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Abstract

Specification languages could aid reuse to a larger extent if they could document all important
facets of software, not just functional behavior. Since a specification language designer cannot
know exactly what aspects of a piece of software will be important, users should be able to do
“metaspecification”; that is, users should be able to declare new facets, and then use these facets
to specify their software. Examples of facets that users might want to specify include time and
space usage, safety considerations, aliasing, error checking, the user interface, etc.
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1 Background

Leavens’s most prominent involvement in software reuse is as a program committee member for
the ICSR 4 conference in 1996. He has long been active in the theory of object-oriented (OO)
methods, studying the concept of behavioral subtyping [Ame91, LW90, Lea91, LW94, LW95, D1.96].
Subtyping is a kind of polymorphism [Car91] that allows objects of subtypes to be sent messages as
if they were objects of their supertypes. Subtyping by itself, however, only guarantees the absence
of type errors. Behavioral subtyping also guarantees the absence of surprising behavior. This allows
client code, code that sends messages to objects, to be reused for behavioral subtypes.

In the past six years Leavens has been working in the semantics of specification languages, and
has been designing the specification language Larch/C+4 [Lea96c¢c, Lea96b], which is a behavioral
interface specification language tailored to C++.

Ruby is a graduate student doing research in formal specification of object-oriented programming
languages. One of the directions of his research involves specifying enough information about C+-+
classes so that class libraries and frameworks can be reused and derived classes programmed without
the need for the programmer to see the code for the superclasses.

2 Position

A facet of a program’s behavior is something about the way a program executes that is important
to clients of the program. One facet is functional behavior, but there are many others: time, space,
security issues, aliasing, etc.

Because various facets are (by definition) important parts of the description of software, and because
having an abstract description of software is important for reuse (for example, [LG86, Mey92]), our
position is as follows.

Specification languages should be able to document all facets of program behavior.

The facets that will be important to some users (e.g., communication bandwidth) are not necessarily
important to others. Furthermore, since software is so flexible, it seems impossible to predict what
facets will be important in advance. This leads us to the following conclusion.

A specification language should allow users to declare new facets.

The technique of allowing a specification language to declare new facets is called metaspecification.
Metaspecification could take two forms. One is to allow the user to declare new syntax and semantics
for the specification of new facets. This would be similar to an extensible programming language,
and would have a similar disadvantage: since each person could potentially use their own syntax,
specifications would be difficult for others to read. The other form would be something akin to
an abstract data type (ADT) declaration in a programming language: the user would declare a
facet and some formal operations on it, but the syntax and framework of the specification language
would remain unchanged. FExactly how this would work is a matter for research, but, following



Hehner [Heh93], one approach would be to incorporate such facets as if they were ghost variables!
(like Hehner’s t for time). There are several theoretical issues to investigate, such as the interaction
of frame axioms among different facets. More importantly, the ease of declaring and using such
facets, and their utility in promoting reuse needs to be investigated. Nevertheless, it is our belief
that making specification languages better able to document existing software will aid reuse.

Our hypothesis is that the use of ghost variables, like Hehner’s t for time, would be a sensible
way to integrate user-specified facets into a formal specification language. The user would declare
the name of the facet, and the vocabulary used to reason about it; the connection to reality
would be documented, but would not have any formal bearing on the specification language. For
example, to specify the space used by software, one could have a ghost variable space, along
with an appropriate mathematical vocabulary (including, perhaps, absolute and order-of-magnitude
comparisons). What a unit of space means (e.g., a byte), would be documented. How code would
be verified to satisfy such a specification would also be something that the user might be able to
describe in documentation of a facet. The exact form of this kind of metaspecification is a matter
for future work.

3 Comparison with Related Work

Most formal specification languages only allow one to document functional behavior. That is, most
formal specification languages do not help one specify how much time a procedure can take, or
how much space it can use, or how it affects the firing of torpedos. Hehner’s “practical theory of
programming” [Heh93] is a notable exception. It uses partial correctness, and procedure specifi-
cations can mention a ghost variable, t, to describe the time a procedure may take. This allows
one to recover total correctness if desired. It also hints at a way of adding facets to a specification
language.

Temporal logic [MP92, L.am94] is used in specifying reactive or concurrent systems, where the
relative timing of events matters. It allows one to specify liveness and safety properties, such
as absence of deadlock and starvation. Ideally, with metaspecification, one would be able to use
the ideas of temporal logic for the specification of such properties. However, even if one adopted
temporal logic for the time facet, this would not solve the problem of how to specify other facets.

Sitaraman [Sit97] described design considerations for “implementation neutral” and “performance
neutral” abstractions. These abstractions have correct implementations that allow many different
implementations, including those with widely varying time and space usage. Because of the desire
to permit such a wide variation, the abstractions specified are independent of the time and space
facets. Our proposal would be more useful for abstractions that are designed for use in systems
where time or space are critical resources, or for the documentation of more limited abstractions.

Because the list of facets that might be important to users is daunting (time, space, security,
safety, aliasing, etc.), specification language designers should take a lesson from the history of
programming language design. In programming, it was clear that programming languages needed
to be able to adapt to various application domains. There are two ways in which this was done.
The first was extensible languages, such as EL1 [Weg74], which proved difficult to read because

! A ghost variable is something that is thought of as a variable for the purposes of a specification, but which is not
actually a variable in the code being specified.



everyone’s programs had a different syntax. After that it was recognized that by allowing the
datatypes of a programming language to be extended, one could allow users to raise the language
level by implementing abstract data types that matched the problem domain more closely (as in

CLU, Ada, and Smalltalk).
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