
Speci�cation Facets
for More Precise,

Focused Documentation

Gary T. Leavens and Clyde Ruby

TR #97-04
January 1997

Keywords: reuse, formal speci�cation languages, metaspeci�cation, facets, expressiveness.

1993 CR Categories: D.2.1 [Software Engineering ] Requirements/Speci�cations | Languages;
F.3.1 [Logics and Meaning of Programs ] Specifying and verifying and reasoning about programs |
Assertions, invariants, pre- and post-conditions, speci�cation techniques.

Copyright c Gary T. Leavens and Clyde Ruby, 1997.

This is a short position paper that will appear in the proceedings of the Eighth Annual Workshop
on Software Reuse, March 23-26, 1997, Columbus, Ohio.

Department of Computer Science
226 Atanaso� Hall

Iowa State University
Ames, Iowa 50011-1040, USA



Speci�cation Facets for More Precise, Focused Documentation

Gary T. Leavens

Iowa State University
Department of Computer Science

226 Atanaso� Hall
Ames, Iowa 50011-1040 USA

Tel: (515) 294-1580
Fax: (515) 294-0258

Email: leavens@cs.iastate.edu

Clyde Ruby

Iowa State University
Department of Computer Science

226 Atanaso� Hall
Ames, Iowa 50011-1040 USA

Tel: (515) 294-4377
Fax: (515) 294-0258

Email: ruby@cs.iastate.edu

January 22, 1997

Abstract

Speci�cation languages could aid reuse to a larger extent if they could document all important

facets of software, not just functional behavior. Since a speci�cation language designer cannot

know exactly what aspects of a piece of software will be important, users should be able to do

\metaspeci�cation"; that is, users should be able to declare new facets, and then use these facets

to specify their software. Examples of facets that users might want to specify include time and

space usage, safety considerations, aliasing, error checking, the user interface, etc.

Keywords: reuse, formal speci�cation languages, metaspeci�cation, facets, expressiveness

Workshop Goals: learning what can be done to aid reuse; networking; understanding and

advancing the state-of-the-art in formal methods; �nding new problems

Working Groups: Rigorous Behavioral Speci�cation as an Aid to Reuse, Design Guidelines

for Reuse, Reuse and OO Methods, Reuse and Formal Methods,

1



1 Background

Leavens's most prominent involvement in software reuse is as a program committee member for
the ICSR 4 conference in 1996. He has long been active in the theory of object-oriented (OO)
methods, studying the concept of behavioral subtyping [Ame91, LW90, Lea91, LW94, LW95, DL96].
Subtyping is a kind of polymorphism [Car91] that allows objects of subtypes to be sent messages as
if they were objects of their supertypes. Subtyping by itself, however, only guarantees the absence
of type errors. Behavioral subtyping also guarantees the absence of surprising behavior. This allows
client code, code that sends messages to objects, to be reused for behavioral subtypes.

In the past six years Leavens has been working in the semantics of speci�cation languages, and
has been designing the speci�cation language Larch/C++ [Lea96c, Lea96b], which is a behavioral
interface speci�cation language tailored to C++.

Ruby is a graduate student doing research in formal speci�cation of object-oriented programming
languages. One of the directions of his research involves specifying enough information about C++
classes so that class libraries and frameworks can be reused and derived classes programmed without
the need for the programmer to see the code for the superclasses.

2 Position

A facet of a program's behavior is something about the way a program executes that is important
to clients of the program. One facet is functional behavior, but there are many others: time, space,
security issues, aliasing, etc.

Because various facets are (by de�nition) important parts of the description of software, and because
having an abstract description of software is important for reuse (for example, [LG86, Mey92]), our
position is as follows.

Speci�cation languages should be able to document all facets of program behavior.

The facets that will be important to some users (e.g., communication bandwidth) are not necessarily
important to others. Furthermore, since software is so exible, it seems impossible to predict what
facets will be important in advance. This leads us to the following conclusion.

A speci�cation language should allow users to declare new facets.

The technique of allowing a speci�cation language to declare new facets is called metaspeci�cation.
Metaspeci�cation could take two forms. One is to allow the user to declare new syntax and semantics
for the speci�cation of new facets. This would be similar to an extensible programming language,
and would have a similar disadvantage: since each person could potentially use their own syntax,
speci�cations would be di�cult for others to read. The other form would be something akin to
an abstract data type (ADT) declaration in a programming language: the user would declare a
facet and some formal operations on it, but the syntax and framework of the speci�cation language
would remain unchanged. Exactly how this would work is a matter for research, but, following

2



Hehner [Heh93], one approach would be to incorporate such facets as if they were ghost variables1

(like Hehner's t for time). There are several theoretical issues to investigate, such as the interaction
of frame axioms among di�erent facets. More importantly, the ease of declaring and using such
facets, and their utility in promoting reuse needs to be investigated. Nevertheless, it is our belief
that making speci�cation languages better able to document existing software will aid reuse.

Our hypothesis is that the use of ghost variables, like Hehner's t for time, would be a sensible
way to integrate user-speci�ed facets into a formal speci�cation language. The user would declare
the name of the facet, and the vocabulary used to reason about it; the connection to reality
would be documented, but would not have any formal bearing on the speci�cation language. For
example, to specify the space used by software, one could have a ghost variable space, along
with an appropriate mathematical vocabulary (including, perhaps, absolute and order-of-magnitude
comparisons). What a unit of space means (e.g., a byte), would be documented. How code would
be veri�ed to satisfy such a speci�cation would also be something that the user might be able to
describe in documentation of a facet. The exact form of this kind of metaspeci�cation is a matter
for future work.

3 Comparison with Related Work

Most formal speci�cation languages only allow one to document functional behavior. That is, most
formal speci�cation languages do not help one specify how much time a procedure can take, or
how much space it can use, or how it a�ects the �ring of torpedos. Hehner's \practical theory of
programming" [Heh93] is a notable exception. It uses partial correctness, and procedure speci�-
cations can mention a ghost variable, t, to describe the time a procedure may take. This allows
one to recover total correctness if desired. It also hints at a way of adding facets to a speci�cation
language.

Temporal logic [MP92, Lam94] is used in specifying reactive or concurrent systems, where the
relative timing of events matters. It allows one to specify liveness and safety properties, such
as absence of deadlock and starvation. Ideally, with metaspeci�cation, one would be able to use
the ideas of temporal logic for the speci�cation of such properties. However, even if one adopted
temporal logic for the time facet, this would not solve the problem of how to specify other facets.

Sitaraman [Sit97] described design considerations for \implementation neutral" and \performance
neutral" abstractions. These abstractions have correct implementations that allow many di�erent
implementations, including those with widely varying time and space usage. Because of the desire
to permit such a wide variation, the abstractions speci�ed are independent of the time and space
facets. Our proposal would be more useful for abstractions that are designed for use in systems
where time or space are critical resources, or for the documentation of more limited abstractions.

Because the list of facets that might be important to users is daunting (time, space, security,
safety, aliasing, etc.), speci�cation language designers should take a lesson from the history of
programming language design. In programming, it was clear that programming languages needed
to be able to adapt to various application domains. There are two ways in which this was done.
The �rst was extensible languages, such as EL1 [Weg74], which proved di�cult to read because

1A ghost variable is something that is thought of as a variable for the purposes of a speci�cation, but which is not

actually a variable in the code being speci�ed.

3



everyone's programs had a di�erent syntax. After that it was recognized that by allowing the
datatypes of a programming language to be extended, one could allow users to raise the language
level by implementing abstract data types that matched the problem domain more closely (as in
CLU, Ada, and Smalltalk).

References

[Ame91] Pierre America. Designing an object-oriented programming language with behavioural
subtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations
of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The Nether-
lands, May/June 1990, volume 489 of Lecture Notes in Computer Science, pages 60{90.
Springer-Verlag, New York, N.Y., 1991.

[Car91] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 431{507.
Springer-Verlag, New York, N.Y., 1991.

[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through
speci�cation inheritance. In Proceedings of the 18th International Conference on Software
Engineering, Berlin, Germany, pages 258{267. IEEE Computer Society Press, March
1996.

[Heh93] Eric C.R. Hehner. A Practical Theory of Programming. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1993.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872{923, May 1994.

[Lea91] Gary T. Leavens. Modular speci�cation and veri�cation of object-oriented programs.
IEEE Software, 8(4):72{80, July 1991.

[Lea96a] Gary T. Leavens. Larch frequently asked questions. Version 1.62. Available in
http://www.cs.iastate.edu/~leavens/larch-faq.html, December 1996.

[Lea96b] Gary T. Leavens. Larch/C++ Reference Manual. Version 4.20. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz or on the world wide web at the URL
http://www.cs.iastate.edu/~leavens/larchc++.html, December 1996.

[Lea96c] Gary T. Leavens. An overview of Larch/C++: Behavioral speci�cations for C++ mod-
ules. In Hiam Kilov and William Harvey, editors, Speci�cation of Behavioral Semantics
in Object-Oriented Information Modeling, chapter 8, pages 121{142. Kluwer Academic
Publishers, Boston, 1996. An extended version is TR #96-01b, Department of Computer
Science, Iowa State University, Ames, Iowa, 50011.

[LG86] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program Development.
The MIT Press, Cambridge, Mass., 1986.

[LW90] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programs that
use subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP '90 Pro-
ceedings, volume 25(10) of ACM SIGPLAN Notices, pages 212{223. ACM, October 1990.

4



[LW94] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems, 16(6):1811{1841, November 1994.

[LW95] Gary T. Leavens and William E. Weihl. Speci�cation and veri�cation of object-oriented
programs using supertype abstraction. Acta Informatica, 32(8):705{778, November 1995.

[Mey92] Bertrand Meyer. Applying \design by contract". Computer, 25(10):40{51, October 1992.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, N.Y., 1992.

[Sit97] Murali Sitaraman. Impact of performance considerations on formal speci�cation design.
To appear in Formal Aspects of Computing, 1997.

[Weg74] Ben Wegbreit. The treatment of data types in EL1. Communications of the ACM,
17(5):251{264, May 1974.

4 Biography

Gary T. Leavens is an Associate Professor of Computer Science at Iowa State University, Ames
Iowa. He has served on the program committees for OOPSLA (twice) and ICSR 4. His research
focuses on formal methods on OO programming, and includes the theory of abstract data types,
speci�cation, veri�cation, as well as topics in programming languages such as type theory and
semantics. He has been involved in the design of Larch/Smalltalk and is the principal designer of
Larch/C++. He is also the author of the Larch FAQ [Lea96a]. He received a Ph.D. in Computer
Science from MIT in 1989.

Clyde Ruby is a graduate student in Computer Science at Iowa State University, Ames Iowa. He
has more than 15 years experience as an analyst, designer, and implementer of software systems.
His current research focuses on formal methods in object-oriented programming, speci�cation, and
veri�cation. He is part of the Larch/C++ research group at Iowa State University.

5


