
Physical Wireless Resource Virtualization for
Software-Defined Whole-Stack Slicing

Matthias Sander-Frigau, Tianyi Zhang, Hongwei Zhang, Ahmed E. Kamal, Arun K. Somani
Department of Electrical and Computer Engineering, Iowa State University

{msfrigau,tianyiz,hongwei,kamal,arun}@iastate.edu

Abstract—Radio access network (RAN) virtualization is gain-
ing more and more ground and expected to re-architect the next-
generation cellular networks. Existing RAN virtualization studies
and solutions have mostly focused on sharing communication
capacity and tend to require the use of the same PHY and MAC
layers across network slices. This approach has not considered
the scenarios where different slices require different PHY and
MAC layers, for instance, for radically different services and
for whole-stack research in wireless living labs where novel
PHY and MAC layers need to be deployed concurrently with
existing ones on the same physical infrastructure. To enable
whole-stack slicing where different PHY and MAC layers may
be deployed in different slices, we develop PV-RAN, the first
open-source virtual RAN platform that enables the sharing of the
same SDR physical resources across multiple slices. Through API
Remoting, PV-RAN enables running paravirtualized instances
of OpenAirInterface (OAI) at different slices without requiring
modifying OAI source code. PV-RAN effectively leverages the
inter-domain communication mechanisms of Xen to transport
time-sensitive I/Q samples via shared memory, making the
virtualization overhead in communication almost negligible. We
conduct detailed performance benchmarking of PV-RAN and
demonstrate its low overhead and high efficiency. We also
integrate PV-RAN with the CyNet wireless living lab for smart
agriculture and transportation.

I. INTRODUCTION

Recent advances in 5G virtualization [1], through the use of
Network Function Virtualization (NFV) and Software Defined
Networking (SDN), have led to the development of the concept
of Network Slicing [2]. Although there is no consensus on
the strict definition of a Network Slice, it generally refers
to an end-to-end logical portion of the network resources.
IETF defines Network Slicing as the collection of a set
of technologies to create specialized and dedicated logical
networks as a service (NaaS) in support of network service
differentiation and meeting the diversified requirements from
vertical industries [3]. Thus, network slicing has the capa-
bility for the network to provide a multitude of services
that demand very specific requirements in terms of latency,
reliability, and bandwidth. According to telecommunications
Standard Developing Organizations (SDOs), network slicing
is a key enabler for accommodating diverse 5G services such
as ultra-reliable and low-latency communications (URLLC),
extreme mobile broadband (xMBB), and massive machine-
type communication (mMTC).

This work is supported in part by the NSF awards 1827211 and 1821962.

Critical to network virtualization and slicing is the virtual-
ization and slicing of radio access networks (RANs) in addi-
tion to core networks and edge/cloud resources. Despite much
progress in RAN virtualization and slicing, existing work has
mostly focused on sharing communication capacity, and the
different slices tend to use the same PHY and MAC layers [4],
[5], [6]. Nonetheless, the heterogeneous requirements of 5G
and beyond wireless services may well demand different PHY
and MAC layers. For instance, optimal URLLC and mMTC
solutions may well differ in their PHY and MAC layers due to
the radically different requirements that URLLC and mMTC
pose to communication timeliness, reliability, throughput, and
energy efficiency. Therefore, there exists the unmet need for
RAN virtualization solutions that enable different slices to run
different PHY and MAC layers. For convenience, we call this
type of RAN virtualization whole-stack slicing. Whole-stack
slicing is not only important for production 5G-and-beyond
systems, it is also important for enabling whole-stack research
and innovation in wireless living labs where novel solutions in
the PHY and MAC layers can be experimented together with
existing solutions [7], [8].

To enable the use of different PHY and MAC layers at dif-
ferent RAN slices, we need to enable the sharing of the phys-
ical wireless radios, a.k.a. remote radio heads (RRHs), across
slices. In this study, we use USRP software-defined-radios
(SDRs) [9] as the physical radios, and we propose the PV-
RAN platform that virtualizes the RAN SDRs. PV-RAN uses
the Xen hypervisor [10] as the base virtualization platform for
the virtual RANs, and its current implementation assumes that
the open-source wireless software platform OpenAirInterface
(OAI) [11] is used as the protocol implementation platform.
As shown in Figure 1, PV-RAN spans two main components
of each RAN:

• PV-Back in the Dom0 of the base station computer: it in-
teracts with the SDR and implements the logic necessary
to virtualize and multiplex SDR radio resources.

• PV-Front in each DomU of the base station computer:
it runs the full network protocol stack (e.g., from PHY
to PDCP in LTE) with a modified version of the USRP
low-level interface of OAI that accounts for SDR radio
resource virtualization.

Compared to the C-RAN architecture that makes use of at
least one radio per slice, the PV-RAN platform can support
multiple slices using the same radio.

ar
X

iv
:2

01
2.

12
43

4v
1

 [
cs

.N
I]

 2
3

D
ec

 2
02

0

Slice K
Virtual

Net. Stack

Fronthaul

RRHs

DomU1: Slice 1
PV-Front

RRH

Slice 1
Virtual

Net. Stack

DomUK: Slice K
PV-Front

I/Q Sample Channel

Freq X Freq Y Freq {X,Y}

Dom0 PV-Back
PV Layer

Base Station ComputerBase Station Computer

Slices

Fronthaul

..

..

(a) (b)

Fig. 1: (a) Traditional C-RAN where the fronthaul connects
slices (with virtualized network stacks) to their dedicated
remote-radio-heads (RRHs). (b) PV-RAN where the fronthaul
connects a shared RRH to multiple slices.

The contributions of this work are as follows:
• We present the first open-source design and implementa-

tion of the virtualization of physical SDR resources to
enable whole-stack slicing. Besides supporting whole-
stack slicing in production systems, PV-RAN allows
researchers to prototype new cellular network PHY and
MAC layers using exclusively open-source software: PV-
Back and PV-Front use Xen paravirtualization and its
inter-domain communication mechanism to transport I/Q
samples, and the virtualized slices use OAI as the wireless
network protocol stack.

• PV-RAN enables running paravirtualized instances of
OAI without requiring modifying OAI source code. This
is accomplished through a novel API Remoting method
that intercepts UHD library function calls from paravirtu-
alized OAIs in DomUs and redirect them to the privileged
domain Dom0 where the library call is executed and
forwarded to the SDRs.

• PV-RAN ensures slice isolation in shared SDR access,
and it features novel and effective techniques such as
lightweight, in-band timestamping synchronization be-
tween PV-Back and PV-Front.

• We perform detailed performance benchmarking of PV-
RAN, and demonstrate that the inter-domain communica-
tion channel of Xen is a fast and efficient interface for the
transport of time-sensitive I/Q samples. In comparison to
OAI running in bare-metal computers without virtualiza-
tion, the overhead due to virtualization is insignificant.

• We have integrated PV-RAN with the software-defined
cyberinfrastructure CyNet [7], the first field-deployment
of open-source, virtualized cellular platforms for smart
agriculture and transportation.

The rest of this paper is organized as follows. We discuss
related work in Section II. in Section III, we present the system
model and introduce the Xen hypervisor and CyNet wireless

living lab. We present the design and implementation of PV-
RAN in Section IV. We evaluate the performance of PV-RAN
in Section V. We share concluding remarks in Section VI.

II. RELATED WORK

Virtualized RAN (vRAN) centralizes and virtualizes a
baseband-unit pool (vBBU) at a strategic location (e.g., central
office), where the vBBU can be deployed on commercial-
off-the-shelf (COTS) servers rather than proprietary hardware.
vRAN allows operators to rapidly expand the capacity and
coverage of the network, thus minimizing capital expenditure
(CAPEX) and operating expenditure (OPEX) [12]. Garcia et
al. [13] proposed an analytical framework for vRAN called
FluidRAN that optimizes the placement of vRAN functions
jointly with the routing policy according to network and com-
puting resources. Nikaein et al. [14] have considered potential
vRAN architectures that could meet real-time deadlines and
intensive computational and I/O requirements.

With the availability of SDR platforms and OAI and the
growing interest toward virtualization, researchers can proto-
type low-cost cellular networks and evaluate the performance
of different virtualized RAN architectures [15]. In [16], Tran
et al. evaluated a C-RAN testbed based on the OAI RRH/BBU
split and virtualized the OAI BBU-pool in VMWare vir-
tual machines. Their study provides interesting insight into
the computational requirements of vBBU under different
radio resource configurations. The H2020 5G-PPP SliceNet
project [17] introduced a slice-friendly virtualized 5G RAN
where the Central Unit (CU) and Distributed Unit (DU) run in
LXC containers. In [18], Trindade et al. containerized OAI in
Docker and used Kubernetes to orchestrate the RRH and BBU
containers. Nikaein et al. [19] investigated the performance of
virtualized BBUs under containers (Docker, LXC) and KVM
virtual machines.

Esmaeily et al. [5] recently introduced a testbed 5GIIK
capable of performing E2E network slicing. They rely on
the ETSI NFV MANO framework to manage and orchestrate
the resources required for creating, managing, and delivering
services through different slices. The FlexRAN [4] platform
allows the programmable control of the underlying RAN
infrastructure via virtual control functions, and it adds a
virtualization layer over the RAN infrastructure to enable
communication capacity allocation across slices.

The aforementioned studies have touched on various aspects
of RAN virtualization, but they have not considered virtual-
izing the physical wireless resources for whole-stack slicing.
The work closest to PV-RAN is that of the Wireless Spectrum
Hypervisor [20]. It considered multiplexing several OFDM
signal streams through a shared SDR. It cannot support slices
running non-OFDM PHY layers; the spectrum hypervisor
requires moving the OFDM modulation component from the
user slices to the hypervisor layer, thus not being transparent
to the slice users; it also uses ZeroMQ (a.k.a. ZMQ) bus for
communication between user slices and the hypervisor, which
introduces much higher overhead than the lightweight inter-

domain communication mechanism adopted by PV-RAN, as
we show in Section V.

III. PRELIMINARIES

System model. As shown in Figure 2, the system consists

BS Computer

UE 1

Orchestrator

Fronthaul

UE K

..
RANs

BS SDR

Base Station (BS)

Backhaul

Fig. 2: System model

of an orchestrator and a set of RANs. Each RAN has a base
station (BS) and a set of User Equipment (UEs), with each BS
consisting of a SDR and a computer. The SDR serves as the
remote radio head (RRH), and the computer runs the cellular
network stacks realized as software. A network slice consists
of a RAN slice at one or more RANs, and each RAN slice runs
a cellular network stack implemented using OpenAirInterface
(OAI) [11] with potentially different PHY and MAC layers.
We consider Frequency-Division-Multiplexing (FDM) in RAN
slicing such that different slices of a RAN operate in non-
overlapping frequency bands. The specific frequency division
strategies at different RANs could be different or the same, and
this is coordinated through the central orchestrator and defined
by software. Within this context, we study the systems issues
of how to virtualize the BSes so that a BS SDR can be shared
among multiple slices of the associated RAN to support whole-
stack slicing (i.e., with each slice running potentially different
PHY and MAC layers).

For simplicity of exposition, here we assume that each RAN
only has one BS SDR, but the virtualization solution PV-
RAN is readily extensible to the case where each RAN may
have multiple SDRs. As we will explain shortly, a key task of
PV-RAN is multiplexing/demultiplexing I/Q samples between
the BS SDR and the network stacks of different RAN slices.
Therefore, the architecture considered here resembles the RAN
functional split Option 8 as defined by 3GPP [21]. The PV-
RAN design, however, is readily extensible to other functional
split options such as Options 7-1 and 7-2 where frequency-
domain I/Q samples need to be multiplex-/demultiplexed be-
tween the BS SDR and different network stacks running on
the BS computer. Similarly, the PV-RAN framework can be
extended to network slicing strategies involving Time Division
Multiplexing (TDM), and the network stacks could be based
on other open-source cellular software platforms such as
srsLTE. These are all interesting topics for future exploration,
but their detailed studies are beyond the scope of this work.

Xen hypervisor. Considering the security benefits of virtual
machines (VMs) as compared with containers [22], as well

as the facts that VMs can be made lightweight [22] and that
paravirtualization enables efficient I/O operations, we use the
Xen hypervisor [10] as the base virtualization platform in
our PV-RAN implementation.1 In particular, we use Xen to
manage the BS computer VMs used by individual slices of a
RAN. Xen hypervisor runs directly on top of the hardware and
provides abstraction and isolation required for the operation of
multiple guest OSes hosted on the same physical computer. A
Xen-based virtualization system consists of the hypervisor and
the privileged domain Dom0 that has direct hardware access
and can manage one or more unprivileged guest domains
(DomUs).

In Xen, Dom0 has privileged access to hardware (e.g.,
SDR) while DomUs are typically not allowed to access
hardware directly. However, Xen hypervisor supports an I/O
virtualization mechanism, known as the split-driver model,
allowing DomUs to access hardware through the use of virtual
device drivers. In particular, a front-end device driver lies in
a DomU and a back-end device driver resides in Dom0 and
talks to the native device driver. The front-end and back-end
drivers use I/O ring buffers to communicate requests/replies.
I/O ring buffers rely on the grant table mechanism to share
memory pages between domains, and they use event channels,
an asynchronous notification mechanism, to notify a domain
when there are waiting data in the I/O ring buffers. Thus,
grant tables and event channels are convenient Xen facilities
that allow to create I/O channels to establish bi-directional
communication between domains. As we will explain in detail
in Section IV, PV-RAN adopts the split-driver model for
efficient I/Q sample streaming between Dom0 and DomUs.

CyNet wireless living lab. CyNet [7] is a field-deployed
wireless living lab, consisting of two cellular RANs deployed
at the Iowa State University Curtiss Research Farm and
Research Park in the City of Ames, Iowa, USA. Each RAN has
2-3 USRP X310s as the BS SDRs and several USRP B210s
as UEs. This work is motivated by the need for CyNet to
partition its RANs into different slices that employ different
PHY and MAC layers to support research and education in
wireless, agriculture, and transportation respectively. PV-RAN
has been tested and deployed with the CyNet infrastructure.

IV. PV-RAN DESIGN AND IMPLEMENTATION

In our implementation of PV-RAN, the BS SDR is the
USRP X310, and the UE SDR is the USRP B210. For ease
of discussion, we will refer to these specific SDRs and related
software modules (e.g., the SDR driver UHD) in this section,
but the design and implementation strategies of PV-RAN are
readily applicable/extensible to other SDR platforms.

A. Architecture

Figure 3 shows the architecture of the PV-RAN. The soft-
ware of the full OAI network stacks of user slices are deployed

1Other paravirtualization platforms such as KVM may also be used, but
detailed study is beyond the scope of this work. In addition, thanks to its
microkernel architecture, Xen provides a greater degree of isolation between
the hypervisor and domains than KVM does.

USRP X310

OAI stack

Dom0 Userspace

PV-RAN
Controller

Xen
Toolstack

DomUK: Slice K

Native
Network Driver

PV virtualization layer

UHD

AVX2 IQ
buffers

Dom0 Kernel

Virtual channel

USRP interface

DomU1: Slice 1

Shared-memory
inter-domain
communication
channel
for IQ samples

BS Computer
WebUI

Slice Orchestrator

PV-Front
libvchan
interface

PV-Back
libvchan
interface

Fig. 3: Architecture of PV-RAN

in the DomUs of the Xen-virtualized BS computer, and they
communicate with the physical SDR via the PV-Front in the
individual DomUs; the virtual channel carries the I/Q samples
through the Xen libvchan interface; PV-Back is deployed in
Dom0 to perform all the baseband I/O operations from/to
the USRP X310 via Dom0’s kernel native network driver;
USRP X310 integrates the antennas and acts as the RRH,
and it communicates with Dom0 using the USRP Hardware
Driver (UHD). The PV-RAN controller in Dom0 acts as
a middleware layer between the WebUI Slice Orchestrator
and the Xen toolstack xl by enforcing security and control.
It enables the WebUI Slice Orchestrator, a Web portal for
software-defined orchestration and management of DomUs, to
send orchestration messages to the Xen toolstack that controls
DomUs. When an end-user requests the creation of a new
DomU through the Web portal, an orchestration message is
sent to the PV-RAN controller which will convert it into an
xl command, which in turn will create the new DomU user
VM.

In order to run multiple heterogeneous paravirtualized OAI
protocol stacks in different DomUs (i.e., user slices), each
isolated OAI instance must appear to have dedicated access
to the SDR. Since only one process can access the USRP
Hardware Driver (UHD) at a time, we must decouple RF I/O
(a.k.a. baseband I/O) from the PHY layer to allow multiple
concurrent OAI instances to simultaneously access the USRP
device. This is achieved by virtualizing the SDR hardware
resource and delegating all RF I/O operations to a shim layer
located in the Xen Dom0 and between the PHY layer of each
paravirtualized OAI instance and the actual UHD. This shim
layer is called the PV virtualization layer. The virtualization
layer provides the following capabilities:

• Slice isolation: the virtualization layer provides a ded-
icated virtual channel to each paravirtualized OAI in-
stance so that the OAI instances in different user slices
are isolated from one another. The virtual channels are
created using the libvchan interface, a Xen interface for
inter-domain communication (IDC) that mainly relies on
gntalloc, a userspace grant allocation driver that allo-
cates shared pages, and gntdev that maps the granted
pages into the address space of a userland process.

• Virtualization transparency: the OAI source code in

user slices (i.e., DomUs) does not need to be changed in
order to use PV-RAN. This is accomplished through API
Remoting, a software-based paravirtualization technique,
that virtualizes the SDR at the programming API level. In
particular, the virtualization layer intercepts SDR function
calls at run-time from the OAI instances running in
DomUs, replaces them with API stubs, and forwards them
to Dom0 which in turn interacts with the physical SDR
to actually execute the function calls.

In what follows, we elaborate on the PV-RAN virtualization
layer.

B. PV virtualization layer

Figure 4 shows the internals of the PV virtualization layer.

DomU1: Slice 1

lte-softmodem

USRP interface

DomUK: Slice K

lte-softmodem

USRP interface

USRP Hardware Driver (UHD)

PV-Back

RX/TX streamer threads

Slice K

Dom0

RX/TX streamer threads

Slice 1

libvchan libvchan

USRPUHD API Remoting Backend

PV-Front

libvchan

PV-Front

libvchan

..

..

V
ir

tu
al

 I
/Q

 s
am

p
le

s

V
ir

tu
al

 I
/Q

 s
am

p
le

s

UHD API Transport

UHD API
Remoting
Frontend

UHD API
Remoting
Frontend

P
V

 V
irtu

alizatio
n

 Layer

Fig. 4: PV-RAN virtualization layer

It consists of several cooperating modules located in DomU
and Dom0. In what follows, we first present API Remoting
for transparent virtualization, and then we present PV-Back for
SDR virtualization and inter-domain streaming of I/Q samples.
(Information on more detailed implementation strategies can
be found in the technical report [23].)

1) Transparent virtualization via API Remoting: OAI pro-
vides low-level interfaces to different types of SDR platforms
such as HackRF, BladeRF, and USRP. In this paper we focus
the discussion on a commonly used base station SDR — USRP
X310, but the design and implementation strategies can be
applied to other SDRs. The USRP interface (usrp lib.cpp)
is a software module that sits between the PHY layer and
the SDR RF front-end. It implements functions that rely on
UHD API functions to configure the USRP X310 (channel,
bandwidth, gains, etc.) and perform RF I/O operations (i.e.,
send and receive time-domain I/Q samples). Since Dom0
interacts directly with the USRP X310 via UHD, all the UHD
API calls in DomU must be offloaded to Dom0. One naive
approach to addressing this challenge is to directly modify

the source code of OAI in each DomU. While OAI is an
open-source software allowing for modifications, a software-
based mechanism that enables the sharing of an SDR device
among DomU guests without requiring OAI modification
would be much more desirable. To this end, we develop the
API Remoting method that comprises the following modules:

• UHD API Remoting Frontend: this module is a dynamic
library that relies on library interposition. It intercepts at
run-time each UHD library function call and substitutes it
with a stub function or wrapper that will execute another
piece of code that forwards the call through the UHD
API Transport to the UHD API Remoting Backend. The
dynamic library is loaded during execution into the mem-
ory space associated with OAI lte-softmodem process.
This is achieved through the use of the LD_PRELOAD
environment variable that instructs the loader to load the
dynamic library. Each stub makes a call to dlsym()
with RTLD_NEXT to locate the address of the related
symbol in memory. Since OAI uses C++ bindings of the
UHD API, we have to use mangled symbol names. Each
UHD API C++ function has a mangled name that can be
found in the dynamic symbol table. While the mangled
symbol name is directly available for non-virtual C++
functions, the procedure to retrieve the mangled symbol
name of virtual functions (e.g., UHD API setters and
getters) is not trivial. It involves complex lookup in the
virtual table which we will cover in our future work.

• UHD API Transport: this transport component is a
Xen event channel that allows the UHD API Remot-
ing Frontend in PV-Front to send short control mes-
sages to the UHD API Remoting Backend in PV-
Back. Each control message represents a UHD li-
brary function that must be executed by the UHD in
Dom0. For instance, upon start-up, the OAI instance in
DomU (in particular, usrp lib.cpp) will first issue the
uhd::device::find() call to find the USRP device
connected. This call is then intercepted by the UHD API
Remoting Frontend, and, upon interception, the stub calls
another function that sends an INIT request to Dom0’s
UHD API Remoting Backend, which in turn 1) informs
PV-Back in Dom0 to start streaming for this OAI slice
and 2) returns to the UHD API Remoting Frontend in
DomU the type of USRP device connected.

• UHD API Remoting Backend: this module handles the
call requests received over the UHD API Transport and
executes them on the SDR device using the actual UHD
API. In its initial state, it waits for an incoming INIT
request from a DomU’s UHD API Remoting Frontend.
This message is transmitted upon the execution of lte-
softmodem in a DomU. The UHD API Remoting Back-
end processes the message and spawns RX/TX streamer
threads which will be discussed shortly.

2) SDR virtualization through PV-Back in Dom0: Based
on API remoting, PV-Back in Dom0 interacts with PV-
Front in DomUs to perform RF I/O operations on behalf

of paravirtualized OAI instances in different DomUs (i.e.,
user slices). It is designed to (i) initialize the USRP device,
configure the RX/TX frequencies, gains, bandwidths, and rates
of the communication channel according to OAI base station
(e.g., eNodeB) configuration in DomU, and map UHD RX/TX
streamers to a dedicated SDR radio channel; (ii) create bi-
directional virtual channels and event channels for I/Q sample
streaming and UHD API transport respectively; and (iii) run
high-priority RX/TX streamer threads for the continuous I/Q
sample streaming between the USRP device and paravirtu-
alized OAI instances in DomUs through the stream-based
libvchan communication interface (to be discussed shortly).

The RX/TX streamer threads are in charge of streaming I/Q
samples. They are created on-demand upon the reception of
an INIT request triggered when lte-softmodem is started in a
DomU. Each paravirtualized OAI instance triggers the creation
of two streamer objects: one RX streamer object that is the
Dom0 interface to receive I/Q samples, and one TX streamer
object that is the Dom0 interface to transmit I/Q samples.
PV-Back maps both streamers to one SDR radio channel per
DomU and spawns two threads for the reception/transmission
of I/Q samples. Besides continuously receiving and transmit-
ting I/Q samples, these two threads enable lightweight, in-band
timestamping synchronization between PV-Back in Dom0 and
and PV-Front in DomU as follows:

• RX streamer thread: it continuously reads nsamples
(e.g., 7680 I/Q samples for 25-PRB channels) from the
USRP device and then writes those samples to the virtual
channel. During the first run, this thread generates a
timestamp rx_timestamp and transmits it to PV-Front.
This timestamp is then used by OAI’s trx_usrp_read
function as the time at which the first sample was
received. (This timestamp is also used to compute the
tx_timestamp as we discuss shortly.) After the first
run, each time the thread performs an iteration of USRP
device read, it uses the previous rx timestamp value and
increases it by a fixed number depending on channel
bandwidth (e.g., 7680 for 25-PRB channels); so does
that OAI instance (in particular, the trx_usrp_read
function) in the corresponding DomU. This way, the
OAI instance in DomU and the TX streamer thread in
Dom0 are synchronized in rx_timestamp without any
explicit coordination/messaging after the first run.

• TX streamer thread: it continuously reads nbytes (e.g.,
30720 bytes for the 7680 I/Q samples for 25-PRB chan-
nels) from the virtual channel and then transmits those
samples to the USRP device. During the very first run,
this thread is locked and waits for the RX streamer
thread to compute the rx_timestamp. Once computed,
the thread execution is resumed and it computes the
appropriate tx_timestamp, which is used by PV-Back
to inform the UHD send() function at what time
the first sample must be sent. The tx_timestamp
is computed considering the channel bandwidth. For
instance, for 25-PRB channels, tx_timestamp is com-

puted as rx_timestamp + 30640. The OAI instance
in the corresponding DomU (in particular, functions in
lte-ru.c) also calculates, in the same way as the TX
streamer thread in PV-Back, the tx_timestamp based
on the rx_timestamp it receives from the RX streamer
thread, and it uses it in the OAI code execution in DomU.
This way, the TX streamer thread in Dom0 and the OAI
instance in DomU are synchronized in tx_timestamp
without any explicit coordination/messaging. Then, for
each iteration of the virtual channel read, the thread
calculates the tx_timestamp again by using the previ-
ous tx_timestamp value and increasing it by a fixed
number (e.g., 7680 for 25-PRB channels).

3) Inter-domain streaming of I/Q samples: PV-Back in
Dom0 and PV-Front in DomUs create shared memory pages
to communicate with each other. This functionality is available
through the use of the grant table mechanism that allows kernel
memory pages to be shared between domains. Each domain
possesses a grant table which is a set of pages shared between
itself and the Xen hypervisor. The domains involved in this
mechanism are referred to as the client and the server, where
the server offers the memory used for communication and
transmits its credentials (grant reference, event channel ID)
to the client in a Xen directory service known as XenStore.
The XenStore is a centralized database that stores key-value
pairs and relies on the Linux kernel interface XenBus for
messaging. To get access to the server’s shared memory, the
client needs the server’s domain ID and the XenStore path in
which the server offered its credentials. This phase is known
as the rendezvous procedure.

Now, let’s observe the mechanism in more detail by con-
sidering a DomU A, the client, wishing to communicate with
another DomU B, the server:

• DomU B creates a page entry in its grant table and then
advertises the index of this entry (grant reference) to
DomU A through a dedicated Xen event channel. The
kernel driver gntalloc is the one in charge of creating
grant references.

• Upon reception of the grant reference, DomU A validates
the grant and maps the page via the gntdev device into
the address space of the application running in DomU A.

Once the rendezvous procedure has been completed, Xen
makes use of shared data structures called ring buffers for
bulk data transfer. Historically those ring buffers have been
used by split drivers to communicate I/O requests-responses.

In this paper we use Xen virtual channel library libvchan,
a library that implements a datagram-based (packet-based and
stream-based) interface on top the standard Xen ring buffers.
Libvchan allows to specify the size of the rings and whether
or not to perform blocking I/O operations on the virtual
channel. As OAI deals with streams of I/Q samples, we use
the stream-based communication interface that is composed
of libxenvchan read and libxenvchan write functions to read
I/Q samples from a buffer and write I/Q samples to a buffer
respectively. The blocking I/O flag is set on the bi-directional

virtual channel to ensure that I/O operations are performed
sequentially.

V. MEASUREMENT EVALUATION

We have implemented the PA-RAN design [23] and inte-
grated it with the CyNet wireless living lab [7]. A recorded
demo of the operational PV-RAN can be found at [24]. Here
we conduct detailed measurement benchmarking to character-
ize the performance of the PV-RAN platform.

A. PV-RAN testbed

Fig. 5: PV-RAN testbed at ISU Research Park

We set up a testbed in the basement of the Iowa State
University (ISU) Research Park to conduct our measurement
evaluation (see Figure 5), with the basement having signifi-
cantly less interference from surrounding wireless equipment.
The testbed is composed of:

• One PV-RAN platform running two slices: the base sta-
tion computer hosting PV-RAN under the Xen hypervisor
is a Dell Precision 3630 with 64GB of RAM and 8 CPU
cores operating at 3.1GHz. Each DomU slice has been
set up as a paravirtualized guest under Ubuntu 16.04
and is configured with 4 vCPUs and 6GB of RAM.
Each DomU slice runs OpenAirInterface as the LTE
protocol stack. Bi-directional virtual channels transport
I/Q samples between each DomU PV-Front and Dom0
PV-Back. Dom0 runs under Ubuntu 18.04 and has direct
I/O access to the USRP X310 which is connected to the
base station computer through OS2 single-mode fiber.

• Two UEs: each UE runs on an Intel NUC7i7BNB under
Ubuntu 16.04 with a low-latency kernel. Each NUC is
connected via USB 3.0 to a USRP B210 equipped with
two VERT900 antennas that can operate in both the
Educational Broadband Service (EBS) and TV White
Space (TVWS) frequencies.

B. Network performance tuning

The USRP X310 is connected via single-mode fiber to one
of the SFP+ network interface of the base station computer
which provides a 10Gbps network speed. Table I summarizes
the parameters that must be fine-tuned to allow the best
network performance possible. We used ifconfig and ethtool
to configure the network interface. It is recommended to
use jumbo frames (for larger-packet transmission support), to
increase the size of RX/TX kernel buffers and Ethernet buffer
rings, to disable Ethernet frame pauses (RX/TX autoneg off),

and to minimize the raise of interrupts to the CPU during
packet reception to improve CPU utilization.

Network interface parameters
MTU size 8000 bytes
Queue length 1000 bytes
RX/TX autoneg off
Ethernet buffer rings 4096 bytes
Interrupt moderation 3 µsecs

TABLE I: Hardware and software setup

C. Throughput and Latency

To assess the smooth operation of PV-RAN, we compare
the throughput of one PV-RAN slice running OAI against a
non-virtualized instance of OAI running in a bare-metal server.
The bare-metal server running OAI has the same specification
as the base station computer used for PV-RAN. Both the PV-
RAN OAI and Bare-metal OAI use the same LTE bandwidth of
25 PRBs (5MHz) and operate at the LTE downlink frequency
and uplink frequency of 2.685GHz and 2,565GHz respectively.
The main eNB parameters are shown in Table II along with
UE parameters.

eNB configuration
LTE bandwidth 25 PRBs

Downlink frequency 2.685 GHz
Uplink frequency 2.565 GHz

PDSCH reference signal power -16 dB
UE configuration

RX gain 120 dB
TX gain 0 dB

Max UE power 0 dB

TABLE II: eNB and UE configuration

We attach one UE to each eNB and measure the UDP
throughput for 180 seconds using the iperf tool. The through-
put in the PV-RAN OAI and bare-metal OAI are similar.
For instance, Figure 6 depicts the throughput between each

Fig. 6: Throughput comparison between PV-RAN OAI and
Bare-metal OAI

eNB and their associated UE in one single run. The mean
throughput in the PV-RAN OAI and bare-metal OAI are
6.24Mbps and 5.66Mbps, respectively; the difference is mostly
due to environmental and wireless channel dynamics.

Next, we evaluate the performance when two OAI slices
are running on PV-RAN. In this experiment, we measure
the RTT and throughput between the OAI eNB and UE in
each slice. Each OAI eNB uses a channel bandwidth of 25
PRBs. Both slices operate in TVWS bands: slice 1 runs
at 595MHz (downlink) and 499MHz (uplink), and slice 2
at 580MHz (downlink) and 484MHz (uplink). Each slice
occupies a different radio channel on the USRP X310. We
connect one UE to each slice and measure the RTT with
the ping command and the UDP throughput with the iperf
command. The ICMP echo requests have been sent from
each UE to their respective eNB. Figure 7 illustrates the RTT

Fig. 7: RTT for each PV-RAN OAI slice

variation over time for each UE-eNB pair. The average RTT
is of 25ms for slice 1 and 29ms for slice 2. We witness
similar trends with OAI running on bare-metal servers. The
throughput of each OAI slice is depicted in Figure 8. It can

Fig. 8: UDP Throughput for each PV-RAN OAI slice

be seen that slice 1 achieves a stable throughput of ∼6Mbps on
average while slice 2 achieves ∼4Mbps on average, which are
also comparable to throughput achieved with bare-metal OAI.
The reason why slice 1 has slightly lower RTT and higher
throughput than slice 2 is because the UE in slice 1 is closer
to its eNB and thus have better channel quality. (The slice
throughput is less stable at the beginning phase when UEs
and eNBs dynamically tune their communication parameters
such as transmission power and MCS schemes.)

D. CPU utilization

It is of paramount importance to understand the CPU
consumption of our PV-RAN platform. For this study, all
CPU cores ran at their maximum frequency in Dom0. Each
slice spawns two threads in PV-Back, namely stream-rx that
receives I/Q samples from the USRP device and writes them
to the virtual channel, and stream-tx that reads I/Q samples
from the virtual channel and sends them to the USRP de-
vice. We pinned each thread onto a single CPU core using
pthread_setaffinity_np to have a better understand-
ing of CPU usage at a thread level. In this experiment, the
useful Linux task monitoring tools top and htop have been
used to collect CPU consumption of individual threads.

The CPU core usage per thread is reported in Figure 9
for a single OAI slice running on PV-RAN. The main thread

Fig. 9: Core usage per thread for Dom0 PV-Back

listens for incoming PV-Front requests and is responsible for
the creation of USRP device object and virtual channel data
structures. It has a mean CPU core consumption of 33.3%. It
can be observed that an additional thread named zero-copy-
recv is spawned by the call to the UHD recv() function in the
stream rx thread. This thread is one of the most influential
thread in terms of CPU consumption for OAI eNBs. It helps
to minimize unnecessary buffer copy operations between the
NIC and userspace by bypassing buffer copy operations from
the NIC to the kernel space and from the kernel space to
the userspace. stream-rx and zero-copy-recv consume 20.7%
and 20% respectively. These tasks play a major role in CPU
consumption, while in contrast the thread stream-tx has a mean
consumption of only 8% of its CPU core.

We also performed a comparative analysis of the total CPU
consumption (over all CPU cores) between OAI running in
bare-metal and OAI running as a PV-RAN slice. The CPU
usage over all cores is depicted in Figure 10. It can be seen
that, for a LTE bandwidth of 25 PRBs, OAI eNB in bare-
metal consumes about 2.6% of CPU, and it consumes 3.2%
of CPU when running as a PV-RAN slice, a slight increase
over bare-metal operation. When the LTE channel bandwidth
is doubled (i.e., with 50 PRBs), the CPU usage for OAI in
bare-metal increases by 0.85% while the CPU usage for OAI
in PV-RAN increases by only 0.4%. So the CPU usage dif-
ference between bare-metal and PV-RAN operations actually

Fig. 10: Mean CPU usage over all cores for different band-
widths

decreases with increasing channel bandwidth. Therefore, the
CPU usage overhead due to virtualization in PV-RAN is small,
and tends to be negligible as channel bandwidth increases.

E. Latency overhead

To complete our measurement study, we focus on latency
overhead which, if not controlled to be low, can be detri-
mental to I/Q sample streaming and cellular communication
performance. Since we add an extra layer between OAI USRP
interface and UHD I/O functions to transfer I/Q samples, we
need to evaluate the latency overhead introduced by the PV
virtualization layer. For this case study, in particular, we add
timestamps in PV-Front and PV-Back to measure the latency
overhead caused by the virtual channels. Figure 11 shows

Fig. 11: Latency overhead of inter-domain I/Q sample stream-
ing

the latency overhead in PV-RAN. Surprisingly, for a channel
bandwidth of 25 PRBs, the mean overhead introduces by the
virtual channel is small and only 5µs on average. For a channel
bandwidth of 50 PRBs which doubles the ring buffer size in
the virtual channel and tends to introduce higher latency, the
latency overhead is also only 6µs on average. This low latency
overhead and high efficiency of PV-RAN explain the good
throughput performance of PV-RAN discussed earlier.

Based on the above latency results, we decide to evaluate
the theoretical upper-bound capacity of our PV-RAN plat-

form. More specifically, we verify how the inter-domain I/Q
sample streaming scales with respect to the number of OAI
slices for different LTE bandwidths. In addition, the Wireless
Spectrum Hypervisor [20] uses a ZMQ socket with the PUB-
SUB (Publish-Subscribe) pattern for I/Q sample streaming.
Therefore, we also compare the PV-RAN method of shared-
memory inter-domain I/Q sample streaming against the ZMQ
PUB-SUB I/Q sample streaming method. To this end, we
create a variant of PV-RAN that uses a ZMQ socket to publish
I/Q samples between PV-Front and PV-Back.

The latency overhead observed for ZMQ PUB-SUB varies
between 65µs and 90µs, significantly higher than that with
the PV-RAN method. From these results we can infer the
maximum capacity for ZMQ PUB-SUB between Dom0 and
DomU too. Figure 12 shows for different LTE bandwidths that

Fig. 12: OAI slice scalability for different LTE bandwidths
shared-memory clearly outperforms ZMQ PUB-SUB, with
shared-memory inter-domain I/Q sample streaming being 7
times faster than ZMQ PUB-SUB inter-domain I/Q sample
streaming on average. While ZMQ PUB-SUB remains a viable
solution for general communications between processes on the
same host, it is not a good candidate for intensive real-time
inter-domain I/Q sample streaming.

VI. CONCLUDING REMARKS

As the first open-source platform for physical wireless
resource virtualization, PV-RAN enables whole-stack slicing
where different PHY and MAC layers may be adopted for
diverse communication services and wireless living lab in-
novations. Using efficient techniques such as API Remoting,
shared-memory I/Q sample streaming, and light-weight in-
band timestamping synchronization, PV-RAN enables trans-
parent, lightweight virtualization of SDRs, and it serves a solid
foundation for further development. For instance, the PV-RAN
platform can be extended to support SDR virtualization using
TDM and hybrid-TDM-FDM, and the PV-RAN implementa-
tion can be ported to other open-source platforms such as
KVM and srsLTE to expand community access to PV-RAN
capabilities.

REFERENCES

[1] F. Alvarez, D. Breitgand et al., “An edge-to-cloud virtualized multimedia
service platform for 5G networks,” IEEE Transactions on Broadcasting,
vol. 65, no. 2, pp. 369–380, 2019.

[2] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung,
“Network slicing based 5g and future mobile networks: mobility, re-
source management, and challenges,” IEEE Communications Magazine,
vol. 55, no. 8, pp. 138–145, 2017.

[3] S. Peng, R. Chen, and G. Mirsky, “Packet network slicing using segment
routing,” Tech. Rep. Draft-penglsr-network-slicing-00. IETF, Tech. Rep.,
2019.

[4] “flexran: A flexible and programmable platform for software-defined
radio access networks.”

[5] A. Esmaeily, K. Kralevska, and D. Gligoroski, “A Cloud-based
SDN/NFV Testbed for End-to-End Network Slicing in 4G/5G,”
arXiv:2004.10455, 2020.

[6] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-
Defined and Virtualized Future Mobile and Wireless Networks: A
Survey,” Mobile Networks and Applications, vol. 20, 2015.

[7] “CyNet: End-to-End Software-Defined Cyberinfrastruture for Smart
Agriculture and Transportation,” https://www.ece.iastate.edu/∼hongwei/
group/projects/CyNet.html.

[8] Y. Xie, H. Zhang, and P. Ren, “Unified scheduling for predictable
communication reliability in industrial cellular networks,” in IEEE ICII,
2018.

[9] E. Research, “USRP Software-Defined Ratios,” https://www.ettus.com/
product.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM SOSP, 2003.

[11] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A Flexible Platform for 5G Research,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.
33–38, 2014.

[12] V. Suryaprakash, P. Rost, and G. Fettweis, “Are heterogeneous cloud-
based radio access networks cost effective?” IEEE Journal on Selected
Areas in Communications, vol. 33, no. 10, pp. 2239–2251, 2015.

[13] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis,
“FluidRAN: Optimized vran/mec orchestration,” in IEEE INFOCOM,
2018.

[14] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, and T. Braun,
“Towards a cloud-native radio access network,” in Advances in mobile
cloud computing and big data in the 5G era. Springer, 2017, pp.
171–202.

[15] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen,
“Openairinterface: Democratizing innovation in the 5g era,” Computer
Networks, p. 107284, 2020.

[16] T. X. Tran, A. Younis, and D. Pompili, “Understanding the computa-
tional requirements of virtualized baseband units using a programmable
cloud radio access network testbed,” in IEEE ICAC, 2017.

[17] I. Sanchez-Navarro, A. S. Mamolar, Q. Wang, and J. M. A. Calero,
“5gtoponet: Real-time topology discovery and management on 5g multi-
tenant networks,” Future Generation Computer Systems, vol. 114, pp.
435–447, 2020.

[18] I. Trindade, C. Nahum, C. Novaes, D. Cederholm, G. Patra, and
A. Klautau, “C-ran virtualization with openairinterface,” arXiv preprint
arXiv:1908.07503, 2019.

[19] N. Nikaein, “Processing radio access network functions in the cloud:
Critical issues and modeling,” in ACM MCS, 2015.

[20] F. A. de Figueiredo, R. Mennes, I. Jabandžić, X. Jiao, and I. Moerman,
“A baseband wireless spectrum hypervisor for multiplexing concurrent
ofdm signals,” Sensors, vol. 20, no. 4, p. 1101, 2020.

[21] “Study on new radio access technology: Radio access architecture and
interfaces,” 3GPP TR38.801 Release 14.

[22] F. Manco, J. Mendes, K. Yasukata, C. Lupu, S. Kuenzer, C. Raiciu,
F. Schmidt, S. Sati, and F. Huici, “My VM is Lighter (and Safer) than
your Container,” in ACM SOSP, 2017.

[23] M. Sander-Frigau, T. Zhang, H. Zhang, A. E. Kamal, and A. K.
Somani, “Physical wireless resource virtualization for software-defined
whole-stack slicing,” Iowa State University, Tech. Rep. ISU-DNC-
TR-20-02 (https://www.ece.iastate.edu/∼hongwei/group/publications/
PV-RAN-TR.pdf), 2020.

[24] “PV-RAN Demo,” https://www.ece.iastate.edu/∼hongwei/group/
projects/CyNet/PV-RAN-CyNet-Demo.mp4.

https://www.ece.iastate.edu/~hongwei/group/projects/CyNet.html
https://www.ece.iastate.edu/~hongwei/group/projects/CyNet.html
https://www.ettus.com/product
https://www.ettus.com/product
https://www.ece.iastate.edu/~hongwei/group/publications/PV-RAN-TR.pdf
https://www.ece.iastate.edu/~hongwei/group/publications/PV-RAN-TR.pdf
https://www.ece.iastate.edu/~hongwei/group/projects/CyNet/PV-RAN-CyNet-Demo.mp4
https://www.ece.iastate.edu/~hongwei/group/projects/CyNet/PV-RAN-CyNet-Demo.mp4

	I Introduction
	II Related Work
	III Preliminaries
	IV PV-RAN Design and Implementation
	IV-A Architecture
	IV-B PV virtualization layer
	IV-B1 Transparent virtualization via API Remoting
	IV-B2 SDR virtualization through PV-Back in Dom0
	IV-B3 Inter-domain streaming of I/Q samples

	V Measurement Evaluation
	V-A PV-RAN testbed
	V-B Network performance tuning
	V-C Throughput and Latency
	V-D CPU utilization
	V-E Latency overhead

	VI Concluding Remarks
	References

