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A latent spatial piecewise exponential model for
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Understanding the dynamics of disease spread is critical
to achieving effective animal disease surveillance. A major
challenge in modeling disease spread is the fact that the true
disease status cannot be known with certainty due to the im-
perfect diagnostic sensitivity and specificity of the tests used
to generate the disease surveillance data. Other challenges
in modeling such data include interval censoring, relating
disease spread to distance between units, and incorporating
time-varying covariates, which are the unobserved disease
statuses. We propose a latent spatial piecewise exponential
model (PEX) with misclassification of events to address the
challenges in modeling such disease surveillance data. Specif-
ically, a piecewise exponential model is used to describe
the latent disease process, with spatial distance and time-
varying covariates incorporated for disease spread. The ob-
served surveillance data with imperfect diagnostic tests are
then modeled using a binary misclassification process given
the latent disease statuses from the PEX model. Model pa-
rameters are estimated through a Bayesian approach utiliz-
ing non-informative priors. A simulation study is performed
to evaluate the model performance and the results are com-
pared with a candidate model where no misclassification is
considered. For further illustration, we discuss an applica-
tion of this model to a porcine reproductive and respiratory
syndrome virus (PRRSV) surveillance data collected from
commercial swine farms.

Keywords and phrases: Bayesian, Disease surveillance,
Interval-censored data, Misclassification, Piecewise expo-
nential model, Spatial.

1. INTRODUCTION

Animal pathogen control is a serious production, eco-
nomic, and, in the case of zoonotic agents, a public health is-
sue. Effective disease surveillance is key to achieving disease
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control, but understanding the dynamics of disease spread
is critical to achieving effective animal disease surveillance.
Therefore, the purpose of this paper is to use disease surveil-
lance data to study disease transmission among pens within
barns and determine the impact of distances among pens on
disease spread.

Porcine reproductive and respiratory syndrome virus
(PRRSV) surveillance data was used in this study because of
its severe impact on pig production throughout the world.
First identified on the basis of clinical signs in the 1980s,
PRRSV had become endemic in most swine producing coun-
tries by the mid-1990s and is currently the most costly in-
fectious disease of swine in many parts of the world. For
example, PRRSV costs the United States swine industry ap-
proximately $664 million annually (Holtkamp et al., 2013).
In China, PRRSV outbreaks caused pork prices to increase
by 85 percent in 2006 (Lin et al., 2013). A common cause of
respiratory and reproductive disease in pigs, PRRSV pro-
duces a chronic, persistent infection and stimulates weak
protective immunity against genetically heterologous iso-
lates (Zimmerman et al., 2012). These features present a
severe challenge to control of the virus.

Animal disease surveillance data typically consists of di-
agnostic test outcomes for samples repeatedly collected at
regular time intervals. This represents several challenges to
understanding disease spread. First, the diagnostic sensitiv-
ity and specificity of the assays used to test samples are
typically imperfect, so the true disease status is not known
with certainty. Second, the latent time-to-disease is interval-
censored because the samples are taken at predetermined
time points, thus even discounting the uncertainty of the
diagnostic test, the time-to-disease can only be known to
have occurred within certain time intervals. Third, to study
the spread of infectious agents, the hazard of a certain pen
becoming infected needs to be modeled by incorporating the
true disease statuses of other pens within the same barn, as
well as the spatial distances among the pens. In this situa-
tion, the true disease statuses of the pens are time-varying
covariates in the survival model and cannot be known with
certainty.

Interval-censored data is commonly used in time-to-event
analysis and abundant work has been done on the estimation
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of survival functions in this situation. The study of interval-
censored time-to-event data can be found in many areas,
including clinical trials where patients underwent disease
assessment at prescheduled clinic visits, animal epidemi-
ology studies where samples were collected and tested at
fixed sampling points, and other longitudinal studies (Lind-
sey and Ryan, 1998; Huang and Wellner, 1997; Finkelstein,
1986). In the present study, if the diagnostic test outcome
perfectly reveals the true disease status at sequential time
points, the interval-censored time-to-event can be deter-
mined to lie in the interval between the last negative test
and the first positive test. However, with imperfect diagnos-
tic test, the exact time interval where the event occurred
is unknown, so the traditional estimation methods can no
longer be applied directly. In recent years, the effect of mis-
classification and measurement error has received much at-
tention. Lyles et al. (2011) used validation data-based ad-
justment for outcome misclassification in logistic regression.
Yi et al. (2015) derived methods for mixed measurement
error and misclassification in covariates. For survival mod-
els, McKeown and Jewell (2010) proposed a nonparamet-
ric maximum likelihood approach for misclassified univari-
ate current status data. Garćıa-Zattera, Hara, and Komárek
(2016) proposed an accelerated failure time model for mis-
classified clustered interval-censored data.

In this paper, for each pen, we evaluate the influence of
the infection status of other pens in the same barn due to dis-
ease spread. The hazard rate of each pen can vary across the
sampling periods. In addition, the spatial distances among
pens must be included in the model so that the analysis can
be used to determine whether, and to what extent, distance
plays a role in disease spread. In this case, a piecewise con-
stant hazard function can be used to account for the change
of hazard; such a survival model is called piecewise exponen-
tial model. A piecewise exponential model is commonly used
for interval-censored time-to-event data (Friedman, 1982;
Lindsey and Ryan, 1998), where a constant hazard can be
assumed in each time interval and covariate effects can be
accommodated using proportional hazards, if there are any.
Due to its simplicity and flexibility, this model has been
advocated in different research areas in recent years. Berry
et al. (2004) built a piecewise baseline hazard function in
the Bayesian survival model to allow for changes in haz-
ard rate overtime. Moreover, the piecewise constant hazard
assumption was proved useful in some medical research ar-
eas, such as cancer survival analysis (Goodman, Lib, and
Tiwari, 2011). However, the cited examples did not consider
misclassification of the event outcome.

In this paper, we extend the piecewise exponential model
to account for misclassification of the disease status as a re-
sult of the use of imperfect diagnostic tests. With predeter-
mined jump points, we parameterize the log-hazard function
for each pen with a piecewise linear regression. To account
for disease spread, the covariates are set as the unknown
true disease status for all pens within the same barn and

the effect of their spatial distance is included and assessed
in model. Sensitivity and specificity of the diagnostic test
are used to build a model relating true disease statuses and
the imperfect test outcomes.

This paper is structured as follows. In Section 2, the data
structure and misclassification process are described, then
the piecewise constant hazard is constructed for the unob-
served time-to-event using a log-link and the latent disease
statuses are incorporated as covariate effects. We present
the likelihood function of the model and use a Bayesian ap-
proach for estimation of model parameters. In Section 3, the
proposed model is applied to a PRRSV surveillance data set
to illustrate the efficiency of the model. In Section 4, some
simulation studies are performed to evaluate the proposed
model. The estimation bias, standard deviation and RMSE
(root mean square error) of the model parameters are re-
ported from estimation results. Model without misclassifica-
tion is run and compared to the proposed model. In Section
5, some conclusions and future work are discussed.

2. THE MODEL

Suppose there are I groups (buildings) and J subjects
(pens) in each group i(i = 1, 2, ..., I) in the study. Each sub-
ject j(j = 1, 2, ..., J) is sampled at predetermined sampling
time points 0 = τ0 < τ1 < ... < τK < ∞. Let uijk be
the observed binary diagnostic test outcome for subject j in
group i at sampling point τk. Test outcome uijk equals 1 if
it is test positive and 0 otherwise. Let yijk denote the cor-
responding binary true event (disease) status, which equals
1 if the true status is diseased and 0 otherwise. The time
origin is set to 0 and p0 is introduced to be the probability
that an event has happened at the enrollment of the study,
i.e., p0 = p(yij0 = 1). The diseased subjects are assumed to
be diseased till the end of the study, i.e., if yijk = 1, then
yijm = 1 for all m ≥ k. For subjects that are free of an event
(i.e., yij0 = 0) at time 0, let tij denote the unobserved time-
to-event for subject j in group i. Note that the true status
yijk is uniquely determined by tij , i.e., yijk = I(tij ≤ τk)
for k ≥ 1. In our model, animals once infected are assumed
to be diseased and infectious throughout the study period.
This is reasonable for the application to the PRRSV data in
this paper as animals were never treated and remained pos-
itive once infected (refer to Section 4 for real data analyses).
Consequently, there is no recurrent process.

To account for the spread of disease among subjects, dis-
tance between subjects needs to be defined. Figure 1 illus-
trates the internal structure of a barn (group) and the pen
(subject) locations within the barn on a commercial swine
farm. The subjects can be treated as arranged in a row of
unit squares and each vertex of the square indicates a sub-
ject location. The number of pens within a barn may vary
between production systems, but the inside structure of the
barns are usually similar. Let djj′ denote the spatial dis-

tance between subjects j and j
′
within each group. If sub-

jects j and j
′
are adjacent to each other in the unit grid then
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Figure 1. Inside structure of a barn and the pen locations on a swine farm.

djj′ = 1; otherwise, djj′ can be calculated as the Euclidean

distance between j and j
′
. Let Di be a J × J distance ma-

trix of djj′ for group i. For an animal disease surveillance
data where the barns have equal size and structure, the Di

are the same for all i = 1, 2, ..., I. We are interested in mod-
eling the time-to-event distribution for the subjects with
consideration of the spatial spread of the infection among
the subjects. We propose to describe the underlining time-
to-event with a piecewise exponential model and relate the
observed test outcome with the latent disease status using
a misclassification model.

2.1 The misclassification model

Let γ1 and γ0 be the sensitivity and specificity of the di-
agnostic test. Sensitivity, also called the true positive rate,
measures the proportion of actually diseased subjects which
are correctly identified as positive. Specificity, also called
the true negative rate, measures the proportion of actu-
ally healthy subjects which are correctly identified as nega-
tive. Based on the notations above, we have γ1 = p(uijk =
1|yijk = 1) and γ0 = p(uijk = 0|yijk = 0). Then for each
subject j in group i at sampling point τk, the distribution
of the diagnostic test outcome uijk given the latent disease
status yijk can be defined as:

uijk|yijk = 0 ∼ Bernoulli(1− γ0),

uijk|yijk = 1 ∼ Bernoulli(γ1),

The sensitivity and specificity are usually regarded as prop-
erties of the diagnostic test. The values of these parameters
are usually known for well established diagnostic tests.

2.2 The spatial piecewise exponential model

A Cox proportional hazards model (Cox, 1972) for the
time-to-event t has hazard function

λ(t|x) = λ0(t) exp(x
T β̃),

where λ0(t) is the baseline hazard function, x is a vector
of covariates, and β̃ is a vector of fixed effect coefficients.
We consider a piecewise constant hazard function for anal-
yses of the interval-censored disease surveillance data. The
whole duration of study is partitioned into K intervals us-
ing the observation time 0 = τ0 < τ1 < ... < τK < ∞.
Define the k-th interval as (τk−1, τk] and assume that the
hazard function is constant within each interval. To consider
the spread of disease among the subjects within the same
group, we propose a model where the hazard of a certain
subject becoming diseased can be influenced by the status
of the rest of the subjects within the same group and this
influence is associated with the spatial distance between the
subjects. Let λijk be the hazard of subject j in group i be-
coming diseased in time interval (τk−1, τk] given no event
has happened by time τk−1. Then the conditional time-to-
event tij |yij,k−1 = 0 during time interval (τk−1, τk] follows
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an exponential distribution

tij |yij,k−1 = 0 ∼ exp(λijk), tij ∈ (τk−1, τk].

Let yij′ ,k−1 be the true disease status for subject j
′ �= j at

time τk−1, which has potential to affect the disease status
of subject j at time τk. By using a log link function, the co-
variate effects can be incorporated into the hazard function,
i.e., within each time interval (τk−1, τk],

(1) log

(
1

λijk

)
= β0 +

∑
j′ �=j

(
β1 + β2exp(−djj′ )

)
yij′ ,k−1,

where β0 is a regression parameter in the baseline hazard,
β1 is a regression parameter associated with yij′ ,k−1 but not
related to distance, and β2 is a regression parameter associ-
ated with yij′ ,k−1 and the distance between subject j and

j
′
. β0 models the baseline negative log hazard of disease on-

set, i.e., effect of factors besides disease transmission among
animals, for example, the air, the food, or the persons who
work on the farm. β1 guarantees that as the distance gets
large, the effect of yij′ ,k−1 to yijk does not decay to 0. Also,
the exponential decay exp(−djj′ ) indicates that the influence
of a diseased subject decreases as the distance between sub-
jects gets further. We do not have a term of distance itself
in model as we do not assume the hazard of disease onset
would be affected by distance between pens only, regardless
of their disease status. By a transformation on both sides of
Eq.(1), the hazard function for time interval (τk−1, τk] can
be expressed as:

λijk = exp

⎧⎨
⎩−

⎛
⎝β0 +

∑
j′ �=j

(
β1 + β2exp(−djj′ )

)
yij′ ,k−1

⎞
⎠
⎫⎬
⎭

= e−β0 exp

⎧⎨
⎩−

∑
j′ �=j

(
β1 + β2exp(−djj′ )

)
yij′ ,k−1

⎫⎬
⎭ ,(2)

where e−β0 can be interpreted as the baseline hazard and
the covariate yij′ ,k−1 is unknown and time-varying. In this
way, the hazard function for subject j can be modeled using
K parameters λij1, ..., λijK , each representing the risk of the
sampled subject being diseased in one particular time inter-
val. Because the risk is assumed to be piecewise constant
and the distances among subjects are taken into consider-
ation, the corresponding model is called a spatial piecewise
exponential model. For each subject j such that yij0 = 0,
the survival function for event time tij in interval (τk−1, τk]
can be derived as:

Sijk(t) = exp

{
−
(∑

l<k

λijl(τl − τl−1) + λijk(t− τk−1)

)}

where λijk is defined in Eq. (2). Then the probability den-
sity for the failure time of subject j in (τk−1, τk] can be

derived as:

fijk(t) =
∂

∂t
[1− Sijk(t)]

= e−
∑

l<k λijl(τl−τl−1)λijke
−λijk(t−τk−1).

2.3 Likelihood of the latent disease process

Here we develop the likelihood of the latent disease pro-
cess using the piecewise exponential model. Given that sub-
ject j is not diseased at time τk−1, k ≥ 1, the tij follows an
exponential distribution with λijk defined in Eq. (2). Thus,
the conditional density can be derived as

f(tij |yij,k−1 = 0) = λijke
−λijk(tij−τk−1)

In particular, let yi.k = (yi1k, ..., yiJk) be a vector of the
disease status of all subjects in group i at τk, the conditional
probability of subject j being diseased at τk, k ≥ 1 is:

p(yijk = 1|yi.k−1; β̃)

= I(yij,k−1 = 1)

+p(tij ∈ (τk−1, τk]|yij,k−1 = 0) · I(yij,k−1 = 0)

= I(yij,k−1 = 1)

+

∫ τk

τk−1

f(tij |yij,k−1 = 0)dt · I(yij,k−1 = 0)

Based on the assumption of conditional independence of yi.k

given yi.k−1, the likelihood for yi = (yi.0,yi.1, ...,yi.K) can
be derived as

f(yi; p0, β̃) = f(yi.K |yi.K−1; β̃)f(yi.K−1|yi.K−2; β̃) · · ·
f(yi.1|yi.0; β̃)f(yi.0; p0)

=

J∏
j=1

[f(yij0; p0)

K∏
k=1

f(yijk|yi.k−1; β̃)].(3)

2.4 Joint likelihood function

Let ui = (ui.0,ui.1, ...,ui.K) denote the observed outcome
for all subjects in group i. For each group i, it is assumed
that the observed outcomes ui are conditional independent
given latent true status yi so that

f(ui|yi) =

J∏
j=1

K∏
k=1

f(uijk|yijk)

=

J∏
j=1

K∏
k=1

[(1− γ0)
uijkγ

1−uijk

0 ]1−yijk

×[γ
uijk

1 (1− γ1)
1−uijk ]yijk .(4)

where the conditional distribution of uijk given yijk can be
derived as from the misclassification model defined in (1).
Let ũ = (u1,u2, ...,uI) and ỹ = (y1,y2, ...,yI) denote the
observed outcome and underlying true status for all subjects
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in all groups, let p0 and β̃ = (β0, β1, β2) be the parameters
of interest. Based on the assumption of independent groups,
the joint likelihood function for the entire model is

L(ũ, ỹ; p0, β̃) =

I∏
i=1

Li(ui,yi; p0, β̃)

=

I∏
i=1

f(ui|yi)f(yi; p0, β̃),(5)

where f(yi; p0, β̃) and f(ui|yi) are derived in Eq. (3), (4).

2.5 Bayesian estimation

The parameters of interest in this model are p0 and β̃,
where p0 is the probability that an event happens at the
beginning of sampling time and β̃ = c(β0, β1, β2) are the
regression parameters in the latent spatial piecewise expo-
nential model. We propose to use a Bayesian method to esti-
mate the model parameters. Because p0 takes values in [0, 1],
a conjugate Beta prior distribution f(p0) is used for p0. The
Normal distribution priors f(βi) are used for the regression
parameters βi, i = 0, 1, 2. Based on the joint likelihood func-
tion derived in (10), the joint posterior distributions for p0,
β0, β1 and β2 can be derived as

f(p0, β̃, ỹ|ũ) =
I∏

i=1

f(ui,yi|p0, β0, β1, β2)

×f(p0)f(β0)f(β1)f(β2)

Non-informative priors are used for all model parameters in
this paper. Informative priors can be applied if prior knowl-
edge is available for one or more parameters. Markov chain
Monte Carlo (MCMC) is used to generate a sequence of
draws from the posterior distribution of the parameters.
The unknown true disease status ỹ is also simulated in
the MCMC algorithm along with the parameters. Inference
for the model parameters is then based on the draws from
the posterior distribution. The MCMC method is done us-
ing freely-distributed software JAGS version 4.0 (Plummer,
2015).

3. THE ANALYSIS OF PRRSV
SURVEILLANCE DATA

In this section, the proposed model is applied to a dataset
based on oral fluid samples collected from three barns on one
swine farm. Surveillance data facilitates the efficient use of
resources for the control of infectious disease and is essential
for control/elimination programs. Oral fluid sampling and
testing using nucleic acid- or antibody-based assays is one
approach used for increasing the efficiency and reducing the
cost of surveillance in swine herds (Ramirez et al., 2012).
Oral fluid samples are easily collected from pens of pigs by
allowing them to chew on cotton rope suspended in the pen

for 20-30 min, manually extracting the fluid from the rope,
and decanting the sample into a tube for submission to the
laboratory. In this study, samples collected from each pen
were tested for PRRSV nucleic acids using polymerase chain
reaction (PCR) -based assay. In this situation, the pen is
treated as the subject unit with a fixed location in a 2× 18
matrix. The event of interest is defined as a PCR-positive,
i.e., the assay detects PRRSV nucleic acids from one or more
of the individual pigs in the pen.

The oral fluid samples were collected in a weekly schedule
for a consecutive of 8 weeks (week 0 to week 8, 9 time points)
from 3 wean-to-finish barns on one finishing site. There are
36 pens within each barn and around 25 pigs in each pen.
The samples were collected in a way as described above, with
the sampling unit being the pen. This provided a total of
3×36×9 = 972 samples. The samples were completely ran-
domized and then tested for PRRSV RNA. Let uijk denote
the diagnostic test outcomes for pen j in barn i at sampling
time τk, uijk = 1 if the test outcome is positive and 0 if
negative. The test outcomes are recorded with misclassifi-
cation because of the imperfect sensitivity and specificity of
the diagnostic test. Sensitivity measures the proportion of
actually diseased sampling units which are correctly identi-
fied as diseased, whereas specificity measures the proportion
of actually healthy sampling units which are correctly iden-
tified as healthy. So the diagnostic sensitivity and specificity
of the assay refer to γ1 and γ0, respectively. Reference val-
ues for γ1 and γ0 were 0.9 and 0.98 from related studies
(Olsen et al., 2013). The number of diseased pens in each
barn (among 36 pens) at each sampling week are shown in
Table 1. An individual response profile (IRP) plot in Figure
2 shows the change of test outcomes for each pen overtime.

From Table 1, it can be seen that the initial probabil-
ity for a pen being PRRSV-positive was very low, with
an average about 5/108 ≈ 0.046. As the virus spread over
time, more pens became infected, i.e., tested PRRSV PCR-
positive. That is, few pens were infected initially, but the
virus continually spread to surrounding pens until, gradu-
ally, all pens were virus-positive at the end of the study
period. Figure 3 illustrates the pattern of spread among
pens by barn. Based on the test outcomes, the mean time
to disease for the three barns were 3.81 weeks (A), 4.75
weeks (B) and 6.42 weeks (C). The proposed model was
applied to study the time to disease tij for each pen
within the building, with p0 = p(yij0 = 0) and the haz-
ard λk = e−β0exp{−

∑
j′ �=j(β1 + β2exp(−djj′ ))yij′ ,k−1} for

tij ∈ (τk−1, τk].
A Bayesian approach is used to estimate the model pa-

rameters, similar to the simulation studies. Estimation was
based on 30,000 MCMC iterations after disregarding the
first 20,000 MCMC draws as burn-in. The posterior means,
standard deviations and 95% Bayesian credible intervals
(CI) are reported in Table 2. The 95% Bayesian credible
intervals do not include 0, indicating that the parameter es-
timates are statistically significant. The constructed model
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Table 1. Number of diseased pens in each Barn at each Time point

Week Barn �Diseased.Pens Barn �Diseased.Pens Barn �Diseased.Pens

0 A 3 (36) B 2 (36) C 0 (36)
1 A 6 (36) B 2 (36) C 1 (36)
2 A 7 (36) B 2 (36) C 1 (36)
3 A 15 (36) B 5 (36) C 1 (36)
4 A 16 (36) B 13 (36) C 0 (36)
5 A 30 (36) B 24 (36) C 3 (36)
6 A 36 (36) B 36 (36) C 8 (36)
7 A 36 (36) B 36 (36) C 34 (36)
8 A 36 (36) B 36 (36) C 36 (36)

has successfully provided evidence for the spread of disease
and the spatial relationship among the pens. In particular,
the initial probability of a pen being infected is estimated
to be p̂0 = 0.048. The baseline hazard of a pen being dis-

eased within a time interval is estimated as e−β̂0 = 0.014.
Both parameters β1 and β2 associated with the covariates
are negative, which indicates an increase in the hazard of
a pen being infected when other pens in the same barn are
infected. It is estimated that the existence of an infected
pen in a barn will increase the hazard of healthy pens in the
same barn to become diseased by a multiplicative factor of
exp(0.219 + 3.512 exp(−djj′ )). It is clear to see that the in-

Table 2. Posterior results for parameters in the analysis of
PRRSV data

Posterior mean Posterior S.D. 95% CI

p0 0.048 0.0208 [0.0157, 0.0958]
β0 4.236 0.3525 [3.6290, 4.8795]
β1 -0.219 0.0361 [-0.2885, -0.1583]
β2 -3.512 0.4262 [-4.2467, -2.6676]

fluence decreases as the distance between two pens becomes

larger.

Figure 2. Individual response plot (IRP) for diagnostic test outcomes of each pen overtime for all three barns based on the
PRRSV surveillance data.
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4. SIMULATION STUDY

A simulation study was performed to investigate the per-
formance of the proposed model. To mimic the true data
structure in the PRRSV surveillance study, we set the group
size I = 3 and number of subjects J = 36 within each
group. All groups have equal size and structure, the sub-
jects within the group have fixed locations and are arranged
in a 2 × 18 matrix. The distance between the subjects can
be calculated as the Euclidean distance. Time-to-event data
are simulated for each subject following the proposed spa-
tial piecewise exponential model. The observed outcomes are
then simulated with the misclassification parameters. The
proposed Bayesian approach is then applied to estimate the
model parameters. One thousand simulations were run for
the parameter configuration.

The initial probability of an event occurrence is set to
p0 = 0.05. Within each time interval (τk−1, τk], k ≥ 1, the
hazard is generated as in (3), where model parameters are
set to be β0 = 4, β1 = −0.2, β2 = −3. According to the
model specification, the time-to-event data were generated
as follow. The sampling period is divided into 9 intervals
τ0 < τ1 < ... < τ9, where τk − τk−1 = 1 for k = 1, ..., 9. For
each subject j in group i, first generate true status yij0 from
a Bernoulli(p0) distribution at the initial sampling point τ0.
If yij0 = 1, the event happens to the subject at the begin-
ning of the study and thus yijk = 1 for k ≥ 1. Otherwise
simulate t1 from an exponential distribution with rate λij1,
where λij1 is calculated from (3). If t1 ≤ 1, which means
the event happened to the subject before τ1 and after τ0, let
tij = t1, thus yij0 = 0 and yijk = 1 for k ≥ 1. If t1 > 1, then
yij0 = yij1 = 0 and we generate t2 from an exponential dis-
tribution with rate λij2, where λij2 is calculated from (3).
Similarly, if t2 ≤ 1, let tij = 1+t2 and the event happened to
the subject before sampling time τ2, thus yij0 = yij1 = 0 and
yijk = 1 for k ≥ 2. If t2 > 1, yijk = 0 for k = 0, 1, 2 and t3 is
generated from an exponential distribution with rate λij3.
Similarly in this way, the failure time tij for each subject

can be generated. With the predetermined misclassification
parameters γ1 = 0.9, γ0 = 0.98, the observed outcome uijk

then can be generated from the following Bernoulli distri-
butions:

uijk|(yijk = 1) ∼ Bernoulli(γ1),

uijk|(yijk = 0) ∼ Bernoulli(1− γ0),

where i = 1, 2, 3, j = 1, 2, ..., 36, k = 0, 1, 2, ..., 9.
One thousand simulated sets of data were generated and

analyzed by the proposed Bayesian approach for parameter
estimation. The prior for p0 was chosen as Beta(0.5, 0.5),
which is a non-informative conjugate prior for p0 on inter-
val (0, 1). The priors for the regression parameters β0, β1

and β2 were chosen as non-informative N(0, 10002). For
each simulated data set, model implementation is based on
30,000 MCMC iterations after disregarding the first 20,000
MCMC realizations as the burn-in procedure for the algo-
rithm. Three chains are run to check for convergence of
the MCMC algorithm based on the scale reduction factors.
Based on 1000 simulation trials, the bias, standard errors
and root mean square errors (RMSE) of posterior means as
parameter estimators are calculated and reported in Table 3
(Model 1).

To investigate the effect of misclassification, a model
without misclassification is also considered for comparison
by treating the observed status as true status, i.e. uijk = yijk
for all i, j, k. In this case, the exact time interval where the
disease occurred is assumed to be known and no latent class
for disease is needed. Parameters in this simplified model
can be estimated using either Bayesian method or maxi-
mum likelihood method. For Bayesian method, priors for
model parameters are chosen the same as in Model 1. Based
on the same 1000 simulated datasets, the parameter estima-
tion bias, standard deviation and RMSE are also reported
in Table 3 (Model 2).

The results in Table 3 suggest that the posterior means
for the initial probability p0 and regression parameters

Table 3. Bias, standard deviation and RMSE for parameter estimations in the model with misclassification (Model 1) and
model without misclassification (Model 2) based on 1000 simulations

Model Parameter True Value Bias S.D. RMSE

p0 0.05 0.004 0.0225 0.0228
Model 1 β0 4 0.03 0.3619 0.3633

β1 -0.2 -0.004 0.0368 0.0370
β2 -3 0.03 0.5841 0.5845

p0 0.05 0.017 0.0232 0.0289
Model 2 β0 4 -0.538 0.3499 0.6413

(Bayesian) β1 -0.2 0.048 0.0341 0.0589
β2 -3 0.759 0.4265 0.8707

p0 0.05 0.013 0.0236 0.0269
Model 2 β0 4 -0.637 0.3328 0.7183

(Likelihood) β1 -0.2 0.043 0.0399 0.0587
β2 -3 0.736 0.4649 0.8704
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Figure 3. Histograms of posterior means for model
parameters obtained from 1000 simulations. The bold line
indicates the true value used for generating the data.

β0, β1, β2 are approximately unbiased estimators under the
proposed model. The histograms of the posterior means for
the parameters appear unimodal, bell shaped and centered
around the true parameter values (Figure 3). However, if
misclassification is not considered, the estimation results can
be very biased as shown in Table 3 (Model 2).

5. CONCLUSIONS AND FUTURE WORK

We have proposed a latent spatial piecewise exponen-
tial model to study interval-censored disease surveillance
data with time-varying covariates and misclassification. This
proposed model allows researchers to model disease spread
among units and relate the transmission rate to the dis-
tance between units, even when the true disease status is un-
observed. The model is interpretable, flexible and straight-
forward to implement. Our model allows the assessment of
time-varying covariates, which were the latent disease sta-
tus in our application. Simulation studies also show that
when observed outcomes are with misclassification, the pro-
posed model works better in parameter estimation than
the model without misclassification. When applied to the
PRRSV surveillance data, the model results in significant
model parameter estimates, thereby providing strong evi-
dence of distance related disease spread among pens within
a barn. We use exponential distance decay due to its popu-
larity in modeling of spatial effects. Other functional forms
of distance decay is possible. We have also tried the recipro-
cal decay; the results from simulation studies and real data
analyses remains consistent. Once the disease spread pattern
is captured using the proposed model, it can be utilized for
developing sampling guidelines, e.g., optimal sample size,
sampling frequency and sample allocation to maximize the
power of disease detection at a minimal cost.

Some extensions of the model can be considered in fu-
ture work. In the application of PRRSV surveillance data,
samples were taken weekly so the time intervals are equally
spaced as τk−τk−1 = 1. This model however is not limited to
equally spaced time intervals, and can be generalized easily
to situations that different subjects are sampled at differ-
ent regular or irregular time points. Another extension can
be the consideration of recurrent event data. In this paper,
it is assumed that the event happens only once per unit,
that is, when the unit is diseased, the status stays the same
until the end of the study. This assumption is appropriate
for studying of the data of PRRSV. Another consideration
is diseases in which recovery does not preclude reinfection,
such as influenza. In such instances, analyses for recurrent
event data need to be developed. A general idea is to de-
velop models for a sequence of events, one for each disease
occurrence and/or recovery process. Furthermore, whereas
there are only three groups and the groups are assumed to
be independent from each other in this PRRSV surveillance
data, modern production systems have more hierarchies of
structures, e.g., company → farm → barn → pen. These
could be taken into account when evaluating disease spread
at levels higher than the pen by collecting data at multi-
ple levels. Random effects can also be added to the model
to capture random variation at higher levels. All the above
topics are the subjects of the on-going research.

ACKNOWLEDGMENTS

This study was funded in part by Checkoff Dollars admin-
istered through the National Pork Board (Grants #13-157
and #17-174), Des Moines, Iowa (USA).

Received 25 May 2017

REFERENCES
Berry, S.M., Berry, D.A., Natarajan, K., Lin, C.S., Hennekens,

C.H., Belder, R. (2004) Bayesian survival analysis with nonpro-
portional hazards: Meta-analysis of pravastatin-aspirin. Journal of
the American Statistical Association 99: 36–44. MR2061886

Finkelstein, D.M. (1986). A proportional hazards model for interval-
censored failure time data. Biometrics 42(4): 845–854. MR0872963

Friedman, M. (1982) Piecewise exponential models for survival
data with covariates. The Annals of Statistics 10(1): 101–113.
MR0642722
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