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Abstract
Insect pests cause significant damage to food production, so early detection and

efficient mitigation strategies are crucial. There is a continual shift toward machine

learning (ML)-based approaches for automating agricultural pest detection. Although

supervised learning has achieved remarkable progress in this regard, it is impeded by

the need for significant expert involvement in labeling the data used for model train-

ing. This makes real-world applications tedious and oftentimes infeasible. Recently,

self-supervised learning (SSL) approaches have provided a viable alternative to train-

ing ML models with minimal annotations. Here, we present an SSL approach to

classify 22 insect pests. The framework was assessed on raw and segmented field-

captured images using three different SSL methods, Nearest Neighbor Contrastive

Learning of Visual Representations (NNCLR), Bootstrap Your Own Latent, and Bar-

low Twins. SSL pre-training was done on ResNet-18 and ResNet-50 models using all

three SSL methods on the original RGB images and foreground segmented images.

The performance of SSL pre-training methods was evaluated using linear probing

of SSL representations and end-to-end fine-tuning approaches. The SSL-pre-trained

convolutional neural network models were able to perform annotation-efficient

Abbreviations: BYOL, Bootstrap Your Own Latent; CNN, convolutional neural network; DL, deep learning; FAW, fall armyworm; FN, false negatives; FP,
false positives; HTP, high throughput phenotyping; IA-IP22, IA insect-pest dataset 22; IPM, integrated pest management; ML, Machine Learning; NNCLR,
Nearest Neighbor Contrastive Learning of Visual Representations; RGB, red, green, and blue; sgd, stochastic gradient descent; SSL, self-supervised learning;
TN, true negatives; TP, true positives.
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classification. NNCLR was the best performing SSL method for both linear and full

model fine-tuning. With just 5% annotated images, transfer learning with ImageNet

initialization obtained 74% accuracy, whereas NNCLR achieved an improved clas-

sification accuracy of 79% for end-to-end fine-tuning. Models created using SSL

pre-training consistently performed better, especially under very low annotation, and

were robust to object class imbalances. These approaches help overcome annotation

bottlenecks and are resource efficient.

1 INTRODUCTION

Insect pests cause yield losses of up to 40% globally, with esti-
mated revenue losses of $220 billion (Gullino et al., 2021).
Insect populations are influenced by temperature and other
environmental conditions, so future climate change is pre-
dicted to affect insect-pest outbreaks (Liebhold & Bentz,
2011; Skendžić et al., 2021). Resistant varieties and integrated
pest management (IPM) strategies are effective methods to
control insect pests. IPM and other management interven-
tions require the timely identification of different insect pests,
which also reduces the usage of excessive pesticides. There-
fore, developing tools to identify diverse insects would benefit
both farmers and the broader science community. The lack of
species-specific visual features (due to extreme visual similar-
ities between various insects), very specific and short activity
duration, mobile nature, and the propensity to hide under the
leaves in clusters, and so on often lead to misidentification and
make insect-pest detection an extremely challenging problem
(Zhong et al., 2018). Timely pest detection would lower pro-
duction costs and adverse environmental impacts and help
contribute to better human health and food safety (Hao et al.,
2020).

High-throughput phenotyping (HTP) tasks have been one
of the successful applications of machine learning (ML)
and computer vision in the past decade including plant
stress phenotyping (Singh et al., 2016; 2021a). Since 2016,
deep learning (DL)-based methods have been successfully
deployed in a variety of applications to extract plant traits,
such as pod counting (Riera et al., 2021), crop yield (Shook
et al., 2021), weed detection (Bah et al., 2018; dos Santos Fer-
reira et al., 2017; Osorio et al., 2020; Razfar et al., 2022),
insect identification (Ahmad et al., 2022; Bereciartua-Pérez
et al., 2022; Li et al., 2021), disease detection (Ghosal et al.,
2018; Kulkarni, 2018; Mohanty et al., 2016; Rairdin et al.,
2022; Rangarajan et al., 2018), nutrient deficiency detection
(Azimi et al., 2021; Bahtiar et al., 2020; Barbedo, 2019;
Waheed et al., 2022; Yi et al., 2020), and root nodules (Jubery
et al., 2021). Although conventional DL-based supervised
classification and object detection are powerful models, they
require large volumes of labeled data (Singh et al., 2018). The

DL architecture enables the extraction of a suite of features
from images using a multilayer neural network, such as Con-
vNet or ResNet (Li et al., 2019). Therefore, several studies
have reported the comparative performance of multiple DL
architectures with respect to conventional supervised methods
in classifying crop insect pests (Tetila et al., 2020; Then-
mozhi & Srinivasulu Reddy, 2019; Xia et al., 2018). The three
most reported convolutional neural network (CNN) models
for insect-pest classification are versions of VGGNet, ResNet,
and MobileNet, albeit some studies have reported 98% accu-
racy in classifying multiple crop insect pests by fine-tuning
models like GoogLeNet (Chen et al., 2020). The latter is,
however, both resource- and time-intensive, hence not very
common in this domain (Liu & Wang, 2021; Nanni et al.,
2022). Considering the challenges in insect-pest classification
tasks, large insect datasets have been published, for example,
the IP102 dataset (Wu et al., 2019), and iNaturalist plant–
insect interaction data (Gazdic & Groom, 2019). However,
despite utilizing a combined deep-CNN and saliency-based
approach and being trained on such datasets, models fail to
perform desirably due to small inter-class and large intra-class
variation in a multi-class pest detection problem (Singh et al.,
2021a; Tetila et al., 2020).

Supervised DL methods provide promising results with
very high classification accuracies; however, the amount of
labeling needed to achieve desired accuracies is very high,
making their applicability infeasible in many real-world cases
(Tetila et al., 2020). Therefore, there is a pressing need to
build a DL-based classification framework to address the
issue of inter- and intra-class variabilities with limited anno-
tation. In agriculture or other domains where data labeling
is difficult, costly, time-consuming, or complex, there is
a need to overcome the challenges of limited annotation,
so that a robust DL method classification framework can
be created. In this context, a state-of-the-art self-supervised
learning (SSL) approach has been developed that learns use-
ful latent representations from input data without human
annotations. The efficiency of employing an SSL approach
over the conventional supervised methods has been shown
in diverse domains, for example, diagnosis from medical
imaging (Masood et al., 2015; Shurrab & Duwairi, 2022),
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autonomous navigation systems (Kahn et al., 2021), seis-
mic imaging (Wang et al., 2020), and plant phenotyping
(Nagasubramanian et al., 2022).

The SSL approach is built on a set of latent features, and
therefore, carrying out downstream tasks gets very conve-
nient with the significantly reduced amount of labeled data
while performance is comparable with that of supervised
learning (Caron et al., 2021; Grill et al., 2020; Nagasubra-
manian et al., 2021). An integral aspect of SSL that enables
the learning of latent and complex high-level features from
non-labeled data is augmentation. Tuning different augmen-
tation parameters allows the backbone architecture to learn
the underlying distortion-agnostic representations (Misra &
van der Maaten, 2020). Thus, the pre-trained models obtained
via SSL could be fine-tuned on annotated examples for target
transfer-learning tasks. This becomes even more applicable
where HTP is routinely utilized or deployed as a large trove of
data is created, and classification tasks are the goal (Agastya
et al., 2021; Margapuri & Neilsen, 2021; Nagasubramanian
et al., 2021; Singh et al., 2021a).

Our main objectives were to develop an efficient classi-
fication model for economically important 22 insect classes
in field and horticultural crops in Iowa, generate insight into
real-world challenges faced in processing a large dataset for
DL, present strategies to handle imbalanced dataset in var-
ious insect-pest classes using SSL, and solve fine-grained
inter- and intra-class classification problems. As real-field
images of insect pests are confounded with larger and complex
backgrounds compared to the foreground, we hypothesize
that image segmentation can aid with better latent repre-
sentations from the foreground that can improve the overall
classification performance. Therefore, this work focuses on
demonstrating the role of efficient pre-training of the SSL
methods for a significant reduction in the need for human
annotation, and comparative performance assessment on both
raw and segmented images. Further, we show the ability
of foreground-aware SSL in addressing the abovementioned
challenges and improved model performance. In this con-
text, we present a novel insect-pest dataset (IA-IP22) collected
from several fields in Iowa, comprising 22 insect-pest classes
and 14,665 images collected using smartphones. Using this
useful dataset, we investigated the efficacy of SSL in clas-
sifying 22 insect-pest classes via a meticulous DL-based
classification framework that involves comparative assess-
ment across 3 SSL algorithms, Nearest-Neighbor Contrastive
Learning of Visual Representations (NNCLR) (Dwibedi et al.,
2021), Bootstrap Your Own Latent (BYOL) (Grill et al.,
2020), and Barlow Twins (Zbontar et al., 2021). The SSL
and conventional transfer learning methods were employed
to address the inter- and intra-class variabilities using raw
and segmented images. In both methods, segmented images
produced better results. For instance, with just 3% training
data, the NNCLR self-supervised learner could classify the

Core Ideas
∙ Insect pests cause significant damage to food

production.
∙ Early detection and mitigation of insect pests are

crucial in managing economic threshold level.
∙ We developed a self-supervised learning (SSL)

model to identify insect pests with minimal anno-
tations.

∙ SSL models greatly improve the identification and
classification tasks.

∙ Entropy-masking-based segmentation aids SSL
effectiveness.

segmented images with 70.87% accuracy, whereas with raw
images, the method was just 58.59% accurate. Additionally,
compared to supervised learning, SSL with segmented images
yielded visible performance gains. Such findings will be
applicable to crop production and plant breeding (Singh et al.,
2021b).

2 MATERIALS AND METHODS

2.1 Dataset

Although multiple insect-pest datasets have been reported,
including open source (Gazdic & Groom, 2019; Wu et al.,
2019), we emphasized real-world settings and did not include
any images sourced from the internet, to make the applica-
tion easier in real-life settings that farmers and agronomists
will encounter in agriculture. Further, the available insect
datasets are mostly limited in the total image count, for exam-
ple, 200 images (Venugoban & Ramanan, 2014), 1440 images
(Xie et al., 2015), 5000 images (Tetila et al., 2020), and are
sometimes crop-specific (Tetila et al., 2020; Venugoban &
Ramanan, 2014). Limited size and variability in a dataset con-
strain the training of DL models in satisfactorily capturing
the complex features for the detection or classification of the
insect pests, which inherently possess significant inter- and
intra-class variabilities (Wu et al., 2019).

To create a novel insect-pest dataset with practical applica-
tions, a team of agronomists visited several fields in the state
of Iowa (IA), United States with the objective to collect insect-
pest images of common species present in different crops.
For real-world applicable images, smartphones (Android and
iOS) were used to take photos throughout the day with a team
of five people who collected images over the course of sev-
eral weeks in July–August 2021. This ensured varied image
specification, image variation across people/camera, and time
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of the day. Due to the presence of different insect species in
varying numbers, we have an imbalance dataset in different
insect species classes, which was desirable for the objective
of this research project. Additional variation was created due
to the imaging of insects in various crops, leaf, or stem in the
background, different zooms while taking images, and vari-
ation in types of insect species present. It was noticed that
the insects appeared at the top of the canopy mostly during
the early morning or evening hours, when the temperature
and environmental conditions were mild. This characteristic
in insect sightings was also reported by Tetila et al. (2020).
However, some insects like the Japanese beetles could be
found in clusters throughout the day. We did not experience
any challenge in collecting sufficient images for 21 of 22
insect species. However, fall armyworm (FAW) (Spodoptera
frugiperda) was difficult to collect images because those were
rarely sighted compared to the other insects. Hence, the lar-
vae were first reared and grown in the lab and then imaged
with varying background conditions to get a sizable number
of FAW images.

To incorporate variability in the dataset, the images were
also taken from varying camera angles with an intent to serve
as a natural augmentation technique in training the mod-
els. Thus, the mentioned insect-pest dataset includes both
between- and within-species variability in terms of type,
size, shape, and overall visual features. All these phenotyping
efforts led to the creation of “IA insect-pest dataset 22,” that
is, IA-IP22, which comprises 14,665 images across 22 insects
(Figure 1), and the number of insects per class varies from 95
to 1653 (Figure 2). As few insects were extremely tiny to pho-
tograph, a very close-range 5× zoomed mode was primarily
used; however, the zoom level differed based on the insect
type and their location on the plant canopy. In the following
section, the challenges faced with and the methodology for
handling such data are demonstrated.

2.2 Challenges in classifier training

Using this dataset is challenging from the ML perspective due
to the following reasons:

i. Several classes had large intra-class variability in size,
shape, color, patterns, and texture.

ii. Insects from different classes looked very similar, that
is, very small inter-class variability.

iii. The dataset was highly class imbalanced.
iv. There was a large background compared to the insect

or the foreground.
v. Due to varying illumination conditions in a day,

shadow effects were also found.
vi. Many images consisted of multiple instances of the

same insect, in cases where insects were found clus-

tered on a leaf or flower, creating an impression of
overlapping objects.

vii. Insects from different classes were found together in
the same image.

These variabilities (Figure 3) not only make the classi-
fication task challenging but also make the dataset unique,
because it unravels the opportunities for solving complex
real-world computer vision problems (Singh et al. 2021c).

2.3 Description of the SSL methods

SSL methods differ based on the augmentation approaches
and the loss function definitions, which control the selection
of the constraints and the way an optimal solution is achieved.
The three SSL methods leveraged in this study are briefly
described below.

2.4 BYOL

BYOL is a distillation-based SSL method that does not rely on
negative samples, unlike contrastive methods. It rather works
on two same architecture networks, the online and the tar-
get network. The online network is tasked with learning the
representations for an augmented view of an image, then pre-
dicting the representations of the target network trained on
another augmentation of the same image. Although the online
network gets updated as per the prediction errors, the tar-
get network weights are also simultaneously updated with the
moving averages of the online network weights. Thus, BYOL
enables self-supervision by learning interactively from two
encoder networks (Grill et al., 2020).

2.5 Barlow Twins

Barlow Twins also leverages two identical networks to learn
image features, like BYOL. However, in the Barlow Twins
method, embeddings from both the networks trained on dif-
ferent augmentations of the same images are cross-correlated.
The model is optimized by making the cross-correlation
matrix close to identity, such that the learned embeddings are
distortion-agnostic providing maximized information. The
objective function thus tries to minimize redundancy between
the representations learned from the networks and works on a
simpler concept than BYOL (Zbontar et al., 2021).

2.6 NNCLR

NNCLR exploits a contrastive learning approach to find-
ing positives from other samples closest in the latent space
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F I G U R E 1 An illustration of some of the insect pest images collected from Iowa State University research fields in Iowa, USA. These
represent the variety, type, and quality of the collected images.

F I G U R E 2 Plot representing the count of insect per class, arranged in descending order (top to bottom).
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F I G U R E 3 (A) Single (left) and multiple (right) instances of the same insect, milkweed bug; (B) two examples of similar-looking insects from
different classes—(B-i) black soldier beetle (left) and sap beetle (right) and (B-ii) southern corn rootworm (left) and bean leaf beetle (right); (C) two
examples of camouflaging background effect with an instance of a northern corn rootworm in each; (D) intra-class variability in the same insect
class, bean leaf beetle; (E) multiple insect classes in the same image—(E-i) a lady beetle, one soldier beetle and two northern corn rootworms and
(E-ii) a northern and a western corn rootworm; (F) visual similarity between western corn rootworm (left) and striped cucumber beetle (right); (g)
instances of both noisy background and multiple insects in the same image—(G-i) northern and western corn rootworm and (G-ii) northern corn
rootworm and milkweed bug; (H) background and illumination effects on the foreground, an instance of bean leaf beetle in each.

than using augmentations of the same image. This enables
increasing semantic variability compared to the latter. The
networks thus learn beyond a single discriminative instance
in providing better invariance to different viewpoints, defor-
mations, and even intra-class variations. This not only makes
the method less reliant on complex data augmentations but
also helps with significant improvement in performance in
downstream tasks.

2.7 Workflow

The classification framework comprises three major
steps: data pre-processing and extraction of segmented
images, deriving latent representations through different
self-supervised procedures, and finally, classification. Con-

sidering the complexity of the images, SSL performance
on raw and segmented images was compared via linear
evaluation of the representations learned in both cases. Sub-
sequently, supervised fine-tuning was performed to compare
supervised versus self-supervised results. In this process,
two backbone architectures, ResNet-18 and -50 (RN 18/50),
were examined for different sampling strategies, random,
random-augmented, diverse, and diverse-augmented, with
label fractions of the sample varying from 0.1%, 0.3%, 0.5%,
and 100%. All the experiments were repeated three times,
and the average results from each method were used to
compare between SSL and SL performances. Thus, this paper
primarily aims to examine the minimum amount of training
data needed to obtain at least 80% classification accuracy,
and how efficiently SSL helps in handling class imbalance.
The detailed methodology is illustrated in Figure 4.
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F I G U R E 4 Detailed methodology flowchart, representing the two input sets, raw/segmented, the backbone architectures ResNet-18 and 50
(RN 18/50), sampling strategies—random, random-augmented, diverse, and diverse-augmented, and the labeled fractions of sample varying from
0.1%, 0.3%, 0.5%, to 100%.

2.8 Data pre-processing (raw and
segmented) and pre-training setup

The dataset was first cleaned up by removing the duplicate and
empty images. Then it was partitioned in an approximately
70:15:15 ratio yielding 10,725 training images, 2081 valida-
tion, and 1859 test images. All the images were resized to
224 × 224 dimensions for processing efficiency, and then,
training samples were labeled with increasing proportion,
that is, [0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, 10, 30, 50, 70, 100].
This approach would eventually help identify the amount
of training data ideally required for reasonable SSL perfor-
mance. In this study, four different sampling strategies were
adopted: (a) random, (b) diverse (by selecting diverse samples
from the latent space of the encoder output (Bortolato et al.,
2022), (c) random-augmented, and (d) diverse-augmented.
Although the two former training sample sets (a, b) included
imbalanced classes, the latter two (c, d) were augmented
via over-sampling for ensuring balanced classes. Again, this
strategy was adopted to test the impact of an imbalanced
dataset on SSL results. Thus, there were four training sets
that differed in the sampling strategy. The entire training
set was replicated, and each image was segmented, to cre-
ate the segmented training samples, such that both the raw
and segmented training data contained the same images. The
classification framework was then parallelly employed for
subsequent analysis of any difference in performance. This
study hypothesizes a possible improvement in the perfor-
mance of downstream tasks if much of the noisy background

is first removed via segmentation before executing the pre-
training methods. The visual difference between the raw and
the segmented images is shown (Figure 5) in BGR format,
the default format used by the OpenCV library employed
for the image pre-processing operations in this study. In the
segmented images, much of the background is removed; how-
ever, essential visual patterns in the foreground are retained,
for example, the bean leaf beetle, and the aphid images are
desirably segmented despite very high similarity between the
foreground and background.

For segmentation, the local entropy-based (Hržić et al.,
2019) masking approach was leveraged to segment an image
based on the level of complexity contained in a given neigh-
borhood, defined by the structuring element, disk radius. The
entropy filter first detects subtle variations in the local gray
level distribution in the defined neighborhood and captures
the inherent properties of the transition regions. Image bina-
rization was then performed using a threshold of 0.8 to obtain
the mask. On applying the resultant mask to the grayscale
image, only those portions of the image that exceeded the
threshold were retained. The resultant entropy-masked image
was then converted back to the color image format, which
now represented the foreground, which was segmented from
the background. In this process, for each insect class, the
foreground-object texture was selectively segregated using
entropy, by varying the disk radius from 5 to 20. Satisfac-
tory segmentation results were empirically achieved for a disk
radius of 20 for southern corn rootworm and flea beetle; for
stink bug, northern corn rootworm, and flea beetle, it was 15,
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F I G U R E 5 Examples of raw (top row) and corresponding segmented (bottom row) images are shown (in BGR format) for specific insect
classes, northern corn rootworm, flea beetle, corn earworm larvae, bean leaf beetle, and aphids.

and for the remaining insect classes, 5. Similarly, the thresh-
old for masking was also empirically chosen to be 0.8. This
segmentation method was adopted because it takes image tex-
ture into account rather than color variations and is simpler
and remarkably faster than other reported methods like the
Simple Linear Iterative Clustering super pixel segmentation
(Stutz, 2015). Thus, once the datasets were prepared, pre-
training was performed for 800 epochs by employing SSL
methods described above. Two backbone architectures were
compared during pre-training, ResNet-18 and ResNet-50, ini-
tialized with ImageNet weights (Krizhevsky et al., 2017).
The hyperparameters were fine-tuned for each of the methods
(Table 1), and the model checkpoint with the lowest train-
ing and validation loss was saved for the downstream task.
For training optimization, the stochastic gradient descent opti-
mizer was used for each of the experiments, and the models
were trained using ReLU activations in the convolutional and
dense layers.

2.9 Linear probing versus end-to-end
fine-tuning

We used two different types of evaluation for the SSL methods
as shown in Figure 6. To evaluate the transfer of representa-
tions, a popular evaluation protocol is to freeze the backbone
model and train a linear classifier on the final layer repre-
sentation (Kolesnikov et al., 2019) as shown in Figure 6a.
This method is used to understand the effectiveness of SSL
representations for downstream classification. Here, we froze
the ResNet backbone model and used the representation from
the final layer of the model to train a linear classifier. A lin-
ear classifier with 512 nodes was used for the ResNet-18
model, and a linear classifier with 2048 nodes was used for the

ResNet-50 model. We used different label fractions of train-
ing sets (0.1%, 0.3%, 0.5%, 0.7%, 1%, 3%, 5%, 7%, 10%, 30%,
50%, 70%, and 100%) for the classifier. All the linear prob-
ing experiments were repeated three times. We also evaluated
the SSL model initializations as shown in Figure 6b. For this,
we fine-tuned the model end-to-end using supervised learn-
ing. We used different label fractions of training sets (0.1%,
0.3%, 0.5%, 0.7%, 1%, 3%, 5%, 7%, and 10%) for fine-tuning
the classifier. Unlike the linear probing evaluation, here we
focus on accessing performance when there is a limited bud-
get for labeling (set to 10% of the dataset). All the fine-tuning
experiments were repeated three times, and the average results
from each method were used to compare between SSL and SL
performances.

2.10 Performance metrics

We calculate the multi-class classification accuracy from the
confusion matrix: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). TP and TN
are the samples that were correctly classified by the model
and are shown on the main diagonal of the confusion matrix.
FP and FN are the samples that were incorrectly classified
by the model. From these values, the classification accuracy,
precision, recall, and F1-score are calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)
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KAR ET AL. 9 of 20

T A B L E 1 The values of hyperparameters tuned during pre-training of each self-supervised learning (SSL) model.

Hyperparameter BYOL NNCLR Barlow Twins
num_crops_per_aug [1, 1, 6] [1, 1] [1, 1]

Brightness [0.4, 0.4, 0.4] [0.4, 0.4] [0.4, 0.4]

Contrast [0.4, 0.4, 0.4] [0.4, 0.4] [0.4, 0.4]

Saturation [0.2, 0.2, 0.2] [0.2, 0.2] [0.2, 0.2]

Hue [0.2, 0.2, 0.2] [0.1, 0.1] [0.4, 0.4]

color_jitter_prob [0.8, 0.8, 0.8] [0.8, 0.8] [0.8, 0.8]

gray_scale_prob [0.0, 0.0, 0.0] [0.2, 0.2] [0.2, 0.2]

horizontal_flip_prob [0.5, 0.5, 0.5] [0.5, 0.5] [0.5, 0.5]

gaussian_prob [0.1, 0.2, 0.3] [1.0, 0.1] [1.0, 0.1]

solarization_prob [0.0, 0.2, 0.4] [0.0, 0.2] [0.2, 0.4]

crop_size [128, 128, 64] [224, 224] [128, 128]

min_scale [0.08, 0.08, 0.08] [0.08, 0.08] [0.08, 0.08]

max_scale [1.0, 1.0, 1.0] [1.0, 1.0] [1.0, 1.0]

batch_size 128 128 64

Lr 0.02 0.02 0.01

classifier_lr 0.1 0.3 0.3

weight_decay 1.00E − 05 1.00E − 05 0.0001

Optimizer sgd sgd sgd

Note: The list is as per the hyperparameters provided in the solo-learn library (da Costa et al., 2022).
Abbreviations: BYOL, Bootstrap Your Own Latent; NNCLR, Nearest Neighbor Contrastive Learning of Visual Representations; sgd, stochastic gradient descent.

F I G U R E 6 Illustration of (A) linear classification and (B) end-to-end fine-tuning methods, which were used to compare the accuracy of
self-supervised learning (SSL) methods. In (A), only weights of the last fully connected layer are fine-tuned, and in (B), all model weights are
fine-tuned in the end-to-end evaluation.
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10 of 20 KAR ET AL.

F I G U R E 7 The mean (across all four sampling strategies and three repetitions) self-supervised learning (SSL) performance with both
ResNet-18 and 50 (RN18/RN50) backbones is plotted for raw and segmented datasets.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 = 2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(4)

3 RESULTS AND DISCUSSION

3.1 Linear probing

The overall pre-training results (Figure 7), obtained by taking
the mean across all the sampling strategies and three repe-
titions of each, show that with 100% training data, BYOL
achieves the highest classification accuracy (94.16%). The

training and validation curves also showed that it rapidly
reaches the plateau, and further improvement in performance
drastically slows down beyond 200 epochs. This is fol-
lowed by NNCLR with 93.05%, and then Barlow Twins with
88.98%. NNCLR was the most annotation-efficient method
as it reached an accuracy of 90% with just 30% of the training
data.

The segmented images helped enhance the pre-training per-
formance compared to the raw images, as expected. With
less than 1% labeling of the training data, ∼10%–11% accu-
racy improvement was observed in the case of segmented
images. The highest improvement was noticed in NNCLR.
With just 3% sample size and ResNet-18 backbone, seg-
mented images reached an accuracy of 70.87% compared
to 58.59% of raw images, with a remarkable increment of
12.27%. As the amount of sampling data increased this
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KAR ET AL. 11 of 20

difference was reduced, still leading to an average of 3% incre-
ment with 100% training samples. This shows that entropy-
based image segmentation combined with the NNCLR-SSL
method could be a highly annotation-efficient solution with
greater than 70% accuracy, even with very low sample size of
3% (i.e., 3% of 10,725 = 322 images in this case).

Currently, there are varied SSL implementations for solv-
ing fine-grained image classification problem, for exam-
ple, semantic learning from the discriminative feature-
representations of image parts (Yang et al., 2022; Yu et al.,
2022), part-level contrastive learning (Wang et al., 2022),
attentively identifying fine-grained images by interaction
(Zhuang et al., 2020). However, this study shows the ability
of local entropy-mask segmentation in enhancing SSL per-
formance to classify insect pests from complex images, as
segmentation helps retain mostly the foreground portions that
accentuate the learning of more meaningful representations
during the pretext task, compared to the raw images. In the
latter case, some of the latent representations could belong to
the image background, which is intuitively not very helpful
in generalizing the downstream task. Utilizing image seg-
mentation for aiding supervised classification performance
has been found to be beneficial in previous studies (Liu,
HaoChen, et al., 2021; Mahbod et al., 2020). Additionally, it
may be noted that such improvement in model effectiveness
was achieved from “local” entropy-mask-based segmentation
that may still be influenced by external factors like illumina-
tion and occlusion. Hence, as a future research domain, the
“locally adaptive” entropy-based thresholding (Zhang et al.,
2022), which is rather a computationally expensive approach
can be tested to determine the change in performance.

Regarding the backbone architecture, ResNet-50-based
experiments yielded a 5%–9% increase in accuracy than the
ResNet-18-based experiments, when sample size was 100%.
However, when the training size was just 1% or less, ResNet-
18-based experiments seemed to achieve an average of ∼3%
higher accuracy than the ResNet-50 ones. Such an effect was
prominent in the BYOL and Barlow Twins methods. However,
in the case of NNCLR, ResNet-50 proved beneficial across all
the sample sizes with a 4% increase in accuracy on an average,
both on raw and segmented datasets. This states that when the
training size is extremely low, simpler architectures are better
for information maximization or distillation-based SSL meth-
ods. However, based on the overall result from the comparison
between the backbone architectures, the sampling strategies
were examined for the ResNet-50-based models (Figure 8).

There was no improvement noticed with the augmented
dataset containing balanced classes, on any of the three SSL
methods. It was observed that classification accuracy rather
dropped with diverse-augmented samples, particularly if the
proportion of labeled samples in the training set was less than
10%. This could have potentially resulted from over-sampling
that led to overfitting for specific classes, where the model

tried to learn all the data points including noise and inac-
curate values present in the dataset, thereby reducing model
accuracy (Santos et al., 2018). There were very minor to no
differences noticed in the performance between the random
and diverse sampling strategies. In addition, in the case of
random sampling, results from both the imbalanced (raw) and
balanced (raw-augmented) datasets were almost similar with
no noticeable difference. Thus, these findings confirmed that
SSL methods are robust to class imbalance, also suggested in
Liu, Zhang et al. (2021), and these methods can achieve better
performance with segmented images. Therefore, the subse-
quent results demonstrate the performance difference between
linear probing and fine-tuning, based only on the randomly
sampled segmented images, and do not include the diverse
and augmented cases.

3.2 Fine-tuning evaluation

Figure 9 shows the performance of end-to-end fine-tuning
results of ResNet-18 and ResNet-50 models. All the fine-
tuning experiments were repeated three times, and the mean
classification accuracy across the three repetitions is shown in
Figure 9a,b. NNCLR was the best performing SSL method.
For 5% of the labeled samples, the NNCLR method obtained
a mean classification accuracy of ∼79% for the ResNet-
50 model and an accuracy of ∼74% for the ResNet-18
model. All the SSL pre-training methods outperformed super-
vised baseline for end-to-end fine-tuning evaluation. The SSL
pre-training methods were more annotation efficient than
ImageNet initialization for training fractions less than 5%. The
performance of ImageNet initialization was on-par with SSL
methods for training fractions greater than 5%. These results
were as expected because evidence suggests that the benefit of
SSL models increases with the availability of larger amounts
of unlabeled data for pre-training. Among the SSL methods,
Barlow Twins had the lowest performance. For 10% train-
ing data, the ResNet-50 model obtained a mean classification
accuracy of 86% and was ∼4% better than the ResNet-18
model.

Figures 10 and 11 show the confusion matrices of the
ResNet-50 model with ImageNet and NNCLR initializations,
respectively. The model was trained with 7% of labeled data,
and the input images were pre-processed with entropy-based
segmentation. For confounding classes, like bean leaf beetle
and ladybird beetle, the NNCLR model performed better than
ImageNet initialization. The NNCLR initialization obtained
an accuracy of 96% for bean leaf beetle, whereas the Ima-
geNet model obtained an accuracy of 78%. Similarly, for
the confounding classes like FAW and corn earworm lar-
vae, the NNCLR model obtained accuracies of 97% and 90%,
respectively, whereas the ImageNet model obtained accura-
cies of 89% and 92%, respectively.
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12 of 20 KAR ET AL.

F I G U R E 8 Comparison of the impact of different sampling strategies on each of the self-supervised learning (SSL) methods. For brevity, the
results are plotted for sample sizes of 1%, 5%, 10%, 50%, and 100%, which potentially capture the overall pattern of improvement in classification
accuracy as the sample size increases.

F I G U R E 9 End-to-end fine-tuning evaluation of (A) ResNet-18 and (B) ResNet-50 models using segmented images. The “Supervised” curve
corresponds to training from random initialization. The models were fine-tuned for different label percentage fractions (0.1%, 0.3%, 0.5%, 0.7%, 1%,
3%, 5%, 7%, and 10%).
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KAR ET AL. 13 of 20

F I G U R E 1 0 Confusion matrix for ImageNet initialized ResNet-50. The model was trained with 7% of labeled images. The input images were
pre-processed with entropy-based segmentation for removing the background. The 22 classes are “Aphids”: 0, “Bean leaf beetle”: 1, “Corn earworm
larvae”: 2, “Fall armyworm”: 3, “Flea beetle”: 4, “Green lacewing”: 5, “Green leaf hopper”: 6, “Japanese beetle”: 7, “Ladybird beetle”: 8, “Maize
calligrapher”: 9, “Milkweed bug”: 10, “Northern corn rootworm beetle”: 11, “Sap beetle”: 12, “Silver spotted caterpillars”: 13, “Soldier beetle”: 14,
“Southern corn rootworm beetle”: 15, “Soybean nodule fly”: 16, “Stink bug”: 17, “Striped cucumber beetle”: 18, “Tarnished plant bug”: 19,
“Western corn rootworm beetle”: 20, “White fly”: 21.
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14 of 20 KAR ET AL.

F I G U R E 1 1 Confusion matrix for Nearest Neighbor Contrastive Learning of Visual Representations (NNCLR) initialized ResNet-50 model
trained on segmented images. The model was trained with 7% of labeled images. The input images were pre-processed with entropy-based
segmentation for removing the background. The 22 classes are “Aphids”: 0, “Bean leaf beetle”: 1, “Corn earworm larvae”: 2, “Fall armyworm”: 3,
“Flea beetle”: 4, “Green lace wing”: 5, “Green leaf hopper”: 6, “Japanese beetle”: 7, “Ladybird beetle”: 8, “Maize calligrapher”: 9, “Milkweed bug”:
10, “Northern corn rootworm beetle”: 11, “Sap beetle”: 12, “Silver spotted caterpillars”: 13, “Soldier beetle”: 14, “Southern corn rootworm beetle”:
15, “Soybean nodule fly”: 16, “Stink bug”: 17, “Striped cucumber beetle”: 18, “Tarnished plant bug”: 19, “Western corn rootworm beetle”: 20,
“White fly”: 21.
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KAR ET AL. 15 of 20

T A B L E 2 Precision obtained for each of the 22 classes at 5%, 7%, and 10% proportions of training data, from the ImagNet and Nearest
Neighbor Contrastive Learning of Visual Representations (NNCLR) models.

Precision
5p 7p 10p
ImageNet NNCLR ImageNet NNCLR ImageNet NNCLR

Aphids: 0 0.926 0.955 0.958 0.987 0.990 0.999

Bean leaf beetle: 1 0.546 0.503 0.696 0.653 0.728 0.685

Corn earworm larvae: 2 0.850 0.859 0.925 0.934 0.957 0.966

Fall armyworm: 3 0.820 0.992 0.825 0.997 0.857 0.999

Flea beetle: 4 0.833 0.764 0.888 0.819 0.920 0.871

Green lace wing: 5 0.541 0.884 0.556 0.899 0.676 0.991

Green leaf hopper: 6 0.884 0.763 0.909 0.863 0.941 0.955

Japanese beetle: 7 0.668 0.812 0.743 0.887 0.863 0.919

Ladybird beetle: 8 0.775 0.905 0.820 0.950 0.852 0.982

Maize calligrapher: 9 0.485 0.757 0.520 0.792 0.640 0.824

Milkweed bug: 10 0.976 1.000 0.976 1.000 0.978 1.000

Northern corn rootworm
beetle: 11

0.417 0.401 0.467 0.451 0.787 0.483

Sap beetle: 12 0.959 0.945 0.974 0.960 0.976 0.992

Silver spotted caterpillars: 13 0.967 0.956 0.972 0.981 0.974 0.983

Soldier beetle: 14 0.639 0.699 0.789 0.849 0.841 0.881

Southern corn rootworm
beetle: 15

0.753 0.831 0.828 0.906 0.860 0.938

Soybean nodule fly: 16 0.430 0.472 0.505 0.547 0.625 0.579

Stink bug: 17 0.776 0.643 0.871 0.738 0.903 0.770

Striped cucumber beetle: 18 0.880 0.860 0.935 0.915 0.967 0.947

Tarnished plant bug: 19 0.747 0.788 0.812 0.853 0.932 0.885

Western corn rootworm
beetle: 20

0.724 0.659 0.789 0.724 0.821 0.756

White fly: 21 0.644 0.872 0.699 0.947 0.731 0.979

The precision, recall, and F1-scores are presented in
Tables 2–4. Overall, the NNCLR model yielded 4.9%, 5.43%,
and 2.56% better precision than the ImageNet model with 5%,
10%, and 10% labeling of the training samples, respectively.
Similarly, the NNCLR model’s recall was higher by 2.07%,
4.12%, and 2.0%, whereas the F1-score improved by 2.46%,
4.07%, and 0.52% for 5%, 7%, and 10% labeled fractions of
the training set. Nevertheless, it was interesting to note that
some classes, for example, bean leaf beetle, northern corn
rootworm beetle, and stink bug, could be classified with bet-
ter precision by the ImageNet, while the corresponding recall
scores from the NNCLR model were higher. This implied that
the NNCLR model produced fewer FN, that is, it was bet-
ter at identifying both positive and negative samples of the
classes with high intra-class variability like the bean leaf bee-
tle, and the northern corn rootworm beetle that is tan to pale
green in color and easily camouflages with the background
in the field. Considering all the three sampling scenarios,
the NNCLR-based recall for the northern corn rootworm was

12% higher than that of ImageNet. Contrarily, western corn
rootworm beetle was the only class for which the ImageNet
classifier performed better in all the three metrics, with a mean
increase of ∼6% (precision), 2% (recall), and 5% (F1-score)
across the three scenarios with 5%, 7%, and 10% labeled data.
However, for the minority classes like the green lacewing, and
the maize calligrapher, NNCLR performed remarkably bet-
ter. In the case of green lacewing, precision and recall were
higher by 33.3% and 22.3%, whereas for maize calligrapher,
the respective scores were up by 24.3% and 15%. Another
notable example demonstrating the efficiency of the SSL-pre-
trained model in correctly classifying a confounding class is
that of the southern corn rootworm beetle (with ∼8% higher
precision, recall, and F1-score), which looks very similar to a
bean leaf beetle (Figure 3b-ii).

These classification results show that the NNCLR model
that was trained on smaller in-domain unlabeled data was
able to obtain good accuracy for challenging classes with few
labels compared to ImageNet model that was pre-trained on
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16 of 20 KAR ET AL.

T A B L E 3 Recall obtained for each of the 22 classes at 5%, 7%, and 10% proportions of training data, from the ImagNet and Nearest Neighbor
Contrastive Learning of Visual Representations (NNCLR) models.

Recall
5p 7p 10p
ImageNet NNCLR ImageNet NNCLR ImageNet NNCLR

Aphids: 0 0.811 0.922 0.836 0.947 0.891 0.972

Bean leaf beetle: 1 0.781 0.959 0.806 0.984 0.861 0.999

Corn earworm larvae: 2 0.894 0.973 0.919 0.988 0.944 0.993

Fall armyworm: 3 0.915 0.903 0.920 0.958 0.945 0.983

Flea beetle: 4 0.699 0.519 0.849 0.669 0.944 0.819

Green lace wing: 5 0.230 0.412 0.480 0.662 0.505 0.812

Green leaf hopper: 6 0.857 0.929 0.902 0.974 0.927 0.989

Japanese beetle: 7 0.821 0.660 0.846 0.910 0.941 0.965

Ladybird beetle: 8 0.730 0.742 0.805 0.817 0.955 0.842

Maize calligrapher: 9 0.189 0.379 0.264 0.454 0.414 0.479

Milkweed bug: 10 0.683 0.683 0.883 0.883 0.938 0.908

Northern corn rootworm
beetle: 11

0.691 0.823 0.791 0.923 0.846 0.948

Sap beetle: 12 0.750 0.450 0.845 0.545 0.900 0.570

Silver spotted caterpillars: 13 0.858 0.929 0.923 0.974 0.948 0.999

Soldier beetle: 14 0.858 0.964 0.898 0.994 0.923 0.999

Southern corn rootworm
beetle: 15

0.772 0.771 0.797 0.921 0.822 0.946

Soybean nodule fly: 16 0.653 0.578 0.718 0.633 0.868 0.658

Stink bug: 17 0.675 0.741 0.805 0.834 0.900 0.859

Striped cucumber beetle: 18 0.940 0.980 0.953 0.993 0.978 0.998

Tarnished plant bug: 19 0.382 0.379 0.455 0.452 0.805 0.547

Western corn rootworm
beetle: 20

0.837 0.824 0.902 0.889 0.957 0.914

White fly: 21 0.778 0.741 0.793 0.891 0.888 0.946

large, labeled data from out-of-domain. This showed that SSL
could solve fine-grained inter- and intra-class classification
problems, because the bean leaf beetle class contained the
high intra-class variability, whereas the confounding classes
had fine-grained inter-class variability. As the proportion of
labeled samples increased from 5% to 10%, the recall or the
ability of the SSL method in correctly identifying the bean
leaf beetle images increased from 95.9% to 99.9%, compared
to a recall of 0.861 by the ImageNet model, when trained with
just 10% labeled samples. Similar patterns in the results were
also observed in the case of confounding classes like green
lace wing and the green leaf hopper, also identified as one
of the minority classes in the dataset. Aphids is another class
with high fine-grained variability, which could be classified
with 92% accuracy with 7% training using SSL, whereas the
ImageNet method’s accuracy was 11% lower.

Such robustness of SSL to dataset imbalance could be
attributed to its ability to learn richer features that are trans-
ferable across layers to help classify the rare classes and

downstream tasks (Liu, Zhang, et al., 2021; Yang & Xu,
2020). More specifically, SSL is not actuated by any labels,
unlike the SL approach. Hence, SSL is not limited to learning
only the label-relevant features that help predict the frequent
classes, but rather a diverse set of generalizable represen-
tations, including both label-relevant and irrelevant features
from unlabeled data. Learning during the pretext task also
contributes to the representation-invariance property of an
SSL model (Tendle & Hasan, 2021), such that it captures
the ingrained characteristics of the input distribution, that are
generalizable or transferable to downstream tasks. Therefore,
SSL methods can generalize to rare classes better than SL
approaches. SSL’s robustness to class imbalance is thoroughly
demonstrated by Liu, Zhang et al. (2021), and the general-
izability of self-supervised representations is discussed by
Tendle and Hasan (2021).

Overall, the SSL methods provide an exciting opportunity
and application in the plant science domain. At the same
time, there are several open questions that require future
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T A B L E 4 F1-Score obtained for each of the 22 classes at 5%, 7%, and 10% proportions of training data, from the ImagNet and Nearest
Neighbor Contrastive Learning of Visual Representations (NNCLR) models.

F1-Score
5p 7p 10p
ImageNet NNCLR ImageNet NNCLR ImageNet NNCLR

Aphids: 0 0.864 0.938 0.893 0.967 0.938 0.985

Bean leaf beetle: 1 0.643 0.660 0.747 0.785 0.789 0.813

Corn earworm larvae: 2 0.871 0.913 0.922 0.960 0.950 0.979

Fall armyworm: 3 0.865 0.945 0.870 0.977 0.899 0.991

Flea beetle: 4 0.760 0.618 0.868 0.736 0.932 0.844

Green lace wing: 5 0.323 0.562 0.515 0.762 0.578 0.892

Green leaf hopper: 6 0.870 0.838 0.905 0.915 0.934 0.972

Japanese beetle: 7 0.737 0.728 0.791 0.898 0.900 0.941

Ladybird beetle: 8 0.752 0.815 0.812 0.878 0.901 0.906

Maize calligrapher: 9 0.272 0.505 0.351 0.577 0.503 0.606

Milkweed bug: 10 0.804 0.811 0.927 0.938 0.958 0.952

Northern corn rootworm
beetle: 11

0.520 0.539 0.587 0.606 0.816 0.640

Sap beetle: 12 0.842 0.610 0.905 0.695 0.936 0.724

Silver spotted caterpillars: 13 0.910 0.942 0.947 0.977 0.961 0.991

Soldier beetle: 14 0.733 0.810 0.840 0.916 0.880 0.936

Southern corn rootworm
beetle: 15

0.763 0.800 0.813 0.913 0.841 0.942

Soybean nodule fly: 16 0.518 0.520 0.593 0.587 0.726 0.616

Stink bug: 17 0.722 0.689 0.837 0.783 0.902 0.812

Striped cucumber beetle: 18 0.909 0.916 0.944 0.953 0.973 0.972

Tarnished plant bug: 19 0.505 0.512 0.583 0.591 0.864 0.676

Western corn rootworm
beetle: 20

0.777 0.732 0.842 0.798 0.884 0.827

White fly: 21 0.705 0.801 0.743 0.918 0.802 0.962

research. The SSL-based insect-pest identification should
investigate (a) designing pretext classes specifically to insect-
pest classification, (b) using class-specific loss functions, (c)
pre-training with both out-of-domain and in-domain data, and
(d) developing a mobile application for farmers and breeders.

4 CONCLUSIONS

This paper presents an IA insect-pest dataset that gener-
ates exciting opportunities for researchers and practitioners
to utilize the dataset in ML model development. This dataset
includes (a) several classes with large intra-class variability in
size, shape, color, patterns, and texture; (b) insects from differ-
ent classes that look similar; (c) high class imbalance; (d) large
background noise compared to the insect or the foreground;
(e) varying illumination conditions and shadows; (f) overlap-
ping objects in the image; (g) multiple insect-pest species
in the same image frame. Using this insect-pest dataset,
we thoroughly investigated different SSL methods, with and

without prior image segmentation, to circumvent data anno-
tation challenges that plague plant scientists as biological
systems are inherently very complex. We found that SSL-
pre-trained models were annotation efficient for insect-pest
classification. For learning with few labels, the model ini-
tializations and latent representation from NNCLR was better
than the ImageNet model. Pre-training with segmented input
images provided better performance than the original images.
All the SSL methods performed better than the supervised
baseline for both linear probing and end-to-end evaluation.
The SSL-pre-trained models were robust to class imbalances
and were able to differentiate confounding insect classes.
These results indicate the usefulness of SSL methods, espe-
cially with segmented images for data labeling/annotation
challenges to save time, cost, physical resource, computa-
tion, and integrate phone-based imaging with ML pipeline
that can work across geographies to help identify and even-
tually control insect pests in the field. SSL models from our
paper will be efficient in solving a variety of plant phenomics
problems, which includes the early detection of insect pests,
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species identification, damage assessment, yield loss due to
insect infestation, and provide vital information to farming
community to maintain a healthy crop cycle.
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