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Agricultural residues are the largest potential near term source 
of biomass for bioenergy production. Sustainable use of 
agricultural residues for bioenergy production requires 
consideration of the important role that residues play in 
maintaining soil health and productivity. Innovation equipment 
designs for residue harvesting systems can help economically 
collect agricultural residues while mitigating sustainability 
concerns. A key challenge in developing these equipment 
designs is establishing sustainable reside removal rates at the 
sub-field scale. Several previous analysis studies have 
developed methodologies and tools to estimate sustainable 
agricultural residue removal by considering environmental 
constraints including soil loss from wind and water erosion and 
soil organic carbon at field scale or larger but have not 
considered variation at the sub-field scale. This paper 
introduces a computational strategy to integrate data and 
models from multiple spatial scales to investigate how 
variability of soil, grade, and yield within an individual 
cornfield can impact sustainable residue removal for bioenergy 
production. This strategy includes the current modeling tools 
(i.e., RUSLE2, WEPS, and SCI), the existing data sources (i.e., 
SSURGO soils, CLIGEN, WINDGEN, and NRCS 
managements), and the available high fidelity spatial 
information (i.e., LiDAR slope and crop yield monitor output). 
Rather than using average or representative values for crop 
yields, soil characteristics, and slope for a field, county, or 
larger area, the modeling inputs are based on the same spatial 
scale as the precision farming data available. There are three 
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challenges for developing an integrated model for sub-field 
variability of sustainable agricultural residue removal-the 
computational challenge of iteratively computing with 400 or 
more spatial points per hectare, the inclusion of geoprocessing 
tools, and the integration of data from different spatial scales. 
Using a representative field in Iowa, this paper demonstrates 
the computational algorithms used and establishes key design 
parameters for an innovative residue removal equipment design 
concept. 

INTRODUCTION 
The DOE released a study in 2005 that identified 

scenarios with over 270 million metric tons of agricultural 
residue biomass (i.e., materials other than grain including 
stems, leaves, and chaff) available annually in the US [1]. 
Assuming a biomass to biofuel conversion rate of 330 liters per 
metric [2,3], this resource base could produce over 89 billion 
liters of biofuels annually. Federal legislation through the 
Energy Independence and Security Act of 2007 calls for US 
biofuel production to increase above 136 billion liters annually 
by 2022. If this federal requirement is met, agricultural residues 
will play an essential role. 

The challenge is that agricultural residue removal must be 
managed carefully to be sustainable. Residues play a number of 
critical roles within the agronomic system that must be 
considered when making removal decisions [4-6]. There are six 
environmental factors that can limit sustainable agricultural 
residue removal-soil organic carbon, wind and water erosion, 
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plant nutrient balances, soil water and temperature dynamics, 
soil compaction, and off-site environmental impacts [7]. 
Previous efforts have assembled a set of modeling, simulation, 
and database tools to support investigation of these factors. The 
challenge is that these tools are disparate and focused on a 
specific environmental process for which they were developed. 
The question of sustainable agricultural residue removal 
requires the integration of these disparate tools to more 
comprehensively support decisions. Furthermore, the practical 
implementation of sustainable agricultural residue removal 
requires the design and development of residue harvesting 
equipment that can adjust to variability in field conditions that 
change sustainable residue removal rates at the sub-field scale. 
Design, development, and commercial implementation of 
residue harvest equipment with variable rate residue removal 
capability requires a computational strategy that can (1) 
establish equipment performance requirements as design 
parameters, (2) evaluate the effectiveness of equipment design 
concepts, and (3) provide real-time sustainable residue removal 
assessments for the equipment control systems. This paper 
develops a computational strategy for multi-scale analysis of 
residue removal that meets the first of these equipment design 
and implementation criteria, establishing performance 
requirements of variable rate residue removal equipment as 
design parameters. The computational strategy implements a 
model and data integration framework built on the following 
premises: 

1. The use of well-developed and validated models and 
databases provides significant advantages in terms of 
quickly achieving results that can provide confidence in 
residue removal decisions. 

2. Capable tools supporting model and data integration for 
complex decision making have emerged within the 
engineering community and can be applied to the residue 
removal problem. 

3. Data from multiple spatial and temporal scales is required 
for the model and data integration framework to establish 
equipment design parameters and make sustainable 
residue removal decisions. 

The first step in executing the model and data integration 
strategy is identifying the model and database tools that provide 
a sufficiently comprehensive analysis of the scenarios and also 
satisfy the decision making requirements stated above. With the 
appropriate modeling and database tools identified, the study 
was executed to deliver a product satisfying the stated 
requirements. 

BACKGROUND 
Past agricultural crop residue removal modeling efforts 

have focused on soil erosion from wind and water. Residue 
removal has been considered sustainable for removal rates 
where computed erosion losses are less than the tolerable soil 
loss limits established by the NRCS. Larson [9] used the 
Universal Soil Loss Equation in 1979 to perform the first major 
assessment of the sustainability of removing agricultural 
residues. This study examined soils and production systems in 

the Com Belt, the Great Plains, and the Southeast US. Residue 
removal was investigated under a range of tillage practices with 
respect to erosion constraints and potential nutrient replacement 
requirements. The broader issue of soil health and long term 
productivity, specifically soil organic carbon levels, was not 
considered. 

The Revised Universal Soil Loss Equation [10] and Wind 
Erosion eQuation [11] were used by Nelson in 2002 [12] to 
estimate sustainable removal rates of com (Zea mays L.) stover 
and wheat (Triticum aesivum L.) straw. This study expanded 
Larson's analysis through the use of the Soil Survey 
Geographic (SSURGO) Database [13], an open access national 
soil survey database provided by NRCS. Nelson's methodology 
considered water and wind induced erosion for SSURGO soil 
map units, the unique identifiers for soils with different 
characteristics, for reduced and no tillage management 
practices. This study was based on "county average, hectare­
weighted fields." The approach developed county level 
composite soil characteristics that were used to establish 
erodibility factors for the erosion equations. The Nelson study 
found that in 1997 the midwestern and eastern United States 
could have sustainably supplied more than 58 million metric 
tons of com stover and wheat straw. Extending and updating 
this methodology in 2004, Nelson et al. [14] included five one­
and two-year crop rotations (e.g., com-soybean [Glycine max 
(L.) Merr.]) and calculated erosion at the SSURGO soil map 
unit spatial scale. At the soil map unit scale, residue retention 
requirements were established for each management scenario 
using county average crop yields. Each soil was assessed using 
the representative slope from the SSURGO database. This 
study considered wind and water induced soil erosion 
constraints and found that if all acres were in a com-soybean 
rotation using reduced tillage practices; nearly 398 million 
metric tons of agricultural residues could be sustainably 
removed annually from the 10 highest com grain producing 
states in the United States. Graham et al. [15] utilized Nelson's 
methodology to perform a nationwide com stover availability 
assessment. The spatial scale of data and analysis assumptions 
were consistent with Nelson's, but an additional constraint was 
added to this by restricting stover removal from non-irrigated 
production in dry climates. This constraint was included based 
on an assumption that for non-irrigated production in dry 
climates, all stover was required on the soil surface to help 
maintain soil moisture levels. Including this additional 
constraint, Graham et al. [15] found that sustainable national 
stover potential was nearly 106 million metric tons annually. 

[16]In recent years the NRCS has transitioned to process­
based analyses by adopting the Revised Universal Soil Loss 
Equation 2 (RUSLE2) [16], the Wind Erosion Prediction 
System (WEPS) [17], ,Soil Conditioning Index (SCI) [18] 
models for conservation management planning. The NRCS 
field office implementation of RUSLE2, WEPS, and SCI 
utilizes representative soil and slope, and field average yield 
assumptions to analyze a management plan for a particular field 
[19]. The choice for a representative soil and slope are based on 
selecting the "dominant critical" soil area. The NRCS field 
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office technical note describes the dominant critical soil area as 
having the following characteristics, (l) it is significantly large 
enough to effect a change in management, (2) it is not an 
average of the field characteristics, (3) it is not the worst case 
scenario, and (4) if dominant in terms of area it is not the 
flattest or least erosive soil in the field. There are two primary 
questions the models are used to answer. The first is whether 
soil loss due to erosion is greater than the tolerable soil loss 
limits (T value) set by the NRCS for each SSURGO database 
soil type. The second question is whether the SCI is greater 
than 0, which qualitatively suggests that soil organic carbon 
levels will not be depleted for a given scenario. 

As currently implemented in NRCS field offices, the tools 
require direct user interaction for each simulation scenario, thus 
limiting their application to high fidelity spatial and temporal 
scenario assessment. Scenario assessment is a time consuming 
task in which data from one or more databases is formatted as 
input for one model, and then the output is combined with other 
data to become input for the other models. One way to address 
this concern is through an integrated modeling approach that 
takes advantage of the simulation capabilities of process-based 
environmental models and implements them within a modeling 
framework that facilitates hands-free model execution. This 
approach was used in a study by [8] that investigated residue 
removal for the state of Iowa considering wind and water 
induced erosion, and soil organic carbon as potential limiting 
factors. This study was performed using an integrated modeling 
toolkit that coupled the RUSLE2, WEPS, and SCI models with 
the SSURGO, CLIGEN [20], WINDGEN [21], and NRCS 
management practice [22] databases. This assessment 
determined that under current crop rotations, grain yields, and 
tillage management practices, nearly 26.5 million metric tons of 
agricultural residue could be sustainably removed in Iowa. 

None of the current modeling approaches supports analysis 
of the impact of sub-field scale variability on the design and 
implementation of residue harvesting equipment which 
maximizes the sustainable removal of residue. However, the 
high fidelity spatial data necessary to perform sub-field scale 
analyses are becoming increasingly available. The high fidelity 
spatial data available for these analyses include crop yield data 
from combine harvesters and high resolution digital elevation 
models (DEMs) describing surface topography. 

High Fidelity Spatial Data 
GPS technologies and precision agriculture concepts which 

emerged in the 1990s resulted in a number of techniques and 
methodologies for acquiring and using high fidelity spatial 
information in agricultural production systems (Stafford, 2000). 
One of the most widely utililzed products has been harvester 
yield monitors. These datasets are acquired directly from 
harvester yield monitors are typically in the form of ESRI™ 
shapefiles [23]. These datasets provide significant detail at a 
sub-field scale. For example, a typical yield monitor output can 
contain over 400 yield measurements per hectare, and point -to­
point yield across the field may vary by a factor of more than 
10. 

Surface slope impacts the spatial variability of several 
important agricultural productivity characteristics including soil 
water [24], agronomic variables [25] and crop yields [26]. High 
fidelity surface topology is available in the form of digital 
elevation models (DEMs). DEMs have been developed for 
agricultural lands using several different approaches. These 
include the use of U.S. Geological Survey (USGS) produced 
national datasets [27] and more recently the use of light 
detection and ranging (LiDAR) through airborne laser scanning 
[28]. Several states, including Iowa, have worked toward 
LiDAR mapping of the entire state. In Iowa this effort is 
moving forward through the GeoTREE LiDAR mapping 
project [29]. LiDAR mapping is the highest fidelity surface 
slope data currently available and provides a more accurate 
representation of relatively low slope agricultural land than the 
USGS produced DEMs [30]. Based on this, LiDAR data 
assembled through the GeoTREE project are utilized in the 
work presented here. 

Soil characteristics such as organic matter and sand 
fraction in the topsoil horizon have significant spatial 
variability and can impact crop yields and availability of 
agricultural residue for removal. The SSURGO database 
provided by NRCS is available through several web-based 
access points. Soil characteristic data in SSURGO are 
represented at approximately a 10-100 m scale. 

SUBFIELD INTEGRATED MODELING STRATEGY 
Noting the variability of crop yields reported by precision 

harvesting, the variability of slope, and the variability of soil 
characteristics across individual fields, it has been shown there 
is also significant sub-field variability in sustainable 
agricultural residue removal rates[3l]. This paper develops an 
integrated model for guiding the design and implementation of 
residue harvesting equipment that is capable of adjusting to 
sub-field variability of sustainable agricultural residue removal. 
This model includes current modeling tools (i.e., RUSLE2, 
WEPS, and SCI), existing data sources (i.e., SSURGO soils, 
CLIGEN, WINDGEN, and NRCS managements), and available 
high fidelity spatial information (i.e., LiDAR slope and crop 
yield monitor output). The basic modeling process remains the 
same as earlier investigations of sustainable agricultural residue 
removal. The difference is that instead of modeling based on 
average or representative values for crop yields, soil 
characteristics, and slope for a field, county, or larger area, the 
modeling inputs are based on the same spatial scale as the 
precision farming data available. There are three challenges for 
developing an integrated model for sub-field variability of 
sustainable agricultural residue removal-the computational 
challenge of iteratively computing with 400 or more spatial 
points per hectare, the inclusion of geoprocessing tools, and the 
integration of data from different spatial scales. The starting 
place for the sub-field model developed here is the earlier 
integrated model developed by Muth and Bryden [8]. The 
model was built using the VE-Suite integration framework [33], 
which enables extension and updating of the models, databases, 
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and framework as needed without rev1s10n of the existing 
components. 

Figure 1 shows the dataflow within the sub-field integrated 
model. As shown, the computational challenge of iteratively 
computing sustainable residue removal is handled by updating 
the scheduling algorithm. Two iterative loops are used. The 
first assembles databases with all needed information for each 
crop yield data point input as an ESRI shapefile. Following 
completion of this task, the second loop uses the data and 
RUSLE2, WEPS, and SCI models to simulate the 
environmental processes for each spatial location and 
management scenario of interest. For this study about 1,200 
model executions per hectare ( 400 spatial elements, 1 
management scenario, 3 model executions [RUSLE2, WEPS, 
SCI] per spatial element) are required. Upon completion of the 
scenario runs, the model results are provided back to the user 
through an SQLite database that includes references to the 
original yield data point shapefile. The results are formatted for 
simple interaction through standard mapping and visualization 
tools. The database of results is also equipped with a set of 
queries that provide the user with the model results in numeric 
form. 

The geoprocessing tool used in this project is ESRI™ 
ArcGIS 10. ESRI™ ArcGIS 10 was chosen because it has 
automated and commercially supported geoprocessing 
algorithms to perform the functions required for data 
processing in this study. An SQLite database structure is 
integrated into the model to provide management of the high 
fidelity yield and topography datasets. The SQLite databases 
contain the necessary data for the soil, climate, and 
management data modules to assemble and organize the model 
input data. The computational scheduling algorithm packages 
the information and calls the models as needed. The resulting 
data are then accessible via an SQLite database. 

Assembly of the needed data requires resolving 
information at different spatial scales between the various 
databases. RUSLE2 has been developed with the base 
computation unit as a single overland flow path along a hill 
slope profile. For a particular field a number of overland flow 
paths may exist. For conservation planning a particular 
overland flow path is selected to represent a field, and a 
management practice is selected that controls erosion 
adequately for that flow path profile. The conservation 
management planning application of RUSLE2 requires 
selection of a representative soil, slope, slope length, and yield 
that are considered constant for the field. To use RUSLE2 at 
the sub-field scale, the assumption is made that the soil, slope, 

and yield characteristics at each spatial element provide the 
representative overland flow path for the field. In earlier 
studies, the representative values used were based on the 
primary factors of concern at a local scale. These factors were 
then used to create a representative area weighted average 
applicable at a larger scale. In this study those primary factors 
are used directly at a local scale and then aggregated. This is a 
reasonable approach but must be applied with care. Each spatial 
element does not exist as an independent entity but rather is 
influenced by its neighboring elements. Even so, significant 
insight can be gained by applying RUSLE2, WEPS, and SCI at 
a spatial element basis. A similar assumption is made for the 
WEPS model. WEPS models a three-dimensional simulation 
region representing a field or small set of adjacent fields. Using 
WEPS for conservation planning also requires the selection of a 
representative soil, slope, and yield. The assumption made to 
use WEPS in the sub-field scale integrated model is that the 
soil, slope, and yield characteristics for a spatial element in 
question are representative for a field scale simulation region. 
The SCI is modeled for each spatial element by using the SCI 
sub-factors calculated by RUSLE2 and WEPS using the 
assumptions as stated. 

RESIDUE REMOVAL EQUIPMENT DESIGN 
PARAMETERS 

This study uses the sub-field integrated model to 
establishing performance requirements for residue removal 
equipment design concepts that can react to the issues 
associated with sub-field scale variability. The design 
parameters are to maximize the residue removed while 
maintaining sustainable land management practices measured 
by erosion as soil carbon metrics as described previously. The 
sub-field integrated modeling strategy using the framework 
shown in Fig. 1 is executed across a set of potential removal 
rates ranging from 0% to 80% removal. This adds an additional 
36 model executions for each spatial element resulting in nearly 
43,200 model execution per hectare. At each spatial element the 
maximum sustainable removal rate is established as the highest 
rate which has a tolerable soil loss from erosion and does not 
cause a loss in soil carbon. The data layer built through this 
computational process establishes the equipment performance 
requirements and basic design parameters for a residue 
harvester which can adapt to sub-field changes in sustainable 
residue removal rates. 

4 Copyright © 2012 by ASME 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 02/05/2015 Terms of Use: http://asme.org/terms 



RUSLE2 Cl,mates 
SOL1te 

CLIGEN SOL 

WINDGEN SOL 

NAGS skel 
Management:XML 

It· ',:t •' .; :' I I 'I ' 

Soil Data 
Module 

Cltmate Data 
Module 

Management 
Data Module 

Figure L The subfield integrated modeling framework 

Model Validation 
The initial integrated model coupling RUSLE2, WEPS, 

and SCI was verified to provide the same conclusions as the 
NRCS field office versions of the models as described in Muth 
and Bryden [8]. However, in the case of sub-field sustainability 
of agricultural residue removal, there are no computational or 
experimental results available for validation. Because of this, 
the code was validated in two ways. In the first, the high 
fidelity spatial databases were populated with the same field 
average data as is used in the NRCS field office 
implementation. The code was then run and summarized at the 
sub-field scale, demonstrating that the code properly called, 
formatted, computed, and assembled the data needed. In each 
case the integrated sub-field model provided the same 
conclusions as the standard model use cases. In the second way, 
the code was used to analyze several fields, and the results were 
examined for reasonableness and to ensure the results could be 
explained. 

RESULTS 
The sub-field integrated modeling strategy was applied for 

a 57 ha field in Cerro Gordo County, Iowa in the north central 
part of the state. The application of the modeling strategy for 
this field is focused on developing residue harvester equipment 
design parameters meeting the objectives of maximizing the 

User 

RUSLE2--... 

Results 

WEPS 

amount of residue collected and sustainably managing the 
entire field. The field used in this study has diverse soil 
characteristics with soil organic matter ranging from 1.5% to 
7.5% (Fig. 2a) and sand fractions ranging from 17.8% to 87.0% 
(Fig. 2b) in the top layer of the soil. These are important sub­
field characteristics because organic matter is critical for long 
term productivity of the soil, and sand fraction can be an 
indicator of susceptibility to soil loss through erosion. Areas of 
low organic matter and high sand fraction correlate with the 
higher surface slopes shown in Fig. 2c. These field 
characteristics have a negative impact on grain yield, as shown 
in Fig. 2d. Muth et al. (20 12) determined that only 21% of Field 
1 would be managed sustainably with existing commercially 
available residue removal equipment due to the significant 
diversity in soil and surface slope characteristics. The design 
parameters for equipment that adapts to the sub-field variability 
in removal rate are established by executing the sub-field 
modeling strategy for residue removal rates from 0% to 80%. 
The specific removal increments investigated are 0% and 25% 
to 80% at 5% increments. Figure 2e shows the sustainable 
residue removal fraction across the case study field. Figure 2f 
shows sustainable residue removal ranging from 0 to over 5 Mg 
ha-1

. The areas with low grain yield do not sustainably support 
any residue removal. Specifically, for grain yields below 
approximately 5 Mg ha-1 the minimum removal rate of 25% is 
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too high for sustainable removal. It is also shown that 
sustainable removal fraction increases in areas of the field 
where soil organic matter is higher. 

Figure 2e provides spatially explicit perspective on the 
equipment performance requirements for a residue harvester 
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designed to adapt to the sub-field scale variability in sustainable 
removal rate. Areas of the field can be found at all of the 
modeled residue removal rates. This leads to the conclusion 
that maximizing the removed residue for bioenergy production 
while managing the land sustainably for this case study field 
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Figure 2. Subfield scale sustainable residue removal analysis results. 
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Figure 3. Subfield residue harvester equipment performance 
requirements. 

CONCLUSIONS 
This paper develops a computational strategy to model the 

impact of sub-field scale variability on equipment performance 
parameters for agricultural residue removal. The computational 
strategy integrates together data inputs from multiple spatial 
scales, geoprocessing tools to facilitate interaction with high 
fidelity sub-field scale data, and models representing soil 
erosion from wind and water forces and soil organic matter. A 
computational scheduling algorithm is used to support 
integration of the multiple models, databases, and other 
information at the sub-field scale. The model was then used to 
examine a field in Iowa to examine the relationship between 
sub-field variability and residue harvester design parameter 
requirements to simultaneously meet the objectives of 
maximizing sustainable residue removal and managing the 
entire field sustainably. The results of the analysis show that for 
the case study field a residue harvester would have to adjust 
from 0% to 80% residue removal to maximize sustainable 
residue removal. However, a machine design that adjusts from 
40% to 65% residue removals would collect 91% of the 
sustainably removable residue mass while managing the entire 
field sustainably. These results can potentially have significant 
impact on the cost and design parameters for residue harvesting 
equipment. 
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the equipment design would be required to adapt across the full 
range of 0% to 80% removal. One question that arises is 
whether a smaller range of residue removal would be nearly as 
effective. Figure 3 provides perspective on the machine 
performance requirements for the case study field by 
representing the spatially explicitly results in Fig. 2e to a 
histogram that the percentage of field area and percentage of 
sustainable agricultural residue collected at each of the modeled 
removal rates. Figure 3 shows that the 45% removal rate covers 
the largest percentage of the field and provides the largest 
percentage of the residue. Figure 3 also shows that in Field l, a 
residue harvester with the capability to adjust between 40%-
65% residue removals would collect 91% of the sustainably 
removable residue mass. 
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