
Link failure protection and restoration in WDM optical networks 

by 

Fangcheng Tang 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Major: Computer Science 

Program of Study Committee: 
Lu Ruan, Major Professor 

Johnny S. Wong 
Ahmed E. Kamal 

Iowa State University 

Ames, Iowa 

2005 

Copyright © Fangcheng Tang, 2005. All rights reserved. 



11 

Graduate College 
Iowa State University 

This is to certify that the Master's thesis of 

Fangcheng Tang 

has met the thesis requirements of Iowa State University 

Signatures have been redacted for privacy 



Ill 

TABLE OF CONTENTS 

LIST OF TABLES .• 

LIST OF FIGURES 

ABSTRACT. 

CHAPTER 1. Introduction 

1.1 The Architecture of WDM Optical Network 

1.2 Survivable WDM Optical Networks . 

1.3 Issues and Motivation . . . . . . . . 

1.3.1 Dynamic Establishment of Restorable Connection 

1.3.2 Tree-based Protection and Restoration Scheme 

1.4 Outline of The Thesis . . . . . . . . . . . . . . . . . . 

. . . . 

CHAPTER 2. Dynamic Establishment of Restorable Connections using p-

Cycle Protection . . . . . 

2.1 The p-Cycle Concept .. 

. 

v 

vi 

vii 

1 

1 

2 

3 

3 

5 

6 

8 

8 

2.2 Dynamic Restorable Connection Establishment using p-Cycle Protection . 10 

2.2.1 Offiine Computation of Primary p-Cycles 

2.2.2 Online Working Path Computation . . . . 

2.2.3 Online Computation of p-Cycles for Working Path Protection . 

2.2.4 Comparison with Link-Based Protection Method 

2.3 Numerical Results 

2.4 Summary . . . . . 

10 

11 

13 

14 

15 

19 



IV 

CHAPTER 3. A Protection Tree Scheme for First-Failure Protection and 

Second-Failure Restoration . . . . . . . . . . . . . . . . . . 

3.1 The Hierarchical P-Tree Scheme . 

3.2 A New P-Tree Protection Scheme . 

3.3 ILP Formulation ........ . 

3.4 Double-Link Failure Restoration 

3.4.l 

3.4.2 

Double-Link Failure Restoration Model 

Algorithm for Finding the Secondary Backup Path 

3.5 Numerical Results 

3.6 Summary . . . . . 

CHAPTER 4. Summary 

REFERENCES ..... . 

ACKNOWLEDGMENTS .. 

21 

21 

23 

25 

28 

28 

30 

38 

40 

41 

43 

48 



v 

LIST OF TABLES 

Table 2.1 Characteristics of the Primary p-Cycles . . 16 

Table 2.2 USA network with 378 Uniform Demands 17 

Table 2.3 USA network with 1000 Random Demands . 17 

Table 2.4 France Network with 903 Uniform demands 18 

Table 2.5 France Network with 3000 Random demands. 18 

Table 3.1 Result of the ILP Solution . . . . . . . . . 40 

Table 3.2 Result of Double-link Failure Restoration. 40 



vi 

LIST OF FIGURES 

Figure 1.1 Protection/Restoration Schemes . . 2 

Figure 2.1 A p-cycle example . . 9 

Figure 3.1 A hierarchical p-tree 22 

Figure 3.2 Proof of Theorem 2 24 

Figure 3.3 Message Format . . 29 

Figure 3.4 Scenario 1 in secondary backup path search 30 

Figure 3.5 Scenario 2 in secondary backup path search 31 

Figure 3.6 Scenario 3 in secondary backup path search 31 

Figure 3.7 The message format of MSG_ACK 33 

Figure 3.8 Topology of test network . . . . . . 38 



Vll 

ABSTRACT 

In a wavelength-division-multiplexing (WDM) optical network, the failure of fiber links may 

cause the failure of multiple optical channels, thereby leading to large data loss. Therefore the 

survivable WDM optical networks where the affected traffic under link failure can be restored, 

have been a matter of much concern. On the other hand, network operators want options that 

are more than just survivable, but more flexible and more efficient in the use of capacity. In 

this thesis, we propose our cost-effective approaches to survive link failures in WDM optical 

networks. 

Dynamic establishment of restorable connections in WDM networks is an important problem 

that has received much study. Existing algorithms use either path-based method or link-based 

method to protect a dynamic connection; the former suffers slow restoration speed while the lat

ter requires complicated online backup path computation. We propose a new dynamic restorable 

connection establishment algorithm using p-cycle protection. For a given connection request, 

our algorithm first computes a working path and then computes a set of p-cycles to protect the 

links on the working path so that the connection can survive any single link failure. The key 

advantage of the proposed algorithm over the link-based method is that it enables faster failure 

restoration while requires much simpler online computation for connection establishment. 

Tree-based schemes offer several advantages such as scalability, failure impact restriction 

and distributed processing. We present a new tree-based link protection scheme to improve the 

hierarchical protection tree (p-tree) scheme [31] for single link failure in mesh networks, which 

achieves 100% restorability in an arbitrary 2-connected network. To minimize the total spare 

capacity for single link failure protection, an integer linear programming (ILP) formulation is 

provided. We also develop a fast double-link failure restoration scheme by message signaling to 
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take advantage of the scalable and distributed processing capability of tree structure. 
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CHAPTER 1. Introduction 

1.1 The Architecture of WDM Optical Network 

Wavelength-division multiplexing (WDM) [1] optical networks with ultra-high capacity are 

believed to be the backbone transport networks for the next generation Internet. Wavelength

division multiplexing divides the tremendous bandwidth of a fiber into many non-overlapping 

wavelengths (WDM channels). Each channel can be operated asynchronously and in parallel 

at the speed of a few Gbps. The architecture of WDM network consists of wavelength cross

connects(OXCs) interconnected by fiber links. Wavelength cross-connects are classified into 

wavelength-selective cross-connects and wavelength-interchanging cross-connects. An optical 

signal passing through a wavelength-selective cross-connect is routed from an input fiber to an 

output fiber without wavelength conversion. An optical signal passing through a wavelength

interchanging cross-connect may be converted from the input wavelength to a different output 

wavelength. A lightpath is an all-optical connection which may span multiple fiber links to pro

vide a circuit-switched interconnection between two nodes. In WDM networks, a connection 

request is satisfied by establishing a lightpath between source node and the destination node of 

the connection. Without wavelength converters, a lightpath would occupy the same wavelength 

on all fiber links it traverses; This property is called wavelength continuity constraint. Clearly, 

networks with wavelength converters have a lower blocking probability compared to those with

out because they only require some wavelength(which can be different) to be free on each link 

of the path, whereas networks without converters require the same wavelength to be free on all 

the links of a path in order to satisfy a request. In this work, wavelength continuity constraint 

is not considered, so that a lightpath may use different wavelengths on its multiple fiber links. 
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1.2 Survivable WDM Optical Networks 

In an optical network, the failure of a network component such as a fiber link can lead to the 

failure of all the lightpaths traversing it. Since lightpath carries tremendous traffic, such a failure 

will lead to severe disruption to networks. If the traffic can be restored under the failure of a 

network component, the network is called survivable. The approaches to the survivable WDM 

optical networks have been discussed in [21)-[24). In general, there exist two basic approaches to 

survive the link failure in optical networks: protection and restoration. The protection scheme 

finds a backup path for each working path and reserves spare capacity on the backup path before 

any failure occurs. Under normal condition, traffic is carried on the working path; when a link 

failure occurs on the working path, traffic is switched to the backup path .. The restoration 

scheme finds a backup path dynamically and reroutes the affected traffic to the backup path 

after failure occurs. Therefore, the restoration scheme is more efficient in utilizing capacity while 

it is slower than protection scheme since the restoration scheme dynamically discovers a backup 

path then reroute the traffic to that path. 

Primary Primary 

Source·., 

(a) Path-based (b} Link-based 

Figure 1.1 Protection/Restoration Schemes 

Lightpath protection/restoration schemes can be classified into two categories: path-based 

and link-based. In path-based protection/restoration, the source and destination nodes of the 

connections traversing the failed link reroute the traffic to their backup paths on an end-to-end 

basis. In link-based protection/restoration, all the connections that traverse the failed link are 

rerouted around the link, while the source and destination nodes of the connections traversing 
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the failed link are oblivious of the link failure. Fig 1.1 illustrates path-based and link-based 

schemes, where the working path is (1, 2, 3, 6). If there is a failure on the link (2, 3), the traffic 

on the working path will be rerouted to an end-to-end backup path (1, 4, 5, 6) in the path-based 

scheme(Fig l.l(a)), while in the link-based scheme(Fig l.l(b)), the traffic on the failed link (2, 3) 

is rerouted to (2, 4, 5, 3), therefore the backup path (1, 2, 4, 5, 3, 6) is used. 

Wavelength channels on the backup path can be either dedicated or shared. In the dedicated 

method, the backup wavelength reserved on the links of the backup path are not shared with 

other backup paths. In contrast, in the shared method, the backup wavelength reserved on the 

links of the backup path may be shared with other backup paths. As a result, backup channels are 

multiplexed among different failure scenarios (which are not expected to occur simultaneously), 

and therefore shared method is more capacity efficient compared with dedicated method. 

1.3 Issues and Motivation 

1.3.1 Dynamic Establishment of Restorable Connection 

Although efficient in spare capacity utilization, path-based method suffers slow restoration 

due to two reasons. First, after the upstream node adjacent to a failed link detects the failure, 

it needs to send a failure notification signal all the way back to the source node, which is 

responsible for switching the traffic to the backup lightpath. Second, due to backup sharing, 

backup lightpath can't be setup at the connection establishment time. Thus, once the source 

node is notified of a failure, it must use a signaling protocol to setup the backup lightpath before 

it can switch the traffic over to the backup lightpath. The first problem of path-based method 

can be overcome by using link-based method, where failure recovery is done by the upstream 

node of the failed link using the backup lightpath associated with that link. This leads to faster 

restoration than path-based method since the need to notify the source node about the failure 

is eliminated. However, the second problem of path-based method also exists in link-based 

method. In addition, link-based method is complicated to implement: for each link on the 

working path we need to compute a backup path and reserve spare capacity on that path. To 

achieve efficient capacity utilization, backup paths must explore both inter-connection sharing 
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and intra-connection sharing to reuse the backup capacity reserved for the existing connections 

as much as possible. (Inter-connection sharing states that as long as two working paths are link

disjoint, their backup paths can share backup capacity; Intra-connection sharing states that the 

backup paths for different links on the same working path can share backup capacity.) This 

requires the network nodes to maintain either complete or aggregated information about the 

existing connections and leads to complicated backup path computation algorithm [10][11]. 

The trend in backbone transport networks is to dynamically provision connections, i.e., 

lightpaths are established on demand as connection requests arrive at the network. Both path

based and link-based lightpath protection methods have been studied in dynamic establishment 

of restorable connections. (A connection is restorable if it can survive a single link failure.) 

With path-based method, given a connection request, the problem is to compute a working 

lightpath and a backup lightpath so that the total wavelength consumption of the connection 

is minimized by exploiting backup capacity sharing. This problem has received extensive study 

[2][3][4][5][6][7][8][9]. With link-based method, the problem is the same as the path-based case 

except that a set of backup lightpaths needs to be computed for a given connection request and 

the problem has been studied in [10][11]. 

The existing algorithms use either path-based method or link-based method to protect a dy

namic connection, the former suffers slow restoration speed while the latter requires complicated 

online backup path computation. Therefore we propose a new algorithm for dynamic restorable 

connection establishment using p- Cycle protection. The p- Cycle concept was introduced by 

Grover [12]. p-Cycle can be characterized as pre-configured protection cycles in a mesh net

work. With the hybrid cycle/mesh approach, p-Cycle achieves the benefits of both alternatives: 

the efficiency of mesh restoration and the restoration speed of ring networks [12][13]. The key 

advantage of our proposed algorithm over the link-based method is that it enables faster failure 

restoration while requires much simpler online computation for connection establishment. 
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1.3.2 Tree-based Protection and Restoration Scheme 

Tree-based protection schemes have been studied in recent years [26]-[31]. Tree-based pro

tection schemes have several advantages. Network trees can be constructed or updated by 

distributed algorithms. The nodes do not need to know the complete network topology. Only 

the local information about their neighbors are sufficient to construct the network trees. When 

each node in the network has determined its parent node in the network, the network tree is 

built automatically. In addition, with the property of fast updating, network trees provide the 

potential to handle multiple link failures. 

Single-link failures are common failure scenarios. While the recovery from the failure of link 

might take a few hours or a few days, it is certainly conceivable that a second link fails in this 

duration, thus causing two links to be down at the same time. Double-link failure recovery have 

received much attention recently. A framework for multiple-link failure recovery is proposed 

in [37] where three different options are given as follows. 

l. Pre-computed recovery (before first failure) 

In the case of pre-computed recovery, the alternative paths of secondary failures are calculated 

already before a primary failure occurs. 

2. Re-computed recovery (after first failure) 

In this case the secondary alternative paths for working and backup paths affected by a 

primary failure are calculated after the primary failure. 

3. Re-restoration (after secondary failures) 

Corresponding to single failure restoration, the alternative route computation for secondary 

failures could be done on-demand after the occurrence of a secondary failure. Notice that 

the concept of first-failure protection and second-failure restoration(1FP-2FR) [32] has been 

proposed where the primary recovery mechanism is a protection scheme. The idea of 1FP-

2FR is the following: The backup path for each network link is determined before the first 

link failure. When a first link failure occurs, the pre-determined backup path for the failed 

link will be used for traffic restoration. When a second failure occurs, a backup path for that 
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failed link is computed dynamically, then the affected traffic is rerouted to that path. 

Pre-computed recovery schemes have been studied in [33], [34], [35], [36] and [38]. [35],[36] 

and [38] propose p-Cycle design model to achieve dual-failure restorability, [34] gives a capac

ity optimized formulation using backup multiplexing for double-link failures and [33] proposes 

heuristic algorithm that pre-computes backup paths for links. Re-computed recovery are also 

studied in [36], where p-Cycles and spare capacity can be reconfigured dynamically after the first 

failure, creating a new set of p-Cycles that are optimized to withstand possible second failures. 

However, few researches focus on the re-restoration schemes. 

Since network trees provide the capability to handle multiple link failures, we propose a 

protection tree scheme for first-failure protection and second-failure restoration. 

1.4 Outline of The Thesis 

The rest of the thesis is organized as follows. In chapter 2, we propose a new dynamic 

restorable connection establishment algorithm using p-cycle protection. For a given connection 

request, our algorithm first computes a working path and then computes a set of p-cycles to 

protect the links on the working path so that the connection can survive any single link failure. 

The key advantage of the proposed algorithm over the link-based method is that it enables 

faster failure restoration while requires much simpler online computation for connection estab

lishment. The algorithm consists of three components: offiine computation of primary p-cycles, 

online computation of the working path, and online computation of p-cycles for working path 

protection. We propose two algorithms for the first component called SLA and Grow and two 

algorithms for the second component called PS and PNS. We will show the performance of the 

different combination of our proposed algorithms in term of the total capacity required. 

In chapter 3, we present a new tree-based link protection scheme for single link failure in mesh 

networks, which achieves 1003 restorability in an arbitrary 2-connected network. To minimize 

the total spare capacity for single link failure protection, an integer linear programming{ILP) 

formulation is provided. We also propose a fast double-link failure restoration scheme by message 

signaling to take advantage of the scalable and distributed processing capability of tree structure. 
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The performance of our schemes are shown by simulation. 

Finally we give a summary of our work in chapter 4. 
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CHAPTER 2. Dynamic Establishment of Restorable Connections using 

p-Cycle Protection 

In this chapter, we propose a new dynamic restorable connection establishment algorithm 

using p-cycle protection. This chapter is organized as follows. In Section 2.1, we introduce the p

cycle concept. In Section 2.2, we describe the new dynamic restorable connection establishment 

algorithm using p-cycle protection. We study the performance of the algorithm in Section 2.3. 

Finally, we summarize our work in Section 2.4. 

2.1 The p-Cycle Concept 

p-Cycle is a novel method for protecting working capacity (i.e., capacity used by the working 

paths of the connections) in WDM networks that can achieve ring-like recovery speed while main

taining the capacity efficiency of a mesh-restorable network (12]. A p-cycle is a pre-configured 

cycle formed out of the spare capacity in the network. A p-cycle of length k occupies k units of 

spare capacity in total, with one unit on each link on the cycle. (One unit of capacity is equal 

to one wavelength.) Like a self-healing ring, a p-cycle provides one restoration path for every 

on-cycle link; Unlike a self-healing ring, a p-cycle also provides two restoration paths for every 

straddling link-a link whose two end nodes are on the cycle but itself is not on the cycle. Fig 2.1 

illustrates the concept of p-cycle. In the figure, a - b - c - d - f - a is a p-cycle. For the on-cycle 

link a - b, the p-cycle provides one restoration path a - f - d - c - b. For the straddling link 

f - b, the p-cycle provides two restoration paths: f - a - b and f - d - c - b. Thus, a p-cycle 

can protect one unit of working capacity on every on-cycle link and protect two units of working 

capacity on every straddling link. This allows a p-cycle to protect more working capacity than 

a self-healing ring of the same size while maintaining the high restoration speed of a self-healing 
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ring because only the two end nodes of a failed link need to reconfigure their cross-connects to 

switch the traffic onto the restoration paths. The efficiency of a p-cycle is defined as 2stk where 

s is the number of straddling links of the p-cycle and k is the number of on-cycle links. The 

denominator is the total spare capacity consumed by the p-cycle and the numerator is the total 

working capacity that the p-cycle can protect. For the p-cycle shown in Fig. 2.1, the efficiency 

is 2*~+5 = 2.2 since it has 3 straddling links and 5 on-cycle links. Clearly, the larger is the 

efficiency, the more working capacity can a unit of spare capacity on the p-cycle protect. 

Figure 2.1 A p-cycle example 

Studies on p-cycle have been focused on static traffic, where the connections to be established 

are given and the problem is to find an optimal set of p-cycles to protect them. Two versions 

of the optimization problem have been studied: non-joint version and joint version. In the non

joint version, working capacity on every link is assumed given (i.e., routing of the working paths 

for the connections are known) and the goal is to find a set of p-cycles to protect the working 

capacity so that the total spare capacity used by the p-cycles is minimized [12][14][15][16]. In 

the joint version, the routing of the working paths and the p-cycles are computed jointly so that 

the total capacity (i.e., working capacity plus spare capacity) is minimized [17][18][19]. To our 

best knowledge, no study has been done on applying p-cycles to protect dynamic connections. 

In this chapter, we give the first algorithm for dynamically establishing restorable connections 

using p-cycle protection and describe its advantage over link-based protection method. 
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2.2 Dynamic Restorable Connection Establishment using p-Cycle 

Protection 

Given a connection request, our algorithm first computes a working path for the connection 

and then for each link on the working path computes a p-cycle to protect it. This enables the 

connection to survive any single link failure because when a link on the working path fails the 

p-cycle associated with the failed link can provide a restoration path for it. 

The p-cycles to be created for protecting a working path are chosen from a set of primary 

p-cycles precomputed offiine. Thus, our algorithm consists of three components: 1) offiine com

putation of primary p-cycles, 2) online computation of working path, and 3) online computation 

of p-cycles for protecting the working path. We describe each of these components in this sec

tion. We assume the network nodes are capable of wavelength conversion so that links on the 

working path of a connection as well as links on a p-cycle can use any available wavelength on 

the link. 

2.2.1 OfHine Computation of Primary p-Cycles 

Before network operation, we precompute one primary p-cycle for each link in the network 

as follows. First, we compute a set S of p-cycles so that every link l in the network can be 

protected by at least one p-cycle in S, i.e., there is at least one p-cycle in S for which l is either 

an on-cycle link or a straddling link. Next, for each link l in the network, we obtain the p-cycle 

with the highest efficiency among all p-cycles in S that can protect z- and designate it as the 

primary p-cycle of l. 

Various algorithms can be used to generate S. In this chapter, we adopt two existing algo

rithms: Straddling Link Algorithm (SLA) [20] and Grow [15]. 

2.2.1.1 Straddling Link Algorithm (SLA) 

Straddling Link Algorithm (SLA) generates a set of p-cycles as follows. For each link l, the 

algorithm first finds the shortest path P1 between the two end nodes of l that does not use l. It 

then tries to find the shortest path P2 between the two end nodes of l that is node-disjoint with 
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P1 and does not use l. If P2 can be found, then it is combined with P1 to form a p-cycle. This 

p-cycle can protect l since l is a straddling link. If P2 cannot be found, then P1 is combined 

with l to form a p-cycle. This p-cycle can protect l since l is on-cycle. Let m be the number of 

links in the network, then SLA generates exactly m p-cycles and every link is protected by at 

least one of these p-cycles. 

2.2.1.2 Grow 

The Grow algorithm we use here is a variation of the original Grow algorithm in that our 

algorithm generates exactly mp-cycles for a given network while the original Grow algorithm 

generates m2n p-cycles in the worst case. (m and n are the number of links and the number 

of nodes in the network respectively.) Our Grow algorithm first uses SLA to generate a set of 

m p-cycles, it then expands each of these p-cycles to create larger p-cycles as follows. Let c be 

a p-cycle generated by SLA, we pick one link l on c and try to find the shortest path between 

the end nodes of l that is node-disjoint from c. If such a path cannot be found, we pick another 

link on c and try again. If such a path can be found, we remove l from c and add the path 

to c to get a larger p-cycle. (Note that this converts l from an on-cycle link to a straddling 

link.) We then pick a link on the new cycle and start over the process until no path can be 

found to replace any link on the cycle to expand the cycle. Among all the intermediate p-cycles 

obtained in the process, we keep the one with the best efficiency. Thus, a total of m p-cycles 

are generated by Grow. Note that whenever we replace an on-cycle link by a path, we get a 

larger p-cycle with possibly higher efficiency due to the increase of the straddling links. Thus, 

the p-cycles generated by Grow are guaranteed to have better or same efficiency as the p-cycles 

generated by SLA. 

2.2.2 Online Working Path Computation 

During network operation, connection requests arrive at the network dynamically. In this 

section, we present an online algorithm for computing the working path for a given connection 

request. 
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Our algorithm first removes all links with no free wavelengths from the network graph. We 

then assign a cost to every link in the resulting graph and use Dijkstra's algorithm to compute 

the least cost path between the source node and the destination node. If such a path can be 

found, then it is designated as the working path of the connection. Otherwise, the connection 

request is denied. 

The cost of a link is a function of the protectable working capacity of the link, which is defined 

as the number of working capacity units on the link that can be protected by the existing p

cycles in the network. We use P(l) to denote the protectable working capacity of a link l. 

Before the first connection request arrives at the network, no p-cycle is created in the network 

and therefore P(l) is 0 for all l. As connection requests arrive at the network, p-cycles will be 

created to protect the working paths of the connections and the P(l) values will be updated 

according to the algorithm to be described in the next section. 

We propose two different link cost functions for working path computation: Protectable 

Working Capacity NonSensitive and Protectable Working Capacity Sensitive. 

2.2.2.1 Protectable Working Capacity NonSensitive (PNS) 

The cost of link l is computed as the following: 

rost(I) ~ { : 

where K is a large constant. 

if P(l) = 0 

if P(l) > O 

The motivation is to avoid using links that cannot be protected by any existing p-cycles 

whenever possible, which is achieved by assigning a high cost to the links whose P(l) value is O. 

For all other links, the cost is set to 1 to indicate that it is desirable to use these links on the 

working path since these links are already protected by some existing p-cycles. This link cost 

function is not sensitive to the protectable working capacity on the links because all links with 

P(l) value greater than 0 get the same cost. 
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2.2.2.2 Protectable Working Capacity Sensitive (PS) 

The cost of link l is computed as the following: 

where K is a large constant. 

cost(l) = { K1 

P(l) 

if P(l) = 0 

if P(l) > 0 

Same as PNS, we assign a high cost to those links whose P(l) value is 0 since we want to 

avoid using these links. Unlike PNS, the cost of a link with P(l) value greater than 0 is sensitive 

to the protectable working capacity on the link in that the link cost is set to the reciprocal of 

its P(l) value. The cost function favors the use of links with large P(l) value, which can delay 

the time when a link's P(l) value drops to 0 because a link with larger P(l) value is used before 

using a link with smaller P(l) value whenever possible. It's desirable to prevent a link's P(l) 

value from dropping to 0 because when a working path uses a link whose P(l) value is 0, we must 

create a new p-cycle to protect the link, which incurs additional spare capacity consumption. 

2.2.3 Online Computation of p-Cycles for Working Path Protection 

After the working path of a connection is computed, we need to compute a set of p-cycles 

to protect the working path. For each link l on the working path, our algorithm computes a 

p-cycle to protect it according to the following two cases. 

• Case 1: P(l) = 0 

In this case, no existing p-cycle can protect l, so we need to create a new p-cycle-the 

primary p-cycle of l-to protect it. (Note that the primary p-cycles of all links are pre

computed offiine.) Let C be the primary p-cycle of l. If any link on C does not have free 

wavelengths, then the p-cycle cannot be created to protect l and the connection request 

must be denied. Otherwise, we create the p-cycle by configuring the OXCs in the on-cycle 

nodes to interconnect one available wavelength in each on-cycle link. Each node on the 

p-cycle also records the ports used by the p-cycle so that when a link protected by this 

p-cycle fails in the future, the end nodes of the failed link know how to switch the traffic 
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to the restoration path provided by the p-cycle. We also update the protectable working 

capacity of the links protected by the newly created p-cycle as follows. For every link eon 

the p-cycle we increase P(e) by 1 if e-=/:- l; for every link e that is a straddling link of the 

p-cycle we increase P(e) by 2 if e -=/:- l and we increase P(e) by 1 if e = l. The update is 

based on the fact that once a p-cycle is created, it can protect one unit of working capacity 

on every on-cycle link and protect two units of working capacity on every straddling link. 

Since link l will consume one unit of protectable working capapcity provided by the newly 

created p-cycle, P(l) is not increased if l is an on-cycle link and P(l) is increased by 1 if l 

is a straddling link. 

• Case 2: P(l) > 0 

In this case, at least one existing p-cycle can protect l, so we randomly choose one of those 

p-cycles to protect l. Since the working path of the current connection consumes one unit 

of protectable working capacity on l, we need decrease P(l) by l. 

2.2.4 Comparison with Link-Based Protection Method 

The advantage of the proposed p-cycle protection method over the conventional link-based 

protection method in dynamic restorable connection establishment is twofold. First, the p

cycle based method is much simpler to implement than the link-based method. In link-based 

method, for each link on the working path a backup path needs to be computed. To achieve a 

reasonable spare capacity consumption on the backup paths, backup capacity sharing needs to 

be exploited, which leads to complicated backup path computation algorithms. On the other 

hand, p-cycle based method is very simple: for each link l on the working path we simply check 

the value of P(l). If it is 0, we create a new p-cycle to protect it and update the protectable 

working capacity of those links protected by the new p-cycle; otherwise we simply decrease P(l) 

by l. There is no need to compute an individual backup path for each link on the working 

path like the link-based method. In addition, the p-cycles to be created during connection 

establishment are precomputed offline, therefore the online computation required for dynamic 

restorable connection establishment is minimal. Second, p-cycle based method supports much 



15 

faster failure recovery than link-based method. In link-based method, although the backup 

paths are computed at the time of connection establishment, we cannot configure the OXCs to 

setup the backup paths at the connection establishment time due to the sharing of wavelengths 

among the backup paths. Thus, upon a link failure, a signaling protocol must be used to first 

setup the backup path for the failed link before the upstream node of the failed link can switch 

the traffic over to the backup path. In contrast, p-cycles are fully configured when they are 

created. Thus, upon a link failure, the two end nodes of the failed link just need to reconfigure 

their cross-connects to "break into" the p-cycles protecting the working capacities on the link 

so that traffic can be switched to the restoration paths provided by the p-cycles. 

2.3 Numerical Results 

We used two test networks to evaluate the performance of our p-cycle based dynamic 

restorable connection establishment algorithm. The two test networks are the 28-node 45-link 

USA long haul network and the 43-node 71-link France network taken from [15]. 

Since the performance of the online connection establishment algorithm depends on the pri

mary p-cycles generated oflline, we first compare the two oflline primary p-cycle generation 

algorithms (SLA and Grow) for the number of unique primary p-cycles generated, the average 

primary p-cycle length and the average primary p-cycle efficiency. Table 2.1 shows the compar

ison of SLA and Grow for the two test networks. Note that in all cases, the number of unique 

primary p-cycles is smaller than the number of links in the network. This is because some links 

can have the same primary p-cycle. As shown in the table, the primary p-cycles generated by 

Grow are larger and have higher efficiency than those generated by SLA. 

We implemented the online algorithm for computing p-cycles to protect a working path 

presented in Section 2.2.3 and three different online working path computation algorithms, 

namely SP, PNS, and PS. SP is the algorithm that simply uses the shortest path as the working 

path for a connection. PS and PNS are the algorithms given in Section 2.2.2 that use protectable 

working capacity sensitive and protectable working capacity nonsensitive link cost functions 

respectively. The two different oflline primary p-cycle generation algorithms and the three 
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Table 2.1 Characteristics of the Primary p-Cycles 

I USA 
SLA I Grow 

I France 
SLA I Grow 

Number of 
unique 36 29 59 50 

p-cycles 
Average 
p-cycle 6.14 13.24 6.49 13.20 
length 

Average 
p-cycle 1.32 1.80 1.34 1.86 

efficiency 

different online working path computation algorithms give us a total of six different algorithms 

for dynamic connection establishment: SLA+SP, SLA+PNS, SLA+PS, Grow+SP, Grow+PNS, 

Grow+PS. We evaluated the performance of these six algorithms under two demand sets for 

each test network. The first demand set is uniform, which contains one demand for every pair of 

nodes. The second demand set is random, which contains a large number of randomly generated 

demands. For the USA network the uniform demand set contains 378 demands and the random 

demand set contains 1000 demands. For the France network the uniform demand set contains 

903 demands and the random demand set contains 3000 demands. 

Table 2.2 through Table 2.5 give the performance results of the six algorithms for USA 

network and uniform demand, USA network and random demand, France network and uniform 

demand, France network and random demand respectively. Each table shows the number of 

p-cycles created, total working capacity used by the working paths, tqtal spare capacity used 

by the p-cycles, the total capacity used by all demands (total working capacity plus total spare 

capacity), redundancy (the ratio of total spare capacity to total working capacity), average 

working path length, and average ratio of working path length to shortest working path length 

(i.e., length of the working path when SP is used). 

As shown in the four tables, with a fixed working path computation algorithm, significantly 

less p-cycles are used to protect the demands when Grow is used than when SLA is used. This 

is expected because Grow generates primary p-cycles with higher efficiency and longer length 

than SLA does, thus a p-cycle generated by Grow can protect much more working capacity than 
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Table 2.2 USA network with 378 Uniform Demands 

I SP 
SLA 
PNS PS I SP 

Grow 
PNS PS 

# p-cycles 283 154 155 111 61 60 
Working Cap. 1273 1486 1622 1273 1368 1503 

Spare Cap. 2303 1292 1311 2255 1239 1220 
Total Cap. 3576 2778 2933 3528 2607 2723 

Redundancy 1.81 0.87 0.81 1.77 0.91 0.81 
Ave working 
path length 3.37 3.93 4.29 3.37 3.62 3.98 
Ave ratio to 

SP length 1.00 1.17 1.27 1.00 1.07 1.18 

Table 2.3 USA network with 1000 Random Demands 

I SP 
SLA 
PNS PS I SP 

Grow 
PNS PS 

# p-cycles 682 388 391 256 155 153 
Working Cap. 3224 3850 4162 3224 3610 3822 

Spare Cap. 5596 3329 3367 5204 3157 3119 
Total Cap. 8820 7179 7529 8428 6767 6941 

Redundancy 1.74 0.86 0.81 1.61 0.87 0.82 
Ave working 
path length 3.22 3.85 4.16 3.22 3.61 3.88 
Ave ratio to 

SP length LOO 1.19 1.29 1.00 1.12 1.19 

a p-cycle generated by SLA can. With a fixed offiine primary p-cycle generation algorithm, PS 

and PNS require much less p-cycles to protect the demands than SP does. This can be explained 

as follows. SP always uses the shortest path as the working path, which may contain some links 

with no protectable working capacity and therefore new p-cycles must be created to protect 

those links. On the other hand, both PNS and PS try to avoid routing the working path over a 

link with no protectable working capacity, thus they can reduce the number of p-cycles created 

for protecting the working path. 

In terms of the total capacity used, Grow has better performance than SLA under all com-

binations of test network, demand set, and working path computation algorithm. 

We now compare the performance of the three working path computation algorithms. Since 

Grow leads to less total capacity consumption than SLA, we focus on the performance compari-

son of SP, PNS, and PS when Grow is used to generate the primary p-cycles. As shows in Table 

2.2 through Table 2.5, the performance of PNS and PS are much better than SP in terms of 
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Table 2.4 France Network with 903 Uniform demands 

PS I SP 
GROW I SP 

SLA 
PNS I PNS I PS 

# p-cycles 711 532 551 296 202 220 
Working Cap. 3458 4713 4948 3458 3845 4270 

Spare Cap. 5679 4151 4287 5506 3661 3886 
Total Cap. 9137 8864 9235 8964 7506 8156 

Redundancy 1.64 0.88 0.87 1.59 0.95 0.91 
Ave working 
path length 3.83 5.22 5.48 3.83 4.26 4.73 
Ave ratio to 

SP length 1.00 1.36 1.43 1.00 1.11 1.23 

Table 2.5 France Network with 3000 Random demands 

SLA GROW 
SP PNS PS SP I PNS I PS 

# p-cycles 2275 1680 1730 954 659 701 
Working Cap. 11068 15090 15915 11068 12297 13234 

Spare Cap. 18138 13092 13478 17671 11826 12313 
Total Cap. 29206 28182 29393 28739 24123 25547 

Redundancy 1.64 0.87 0.85 1.60 0.96 0.93 
Ave working 
path length 3.69 5.03 5.31 3.69 4.10 4.41 
Ave ratio to 

SP length 1.00 1.36 1.44 1.00 1.11 1.20 

the total capacity used. For USA network with uniform demand, PNS and PS require 26.11 % 

and 22.82% less total capacity than SP respectively. For USA network with random demand, 

the capacity saving by PNS and PS are 19.713 and 17.64% respectively. The capacity saving 

by PNS and PS in France network with uniform demand are 16.27% and 9.01% respectively, 

and the capacity saving by PNS and PS in France network with random demand are 16.06% 

and 11.11% respectively. It's clear that PNS and PS result in more total working capacity con

sumption than SP does because SP always uses the shortest path as the working path. However, 

PNS and PS lead to significantly less total spare capacity consumption than SP does so that 

the total capacity consumption is less. This demonstrates that by avoiding using links with no 

protectable working capacity when routing a working path, we can effectively reuse the existing 

p-cycles to protect the working path and the resulted spare capacity saving is greater than the 

increase in working capacity consumption caused by not using the shortest path as the working 

path. In addition, the increase of the working path length is minor when PS and PNS are used. 
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As shown in the tables, the average increase of the working path length over the shortest working 

path length is around 10% and 20% for PNS and PS respectively. 

A comparison of PNS and PS can give us some interesting insight about them. In all cases, 

the redundancy of PS is smaller than that of PNS but PS results in more total capacity consump

tion than PNS. The lower redundancy of PS means that a unit of spare capacity can protect 

more units of working capacity, thus PS is more effective in reusing the existing p-cycles for 

working path protection. However, the working path found by PS tends be longer than that 

found by PNS because in PNS all links with at least one protectable working capacity unit are 

used with equal probability while in PS links with higher protectable working capacity are pre

ferred to links with lower protectable working capacity. The higher total capacity consumption 

by PS indicates that its higher working capacity consumption caused by using longer working 

paths overweighs its benefit gained in reusing existing p-cycles effectively. 

In summary, Grow is better than SLA because it generates primary p-cycles with higher 

efficiency and PNS is better than PS and SP because it allows efficient reuse of existing p-cycles 

for working path protection while keeping the working path not much longer than the shortest 

path. Thus, Grow combined with PNS gives the best performance in terms of total capacity 

consumption. 

2.4 Summary 

In this chapter, we propose a new algorithm for dynamic establishment of restorable con

nections using p-cycle protection. The algorithm is much simpler to implement than the con

ventional link-based algorithm because there is no need to compute an individual backup path 

for every link on the working path. In addition, the algorithm achieves much faster restoration 

speed because the p-cycles used for working path protection are fully configured when they are 

created while in link-based method the backup paths can't be configured until after a link failure 

occurs. Our algorithm consists of three components: ofH.ine computation of primary p-cycles, 

online computation of working path, and online computation of p-cycles for working path pro

tection. The aim of the first component is to generate a good p-cycle for protecting each network 
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link in advance so that the online computation for connection establishment is minimal. Two 

algorithms (SLA and Grow) are proposed for this component. For the second component, we 

propose two algorithms (PNS and PS) designed to find a working path that can take advantage 

of the existing p-cycles for its protection. We conducted simulations to study the performance 

of the different combinations of the proposed algorithms. The results show that Grow combined 

with PNS gives the best performance in terms of total capacity consumption. 
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CHAPTER 3. A Protection Tree Scheme for First-Failure Protection and 

Second-Failure Restoration 

In this chapter we propose a new tree-based link protection scheme for single link failure 

in mesh networks, which achieves 1003 restorability in an arbitrary 2-connected network. We 

also propose a distributed algorithm for fast double-link failure restoration using protection 

tree to take advantage of the scalable and distributed processing capability of tree structure. 

This chapter is organized as follows. In Section 3.1, we introduce the concept of hierarchical 

protection tree (p-tree). In Section 3.2 we propose our new p-tree scheme based on the previous 

work. Then we give an integer linear programming(ILP) formulation in Section 3.3 to minimize 

the total spare capacity for single link failure protection. In Section 3.4 we propose a fast double

link failure restoration scheme. We study the performance of our p-tree schemes in Section 3.5. 

Finally, we summarize our work in Section 3.6. 

3.1 The Hierarchical P-Tree Scheme 

A link protection scheme based on the concept of hierarchical protection tree (p-tree) is 

proposed in [31 ]. This scheme forms a hierarchical spanning tree in the network that which is 

a special type of spanning tree for link protection in which the links in the higher layers provide 

more protection capacity than the lower layers of the tree. 

For each node u in the network other than the root, there is exactly one parent in the 

hierarchical tree which is called primary parent of node u. Other than primary parent, the 

neighbor nodes except its children are called backup parent of node u. Fig 3.1 shows a hierarchical 

p-tree in an arbitrary network, where thick lines denote tree links and thin lines denote non-tree 

links. In this example, node Dis the primary parent of node G, and the neighbor nodes B, C 
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Figure 3.1 A hierarchical p-tree 

and Hare the backup parents of node G. The protection scheme used for this hierarchical p-tree 

is described as follows: 

1. If a link not on the p-tree fails, the two nodes adjacent to the failure will switch the traffic 

to their primary parent so that the traffic is restored through a path consisting of only 

tree links. For example, if link B - G in Fig 3.1 fails , the traffic on it will be restored 

through G - D - A - B. 

2. If a link on the p-tree fails, one of the nodes adjacent to the failure will be disconnected 

from p-tree. This node will switch the traffic to one of its backup parents so that the traffic 

is restored through a path consisting of one or more tree links plus exactly one non-tree 

link. For example, if link D - G in Fig 3.1 fails, G will switch the traffic to its backup 

parent C so that the path G - C - A - D is used to restore the traffic. 

The hierarchical p-tree scheme allows spare capacity sharing. For example, in Fig 3.1, since 

D is the primary parent of node G, link D - G is on the backup path of link B - G,C - G 

and H - G. Therefore, the spare capacity reserved on link D - G is shared by the backup 

paths for B - G,C - G and H - G. To protect against any single link failure, a spare capacity 

at least equal to the maximum of working capacities on link B - G,C - G and H - G should 

be reserved on link D - G. In [31], a distributed heuristic algorithm is proposed to solve the 

following problem: Given a connected simple network and the working and spare capacity on 

links, find a hierarchical p-tree to maximize the restorability of network. With the distributed 
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algorithm, the p-tree can be maintained dynamically by message exchanges among the network 

nodes in the case of network node/link addition and removal. 

However, a problem with the hierarchical p-tree in [31] is that it may not find a backup path 

for a link even if the network is 2-connected. In particular, when a node has no backup parent, 

the scheme can not find a backup path for any on-tree link adjacent to this node. For example, 

node D in Fig 3.1 has no backup parent, when link A- D fails, the scheme can not find a backup 

path for it. In the next section, we propose a new p-tree scheme to solve this problem. 

3.2 A New P-Tree Protection Scheme 

In this section, we present two theorems and propose a new p-tree scheme which can survive 

any single link failure in an arbitrary 2-connected network based on the following theorem. 

Definition: Let T(V, Er) denote a spanning tree of a 2-connected network G(V, E) where 

Vis the set of nodes , Eis the set of links in the network G and ET ~ E. A link e E Er is 

called tree link, a link e E E - ET is called non-tree link. For any tree link e = ( u, v), a path 

between u and v which is link disjoint with e and contains exactly one non-tree link is called a 

back path. For any non-tree link e = (u, v), a path between u and v which is link disjoint with 

e, and contains only tree links is called a tree path. 

In Fig 3.1, A - C - G - D is a back path of tree link (A, D) because it contains exactly one 

non-tree link (C, G). F - B - A - D - His a tree path of non-tree link (F, H) because all the 

links on the path are tree links. 

Theorem 1: Given a connected network and a spanning tree of the network, for any non-tree 

link, there exists exactly one tree path. 

Proof: Let e = ( u, v) be a non-tree link. Since the spanning tree contains all nodes, u and 

v are on the spanning tree. Therefore, there is a tree path for e. There must be exactly one tree 

path for e because a spanning tree contains no cycles. • 

Theorem 2: Given a 2-connected network and a spanning tree of the network, for any tree 

link, there exists a back path. 

Proof: Let e = ( u, v) be a tree link. The removal of link e will break the spanning tree into 
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Figure 3.2 Proof of Theorem 2 

two components, c1 and c2, as shown in Fig 3.2. Since the network is 2-connected, by Menger's 

theorem [25], there must be a path between u and v that does not contain e. Thus, there must 

exist a non-tree link between ci and c2, say (m, n). Since node u, m E c1, there exists a path 'P1 

between u and m E q. Similarly there exists a path 'P2 between v and n E c2. Hence, the path 

'P1 LJ{ ( m, n)} LJ 'P2 is a back path of the tree link e. • 

As discussed in the section 3.1, the hierarchical p-tree scheme proposed in [31] can not find 

a backup path for some tree link such as link (A, D) in Fig 3.1. However, based on Theorem 2, 

we know there exists a back path D - G - C - A for (A, D). Therefore, the failure on (A, D) 

can be restored by its back path D - G - C - A. 

Based on Theorem 1 and Theorem 2, we propose the following p-tree link protection scheme: 

l. If a non-tree link fails, as original hierarchical p-tree scheme, the traffic on the failed link 

is re-routed to its tree path. 

2. If a tree link fails, one of its back paths is selected to re-route the traffic on the failed link. 

The ILP formulation given in the section 3.3 determines which one of the back paths is 

selected with the objective of minimizing the total spare capacity required for surviving 

any single link failure. 

The above p-tree scheme can restore traffic upon any single link failure in a 2-connected 

network, because Theorem 1 and Theorem 2 guarantee that there exists a backup path for any 

link in the network. 
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3.3 ILP Formulation 

Consider a network G(V, E) with a set of nodes V and a set of links E. In this chapter, a 

link e = ( i, j) E E denotes the bidirectional link between node i and node j, where i < j. Each 

link e = ( i, j) E E is associated with two arcs, ( i -+ j) and (j -+ i). 

In this section, we give an ILP formulation for the following problem: 

Given a 2-connected network G(V, E) and the working capacity on link e E E, find a p-tree 

T(V, Er) where Er ~ E and determine the backup path for every link e E E following our 

p-tree scheme with the objective of minimizing the total spare capacity required to survive any 

single link failure. 

We are given the following inputs. 

• G: Topology of the network. 

• V: nodes in the network (numbered 1 through N). 

• E: set of the bidirectional links in G. ( i, j) E E denotes a link between node i and node j 

where i < j. 

• E: set of the arcs in G. (i-+ j) EE denotes an arc from node i to node j. 

• Wij: working capacity on link (i,j). 

• Ci,j:cost of a unit of capacity on link (i,j), unit cost is assumed here, i.e., Ci,j = 1. 

The following variables are determined by the ILP. 

• Ti,j: take on the value of 1 if link (i,j) is on the p-tree, otherwise 0. 

• Fij,n: take on the value of 1 if the restoration route from m ton goes through arc (i-+ j), 

otherwise 0. 

• <P~F: take on the value of 1 if link (m,n) is protected by link (i,j). 

• 07,_;n: take on the value of 1 if link (m,n) is protected by a tree link (i,j). 

• Si,j: spare capacity reserved on link (i,j). 
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Our objective is to minimize the total spare capacity reserved: 

Minimize L: ci,jSi,j 
(i,j)EE 

Subject to the following constraints: 

2:: 1i,1 = N - 1 
(i,j)EE 

""""' F:n_,n _ """"' pr:i,n = L.J i,J L.J J,k 
i,s.t.(i->j)EE k,s.t.(j->k)EE 

V(m, n) EE, Vj = l..N 

F:::,0:: = 0, V(m, n) E E 

-1 m=J 

1 n=j 

0 otherwise 

<Pr;:t = Fi:t + Fj'.t, V(m,n) EE, V(i,j) EE 

L <Pr;:t- L or;:t = Tmn, V(m,n) EE 
(i,j)EE (i,j)EE 

of,t::::; <Pr;:t,V(m,n) E E,V(i,j) EE 

of'/ ::::; 1i,1 1 V(m, n) EE, V(i,j) EE 

<Pr;:t + Ti,j -1::::; of,t, V(m,n) EE, V(i,j) EE 

wm,n x <P1!:t ::::; Si,j, V(m, n) EE, V(i,j) EE 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Constraints (3.1) and (3.5) ensure a p-tree is set up based on the following theorem. 

Theorem 3: Let T(Vr, Er) be a subgraph of a connected graph G(V, E). If I.Erl = IVI - 1 

and V(u, v) E E - Er, there exists a path 'P between u and v s.t. l E Er for all l E 'P, then 

T(Vr,Er) is a spanning tree of G(V,E). 

Proof: 

1. First, we prove T is connected by contradiction. Assume T is not connected, then T 

consists of at two components. Let T1 and T2 be two components in T. Since G is 

connected, there must exist ( u, v) E E - Er with u in T1 and v in T2. With the condition 
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we have, there is a path in T that connects u and v. This means that T1 and T2 are 

connected in T , which is a contradiction. 

2. Next, we prove IVrl = IVI by contradiction. Assume IVrl =/= IVI, then there exists a node 

u E V - Vr. Since G is connected, u is connected with some node v E Vr, such that 

(u, v) EE - Er. With the condition we have, there exists a path in Er that connects u 

and v, this means that u E Vr which is a contradiction. 

3. We have proved that T(Vr, Er) is connected and IVrl = !VI· With the condition !Erl = 

!VI - 1, T must be acyclic. By definition, a connected acyclic subnetwork of G containing 

all the nodes in G is a spanning tree of network G. • 

The left side of Equation (3.5) denotes the number of non-tree links that protect link (m, n). 

For a non-tree link (m, n), the right side of (3.5) equals 0, which ensures that a non-tree link 

is protected by a backup path consisting of tree links only. Thus, for any non-tree link there 

is a tree path. Constraint (3.1) ensures that the number of tree links is !VI - l. According to 

theorem 3, constraint (3.1) and (3.5) ensure that a spanning tree of network G is found. 

Using standard network flow formulation, constraint (3.2) ensures that for all (m, n) E E, 

there is a backup path R from m ton. Constraint (3.3) ensures that R does not use link (m,n). 

Constraint (3.4) ensures that link (m, n) is protected by link (i, j), if and only if the backup 

path from m ton goes through either (i -+ j) or (j -+ i). 

Constraint (3.5) implies that a back path is selected as the backup path of a tree link and a 

tree path is selected as the backup path of a non-tree link. 

Constraint (3.6)-(3.8) ensure that 8'f:t = 1, if and only if link (m, n) is protected by link 

(i,j) and link (i,j) is a tree link. 

Constraint (3.9) ensures that enough spare capacity is reserved on each link to protect again 

any single link failure. 
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3.4 Double-Link Failure Restoration 

When a link failure occurs, it might take a few hours to a few days to repair the failed link. 

It is certainly conceivable that a second link failure might occur in this duration, leading to 

double-link failure in the network. Double-link failure has been studied in [33]-[38]. 

In this section, we expand our p-tree scheme to deal with double-link failure, where the 

concept of first-failure protection and second-failure restoration(1FP-2FR) [32] is implemented. 

The idea of 1FP-2FR is the following: When a p-tree is constructed, the backup path for each 

network link is determined. When a first link failure occurs, the pre-determined backup path 

for the failed link will be used for traffic restoration. When a second failure occurs, a backup 

path for that failed link will be searched dynamically using the algorithm given in this section. 

We assume that a p-tree is pre-computed by the ILP given in the Section 3.3 and the root 

of the p-tree is selected randomly. Each node has a tree ID in the dotted decimal notation 

described in [31]. For example, the root node has a tree ID of 1. The tree IDs for its children 

are 1.1, 1.2, 1.3 etc. A node with tree ID 1.2.3.2 is a child of the node with tree ID 1.2.3. 

3.4.1 Double-Link Failure Restoration Model 

Suppose link e and f fail successively, and f fails before e is repaired. Once the failure 

on link e is detected, its pre-computed backup path p( e) is used to re-route the traffic on e. 

At the same time, all nodes in the network are informed of the failure of e through messages 

MSG_FAJLUREl(as shown in Fig 3.3) sent by the master node of the failed link e. (The 

master node of a failed link is one of the two end nodes of a failed link that has the smaller tree 

ID in lexicographic order.) MSG_F AILUREl includes tree ID of master node and the other 

adjacent node of the failed link. In addition, a group of tree IDs of the nodes on the backup path 

p(e) of e are encapsulated in MSG_F AILUREl, so that all nodes in the network are informed 

of the backup path of the first failed link e. The REQ field in MSG_FAJLURE2(as shown 

in Fig 3.3) denotes whether the secondary backup path search is requested or not. When the 

second failure on link f occurs, the master node of f will set the value of REQ based on the 

condition whether backup path p(f) of f uses e and backup path p( e) of e uses f. There are 
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four possible cases as described in [33]. 

Tree ID ol master Tree ID of secondary Tree IDs ol nodes 
node adjacent node on p(e) 

Tree ID of master Tree ID of secondary 
node adjacent node REQ 

MSGJ'AILUREl MSGJ'AILURE2 

Figure 3.3 Message Format 

l. p(f) does not use e and p(e) does not use f. In this case p(e) will continue to be used to 

re-route the traffic on e, and p(f) will be used to re-route the traffic on f. 

2. p(f) does not use e, but p(e) uses f. Since p(f) is not affected by the two failures, 

the working traffic on f and the re-routed traffic on f due to the failure on e are both 

switched from f to p(f). Thus, the working traffic originally routed one is now routed on 

p(e) - {!} LJp(f). 

3. p(f) uses e, but p(e) does not use f. In this case, p(e) works properly under the two 

failures. Similar to case 2, the working traffic one and the re-routed traffic one due to the 

failure on f are both switched from e to p(e). Thus, the working traffic originally routed 

on f is now routed on p(f) - {e} LJp(e). 

4. p(f) uses e and p(e) uses f. In this case, both ofp(f) andp(e) are down. Real-time search 

for a secondary backup path p'(f) off that does not use e is needed. The working traffic 

one will be re-routed on p(e) - {!} LJp'(f), and the working traffic on f is switched from 

f to p'(f). 

Note that this scheme requires that the master node of second failed link f knows the first 

failure one and the backup path p(e) of e. On receiving MSG_F AILUREl, it finds p(f) uses 

e and p(e) uses f(case 4), it broadcasts MSG_F AILURE2 to the network with REQ =true, 

requesting for the secondary backup path as in the following approaches. Otherwise (case 1,2 and 

3) it broadcasts MSG _F AI LU RE2 to the network with REQ = false and switches the traffic on 
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f to the pre-computed backup path p(f) (case 1 and 2) or the backup path p(f) - { e} Up( e) (case 

3). In the next section, we give a distributed algorithm for finding the secondary backup path. 

3.4.2 Algorithm for Finding the Secondary Backup Path 

Note that the secondary backup path p'(f) for link f must be link disjoint withe and f so 

that it can work properly in the case that both e and f are down. There are three scenarios in 

finding such a p'(f) with the condition e E p(f) and f E p(e). These scenarios are depicted in 

the Figure 3.4- 3.6, where T(x) denotes a tree rooted at node x, thick line denotes tree link and 

thin line denotes non-tree link. me and ne denote the master node and the other node incident 

to link e respectively, m f and n f denote the master node and the other node incident to link f 

respectively. 

(-------

( C2 

\u------r--~-
"-----

Scenario 1.1 Scenario 1.2 

Figure 3.4 Scenario 1 in secondary backup path search 

1. Scenario 1: e is a tree link and f is non-tree link. 

As shown in Fig 3.4, the removal of link e divides the p-tree into two components ci and 

c2. There are two cases: in the first case, m f is in a different component as me; in the 

second case, m1 is in the same component as me- In both cases, if there is a non-tree link 

other than link f between ci and c2, say link ( u, v), then there exists a path between m f 

and n1 that goes through some tree links and the non-tree link (u, v), and the path can 

be used as the secondary backup path p' (!) of link f. 

2. Scenario 2: e is a non-tree link and f is a tree link. 
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Figure 3.5 
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Scenario 3.2 

Figure 3.6 Scenario 3 in secondary backup path search 

Scenario 3.3 

As shown in Fig 3.5, the removal of link f divides the p-tree into two components c1 and 

c2. If there is a non-tree link other than link e between c1 and c2, say link ( u, v), then 

there exists a path between m1 and n1 that go through some tree links and the non-tree 

link (u, v), and the path can be used as the secondary backup path p'(f) of link f. 

3. Scenario 3: both e and f are tree links. 

As shown in Fig 3.6, the removal of e and f divides the p-tree into three components ci, 

c2 and c3, where m1 belongs to ci and n1 belongs to c2. There are three cases. In the first 

case, m1 is neither in the same component as me nor in the same component as ne· In 
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the second case, m1 is in the same component as ne. In the third case, m1 is in the same 

component as me. In all three cases, if there is a non-tree link between c1 and c2, say link 

(u,v), then there exists a path between m1 and n1 that go through some tree links and 

the non-tree link (u, v), and the path can be used as the secondary backup path p'(f) of 

link f. 

We now describe how the idea outlined above can be implemented. 

Firstly, we define two functions IS_QN_TREE and IS_TREE..LINK. 

The function IS_QN_TREE(x,y) checks whether node y is on the sub-tree T(x) which is 

rooted at node x. If y is on T(x), the tree ID of x must be the prefix of that of y. We say that 

a string xis a prefix of a stringy, denoted as x c y, if y = xw for some string w. For example, 

the node with tree ID 1.1.2.3.2 is on a sub-tree rooted at the node with tree ID 1.1.2 because 

1.1.2 is a prefix of 1.1.2.3.2. 

IS_QN_TREE(x,y) { 

1 ifxcy 

2 return true 

3 else 

4 return false 

5} 

The function IS_TREE..LINK(x, y) checks whether link (x, y) is a tree link or not, assuming 

tree ID of xis smaller than tree ID of yin the lexicographic order. If the node y is on T(x) and y's 

tree ID has one more field than that of x, then (x, y) is a tree link. Function LENGTH returns 

the length of x's fields. For example. Suppose x = 1.1.2 and y = 1.1.2.3, then LENGTH(x) = 3, 

LENGTH(y) = 4. Since y is on T(x) and y's tree ID has one more field than x's tree ID, we 

know (x, y) is a tree link. 

IS_TREE..LINK(x, y) { 

1 if x c y AND LENGTH(y) - LENGTH(x) == 1 

2 return true 
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3 else 

4 return false 

5 } 

Suppose link e = (me, ne) and link f = (mf, n1) fail successively, where me, m1 are the 

master nodes of link e and f respectively. On receiving a message MSG_FAJLURE2 with 

REQ = true, each node u runs the MESSAGE_pRQCESS algorithm. If u has a desirable 

neighbor node v, it will create a message MSG_ACK(shown in refmsg-ack) and send it to master 

node m1 of link f, when m1 receives MSG_ACK, it will run algorithm RECOVERY _pATH 

to determine a secondary backup path p'(f) based on the information in MSG_ACK. To simplify 

the work of m f to find the secondary backup path, the following consistency constraint of the 

message MSG_ACK is required: the node u must be in the same component of p-tree with m1 

after link f fails. 

Tree ID of node u Tree ID of node v 

Figure 3. 7 The message format of MSG _A.CK 

The detail of algorithm MESSAGE_pRQCESS for the three scenarios is given below. The 

following notations are used in the algorithm description. T denotes the p-tree, T(u) be the 

subtree rooted at node u. Vr(u) denotes the set of nodes in T(u), Er(u) denotes the set of links 

in T(u). 

1. Scenario 1: e is a tree link and f is a non-tree link. 

The removal of link e will divide the p-tree into two components T(ne) and T - T(ne). 

Using algorithm IS_ON_TREE, node u knows whether u is in Vr(ne)· If so, it checks 

whether it has a neighbor node v such that v ~ Vr(ne)· If such a node v is found, u will 

create package MSG_ACK and send it to m1. To satisfy the consistency constraint of 

package MSG_ACK, u needs to verify whether it is in the same component of p-tree with 
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m f after the failure on f. (If m f E Vr ( ne), then u is in the same component of p-tree 

with m1, because u E Vr(ne).) In scenario 1.1, u is in the same component of p-tree with 

m1, so the consistency constraint of message MSG_ACK is satisfied. In scenario 1.2, u 

is not in the same component of p-tree with m1. Therefore, the tree ID of u and v need 

to be switched when they are encapsulated into the message MSG_ACK to satisfy the 

consistency constraint. The function SWITCHID(u,v) is used to switch the tree IDs of 

u and v into MSG_ACK. 

2. Scenario 2: e is a non-tree link and f is a tree link. 

The removal of link f will divide p-tree into two components T ( n f) and T - T ( n f). If 

u ¢ Vr ( n f) and u has a neighbor node v such that v E Vr ( n f), node u will create message 

MSG_ACK and send it to m1. Note that in this scenario, u ¢ Vr(n1) ensures u is in 

the same component of p-tree with m1 after the failure on f, therefore the consistency 

constraint of MSG_ACK is satisfied. 

3. Scenario 3: both e and f are tree links. 

The removal of link e and f will divide p-tree into three components. In scenario 3.1, the 

three connected components of p-tree are T(ne), T(n1) - T(ne) and T - T(n1 ). If node 

u ¢ Vr(n1) and u has a neighbor node v such that v E Vr(n1) - Vr(ne), u will create 

message MSG_ACK and send it to m1. In scenario 3.2, the three connected components 

of p-tree will be T(n1), T(ne) -T(n1) and T-T(ne)· If u E Vr{ne) - Vr(n1) and u has 

a neighbor node v such that v E Vr(n1 ), u will create message MSG_ACK and send it to 

m1. Scenario 3.3 covers the third cases, where the three components of p-tree are T(ne), 

T(n1) and T-T(ne) -T(n1). If u ¢ Vr(ne) and u ¢ Vr(n1)and u has a neighbor v such 

that v E Vr(n1), u will create message MSG_ACK and send it to m1. Note that in all 

three cases, u is in the same component of p-tree with m f after the failure on f, therefore 

the consistency constraint of MSG_ACK is always satisfied. 

The pseudo algorithm of MESSAGE..PROCESS is given as follows. 
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MESSAQE_pRQCESS { 

//Scenario 1 

1 if IS..TREE_LJNK(me,ne) AND NOT JS_TREE_LINK(m1,n1) 

2 { 

3 if IS _ON J' REE( ne, u) AND u has a neighbor node v 

s.t. NOT JS_ONJ'REE(ne,v) 

4 { 

//Scenario 1.2 

5 if NOT JS_QN_TREE(ne,mf) 

6 SWITCHID(u, v) 

7 Send MSG_ACK to m1 

8 } 

9 } 

//Scenario 2 

10 if NOT ISJ'REE_LJNK(me,ne) AND JS_TREE_LJNK(m1,n1) 

11 { 

12 if NOT JS_ON..TREE(n1,u) AND u has a 

neighbor node v s.t. JS_ON..TREE(n1,v) 

13 Send MSG_ACK to m1 

14 } 

//Scenario 3 

15 if JS_TREE.LINK(me,ne) AND IS..TREE.LINK(m1,n1) 

16 { 

//Scenario 3.1 

17 if JS_ONJ'REE(nf,me) { 

18 if NOT JS_ONJ'REE(n1,u) AND u has a 

neighbor node v s.t. JS_ON_TREE(n1,v) AND 

NOT JS_ONJ'REE(ne,v) 
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20 

Send MSG.-ACK to m1. 

} 

//Scenario 3.2 

21 else if JS_ON .:I'REE(ne, m1) { 
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22 if JS_ON.:I'REE(ne,u) AND NOT 

JS_ON.:I'REE(n1,u) And u has a neighbor v 

s.t. JS_QN_TREE(n1,v) 

23 Send MSG.-ACK to m1. 

24 } 

//Scenario 3.3 

25 else { 

26 if NOT JS_QN.:I'REE(ne,u) AND NOT 

JS_ON.:I'REE(n1,u) AND u has a neighbor 

node v s.t. JS_ON .:I'REE(nf, v) 

27 Send MSG.-ACK to m1. 

28 } 

29 } 

30} 

When the master node m1 oflink f receives the message MSG_ACK, it computes a secondary 

backup path p'(f) off using the RECOVERY _pATH procedure, where 'Pis composed of 

the tree path between m f and u, the link ( u, v) and the tree path between v and n f. The 

RECOVERY _FATH procedure uses the P _TREE_FATH(x, y) procedure to find a path 

between x and yin the p-tree. The pseudo code for the RECOVERY _FATH procedure and 

P _TREE_FATH procedure are given below. 

RECOVERY _FATH { 

1 'P=0 

2 'P = PLJP_TREE_pATH(m1,u) 



3 P = PLJ{(u,v)} 

4 P = PLJP_TREE-.PATH(v,n1) 

5 return P 

6 } 

P_TREE_pATH(x,y) { 

1 P=0 

2 if JS_ON_TREE(x,y) 

3 go to LOOP2 

4 LOOPl: 

5 P = PLJ{(x,parent(x))} 

6 if NOT JS_ON :TREE(parent(x), y) 

7 { 

8 x = parent(x) 

9 go back to LOOPl 

10 } 

11 x = parent(x) 

12 if(x==y) 

13 return P 

14 LOOP2: 

15 P = P LJ{(y,parent(y))} 

16 if x! = parent(y) 

17 { 

18 y = parent(y) 

19 go back to LOOP2 

20 } 

21 return P 

22} 

37 
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3.5 Numerical Results 

Network 1 Network 2 

Modified NJ-LATA network 

Figure 3.8 Topology of test network 

Three test networks(shown in Fig 3.8) are used to evaluate the performance of our p-tree 

scheme. Netl is an artificial 10-node 22-link network taken from [39]. Net2 is the 15-node 28-link 

Bellcore New Jersey LATA network, which is a widely used metropolitan area model. Net3 is 

a modified NJ LATA network with 11 nodes and 22 links taken from [34]. A uniform demand 

matrix with 2 demand units between every node pair is used for all three test networks. 

Table 3.1 shows the performance results of our p-tree scheme for single link failure, which is 

obtained by solving the ILP given in Section 3.3. Table 3.1 gives the total working capacity, the 

total spare capacity, and the redundancy(i.e. the ratio of the total spare capacity to the total 
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working capacity). Due to the sharing of spare capacity on links shared by multiple backup 

paths, the p-tree scheme leads to less than 100% redundancy. 

Table 3.2 shows the performance results of our p-tree scheme for double-link failure. #Total 

pairs is the number of all possible < e, f > pairs assuming link e and f fail successively. #Sur

vivable pairs is the number of < e, f > pairs where e t/:. p(f) or f t/:. p( e) so that there is no need 

to find a secondary backup path for link f. Ri is the ratio of the number of restorable pairs when 

a secondary backup path for link f is searched if necessary to the number of total pairs under 

the condition that the spare capacity allocated in the network is optimized in the single link 

failure(i.e. the spare capacity allocation is provided by the ILP). R2 is the ratio of the number 

restorable pairs when a secondary backup path for link f is searched if necessary to the number 

of total pairs under the condition that the spare capacity on each link is sufficiently large. In 

NETl, NET2 and NET3, #Survivable pairs is 400, 572 and 386, that is, for 87%, 76% and 84% 

of all possible double link failures, double-link failure is restored without secondary backup path 

search so that the restoration of double-link failure is as fast as Method II of double-link failure 

recovery approaches proposed in [33] where two backup paths are pre-computed for each link. 

With the spare capacity planned for single link failure, our p-tree scheme with the secondary 

backup path search algorithm can restore 72%, 67% and 71 % of all the double link failures in 

NETl, NET2 and NET3 respectively. Assuming sufficient spare capacity is available in the 

network, the percentage of restorable double-link failures reaches 99%, 99% and 98% in NETl, 

NET2 and NET3 respectively. There are two reasons that the percentage is less than 100%. 

First, a secondary backup path for link f may not exist. Second, our algorithm may not be 

able to find a secondary backup path for link f even though such a path exists because we 

require that the secondary backup path can only use one non-tree link. As shown in table 3.2, 

a majority of double link failures can be restored with our algorithm even though the spare 

capacity is planned for single link failure. In addition, our algorithm can achieve almost 100% 

restorability for double link failure when spare capacity in the network is sufficiently large. Thus, 

the proposed scheme is effective for the restoration of double link failure. 
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Table 3.1 Result of the ILP Solution 

Network I Work Cap. I Spare Cap. I Redundancy 

NETl 142 96 0.68 
NET2 456 424 0.93 

NJ-LATA 190 178 0.94 

Table 3.2 Result of Double-link Failure Restoration 

I Network I #Total pairs I #Survivable pairs I Rl I R2 I 
NETl 462 400 0.72 0.99 
NET2 756 572 0.67 0.99 

NJ-LATA 462 386 0.71 0.98 

3.6 Summary 

In this chapter, we propose a new p-tree scheme that provides 100% restorability for single-

link failure in a 2-connected network. To minimize the spare capacity required, we give an ILP 

formulation to determine the optimal p-tree and spare capacity allocation for a network with 

working capacity given on each link. We also develop a distributed fast restoration algorithm for 

dealing with double-link failure, which searches for a secondary backup path for the second link 

failure in real-time when necessary. The numerical results show that a majority of the double-

link failures can be restored with our algorithm even though the spare capacity is planned for 

single-link failure. In addition, our algorithm can achieve almost 1003 restorability for double 

link failure when spare capacity in the network is sufficiently large. 
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CHAPTER 4. Surnrnary 

We propose a new algorithm for dynamic establishment of restorable connections using p

cycle protection. Each link on the working path is protected by the pre-computed p-cycles which 

leads to the easier implementation compared with the conventional link-based algorithm because 

backup path computation is not required in our algorithm. In addition, our algorithm achieves 

much faster restoration speed since p-cycles are fully configured when they are created. Three 

components are designed for our algorithm: offiine computation of primary p-cycles, online 

computation of working path, and online computation of p-cycles for working path protection. 

Two algorithms (SLA and Grow) are proposed for the first component which generates good 

candidate p-cycles in advance. We also propose two algorithm (PNS and PS) to the second 

component which intends to find the working path to take advantage of the existing p-cycles 

for its protection. The third component assigns the existing p-cycles or creates new p-cycles 

to protect all links on the working path. Simulations of the different combination of our pro

posed algorithms are conducted, which shows that Grow combined with PNS gives the best 

performance in terms of total capacity consumption. 

We also propose a p-tree link protection scheme which provides 100% restorability for single

link failure in a 2-connected network. In this part, we give an ILP formulation to determine the 

optimal p-tree and the spare capacity allocation on the p-tree such that the total spare capacity 

requirement is minimized. By local message signalling, p-tree can be easily maintained with 

the changes of network components(links or nodes). With this property of p-tree, we propose 

a distributed algorithm to handle double link failure. Numerical results show that our scheme 

achieves fast restoration speed since the secondary backup path for the second failed link is 

not required in a majority of double link failures. In addition, our algorithm achieves high 
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restorability for double-link failures when the spare capacity is planned for single link failure, 

and it achieves almost 100% restorability for double-link failures when spare capacity is sufficient 

large. 
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