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ABSTRACT

The analysis of orientation data is a growing field in statistics. Though the rotationally

symmetric location model for orientation data is simple, statistical methods for estimation

and inference for the location parameter, S are limited. In this dissertation we develop point

estimation and confidence region methods for the central orientation.

Both extrinsic and intrinsic approaches to estimating the central orientation S have been

proposed in the literature, but no rigorous comparison of the approaches is available. In Chapter

2 we consider both intrinsic and extrinsic estimators of the central orientation and compare

their statistical properties in a simulation study. In particular we consider the projected mean,

geometric mean and geometric median. In addition we introduce the projected median as a

novel robust estimator of the location parameter. The results of a simulation study suggest the

projected median is the preferred estimator because of its low bias and mean square error.

Non-parametric confidence regions for the central orientation have been proposed in the

literature, but they have undesirable coverage rates for small samples. In Chapter 3 we propose

a nonparametric pivotal bootstrap to calibrate confidence regions for the central orientation.

We demonstrate the benefits of using calibrated confidence regions in a simulation study and

prove the proposed bootstrap method is consistent.

Robust statistical methods for estimating the central orientation has received very little

attention. In Chapter 4 we explore the finite sample and asymptotic properties of the projected

median. In particular we derive the asymptotic distribution of the projected median and show it

is SB-robust for the Cayley and matrix Fisher distributions. Confidence regions for the central

orientation S are proposed, which can be shown to have preferable finite sample coverage rates

compared to those based on the projected mean.

Finally the rotations package is developed in Chapter 5, which contains functions for the

statistical analysis of rotation data in SO(3).
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Estimation and inference for location parameters is a fundamental problem in statistics.

For parameter spaces such as the real line or two-dimensional plane, the statistical tools used

to learn about the population location are many and varied. Additionally, guidelines exist

to suggest which statistical tool is most appropriate in a given situation. For example, it

is typically suggested the sample median be used to estimate the population location rather

than the sample mean if the data are skewed. For parameter spaces like the rotation group,

however, not only are the statistical tools limited in number, it is not well known how those tools

behave or which tool is best for a given situation. In this dissertation we provide empirical and

theoretical evidence that both expands the statistical methodology available for the analysis of

rotation data and suggest which tool is most appropriate.

Let SO(3) denote the collection of all 3× 3 rotation matrices called the rotation group. We

consider the random sample R1, . . . ,Rn ∈ SO(3) from the location model

Ri = SEi i = 1, . . . , n (1.1)

where S ∈ SO(3) is the fixed parameter of interest indicating an orientation of central tendency,

and E1, . . . ,En ∈ SO(3) denote i.i.d. random rotations which symmetrically perturb S. This

dissertation examines the empirical and theoretical behavior of point and region estimators for

the central orientation parameter S.

There are two approaches to analyzing SO(3) data; each approach results in a different class

of estimators for the central orientation S. The intrinsic approach uses the innate topology

of the rotation group SO(3) to define distance and ultimately estimators for the parameters.

Alternatively, the extrinsic approach embeds the SO(3) space into the space of all 3 × 3 ma-
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trices R3×3 then standard Euclidean metrics to define distance and therefore estimators are

implemented. As of this writing there has been no clear reason presented in the literature as

to which choice results in the best analysis. In fact, a majority of the literature only examines

one method of analysis and ignores the other entirely.

In what follows we consider both approaches when deciding which estimator to use to

estimate the central orientation S. An in-depth examination of the extrinsic estimators leads to

confidence region estimates and robustness properties. Some computing considerations involved

in SO(3) data analysis are also detailed.

1.2 Thesis Organization

This dissertation is comprised or four manuscripts related to the statistical analysis of three-

dimensional rotations. Chapter 2 includes a literature review of the approaches used to compute

a point estimate for the central orientation and their small sample behavior is investigated in

a simulation study. The asymptotic behavior of the extrinsic mean is defined in Chapter 3

and a pivotal bootstrap confidence region procedure is proposed. In Chapter 4 the extrinsic

mean is investigated in detail, including its asymptotic distribution and robustness properties.

The computer code used throughout this dissertation has been collected into the R package

rotations, which is detailed in Chapter 5. Finally, general conclusions based on the entire

work and future directions are discussed in Chapter 6.
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CHAPTER 2. POINT ESTIMATION OF THE CENTRAL

ORIENTATION OF RANDOM ROTATIONS

A paper published in Technometrics

Bryan Stanfill, Ulrike Genschel, Heike Hofmann

Abstract

Data as three-dimensional rotations have application in computer science, kinematics and

materials sciences, among other areas. Estimating the central orientation from a sample of

such data is an important problem, which is complicated by the fact that several different ap-

proaches exist for this, motivated by various geometrical and decision-theoretic considerations.

However, little is known about how such estimators compare, especially on common distribu-

tions for location models with random rotations. We examine four location estimators, three

of which are commonly found in different literatures and the fourth estimator (a projected

median) is newly introduced. Our study unifies existing literature and provides a detailed nu-

merical investigation of location estimators for three commonly used rotation distributions in

statistics and materials science. While the data-generating model influences the best choice of

an estimator, the proposed projected median emerges as an overall good performer, which can

be suggested without particular distributional assumptions. We illustrate the estimators and

our findings with data from a materials science study by approximating the central orientation

of cubic crystals on the micro-surface of a metal. Accompanying supplementary materials are

available online.

Keywords: Cayley distribution, Electronic Backscatter Diffraction, Geodesic distance, Matrix

Fisher distribution, Projected median, Rotation Group
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2.1 Introduction

Data in the form of 3× 3 rotation matrices find application in several scientific areas, such

as biomedical engineering, computer visioning, and geological and materials sciences, where

such data represent the positions of objects within some three-dimensional reference frame.

For example, Rancourt et al. (2000) examine rotation matrix data in studying body positions

whilst operating machinery. Fletcher et al. (2009) consider this type of orientation data in

magnetic resonance imaging and in shape analysis; similar examples can be found in Schwartz

and Rozumalski (2005), Pierrynowski and Ball (2009), Dai et al. (2010), or Hadani and Singer

(2011). The data in our illustrative example to follow arise from a study in materials science,

where 3 × 3 rotations represent the orientations of cubic crystals on the micro-surface of a

metal specimen as measured through electron backscatter diffraction (EBSD) and “grains”

within metals are composed of crystals which roughly share a common orientation; see Randle

(2003) for details on EBSD data.

From a sample of orientations, an important interest is often the estimation of a main or

central orientation S. That is, letting the rotation group SO(3) denote the collection of all

3× 3 rotation matrices, observations R1, . . . ,Rn ∈ SO(3) can be conceptualized as a random

sample from a location model

Ri = SEi, i = 1, . . . , n, (2.1)

where S ∈ SO(3) is the fixed parameter of interest indicating an orientation of central tendency,

and E1, . . . ,En ∈ SO(3) denote i.i.d. random rotations which symmetrically perturb S. The

data-generating model in (2.1) is a rotation-matrix analog of a location model for scalar data

Yi = µ + ei, where µ ∈ R denotes a mean and ei ∈ R denotes an additive error symmetrically

distributed around zero. This representation (2.1) for orientations is quite common and, in fact,

a variety of parametric models exist for describing symmetrically distributed rotations Ei, such

as the symmetric matrix Fisher distribution (Downs, 1972), the symmetric Cayley distribution

(León et al., 2006) and the circular-von Mises-based rotation distribution (Bingham et al.,

2009) in the statistics literature, as well as Bunge’s Gaussian distribution (Bunge, 1982), the

isotropic Gaussian distribution (Matthies et al., 1988; Savyolova and Nikolayev, 1995) and the
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de la Vallée Poussin distribution (Schaeben, 1997) in the materials science literature. Our goal

in this paper is to summarize and compare the most frequently proposed approaches for the

point estimation of S based on a sample of orientation data generated by (2.1). Depending on

the scientific literature, the approaches can be quite different.

The topic of location estimation has received considerable attention for directional data

on circles or spheres (see Fisher 1953; Karcher 1977; Khatri and Mardia 1977; Fisher 1985;

Ducharme and Milasevic 1987; Bajaj 1988; Liu et al. 1992; Chan and He 1993; Mardia and

Jupp 2000), but less is known about estimator properties with rotation data. As a compound-

ing factor, several current approaches to estimating S have arisen out of literatures having

differing statistical and geometrical emphases. In the applied sciences literature, estimators

of S are typically based on non-Euclidean (i.e., Riemannian) geometry, such as the geometric

mean (Moakher, 2002; Manton, 2004) or, more recently, the geometric median (Fletcher et al.,

2008, 2009). Preferences may depend on potential outliers in the data, but such suggestions

for estimating S often do not consider the potential impact of the underlying data-generating

mechanism. On the other hand, approaches in the statistics literature tend to motivate an

estimator for S through likelihood or moment-estimation principles applied to a specifically

assumed distributional model (e.g., matrix Fisher or Cayley distribution) for the symmetric

rotation errors Ei (Downs, 1972; Jupp and Mardia, 1979; León et al., 2006; Bingham et al.,

2010b). Almost always, this estimator turns out to be a projected arithmetic mean based on Eu-

clidean geometry. Hence, in addition to possible distributional assumptions, more fundamental

divisions in estimation approaches may be attributable to different geometrical perspectives

with rotation data.

Considering the potential effects of an underlying data generation model as well as the choice

of geometry (i.e., Euclidean vs. Riemannian), the above discussion indicates a need to inves-

tigate and identify good point estimators for rotation data. In particular, because estimators

in the applied sciences literatures are often selected without decision-theoretical considerations

based on underlying distributions, it is of interest to understand how different location es-

timators behave across common distributions for rotations. In this paper, we evaluate four

estimators for S in the context of the location model (2.1). These are either mean- or median-
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type estimators and based either on Euclidean or Riemannian geometry; the Euclidean-based

median estimator is introduced for the first time for SO(3) data. Its inclusion is natural and

its performance can be generally quite good so that this estimator may be broadly recommend-

able (as will be demonstrated). Through simulation, we compare how these estimators perform

with respect to three common probability models for symmetric rotation errors as defined in

(2.1), namely the circular-von Mises-based distribution, the symmetric matrix Fisher distribu-

tion and the symmetric Cayley distribution. The matrix Fisher is arguably the most common

distribution in the statistics literature (see Chikuse 2003). While not noted previously, the sym-

metric Cayley and the de la Vallée Poussin distribution are in fact the same; the de la Vallée

Poussin distribution has been advocated in the materials science literature (Schaeben, 1997).

The circular-von Mises-based distribution is included because it is often applied to EBSD data

(Bingham et al., 2009). We describe how properties of error distributions for rotation data,

in particular their variability and tail behavior, translate into performance differences among

point estimators of S.

The remainder of the manuscript is organized as follows. Section 2.2 provides a brief

background on the geometry of rotations and different distance metrics that can be used to

assess overall estimation bias. Section 2.3 describes the location estimators for rotation data,

introduces the projected median as a novel measure of location and compares their geometric

underpinnings, which serves to unify some of the existing estimation literature. Section 4

explains the design of the simulation study followed by a summary of our main findings in

Section 5. Section 6 provides an illustration of the estimation methods for EBSD data in a

materials science application. We provide concluding remarks and future research possibilities

in Section 7. Accompanying supplementary materials are available online and the R package

rotations is currently under development to be distributed via CRAN.
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2.2 Background

2.2.1 Geometry of Three-dimensional Orientations

Three-dimensional orientation data consist of observations belonging to the group SO(3),

where an elementR in SO(3) is an orthogonal 3×3 matrix (i.e.,R>R = I3×3) with determinant

one. As SO(3) is a Lie group, its elements live on a differentiable manifold. This fact is helpful

in understanding the two different geometric approaches for estimating the central location

S ∈ SO(3) from a sample of orientation data, referred to here as the intrinsic and the embedding

estimation approaches (see also Jupp and Mardia 1989 and Mardia and Jupp 2000 for analogs

with directional data).

The rotation group SO(3) is not closed under routine addition or scalar multiplication (i.e.,

operations natural to statisticians). Hence, statistical estimation approaches often embed the

rotation group into the higher-dimensional linear space consisting of all 3 × 3 real matrices,

denoted as M(3). Doing so enables the use of the familiar Euclidean geometry (and “aver-

aging” notions) to define standard distance measures and loss criteria for obtaining location

estimators (see Section 2.2.2 and the estimators given in Sections 2.3.1 and 2.3.2). This em-

bedding technique has been largely applied by statisticians, typically resulting in the projected

arithmetic mean of Section 2.3.1. See, for example, Downs (1972); Khatri and Mardia (1977)

and Jupp and Mardia (1979, 1989). The Bayesian estimator used in Bingham et al. (2010b)

is another concrete example of this approach as is the median-type estimator we propose in

Section 2.3.2.

Alternatively, intrinsic estimation approaches use Riemannian geometry to define distances

that account for the innate topology or curvature of the space SO(3). In the intrinsic approach,

each rotation from SO(3) is associated with a skew-symmetric matrix Φ(W ), defined as

Φ(W ) =


0 −w3 w2

w3 0 −w1

−w2 w1 0


for W = (w1, w2, w3)> ∈ R3. That is, through a so-called exponential operator, we map Φ(W )
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to a rotation matrix as

exp[Φ(W )] =

∞∑
k=0

[Φ(W )]k

k!
= cos(r)I3×3 + sin(r)Φ(U) + (1− cos r)UU>

where r = ‖W ‖ and U = W /‖W ‖. The space so(3) of all skew-symmetric matrices forms

the tangent space (Lie-algebra) of SO(3), which is closed under familiar summation and scalar

multiplication operations in the usual (i.e., element-wise) manner. The fact that SO(3) is a

differentiable manifold allows a distance measure (the geodesic distance in Section 2.2.2) to be

defined between points in SO(3) according to Riemannian geometry. The resulting geodesic

distance provides the basis for the “geometric” location estimators commonly found in computer

science (Fletcher et al., 2008, 2009; Hartley et al., 2011) and engineering applications (Manton,

2004); see Sections 2.3.3 and 2.3.4.

Before leaving this section, it is helpful to note that each rotation matrixR can be associated

with an angle-axis pair (r,U), where r ∈ (−π, π] and U ∈ R3, ‖U‖ = 1, through

R = R(r,U) = exp[Φ(Ur)] ∈ SO(3). (2.2)

This is Euler’s axis-angle representation ofR, whereR is represented by rotating the coordinate

axis I3×3 about the axis U ∈ R3 by the angle r. In the materials science literature, U and r

are commonly referred to as the misorientation axis and misorientation angle of R with respect

to I3×3; see Randle (2003).

2.2.2 Choice of Distance Metrics

The choice of geometry, i.e. Riemannian or Euclidean, results in two different metrics to

measure the distance between two rotation matricesR1 andR2 ∈ SO(3). Under the embedding

approach, the natural distance metric between two random matrices is the Euclidean distance,

dE , which is induced by the Frobenius norm

dE(R1,R2) = ‖R1 −R2‖F , (2.3)

where ‖A‖F =
√

tr(A>A) denotes the Frobenius norm of a matrix A and tr(·) denotes the

trace of a matrix. The Euclidean distance between two rotation matrices corresponds to the
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shortest chord inM(3) that connects both matrices. (For an illustrative example of dE(R1,R2),

we refer to Figure 2.1 where dE(R1,R2) corresponds to the gray line.) If r ∈ (−π, π] denotes

the misorientation angle in the angle-axis representation (2.2) of R>1 R2 ≡ R>1 R2(r,U) (so

that tr(R>1 R2) = 1 + 2 cos r), then dE(R1,R2) = 2
√

2 sin(|r|/2) holds (see the supplementary

material online for a short proof of this).

By staying in the Riemannian space SO(3) under the intrinsic approach, the natural

distance metric becomes the Riemannian (or geodesic) distance, dR, between two rotations

R1,R2 ∈ SO(3) defined as

dR(R1,R2) =
1√
2
||Log(R>1 R2)||F = |r|, (2.4)

where Log(R) denotes the principle logarithm of R (i.e., Log(R) = Log(R(U , r)) = Φ(rU)

in (2.2)) and r ∈ (−π, π] is the misorientation angle of R>1 R2. The Riemannian distance

corresponds to the length of the shortest path that connects R1 and R2 within the space

SO(3); see Figure 2.1 for an illustration. For this reason, the Riemannian distance is often

considered the more natural metric on SO(3); see Moakher (2002) for this discussion along

with more details on exponential and logarithmic operators related to SO(3).

2.3 Location Estimators

This section describes four estimators for the location parameter S ∈ SO(3) corresponding

to orientation data generated by the model in (2.1). The estimators are based on two different

choices. First, the choice whether to use the embedding approach, i.e. to base the estimator on

the Euclidean distance metric defined in (2.3) or, alternatively, to use the intrinsic approach by

employing the Riemannian distance metric as defined in (2.4). The second choice concerns the

decision-theoretic loss functions, i.e., either using squared deviations (an L2-norm) or absolute

deviations (an L1-norm). The extent to which the choice of geometry or loss function matters

in the estimation of S will be an important aspect explored in Section 2.4. We provide an

overview of three commonly used estimators and the newly defined projected median along

with their properties in Table 2.1.
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Figure 2.1: An illustration of the Euclidean and Riemannian distance metric, where to simplify

the visualization, we use SO(2) (rotations of points on the R2 unit circle) in place of SO(3).

Here R1, R2 are 2 × 2 rotation matrices in SO(2), where R1v and R2v are points on the R2

unit circle after rotating v = (0, 1)> by R1 and R2, respectively. dR(R1,R2) is displayed by

the curved line (black), dE(R1,R2) by the straight line (gray).

2.3.1 The Projected Arithmetic Mean

We begin with the definition of the arithmetic mean for orientation data, as its analog is

most frequently encountered in the statistical literature for directional data (e.g., see Mardia

and Jupp 2000). For a sample of n random rotations Ri ∈ SO(3), i = 1, 2, . . . , n, this mean-

type estimator is defined as

ŜE = arg min
S∈SO(3)

n∑
i=1

d2
E(Ri,S) = arg max

S∈SO(3)
tr(S>R̄) (2.5)

where R̄ = 1
n

∑n
i=1Ri. The estimator is obtained by minimizing the sum of the squared

deviations in the Euclidean sense in the ambient space M(3), which then is projected back

into SO(3). Moakher (2002), who studied the mathematical characteristics of this estimator

in detail, therefore refers to it as the projected arithmetic mean. This estimator’s appeal lies

in its simplicity and statistically intuitive nature, though it has been noted that the estimator

is not invariant under rigid transformations (see Moakher 2002). However, the estimator does

correspond to the maximum likelihood estimator of S when the symmetrically distributed

rotation errors in (2.1) follow a matrix Fisher distribution (Jupp and Mardia, 1979). León
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Table 2.1: An overview of the estimators and their underlying geometry and loss function.

Estimator name Denoted Distance Minimizer of

metric loss function

Projected Arithmetic Mean ŜE Euclidean
∑n

i=1 d
2
E

Projected Median S̃E Euclidean
∑n

i=1 dE

Geometric Mean ŜR Riemannian
∑n

i=1 d
2
R

Geometric Median S̃R Riemannian
∑n

i=1 dR

et al. (2006) also derived this estimator as the method of moment estimator under a Cayley

distribution, and Bingham et al. (2009) showed that the projected arithmetic mean corresponds

to the maximum quasi-likelihood estimator for orientation data with rotation errors arising from

the circular-von Mises-based distribution. For a numerical implementation of ŜE we refer to

algorithms proposed by Arun et al. (1987) and Horn et al. (1988) as well as to Umeyama (1991)

for refinements of their solutions including special cases such as det(R̄) = 0.

2.3.2 The Projected Median

Previously proposed estimators for X1, . . . , Xn ∈ Rp include, for example, the Euclidean

median (also known as the Weber point (Bajaj, 1988)), the mediancentre (Gower, 1974) or

the projection median (Durocher and Kirkpatrick, 2009). For directional and spherical data,

exemplary estimators include the circular median (Mardia, 1972), the normalized spatial me-

dian (Ducharme and Milasevic, 1987) and the Fisher median (Fisher, 1985) also known as the

spherical median. Chan and He (1993) compare the performance of the normalized spatial me-

dian, an L1 estimator on the sphere by He and Simpson (1992) and the Fisher median for the

central direction for spherical data following the von Mises-Fisher distribution. They conclude

that the normalized spatial median estimator is preferable for spherical data under the von

Mises-Fisher model.

A modification of the estimator from Section 2.3.1 in line with these proposals is obtained

by replacing the squared distances in (2.5) with absolute distances, leading to a median-type
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estimator defined as

S̃E = arg min
S∈SO(3)

n∑
i=1

dE(Ri,S). (2.6)

We will refer to this estimator of S as the projected median. Although median-type estimators

exist for high dimensional and directional high dimensional data, such estimators have not been

defined for rotational data.

We next propose an algorithm to compute the projected median (2.6). We base our method

on the Weiszfeld algorithm originally given by Weiszfeld (1937). The algorithm requires an

initial value that does not equal any sample point. Note that the solution is generally not

sensitive to the choice of starting points unless the data exhibit extreme spread.

1. Set S̃ = ŜE and choose an arbitrarily small stopping rule ε.

2. For i = 1, . . . , n compute si = Ri − S̃.

3. Calculate

R̄W =

∑n
i=1Ri/||si||F∑n
i=1 1/||si||F

which we call the weighted mean with respect to S̃. Note that in theory the probability

that ||si||F = 0 equals zero, but in practice we impose a lower limit on ||si||F = δ > 0

(for some small δ ∈ R) to avoid an undefined result.

4. Define S̃new = arg maxS∈SO(3) tr(S>R̄W ) as the M(3) projection of R̄W ; see (2.5).

5. If ε > ||S̃ − S̃new||F return S̃E = S̃new; otherwise set S̃ = S̃new and return to step 2.

For Rd data steps 2 and 3 of the algorithm agree with the Weiszfeld algorithm, which has been

shown to converge to the d-dimensional median for convex cost functions such as the Frobenius

norm (c.f. Weiszfeld (1937) for details). Because R̄W does not lie in SO(3) but its ambient

space M(3), R̄W must be projected into SO(3) (step 4). Step 5 evaluates the convergence

of the algorithm in SO(3). A short argument that this algorithm indeed converges to S̃E as

defined in (2.6) is provided in the online supplementary material.
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2.3.3 The Geometric Mean

As sketched in Section 2.2.1, the Lie group property of SO(3) provides us with a conve-

nient transform from SO(3) into the tangent space so(3) that is closed under addition and

scalar multiplication. Obtaining the median or mean in this transformed space and projecting

the result back to SO(3) corresponds to the rotation that minimizes the first and second or-

der Riemannian distances, respectively (Karcher, 1977; Moakher, 2002; Fletcher et al., 2008,

2009). Karcher (1977) made use of Riemannian manifolds to compute what is often called the

Riemannian center of mass. Moakher (2002) applied Karcher’s ideas to rotation matrices and

defined

ŜR = arg min
S∈SO(3)

n∑
i=1

d2
R(Ri,S), (2.7)

which was termed as the geometric mean. Note that the solution to (2.7) may not be unique.

Uniqueness is tied to the property of geodesic convexity of the objective function in (2.7). For

more information, we refer to Moakher (2002). Additionally, (2.7) generally does not have

a closed-form solution making this estimator much more computationally intensive than its

Euclidean counterpart (the projected arithmetic mean of Section 2.3.1). We used the algorithm

proposed by Manton (2004) for implementation in our simulation study.

2.3.4 The Geometric Median

The median-type counterpart to the geometric mean was defined first in the context of

spherical data by Fisher (1985) as the point on the sphere that minimizes the sum of the arc

lengths to all observations in the sample. For this type of data, the resulting estimator is known

as the spherical median, which is a special case of the generalized median in Rd proposed by

Gower (1974). For spherical data, an alternative formulation to the spherical median has been

given by Liu et al. (1992) in the framework of data depth leading, however, to the same solution.

We give an adaptation of the spherical median to rotation matrices. Recall that the shortest

geodesic path between two rotations R1, R2 is given by the Riemannian distance dR(R1,R2).

Thus the rotation matrix analog of the Fisher (1985) spherical median can be defined as

S̃R = arg min
S∈SO(3)

n∑
i=1

dR(Ri,S);
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see also Fletcher et al. (2008, 2009). We refer to this estimator of S as the geometric median.

Hartley et al. (2011) offers an algorithm to find the geometric median in SO(3).

2.4 Simulation Study

Section 2.4.1 gives an outline of the simulation design. Section 2.4.2 briefly describes the

parametric distributional models for describing symmetric rotation errors (2.1) of differing

variability used in the study.

2.4.1 Design of Simulation Study

To compare the performance of the proposed location estimators for determining the central

direction S given a sample of size n, we generated random rotation error samples E1, . . . ,En in

model (2.1) with sizes n = 10, 50, 100 and 300. Without loss of generality, we set the location

parameter S = I3×3 (the identity matrix). To compare the performance of the estimators

for different probability models for random rotations exhibiting the same spread, we consider

varying circular variances ν = 0.25, 0.50 and 0.75 (described in Section 2.4.2). For each

combination of sample size, ν and choice of distribution, we generated 1,000 samples and

for each sample estimated the central direction S = I3×3 using each of the four proposed

estimators. We continue with an introduction to the considered distributions for rotations in

the next section.

2.4.2 Generating Random Rotations in the Location Model

We wish to compare estimators of the (fixed) location parameter S ∈ SO(3) under three

common distributional models for describing symmetric rotation errors E ∈ SO(3) in a data

model R = SE (cf. eqn. 2.1): the symmetric matrix Fisher (Langevin, 1905; Downs, 1972;

Khatri and Mardia, 1977; Jupp and Mardia, 1979), the symmetric Cayley (Schaeben, 1997;

León et al., 2006) and the circular-von Mises-based distribution (Bingham et al., 2009). A

general construction approach exists for random rotations that are symmetrically distributed

around the identity matrix I3×3; see Watson (1983); Bingham et al. (2009) and Hielscher et al.

(2010). To this end, let U ∈ R3 represent a point chosen uniformly on the unit sphere and,
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independently, generate a random angle r according to some circular density C(r|κ) on (−π, π],

which is symmetric around 0 and where κ denotes a concentration parameter governing the

spread of the circular distribution. Then, define a random rotation as E = E(U , r) using the

constructive definition (2.2) (i.e., E represents the position of I3×3 upon rotating the standard

coordinate frame in R3 about the random axis U by the random angle r). The resulting

rotation E will be symmetrically distributed and its distributional type (i.e., matrix Fisher,

Cayley or circular-von Mises-based) is determined by the form of the circular density C(r|κ)

for the (misorientation) angle r. The circular densities for the three distributions on rotations

above are given in Table 2.2, where Ip(·) denotes the Bessel function of order p defined as

Ip(κ) = 1
2π

∫ π
−π cos(pr)eκ cos rdr. The variability in the density C(r|κ) of the angle r controls

the variability in the resulting constructed rotations and, for consistency, we use the circular

variance defined as ν = 1−ρ as a measure of spread for the circular densities for r in Table 2.2.

(Note that ρ = E[cos(r)] is commonly referred to as the mean resultant length, confined to the

range [0, 1] and directly related to κ.) The values of κ corresponding to the chosen circular

variances ν are given in Table 2.3.

Table 2.2: Circular densities with respect to the Lebesgue measure and circular variance ν.

Name Density C(r|κ) Circular variance ν

Cayley 1√
π

Γ(κ+2)
Γ(κ+1/2)2−(κ+1)(1 + cos r)κ(1− cos r) 3

κ+2

matrix Fisher 1
2π[I0(2κ)−I1(2κ)]e

2κ cos(r)[1− cos(r)] 3I0(2κ)−4I1(2κ)+I2(2κ)
2[I0(2κ)−I1(2κ)]

circular-von Mises 1
2πI0(κ)e

κ cos(r) I0(κ)−I1(κ)
I0(κ)

Table 2.3: Values of κ for each rotational distribution corresponding to the circular variances.

Distribution Circular variance ν

0.25 0.50 0.75

Cayley 10.00 4.00 2.00

matrix Fisher 3.17 1.71 1.15

circular-von Mises 2.40 1.16 0.52

The density, with respect to the Haar measure, for each distribution of a random rotation
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given a circular variance of 0.75 is plotted in Figure 2.3. The Haar measure (or uniform

distribution on SO(3)) acts as the dominating measure for rotations and the symmetric nature

of the random rotation Ei = Ei(Ui, ri) means that its density f(Ei|ν) = f(ri|ν) can be plotted

in terms of the misorientation angle ri of Ei in (2.2), which is common in materials science

(Matthies et al., 1988; Savyolova and Nikolayev, 1995). Density plots with the other circular

variances considered in our simulations are similar.
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Figure 2.3: Density comparison for rotation distributions with ν = 0.75. The circular-von

Mises based-distribution has the highest concentration, but also the heaviest tail.

In Figures 2.3a and 2.3b, we see that the circular-von Mises-based distribution has the

most mass around the mode of zero whereas the Cayley distribution has the least mass around

its mode. Note that the circular variances for all three distributions are indeed the same,

which would visually be more clear if the densities were evaluated and plotted with respect

to Lebesgue measure instead of the Haar measure. Figure 2.3c offers a better view of the tail

behavior of the distributions. The circular-von Mises-based distribution has the heaviest tail,

while the Cayley distribution has the least mass in the tails. This will become important in the

discussion of the results. A visualization of a random sample of 100 rotations, one sample for

each of the three angular distributions, is given in the sphere plots in Figure 2.5. The samples

are adjusted to have a circular variance of ν = 0.25. Note that Figure 2.5 shows only the first

of the three columns of each rotation matrix. We refer to the supplementary material online

for a complete visualization of the three samples.

In the simulation study to follow, for generating random rotation errors based on the con-
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(a) Cayley (b) matrix Fisher (c) circular-von Mises

Figure 2.5: Sphere plots of the first column (x-axis) for randomly generated rotations with

different distributions having ν = 0.25

struction above, we randomly generate angles r ∈ (−π, π] from a given circular density, recalling

that the form of C(r|κ) depends on the intended symmetric distribution for the rotation errors

E, see also the supplementary material online.

2.5 Simulation Results

In this section we summarize and present the main findings of the simulation study for

estimating the central direction S = I3×3 with the four proposed estimators of Section 2.3. We

quantify the estimation error between the true location S = I3×3 and an estimate Ŝ using the

geodesic distance, i.e.

dR(S, Ŝ) =
1√
2
||Log(S>Ŝ)||F , where Ŝ = ŜE , ŜR, S̃E or S̃R. (2.8)

Results using dE would prove equivalent, albeit on a smaller scale as noted in Section 2.2.2.

Figure 2.6 displays side-by-side boxplots showing the estimation errors of all four estimators

for a given choice of rotation distribution and circular spread ν when n = 100. For a tabular

summary of this figure including the root mean square error (RMSE) as well as the mean

estimation error and estimated standard errors we refer to Table 5 in the online supplement.

First and foremost the results suggest that different location estimators emerge as preferable

depending on the type of distribution assumed for the rotation errors in (2.1). For the circular-

von Mises-based distribution both median-type estimators (S̃E and S̃R) are superior with
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Figure 2.6: Boxplots of the estimation errors for each rotation distribution and level of ν,

n = 100.

respect to the estimation error. For the Cayley and matrix Fisher models the mean-type

estimators (ŜE and ŜR) perform slightly better, though on a less pronounced scale. Figure 2.6

further shows that the estimation error is a function of the circular spread ν; as ν decreases

the range of the observed estimation errors decreases within each rotation model and for each

of the four estimators. The same holds for the mean estimation error and RMSE. Similarly,

the estimation error decreases as the sample size n increases. This result is shown in Figure 10

in the online supplement.

While preferences within the median- and mean-type estimators are visible, these generally

disappear as the variability in the data, i.e. ν decreases. For the Cayley and the matrix Fisher

distribution the overall pattern of estimation is similar. ŜE and ŜR typically exhibit less spread

and a lower average estimation error than S̃E and S̃R with differences between the estimators

lessening as ν becomes smaller.

Figure 2.7 illustrates the extent to which the mean estimation error and RMSE as a function
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of sample size differ with respect to estimator choice for the circular-von Mises-based distribu-

tion when ν = 0.75. We can see more clearly the advantage of the median estimators over the

mean estimators across sample sizes.
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Figure 2.7: Plot of the estimation error for all levels of n for the circular-von Mises-based

distribution, ν = 0.75.

The previous findings raise the question why, unlike the Cayley and the Fisher matrix dis-

tribution, the circular-von Mises-based distribution so clearly distinguishes between the mean-

and median-type estimators. A first insight can be obtained from Figures 2.3b and 2.3c which

reveal that out of the three distributions the circular-von Mises-based distribution exhibits the

heaviest tail. Thus, we can expect a larger proportion of more extreme observations to be sam-

pled under the circular-von Mises-based distribution suggesting that a median-type estimator

is more favorable. We use Figure 2.8 to examine the extent to which the tail-behavior indeed

accounts for the observed differences in the mean- and median-type estimators. Figure 2.8

displays for each simulated sample of size n = 300 the proportion of observations in the sample

considered to come from the tail of the distribution plotted against the difference in errors

for the mean- and median-type estimators. The results shown in Figure 2.8 are with respect

to the Euclidean geometry-based estimators ŜE and S̃E . Similar results are obtained for the

Riemannian geometry-based estimators ŜR and S̃R and therefore are omitted. Note that we

define the tail to begin at the location obtained by averaging the three pairwise crossing points

in Figure 2.2c at which the densities cross for the second time. From Figure 2.8 we can see
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that with an increase in the proportion of tail observations the error of the mean estimator

indeed increases at a higher rate than does the error of the median estimator, i.e. the relative

difference in the errors plotted on the y-axis increases. As a result the projected median is

preferable to the projected mean more often as the tail becomes heavier.
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Figure 2.8: The proportion of observations in the tail against the difference in projected mean

and median errors for simulated data with n = 300. Different symbols indicate different error

distributions.

We next explore how the choice of geometric distance (Euclidean dE or Riemannian dR)

affects the estimation error for both types of loss functions (i.e., L2−norm or L1−norm yielding

a mean- or median type estimator, respectively). To provide more insight into the observed

differences we plot in Figure 2.10 on the x-axis, for each type of loss function, the estimation

errors resulting from using dE versus the corresponding estimation errors resulting from using

dR (y-axis) for n = 100 and ν = 0.25, ν = 0.75, respectively. That is, Figure 2.10 plots

estimation errors in pairs (error with ŜE , error with ŜR) and (error with S̃E , error with S̃R).

Paired estimators based on the L2−norm (ŜE , ŜR) are represented by black dots whereas the

L1−norm (S̃E , S̃R) based estimators correspond to light gray dots. For example, Figure 2.10

suggests that S̃R tends to yield less estimation error than S̃E for the Cayley distribution as

most of the points fall below the identity line while the Riemannian distance-based estimators

S̃R and ŜR result in greater errors for S than their Euclidean distance based counterparts for
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the circular-von Mises-based distribution. These findings support similar results for S̃E and

S̃R seen earlier in Figure 2.6.
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Figure 2.10: Comparison of the estimation errors resulting from dE (x-axis) and dR (y-axis)

approaches based on simulated random samples of rotations with n = 100. Dots in black are

estimation error pairs from L2−norm based estimators, light gray dots denote estimation error

pairs for L1−norm based estimators.

Tables 7 and 8 of the online supplement support Figure 2.10 with an exact count (expressed

as a percentage) of how often dR resulted in a smaller estimation error than dE . Additionally,

we show the average amount of error by which the Riemannian dR− and Euclidean dE−based

estimates deviate from one another. Earlier results suggested the use of median-type estimators

for the circular-von Mises-based distribution. Taking the findings with respect to the choice of

geometry into account, we consider S̃E preferable for the circular-von Mises-based distribution

as dR(S̃E ,S) < dR(S̃R,S) most of the time. For the Cayley distribution our preference regard-
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ing the geometry is reversed; although differences are subtle dR is the preferred metric for the

Cayley distribution especially when ν is large and overall ŜR typically exhibits the least spread

for this distribution. For the matrix Fisher distribution the preference is less clear, especially

for less variable data, but as ν increases the Euclidean-based mean yields generally a smaller

estimation error more often. In summary,

• the choice of location estimator can depend on the rotation error distribution in the

location model (2.1). For the matrix Fisher and the Cayley distribution the projected

arithmetic mean ŜE and the geometric mean ŜR are, respectively, preferable though

S̃E and S̃R are not far behind especially when the circular spread is smaller. For the

circular-von Mises-based distribution the projected median S̃E should be used.

• a significant finding of the simulation results is that the (Euclidean-based) projected

median S̃E is typically a good location estimator across rotation error models. For the

circular-von Mises-based estimation, this generally has the best performance, while for

the Cayley or matrix Fisher distributions, this estimator is often quite comparable to the

best estimator. In other words, S̃E , an estimator not previously considered for rotation

matrices in the literature, appears to be a good overall choice, particularly in small

samples and without knowledge of the underlying rotation error distribution.

2.6 Data Application

We consider electron backscatter diffraction (EBSD) data obtained by scanning a fixed 12.5

µm × 10 µm nickel surface at individual locations spaced 0.2 µm apart. This scan was repeated

14 times for each location yielding a total of 3,449 observations (Bingham et al., 2009, 2010a).

Every observation corresponds to the orientation, expressed as a rotation matrix, of a cubic

crystal on the metal surface at a particular location. One goal of processing ESBD data is to

identify the main orientation of cubic crystals in the metal, where regions of cubic crystals with

similar orientations constitute “grains” on the metal surface. In the material sciences literature

mean-type estimators are commonly used for this problem (Humbert et al., 1996; Cho et al.,

2005; Bachmann et al., 2010), thus making the estimation of the main direction S for a sample
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of rotations relevant here.

At every location, using the 14 repeat scans we computed the misorientation angle |r| =

dR(Ŝ, I3×3) of the four estimators (Ŝ = ŜE , S̃E , ŜR, and S̃R) to compare resulting differences

in the corresponding estimates. In the following we will focus particularly on the differences

between ŜE and S̃E as the Riemannian estimators S̃R and ŜR largely agree with their Euclidean

counterparts.

Figure 2.11a illustrates the implementation of S̃E : each location on the plot is colored

according to the mis-orientation angle between the estimate S̃E and the identity I3×3 (as an

arbitrarily chosen reference point). The plot shows a distinct spatial structure resembling a

grain map. In Figure 2.11b we illustrate the difference between ŜE and S̃E at each location.

The difference in estimates is again defined with respect to the mis-orientation angle between

both estimates and locations are colored accordingly.
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Figure 2.11: Display of all locations of the investigated nickel surface. Each dot corresponds

to one location and shading reflects angles. The location of the the largest difference between

estimators S̃E and ŜE is circled. Panel (a) on the left shows angles of S̃E with respect to

identify. Panel (b) on the right shows locations shaded by the difference (in degrees) between

S̃E and ŜE . Distances of 0.5◦ or more are generally considered to suggest different main

orientations. Note that the mapping of distance to color shading is on a square-root scale.

Note that the literature, e.g. Bingham et al. (2010a), suggests that distances of 0.5◦ are

indicative of different grains. In our example, about 10% of the locations result in a differ-

ence between ŜE and S̃E estimates of at least that size. Differences tend to be largest along

boundaries between the spatial structures in Figure 2.11b resulting in a different allocation of

a location to grain depending on the choice of estimation method.
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As an example, Table 2.4 contains the observed orientations (the collection of all nine

coefficients xij , 1 ≤ i, j ≤ 3, of the 3× 3 rotation matrix) for each of the 14 repeated scans at

the location with the largest observed difference between S̃E and ŜE , namely 22.3◦ (circled in

Figure 2.11).

The scans have been ordered to better illustrate the clustering of the rotations observed

at this particular location. This clustering is also visible in the parallel coordinate plot in

Figure 2.12a. The clusters suggest that, for this location on a “grain boundary,” a subset

of the scans likely picked up the orientation of a neighboring cubic crystal belonging to a

different grain making this a situation in which a median-type estimator is more suitable than

a mean-type estimator.

Table 2.4: List of all rotations in the location with the largest difference between mean and

median estimators. We observe one main cluster and one smaller cluster with three additional

rotations in the proximity.

scan x11 x12 x13 x21 x22 x23 x31 x32 x33

1 -0.646 -0.552 -0.527 0.464 -0.833 0.303 -0.606 -0.049 0.794

2 -0.641 -0.550 -0.535 0.459 -0.834 0.307 -0.615 -0.048 0.787

3 -0.640 -0.549 -0.537 0.457 -0.834 0.309 -0.618 -0.048 0.785

4 -0.639 -0.546 -0.542 0.462 -0.836 0.297 -0.615 -0.061 0.787

5 -0.639 -0.547 -0.540 0.456 -0.835 0.307 -0.619 -0.050 0.783

6 -0.638 -0.550 -0.540 0.459 -0.834 0.307 -0.619 -0.052 0.784

7 -0.637 -0.551 -0.540 0.459 -0.833 0.309 -0.620 -0.051 0.783

8 -0.633 -0.554 -0.540 0.464 -0.830 0.309 -0.619 -0.055 0.783

9 -0.068 -0.422 -0.904 0.994 -0.105 0.025 -0.084 -0.900 0.427

10 -0.017 -0.633 -0.774 0.961 -0.224 0.162 -0.276 -0.741 0.612

11 -0.005 -0.551 -0.834 0.982 -0.158 0.099 -0.186 -0.819 0.542

12 -0.002 -0.587 -0.809 0.978 -0.167 0.124 -0.208 -0.792 0.574

13 -0.002 -0.595 -0.804 0.974 -0.182 0.132 -0.225 -0.783 0.580

14 -0.727 -0.475 -0.496 0.138 -0.809 0.572 -0.672 -0.348 0.653

We visualize Table 2.4 and the estimates resulting from applying S̃E and ŜE at this location

in Figure 2.12a using a parallel coordinate plot: for every scan each of the nine coefficients xij

(1 ≤ i, j ≤ 3) is plotted separately. Coefficients that correspond to the same scan are connected

by a line. Note that the coefficient values are jittered using a small perturbation in form of

a rotation matrix to avoid over-plotting and to illustrate cluster sizes. The light- and dark-

green colored lines represent the S̃E and ŜE estimates of the main direction based on the 14

scans. This example illustrates that the median estimator, S̃E , is the more robust estimate of
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the main direction in the presence of potential anomalies on the spatial boundaries of grains,

as this estimate is located within the largest cluster of rotations, while the projected mean is

pulled into a location between the clusters.
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Figure 2.12: Parallel coordinated plot (a) on the left, and a sphere plot of the y axis (b) on

the right show all fourteen rotation matrices of table 2.4, the location with the largest angle

difference between projected mean and median estimator.

2.7 Recommendations and Conclusions

The scientific literature suggests a variety of approaches to estimate the central orientation

S given a random sample of three-dimensional orientations from (2.1). These approaches differ

largely with respect to the geometry (Riemannian vs. Euclidean) of estimation, assumptions

about the underlying data-generating mechanism, and the choice of loss function when defining

suitable estimators. The main goal of this paper was to explore the extent to which these

choices affect the estimation of S. Our simulation study showed that the underlying data-

generating mechanism guides our choice of loss function. For the circular-von Mises-based

model median-type estimators perform better while for the Cayley and matrix Fisher model

the mean-type estimators show less estimation error and variability. As noted in Section 2.1

the applied sciences generally pursue estimation of S without considering the distributional

underpinnings. Restricting ourselves to the three rotation distributions under consideration, if

indeed nothing is known about the underlying data-generating mechanism we suggest to use

either median-type estimator, where the proposed median, the Euclidean based estimator S̃E ,
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emerges as a good overall choice. Its overall estimation error, even under mis-specification, will

be much less than the potential estimation error resulting from either mean-type estimator.

The extent to which all four estimators disagree depends on the variability in the rotation data;

the estimators differ more when the circular variance ν is large and tend to agree more as the

data become more concentrated.

Further studies could be extended to include location estimation in non-symmetric distri-

butional models for rotations as we considered common models for symmetric perturbations

around S in (2.1). Another important consideration is the extension of the studied point esti-

mators to building confidence regions for the location parameter S. One possibility would be

resampling-based confidence regions, but this requires theoretical development for the estima-

tor’s sampling distributions and improvements in computing time before this can be practically

implemented.

Supplementary Material

Supplementary document: This document first proves that the relationship between dE

and dR is as stated in Section 2.2.2 and that the algorithm in Section 2.3.2 converges to

S̃E . Then we extend our discussion of the simulation results from Section 2.5. (Supple-

ment.pdf)

Code and data files: The R code and data files necessary to make the figures and tables in

this manuscript are packaged here. (Supplement.zip)

Acknowledgements: The authors wish to thank Dr. Melissa Bingham and the Ames Labo-
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gestions made by the reviewers, the Associate Editor and Editor, all of which significantly

improved the manuscript.
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2.8 Supplementary Material

Proofs of Claims

Relationship Between Riemannian and Euclidean Distance in SO(3)

Claim 1. For rotation matrices Ri ∈ SO(3), i = 1, 2, . . . , n and distances dE and dR as

defined in the main manuscript in equations (3) and (4), respectively, it holds that

dE(R1,R2) = 23/2 sin

(
dR(R1,R2)

2

)
. (2.9)

Proof:

For two rotationsR1,R2 ∈ SO(3) recall that if tr(R>1 R2) = 1+2 cos(r) then |r| = dR(R1,R2).

When |r| = 0, the statement in (2.9) follows directly. Consider the case |r| > 0. By definition

we know

dE(R1,R2)2 = ||R1 −R2||2F

= tr
[
(R1 −R2)>(R1 −R2)

]
= tr

[
R>1 R1 +R>2 R2 −R>2 R1 −R>1 R2

]
= tr

[
2I −R>2 R1 −R>1 R2

]
= 2tr(I)− tr(R>2 R1)− tr(R>1 R2)

= 6− 2tr(R>1 R2)

= 4− 4 cos(|r|)

= 8

(
1− cos(|r|)

2

)
= 8 sin2

(
|r|
2

)
=

[
23/2 sin

(
|r|
2

)]2

=

[
23/2 sin

(
dR(R1,R2)

2

)]2

.

Taking square root on both sides gives (2.9).
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Convergence of S̃E Algorithm

Claim 2. For a sample n of rotation matrices, Ri ∈ SO(3) i = 1, 2, . . . , n, define M̃ to be

the median in M(3), i.e. M̃ = arg minM∈M(3)

∑n
i=1 ||Ri −M ||F . Then

S̃E := arg min
S∈SO(3)

n∑
i=1

||Ri − S||F
!

= arg min
S∈SO(3)

||M̃ − S||F =: S̃∗E .

Proof:

From the delta inequality of a distance measure we know that the following holds:

||Ri − S̃E ||F = ||Ri − M̃ + M̃ − S̃E ||F ≤ ||Ri − M̃ ||F + ||M̃ − S̃E ||F .

Also, by definition of S̃E ,
∑n

i=1 ||Ri − S̃E ||F ≤
∑n

i=1 ||Ri − S̃∗E ||F . Therefore,

0 ≤
n∑
i=1

||Ri − S̃∗E ||F −
n∑
i=1

||Ri − S̃E ||F

≤
n∑
i=1

(
||Ri − M̃ ||F + ||M̃ − S̃∗E ||F − ||Ri − M̃ ||F − ||M̃ − S̃E ||F

)
=n||M̃ − S̃∗E ||F − n||M̃ − S̃E ||F ≤ 0 (by definition of S̃∗E)

=⇒ ||M̃ − S̃∗E ||F = ||M̃ − S̃E ||F (2.10)

The result follows if the projection of M̃ onto SO(3) is unique, which holds as long as M̃ 6=

03×3.

Sampling Processes

In the following subsection we will briefly illustrate how a sample of random rotations from

each of the three rotational distributions (circular-von Mises-based, Cayley and matrix-Fisher)

is obtained for the purpose of the simulation study.

Circular-von Mises-based distribution

To simulate a random sample of rotation angles from the circular-von Mises-based distri-

bution we follow the algorithm proposed by Best and Fisher (1979). The algorithm is available

in the IMSL Library (1991) and is implemented as follows. Let µ = 0 denote the mean of the

target angular distribution and κ its concentration parameter. We define constants a, b and
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d as a ≡ 1 +
√

1 + 4κ2, b ≡ (a −
√

2a), d ≡ (1 + b2)/2b. In steps one, two and four we

generate three new observations u1, u2 and u3, each from a uniform distribution defined over

the interval (0, 1).

1. Set z = cos(πu1), f = (1 + dz)/(z + d) and c = κ(d− f).

2. If c(2− c)− u2 > 0 go to step 4.

3. If log(c/u2) + 1− c < 0 return to step 1.

4. Set r = sign(u3 − 0.5) cos−1(f).

It follows that r is distributed according to the circular-von Mises(κ) distribution.

Cayley distribution

To simulate rotation angles from a Cayley distribution we make use of a result given

in León et al., (2006). If the angle r follows a Cayley distribution it holds that 1+cos r
2 ∼

Beta(κ+ 1/2, 3/2). Hence, angles following the Cayley distribution can be simulated through

composition:

1. Generate Z ∼Bernoulli(0.5) and set Y = 1− 2Z.

2. Independently generate X ∼ Beta(κ+ 1/2, 3/2).

3. Set r = Y
2 cos−1(2X − 1).

Angles r simulated in this fashion follow a Cayley(κ) distribution.

matrix Fisher distribution

Simulation from the matrix Fisher distribution is achieved through a rejection algorithm.

Let CF(r|κ) denote the matrix Fisher density.

1. Define M = 1
2κe

2κ−1 1
I0(2κ)−I1(2κ) .

2. Generate U ∼ Uniform(0, 1) and Y ∼ Uniform(−π, π], where U and Y are independent.

3. If U < 1
MCF(Y |κ), accept Y ; otherwise return to step (2).
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Additional Simulation Study Results

We expand on some of the results given in Section 5 of the main manuscript by providing

additional numerical results to support graphical displays as well as to further clarify the

relationship between the different estimators.

Figure 4 of the main manuscript showed boxplots of the estimation errors for a each of a

1,000 samples of size n = 100 for all three distributions and choices of the circular variance ν.

We accompany this figure with Table 2.5, which provides numerical summaries of the errors

displayed in each boxplot showing the mean estimation error dR(S, Ŝ) in the 1, 000 simulation

runs, the estimated standard error SE(dR) and the estimated RMSE for each estimator.

Although the boxplots of the estimation errors look very similar in Figure 4, the estimated

standard errors in Table 2.5 suggest that on average some of the estimators differ significantly.

Table 2.5: Mean estimation error, respective standard error and RMSE for n = 100 based on

1,000 simulation runs. Despite skewness in some of the plotted error distributions the median

estimation error was quantitatively similar to the mean estimation error and therefore is not

reported.

Cayley matrix Fisher circular-von Mises

ν Estimator dR(S, Ŝ) SE(dR) RMSE dR(S, Ŝ) SE(dR) RMSE dR(S, Ŝ) SE(dR) RMSE

0.25

ŜR 0.0690 (0.0009) 0.0752 0.0699 (0.0010) 0.0761 0.0744 (0.0010) 0.0811

ŜE 0.0698 (0.0009) 0.0759 0.0695 (0.0009) 0.0756 0.0617 (0.0008) 0.0671

S̃R 0.0769 (0.0010) 0.0834 0.0747 (0.0010) 0.0813 0.0269 (0.0005) 0.0310

S̃E 0.0791 (0.0011) 0.0858 0.0766 (0.0010) 0.0832 0.0256 (0.0005) 0.0296

0.50

ŜR 0.1086 (0.0014) 0.1174 0.1121 (0.0015) 0.1219 0.1279 (0.0018) 0.1406

ŜE 0.1129 (0.0015) 0.1222 0.1054 (0.0014) 0.1143 0.0894 (0.0012) 0.0976

S̃R 0.1210 (0.0016) 0.1313 0.1113 (0.0015) 0.1211 0.0426 (0.0008) 0.0491

S̃E 0.1295 (0.0017) 0.1407 0.1160 (0.0016) 0.1262 0.0379 (0.0007) 0.0438

0.75

ŜR 0.1398 (0.0018) 0.1514 0.1703 (0.0045) 0.2225 0.2039 (0.0028) 0.2221

ŜE 0.1567 (0.0020) 0.1695 0.1462 (0.0020) 0.1588 0.1276 (0.0017) 0.1388

S̃R 0.1597 (0.0021) 0.1729 0.1527 (0.0021) 0.1660 0.0687 (0.0012) 0.0792

S̃E 0.1847 (0.0024) 0.2000 0.1597 (0.0022) 0.1736 0.0547 (0.0010) 0.0628

To establish significant differences more formally we conducted matched pair t-tests (two-

sided) for all six pairwise comparisons of the four estimators within a specific simulation setting.

The results are given in Table 2.6. We tested the null hypothesis that the difference in the

resulting estimates, on average, is zero against the alternative hypothesis that the difference,

on average, is non-zero. Because differences in the estimation error seem less obvious for the
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Cayley and matrix-Fisher distribution we conducted tests for both distributions for samples of

size 10 and 100 and circular variances of 0.25 and 0.75. We suspect that a matched pair t-test

based on all of the B = 1, 000 simulations will likely yield statistically significant differences

that are an artifact of the size of B as opposed to meaningful and practical differences we also

provide the results for (arbitrary) choices of B = 50 and B = 100. For B = 50 and B = 100 we

base the test on the estimation results for B randomly selected simulation runs and repeated

this process 100 times. The reported p-value then corresponds to the average p-value of these

100 runs. For B = 1, 000 the reported p-value is based on all original 1,000 runs. We further

adjusted the level of significance within each row of Table 2.6 using a Bonferroni correction

for multiple comparisons and therefore, within a set of all six pairwise comparisons, consider

p-values less than 0.05 ÷ 6 = 0.0083. We chose the Bonferroni adjustment because of its

simplicity.

From Table 2.6 we can conclude that for the Cayley distribution the choice of geometry

is important when using median type estimators (column 1), but not as important for mean

type estimators (column 2) unless the circular variance and sample size is large. For a given

geometry, the difference between mean and median type estimator depends on the level of

variability in the data as is the case in the one dimension case (columns 3 and 4). As for the

matrix-Fisher distribution, the choice of estimator does not appear to be overtly significant for

any sample size or circular variance. This is likely due to the fact that this distribution closely

resembles the normal distribution on the range [−π, π) in which case the mean and median are

equivalent.

Figure 2.13 illustrates the behavior of the estimators as a function of the sample size. Results

are displayed for ν = 0.75 at each sample size. As to be expected, the estimation error decreases

as the sample size increases for all three distributions. For small samples, e.g., n = 10, the

estimator exhibiting the largest amount of variability is the geodesic mean ŜR. This behavior

is consistent for all three distributions. While the estimator’s variability lessens considerably

for the Cayley and matrix Fisher distribution as n increases, the estimator remains the most

variable estimator for the circular-von Mises-based distribution. A possible explanation for

this behavior is that the algorithm to estimate ŜR uses a random sample point in its initiating
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Table 2.6: P -values for matched pair t-tests on the average differences between estimators.

Unless B equals 1,000 the reported p-values correspond to the average of 100 p-values based

on random samples of size B from 1,000 simulation runs.

Distribution ν n B S̃E − S̃R ŜE − ŜR ŜE − S̃E ŜR − S̃R ŜE − S̃R S̃E − ŜR

Cayley

0.25

10

50 0.0012 0.4106 0.0181 0.0591 0.0385 0.0298

100 <0.0001 0.3438 0.0004 0.0040 0.0022 0.0008

1000 <0.0001 0.0022 <0.0001 <0.0001 <0.0001 <0.0001

100

50 <0.0001 0.2937 0.0110 0.0360 0.0248 0.0179

100 <0.0001 0.1356 0.0002 0.0012 0.0007 0.0003

1000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

0.75

10

50 0.0001 0.0343 0.0008 0.0376 0.3306 0.0005

100 <0.0001 0.0015 <0.0001 0.0018 0.2848 <0.0001

1000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

100

50 <0.0001 0.0017 0.0001 0.0024 0.3292 <0.0001

100 <0.0001 <0.0001 <0.0001 <0.0001 0.3046 <0.0001

1000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

0.25

10

50 0.0116 0.5032 0.0791 0.2135 0.1338 0.1394

100 0.0012 0.3815 0.0213 0.1171 0.0540 0.0586

1000 <0.0001 0.0008 <0.0001 <0.0001 <0.0001 <0.0001

100

50 0.0072 0.4314 0.0773 0.2313 0.1200 0.1620

100 0.0001 0.4250 0.0047 0.0603 0.0143 0.0244

matrix- 1000 <0.0001 0.0303 <0.0001 <0.0001 <0.0001 <0.0001

Fisher

0.75

10

50 0.1027 0.1864 0.0842 0.3483 0.3509 0.4652

100 0.0205 0.0730 0.0075 0.2476 0.1666 0.5001

1000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1050

100

50 0.1475 0.0586 0.0559 0.2005 0.2296 0.4738

100 0.0419 0.0081 0.0056 0.0747 0.0768 0.4437

1000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0198

step. For small samples or samples with several extreme observations it is likely to start the

algorithm far from the true center, which in turn may cause the algorithm to get stuck in a

local minimum and to fail to converge globally. In practice we suggest the algorithm be started

at some other location estimate of S such as the ŜE . In simulations where ŜE was used as a

starting point for the algorithm we observed similar results with less variability in the estimates

of ŜR, but for the purpose of a fair comparison in this study we started the algorithm at a

random sample point.

In Figure 7 of the main manuscript we examined how the choice of geometry (Riemannian
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Cayley matrix Fisher circular−von Mises
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Figure 2.13: Boxplots of the estimation error for each rotation distribution and level of n,

ν = 0.75.

versus Euclidean) affected the estimation error under both types of loss functions L1 and L2.

Tables 2.7 and 2.8 support Figure 7 with an exact count (expressed as a percentage) of how

often dR resulted in a smaller estimation error than dE . Additionally, we give the average

amount by which the dR− and dE−based estimates deviate from one another (along with a

standard error estimate). We denote the latter quantity by δ̄ where δ = dR(S̃E ,S)−dR(S̃R,S).

Sphere plots

Figures 2.15 to 2.19 show sphere plots for 100 samples from each of the Cayley, matrix

Fisher and circular-von Mises distribution. The concentration parameter κ in each distribution
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Table 2.7: Average reduction in estimation error by using S̃R instead of S̃E , δ = dR(S̃E ,S)−
dR(S̃R,S) with standard error and percentage of samples for which dR(S̃R,S) < dR(S̃E ,S).

Cayley matrix Fisher circular-von Mises

ν n δ̄ (SE) % δ̄ (SE) % δ̄ (SE) %

0.25

10 0.0078 (0.0004) 0.7430 0.0060 (0.0004) 0.7250 -0.0053 (0.0006) 0.3280

50 0.0031 (0.0001) 0.7830 0.0024 (0.0001) 0.6970 -0.0018 (0.0001) 0.3270

100 0.0022 (0.0001) 0.7890 0.0018 (0.0001) 0.7120 -0.0013 (0.0001) 0.3080

300 0.0012 (0.0001) 0.7810 0.0010 (0.0001) 0.7110 -0.0008 (0.0001) 0.2840

0.50

10 0.0315 (0.0016) 0.7720 0.0171 (0.0017) 0.6620 -0.0192 (0.0020) 0.3350

50 0.0126 (0.0005) 0.8110 0.0055 (0.0006) 0.6200 -0.0081 (0.0005) 0.2820

100 0.0085 (0.0003) 0.8090 0.0047 (0.0004) 0.6600 -0.0047 (0.0003) 0.3020

300 0.0049 (0.0002) 0.8040 0.0024 (0.0002) 0.6580 -0.0027 (0.0001) 0.2550

0.75

10 0.0895 (0.0042) 0.8210 0.0340 (0.0040) 0.6330 -0.0396 (0.0062) 0.3220

50 0.0366 (0.0011) 0.8660 0.0093 (0.0013) 0.5970 -0.0213 (0.0011) 0.2380

100 0.0250 (0.0008) 0.8580 0.0069 (0.0009) 0.6030 -0.0140 (0.0007) 0.2400

300 0.0140 (0.0004) 0.8500 0.0033 (0.0005) 0.5890 -0.0072 (0.0003) 0.2180

is chosen such that the samples have a circular variance of ν = 0.25. The concentration of

rotation matrices under circular-von Mises sampling is much higher to the origin (center of the

circles) than for the two other distributions.
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(a) x axis (b) y axis (c) z axis

Figure 2.15: Sphere plots for a sample of 100 rotations from a Cayley distribution with circular

variance ν = 0.25

(a) x axis (b) y axis (c) z axis

Figure 2.17: Sphere plots for a sample of 100 rotations from a matrix Fisher distribution with

circular variance ν = 0.25

(a) x axis (b) y axis (c) z axis

Figure 2.19: Sphere plots for a sample of 100 rotations from a circular-von Mises distribution

with circular variance ν = 0.25
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Table 2.8: Average reduction in estimation error by using ŜR instead of ŜE , δ = dR(ŜE ,S)−
dR(ŜR,S) with standard error and percentage of samples for which dR(ŜR,S) < dR(ŜE ,S).

Cayley matrix Fisher circular-von Mises

ν n δ̄ (SE) % δ̄ (SE) % δ̄ (SE) %

0.25

10 0.0011 (0.0004) 0.5210 -0.0016 (0.0005) 0.4500 -0.0344 (0.0030) 0.1280

50 0.0007 (0.0002) 0.5310 -0.0011 (0.0003) 0.4350 -0.0156 (0.0007) 0.2090

100 0.0007 (0.0001) 0.5650 -0.0004 (0.0002) 0.4690 -0.0126 (0.0005) 0.2010

300 0.0005 (0.0001) 0.5880 -0.0003 (0.0001) 0.4860 -0.0070 (0.0003) 0.2390

0.50

10 0.0099 (0.0013) 0.5920 -0.0178 (0.0027) 0.4340 -0.1011 (0.0051) 0.1570

50 0.0069 (0.0006) 0.6450 -0.0107 (0.0011) 0.3920 -0.0545 (0.0018) 0.1450

100 0.0043 (0.0004) 0.6420 -0.0067 (0.0008) 0.3930 -0.0385 (0.0013) 0.1620

300 0.0025 (0.0002) 0.6420 -0.0040 (0.0004) 0.3930 -0.0234 (0.0007) 0.1570

0.75

10 0.0163 (0.0062) 0.6680 -0.0958 (0.0105) 0.3570 -0.2101 (0.0113) 0.1710

50 0.0257 (0.0012) 0.7410 -0.0356 (0.0045) 0.3380 -0.0955 (0.0032) 0.1500

100 0.0169 (0.0009) 0.7350 -0.0240 (0.0043) 0.3460 -0.0763 (0.0021) 0.1110

300 0.0091 (0.0005) 0.7280 -0.0124 (0.0009) 0.3440 -0.0446 (0.0012) 0.1270
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CHAPTER 3. NONPARAMETRIC CONFIDENCE REGIONS FOR

THE CENTRAL ORIENTATION OF RANDOM ROTATIONS

A paper submitted to Statistica Sinica

Bryan Stanfill, Ulrike Genschel, Heike Hofmann, Dan Nordman

Abstract

Three-dimensional orientation data, with observations as 3×3 rotation matrices, have applica-

tions in areas such as computer science, kinematics and materials sciences, where it is often of

interest to estimate a central orientation parameter S represented by a 3× 3 rotation matrix.

A well-known estimator of this parameter is the projected arithmetic mean and, based on this

statistic, two nonparametric methods for setting confidence regions for S exist. Both of these

methods involve large-sample normal theory, with one approach based on a data-transformation

of rotations to directions (four-dimensional unit vectors) prior to analysis. However, both of

these nonparametric methods may result in poor coverage accuracy in small samples. As a

remedy, we consider two bootstrap methods for approximating the sampling distribution of

the projected mean statistic and calibrating nonparametric confidence regions for the central

orientation parameter S. As with normal approximations, one bootstrap method is based on

the rotation data directly while the other bootstrap approach involves a data-transformation

of rotations into directions. Both bootstraps are shown to be valid for approximating sam-

pling distributions and calibrating confidence regions based on the projected mean statistic.

A simulation study compares the performance of the normal theory and proposed bootstrap

confidence regions for S, based on common data-generating models for symmetric orientations.

The bootstrap methods are shown to exhibit good coverage accuracies, thus providing an im-

provement over normal theory approximations especially for small sample sizes. The bootstrap
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methods are also illustrated with a real data example from materials science.

K eywords: Influence Function, Orientation Data, Pivotal Bootstrap, Projected Arithmetic

Mean, Quaternions

3.1 Introduction

Orientation data frequently arise in areas such as computer science, structural geology,

materials sciences and biomedical imaging, where technological advancements in recent years

have increased the availability of such data (cf. Humbert et al. 1996; Preisig and Kragic 2006;

Fletcher et al. 2009; Bingham et al. 2010a). Orientation data, given as 3×3 orthogonal rotation

matrices with determinant one, are often used to represent the positions of objects with respect

to a three-dimensional reference frame. We denote the collection of all such 3× 3 matrices as

SO(3). Given a random sample of orientations, a quantity of interest is often the main or central

orientation parameter S ∈ SO(3). That is, observations R1, . . . ,Rn ∈ SO(3) are commonly

conceptualized as a random sample from a location model

Ri = SEi, i = 1, . . . , n, (3.1)

where S ∈ SO(3) is a fixed parameter of interest called the central orientation, andE1, . . . ,En ∈

SO(3) denote independent and identically (symmetrically) distributed random rotations. The

model in (3.1) provides a rotation analog of a location model for scalar data Y = µ+ ε where

µ ∈ R denotes a mean and ε ∈ R denotes an additive error symmetrically distributed around

zero. The symmetry assumption in (3.1) is common in location estimation (cf. Chang and

Rivest 2001), where the data are then interpreted as random perturbations of an underlying

central orientation S. In the following, we consider the projected arithmetic mean Ŝn, which is

perhaps the most common and popular estimator of the location S parameter for rotation data

(cf. Moakher 2002; Fletcher et al. 2003; Bhattacharya and Patrangenaru 2003; Bachmann et al.

2010); see Stanfill et al. (2013) for a discussion of point estimators for the central orientation.

This estimator has a least-square motivation, corresponding to the rotation (a statistic) that

minimizes a sum of squared Euclidean distances from the data. Section 3.2 provides more

details.
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Based on the projected mean Ŝn, nonparametric large sample confidence regions for the

central orientation S were first considered by Prentice (1986). These confidence regions are

based on a transformation of SO(3) rotation data to directional data (i.e., unit vectors) in R4

combined with limiting distributional results for directional statistics; a confidence region for

S results by back transforming R4-directional observations into SO(3) rotations. Chang and

Rivest (2001) also explored nonparametric confidence regions for S based on the rotation data

directly, using M -estimation theory (i.e., related to least squares) and the limiting distribution

of S>Ŝn. While these nonparametric regions require few distributional assumptions for their

validity, both methods are based on large-sample normal theory and can exhibit poor finite-

sample coverage accuracy, especially with small samples.

As a remedy, we propose two bootstrap approaches for calibrating nonparametric confidence

regions for S based on the projected mean Ŝn, in place of these two normal theory methods. The

first bootstrap method uses rotation data directly to approximate the sampling distribution

of S>Ŝn and this bootstrap is shown to provide consistent distributional estimation under

weak assumptions about the generation of rotation data. The second bootstrap method is

based on the transformation approach of Prentice (1986), where the orientation data are first

mapped into directional data in R4. This bootstrap applied to rotation data is an extension of

a resampling method proposed by Fisher et al. (1996) for general directional data in Rd, but

with special tailoring for application to rotation matrices in SO(3). We then compare the finite

sample behavior of the existing large sample confidence regions and the proposed bootstrap

approaches through simulation. This simulation study appears to provide the first numerical

comparison of the normal theory confidence regions for the location parameter S based on direct

use of rotations (e.g., Chang and Rivest 2001) or directional-based transformations (Prentice,

1986); the study also provides the first evaluation of the bootstrap method of Fisher et al.

(1996) for calibrating confidence regions based on rotation data (after transforming these to

directional data in R4). The numerical evidence suggests that the bootstrap confidence regions

exhibit much better coverage accuracy than the normal theory ones, especially for small sample

sizes and in the presence of greater variability. In particular, the proposed bootstrap which

uses rotation data directly to approximate the sampling distribution of S>Ŝn is shown to have
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the best performance in a variety of settings.

The remainder of this manuscript is organized as follows. Section 3.2 briefly provides distri-

butional background for random rotations (3.1) as well as the definition of the projected mean

Ŝn. Section 3.3 reviews confidence region methodology based on large sample normal theory.

In Section 3.4, we present the two distinct bootstrap methods for calibrating confidence regions

for the location parameter S based on Ŝn. Section 3.5 describes a simulation study, which pro-

vides empirical justification for the asymptotic results and compares the finite sample behavior

of the proposed confidence regions to those based on normal approximations. We demonstrate

these results with several common distributions for SO(3) data, involving the Cayley, circular-

von Mises and matrix Fisher distributions (cf. Stanfill et al. 2013). In Section 3.6, we apply

our bootstrap to a real data set from materials science involving rotation data from electron

backscatter diffraction. Concluding remarks and directions for future research are given in

Section 3.7. A supplemental appendix contains proofs of the main results.

3.2 Rotation Data and the projected arithmetic mean

We briefly establish some notation for describing rotation data and the distributional results

to follow. Let so(3) represent the space of all 3×3 skew-symmetric matrices, i.e., so(3) = {X ∈

R3×3 : X> = −X}. Then, for each rotationR ∈ SO(3) we can define a skew-symmetric matrix

Φ(W ) ∈ so(3)

Φ(W ) =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 , (3.2)

W = (w1, w2, w3)> ∈ R3 and, through the exponential operator, map Φ(W ) into SO(3) as

exp[Φ(W )] =
∞∑
k=0

1

k!
[Φ(W )]k ∈ SO(3) (3.3)

(Moakher, 2002). By properties of skew-symmetric matrices, (3.3) can be rewritten as

exp[Φ(W )] = cos(r)I3×3 + sin(r)Φ(U) + (1− cos r)UU>
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where the angle r ∈ (−π, π] is defined as r = ‖W ‖(mod2π) and U = W /‖W ‖ represents an

axis in R3 with ‖U‖ = 1. Each non-identity rotation matrix R can then be associated with an

angle-axis pair (r,U) as above (uniquely up to the sign (r,U) = (−r,−U)) such that

R = R(r,U) = exp[Φ(rU)] ∈ SO(3). (3.4)

In this angle-axis representation, the columns of R are interpreted as the positions of standard

coordinate axes I3×3 after a rotation of the reference frame I3×3 about an axis U ∈ R3 through

an angle r. In the materials science literature, U and r are commonly referred to as the

misorientation axis and misorientation angle of R with respect to I3×3, respectively; see Randle

(2003).

In the data model in (3.1), each random rotation matrix R = SE has a simple construction

based on the angle-axis representation (3.4). Namely, a symmetrically distributed random

rotation matrix

E = E(r,U) (3.5)

defined by a random angle-axis pair (r,U) in (3.4), where U is uniformly distributed on the unit

sphere in R3 and, independently from U , the angle r ∈ (−π, π] is symmetrically distributed

about zero. Distributional models for r are commonly parameterized through a concentration

parameter κ > 0 controlling the variability of r and, hence, the variability of the random

rotation (3.5); see Bingham et al. (2009) and Section 3.3.1 for more details. Because E provides

a rotationally symmetric random rotation of the coordinate axes I3×3, any observationR = SE

can be interpreted as a random perturbation of the location parameter S ∈ SO(3).

Based on a random sample R1, . . . ,Rn, we next describe the projected mean Ŝn as a

common estimator of the central orientation S in the location model in (3.1). The projected

mean is standardly defined as the minimizer of sum of the squared Euclidean distances

Ŝn = arg min
S∈SO(3)

n∑
i=1

d2
E(Ri,S) (3.6)

where, in terms of the matrix Frobenius norm ‖·‖F , the squared distance between two rotations

R1,R2 is given as

d2
E(R1,R2) ≡ ‖R1 −R2‖F =

[
6− 2tr

(
R>1 R2

)]
; (3.7)
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and tr(·) above denoting the matrix trace. Hence, Ŝn corresponds to a type of M -estimator

also known as an extrinsic mean, (cf. Bhattacharya and Patrangenaru 2003, 2005). From equa-

tion (3.7), note that the mean as defined in (3.6) is equivalent to the rotation that maximizes

tr(S>R) over S ∈ SO(3) where R =
∑n

i=1Ri/n denotes the sample mean of the rotation data.

Computational algorithms for Ŝn have been studied at length (see Arun et al. 1987; Horn et al.

1988; Umeyama 1991; Moakher 2002) as well as this point estimator’s performance under dif-

ferent distributional assumptions (see Jupp and Mardia 1979; León et al. 2006; Bingham et al.

2009; Stanfill et al. 2013).

3.3 Confidence Regions based on Large Sample Normal Approximations

This section describes existing nonparametric confidence regions for the central orientation

S based on the mean estimator Ŝn and large sample normal theory. Section 3.3.1 explains

a direct calibration approach (i.e., involving rotation data directly) based on large sample

distributional theory for S>Ŝn. Section 3.3.2 describes a confidence region approach based on

first transforming the rotation data into R4 directions for inference.

3.3.1 Direct Large Sample Approach

A first large-sample normal theory approach to setting confidence regions for S based

on the project mean Ŝn (again determined from rotation data directly as in (3.6)) is based

on determining the limiting distribution of S>Ŝn. In order to do so, it is useful to write

exp[Φ(ĥn)] = S>Ŝn where we associate a vector ĥn ∈ R3 with the rotation S>Ŝn through the

exponential map operator in (3.3). Confidence regions for S based on the limiting distribution

of S>Ŝn can then be framed in terms of the large-sample distribution of
√
nĥn. Note that

Chang and Rivest (2001) developed a general theory for M -estimation for location parame-

ters in statistical group models, which include SO(3) data as a special case. Their general

formulation may be applied to determine a normal limit law for
√
nĥn (and the induced law

of S>Ŝn), but the translation of their results (cf. Proposition 2 there) to the location model

for rotation data is not immediate and an explicit distributional result for the projected mean
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Ŝn, as required here, does not appear in that work. The following Proposition 3.1 provides the

necessary distributional result for normal theory confidence regions for S from S>Ŝn, showing

in particular that a scaled version of ‖
√
nĥn‖2 has a chi-square limit with 3 degrees of freedom.

The proof is based on a novel argument involving influence functions; see the supplementary

material for details.

Proposition 3.1. Let R1, . . . ,Rn denote a random sample of independently and identically

distributed observations from (3.1). Further, let Ŝn denote the projected mean (cf. (3.6)) and

let ĥn ∈ R3 such that exp[Φ(ĥn)] = S>Ŝn. Then, as n −→∞,

2na2
2

a1

∥∥∥ĥn∥∥∥2 d−→ χ2
3 (3.8)

for constants

a1 =
2

3
E
[
1− cos2(r)

]
and a2 =

1

3
E [1 + 2 cos(r)] , (3.9)

based on the distribution of the random angle r ∈ (−π, π] defining random rotations in (3.5).

By Proposition 3.1, a 100(1−α)% large sample confidence region for the central orientation

S ∈ SO(3) can be calibrated as the set of all 3× 3 rotation matrices defined by{
S = exp[Φ(h)]>Ŝn :

2na2
2

a1
‖h‖2 < χ2

3,1−α

}
.

However, this region is not distribution-free in that the population quantities a1 and a2 depend

on the underling distribution of the rotation data. For illustration, exact values of a1 and a2

in (3.9) are given in Table 3.1 for several different models for random rotations (e.g., Cayley,

circular-von Mises and matrix Fisher distributions) which involve a concentration parameter

κ > 0.

To obtain a nonparametric confidence region for S, the unknown constants a1 and a2

require estimation. For a random sample R1, . . . ,Rn consistent estimators (by the law of large

numbers) of a1 and a2, respectively, are given by

â1n =
1

6n

n∑
i=1

{
3− tr

[(
Ŝ>nRi

)2
]}

and â2n =
1

3n

n∑
i=1

tr
(
Ŝ>nRi

)
. (3.10)
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Then, a nonparametric approximate 100(1 − α)% confidence region for location parameter

S ∈ SO(3) is given by the set of all 3× 3 rotation matrices satisfying{
S = exp[Φ(h)]>Ŝn :

2nâ2
2n

â1n

‖h‖2 < χ2
3,1−α

}
. (3.11)

The region (3.11) provides a rotationally symmetric confidence region about the projected mean

Ŝn, corresponding to the set of all rotations within a geodesic distance of

[χ2
3,1−αâ1n/(2nâ

2
2n)]1/2(modπ) of Ŝn.

In the remainder, we will refer to this normal theory method of constructing confidence

regions for S as a direct approach as it is based on using the rotation data R1, . . . ,Rn directly

to formulate the region in (3.11).

Table 3.1: Constants a1 and a2 defined in (3.9) for the Cayley, circular-von Mises and matrix

Fisher distribution on SO(3). The symbol Ii(·) is the modified Bessel function of the first kind

of order i.

Distribution a1 a2

Cayley 4κ+ 2
κ2 + 5κ+ 6

κ
κ+ 2

circular-von Mises
I0(κ)− I2(κ)

3I0(κ)
I0(κ) + 2I1(κ)

3I0(κ)

matrix-Fisher
(κ+ 1)I1(2κ)− κI0(2κ)

3κ2[I0(2κ)− I1(2κ)]

(κ+ 1)I1(2κ)− κI0(2κ)
3κ[I0(2κ)− I1(2κ)]

3.3.2 Transformation-based Large Sample Approach

A second approach to formulate large sample normal theory confidence regions for S based

on Ŝn is by Prentice (1986). This method involves a transformation of rotations in SO(3)

into unsigned directional data (i.e., unit vectors) in R4. In particular, for every unit vector

x = (x1, x2, x3, x4) ∈ R4, ‖x‖ = 1, there exists a map

R = µ(x) ≡


x2

1 + x2
4 − x2

2 − x2
3 2(x1x2 − x3x4) 2(x2x4 + x1x3)

2(x3x4 + x1x2) x2
2 + x2

4 − x2
1 − x2

3 2(x2x3 − x1x4)

2(x1x3 − x2x4) 2(x2x3 + x1x4) x2
3 + x2

4 − x2
1 − x2

2

 (3.12)
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into a rotation R ∈ SO(3). Likewise, for any rotation R ∈ SO(3), there is an inverse map

µ−1(R) = ±x back to unit vectors in R4, which is unique up to the sign of x ∈ R4, ‖x‖ = 1.

With this transformation, the location parameter of interest S ∈ SO(3) can be associated

with a unit vector m ∈ R4 through S = µ(m) and m may be estimated after transforming

the rotation data to directions in R4. Namely, for a random rotation R = SE under the

location model in (3.1), it holds that m (a mean polar axis) corresponds to the eigenvector

associated with the largest eigenvalue of E(xx>) where x = µ−1(R) (Prentice, 1986). Hence,

if x1, . . . ,xn denote the corresponding directions in R4 from the transformation xi = µ−1(Ri)

of rotation data R1, . . . ,Rn, then the project mean is given by Ŝn = µ(m̂n), where m̂n is

the eigenvector associated with the largest eigenvalue of the sample moment of inertia matrix

V̂n ≡ (1/n)
∑n

i=1 xix
>
i .

The limiting normal distribution of
√
n(m̂n −m) can be justified using results established

by Davis (1977) and Tyler (1981) on the large sample behavior of principal components in non-

normal populations. For calibrating confidence regions, Prentice (1984) derived that nm>F̂−n m

has a limiting χ2
3 distribution, where F̂n denotes an estimator of the limiting variance matrix

F of
√
n(m̂n −m) and F̂−n denotes the generalized inverse. If the sample moment matrix

V̂n ≡ (1/n)
∑n

i=1 xix
>
i = ÂnΛ̂nÂ

>
n is spectrally decomposed into a 4 × 4 rotation matrix Ân

and a diagonal (eigenvalue) matrix Λ̂n = diag(λ̂1, λ̂2, λ̂3, λ̂4), where λ̂1 < λ̂2 < λ̂3 < λ̂4, then

Prentice (1984) suggests a consistent (method of moments) estimator

F̂n ≡ Â4ndiag(̂b1n, b̂2n, b̂3n)Â>4n, (3.13)

where Â4n denotes the resulting 4 × 3 submatrix after removing the 4th column of Ân and

b̂jn = ĉj/(λ̂4 − λ̂j), j = 1, 2, 3 for ĉj denoting the jth diagonal entry of Ĉn =
∑

i x
(2)
i x

(2)>
i /n

with x
(2)
i ∈ R3 as the vector of the diagonal entries of (Ânxi)(Ânxi)

>.

Hence, by Prentice (1984) and Prentice (1986), an asymptotic 100(1−α)% confidence region

for S is the collection of all 3× 3 rotation matrices defined by the mapped set{
S = µ(m) : m ∈ R4, ‖m‖ = 1, nm>F̂−n m < χ2

3,1−α

}
(3.14)

using µ(·) from (3.12). Note that, in the above decomposition V̂n = ÂnΛ̂nÂ
>
n , the projected

mean corresponds to Ŝn = µ(m̂n), where m̂n is the 4th column of Ân. Because of this and by
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the definition of F̂−n = Â4ndiag(1/b̂1n, 1/b̂2n, 1/b̂3n)Â>4n, it holds that nm̂>n F̂
−
n m̂n = 0. Hence,

the confidence region (3.14) contains the projected mean Ŝn at its center.

As the large sample normal theory confidence region for S in Prentice (1986) is based

on transformation of rotations into Rd-directional data in, we refer to this confidence region

method as the transformation-based approach. We also note that Prentice (1986) proposed a

second method for setting confidence regions for the central orientation S, which provides a

simplification of (3.14) under symmetry assumptions on the perturbations Ei. This second

region approximates the confidence region defined in (3.11) of Section 3.3.1 and is therefore not

considered further.

3.4 Bootstrap Confidence Regions

As alternatives to the asymptotic normal theory approaches of Section 3.3, we propose

two bootstrap versions for constructing confidence regions for S ∈ SO(3) based on the pro-

jected mean Ŝn. These provide analogs of the regions in (3.11) and (3.14) where bootstrap

approximations replace chi-square limit calibrations. The first bootstrap method, described

in Section 3.4.1, resamples rotation data directly, while the second method, described in Sec-

tion 3.4.2, is based on transforming rotations to directional data in R4 prior to resampling.

3.4.1 Direct Bootstrap Approach

Recall that the normal theory regions (3.11) of Section 3.3.1 are based on the limiting

chi-square distribution of (2na2
2/a1)‖ĥn‖2 under Proposition 3.1, or its studentized version

Dn ≡
2nâ2

2n

â1n

‖ĥn‖2 (3.15)

with estimators â1n , â2n from (3.10), where the vector ĥn ∈ R3 is related to the projected mean

through exp[Φ(ĥn)] = S>Ŝn via the exponential operator (3.3). We seek to approximate the

sampling distribution of the asymptotic pivot Dn in (3.15) with a bootstrap counterpart. To

this end, given rotation observations R1, . . . ,Rn, we generate a bootstrap sample R∗1, . . . ,R
∗
n

by randomly selecting n rotation matrices with replacement from R1, . . . ,Rn. The bootstrap

sample has a corresponding projected mean Ŝ∗n (as the bootstrap version of (3.6)) and we
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define the bootstrap version ĥ∗n of ĥn through the bootstrap analog exp[Φ(ĥ∗n)] = Ŝ>n Ŝ
∗
n of

exp[Φ(ĥn)] = S>Ŝn; here Ŝn plays the role of the location parameter S ∈ SO(3) in the

bootstrap world. We then define the bootstrap rendition of Dn ≡ (2nâ2
2n/â1n)‖ĥn‖2 as

D∗n ≡
2n(â∗2n)2

â∗1n
‖ĥ∗n‖2, (3.16)

where â∗1n, â
∗
2n are computed as in (3.10) based on the bootstrap sample R∗1, . . . ,R

∗
n.

The following strong consistency result establishes that this bootstrap validly approximates

the sampling distribution of Dn, as the cornerstone of subsequent bootstrap confidence re-

gions for S; see the supplemental material for its proof. Let P∗ denote bootstrap probability

conditional on the data.

Theorem 3.2. Let R1, . . . ,Rn be a random sample of i.i.d. observations from the location

model in (3.1). For the bootstrap version D∗n in (3.16) of Dn in (3.15), as n→∞,

sup
x∈R
|P (Dn ≤ x)− P∗ (D∗n ≤ x)| −→ 0 with probability one.

As a consequence of Theorem 3.2, an approximate 100(1−α)% bootstrap confidence region

for the central orientation S is given by{
S = exp[Φ(h)]>Ŝn :

2nâ2
2n

â1n

‖h‖2 < d1−α

}
(3.17)

where d1−α denotes the (lower) (1−α) percentile of the bootstrap distribution of D∗n. That is,

the region in (3.17) is guaranteed to have asymptotically correct coverage by Theorem 3.2, again

providing a bootstrap version of the normal theory region in (3.11). Because this bootstrap

method is based on direct resampling of the rotation data, we refer to this confidence region

approach for S as the direct bootstrap method.

We end this section by mentioning other possible bootstrap versions, not pursued here.

If ρ(S>Ŝn) denotes a distance assessment between S and Ŝn based on some smooth func-

tion ρ(·) of S>Ŝn, such as the Frobenius norm ‖S − Ŝn‖F in (3.7) or geodesic distance

2−1/2‖ logS>Ŝn‖F ≡ sin ‖ĥn‖, it can be shown that the same resampling scheme for rota-

tion data produces a bootstrap version nρ(Ŝ>n Ŝ
∗
n) that validly approximates the distribution of

nρ(S>Ŝn). This allows confidence regions to be formulated as {S : nρ(S>Ŝn) < q1−α}, where



48

q1−α denotes a percentile from the bootstrap distribution of nρ(Ŝ>n Ŝ
∗
n). However, unlike the

bootstrap regions in (3.17), such confidence regions are not based on asymptotically pivotal

quantities as nρ(S>Ŝn) does not generally have a distribution-free limit law (e.g., in the cases

of distances ρ(·) mentioned above). Bootstrap-based methodology involving pivotal quantities

(e.g., Dn in (3.15)), especially for mean-like statistics Ŝn, is often expected to provide better

distributional approximations than bootstrap versions applied to non-pivotal quantities Hall

(1992). Numerical studies (not reported here) indicate that this indeed holds for bootstrap

regions for the location parameter S ∈ SO(3), so that we focused our development on the

bootstrap regions in (3.17).

3.4.2 Transformation-based Bootstrap Approach

As in the transformation-based normal theory approach of Section 3.3.2, we next consider

a bootstrap confidence region method based on transforming rotations to R4-directional data

prior to resampling. That is, as in Section 3.3.2, we map the rotation data R1, . . . ,Rn to unit

vectors xi = µ−1(Ri) ∈ R4, ‖xi‖ = 1, i = 1, . . . , n, through the inverse of the mapping µ(·) in

(3.12). Recall that the transformation-based normal theory regions in (3.14) are based on the

limiting chi-square distribution of

Tn ≡ nm>F̂−n m, (3.18)

where F̂n denotes a variance estimator from (3.13) (derived from V̂ =
∑n

i=1 x
>
i xi/n) and

m ∈ R4, ‖m‖ = 1 denotes the direction defining the location parameter S = µ(m) (Prentice

1984, 1986).

To produce a bootstrap version T ∗n of Tn, we resample with replacement from the observed

directions x1, . . . ,xn to produce a bootstrap data set x∗1, . . . ,x
∗
n. This leads to a version of

the statistic V̂ ∗n =
∑n

i=1 x
∗
ix
∗>
i /n used to define a bootstrap analog F̂ ∗n of the estimator F̂n in

(3.13). In place of the unknown (mean polar axis) parameter m ∈ R4, S = µ(m), we use its

estimator m̂n related to the project mean via µ(m̂n) = Ŝn (cf. Section 3.3.2). We then define

a bootstrap version of Tn in (3.18) as

T ∗n ≡ nm̂>n F̂ ∗−n m̂n. (3.19)
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Theorem 3.3 shows that this bootstrap based on transformed rotations results in consistent

estimation for the sampling distribution of Tn; see the supplemental material for its proof.

This result is primarily an extension of a pivotal bootstrap method, proposed by Fisher et al.

(1996), for resampling directional data in Rd and calibrating conference regions for such data.

Our emphasis differs, however, in that our goal is distributional approximations and regions

for rotation data.

Theorem 3.3. Let R1, . . . ,Rn be a random sample of i.i.d. observations from the location

model in (3.1). For the bootstrap version T ∗n in (3.19) of Tn in (3.18), as n→∞,

sup
x∈R
|P (Tn ≤ x)− P∗ (T ∗n ≤ x)| −→ 0 with probability one.

Hence, as an alternative to the normal theory region (3.14), Theorem 3.3 justifies an ap-

proximate 100(1− α)% bootstrap confidence region for the central orientation S as{
S = µ(m) : m ∈ R4, ‖m‖ = 1, nm>F̂−n m < t1−α

}
(3.20)

where t1−α denotes the (lower) (1−α) percentile of the bootstrap distribution of T ∗n . The next

section considers the performance of bootstrap confidence region methods through numerical

studies.

3.5 Simulation Study

Here we summarize a comprehensive simulation study of finite-sample coverage accuracy

of confidence regions for the location parameter S ∈ SO(3) of rotation data, based on both

normal theory and bootstrap methods from Sections 3.3 and 3.4, respectively.

To provide some initial motivation for the bootstrap methods, recall that the normal theory

region (3.10) from the direct approach, for example, depends on a limiting χ2
3 approximation

for the sampling distribution of the studentized statistic Dn ≡ (2nâ2
2n/â1n)‖ĥn‖2 (cf. Propo-

sition 3.1). To assess the quality of the chi-square approximation, we generated rotation data

under the location model (3.1) using a Cayley distribution (other common distributions such

as the matrix Fisher and circular-von Mises distributions produced similar results), consider-

ing samples of size n = 10, 20, 50 and 100 along with concentration parameters κ = 1 and 8
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Figure 3.1: Empirical (cumulative) distribution function of x = 2nâ2
2n‖ĥn‖

2/â1n for data gen-

erated from the Cayley distribution with central orientation I3×3 and concentration parameter

κ = 1 (left) and 8 (right) plotted over the limiting χ2
3 (cumulative) distribution function.

(impacting the dispersion of each distributional model). For each (n, κ) combination, the piv-

otal quantity Dn was computed over 5,000 generated samples. The resulting (approximated)

distribution function of Dn is plotted in Figure 3.1 along with the theoretical limiting χ2
3 dis-

tribution function. For highly concentrated data (right panel of Figure 3.1), the distribution

of Dn follows the chi-square limit well for samples as small as n = 50, but the distribution

approximation is less adequate for smaller concentration values κ (left panel of Figure 3.1).

Figure 3.1 additionally indicates that normal theory confidence regions (3.10) can often be

expected to be too small to achieve a nominal coverage rate. For example, from (3.11) a 90%

confidence region for S based on a sample of size n = 10 from the Cayley distribution involves

a calibration cutoff of χ2
3,0.9 = 6.25. However, this cutoff only corresponds to the 74th and 84th

percentiles of the sampling distribution of Dn for κ = 1 and 8, respectively, whereas the true

90th percentile values are approximately 10.86 for κ = 1 and 7.60 for κ = 8. This motivates

the bootstrap for improving distribution approximations with Dn and calibrating confidence

regions as in (3.17), particularly for small samples with low concentration.

To evaluate the relative performance of the bootstrap regions compared to normal theory
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approaches, we generated 10,000 samples of rotations R1, . . . ,Rn according to model (3.1) by

generating random perturbations Ei from each of three distributional models (Cayley, circular-

von Mises and matrix Fisher distributions) and setting Ri = SEi, i = 1, . . . , n for n =

10, 20, 50 and 100. (Without loss of generality, we set S = I3×3). Because the concentration

parameter κ does not translate exactly across distributional models, we considered generating

data and reporting results in terms of the circular variance ν = 1−E[cos(r)], rather than κ. In

particular, we considered circular variances ν = 0.25, 0.50 and 0.75. Table 3.2 illustrates how

the concentration parameter κ and the circular variance are related for these distributions.

Table 3.2: Values of κ for each rotational distribution corresponding to the circular variances.

Distribution Circular variance ν

0.25 0.50 0.75

Cayley 10.00 4.00 2.00

circular-von Mises 2.40 1.16 0.52

matrix Fisher 3.17 1.71 1.15

In Figure 3.2 and Table 3.3 (see appendix) we present coverage rates of the two normal

theory and two bootstrap confidence regions of Sections 3.3 and 3.4, with nominal confidence

level 90%. Namely, for each combination of sample size, distribution and circular variance

combination, 10,000 samples were generated and, for each sample, it was determined if the true

central orientation was contained in each confidence region. Following the recommendations

in Hall (1986), we determined critical values for the bootstrap confidence regions based on 300

resampled data sets. Results for ν = 0.25 and 0.75 are summarized graphically in Figure 3.2;

results for ν = 0.5 overall followed a similar pattern and are therefore omitted. In this figure,

the distributions are displayed according to the proportion of observations in the tail: the

Cayley distribution has the least heavy tail while the circular-von Mises distribution has the

heaviest. Exact numerical results for all values of ν and each of the distributions are given in

Table 3.3. For every combination of the circular variance ν and the distributional models, all

four methods converge to the nominal coverage rate as n increases.
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Figure 3.2: Confidence region coverage rates as a function of sample size for different circular

variances (ν) and distributions. The horizontal line indicates the nominal coverage rate 90%.

See Table 3.3 for a tabular account of these results.

In comparing the normal theory and bootstrap calibrated confidence regions, in agreement

with Figure 3.1, the normal theory regions (dashed lines) can exhibit coverage rates below

the nominal level. In contrast, bootstrap calibrated confidence regions (solid lines) tend to be

conservative with coverage rates often converging quickly to the nominal level as the sample

size increases. Within the normal theory methods, the coverage rates of the direct approach

converge more quickly to the nominal level as a function of n compared to the transformation-

based approach. We conclude that, in general, the bootstrap calibrated confidence regions are

preferred to the large sample normal theory-based ones, particularly for small samples.

We next compare the direct and transformation-based bootstrap approaches. Confidence

regions calibrated by the direct bootstrap method (in black) achieve coverage rates closer to
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the nominal 90% faster than those based on the transformation-based method (in gray) for

small samples. For highly variable samples (e.g. ν = 0.75) however, regions based on the

transformation-based bootstrap appear to converge slightly faster to the nominal coverage rate

compared to the direct boostrap counterparts, as a function of sample size. These numerical

results suggest, however, that the direct bootstrap approach is the generally preferred approach

to setting a confidence region for the rotation location parameter.

3.6 Data Example

In Sections 3.3.1 and 3.4.1, we explained that confidence regions using the direct approach

can be interpreted as the set of all rotations within a fixed geodesic distance of the projected

mean Ŝn. This interpretation also leads to a natural definition of confidence region size. In

particular, the size of a 100(1 − α)% normal theory-based confidence region (3.10) can be

measured by [χ2
3,1−αâ1n/(2nâ

2
2n)]1/2, which is a function of sample size, confidence level and

within–sample variability. The following data example uses the notion of confidence region size

to estimate the precision of an orientation measurement tool common in material sciences.
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LSA Bootstrap

Distribution ν n Directional Direct Directional Direct

Cayley

0.25

10 73.71 83.86 96.59 92.12

20 83.24 87.42 92.01 91.11

50 87.71 89.21 90.30 90.65

100 88.67 89.11 89.76 89.75

0.50

10 74.12 83.55 96.54 92.54

20 82.53 86.73 91.23 91.18

50 87.03 88.55 89.70 90.30

100 88.37 89.31 89.77 89.96

0.75

10 71.73 81.39 96.16 92.87

20 81.20 85.75 90.80 91.73

50 86.43 88.54 90.07 90.88

100 88.44 89.33 90.14 90.48

matrix Fisher

0.25

10 74.73 84.35 96.56 92.24

20 83.25 87.45 91.84 91.00

50 87.67 88.94 90.08 90.18

100 88.76 89.70 89.57 90.01

0.50

10 74.11 83.14 96.71 92.68

20 83.47 87.65 92.11 91.72

50 87.29 88.73 89.95 89.96

100 88.93 89.38 89.73 89.92

0.75

10 73.51 81.88 96.91 93.63

20 82.83 86.36 91.72 92.20

50 86.44 88.35 89.80 90.87

100 89.10 89.39 90.01 90.41

0.25

10 79.10 86.66 98.92 94.91

20 86.78 89.05 95.86 92.28

50 88.89 89.67 90.81 90.68

100 89.83 90.08 90.37 90.55

0.50

10 82.36 86.66 99.02 95.54

circular- 20 87.71 88.47 95.39 92.24

von Mises 50 89.29 89.29 90.78 90.38

100 89.81 89.93 89.96 90.10

0.75

10 82.98 85.98 99.23 96.41

20 88.66 88.36 95.90 94.00

50 90.11 89.33 91.36 91.28

100 89.50 89.50 89.79 90.00

Table 3.3: Coverage rates for different confidence region methods for S compared to the nominal

coverage rate of 90%. See Figure 3.2 for a graphical representation of this table.
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We consider electron backscatter diffraction (EBSD) data obtained by scanning a fixed 12.5

µm × 10 µm nickel surface at individual locations spaced 0.2 µm apart (Bingham et al., 2009,

2010a). Every observation corresponds to the orientation of a cubic crystal on the metal surface

at a particular location expressed as a rotation matrix. One goal of processing EBSD data is

to estimate the within-grain precision of the EBSD instrument where a grain is defined as a

region of cubic crystals with similar orientations on the metal surface, i.e. regions that share a

common central orientation S. Studies currently in the literature have reported a within-grain

variability of 1◦ though the methods used to arrive at this estimate of precision are not always

statistically formal or obvious (Demirel et al., 2000; Wilson and Spanos, 2001; Bingham et al.,

2009). In the following, we investigate the claim of 1◦ precision by constructing confidence

regions based on direct normal-theory and bootstrap approaches.

Figure 3.3: Display of all locations of the investigated nickel surface. Shading reflects the

misorientation angle rgi of the observed cubic crystal orientationRgi with respect to the identity

rotation I3×3. Eight distinct grains are investigated.

Figure 3.3 displays the results of the aforementioned scan. Let Rgi represent the random

variable associated with the observed rotation matrix at location i within grain g. At each

measured location, the shading represents the size of the misorientation angle rgi (in degrees)
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defined in (3.4) for every rotation Rgi with respect to the identity rotation I3×3, i.e. rgi =

90 arccos[tr(I>3×3Rgi) − 1]/π. A distinct spatial structure resembling a grain map is present;

eight distinct spatial areas with similar orientations were identified and are marked. Each grain

is assumed to have a distinct central orientation Sg for g = 1, . . . , 8 and each observation is

assumed to stem from the data model (3.1), Rgi = SgEgi , where i = 1, . . . , ng indicates the

observation number within grain g. The value ng represents the total number of observations

within grain g and the perturbation matrices Egi follow a rotationally symmetric distribution

on SO(3). The exact form of the distribution for the random perturbations Egi need not

be specified since the confidence regions presented here are non-parametric. For each of the

eight identified grains, normal theory (3.10) and bootstrap (3.17) regions based on the direct

approach are used to form a 99% confidence region for S.

Table 3.4: Size (in degrees) of the 99% confidence regions for Sg for each grain and adjusted for

sample size based on the direct large sample theory (NormD) and bootstrap (BootD) approach.

The grains are identified in Figure 3.3.

Grain (g) ng NormD BootD

1 27 0.770 1.017

2 46 0.770 0.869

3 255 0.953 0.989

4 354 0.738 0.723

5 145 1.042 1.078

6 246 1.370 1.571

7 272 0.903 0.915

8 99 1.091 1.138

The size (in degrees) of the large sample theory and bootstrap calibrated confidence regions

for each grain g are adjusted for grain size and reported in Table 3.4. To illustrate, consider

the normal theory confidence region for grain g = 1. Let R11 , . . . ,R127 represent the n1 = 27

observed rotations in grain one and Ŝ127 represent the estimate of the true central orientation

associated with grain one, S1, based on the 27 observations. The size of the 99% large sample

normal theory confidence region for S1 based on Ŝ127 is given by {χ2
3,1−αâ1,g/[2(ng)â

2
2,g]}1/2 =

{χ2
3,.01â1,1/[2(27)â2

2,1]}1/2 where â1,1 and â2,1 are the sample estimates of a1 and a2 for grain

one computed by (3.10). Multiplying the confidence region size by 180/π translates it into
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degrees, followed by adjusting for sample size through multiplication by
√
n1 =

√
27.

From Table 3.4, we see that the bootstrap method generally returns a more conservative

(larger) confidence region (which supports the findings of the simulation study), though this is

not always the case. In general, it appears however that the reported 1◦ within-grain variability

is reasonable based on the bootstrap confidence regions.

3.7 Discussion

For the location model in SO(3), current methods to compute confidence regions for the

location parameter S are based on large sample normal approximations, which may suffer in

approximation performance in small samples. In this manuscript, we examined two bootstrap

confidence region approaches for the central orientation S. Like their normal theory counter-

parts, one bootstrap method was based on rotation data directly and the second bootstrap

involved a transformation of rotations to directional data for inference. Theoretical results

established that the bootstrap provides consistent estimators of sampling distributions, needed

for calibrating confidence regions. Simulation studies also showed that the bootstrap methods

typically exhibited better coverage accuracies than the normal theory approaches and did not

overstate the level of confidence. In particular, the newly proposed direct bootstrap method

emerged as a generally preferred approach to confidence region estimation for location param-

eters in the rotation data model.

The confidence regions in this manuscript are all based on the projected mean estimator

which, like mean estimators in other contexts, can be a non-robust estimator of the central

orientation S. In future work, the authors plan to develop confidence regions for the location

parameter based on robust estimators, such as the projected median in SO(3).
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3.8 Appendix

In Section 3.8 we prove the asymptotic normality of the extrinsic mean and that the pro-

posed bootstrap is consistent.

Proofs

Proof of Proposition 3.1.

We first develop an expansion of the trace tr(S̃>Ri), i = 1, . . . , n requiring maximization over

all S̃ ∈ SO(3) (specifically over all h ∈ R3 where S̃ = S exp[Φ(h)]). This is accomplished in

the following, where we develop and justify an expansion of fi(h) = tr[exp(Φ[h])>S>Ri], i =

1, . . . , n, making use of properties of quadratic forms and powers of skew-symmetric matrices.

We then show that the vector ĥn that maximizes gn(h) = n−1
∑

i fi(h) (and therefore is a

solution to ∂gn(h)/∂h = 03) has a trivariate normal limiting distribution. To accomplish this

we first rewrite ∂gn(ĥn)/∂h as a linear function of ĥn and higher order terms. Then, based

on the linearization of ∂gn(ĥn)/∂h, we use the Strong Law of Large Numbers (SLLN), Central

Limit Theorem (CLT) and Slutsky’s Theorem to prove the main result.

We require some properties of skew-symmetric matrices. If u = (u1, u2, u3)> ∈ R3, then

Φ(u) =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (3.21)

is skew-symmetric so that tr[Φ(u)] = 0 and, for any x = (x1, x2, x3)> ∈ R3,

tr(x>Φ(u)x) = x1(−u3x2 + u2x3) + x2(u3x1 − u1x3) + x3(u1x2 − u2x1) = 0. (3.22)

Additionally, for u ∈ R3, ‖u‖ = 1, and integer k ≥ 1, it holds that

[Φ (u)]2k = (−1)k(I3×3 − uu>), [Φ (u)]2k+1 = (−1)kΦ(u). (3.23)

Now for h 6= 0 ∈ R3, write

exp [Φ(h)] =

∞∑
k=0

[Φ(h)]k

k!
=

∞∑
k=0

[‖h‖Φ(w)]k

k!
(3.24)
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where w = h/‖h‖ with ‖w‖ = 1. Replacing the even and odd powers of [Φ(w)] in (3.24) via

(3.23) gives

exp [Φ(h)] = I3×3 +

∞∑
k=0

(−1)k‖h‖2k+1

(2k + 1)!
Φ(w) +

∞∑
k=1

(−1)k‖h‖2k

(2k)!
(I3×3 −ww>)

= I3×3 + Φ(h)

∞∑
k=0

(−1)k(h>h)k

(2k + 1)!

+ (I3×3h
>h− hh>)

∞∑
k=1

(−1)k(h>h)k−1

(2k)!
(3.25)

using ‖h‖2 = h>h, ‖h‖Φ(w) = Φ(h). The expansion (3.25) holds for all h ∈ R3 including

h = 03 and is continuously differentiable in h.

The data are i.i.d.R1, . . . ,Rn whereRi = SEi forEi ≡ Ei(ri,Ui) defined by i.i.d r1, . . . , rn ∈

(−π, π] distributed symmetrically around 0 and independent of U1, . . . ,Un being uniformly

distributed on R3-sphere; see (5) of the main manuscript. For h ∈ R3, define a function

fi : R3 → R for each i = 1, . . . , n as fi(h) = tr
[
exp (Φ[h])> S>Ri

]
. Without loss of gen-

erality, we assume S = I3×3. By Rodrigues’ formula (cf. Sec. 2), Ri can then be written as

Ri = uiui
>(1− cos ri) + I3×3 cos ri + Φ(ui) sin ri with tr(Ri) = 1 + 2 cos(ri) by (3.21). From

(3.22), it follows for w ∈ R3, ‖w‖ = 1, that

tr [Φ(w)Ri] = tr [sin riΦ(w)Φ(ui)]

= −2 sin ri(w
>ui)

tr
[
(I3×3 −ww>)Ri

]
= tr(Ri)− tr(w>Riw)

= 1 + 2 cos ri − (1− cos ri)(w
>ui)

2 − cos ri

= 1 + cos ri − (1− cos ri)(w
>ui)

2.
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From the above and (3.25), we may re-write for each i = 1, . . . , n:

fi(h) = tr
[
exp (Φ[h])>Ri

]
= tr [exp (Φ[−h])Ri]

= 1 + 2 cos ri + 2(sin ri)(h
>ui)

∞∑
k=0

(−1)k(h>h)k

(2k + 1)!

+
[
(h>h)(1 + cos ri)− (1− cos ri)(h

>ui)
2
] ∞∑
k=1

(−1)k(h>h)k−1

(2k)!
(3.26)

for any h ∈ R3.

Then, Ŝn = exp
[
Φ(ĥn)

]
estimates S = I3×3, where ĥn ∈ R3 maximizes the function

gn(h) = n−1
∑n

i=1 fi(h). The SLLN yields Ŝn → I3×3 with probability 1 (w.p.1), implying that

ĥn → 03 w.p.1 from the continuity of exp [Φ(h)] in (3.24) and the fact that exp [Φ(h)] = I3×3

only if h = 03. Let An be the event “‖ĥn‖ < 1/4” and note P (An) → 1 as n → ∞ by

ĥn
p−→ 03. When event An holds, the function gn(h) has a maximum inside the closed ball

B(1/4) ≡ {h ∈ R3 : ‖h‖ ≤ 1/4} (at ĥn) and, because gn(h) is differentiable, it holds that

∂gn(h)/∂h|
h=ĥn

= 03. Based on the linearized version of fi(h) in (3.26), for h = (h1, h2, h3)>

and ui = (ui1, ui2, ui3)>, i = 1, . . . , n, note that the partial derivatives j = 1, 2, 3 may be

expanded as

∂gn(h)

∂hj
=

1

n

n∑
i=1

(2 sin ri)

[
uij

∞∑
k=0

(−1)k(h>h)k

(2k + 1)!
+ (h>ui)

∞∑
k=1

(−1)kk(h>h)k−12hj
(2k + 1)!

]

+
1

n

n∑
i=1

[{
(1 + cos ri)2hj − (1− cos ri)(h

>ui)2uij

} ∞∑
k=1

(−1)k(h>h)k−1

(2k)!

]

+
1

n

n∑
i=1

[{
(h>h)(1 + cos ri)− (1− cos ri)(h

>ui)
2
} ∞∑
k=2

(−1)k(k − 1)(h>h)k−22hj
(2k)!

]

=
2

n

n∑
i=1

uij sin ri +
1

n

n∑
i=1

(1− cos ri)(h
>ui)uij −

1

n

n∑
i=1

(1 + cos ri)hj + R̃nj(h) (3.27)
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where

R̃nj(h) =
1

n

n∑
i=1

(2 sin ri)

[
uij

∞∑
k=1

(−1)k(h>h)k

(2k + 1)!
+ 2hj(h

>ui)
∞∑
k=1

(−1)kk(h>h)k−1

(2k + 1)!

]

+
1

n

n∑
i=1

[{
(1 + cos ri)2hj − (1− cos ri)(h

>ui)2uij

} ∞∑
k=2

(−1)k(h>h)k−1

(2k)!

]

+
1

n

n∑
i=1

[{
(h>h)(1 + cos ri)

}
2hj

∞∑
k=2

(−1)k(k − 1)(h>h)k−2

(2k)!

]

− 1

n

n∑
i=1

[{
(1− cos ri)(h

>ui)
2
}

2hj

∞∑
k=2

(−1)k(k − 1)(h>h)k−2

(2k)!

]
.

so that

|R̃nj(h)| ≤ 2‖h‖2
∞∑
k=1

1

(2k + 1)!
+ 2‖h‖2

∞∑
k=1

k

(2k + 1)!
+ 4‖h‖3

∞∑
k=1

1

(2k)!

+ 4‖h‖3
∞∑
k=2

1

(2k)!
+ 4‖h‖2

∞∑
k=2

k − 1

(2k)!

≤ c‖h‖2 (3.28)

uniformly for h ∈ B(1/4) and j = 1, 2, 3 for some c ∈ (0,∞). Therefore, evaluating (3.27) at

ĥn and using (3.28) gives

03 =
∂gn(ĥn)

∂h

=
2

n

n∑
i=1

sin riui +
1

n

n∑
i=1

(1− cos ri)uiui
>ĥn −

1

n

n∑
i=1

(1 + cos ri)ĥn +Op(‖ĥn‖2)

≡Mn +Cnĥn + op(‖ĥn‖) (3.29)

for

Mn =
2

n

n∑
i=1

sin riui and Cn =
1

n

n∑
i=1

[
(1− cos ri)uiui

> − (1 + cos ri)I3×3

]
.

In the following, define variables (r,U)
d
= (ri,Ui) for simplicity. By SLLN, as r is indepen-

dent of U and E(UU>) = I3×3/3, it follows that Cn → C w.p.1 in (3.29), where

C ≡ E
[
(1− cos r)UU> − (1 + cos r)I3×3

]
=
−2− 4E cos r

3
I3×3.

Letting a2 = (1 + 2E cos r)/3, C−1
n → C−1 = −I3×3/2a2 w.p.1 so that C−1

n
p−→ C−1 (i.e., for

large n, Cn is invertible with high probability). By the classical multivariate CLT for Mn in
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(3.29),

√
nMn

d−→ N3(03, 4Var[sin rU ])

where E sin rU = (E sin r)(EU) = 03, as r is symmetric around 0 and sin(·) is an odd function,

and

Var(sin rU) = E
[
sin2(r)UU>

]
− 030

>
3 = E(sin2 r)E(UU>) =

1

3
E sin2 rI3×3.

Hence, we have from (3.29) that

√
n ĥn(1 + op(1)) = C−1

n (−
√
nMn)

d−→ N3

(
03,

a1

2a2
2

I3×3

)
where a1 = 2E sin2 r/3. Thus

√
n ĥn = Op(1) and

√
n ĥnop(1) = op(1), implying

√
n ĥn =

C−1
n (−

√
nMn) + op(1) and therefore

√
n ĥn

d−→ N3(03, a1/2a
2
2) by Slutsky’s theorem.

In order to prove Theorem 3.2, we first establish a proposition.

Proposition 3.4. Assume R1, . . . ,Rn are a sample of i.i.d. observations from a distribution F

defined on SO(3) by the location model (1) with central orientation parameter S ∈ SO(3) and

concentration κ. Let Ŝn denote the rotation matrix satisfying arg minS∈SO(3)

∑n
i=1 ‖Ri−S‖2F .

Expressed terms of a (non-random) R where S>R ≡ S>R(r,U) defined by an angle-axis pair

(r,U) as in (4), the influence function of Ŝn is given by

IF2(R, F ) =
1

a2
sin(r)U

where a2 = E(1+2 cos r1)/3 for a random angle r1 (5) defining a random rotation R1 as above.

Furthermore,

E[IF2(R1, F )] = 0 and E[IF2(R1, F )IF2(R1, F )>] =
a1

2a2
2

I3×3

were a1 = 2E(sin2 r1)/3.

Proof. From Proposition 3.1, Ŝn is an M -estimator with a normal asymptotic distribution.

We use standard results for M -estimators to find the influence function of ĥn and to show it

has zero first moment and finite second moment. The notation and expansions in the proof of

Proposition 3.1 are used here.
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From Proposition 3.1 Ŝn is an M -estimator, therefore it has influence function

IF2(R, F ) = [Ψ′2(h0)]−1
[
ψ2(S>R,h0)

]
where ψ2(S>R,h) = ∂f(h)/∂h for a function f(h) defined as in (3.26) (with (r,U) defining

S>R here replacing (ri,Ui) there), Ψ′2(h) = ∂E[ψ2(S>R1,h)>]/∂h (upon takingR distributed

as R1 in the expectation), and h0 = 03. Without loss of generality assume the central orien-

tation S = I3×3.

It follows from arguments based on (3.27) that

ψ2(R,h) =
∂

∂h
f(h) = 2 sin(r)U +Ch+ R̃(h) (3.30)

for C = [1− cos(r)]UU> − [1 + cos(r)]I3×3 so that ψ2(R,h0) = 2 sin(r)U because R̃(h) = 03

when h0 = 03. Because ψ2(R,h) has a series power expansion in h (with ∂R̃(h)/∂h = 03×3

at h0 = 03), the Dominated Convergence Theorem may be used to justify the interchange of

expectation and differentiation may in determining Ψ′2(h0) based on a random rotation R1

(defined by a random angle r1 and independent uniformly distributed random axis U1 ∈ R3,

‖U1‖ = 1) used in (3.30) as

Ψ′2(h0) = E

[
∂

∂h
ψ2(R1,h)>

∣∣∣∣
h=h0

]

= E

{
∂

∂h

[
2 sin(r1)U>1 +C1h

> + R̃>1 (h)
]∣∣∣∣

h=h0

}

= E (C1) ≡ E[1− cos(r1)]U1U
>
1 − [1 + cos(r1)]I3×3

=
2

3
{1 + 2E[cos(r1)]}I3×3,

recalling E(U1U
>
1 ) = I3×3/3. Hence, we have

IF2(R, F ) = [Ψ′2(h0)]−1 [ψ2(R,h0)] =
3 sin(r)

1 + 2E[cos(r1)]
U =

1

a2
sin(r)U .

where a2 = E(1 + 2 cos r1)/3. As r1 is independent of U1 with E[sin(r1)] = 0, it follows that

E[IF2(R1, F )] =
1

a2
E[sin(r1)]E(U1) = 03.
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and

E[IF2(R1, F )IF2(R1, F )>] =
1

a2
2

E[sin2(r1)U1U
>
1 ] =

a1

2a2
2

I3×3

where a1 = 2E[sin2(r1)]/3.

Proof of Theorem 3.2.

From Propositions 3.1 and 3.4, Ŝn = S exp{Φ(ĥn)} is an M -estimator with continuous and

bounded influence function, that can be expressed in terms of S>R = exp{Φ(h)}, h ∈ R3

across rotations R. Therefore, by Theorem 5.7 of Shao (2003), Ŝn is %∞-Hadamard differen-

tiable (see page 347). Furthermore, the influence function of Ŝn has zero first and finite second

moment by Proposition 3.4. Hence, by Theorem 5.20 (page 383) of Shao (2003), as n→∞

sup
x∈R

∣∣∣P (2na2
2‖ĥn‖2/a1 ≤ x

)
− P∗

(
2nâ2

2n‖ĥ
∗
n‖2/â1n ≤ x

)∣∣∣ −→ 0,

w.p.1 where P∗ denotes bootstrap probability conditional on the data.

Proof of Theorem 3.3.

From Prentice (1984),

nm>F̂−n m
d−→ χ2

3

holds so it is enough to show that (w.p.1) nm̂>n F̂
∗−
n m̂n

d−→ χ2
3. By definition, m̂n is the eigen-

vector associated with the largest eigenvalue of V̂n = E∗(x
∗
ix
∗>
i ) where E∗(·) is the bootstrap

expectation conditional on the data. Similarly, m̂∗n and F̂ ∗n are functions of the spectral de-

composition of V̂ ∗n , an estimate of V̂n based on the bootstrap sample satisfying E∗(F̂
∗
n ) = F̂n.

Therefore, by the SLLN and 3.2 of Prentice (1984)

√
nF̂ ∗−1/2

n (m̂∗n − m̂n)
d−→ N3(03, I3×3)

w.p.1, where F̂
∗−1/2
n is the Cholesky decomposition of F̂ ∗−n . Because F̂ ∗−n m̂∗n = 03 by con-

struction, the continuous mapping theorem then gives, as n→∞

nm̂>n F̂
∗−
n m̂n

d−→ χ2
3

w.p.1 as and the result follows.



65

CHAPTER 4. THE EXTRINSIC MEDIAN FOR THE ROTATION

GROUP

A paper in preperation

Bryan Stanfill, Ulrike Genschel, Heike Hofmann

Abstract

In this manuscript we study the properties of the extrinsic median in SO(3). The median is

shown to be consistent, asymptotically normal and SB-robust with respect to Fisher informa-

tion for the Cayley and matrix Fisher distributions. We also show that the extrinsic mean is

not SB-robust for the same distributions, but it is more efficient. Similar results have appeared

for data on the circle and sphere, but they are extended here to the Stiefel manifold for the

first time. In the presence of contamination we show that confidence regions for the central

orientation based on the median achieve a smaller size and closer to nominal coverage rates

compared to those based on the extrinsic mean. Finally we demonstrate how these results can

be applied in practice with a material sciences data example.

K eywords: Directional symmetry, Stiefel Manifold, SB-robustness, Influence Functions, Pivotal

bootstrap

4.1 Introduction

Consider the location model for the rotation group SO(3), the collection of all 3×3 orthog-

onal matrices with determinant one, defined by

Ri = SEi, i = 1, . . . , n, (4.1)
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where S ∈ SO(3) is the the central orientation, and E1, . . . ,En ∈ SO(3) denote i.i.d. direc-

tionally symmetric random perturbations of S. Model (4.1) is the SO(3) analog of a location

model for scalar data Yi = µ+ ei, where µ ∈ R denotes a mean and ei ∈ R denotes an additive

error symmetrically distributed around zero.

Though SO(3) is a bounded parameter space, extreme observations occur in practice and

adversely affect mean estimators of the location parameter S. For a random sample of rotations

from the Model (4.1), Fletcher et al. (2009) and Stanfill et al. (2013) each introduced a median-

type estimator for S as alternative robust estimators. In both works the small sample behavior

of the respective medians was evaluated through a simulation study but no theoretical results

were provided.

In this manuscript we develop the theoretical properties of the median estimator proposed

by Stanfill et al. (2013). We show that the median is strongly consistent for the central orien-

tation S, asymptotically normal and SB-robust for the Cayley and matrix Fisher distributions

on SO(3). In addition, normal theory and pivotal bootstrap confidence regions for the central

orientation based on the median are proposed. We compare the finite sample behavior confi-

dence regions based on the median to the existing methods based on the extrinsic mean. With

respect to both the regions’ size and empirical coverage rate, confidence regions based on the

median are preferred to those based on the mean for contaminated samples.

The remainder of this manuscript is organized as follows. Section 4.2 includes a review of

robust methods for directional data, which informs the approach taken to SO(3) data analysis.

In Section 4.3 we give a brief description of the SO(3) parameter space and median estimators.

Section 4.4 includes large sample results for the median. Consistency and asymptotic normality

are established first and provide the theory necessary to form robust confidence regions for

S. Next the efficiency and sensitivity of the extrinsic median is investigated relative to the

extrinsic mean. A simulation study is detailed in Section 4.5, which demonstrates the finite

sample behavior of the confidence regions based on the extrinsic median for contaminated

data. Finally, a data example is described in Section 4.6. Proofs and an extended look at the

simulation results are included in the Appendix.
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4.2 Literature Review

Consider estimating the location parameter based on a random sample on the unit circle

r1, . . . , rn, ri ∈ [−π, π) for i = 1, . . . , n, following a symmetric and unimodal distribution about

the central direction µ with concentration parameter κ. A common estimator for µ is the circu-

lar mean defined as µ̂n = tan−1[
∑

i(sin ri)/
∑

i(cos ri)]. The traditionally robust alternative to

the circular mean is the circular median, which is the angle µ̃n that minimizes
∑

i[π−|π−|ri−θ||]

over θ ∈ [−π, π) (Mardia and Jupp, 2000). Wehrly and Shine (1981) compared the robustness

properties of the circular mean and median based on their influence functions, which were stated

without proof as IF(r, µ̂n) = sin[(r − φ)/κ] and IF(r, µ̃n) = 0.5sign(r − φ)/[f(φ) − f(φ + π)],

respectively, where f(·) is the distributional model assumed for the data, sign(x) is 1 if x > 0,

0 if x = 0 and −1 otherwise. Otieno (2002) later proved the influence functions reported by

Wehrly and Shine (1981) are correct. Wehrly and Shine (1981) states that since the influence

function of the mean is bounded it is sufficiently robust and the mean is the maximum like-

lihood estimator for several common distributions, therefore the mean is “hard to beat” as a

location estimator for circular data.

Extending the notion of robust location estimation to the d-dimensional unit sphere, con-

sider the random sample x1, . . . ,xn with xi ∈ Rd and ‖xi‖ = 1 for i = 1, . . . , n symmetrically

distributed about the location parameter µ ∈ Rd with ‖µ‖ = 1 and concentration parame-

ter κ. With respect to estimator sensitivity, Ko and Guttorp (1988) argue that because the

location parameter space is bounded, the influence functions reported by Wehrly and Shine

(1981) should be standardized by some measure of dispersion when considering the robustness

the estimator. The measure of dispersion with which to standardize the influence function is

debated still (Laha and Mahesh, 2011) but common choices are the limiting variance of the

estimator (Ko and Guttorp, 1988), the Fisher information matrix (Hampel et al., 2011) or the

Kullback-Leibler (KL) discrepancy (He and Simpson, 1992).

An estimator is considered robust, or standardized bias (SB) robust, if the supremum of

the standardized influence function over all parameter values and data points is finite. He and

Simpson (1992) showed the class of estimator based on results in Lenth (1981), including the L1
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estimator on the sphere to be the vector µ̃n that minimizes
∑

i(‖xi−m‖) over unit vectors in

Rd, is SB-robust with respect to the KL discrepancy for the von Mises family of distributions.

Ko and Chang (1993) propose SB-robust M -estimators on the sphere based on the results of

Hampel et al. (2011).

Another important measure of estimator robustness is efficiency. The efficiency of the spatial

median, or mediancentre (Gower, 1974), and the normalized spatial median were considered by

Brown (1983) and Ducharme and Milasevic (1987), respectively. The spatial median is defined

as the vector m̃n that minimizes
∑

i(‖xi −m‖) over d-dimensional vectors m of any length.

Though Brown (1983) does not treat directional data directly, they report the asymptotic

relative efficiency (ARE) of the spatial median relative to the sample mean x̄n =
∑

i xi/n

for dimensions two through seven assuming the vectors are scaled and therefore behave like

directional data. Focused solely on directional data, Ducharme and Milasevic (1987) proposed

the normalized spatial median µ̃n = m̃n/‖m̃n‖ and derived its limiting distribution, proposed

confidence cones for µ and computed the ARE of µ̃n relative to the maximum likelihood

estimator µ̂n = x̄n/‖x̄n‖ for data following the von Mises-Fisher distribution. Because the von

Mises-Fisher distribution for unit vectors in d + 1-dimensions converges to the local normal

distribution in d-dimensions as κ → ∞, the ARE results of Ducharme and Milasevic (1987)

match those of Brown (1983) for large κ.

With respect to both sensitivity and efficiency, Chan and He (1993) conclude the normalized

spatial median is preferred to the L1 estimator on the sphere as well as the spherical median,

where the spherical median is the minimizer of
∑

i cos−1(x>i m) over unit vector in Rd (Fisher,

1985). For more details on robustness of estimators in directional statistics see the review paper

by He (1992) or Chapter 12.4 of Mardia and Jupp (2000).

4.3 Rotation Data Preliminaries

Three-dimensional rotation data consist of observations belonging to the group SO(3),

where every element R ∈ SO(3) is an orthogonal 3×3 matrix with determinant one. Let so(3)

represent the space of all 3 × 3 skew-symmetric matrices so(3) = {X ∈ R3×3 : X> = −X}.

Then each rotation in R ∈ SO(3) is associated with a skew-symmetric matrix Φ(W ) ∈ so(3),
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defined as

Φ(W ) =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 (4.2)

for W = (w1, w2, w3)> ∈ R3. Through the exponential operator, we map Φ(W ) to a rotation

matrix as

exp[Φ(W )] =
∞∑
k=0

1

k!
[Φ(W )]k. (4.3)

Using properties of skew-symmetric matrices, (4.3) can be simplified to

exp[Φ(W )] = cos(r)I3×3 + sin(r)Φ(U) + (1− cos r)UU>

where r = ‖W ‖ and U = W /‖W ‖.

Therefore, each rotation matrix R is associated with an angle-axis pair (r,U), where r ∈

(−π, π] and U ∈ R3, ‖U‖ = 1, through

R = R(r,U) = exp[Φ(rU)] ∈ SO(3). (4.4)

The rotation R can be interpreted as a rotation of the coordinate axes I3×3 about the axis

U ∈ R3 by the angle r. In the materials science literature, U and r are commonly referred to

as the misorientation axis and misorientation angle of R with respect to I3×3 respectively; see

Randle (2003).

For a sample of rotationsR1, . . . ,Rn, an M -estimator for the central orientation S is defined

as the rotation matrix that minimize the loss function ρ(Ri,S)

Ŝ = arg min
S∈SO(3)

n∑
i=1

ρ(Ri,S).

The choice of loss function depends on distribution of the data and the goal of the researcher;

see Stanfill et al. (2013) for a detailed discussion. A common choice of loss function is the p-th

order Euclidean distance defined for rotations R1 and R2 ∈ SO(3) as

dpE(R1,R2) = ‖R1 −R2‖F =
[
6− 2tr

(
R>1 R2

)]p/2
(4.5)

where ‖ · ‖F denotes the Frobenius norm and tr(·) denotes the matrix trace. The Euclidean

distance corresponds to the length of the shortest path in R3×3 that connects R1 and R2.
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Since the Euclidean distance is defined in R3×3 rather than SO(3), the Euclidean distance is

an extrinsic distance measure and estimators based on the Euclidean distance are referred to

as extrinsic estimators. Even though extrinsic estimators are cited as being less natural for

SO(3) data analysis, they often have nice statistical properties (León et al., 2006; Bingham

et al., 2009).

In this manuscript we will focus on the extrinsic estimators minimizing the first and second

order Euclidean distances, defined next. The extrinsic median S̃n is defined as

S̃n = arg min
S∈SO(3)

n∑
i=1

dE(Ri,S). (4.6)

The extrinsic mean Ŝn is defined as

Ŝn = arg min
S∈SO(3)

n∑
i=1

d2
E(Ri,S) = arg max

S∈SO(3)
tr(S>R) (4.7)

where R =
∑n

i=1Ri/n. For a comparison of these two estimators in terms of the point

estimation characteristics see Stanfill et al. (2013).

In the next section we state the limiting distribution of extrinsic median and propose meth-

ods to constructing confidence regions for the central orientation S. For the remainder of this

manuscript we will refer to the extrinsic median and extrinsic mean simply as the median and

mean, respectively.

4.4 Large Sample Theory

In this section we study the large sample behavior of the median for i.i.d. samples of

rotations from a directionally symmetric population. The median is shown to be consistent

and asymptotically normal. The asymptotic variance is given in a closed form for the Cayley

and matrix Fisher distributions. It is also demonstrated that the median is SB-robust for the

Cayley and matrix Fisher distributions while the mean is not.

4.4.1 Consistency and Asymptotic Normality

Let R1, . . . ,Rn be a sample of i.i.d. random rotations from a rotationally symmetric dis-

tribution on SO(3) with central orientation parameter S ∈ SO(3) and concentration κ > 0.
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The following two propositions establish the consistency and asymptotic normality of the me-

dian estimator S̃n for the central orientation S as defined in (4.6). The proofs are left to the

Appendix.

Proposition 4.1. The median S̃n is a strongly consistent estimator of the true central orien-

tation S.

Proposition 4.2. Assume S̃n 6= Ri for all i. Define h̃n ∈ R3 such that exp
[
Φ
(
h̃n

)]
= S>S̃n

then

√
n h̃n

L−→ N3

(
03,

a1

2a2
2

I3×3

)
as n→∞ where

a1 =
1

6
E[1 + cos(r)] and a2 =

1

12
E

[
1 + 3 cos(r)√

1− cos(r)

]
(4.8)

provided a1 and a2 are finite and non-zero.

Equivalent to Proposition 4.2

2na2
2

a1

∥∥∥h̃n∥∥∥2 L−→ χ2
3 (4.9)

as n→∞. The explicit forms of the constants a1 and a2 in (4.8) are given for the Cayley and

matrix Fisher distributions in Table 4.1. In practice a1 and a2 will not be known and will need

to be estimated. Estimates of a1 and a2 based on the sample R1, . . . ,Rn are

â1n =
1

12n

n∑
i=1

[
1 + tr

(
S̃>nRi

)]
and â2n =

√
2

24n

n∑
i=1

3tr(S̃>nRi)− 1√
3− tr(S̃>nRi)

. (4.10)

By the strong law of large numbers, it follows that â1n → a1 and â2n → a2 both with probability

one as n→∞ .

4.4.2 Confidence Regions

Confidence regions for the central orientation S can be formed using the results of Proposi-

tion 4.2. These regions can be interpreted by rewriting the squared norm of the vector h̃n as the

geodesic distance between the estimate of the central direction and the true central direction.

That is, ‖h̃n‖2 = ‖r
h̃n
U

h̃n
‖2 = |r

h̃n
|2‖U

h̃n
‖2 = r2

h̃n
= dR(S, S̃n)2 where dR(·, ·) denotes the
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Table 4.1: The constants a1 and a2 as they appear in (4.8) for the Cayley and matrix Fisher

distributions on SO(3). The symbol Ii(·) is the modified Bessel function of the first kind with

order i, Γ(x) = (x−1)! the Gamma function and FD(x) = exp(−x2)
∫ x

0 exp(t2)dt is the Dawson

function.

Distribution a1 a2

Cayley 2κ+ 1
6(κ+ 2)

κ
√

2Γ(κ+ 2)
3
√
πΓ(κ+ 2.5)

matrix-Fisher
I1(2κ)

12κ[I0(2κ)− I1(2κ)]
e2κ[6

√
κ− (3 + 8κ)FD(2

√
κ)]

24
√

2πκ1.5[I0(2κ)− I1(2κ)]

geodesic distance as defined in (2.4). Therefore a 100(1 − α) large sample confidence region

(denoted by the superscript L) for the true central orientation S based on S̃n contains all

rotations R ∈ SO(3) in the set

CLα =

{
R ∈ SO(3) :

2na2
2

a1
dR(R, S̃n)2 < χ2

3,1−α

}
. (4.11)

That is, all rotations within a fixed geodesic distance of the median S̃n are contained in the

confidence region for S.

As demonstrated in Chapter 3, bootstrap calibrated confidence regions tend to have closer

to nominal finite sample coverage rates. Therefore, we propose a bootstrap method that can

be used to calibrate the confidence region (4.11).

Theorem 4.3. Assume R1, . . . ,Rn are a sample of i.i.d. observations from a directionally

symmetric location model with central orientation S according to (4.1). Let S̃n denote the

mean as defined in (4.6) and let S̃∗n denote its bootstrap version. Then, as n −→∞,

sup
x∈R

∣∣∣P (2na2
2‖h̃n‖2/a1 ≤ x

)
− P∗

(
2na2

2‖h̃∗n‖2/a1 ≤ x
)∣∣∣ −→ 0 with probability 1,

where P∗ denotes bootstrap probability conditional on the data.

From the above bootstrap consistency result, a Monte Carlo bootstrap procedure can be given

as follows for calibrating a confidence region for the central location parameter S.
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Monte Carlo Implementation:

1. For the given sample R1, . . . ,Rn ∈ SO(3), compute the median S̃n.

2. Generate a bootstrap sample R∗1, . . . ,R
∗
n by randomly sampling n rotation matrices with

replacement from R1, . . . ,Rn.

3. Compute the median Ŝ∗n of the bootstrap data set and form the test quantity 2n(â∗2n)2‖h̃n‖2/â∗1n
where â∗1n and â∗2n are computed from the bootstrap sample by replacing R∗i and S̃∗n for

Ri and Ŝn, respectively.

4. Repeat steps 2 and 3, j = 1, . . . ,m times to obtainm values of the quantity 2n(â∗2n)2‖h̃n‖2/â∗1n .

5. Define q̂1−α to be the 100(1 − α)% sample percentile of the bootstrap realizations of

2n(â∗2n)2‖h̃n‖2/â∗1n .

6. An approximate 100(1−α)% bootstrap confidence region (denoted B) for the true central

orientation S based on the direct approach contains all rotations S ∈ SO(3) in the set

CBα =

{
R ∈ SO(3) :

2nâ2
2n

â1n

dR(R, S̃n)2 < q̂1−α

}
. (4.12)

4.4.3 Efficiency and Sensitivity

Next we evaluate the large sample behavior of the median relative to the mean. First

we consider the median’s efficiency. The asymptotic relative efficiency (ARE) of the median

relative to the mean is given by the ratio of their asymptotic variances, i.e. ARE(S̃n, Ŝn) =

Var(Ŝn)/Var(S̃n). An ARE less than one indicates that the mean is more efficient than the

median, and therefore a larger sample size is required for the median to achieve the mean’s

level of uncertainty. For the form of the means asymptotic variance see Chapter 3.

In Figure 4.1 the ARE of the median relative to the mean is illustrated for a range of

concentrations κ. For both the Cayley and matrix Fisher distributions, the ARE converges to

8/(3π) ≈ 0.85 as κ→∞. An ARE of 8/(3π) implies that for the same sample size, the median

has an 100(
√

3π/8 − 1)% ≈ 8.5% larger standard error than the mean as κ → ∞. Brown

(1983) demonstrated the ARE of the spatial median in R3 relative to the MLE is 8/(3π) for
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the isotropic normal distribution. This matches our result since the Cayley and matrix Fisher

distributions both converge to a local normal distribution as κ→∞.

0.7

0.8

0.9

0 5 10 15 20 25
κ

A
sy

m
pt

ot
ic

 R
el

at
iv

e 
E

ffi
ci

en
cy

Distribution

Cayley

matrix Fisher

Figure 4.1: Asymptotic relative efficiency as a function of concentration κ for the Cayley and

matrix Fisher distributions. In both distributions as κ goes to infinity, the ARE converges to

8/(3π).

Though the median is less efficient than the mean, it is robust to outliers while the mean is

not. We next derive the median’s influence function (IF), from which measures of robustness

can be derived. Since S̃n is an M -estimator, an expression for the influence function is given

by Hampel et al. (2011), page 230, which is given in the next proposition. For a proof see the

Appendix.

Proposition 4.4. Assume R1, . . . ,Rn are a sample of i.i.d. observations from a UARS dis-

tribution F on SO(3) with central orientation S ∈ SO(3) and concentration κ > 0. Let S̃n be

the median as defined in (4.6) and assume Ri 6= S̃n for all i. The influence function of S̃n is

given by

IF
(
R; S̃n, F

)
=

sin(r)

2a2

√
1− cos(r)

U

where a2 = E
{

[1 + 3 cos(r)] /[12
√

1− cos(r)]
}

and exp [Φ (rU)] = R.

The maximum bias that can be introduced by a small change in the sample, such as an

outlier, is called the gross error sensitivity. Since the parameter space of interest SO(3) is
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bounded, Ko and Guttorp (1988) and others have argued in favor of replacing the notion of

gross error sensitivity with standardized gross error sensitivity (SGES) when considering the

robustness of an estimator in a bounded parameter space. The SGES of the estimator T is

defined as

γ∗(T, F, V )2 = sup
R∈SO(3)

[
IF (R;T, F )> V (F )−1 IF (R;T, F )

]
where IF (R;T, F ) is the influence function of the estimator T for data from the distribution F

and V (F ) is a measure of spread of the distribution F satisfying V (F ) > 0 (Ko and Guttorp,

1988; Hampel et al., 2011). The choice of spread V (F ) has been shown to be important (Laha

and Mahesh, 2011). Common choices are the Fisher information matrix (Hampel et al., 2011),

Kullback-Leibler discrepancy (He and Simpson, 1992) or the estimator’s asymptotic variance

(Ko and Guttorp, 1988). An estimator with a finite SGES for all permissible F is said to be

SB-robust with respect to the measure of spread V (F ). For the remainder of this manuscript we

will consider SGES with respect to the Fisher information matrix, denoted I. In the next two

propositions we demonstrate that for the Cayley and matrix Fisher distributions the median

is SB-robust with respect to the Fisher information matrix while the mean is not. First we

report the Fisher information matrices for the distributions of interest.

For the Cayley distribution the Fisher Information matrix is given by Equation (13) with

p = 3 of León et al. (2006),

IC (S) =
κ2

2κ− 1
I3×3. (4.13)

Because the mean is the maximum likelihood estimator for the matrix Fisher distribution then

the asymptotic variance of the mean from Chapter 3 is the Fisher information matrix. Using

the quantities in Table 3.1,

IF (S) =
2

3

[
(κ+ 1)I1(2κ)− κI0(2κ)

I0(2κ)− I1(2κ)

]
I3×3. (4.14)

Proposition 4.5. The median is SB-robust for the Cayley and matrix Fisher distributions with

respect to the Fisher information.

Proof. First we consider the Cayley distribution. From (4.13) the squared SGES for the median

is

γ∗
(
S̃n, F, I

)2
=

9πΓ(κ+ 2.5)2

4(2κ− 1)Γ(κ+ 2)2
.
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It can be shown that γ∗(S̃n, F, I)→ 3
√

2π/4 ≈ 1.88 as κ→∞. Since γ∗ is only defined when

IC(S)−1 > 0 we don’t consider the diffuse limit, i.e. κ→ 0. It follows the median is SB-robust

for the Cayley family of distributions.

From (4.14) the squared SGES of the median for the matrix Fisher family of distributions

is given by

γ∗
(
S̃n, F, I

)2
=

1

3a2
2

[
(κ+ 1)I1(2κ)− κI0(2κ)

I0(2κ)− I1(2κ)

]
where d is given in Table 4.1. Considering both the diffuse and concentrated cases: γ∗(S̃n, F, I)→

15π
√

3/(16
√

2) ≈ 3.61 as κ→ 0 and γ∗(S̃n, F, I)→ 3
√

2π/4 as κ→∞. Therefore the median

is SB-robust with respect to the matrix Fisher family of distributions.

Proposition 4.6. The mean is not SB-robust for the Cayley or matrix Fisher distributions

with respect to the Fisher information.

Proof. From Chapter 3, the influence function of the extrinsic mean is given by

IF
(
R; Ŝn, F

)
=

3 sin(r)

E[1 + 2 cos(r)]
U

where

E[1 + 2 cos(r)] =


3κ
κ+2 if R ∼ Cayley

(κ+1)I1(2κ)−κI0(2κ)
κ[I0(2κ)−I1(2κ)] if R ∼ matrix Fisher.

First we consider the Cayley distribution: from (4.13) the squared SGES for the mean is

γ∗(Ŝn, F, I)2 =
(κ+ 2)2

2κ− 1
.

Clearly γ∗(Ŝn, F, I) → ∞ as κ → ∞. Again we don’t consider the diffuse case due to the

requirement that IC(S)−1 > 0. It follows the mean is not SB-robust for the Cayley distribution.

From (4.14) the SGES of the mean for the matrix Fisher family of distributions is given by

γ∗(Ŝn, F, I)2 =
6κ2 [I0(2κ)− I1(2κ)]

(κ+ 1)I1(2κ)− κI0(2κ)
.

Considering both the diffuse and concentrated cases: γ∗(Ŝn, F, I) →
√

6 as κ → 0 but

γ∗(S̃n, F, I) → ∞ as κ → ∞. Therefore the mean is not SB-robust for the matrix Fisher

distribution.
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Figure 4.2: The mean and median SGES with respect to the Fisher information matrix as a

function of κ for the Cayley and matrix Fisher distributions. A gray horizontal line is placed

at 3
√

2π/4 to indicate the limiting SGES for the median as κ→∞.

In a similar fashion it can be shown that the median is also SB-robust with respect to its

asymptotic variance while the mean is not. The estimators’ SGES for the Cayley and matrix

Fisher distributions are plotted as a function of κ in Figure 4.2. Under both distributional

assumptions, for small values of κ, the mean is less sensitive to outliers than the median

relative to the variability of the data. As κ increases, however, the sensitivity of the mean

relative to the data variability diverges to infinity while the median has a finite limit.

4.5 Simulation Study

In this section we study the small sample behavior of the mean and median through simu-

lation. In particular we evaluate how the confidence regions in Section 4.4.2 compare to those

based on the mean in the presence of contamination. This confidence regions’ size and coverage

rate is reported to demonstrate the estimator bias and variance, respectively.

Ten-thousand samples of sizes n = 10, 50 and 100 were simulated from the contaminated

distribution given by

Fε = (1− ε)F (I3×3, κ) + εF (S, κ)

where ε = 0.0, 0.1 and 0.2, F is either the Cayley or matrix Fisher distribution, the concentra-
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tion κ is set to 20, and the contamination central orientation parameter S is a rotation through

π/2 radians. For all levels of contamination we consider the true central orientation to be I3×3.
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Figure 4.4: Comparison of confidence region size (a) and coverage rate (b) for data from the

Cayley distribution. The median bootstrap region sizes for n = 10 are 3.94, 6.29 and 9.87 for

ε =0.0, 0.1 and 0.2, respectively.

The size of each confidence region Cα is defined as the length of the longest chord in SO(3)

that connects the center of the region (located at the respective estimator) and a rotation

R ∈ Cα. This definition of region size can, in most cases, be interpreted as the region’s radius.

A region captures the true central orientation S if the radius of the region is greater than the

distance between the estimator and the true central orientation I3×3. To illustrate, consider

the normal theory region based on the projected median in (4.11). The squared radius of the

region CLα is given by

rad2(CLα ) =
â1nχ

2
3,1−α

2nâ2
2n

.
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Figure 4.6: Comparison of confidence region size (a) and coverage rate (b) for data from the

Fisher distribution.

The region includes the true central orientation S ∈ CLα if

dR(S̃n, I3×3) < rad(CLα ).

The regions’ size as a function of contamination ε for the two estimators and two methods

are given for the Cayley and matrix-Fisher distributions in Figures 4.4. The regions’ coverage

rate is illustrated similarly in Figure 4.6. For a tabular description of these results see the

Appendix. Note that in Figure 4.3a, for n = 10 the median bootstrap regions results have been

omitted because the values are too big to be compare to the other regions. According to Table

4.4 of the Appendix, for samples of size n = 10 the bootstrap regions based on the median have

sizes 3.94, 6.29 and 9.87 for levels of contamination ε = 0.0, 0.1 and 0.2, respectively. This

illustrates two key ideas. First, the median bootstrap regions are unreliable for small sample

sizes. Second, the interpretation of “radius” does not hold for regions of this size as the largest
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geodesic distance possible in SO(3) is of length π. These region sizes are correct, however,

because these regions are for the vector h̃n while lies in an infinite space, only its projection

into SO(3) S̃n has a “radius” bounded by π.

In all scenarios the bootstrap regions are larger and have coverages closer to 100% than the

normal theory regions based on the same estimator. As sample size increases the mean and

median based regions become more disparate with the median based regions preferred in terms

of both metrics. As a function of contamination ε, the regions based on the mean increase in

size and decrease in coverage more quickly than those based on the median. This demonstrates

that the mean is heavily biased by the contamination because the regions based on the mean

are centered far from the true central orientation I3×3. This is especially true for the matrix

Fisher distribution with n = 100 where the coverage rate for the mean region in 0 for 10%

contamination while the median based regions remain close to 75%. The mean based regions

are centered far away from the true central orientation and their size does not make up for the

extreme bias.

4.6 Data Example

In material sciences rotation data are gathered via electron backscatter diffraction data

(EBSD) to identify the cubic crystal orientation on the surface of metals. It is becoming

increasingly common to use multiple scans of the same sample to determine the “true” crystal

orientation at each measured location (Humbert et al., 1996; Cho et al., 2005; Bachmann et al.,

2010). It has been shown that locations on the boundary between two grains can result in

repeat scans that are highly variable due to proximity of different grains (Stanfill et al., 2013).

In this section we illustrate that using the median to estimate between scan variability is more

reliable then using the mean due to the robustness properties demonstrated in this manuscript.

We consider EBSD data obtained by scanning a fixed 12.5 µm × 10 µm nickel surface at

individual locations spaced 0.2 µm apart. This scan was repeated up to 14 times for each

location yielding a total of 3,449 observations (Bingham et al., 2009, 2010a). Figure 4.7 is a

type of “grain-map” with each location shaded according to the estimated misorientation angle

of the median of the repeated scans at each location. Sixteen locations believed to be on the
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Figure 4.7: Grain map of the nickel data with locations of interest circled with yellow.

boundary of two grains are circled and the radius (in degrees) of the two 90% confidence regions

centered at the mean and median are reported in Table 4.2.

The results in Table 4.2 are similar to those that were found in the simulation study. For

samples that appear to come from a mixture of two distributions, normal theory regions based

on the mean are uniformly larger than those based on the median. Further, bootstrap regions

based on the mean are generally larger than the normal theory regions. Normal theory regions

based on the median are the smallest in most cases. Figure 4.8 is an illustration of one of

the locations, location 698, which was successfully scanned 13 times. Based on this figure

and the raw data, there appears to be one large group consisting of eight scans and a smaller

group consisting of five scans. Each axis of each scan at location 698 is projected onto a

unit sphere along with the estimated mean and median with corresponding 90% bootstrap

confidence regions. Normal theory regions are similar and are therefore omitted. The median

estimate is positioned in the center of the large group and the corresponding confidence region

is comparably small. The mean estimate is midway between the two groups of data and the
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Table 4.2: Radius (in degrees) of 90% confidence regions centered at the respective estimators

for locations with excessive deterioration or on grain boundaries.

Large n Approx. Bootstrap

Location Mean Median Mean Median

50 3.700 0.402 4.955 22.120

111 3.527 0.294 4.257 15.338

698 12.298 0.352 20.432 7.543

758 8.039 0.298 12.246 0.352

901 10.397 0.682 10.891 0.869

1055 8.071 0.231 180.000 0.215

1291 8.192 0.268 12.183 0.248

1478 5.527 0.194 8.154 0.145

1661 5.033 0.231 7.415 0.415

1801 6.889 0.190 125.257 0.141

1959 6.622 0.233 9.719 0.207

1965 5.530 0.195 8.158 0.106

1983 6.898 0.194 180.000 0.118

2164 4.647 0.329 5.184 0.464

2219 6.617 0.491 7.606 100.921

2975 3.382 0.429 4.092 5.512

3036 3.411 0.254 4.745 0.233

confidence region is considerably larger. From this it is reasonable to assume the measure of

uncertainty that results from the median is more reliable than that based on the mean.

Appendix

This section proves the propositions left unproven in the main manuscript as well as addi-

tional results from the simulation study.

Proofs

To prove S̃n is a consistent estimator for the central orientation S, as stated in Proposition

4.1, we take an approach similar in spirit to the proof of Theorem 3.4 in Bhattacharya and

Patrangenaru (2003), which established the extrinsic mean as a consistent estimator for S. A

sketch of the proof is as follows. The L1 estimator over the space of all 3× 3 matrices is a
√
n-

consistent estimator for the central orientation parameter S. Therefore, provided a continuous
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Figure 4.8: The x-, y- and z-axes of each scan at location 698 of the nickel dataset visualized

with confidence regions based on the mean (red) and median (aqua).

function that maps all 3× 3 matrices into SO(3) exists (w.p. 1) then the continuous mapping

theorem will give the L1 estimator over for SO(3) is
√
n-consistent for the central orientation.

Proof of Proposition 4.1.

Define the matrix Mn ∈ R3×3 such that Mn = arg minS∈M(3)

∑n
i=1 ‖Ri−S‖F . Let An denote

the set on which Mn is focal, then by Theorem 3.2 of Bhattacharya and Patrangenaru (2003)

P (An) → 0 as n → ∞. Further, the UARS distributions are directionally symmetric hence

Mn is
√
n-consistent for E(R1) = bS where b = 1

3 [1 + 2E(cos r)] (see Brown 1983; Small 1990).

Let G : R3×3 → SO(3) be the projection operator from the ambient space R3×3 into SO(3)

as described in e.g. Moakher (2002) and note that G is a continuous function on Acn where

P (Acn) → 1 as n → ∞. Therefore, by the continuous mapping theorem, S̃n = G(Mn)
p→

G(bS) = S as n→∞, i.e. S̃n is
√
n-consistent for S.

To prove Proposition 4.2, we use the following steps.

1. Rewrite the loss function ρ1(h,Ri) as a linear function in h.

2. Find the form of the derivative of the loss function with respect to h, ψ1(Ri,h) =

∂ρ1(Ri,h)/∂h.

3. Show the derivative function ψ1(Ri,h) has a finite second moment for all h.
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4. Show the expectation of the derivative Ψ1(h) = E[ψ1(Ri,h)] is zero if and only if it is

evaluated at the true central orientation h0.

5. Finally show the derivative of the expectation Ψ′1(h0) exists and is non-zero ‖Ψ′1(h0)‖F 6=

0.

Proof of Proposition 4.2.

Without loss of generality assume the central orientation is the identity S = I3×3 with cor-

responding vector h0 = 03 satisfying exp[Φ(h0)] = S = I3×3 . Define the L1 estimator of

the central orientation S̃n = arg minS∈SO(3)

∑n
i=1 ‖Ri−S‖F with the corresponding vector h̃n

satisfying exp[Φ(h̃n)] = S̃n.

Define the loss function ρ1(Ri,h) = ‖Ri − exp[Φ(h)]‖F , which can be written

ρ1(Ri,h) = ‖Ri − exp[Φ(h)]‖F

=
{

6− 2tr(R>i exp[Φ(h)])
}1/2

= {6− 2fi(h)}1/2

where

fi(h) = tr
[
exp (Φ[h])>Ri

]
= tr [exp (Φ[−h])Ri]

= 1 + 2 cos ri + 2(sin ri)(h
>ui)

∞∑
k=0

(−1)k(h>h)k

(2k + 1)!

+
[
(h>h)(1 + cos ri)− (1− cos ri)(h

>ui)
2
] ∞∑
k=1

(−1)k(h>h)k−1

(2k)!
(4.15)

for all h and is continuously differentiable in h.

The derivative of the loss function with respect to the vector h, ψ1(Ri,h) = ∂ρ1(Ri,h)/∂h
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(Step 2):

∂

∂hj
ρ1(Ri,h) =

∂

∂hj
{6− 2fi(h)}1/2

=
1

2 {6− 2fi(h)}1/2

[
−2

∂

∂hj
fi(h)

]
=

−1

{6− 2fi(h)}1/2
[
2uij sin ri + (1− cos ri)(h

>ui)uij

−(1 + cos ri)hj +R∗ij
]

(4.16)

where

R∗ij = (2 sin ri)

[
uij

∞∑
k=1

(−1)k(h>h)k

(2k + 1)!
+ 2hj(h

>ui)
∞∑
k=1

(−1)kk(h>h)k−1

(2k + 1)!

]

+

[{
(1 + cos ri)2hj − (1− cos ri)(h

>ui)2uij

} ∞∑
k=2

(−1)k(h>h)k−1

(2k)!

]

+

[{
(h>h)(1 + cos ri)

}
2hj

∞∑
k=2

(−1)k(k − 1)(h>h)k−2

(2k)!

]

−

[{
(1− cos ri)(h

>ui)
2
}

2hj

∞∑
k=2

(−1)k(k − 1)(h>h)k−2

(2k)!

]
. (4.17)

We know S̃n → I3×3 = S a.s. P and h̃n → 03 a.s. P (by SLLN) so h̃n
p−→ h0 = 03. Let An

be the event “‖h̃n‖ < 1/4” and note P (An)→ 1 as n→∞. Let B(1/4) ≡ {h ∈ R3 : ‖h‖ ≤ 1/4

denote the closed ball then |Rij | < c‖h‖2 uniformly for h ∈ B(1/4) for some c ∈ (0,∞),

j = 1, 2, 3. It follows that for all i and j, |R∗ij | = 0 when h = h0. Next

ψ1(Ri,h) =
∂

∂h
ρ1(Ri,h)

=
−1

{6− 2fi(h)}1/2
[
2 sin riui + (1− cos ri)uiui

>h− (1 + cos ri)h+R∗i

]
=

−1

{6− 2fi(h)}1/2
[2 sin riui +Cih+R∗i ]

=
1

{6− 2fi(h)}1/2
[Cih− 2 sin riui −R∗i ] (4.18)

where

Ci = (1 + cos ri)I3×3 − (1− cos ri)uiui
>

and

E (Ci) = E
[
(1 + cos ri) I3×3 − (1− cos ri)uiui

>
]

=
2

3
[1 + 2E cos(r)]I3×3
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because ri is independent of ui and ui is distributed uniformly on the R3-sphere and therefore

E(uiui
>) = I3×3/3.

Next we show the second moment of the derivative E‖ψ1(Ri,h)‖2F is finite and continuous

in h (Step 3).

E‖ψ1(Ri,h)‖2F = E

∥∥∥∥∥Cih− 2 sin(ri)ui −R∗i
{6− 2fi(h)}1/2

∥∥∥∥∥
2

F

= E

[
‖Cih− 2 sin(ri)ui −R∗i ‖2F

6− 2fi(h)

]
= E

[
h>CiCih− 4 sin(ri)ui

>Cih+ 4 sin2(ri) +R∗∗i
6− 2fi(h)

]
(4.19)

where

R∗∗i = R∗>i R
∗
i + 4 sin(ri)ui

>R∗i − 2h>CiR
∗
i .

To evaluate (4.19) at h0 recall tr(R>i ) = tr(Ri) = 1 + 2 cos ri then

6− 2fi (h0) = 6− 2tr
(
R>I3×3

)
= 6− 2(1 + 2 cos ri) = 4(1− cos ri). (4.20)

Further R∗i = 03 when h = h0 which implies R∗∗i = 03 when h = h0. Thus

E‖ψ1(Ri,h0)‖2F = E

[
sin2(ri)

1− cos(ri)

]
= E [1 + cos (ri)] .

It follows (4.19) is finite for h in a neighborhood of h0 with probability 1 because the numerator

is bounded and P (exp[Φ(h)] = Ri) = 0 for all i. Further E‖ψ1(Ri,h0)‖2F = E[1+cos(ri)] which

is well defined and therefore not a discontinuity.

Moving to Step 4, we verify the expected value of (4.18), denoted Ψ1(h) = E[ψ1(Ri,h)]

has norm zero if and only if h = h0, i.e. ‖Ψ1(h)‖ = 0 if and only if it is evaluated at the true

central orientation h = 03. Taking expectation of (4.18):

Ψ1(h) = E[ψ1(Ri,h)]

= E

[
Cih− 2 sin(ri)ui −R∗i

[6− 2fi(h)]1/2

]

= E

[
Ci

[6− 2fi(h)]1/2

]
h− E

[
2 sin(ri)ui +R∗i

[6− 2fi(h)]1/2

]
. (4.21)
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From (4.20), evaluating (4.21) at the true central orientation h0 = 03 gives

Ψ1(h0) = −E

[
2 sin(ri)

[6− 2fi(h0)]1/2
ui

]
= −E

[
sin(ri)√

1− cos(ri)
ui

]
= 03 (4.22)

because ri is distributed symmetrically about 0 on the interval [−π, π) and sin(ri)/
√

1− cos(ri)

is an odd function. To show the converse recall E sin(r) = 0 and E(Ci) = 2[1+2E cos(r)]I3×3/3.

Assume Ψ1(h) = 03 then∥∥∥∥∥E

[
Cih− 2 sin(ri)ui −R∗i

[6− 2fi(h)]1/2

]∥∥∥∥∥ = 0

=⇒ ‖E[Cih− 2 sin(ri)ui −R∗i ]‖ = 0

=⇒ ‖E(Ci)h− E(R∗i )‖ = 0

=⇒ h>E(Ci)
>E(Ci)h− 2E(R∗i )

>E(Ci)h+ E(R∗i )
>E(R∗i ) = 0

=⇒ 4

9
[1 + 2E cos(r)]2 h>h− 4

3
[1 + 2E cos(r)] E(R∗i )

>h+ E(R∗i )
>E(R∗i ) = 0

=⇒ 4

3
[1 + 2E cos(r)]

{
1

3
[1 + 2E cos(r)]h> − E(R∗i )

>
}
h+ E(R∗i )

>E(R∗i ) = 0 (4.23)

It can be shown that

E(R∗i ) =
4

3
[1 + 2E cos(r)]

[ ∞∑
k=2

(−1)k(h>h)k−1

(2k)!
+ ‖h‖2

∞∑
k=2

(−1)k(k − 1)(h>h)k−1

(2k)!

]
h.

Since r is symmetric about zero, E cos(r) > 0 and therefore E(R∗i )
>E(R∗i ) = 0 if and only if

h = 03. It follows that (4.23) implies h = 03. Putting this together with (4.22) gives that

‖Ψ′1(h)‖ = 0 if and only if h = h0.

Finally we show the derivative of the expectation Ψ′1(h0) exists and is non-zero ‖Ψ′1(h0)‖ 6=

0 (Step 5). Notice that the derivative of the loss function ψ1(Ri,h) is continuous and bounded

in h, therefore derivative and expectation interchange. That is,

Ψ′1(h0) =
∂

∂h
E[−ψ1(Ri,h)]

∣∣∣∣
h=h0

= E

[
− ∂

∂h
ψ1(Ri,h)

∣∣∣∣
h=h0

]
. (4.24)
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First we find the derivative inside the expectation,

∂

∂h
ψ1(Ri,h)

∣∣∣∣
h=h0

=
∂2

∂h∂h>
ρ1(Ri,h)

∣∣∣∣
h=h0

=
∂

∂h

[
Cih

> − 2 sin(ri)ui
> −R∗>i

[6− 2fi(h)]1/2

]∣∣∣∣∣
h=h0

(from (4.18))

=
1

[6− 2fi(h)]

{
[6− 2fi(h)]1/2

[
Ci −

∂

∂h
R∗>i

]
+

∂
∂hfi(h)

[6− 2fi (h)]1/2

[
Cih

> − 2 sin riui
> −R∗>i

]}∣∣∣∣∣
h=h0

=
Ci − ∂

∂hR
∗>
i

∣∣
h=h0

[6− 2fi (h0)]1/2
+

[
∂
∂hfi(h0)

] [
−2 sin riui

>]
[6− 2fi (h0)]3/2

=
1

2
√

1− cos ri
Ci +

[−2 sin riui]
[
−2 sin riui

>]
8 [1− cos ri]

3/2
(from (4.18))

=
1

2
√

1− cos ri
Ci +

sin2 ri

2 [1− cos ri]
3/2
uiui

>.

From (4.17), ∂R∗ij/∂hj′ will contain at least one element of h for all j′ = 1, 2, 3, therefore

∂R∗>i /∂h = 03×3 when evaluated at h = h0 . Now taking the expectation,

Ψ′1(h0) = E

[
− ∂

∂h
ψ1(Ri,h)

∣∣∣∣
h=h0

]

= E

[
1 + 2 cos(ri)− 3 cos2(ri)

6[1− cos(ri)]3/2

]
I3×3

= E

[
1 + 3 cos(ri)

6
√

1− cos(ri)

]
I3×3

= 2a2I3×3 (4.25)

where a2 = E
{

[1 + 3 cos(r)] /12
√

1− cos(r)
}

. The assumption Ri 6= S̃n for all i guarantees

cos(ri) 6= 1 which guarantees d is well defined. Therefore, Ψ′1(h0) exists and ‖Ψ′1(h0)‖2F =

2a2

√
3I3×3 6= 0.

Therefore all the conditions necessary for
√
n h̃n to be asymptotically normal have been sat-
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isfied. Next we derive the asymptotic variance of
√
n h̃n. First we must derive Var[ψ1(Ri,h0)]:

ψ1(Ri,h0)ψ1(Ri,h0)> =
sin2(ri)

1− cos(ri)
uiui

>

=⇒ Var[ψ1(Ri,h0)] = E[ψ1(Ri,h0)ψ1(Ri,h0)>]− 030
>
3

=
1

3
E

[
sin2(ri)

1− cos(ri)

]
I3×3

=
1

3
E[1 + cos(ri)]I3×3

= 2a1I3×3 (4.26)

where a1 = E[1+cos(r)]/6. By the multivariate i.i.d. version of Theorem 5.13 from Shao (2003)

on page 367

√
n h̃n

L−→MVN3 (0,Σ) .

where

Σ = [Ψ′1(h0)]−1Var[ψ1(Ri,h)][Ψ′1(h0)]−1

= (2a2I3×3)−1(2a1I3×3)(2a2I3×3)−1

=
a1

2a2
2

I3×3.

Proof of Proposition 4.4.

Without loss of generality assume the central orientation S = I3×3. In the Proof of Proposition

4.2 it was established that S̃n is an M -estimator, therefore according to Hampel et al. (2011),

page 230, it has influence function

IF1(Ri, F ) = [Ψ′1(h0)]−1 [ψ1(Ri,h0)]

where Ψ′1(h0) = ∂
∂hE[ψ1(Ri,h)]

∣∣
h=h0

. From (4.18),

ψ1(Ri,h) =
2 sin(ri)Ui − {[1− cos(ri)]UiU

>
i − [1 + cos(ri)]I3×3}h−R∗i

‖Ri − exp[Φ(h)]‖

=⇒ ψ1(Ri,h0) =
2 sin(ri)

‖Ri − I3×3‖
ui

=
sin(ri)√

1− cos(ri)
ui.
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From (4.25), Ψ′1(h0) = 2a2I3×3 where a2 = E
{

[1 + 3 cos(r)] /
[
12
√

1− cos(r)
]}

.

Putting it together

IF1(Ri, F ) =
sin(ri)

2a2

√
1− cos(ri)

ui.

By assumption, ri is distributed symmetrically about 0 on the interval [−π, π) independent of

ui which is distributed uniformly on the unit sphere. Therefore E[sin(r)/
√

1− cos(r)] = 0,

which implies E[IF1(Ri, F )] = 0. Recall E(uiui
>) = I3×3/3, therefore

E[IF1(Ri, F )IF1(Ri, F )>] = E

{
sin2(r)

4a2
2[1− cos(r)]

uiui
>
}

=
1

12a2
2

E

[
sin2(r)

1− cos(r)

]
I3×3

=
1

12a2
2

E [1 + cos(r)] I3×3

=
a1

2a2
2

I3×3

where a1 = E[1 + cos(r)]/6.

Proof of Theorem 4.3.

From Propositions 4.1 and 4.4, S̃n is an M -estimators with a continuous and bounded influence

function. By Theorem 5.7 of Shao (2003), it follows that S̃n is %∞-Hadamard differentiable

(see page 347). Further, the influence function of S̃n has a zero first and finite second moment.

Therefore by Theorem 5.20 of Shao (2003) %∞(Fboot, Fn)
p→ 0 as n → ∞ (see page 383) and

the result follows.

Additional Results

Tables 4.3 and 4.4 are numerical summaries for the simulation study. The coverage rates

of the theoretical and bootstrap regions based on the mean and median are in Table 4.3 and

the region sizes are in Table 4.4.
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Table 4.3: Coverage rates for the normal theory and bootstrap confidence regions based on the

mean and median. The nominal coverage rate is 90%.

Theory Bootstrap

Distribution n ε Mean Median Mean Median

0.0 0.841 0.723 0.920 0.983

10 0.1 0.863 0.710 0.939 0.991

0.2 0.722 0.671 0.910 0.996

0.0 0.886 0.866 0.897 0.931

Cayley 50 0.1 0.551 0.814 0.601 0.905

0.2 0.027 0.575 0.062 0.758

0.0 0.895 0.881 0.899 0.914

100 0.1 0.210 0.757 0.242 0.814

0.2 0.000 0.326 0.000 0.430

0.0 0.844 0.740 0.919 0.983

10 0.1 0.912 0.725 0.997 0.992

0.2 0.667 0.687 0.991 0.997

matrix- 0.0 0.886 0.866 0.896 0.925

Fisher 50 0.1 0.162 0.810 0.310 0.898

0.2 0.000 0.582 0.000 0.746

0.0 0.897 0.889 0.899 0.917

100 0.1 0.003 0.752 0.009 0.808

0.2 0.000 0.319 0.000 0.398
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Table 4.4: Confidence region size for the normal theory and bootstrap confidence regions based

on the mean and median.

Theory Bootstrap

Distribution n ε Mean Median Mean Median

10 0.0 0.233 0.234 0.271 3.937

10 0.1 0.289 0.247 0.338 6.286

10 0.2 0.350 0.268 0.445 9.868

50 0.0 0.109 0.119 0.112 0.137

Cayley 50 0.1 0.134 0.128 0.140 0.151

50 0.2 0.161 0.141 0.177 0.171

100 0.0 0.078 0.085 0.079 0.091

100 0.1 0.095 0.092 0.098 0.099

100 0.2 0.114 0.101 0.124 0.111

10 0.0 0.119 0.119 0.138 0.922

10 0.1 0.203 0.128 0.291 1.486

10 0.2 0.280 0.138 0.486 2.419

matrix- 50 0.0 0.056 0.060 0.057 0.068

Fisher 50 0.1 0.092 0.065 0.104 0.075

50 0.2 0.127 0.072 0.152 0.085

100 0.0 0.040 0.043 0.040 0.046

100 0.1 0.065 0.047 0.072 0.050

100 0.2 0.090 0.051 0.105 0.056
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CHAPTER 5. ROTATIONS: AN R PACKAGE FOR SO(3) DATA

A paper accepted by The R Journal

Bryan Stanfill, Heike Hofmann, Ulrike Genschel

Abstract

In this article we introduce the rotations package which provides users with the ability to

simulate, analyze and visualize three-dimensional rotation data. More specifically it includes

four commonly used distributions from which to simulate data, four estimators of the central

orientation, six confidence region estimation procedures and two approaches to visualizing

rotation data. All of these features are available for two different parameterizations of rotations:

three-by-three matrices and quaternions. In addition, two datasets are included that illustrate

the use of rotation data in practice.

5.1 Introduction

Data in the form of three-dimensional rotations have applications in many scientific areas,

such as bio-medical engineering, computer vision, and geological and materials sciences where

such data represent the positions of objects within a three-dimensional reference frame. For

example, Humbert et al. (1996), Bingham et al. (2009) and Bachmann et al. (2010) apply

rotation data to study the orientation of cubic crystals on the surfaces of metal. Rancourt

et al. (2000) use rotations to represent variations in human movement while performing a task.

A common goal shared in the analysis of rotation data across all fields is to estimate the

main or central orientation for a sample of rotations. More formally, let SO(3) denote the

rotation group, which consists of all real-valued 3 × 3 matrices R with determinant equal to

+1. Then observations R1, . . . ,Rn ∈ SO(3) can be conceptualized as a random sample from a
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location model

Ri = SEi, i = 1, . . . , n, (5.1)

where S ∈ SO(3) is the fixed parameter of interest indicating the central orientation, and

E1, . . . ,En ∈ SO(3) denote i.i.d. random rotations which symmetrically perturb S. Model

(5.1) is a rotation-matrix analog of a location model for scalar data Yi = µ + ei, where µ ∈ R

denotes a mean and ei ∈ R denotes an additive error symmetrically distributed around zero.

Assuming the perturbations Ei symmetrically perturb S implies that the observations Ri

have no preferred direction relative to S and that E (Ri) = cS for some c ∈ R+ for all i. Also

note that under the symmetry assumption, (5.1) could be equivalently specified as Ri = EiS,

though the form given in (5.1) is the most common form in the literature (see Bingham et al.

2009 for details).

While there is a multitude of packages and functions available in R to estimate the mean

in a location model, the toolbox for rotational data is limited. The orientlib (Murdoch, 2003)

package includes the definition of an orientation class along with a few methods to summarize

and visualize rotation data. A strength of the orientlib package is its thorough exploration of

rotation representations, but the estimation and visualization techniques are lacking and no

methods for inference are available. The onion (Hankin, 2011) package includes functions for

rotation algebra but only the quaternion form is available and data analysis is not possible.

The uarsbayes (Qiu, 2013) package includes functions for data generation and Bayes inference

but this package is currently not publicly available. Packages for circular and spherical data,

e.g. circular (Agostinelli and Lund, 2013) and SpherWave (Oh and Kim, 2013), can possibly

be used but their extension to rotation data is not straightforward.

The rotations (Stanfill et al., 2014a) package fills this void by providing users with the tools

necessary to simulate rotations from (5.1) with four distribution choices for the perturbation

matrices Ei. Estimation and inference for S in (5.1) is available along with two visualization

techniques. The remainder of this manuscript introduces rotation data more fully and discusses

the ways they are handled by the rotations package. For the latest on this package as well as

a full list of available functions, see help(package = "rotations").

http://CRAN.R-project.org/package=orientlib
http://CRAN.R-project.org/package=onion
http://CRAN.R-project.org/package=circular
http://CRAN.R-project.org/package=SpherWave
http://CRAN.R-project.org/package=rotations
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5.2 Rotation Parameterizations

Several parameterizations of rotations exist. We consider two of the most commonly used:

orthogonal 3×3 matrices with determinant one and four-dimensional unit vectors called quater-

nions. The rotations package allows for both parameterizations as input as well as transforming

one into the other. We will briefly discuss each:

5.2.1 Matrix Form

Rotations in three-dimensions can be represented by 3×3 orthogonal matrices with determi-

nant one. Matrices with these characteristics form a group called the special orthogonal group,

or rotation group, denoted SO(3). Every element in SO(3) is associated with a skew-symmetric

matrix Φ (W ) where

Φ (W ) =


0 −w3 w2

w3 0 −w1

−w2 w1 0


and W ∈ R3. Applying the exponential operator to the matrix Φ (W ) results in the rotation

R

R = exp [Φ (W )] =
∞∑
k=0

[Φ (W )]k

k!
. (5.2)

Since Φ (W ) is skew-symmetric, it can be shown that (5.2) reduces to

R = cos(r)I3×3 + sin(r)Φ (U) + [1− cos(r)]UU>, (5.3)

where r = ‖W ‖, U = W /‖W ‖. In the material sciences literature r and U ∈ R3 are termed

the misorientation angle and misorientation axis, respectively.

Given a rotation matrix R one can find the associated skew-symmetric matrix Φ (W ) by

applying the logarithm operator defined by

Log (R) =


0 if θ = 0

r
2 sin r

(
R−R>

)
otherwise,

(5.4)

where r ∈ [−π, π) satisfies tr (R) = 1+2 cos r and tr(·) denotes the trace of a matrix. For more

on the correspondence between SO(3) and skew-symmetric matrices see Stanfill et al. (2013).
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The rotations package defines the S3 class "SO3", which internally stores a sample of n

rotations as a n× 9 matrix. If n = 1 then an object of class "SO3" is printed as a 3× 3 matrix

but for n > 1 the n× 9 matrix is printed. Objects can be coerced into, or tested for the class

"SO3" with the as.SO3 and is.SO3 functions, respectively. Any object passed to is.SO3 is

tested for three characteristics: dimensionality, orthogonality and determinant one.

The as.SO3 function coerces the input into the class "SO3". There are three types of input

supported by the as.SO3 function. Given a singe angle r and axis U , as.SO3 will form a

rotation matrix according to (5.3). Equivalently one could supply a three-dimensional vector

W , then the length of that vector will be taken to be the angle of rotation r = ‖W ‖ and the

axis is taken to be the unit-vector in the direction of W , i.e. U = W /‖W ‖. One can also

supply a rotation Q in the quaternion representation. The as.SO3 function will return the

matrix equivalent of Q. For all input types the function as.SO3 returns an n × 9 matrix of

class "SO3" where each row corresponds to a rotation matrix. Below we illustrate the use of

the as.SO3 function by constructing the 3× 3 matrix associated with a 90◦ rotation about the

y-axis, i.e. r = π/2 and U = (0, 1, 0). In this example and all that follow, we have rounded the

output to three digits for compactness.

> r <- pi/2

> U <- c(0, 1, 0)

> W <- U * r

> R <- as.SO3(W)

> R

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 1 0

[3,] -1 0 0

> identical(R, as.SO3(U, r))

[1] TRUE

Given a rotation matrix R, the functions mis.angle and mis.axis will determine the
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misorientation angle and axis of an object with class "SO3" as illustrated in the next example.

> mis.angle(R) * 2/pi

[1] 1

> mis.axis(R)

[,1] [,2] [,3]

[1,] 0 1 0

5.2.2 Quaternion Form

Quaternions are unit vectors in R4 that are commonly written as

Q = x1 + x2i+ x3j + x4k, (5.5)

where xl ∈ [−1, 1] for l = 1, 2, 3, 4 and i2 = j2 = k2 = ijk = −1. We can write Q = (s,V ) as

tuple of the scalar s for coefficient 1 and vector V for the remaining coefficients, i.e. s = x1

and V = (x2, x3, x4).

A rotation around axis U by angle r translates to Q = (s,V ) with

s = cos (r/2), V = U sin (r/2).

Note that rotations in quaternion form are over-parametrized: Q and −Q represent equivalent

rotations. This ambiguity has no impact on the distributional models, parameter estimation

or inference methods to follow. Hence, for consistency, the rotations package only generates

quaternions satisfying x1 ≥ 0. Data provided by the user does not need to satisfy this condition

however.

The S3 class "Q4" is defined for the quaternion representation of rotations. All the func-

tionality of the "SO3" class also exists for the "Q4" class, e.g. is.Q4 and as.Q4 will test for

and coerce to class "Q4", respectively. Internally, a sample of n quaternions is stored in the

form of a n × 4 matrix with each row a unit vector. Single quaternions are printed according

to the representation in (5.5) (see example below) while a sample of size n is printed as a n× 4

matrix with column names Real, i, j and k to distinguish between the four components.
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The following code creates the same rotation from the previous section in the form of a

quaternion with the as.Q4 function. This function works much the same way as the as.SO3

function in terms of possible inputs but returns a vector of length four of the class "Q4".

> as.Q4(U, r)

0.707 + 0 * i + 0.707 * j + 0 * k

> as.Q4(as.SO3(U, r))

0.707 + 0 * i + 0.707 * j + 0 * k

5.3 Data Generation

If the rotation Ei ∈ SO(3) from (5.1) has an axis U that is uniformly distributed on the

unit sphere and an angle r that is independently distributed about zero according to some

symmetric distribution function then Ei is said to belong to the uniform-axis random spin, or

UARS, class of distributions. From Bingham et al. (2009) the density for Ei is given by

f (Ei|κ) =
4π

3− tr (Ei)
C

(
acos

{
tr(Ei)− 1

2

}∣∣∣∣κ) , (5.6)

where C(·|κ) is the distribution function associated with the angle of rotation r with concen-

tration parameter κ. Members of the UARS family of distributions are differentiated based on

the angular distribution C(·|κ).

The rotations package gives the user access to four members of the UARS class. Each

member is differentiated by the distribution function for r: the uniform, the matrix Fisher

(Langevin, 1905; Downs, 1972; Khatri and Mardia, 1977; Jupp and Mardia, 1979), the Cayley

(Schaeben, 1997; León et al., 2006) and the circular-von Mises distribution (Bingham et al.,

2009). Note: probability distribution functions on SO(3) such as (5.6) are defined with respect

to the Haar measure, which we denote by λ. That is, the expectation of a random rotation

R ∈ SO(3) with corresponding misorientation angle r is given by E (R) =
∫

ΩRf (R|κ) dλ

where Ω = SO(3), dλ = [1 − cos(r)]dr/(2π) and dr is the derivative of r with respect to the

Lebesgue measure. Because the Haar measure acts as the uniform measure on SO(3) and

λ (Ω) = 1, then the angular distribution C(r) = [1− cos(r)]/(2π) is referred to as the uniform
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distribution for misorientation angles r and has been included in the rotations package under

the name .haar (see Table 5.1).

The spread of the Cayley, matrix Fisher and circular-von Mises distributions is controlled

by the concentration parameter κ. Concentration is a distribution specific quantity and is not

comparable across different distributions. To make comparisons across distributions possible

we also allow for specification of the circular variance, which is defined as ν = 1 − E[cos(r)]

where E[cos(r)] is often referred to as the mean resultant length (Fisher, 1996). The form of

each angular distribution along with the circular variance as a function of the concentration

parameter is given in Table 5.1.

Table 5.1: Circular densities and circular variance ν; Ii(·) represents the modified Bessel func-

tion of order i and Γ(·) is the gamma function.

Name Density C(r|κ) Circular variance ν Function

Uniform 1−cos(r)
2π

3
2 .haar

Cayley Γ(κ+2)(1+cos r)κ(1−cos r)
2(κ+1)

√
πΓ(κ+1/2)

3
κ+2 .cayley

matrix Fisher [1−cos(r)] exp[2κ cos(r)]
2π[I0(2κ)−I1(2κ)]

3I0(2κ)−4I1(2κ)+I2(2κ)
2[I0(2κ)−I1(2κ)] .fisher

circular-von Mises exp[κ cos(r)]
2πI0(κ)

I0(κ)−I1(κ)
I0(κ) .vmises

For a given concentration d, p and r take the same meaning as for the more familiar distribu-

tions such as dnorm. To simulate a sample of SO(3) data, the ruars function takes arguments

n, rangle, and kappa to specify the sample size, angular distribution and concentration as

shown below. Alternatively, one can specify the circular variance ν. Circular variance is used

in the event that both circular variance and concentration are provided. The space argument

determines the parameterization to form. When a sample of rotations is printed then a n× 9

matrix is printed with column titles that specify which element of the matrix each column cor-

responds to. For example, the R{1,1} element of a rotation matrix is printed under the column

heading R11 as illustrated below.

> Rs <- ruars(n = 20, rangle = rcayley, kappa = 1, space = "SO3")

> Qs <- ruars(n = 20, rangle = rcayley, kappa = 1, space = "Q4")
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> Rs <- ruars(n = 20, rangle = rcayley, nu = 1, space = "SO3")

> Qs <- ruars(n = 20, rangle = rcayley, nu = 1, space = "Q4")

> head(Rs, 3)

R11 R21 R31 R12 R22 R32 R13 R23 R33

[1,] -0.425 -0.850 0.310 0.475 -0.501 -0.723 0.770 -0.160 0.617

[2,] -0.564 -0.733 0.379 0.745 -0.256 0.615 -0.354 0.630 0.691

[3,] 0.087 -0.716 0.692 0.117 0.698 0.707 -0.989 0.019 0.145

5.4 Data Analysis

In this section we present functions in the rotations package to compute point estimates

and confidence regions for the central orientation S.

5.4.1 Estimation of Central Orientation

Given a sample of n observations R1, . . . ,Rn generated according to (5.1), the rotations

package offers four built-in ways to estimate the central orientation S. These estimators are

either Riemannian- or Euclidean-based in geometry and use either the L1- or L2- norm, i.e. they

are median- or mean-type. We briefly discuss how the choice of geometry affects estimation of

S.

The choice of geometry results in two different metrics to measure the distance between

rotation matrices R1 and R2 ∈ SO(3). The Euclidean distance, dE , between two rotations is

defined by

dE (R1,R2) = ‖R1 −R2‖F ,

where ‖A‖F =
√

tr(A>A) denotes the Frobenius norm. The Euclidean distance between two

rotation matrices corresponds to the length of the shortest path in R3×3 that connects them

and is therefore an extrinsic distance metric.

Estimators based on the Euclidean distance form the class of projected estimators. The

name is derived from the method used to compute these estimators. That is, each estimator

in this class is the projection of the the generic 3 × 3 matrix that minimizes the loss function
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into SO(3). For an object with class "SO3" the median or mean function with argument type

= "projected" will return a 3 × 3 matrix in SO(3) that minimizes the first- or second-order

loss function, respectively.

By staying in the Riemannian space SO(3) the natural distance metric becomes the Rie-

mannian (or geodesic) distance, dR, which for two rotations R1,R2 ∈ SO(3) is defined as

dR (R1,R2) =
1√
2

∥∥∥Log
(
R>1 R2

)∥∥∥
F

= |r|,

where Log(R) denotes the logarithm of R defined in (5.4) and r ∈ [−π, π) is the misorientation

angle of R>1 R2. The Riemannian distance corresponds to the length of the shortest path that

connects R1 and R2 within the space SO(3) and is therefore an intrinsic distance metric. For

this reason, the Riemannian distance is often considered the more natural metric on SO(3).

As demonstrated in Stanfill et al. (2013), the Euclidean and Riemannian distances are related

by dE(R1,R2) = 2
√

2 sin [dR(R1,R2)/2].

Estimators based on the Riemannian distance metric are called geometric estimators be-

cause they preserve the geometry of SO(3). These can be computed using the mean and median

functions with the argument type = "geometric". Table 5.2 summarizes the four estimators

including their formal definition and how they can be computed.

Table 5.2: A summary of the estimators included in the rotations package. Rs is a sample of n

rotations with class "SO3" or "Q4".

Estimator name Definition Code

Projected Mean Ŝn = arg min
S∈SO(3)

n∑
i=1

d2
E(S,Ri) mean(Rs, type = "projected")

Projected Median S̃n = arg min
S∈SO(3)

n∑
i=1

dE(S,Ri) median(Rs, type = "projected")

Geometric Mean ŜR = arg min
S∈SO(3)

n∑
i=1

d2
R(S,Ri) mean(Rs, type = "geometric")

Geometric Median S̃R = arg min
S∈SO(3)

n∑
i=1

dR(S,Ri) median(Rs, type = "geometric")

The estimators in Table 5.2 find estimates based on minimization of L1- and L2-norms

in the chosen geometry. The function gradient.search provides the option to optimize for
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any other arbitrary minimization criterion. As the name suggests, the minimization is done

along the gradient of the minimization function in the rotation space. Starting from an initial,

user-specified rotation, the algorithm finds a (local) minimum by stepping iteratively in the

direction of the steepest descent. Step size is regulated internally by adjusting for curvature of

the minimization function.

We highlight this process in the example below. The function L1.error is defined to

minimize the intrinsic L1-norm, the result from the optimization should therefore agree with

the geometric median of the sample. In fact, the difference between the two results is at the

same level as the minimal difference (minerr) used for convergence of the gradient search.

What is gained in flexibility of the optimization is, of course, paid for in terms of speed: the

built-in median function is faster by far than the gradient search.

Also illustrated in the example below is the rot.dist function, which computes the distance

between two objects of class "SO3", e.g. R1 and R2. The argument method specifies which type

of distance to compute: the "extrinsic" option will return the Euclidean distance and the

"intrinsic" option will return the Riemannian distance. If R1 is an n×9 matrix representing

a sample of rotations, then rot.dist will return a vector of length n where the ith element

represents the specified distance between R2 and the ith row of R1.

> # error function definition

> L1.error <- function(sample, Shat) {

+ sum(rot.dist(sample, Shat, method = "intrinsic", p = 1))

+ }

> cayley.sample <- ruars(n = 50, rangle = rcayley, nu = 1, space = "SO3")

> # gradient based optimization

> system.time(SL1 <- gradient.search(cayley.sample, L1.error))

user system elapsed

3.464 0.007 3.473

> # in-built function

> system.time(S <- median(cayley.sample, type = "geometric"))
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user system elapsed

0.004 0.000 0.005

> rot.dist(S, SL1$Shat)

[1] 1.492e-05

5.4.2 Confidence Regions

Asymptotic results for the distribution of the projected mean Ŝn and median S̃n can be used

to construct confidence regions for the central orientation S. In the literature two approaches

are available to justify the limiting distribution of the vector in R3 associated with the centered

estimator through (5.2). More specifically, the vector
√
nĥ has been shown to have a trivariate

normal distribution where ĥ ∈ R3 satisfies

exp
[
Φ
(
ĥ
)]

= S>Ŝn.

The first approach transforms a result from directional statistics while the second uses M -

estimation theory in SO(3) directly. A summary of these methods is given next.

In the context of directional statistics, Prentice (1984) used results found in Tyler (1981)

and the fact that Ŝn is a function of the spectral decomposition of R =
∑n

i=1Ri/n in order

to justify a multivariate normal limiting distribution for the scaled vector
√
n ĥ. Unsatisfied

with the coverage rate achieved by Prentice (1986), Fisher et al. (1996) proposed a pivotal

bootstrap procedure that results in coverage rates closer to the nominal level for small samples.

A transformation from unit vectors in Rd to rotation matrices is required in order to apply

the results of Prentice (1984) and Fisher et al. (1996) to SO(3), therefore they are called

transformation-based. The projected median S̃n cannot be expressed as a function of the

sample spectral decomposition, therefore this approach cannot be used to create confidence

regions based on S̃n.

It has also been shown that both estimators Ŝn and S̃n are M -estimators, which motivates a

direct approach to confidence region estimation in SO(3) (Chang and Rivest, 2001). In Stanfill

et al. (2014b), a pivotal bootstrap method based on the direct approach was implemented to

improve coverage rates in small samples. Because the results in Chang and Rivest (2001) and
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Stanfill et al. (2014b) deal with SO(3) data directly, this approach is called direct.

The six possible confidence regions that result from these two methods are available through

the wrapper function region. They are differentiated based on the method, type and estimator

arguments. Set estimator = "mean" or estimator = "median" to estimate a region based

on Ŝn or S̃n, respectively. For Ŝn one can choose method = "transformation" for the

transformation-based methods or method = "direct" for the direct method. Since the transformation-

based methods cannot be applied to S̃n an error is returned if estimator = "median" and

method = "transformation" are combined. A bootstrap version of the specified method is

implemented if type = "bootstrap" or the normal limiting distribution can be chosen with

type = "asymptotic". If a bootstrap type region is specified one can additionally specify the

bootstrap sample size with the m argument, which is set to 300 by default. Regardless of the

method and type chosen a single value is returned on the interval (0, π]. This value corresponds

to the radius of the confidence region centered at each of the axes of the specified estimator.

In the example code below a sample of n = 50 rotations are drawn from the Cayley-

UARS(I3×3, κ = 10) distribution then the four types of confidence regions based on the direct

approach are constructed. For a graphical representation of this dataset along with an inter-

pretation of the confidence regions see Figure 5.1b.

> Rs <- ruars(50, rcayley, kappa = 10)

> region(Rs, method = "direct", type = "asymptotic",

+ estimator = "mean", alp = 0.05)

[1] 0.189

> region(Rs, method = "direct", type = "bootstrap", estimator = "mean",

+ alp = 0.05, m = 300)

[1] 0.201

> region(Rs, method = "direct", type = "asymptotic",

+ estimator = "median", alp = 0.05)

[1] 0.201

> region(Rs, method = "direct", type = "bootstrap", estimator = "median",
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+ alp = 0.05, m = 300)

[1] 0.249

5.5 Visualizations

The rotations package offers two methods to visualize rotation data in three-dimensions.

Because rotation matrices are orthogonal, each column of a rotation matrix has length one

and is perpendicular to the other axes. Therefore each column of a rotation matrix can be

illustrated as a point on the surface of a unit sphere, which represents the position of the x-,

y- or z-axis for that rotation matrix. Since each sphere represents one of the three axes, three

spheres are required to fully visualize a sample of rotations. Though the use of separate spheres

to represent each axis can be seen as a disadvantage, the proposed visualization method makes

the idea of a central orientation and a confidence region interpretable.

An existing function that can be used to illustrate rotation data is the boat3d function

included in the orientlib package. Given a sample of rotations, the boat3d function produces

either a static or interactive three-dimensional boat to represent the provided data. If only

one rotation is of interest, the boat3d function is superior to the proposed method because it

conveniently illustrates rotational data in a single image. If multiple rotations are provided,

however, the boat3d function will produce separate side-by-side boats, which can be hard to

interpret. In addition, the illustration of a estimated central orientation or a confidence region

in SO(3) with the boat3d function is not presently possible.

The rotations package can be used to produce high-quality static plots within the framework

of the ggplot2 package (Wickham, 2009). Static plots are specifically designed for datasets

that are highly concentrated and for use in presentations or publications. Alternatively, the

rotations package can produce interactive plots using functions included in the sphereplot

package (Robotham, 2013). Interactive plots are designed so that the user can explore a

dataset and visualize a diffuse sample.

Calling the plot function with a "SO3" or "Q4" object will result in an interactive or static

sphere, differentiated by setting the argument interactive to TRUE or FALSE, respectively.

The center argument defines the center of the plot and is usually set to the identity rotation

http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=sphereplot
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id.SO3 or an estimate of the central orientation, e.g. mean(Rs). The user can specify which

columns to visualize with the col argument with options 1, 2 and 3 representing the x-, y-

and z- axes, respectively. For static plots, multiple axes can be displayed simultaneously by

supplying a vector to col; only one column will be displayed at a time for interactive plots.

Also available to static plots is the argument to range, which when set to TRUE will display

the portion of the sphere where the observations are present.

All four estimates of the central orientation can be plotted along with a sample of rota-

tions. Setting the argument estimates show = "all" will display all four simultaneously. If

only a few estimates are of interest then any combination of "proj.mean", "proj.median",

"geom.mean" or "geom.median" are valid inputs. The estimators are indicated by color and

a legend is provided, see Figure 5.1a. Finally, the mean regions and median regions options

allow the user to draw a circle on the surface of the sphere representing the confidence region

for that axis, centered at Ŝn and S̃n respectively. If estimators are plotted along with the

different regions in static plots then shapes represent the estimators and colors represent the

region methods, see Figure 5.1b, while regions and estimators are always distinguished by col-

ors for the interactive plots. Given the sample of rotations generated in a previous example,

the example below illustrates how to produce static plots using the plot function for objects

of class "SO3" and Figure 5.2 illustrates the results of these commands.

> plot(Rs, center = mean(Rs), col = 1, show_estimates = "all",

+ interactive = FALSE)

> plot(Rs, center = mean(Rs), col = 1, show_estimates = "proj.mean",

+ mean_regions = "all", alp = .05, interactive = FALSE)

5.6 Datasets

Datasets drill and nickel are included in the rotations package to illustrate how the two

representations of orientation data discussed here are used in practice. The drill dataset was

collected to assess variation in human movement while performing a task (Rancourt, 1995).

Eight subjects drilled into a metal plate while being monitored by infrared cameras. Quater-
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(a) Point estimates
(b) Confidence region estimates

Figure 5.2: The x-axis of a random sample from the Cayley-UARS distribution with κ = 1,

n = 50. All for point estimates are displayed in (a) and all three region methods along with

the projected mean are in (b).

nions are used to represent the orientation of each subjects’ wrist, elbow and shoulder in one

of six positions. For some subjects several replicates are available. See Rancourt et al. (2000)

for one approach to analyzing these data. In the example below we load the drill dataset,

coerce the observations for subject one’s wrist into a form usable by the rotations package via

as.Q4, then estimate the central orientation with the projected mean.

> data(drill)

> head(drill)

Subject Joint Position Replicate Q1 Q2 Q3 Q4

1 1 Wrist 1 1 0.944 -0.192 -0.156 0.217

2 1 Wrist 1 2 0.974 -0.120 -0.111 0.158

3 1 Wrist 1 3 0.965 -0.133 -0.141 0.177

4 1 Wrist 1 4 0.956 -0.134 -0.115 0.233

5 1 Wrist 1 5 0.953 -0.199 -0.061 0.222

6 1 Wrist 2 1 0.963 -0.159 -0.127 0.177

> Subj1Wrist<-subset(drill, Subject == ’1’ & Joint == ’Wrist’)

> Subj1Wdata <- as.Q4(Subj1Wrist[, 5:8])

> mean(Subj1Wdata)
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0.987 - 0.070 * i - 0.134 * j + 0.049 * k

In the nickel dataset, rotation matrices are used to represent the orientation of cubic

crystals on the surface of a nickel sample measured with Electron Backscatter Diffraction.

Each location on the surface of the nickel is identified by the xpos and ypos columns while

the rep column identifies which of the fourteen replicate scans that measurement corresponds

to. The last nine columns, denoted v1-v9, represent the elements of the rotation matrix at that

location in vector form. See Bingham et al. (2009, 2010a) and Stanfill et al. (2013) for more

details. In the example below we estimate the central orientation at location one.

> data(nickel)

> head(nickel[, 1:6])

xpos ypos location rep V1 V2

1 0 0.346 1 1 -0.648 0.686

2 0 0.346 1 2 -0.645 0.688

3 0 0.346 1 3 -0.645 0.688

4 0 0.346 1 4 -0.646 0.688

5 0 0.346 1 5 -0.646 0.686

6 0 0.346 1 6 -0.644 0.690

> Location1<-subset(nickel, location == 1)

> Loc1data<-as.SO3(Location1[, 5:13])

> mean(Loc1data)

[,1] [,2] [,3]

[1,] -0.645 -0.286 -0.708

[2,] 0.687 -0.623 -0.374

[3,] -0.334 -0.728 0.599

5.7 Summary

In this manuscript we introduced the rotations package and demonstrated how it can be

used to generate, analyze and visualize rotation data. The rotations package is compatible with
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the quaternion specific onion package by applying its as.quaternion function to a transposed

"Q4" object. Connecting to the onion package gives the user access to a wide range of algebraic

functions unique to quaternions. Also compatible with the rotations package is the orientlib

package, which includes additional parameterizations of rotations. To translate rotation matri-

ces generated by the rotations package into a form usable by the orientlib package, first coerce

a "SO3" object into a matrix of the same dimension, i.e. n × 9, then apply the rotvector

function provided by the orientlib package. Quaternions are defined in the orientlib package

by Q = x1i+ x2j + x3k + x4, cf. (5.5), which may lead to confusion when translating quater-

nions between the orientlib package and either of the onion or rotations packages. Below is a

demonstration of how quaternions and rotation matrices generated by the rotations package

can be translated into a form usable by the onion and orientlib packages, respectively. See

help(package = "onion") and help(package = "orientlib") for more on these packages.

> Qs <- ruars(20, rcayley, space = ’Q4’)

> Rs <- as.SO3(Qs)

> suppressMessages(require(onion))

> onionQs <- as.quaternion(t(Qs))

> suppressMessages(require(orientlib))

> orientRs <- rotvector(matrix(Rs, ncol = 9))

Computational speed of the rotations package has been enhanced through use of the Rcpp

and RcppArmadillo packages (Eddelbuettel, 2013; Eddelbuettel and Sanderson, 2014). In fu-

ture versions of the package we plan to extend the parameterization and estimator sections to

include robust estimators currently being developed by the authors.
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CHAPTER 6. GENERAL CONCLUSIONS

6.1 General Discussion

The analysis of object movement and orientation in three-dimensions has received an in-

crease in attention, but the methods used to analyze these data are limited. In this dissertation

we discussed point and confidence region estimation for the central orientation for the location

model in SO(3).

In Chapter 2 we explored a rage of literature from both approaches to estimating the

central orientation in the SO(3) location model. The existing intrinsic mean, intrinsic median

and extrinsic mean are introduced and the existing methods for the computation in practice

are reviewed. We introduce the extrinsic median for the first time and present an algorithm to

compute it in practice. The results of our simulation study suggest the choice of extrinsic or

intrinsic estimation depends upon the tail behavior of the data model. In general the extrinsic

median is shown to perform well in all scenarios examined.Chapters 3 and 4 focus on the mean

and median extrinsic estimators, respectively.

In Chapter 3, M -estimator theory is used to show the extrinsic mean is asymptotically nor-

mal. Though the asymptotic normality of the extrinsic mean is not novel, the method in which

the limiting distribution is derived is and it is shown to lead to an estimator of the limiting

variance that has better small sample properties in a simulation study. In addition, a pivotal

bootstrap procedure is proposed that is proven to achieve the nominal coverage rate asymp-

totically. According to our simulation study, confidence regions based on the pivotal bootstrap

have the closet to nominal coverage rates without being overly liberal. In a data example the

confidence region methods proposed are used to verify a long held, though unconfirmed claim

that ESBD data can be measure with 1◦ level of precision.
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Though the extrinsic mean has many nice properties, it is also negatively influenced by

extreme observations. As an alternative estimator, the extrinsic median is investigated in

detail in Chapter 4. In particular, the median is shown to be a consistent estimator of the

central orientation parameter, asymptotically normal and SB-robust for the family of Cayley

and matrix Fisher distributions. Meanwhile the extrinsic mean is shown to not be SB-robust

for the same family of distributions. The asymptotic normality of the extrinsic median is used

to find robust confidence regions for the central orientation and the pivotal bootstrap region

from Chapter 3 is extended to the median. In a simulation study, confidence regions based on

the mean and median are computed for data generated from a contaminated distribution. As a

function the contamination, the regions based on the mean increase in size dramatically while

the coverage rate approaches zero. For the regions based on the median, however, the rate of

increase in the region size is less and the coverage rates decrease at a slower rate as well. The

EBSD data is revisited, this time we illustrate how uncertainty between scans can be greatly

over estimated at locations on the boundary of two grains.

Finally, Chapter 5 details the rotations package which is an user-friendly collection of

the code used in this dissertation. Also included are two datasets, the EBSD data analyzed

throughout this dissertation and the drill dataset of Rancourt (1995). Tools for data genera-

tion, analysis and inference are available including both Bayesian and frequentist ideas. The

visualization technique is also demonstrated.

6.2 Future Research

In the process of writing this dissertation questions arose that may prove fruitful for future

research.

1. As demonstrated in the simulation study in Chapter 4, the confidence regions based on

the median can have sizes larger than the SO(3) space. The fact that a region can be

larger than the entire parameter space is an artifact of extrinsic approach and could be

seen as a reason to look for other region computation methods. That is, using theoretical

results on the manifold itself could lead to more interpretable and always appropriate
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confidence regions.

2. The assumption of rotational symmetry has been used in all parts of this dissertation.

Allowing for non-symmetric distributions, such as the class of preferred axis-random spin

distributions of Bingham et al. (2012), is a natural extension of this work. Though point

estimation will likely be unchanged, the construction of confidence regions will need to

be updated significantly.

3. No rigorous argument has been made as to when the extrinsic or intrinsic approach should

be used for SO(3) data analysis. Currently, the intrinsic approach is cite by its authors to

be “more natural” and therefore appropriate. On the other hand, under several common

distributions on SO(3) the extrinsic approach leads to the maximum likelihood estimator

which is desirable from a statistical point of view. We would like to take an approach

similar to Chapter 2 and compare the four estimators from a theoretical standpoint. The

goal of this project is to produce recommendations on when the extrinsic or intrinsic

approach should be used.

4. A comparison of intrinsic and extrinsic estimators when extreme observations are present

is also of interest. Towards this end, consider the extrinsic and intrinsic mean. From

Chapter 4 the influence function of the extrinsic mean evaluated at the observation

Ri ∈ SO(3) was shown to be proportional to the sine of the angle between Ri and

the true central orientation S. Therefore the extrinsic mean is most heavily influence

by observations perpendicular (rotated through π/2 radians) to it and not influence at

all by observations on the exact opposite pole. It can be shown, however, that the in-

trinsic mean’s influence function is proportional to the value of the misorientation angle

directly. Therefore, the observations furthest away from the intrinsic mean have the

greatest impact on its performance. This observation can lead to recommendations on

when the extrinsic approach should be used versus the intrinsic, but a rigorous study of

this fundamental difference in estimators is warranted.

5. The influence functions proposed in Chapter 4 can be used to identify an influential point
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in SO(3) with respect to an estimator, but a formal definition of “outlier” in SO(3) has

yet to be proposed. For parameter space structures similar to SO(3), such as the circle

and sphere, the idea of an outlier has been explored, but their extension to SO(3) data

is non-trivial. Fletcher et al. (2009) considered outliers in SO(3), though to produce

outliers, observations were randomly rotated through π/2 radians with little justification.

6. Once an outlier in SO(3) is identified, data analysis methods that can accommodate

that outlier need to be developed. In Chapter 4 the extrinsic median was shown to be

SB-robust, but it is also inefficient. The class of robust means, such as the trimmed

and winsorized mean, could result in a more efficient estimator than the median that

also accommodates for extreme observations. The multidimensional Huber estimator of

Hampel et al. (2011) is also a promising.
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