore,

level-of-detail (LOD) management was developed and implemented. A low

resolution model of an object (e.g. vehicle) that has relatively few polygons is

normally used. As the distance between the user and the model is reduced, the

resolution of the model is gradually increased up to the maximum available level.

This approach has resulted in a significant reduction in rendering time and the

corresponding improvement of the application’s performance.

The amount of time spent rendering each frame is determined precisely using

the system clock. That value is then used to compute the current simulation time,

Establish

communication

Process events

New time
entry?

Retrieve
simulation data

from buffer

Get simulation time

Update VR
environment

Yes

No Buffer size
OK?

Request more data

Load 3D model

geometry

Yes

No

10

which, in turn, is used as the reference value while processing the current contents

of the simulation buffer. Before the next frame is drawn, successive time entries

and the associated simulation events in the buffer are processed up to the current

simulation time value. The events could include creation and destruction of the

parts and vehicles, changes in status of the objects and assemblers, positional

placement commands, etc.

The logical module of the application is responsible for keeping the behavior

of the simulated assembly objects consistent between the discrete events

contained in the data stream originating at the simulation analysis package. For

instance, it handles the motion of the parts and vehicles along the paths. The

motion of an object in the environment is specified by assigning the object to one

of the existing paths, indicating its initial location on the path, and identifying the

time it takes for the object to reach the end of the path. From this point in time, the

location of the object is updated by the logical module every frame according to

the current simulation time, and the object will proceed to the end of the path and

remain there until further instructions are provided. This normal procedure is

aborted if any additional events associated with the object occur while the object

is moving along the path. Such events can include attachment of an assembly part

to a vehicle, in which case the motion of the part will be controlled by that of the

vehicle, or an encounter of another object on the given path, in which case the

motion of all the objects on the path is coordinated in order to keep a certain

clearance between the objects.

The logical module also ensures that the status of the assembly objects

remains consistent throughout the simulation. For example, the assembly tasks are

normally assigned to the assemblers. At that point the program determines which

part the assembler is currently working on and updates the part’s status

accordingly in order to make the assembly task data available in case the part is

interrogated by the users of the application. Furthermore, the logical module

coordinates the graphical states of the assembly objects according to the current

status of the assembly process. For instance, it changes the color of the assembler

visualization models to indicate whether the assembler is busy, waiting for the

next task, or away from the assembly station. Similar actions are performed in

order to correctly represent the parts and the vehicles in the virtual environment.

A set of virtual menus is one of the components of the interaction module.

They provide full control over the application’s functionality. The location of a

menu is determined from the position and orientation of the interaction device, a

wireless wand in this case, so that the menu appears attached to the device. This

allows the users to keep the menu system from being obstructed by the objects in

the environment. The menu system is toggled and navigated with the wand’s

buttons. Menus can be also used to control the amount of information

simultaneously displayed in the virtual environment. For instance, users can

toggle on and off all the data labels associated with the assemblers or the parts.

A key component of this work is the ability of the participant to stop the

assembly, enter a new time for a task and restart the assembly sequence.

Simulation status modification and/or data interrogation of the individual objects

in the environment is performed with the wireless wand. By selecting an

appropriate menu option and subsequently depressing the wand’s trigger button in

the immediate vicinity of a part or an assembler, the user can influence the

duration of the current assembly simulation task by either terminating the task

ahead of the default time or allowing it to proceed past its default termination

threshold. These actions are designed to simulate a real-world assembler

11

completing his or her assigned task(s) ahead of the schedule, or, on the contrary,

requiring additional time to carry out the activities (Figure 3). The new time

values are then provided to the simulation package and used to reevaluate future

simulation events.

The menu system can also be used to toggle the data label containing all the

information associated with an object in the simulation environment. Complete

range of the simulation data for individual simulation objects (assemblers, parts,

vehicles) or for the entire assembly line can be accessed at any time by the users.

In case of the part this information includes part type, model type, its unique

simulation ID, its status (busy, delayed, or idle), current task performed on the

part, and an alphanumeric message that identifies the cause of a delay for the part

if such situation occurs. Assembler data tags contain the unique simulation ID, the

current task, as well as his/her utilization value – a number (variable between

0.00% and 100.00%) quantifying the ratio between total time the assembler spent

working and total time the assembler was allocated to work.

Fig. 3 Interactive assembly task modification.

In order to access areas of the simulated environment located beyond the

physical extents of the VR facility, users are provided with the ability to translate

in any direction with variable speed. Since some VR facilities lack the rear screen,

navigational controls also include the ability to rotate the simulated environment

around the current position of the user. This allows the users to investigate areas

of the virtual environment otherwise located outside of their visual range.

3 Industrial Case Study

A tractor assembly line was chosen to test the effectiveness of simulation VE.

An ALiSS model of the entire line was generated to provide system information

and event timing to the virtual reality environment. The assembly line consists of

15 work stations plus over 50 subassembly stations. Served by an overhead

12

electrified monorail system of 10 carriers, and an automated guided vehicle

(AGV) system comprised of 7 vehicles; the line is manned by 28 assemblers

working in a single 8-hour shift and flexing between work stations.

The focus of this test is on a single station, which consists of three floor

assembly fixtures, tasked with assembling the tractor frame and the tractor

transaxle; however, the simulation and visualization method presented here does

not impose explicit restrictions on the scope of the simulation scenario. The focus

area encompassed the primary components representative of the entire work

environment (assembler tasks, assembly part flow, detailed geometry models),

and thus was found suitable for the functionality evaluation.

The simulated sequence of events starts by loading an empty monorail carrier

with the next transaxle to be built as determined from the current production line-

up. Once the main frame assembly is positioned in a fixture, the corresponding

transaxle is lowered onto the frame where the two components are ‘mated’ to

form the chassis. An overhead bridge crane moves the frame assembly between

the three fixtures associated with the workstation. After the assemblers mate the

adjoining parts, the entire chassis assembly is raised up to the monorail carrier,

that travels to the AGV line where it queues up and awaits unload by the next

available AGV. After unload, the empty monorail carrier returns to the transaxle

load area.

Fig. 4 Collaborative investigation of the simulated environment.

The simulation framework has been installed at both six-screen (see Figure 4)

and four-screen virtual reality systems, and extensive testing and validation has

been performed. Several simulation scenarios were investigated, including those

with properly allocated and timed assembly tasks and those with artificial

bottlenecks in the simulation flow. Special emphasis was made on utilizing the

immersive simulation environment for collaborative work with large user groups

(5-10 people). Users were able to impact the outcomes of the specific simulation

cases by interactively modifying the simulation parameters, creating and/or

resolving potential impediments. Based on the feedback from the users,

particularly those with no significant background in the operations simulation

field, they were able to quickly comprehend the details of the simulated activities

and identify the problematic areas on the assembly lines when compared to the

traditional visualization methods (i.e., Proof Animation as shown in Figure 1).

The experience of using the application to analyze the aforementioned

manufacturing operations indicates that it provides good situational awareness and

13

overall comprehension of the simulation scenario at hand. While a specific

assembly line was investigated for the purposes of this research work, the

developed simulation framework is capable of analyzing any number of

simulation scenarios of arbitrary size, as long as the appropriate data (part and

environment models, simulation parameters) is available.

4 Conclusions and Future Work

A method to support interactive manufacturing operations simulation in an

immersive virtual environment has been presented. The method was implemented

and tested using an industrial application. The overall design advances the state-

of-the-art by supporting concurrent (temporally coupled) simulation, rather than

using the VE as a post processor to the simulation data. A significant contribution

is in providing the users with the ability to easily modify the simulation

parameters while immersed in the VE. The simulation can be interrupted, a new

time step inserted for a task, and the simulation can be restarted. A method of self-

adapting buffers supported synchronization between the simulation and the

visualization software guaranteeing a smooth visual animation.

The use of self-adapting buffers serves to cushion the interactive VE from

excessive simulation time. The simulation engine steps along and fills the

visualization buffer with time-stamped data. Selection of a maximum time for the

visualization buffer is currently performed on a trial and error basis. If the VE

experiences delays, the visualization buffer time needs to be increased. However,

as the visualization buffer time increases, the ability of the participants to

effectively halt the simulation, enter a new task time and restart the simulation

could get compromised. Additional testing is needed to explore the optimum

selection of visualization buffer time for various simulation scenarios to avoid

delays in the animation, yet support simulation interruption.

The long-term vision is to develop a Virtual Reality training environment and

laboratory for production assemblers. Potential benefits of achieving this vision

would include understanding and applying the relationship between product

quality, assembler training, and product optionality. To accomplish this goal this

project has successfully linked results from an operations simulation application

to an immersive Virtual Reality, by establishing a communication link from the

simulation directly to the VE. The next step towards a fully immersive assembler

training laboratory is effectively inserting support for the assembler to actually

assemble the virtual models within the VE. If this could be performed in near real

time, the framework would provide an effective testbed for evaluation of work

standards in assembly processes.

Acknowledgments

The authors gratefully acknowledge the support provided by Deere & Company.

The authors would like to thank the Institute of Electrical and Electronics

Engineers (IEEE) for granting the permission to reuse portions of the article

“Integrating Operations Simulation Results with an Immersive Virtual Reality

Environment”, by Gordon D. Rehn, Marco Lemessi, Judy M. Vance and Denis

Dorozhkin, published in the Proceedings of the 2004 Winter Simulation

Conference.

14

References

1. Dessouky, M.M., Verma, S., Bailey, D. E., Rickel, J., A methodology for developing a

web-based factory simulator for manufacturing education. IIE Transactions, 2001. 33(3): p. 167-

180.

2. Pulugurtha, S., Nambisan, S., Dangeti, M., Kaseko, M. Simulating and analyzing

incidents using CORSIM and VISSIM traffic simulation software. in 7th International Conference

on: Applications of Advanced Technology in Transportation. 2002.

3. Pritsker, A.B., O'Reilly, J., and LaVal, D., Simulation With Visual SLAM and AweSim.

1997, West Lafayette, IN: Systems Publishing Corporation.

4. Schriber, T.J., Brunner, D.T. Inside Discrete-Event Simulation Software: How It Works

and Why It Matters. in Winter Simulation Conference. 1997.

5. Henriksen, J.O. SLX: The X is for Extensibility. in Winter Simulation Conference. 2000.

6. Henriksen, J.O. Adding Animation to a Simulation Using Proof™. in Winter Simulation

Conference. 2000.

7. Barfield, W., Furness, T.A. III, Virtual Environments and Advanced Interface Design.

1995, New York, NY: Oxford University Press.

8. Stuart, R., The Design of Virtual Environments. 2001, Ft. Lee, NJ: Barricade Books.

9. Whitman, L., Madhavan, V., Malzahn, D., and Twomey J. Virtual Reality Model to Aid

Case Learning. in Industrial Engineering Research Conference. 2002.

10. Kibria, D., McLean, C. Virtual Reality Simulation of a Mechanical Assembly Production

Line. in Winter Simulation Conference. 2002.

11. Kesavadas, T., Ernzer, M. Design of Virtual Factory Using Cell Formation

Methodologies. in ASME Symposium on Virtual Reality Environment for Manufacturing. 1999.

Nashville, TN.

12. Kelsick, J., Vance, J.M., Buhr, L., Moller, C., Discrete Event Simulation Implemented in

a Virtual Environment. ASME Journal of Mechanical Design, 2003. 125(3): p. 428-433.

13. Strassburger, S., Shulze, T., Lemessi, M., Rehn, G.D. Temporally Parallel Coupling of

Discrete Simulation Systems with Virtual Reality Systems. in Winter Simulation Conference. 2005.

Orlando, FL.

14. Woo, M., Neider, J., Davis, T., Shreiner, D., OpenGL Programming Guide. 1999,

Reading, MA: Addison-Wesley Co.

15. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., and Carolina Cruz-Neira. VR

Juggler: A Virtual Platform for Virtual Reality Application Development. in IEEE Virtual Reality

2001 Conference (VR'01). 2001. Yokohama, Japan.

