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ABSTRACT

Household food demand and choices over food products are constantly evolving.

Therefore better understanding of the relationship among household socioeconomic char-

acteristics, expenditures, foods and nutrient choices of consumers and food prices is

important to food producers, health professionals, policymakers and educators. This

dissertation is a collection of three papers, each analyzing a particular issue related to

consumer behavior. The first two papers explore two important issues related to the

Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) pro-

gram that have not been extensively addressed in the past. First, although the WIC

program is primarily devised with the intent of improving the nutrition of “targeted”

children and mothers, it is possible that WIC may also change the consumption of

foods by non-targeted individuals within the household. Second, although WIC eligi-

bility status is predetermined, participation in the program is voluntary and therefore

potentially endogenous. Although the two papers address similar topics, they differ in

empirical approach. The first paper uses a two-stage instrumental variables approach

and the second paper uses a Bayesian approach in order to handle the endogeneity of

WIC program participation. Findings from these two papers indicate that based on the

specification of the empirical model the choice of the estimation method can play an

important role on the final outcome of the research. The third paper of this disserta-

tion examines consumer demand for grain products. Given the public health interest

in increased consumption of whole grains, demand for different types of cereals, both

refined and whole grain is estimated. Bayesian methods are employed in the estimation
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accounting for the censoring of the dependent variables. Results show that demand for

all types of cereals is inelastic to changes in prices. The expenditure elasticities do not

vary widely in the magnitude. The expenditure elasticity is slightly above unity for the

whole grain ready-to-eat cereals suggesting that as the expenditure on cereals increases

households will allocate proportionally more on whole-grain ready-to-eat cereals and less

on other cereals.
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1. GENERAL INTRODUCTION

Introduction

Household food demand and choices over food products are constantly evolving. In

the last several decades, the U.S. food sector has gone through a rapid transformation in

response to rising incomes, changing demographics, increased labor force participation

by women, new product introduction and innovation, scientific advances and under-

standing of the role of diet in achieving good health. Today there is increased domestic

production, greater availability and diversity of products through trade and improve-

ments in technology that enhance the nutritional quality of products and provide other

desirable product attributes.

The relationship between diet and health continues to be a question of interest in

many studies. Today, many consumers are aware of the link between nutrition and

good health. In addition, public programs and nutrition education are being designed

to promote healthy food choices. Knowledge about food components or introduction of

new products, for example, food products with more variety, improved taste, flavor and

health attributes, can lead to changes in consumers’ diets. Also, scientific advances in

nutrition underpin revisions of dietary guidelines. Such guidance and new information

may result in changes in consumer dietary behavior and lead to increased demand for

products that combine healthy attributes with convenience and attractive taste profiles.

Knowledge of demand structure and consumer behavior is important for a wide range

of questions that arise in public health, marketing and behavioral contexts. Better un-
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derstanding of the relationship between household socioeconomic characteristics, expen-

ditures, foods and nutrient choices of consumers and food prices is important to food

producers, health professionals, policymakers and educators. For example, basic demand

parameters give information needed for effective design and targeting of food assistance

programs, as well as for evaluating the impact of economic changes on households and

the general well-being of the population.

This dissertation consists of three essays that address standard but important issues

related to consumer behavior: (1) food choice and the evaluation of the effectiveness

of a targeted food assistance program; and (2) analysis of the demand for food. The

three essays are the explorations of the two phenomena that are important to better

understanding of consumer and household behavior as well as for public policy. Both of

these topics have a long history of empirical analysis, yet still hold considerable research

interest.

The first and second papers consider the design and effectiveness of food assistance

programs. Each year the federal government spends a large amount of money on major

food assistance programs. These programs help to provide food and meet nutritional

requirements for individuals and households that are vulnerable due to low income or

other circumstances. As a result, there is a great deal of interest in evaluating the

effectiveness of these programs in helping to improve health and nutritional status of

this population.

The Special Supplemental Nutrition Program for Women, Infants, and Children

(WIC) is one of the government’s targeted food assistance programs, designed to improve

the nutrition and health of qualifying women, infants and young children in the household

through the use of vouchers for selected foods. The papers analyse the effectiveness of

the WIC program by addressing two important issues related to the program that have

not been extensively addressed in past. First, an important problem faced in evaluating

the effect of the WIC program on dietary intakes is that the receipt of WIC foods by the
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WIC-recipient may change consumption of foods by non-targeted individuals within the

household. As little is known about the allocation of food once it reaches the household,

there is also little information available on how the provision of WIC-approved foods

might affect intra-household allocation decisions. Reallocation of program benefits in

response to a program targeted towards individuals would lead to smaller than expected

gains to the recipient of the transfer and larger than expected intake by non-targeted

individuals in the program household. Hence, spillover of program benefits may affect

the measurement of program effectiveness and impact. We formally address this issue

by comparing the impact of WIC participation on both targeted household members

and non-targeted household member.

A second problem addressed in this paper is that there is potential endogeneity

associated with the WIC program. Households that choose to participate in WIC may

also have strong preference for health promoting foods. As a result, they choose to

consume more of the WIC-approved foods. This problem is addressed through the

econometric specification and estimation. To handle the potential endogeneity of WIC

participation we employ a treatment-response model and estimate it using Bayesian

methods.

Although the two papers address similar topics, they differ in empirical approach.

The first paper uses a two-stage instrumental variables approach in order to handle the

endogeneity of WIC program participation. The two-stage method is a commonly used

single equation estimation method in the empirical literature that uses instrumental

variables (IV) that are uncorrelated with the disturbances to obtain predicted values

for the endogenous variables. Readily available software packages and ease of compu-

tation made this method very attractive to researchers. WIC-approved foods are very

important in the diets of not only children but also adults. After controlling for the par-

ticipation decision, results of the first paper show that participation in WIC is associated

with increased intake of calcium through milk for WIC targeted individuals. There was
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no evidence of spillover of program provided dairy benefits. The second paper uses a

Bayesian approach to address the endogeneity of program participation. Overall, we find

little direct evidence that speaks to the efficacy of WIC. Instead, most of the benefits

that might potentially be attributed to the program seem to arise from differences in

unobservables across WIC and non-WIC families. Furthermore, we find little evidence

associated with possible “spillover” or “leakage” benefits that have been suggested in

the literature, as non-targeted members of WIC households have consumption patterns

that are quite consistent with non-targeted members of non-WIC households. Findings

from these two papers indicate that after the specification of the empirical model, the

choice of the estimation method can play an important role on the final outcome of the

research. The Bayesian approach supports careful evaluation of the underlying struc-

tural relationships and allows us to separate the effects of unobservables from direct

effects. By providing a careful analysis of intra-household allocation decision processes

and related evidence on beneficiary outcomes, the findings of the research can improve

program evaluation, design and policy analysis.

New methods and data allow further extensions in studies of demand. Innovations

in data collection also make available extensive and detailed information on product

expenditures. The wider availability of scanner-based consumer data, for example, has

allowed the collection of detailed purchase information with relatively little respondent

burden. Household level panel scanner data contain detailed demographic information

which allows handling of heterogeneous preferences. Also the large sample size pro-

vides sufficient information to estimate a large demand system. Scanner data enable

researchers to examine consumer purchase behavior with extensive product detail along

with expenditure and price data. The detailed data do hold some new challenges. The

household level data require the use of techniques for handling the observations with

“zero” values in the dependent variable. Although the estimation of a censored demand

for a single good can be done easily by using a Tobit type model, estimation of the
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censored demand for multiple products is not straight forward.

The third paper of this dissertation estimates a demand system for a selected product

group, cereal products, using the Almost Ideal Demand System (AIDS) model. The 2005

Dietary Guidelines emphasize the importance of consumption of whole grain products.

Given the public health interest in increased consumption of whole grains, we consider

demand for different types of cereals, both refined and whole grain. Cereal products

are a major source of whole grains in the diet. This paper accounts for the censoring

of the dependent variables and estimates the demand system using Bayesian methods.

Results show that demand for all types of cereals is inelastic to changes in prices. The

expenditure elasticities do not vary widely in the magnitude. The expenditure elasticity

is slightly above unity for the whole grain ready-to-eat cereals suggesting that as the

expenditure on cereals increases households will allocate proportionally more on whole-

grain ready-to-eat cereals and less on other cereals. By providing estimates of how food

consumption is likely to change with changes in prices and income, the research provides

important inputs into food and related nutritional policy initiatives.

Dissertation Organization

This dissertation is organized as follows. Following this introduction, there are the

three chapters. Each chapter analyzes a particular issue related to consumer behavior.

Although each chapter in this dissertation is meant to stand alone, there are some

common factors that connect them. All three essays address questions related to the

consumer food and nutrient choices. Second, all three essays extend the current research

in the area by using methods to improve estimation.
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2. INTRA-HOUSEHOLD ALLOCATION AND

CONSUMPTION OF WIC-APPROVED FOODS:

A TWO-STAGE APPROACH

Abstract

One of the primary objectives of most food assistance and nutrition programs is

to improve health and nutritional status of vulnerable sections of population, particu-

larly women and children. Better understanding of the effectiveness of these targeted

programs is crucial for policy analysis. The Special Supplemental Nutrition Program

for Women, Infants, and Children (WIC) provides vouchers for food items to qualify-

ing women, infants and young children in a household. The amount of foods provided

is designed to enhance the intake of key nutrients needed by the targeted individuals.

Although the vouchers are issued to an individual, once acquired, the food items are

available to share in the household. Little is known about intra-household reallocation

of WIC-provided food benefits. The overall goal of the research is to develop informa-

tion on targeting of food benefits and the “spillover” of food program effects within the

household, information that is needed for policy analysis and evaluation of the effective-

ness of WIC. Empirical analysis is performed using data from the USDA Continuing

Survey of Food Intake by Individuals (CSFII) 1994-96, 1998. Individuals are classified

by WIC income-eligibility, program targeted group, and participation status. A Tobit

model with endogenous program participation is estimated using two-stage method in
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order to compare WIC-approved food intakes of targeted individuals in WIC households

with non-targeted individuals in the same households, targeted individuals in non-WIC

households and non-targeted individuals in non-WIC households. The findings imply

that targeted individuals in WIC households consume more of the WIC-approved foods

than individuals in other groups.

Keywords: nutrition, WIC, two-stage method, intrumental variables.

JEL Classification: C31; C34; I38.
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Introduction

The U.S. Department of Agriculture spent nearly $41.6 billion in FY2003 on 15

food assistance programs. The Special Supplemental Nutrition Program for Women,

Infants, and Children (WIC) was the third-largest food assistance program in terms of

total expenditures in that year. The WIC program serves participants by providing

supplemental foods, nutrition education, breastfeeding support and referrals to health

and social services in order to of improving birth outcomes, support the growth and

development of infants and children, and to promote long-term health of all WIC par-

ticipants. In FY2003, WIC provided $3.2 billion in supplemental food to participants

with estimated average monthly food package cost per person of $35.28 and today serves

over half of all infants born in the United States, 25 percent of all U.S. children ages

1 through 4 years, along with many of their mothers (USDA/FNS 2005; USDA/ERS

2005; IOM 2005). The WIC program provides benefits as in-kind transfers, nutritional

education and social support to a vulnerable population.

The WIC program provides nutritious foods to supplement the diets of infants, chil-

dren up to age five, and pregnant, breastfeeding and postpartum women. The program

benefits, usually in the form of checks or vouchers, allow participants to obtain specific

“packages” of foods, foods that currently include infant formula, milk, cheese, eggs, juice,

cereals, and peanut butter/dried beans, and, for fully breast-feeding mothers, carrots

and tuna. Table 2.1 contains the list of foods and the maximum monthly allowances for

young children as an example. In April 2005, an Institute of Medicine (IOM) committee

recommended substantial changes to the foods offered in the packages to be consistent

with new scientific knowledge about nutrition and to make it easier for participants to

improve their diets and health.

There is a well established literature on the effect of WIC participation on health

and nutrient intake of infants, toddlers and children (Burstein, et al. 2000; Oliveira
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and Gundersen, 2000; Ponza, et al. 2004; Rose, et al. 1998; Siega-Riz, et al. 2004;

Oliveira and Chandran, 2005). Considerable work has also been done to evaluate the

effect of the WIC participation on pregnant women (Kowaleski-Jones and Duncan, 2002,

Bitler and Currie, 2005). Oliveira and Chandran (2005) find that participation in the

WIC program increases the consumption for at least some types of WIC-approved foods

for children participating in the WIC program compared to eligible nonparticipating

children living in non-WIC households, eligible nonparticipating children living in WIC

households, and children living in households with income too high to be eligible for

WIC (income greater than 185% of the poverty threshold).

An important problem faced in evaluating the effect of the WIC program on dietary

intakes is that the receipt of program foods by the WIC-recipient may change the con-

sumption of foods by non-targeted individuals within the household. This has been

referred to as “spillover” (Oliveira and Chandran 2005) or “leakage” (Barrett 2002) of

benefits. As Oliveira and Chandran note, this might be done if 1) receipt of WIC bene-

fits frees up food dollars for use to benefit other, nonparticipating children; 2) nutrition

education changes food selection for all members; and 3) WIC foods are shared with

non-WIC household members. Little is known about the degree to which this occurs,

and in general, about food allocation processes within households. However, for the pur-

poses of policy analysis and evaluation of the effectiveness of WIC, better understanding

of intra-household allocation is critical.

The overall goal of the research reported here is to better understand targeting of

food benefits and spillover of food program effects within the household. The specific

application is to the WIC program and household allocation of WIC approved foods.

The empirical analysis uses data from the USDA Continuing Survey of Food Intake by

Individuals (CSFII) 1994-96, 1998. Although there are more recent dietary intake data

available, the CSFII is the most current, publicly available national data that allows

tracking food consumption of targeted WIC recipients and other members of the same
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household.

Hypotheses

We hypothesize that participation in the WIC program will have a positive effect on

the quality of diets of not only WIC participating individuals in the household, but also

those of other members of the household. More specifically,

a. qualifying/targeted individuals in households that participate in nutrition programs

such as WIC are (in dietary intake) better off than those who are in non-WIC

households, holding all else equal

b. The non-targeted individuals in WIC households are better off (in dietary intake)

compared to similar individuals in non-WIC households

c. The dietary intake of non-targeted individuals in WIC households is less improved

compared to that of the targeted individuals in WIC households.

We consider milk and cheese intake, measured in calcium equivalence.

The paper is proceeds as follows. The theoretical model of household resource al-

location and the empirical specification are outlined, followed by the description of the

data used in the analysis. Results are presented and discussed. The paper concludes

with the summary of the findings and suggestions for future research.

Theoretical Model

Traditional literature of consumer theory like Deaton and Muellbauer (1980) treat

household members all alike. The same applies to most of the empirical applications

(Blundell and Walker, 1986; Browning and Meghir, 1991). This method is referred to

in the literature as the unitary model. Although household characteristics may be ac-

counted for through scaling and translating parameters, these parameters adjust house-
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hold preferences and do not enter the utility directly. The unitary model does not allow

analysis of intra-household allocation of consumption and consequently welfare.

Early attempts that account for the fact that households may consist of different indi-

viduals with their own preferences are Samuelson (1956) and Becker (1974). Samuelson

modeled the household decision making problem by letting the individuals’ utility func-

tions enter as subutility functions in the model. Becker on the other hand models the

household decision making problem by assuming that the head of the household takes

into account the preferences of all household members.

Other two approaches that explicitly take into account several decision-makers in a

household use a game theoretic approach. The first of these approaches models household

behavior in a non-cooperative framework (Browning, 2000; Chen and Wooley, 2001). In

these models household members are assumed to maximize their utility, taking the other

individuals’ behavior as given. One potential drawback of non-cooperative models is that

they do not result in Pareto efficient intra-household allocation. That is, it is possible

to make one person better off without making other household members worse off. The

second approach is the one developed by Manser and Brown (1980) and McElroy and

Horney (1981). They incorporated bargaining theory into a household decision making

model in a cooperative framework. An important criticism of the approach of choosing

a particular bargaining approach to model household behavior is that when empirical

tests are rejected it is hard to determine whether the particular choice is rejected or the

bargaining setting in general rejected.

A valuable improvement to the above mentioned model is made by Chiappori (1988,

1992) and Apps and Rees (1988). The only assumption they make is that intra-household

decisions are Pareto efficient. This model referred in the literature as the collective model

to household behavior. The collective approach takes account of the fact that multi-

person households consists of several members which may have different preferences.

In the collective model, individual preferences lead to collective choices, for example,
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how resources are accumulated and how resources are spent by individual household

members. This model treats individuals as the decision-making agents and takes an

axiomatic approach for determining intra-household allocation. The model assumes that

allocations satisfy the following conditions: (i) efficiency - the outcome of the household

decision process is Pareto efficient, and (ii) uniqueness of the solution. In the collective

model case, changes in others’ non-labor resources (i.e., program cash and non-cash

benefits) may affect household allocation decisions.

We will consider the preferences of members of the household in two different states:

1) the household participates in the WIC program; and 2) the household does not par-

ticipate in the WIC program. We assume that households will allocate food differently

depending on whether they participate in the WIC program. Households participating

in WIC receive an in-kind transfer in addition to other income, and this term will enter

their budget constraint.

Consider a household with two individuals i = NT, T where each individual consumes

two private goods. Also assume that each individual consumes one good exclusively, with

xNT for individual NT and for individual T . Both individuals consume the third private

good f , where f = fNT + fT . For simplicity assume goods prices are normalized to

one. Total household income y is exogenous and a fixed supply of labor. The bundle

(xNT , xT , fNT , fT ) is a Pareto optimal allocation of consumption within the household

if it is a solution to the following maximization problem:

maxxNT ,xT ,fNT ,fT
UNT (xNT , fNT )

s.t. y + sPw = xNT + xT + fNT + fT

UT (xT , fT ) ≥ ŪT ,

where s stands for gains from social (in-kind) transfer to program participants. This

can be represented as a difference between the benefits of participating in the program
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and the costs associated with program participation. Pw is an indicator equal to one if

household participates in the program and 0 otherwise, and ŪT is some required utility

level for individual T . Then the solution to individual NT ’s maximization problem,

yields the optimal level of yi’s and fi’s , i = NT, T . The optimal choices are:

xi = gi(y, Pw, Z),

fi = wi(y, Pw, Z),

where Z is the vector of other explanatory variables.

Empirical Analysis

Model and Estimation

The 2,421 individual from 1,018 households were assigned into one of the four mu-

tually exclusive groups (Table 2.2). For the analysis we chose WIC targeted individuals

as children of age one through four and pregnant, lactating or breastfeeding women and

non-targeted individuals as other adults and children of age five and older. Although

all households in the sample are WIC eligible by income and have at least one targeted

individual living with them 558 households with 1,386 individuals are not participat-

ing in WIC and 460 households with 1035 individuals are participating in WIC. WIC

participating households have WIC targeted individuals and non-targeted individuals of

different ages. Among targeted individuals in these households 423 are WIC recipients

and 95 non-recipients. For our initial analysis we will combine non-recipients in WIC

households with non-targeted individuals in the same households and form a group of

non-targeted individuals in WIC households.

Two dummy variables:

WICh = 1 if households is participating in WIC, 0 otherwise,

Tih = 1 if WIC targeted individual, 0 otherwise,
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will help us to create each group of individuals. Let D1, D2, D3 and D4 be the dummies

representing each of the groups as specified in Table 2.2. Then

D1 = WICh ∗ Tih,

D2 = WICh ∗ Tih = (1−WICh)Tih,

D3 = (1−WICh) ∗ Tih, and

D4 == (1−WICh)(1− Tih.

The econometric model is a single equation model of demand for a specific food:

cih = Xihβ + uih (2.1)

where the dependent variable is the amount (milligrams calcium) consumed by indi-

vidual i in household h from WIC-approved foods (milk, cheese, ’milk and cheese’),

Xih contains group identifyers D2 through D4 along with individual and household

specific characteristics.

The dependent variable, cih, in equation (2.1) is zero if an individual does not con-

sume the food, and positive if it does. Zero consumption is censored by an unobservable

latent variable. We cannot use OLS regression since it is known that estimated coef-

ficients are inconsistent when only observed positive consumption data are used in the

estimation. A Tobit model will be used to correct for zero consumption, defined as

follows:

cih = c∗ih = Xihβ + uih if c∗ih > 0 (2.2)

cih = 0 if c∗ih ≤ 0 (2.3)

where uih are residuals that are independently and normally distributed, with mean zero

and a common variance σ2; and c∗ih is an unobservable latent variable.

WIC is the Special Supplemental Nutrition Program that targets only women, infants

and children eligible for the program. Therefore, although the WIC eligibility status can
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be predetermined, since WIC is not a mandatory program, participation in the program

is endogenous. Ignoring the endogeneity will lead to a biased estimate.

We adopt Nelson and Olson’s (1978) two-stage instrumental variable estimation

method in our analysis. In the first stage probit choice model of WIC participation

will be estimated:

WIC∗
h = zhγ + εh, εh ∼ N(0, 1) (2.4)

WICh = 1 if WIC∗
h > 0 (2.5)

WICh = 0 if WIC∗
h ≤ 0 (2.6)

where zh contains intruments which are correlated with WIC participation decision but

uncorrelated with uih.

Parents choose to enroll or not to enroll eligible individuals of the households in

WIC. There could be several reasons why they choose not to participate even though

they are eligible. Participation in WIC can carry some costs associated with applying for

WIC, visiting WIC office regularly for re-qualification and check-up, picking up vouchers

monthly, and taking nutrition education classes. Stigma associated with participation in

food assistance program or transportation issues can also affect households’ participation

decision. Also, it is possible that parents are not motivated enough to improve targeted

individuals’ nutrition or these targeted individuals are not at low nutritional risk. While

all of the above mentioned reasons are important, we do not observe most of them. So

for the empirical analysis, these factors are included the error term. The standard errors

are complicated by the first-stage imputation, so we will bootstrap the standard errors.

The specification discussed above will allow us to make several comparisons among

the four groups for estimating the effects of WIC on consumption of WIC-approved

foods. Conditional on having a positive intake, we can obtain the predicted values of

individual i’s food intake conditional on being in one of the four group individual.
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The Data

The ideal data set would include information on program eligibility, multiple program

participation, and dietary intake on all members of the household. The best available

data, and the data planned for use in this research, are from the 1994-96, 1998 Contin-

uing Survey of Food Intake by Individuals (CSFII). The 1998 survey is a supplemental

children’s survey and only contains data from children age 10 and under. It will be used

only when children are compared in tabular analysis. Although data from the NHANES

1999-2002 are more recent, the survey does not collect information on intakes of other

household members and for this reason, is not sufficient for our analysis.

The CSFII data contain basic demographic information for each household and

household member, and the survey uses a randomization strategy to select certain mem-

bers to participate in a complete food intake survey. That is, even though there is

not food intake data available for all members, the full composition of the household is

known. For each of these sample persons questions on twenty four hour recall of food

intake were conducted on two nonconsecutive days. The respondents report both the

types and amounts of food consumed during this period.

Some foods are eaten as a single food and some as an ingredient in a meal. For our

variable of interest, amount of milk or cheese consumed, CSFII 94-96, 98 will give us

the amount in grams of milk/cheese if the food is classified as a dairy product. There

are other foods that use milk and/or cheese as an ingredient. To identify the amount

of milk or cheese used as an ingredient in non-dairy foods we use the Pyramid Servings

Database for USDA survey food codes used in processing national surveys between 1994

and 2002. This dataset includes both Pyramid servings food and intake data files by

30 Pyramid food groups for food codes used to process intakes from CSFII 94-96, 1998.

It also includes the information on serving of milk or cheese per 100 gram of food. We

use this information to obtain the total amount of milk and cheese consumed as a single
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food or as an ingredient in meal by individual per day.

Since we compare food intakes of four different groups, each group may have both

adults and children. Adults and children have different dietary requirements (Dietary

Reference Intakes). In order to make the individuals comparable we convert the grams

of food of interest into a calcium equivalent measure.

To be eligible for WIC, individuals must be in a WIC-qualifying population group

(pregnant, up to 6 months post-partum; non-breastfeeding woman up to 6 months post-

partum; a breastfeeding woman up to 1 year postpartum; an infant under 1 year of age;

or a child up to his/her 5th birthday). The household’s income must be at or below 185

percent of the Federal poverty guidelines or participate in qualifying programs (Medi-

caid, Food Stamps, Temporary Assistance for Needy Families (TANF)). And, applicants

must be at nutritional risk, as determined by a health professional. Although it is not

possible to determine individuals that are at nutritional risk from the CSFII data, nearly

all U.S. women and children meet the criteria by failing to meet the Dietary Guidelines

(IOM 2002). Thus, we define WIC eligible individuals as those living in households

with income of 200 percent of the poverty guidelines (the same population considered in

Oliveira and Chandran). Individuals will be identified as: WIC income-eligible or not;

being a WIC-recipient or not/ and being a WIC targeted individual.

Derivation of the Dependent Variables

For the initial analysis we consider three foods: milk, cheese, and ’milk and cheese’.

In order to be able to compare the food intake of individuals of different age and gender

we convert the dependent variable ’amount of food’ consumed (grams) to a calcium

equivalent measure. CSFII 94-96, 98 contains information on grams of milk and/or

cheese consumed as a single food or an ingredient in the dairy food, but this is not

enough for our analysis. In addition to consumption of the dairy foods, we would like to

know the amount of milk and/or cheese consumed as an ingredient in the preparation
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of the multi-ingredient dishes. For this reason we use the Pyramid Servings Database

that provides the servings of milk or cheese from different foods consumed. The Pyramid

Foods database applies to individuals 2 years of age and older, but for our analysis we are

also interested in milk and cheese consumption of 1 year children. Since from the dataset

we can find the number of servings of milk per 100 gram of different foods consumed we

use this information to find the number of servings consumed by one year old children.

A serving of liquid milk is defined as 1 cup which is 244gr and a serving of cheese is

measured in ounces, which is 28.35 grams. By using the calcium conversion factor we can

convert the grams of milk and/or cheese consumed into milligrams of calcium received

from the food consumed. When the reported foods containing milk and/or cheese as an

ingredient did not report specifically what kind of milk or cheese was used, a calcium

conversion factor based on the most frequently consumed milk (whole milk) and cheese

(American cheddar type cheese) was used.

The Dietary Reference Intake for calcium children of ages one through three (500mg

of calcium/day) was used as the base or reference amount to convert all other individuals’

calcium intake into an age and gender equivalent measure. The dependent variable is

measured in milligrams (mg) of calcium received from the food consumed.

Table 2.3 contains the description of WIC-approved milk and cheese selected for the

analysis. We followed closely the selection of WIC-approved foods done by Oliveira and

Chandran (2005). Consumption of milk and cheese is analyzed regardless of whether

the food was actually purchased through WIC.

Independent Variables

Table 2.4 contains definitions of independent variables used in the analysis. The

demographic variables of individuals include age, gender, race, and education level.

The education variable reports the household’s main meal preparer’s education. Other

variables that show household characteristics and are useful in determining the WIC
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participation decision are household size, income, region, rural/urban, an indicator of

having cash assets of less than $5,000, participation in food stamp, number of young age

children, presence of pregnant, breastfeeding, or lactating women.

Households that do not satisfy WIC eligibility requirements are excluded from the

analysis. These are the households that have income of more that the 200 percent of the

poverty guidelines, and do not have children under the age of 5 or pregnant, lactating

and breastfeeding women. The resulting sample consists of 2421 individuals.

Table 2.5 reports the means of dependent and independent variables for the whole

sample and each of the group of interest. Households that participate in WIC have

lower income and less likely to have cash assets of $5,000 compared to non-participating

households. WIC households are more likely to receive food stamp, live in central city

or rural area and be Black or Hispanic.

Empirical Results

Table 2.6 reports the results of first-stage probit estimation. Valid instruments in this

setting must be correlated with the WIC participation variables but uncorrelated with

the error term in the consumption equation. An instrument we chose is ’having cash of

less than $5,000’. Having cash assets of more than $5,000 decreases the probability of

participation in WIC. Household size, presence of infants, participation in food stamp

program, being Hispanic all have positive significant effect on the probability of being

in WIC. While presence of children under age of 5, having high school education, being

Black, living in Northwest, Midwest and West, and residing in suburbs decrease the

probability of being in WIC.

A total of three Tobit consumption models were estimated, one for each of the three

types of foods: milk, cheese, milk and cheese and the results are presented in Table 2.7.

The parameters of primary interest are the coefficients on different groups of individuals.
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Compared with non-targeted individuals in WIC households and targeted and non-

targeted individuals in non-WIC households, targeted individuals in WIC households

consume significantly more milk, holding other factors constant. The same result holds

for the consumption of ‘milk and cheese’.

There is no statistically significant difference in the consumption of cheese between

these groups. Most of the variables in the estimation of the milk and the ‘milk and cheese’

equation have the same sign and significance level, except for household size and some

college education. Household size had a significant negative effect on the consumption

of both cheese and ‘milk and cheese’ and some college education has a positive and

significant effect on the consumption of milk and has no statistically significant effect

on the consumption of ‘milk and cheese’.

Breastfeeding, pregnant and lactating women consumed significantly less milk and

‘milk and cheese’ than others. Children of age five through eight consumed significantly

more milk, cheese, and ‘milk and cheese’ than children in the age group 1-4. Individuals

of age 9 through 18 and 19-50 consumed significantly more milk, cheese and ‘milk and

cheese’ compared to very young children of age under five. Compared to Whites, Blacks

consumed significantly less of WIC-approved milk and ‘milk and cheese’ and Hispanics

and other race/ethnicity consumed significantly less of cheese. Individuals with some

college education consumed significantly more WIC-approved milk and cheese than in-

dividual with some high school education. Compared to South, living in Midwest was

associated with the increased consume of milk, cheese and ‘milk and cheese’ and living in

the West with increased consumption of milk and ‘milk and cheese’. Living in the rural

has negative significant effect on consumption of milk and ‘milk and cheese’ compared

to living in the central city.

Table 2.8 contains the values of the predicted conditional means. Targeted individu-

als in WIC households consume 65 percent more milligrams of calcium from milk than

non-targeted individuals in the same households compared to 60 percent of difference
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in consumption between same individuals in non-WIC households. Also targeted in-

dividuals in WIC households consume 11 and 65 percent more milligrams of calcium

from milk than targeted and non-targeted in non-WIC households, respectively. Non-

targeted individuals in WIC and non-WIC household consumed similar amount calcium

from milk. A similar pattern is observed for the consumption of ‘milk and cheese’ ex-

cept non-targeted individuals in WIC households consumed less ‘milk and cheese’ than

similar individuals in non-WIC households. Since parameter estimates for cheese were

not significant, we did not calculate the predicted conditional means for cheese.

Conclusions and Directions for Future Research

WIC-approved foods are very important in the diets of not only children but also

adults. After controlling for the participation decision we found that participation in

WIC is associated with increased consumption of milk and ‘milk and cheese’ for the

targeted individuals. In summary, we find:

a. targeted individuals in WIC households consume more milk and ‘milk and cheese’

than similar individuals in non-WIC households. More specifically, WIC was asso-

ciated with an increase of 11% in the amount of calcium individuals get from milk

compared to targeted individuals in non-WIC households.

b Consumption of milk for non-targeted individuals in WIC households was similar to

those individuals in non-WIC households. We could not say the same for the

consumption of ‘milk and cheese’. Non-targeted individuals in WIC households

consumed about 2% less calcium from ‘milk and cheese’ than similar individuals

in non-WIC households.

c Non-targeted individuals in WIC households consumed less milk and ‘milk and cheese’

than targeted individuals in the same households. More specifically, targeted indi-
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viduals in WIC households consumed about 65 % and 60 % more milk and ‘milk

and cheese’ respectively, than non-target individuals in the same households.

This research provided some insight for understanding the intra-household allocation

of WIC-approved foods. We did not detect any spillover effect within households. There

is relatively little differentiation in the types of milk and cheese available through WIC

in terms of brand and types of WIC-approved products; WIC also puts relatively few

restrictions on the milk and cheese products. The earlier study by Oliveira and Chandran

(2005) found that the effect of WIC food package on participants’ food consumption

differed by type of food. They found that WIC participation had a little effect on the

consumption of foods, such as milk, cheese, eggs, dry beans/peas and peanut butter,

where WIC participants’ food choices were less constrained. They also found that WIC

has a large impact on the consumption of some foods such as WIC-approved cereal

and juices. It would be of interest to consider intakes of WIC-approved foods such as

juices and cereal, where there are more restrictions on the types and brand of foods

that consumers can purchase using their vouchers. WIC-approved foods include iron-

fortified and low-sugar cereal and 100 percent juice. There are several limitations to

the approach used in the analysis and its findings. First of all the dataset we use for

the analysis is not recent. Advances in technology, new health related research findings,

new dietary guidelines and invention of new foods affect consumers’ preferences toward

food. Although CSFII 94-96, 98 is the most currently available national data that allows

tracking food consumption of WIC and WIC-eligible individuals and other members of

the same household, the use of more current data would be preferred.

When doing the two-stage estimation we used predicted values from the first stage

estimation and imputed in the second stage. Since we are using dummy variables to

classify individuals into one of the groups it would be of interest to estimate two equations

simultaneously. Also we ignore the fact that the unit of observation in the first equation is
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individual and in the second equation is household. For estimation simplicity we replicate

the household observations to obtain the same number of households as individuals.

Although, the estimation approach used here provides some insight about intra-

household allocation of WIC approved foods, additional work is required for the devel-

opment of the estimation technique that will account for the difference in the units of

observations in two estimated equations and for the correlation of individuals within the

household.
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Table 2.1 Maximum Monthly Allowances of WIC Food Packages for Chil-
dren

Fruit Juices 288 fl oz of vitamin C-rich juice (about 9 fl oz per day)
Milk and Alternatives 24 quarts of milk (about 3 cups per day)

with some allowed substitutions
Grains 36 ounces of iron-fortified cereal
Meat and Alternatives 2-2.5 dozen eggs

1 pound of dried beans or peas
or
18 ounces of peanut butter

Source: Brief Report, April 2005, Institute of Medicine of the National Academies
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Table 2.2 Number of Individuals in Each Group by WIC Status

No. of Individuals Group WIC Status
423 D1 Targeted individuals in WIC household
612 D2 Non-targeted individuals in WIC household
706 D3 Targeted individuals in non-WIC household
680 D4 Non-targeted individuals in non-WIC household
2421 Total individuals
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Table 2.3 WIC-approved Milk and Cheese Used in the Analysis

WIC-approved Milk Includes: fluid cows milk (whole, 2%, 1%, skim),
low-lactose milk, buttermilk, dry (powdered) milk,
evaporated milk, acidophilus milk, milk flavored after
purchase, milk added to cocoa mix,the milk added in
preparing the food at home.
Excludes: human milk, calcium-fortified milk,
condensed milk, soy or rice milk, imitation milk,
milk beverages, milk drinks such asYoo-Hoo, milk shakes,
milk purchased already flavored.
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Table 2.4 Variables and Definitions

Variables Definitions
D1 Targeted recipients in WIC household (omitted)
D2 Non-targeted & non-recipient individuals in WIC household
D3 Targeted individuals in non-WIC household
D4 Non-targeted individuals in non-WIC household
Income Household income
Household size Household size
Children ages 1-5 1 if children of age 1-5 are present, 0 otherwise
Infant 1 if infant present, 0 otherwise
Food Stamp 1 if household receives food stamp, 0 otherwise
PregLactPost 1 if female is breastfeeding, pregnant or lactating, 0 otherwise
Age 1-4 1 if age is between 1&4, and 0 otherwise (omitted)
Age 5-8 1 if age is between 5&8, and 0 otherwise
Age 9-18 1 if age is between 9&18, and 0 otherwise
Age 19-50 1 if age is between 19&50, and 0 otherwise
Age 51-up 1 if age is between 51& older, and 0 otherwise
White 1 if race is white, 0 otherwise (omitted)
Black 1 if race is black, 0 otherwise
Hispanic 1 if race is Hispanic, 0 otherwise
Other 1 if race is black, 0 otherwise
Male 1 if male, 0 otherwise
Female 1 if female, 0 otherwise (omitted)
Edushs 1 if main meal preparer’s education is less than high school
Eduhs 1 if main meal preparer’s education is high school, 0 othewise
Eduscol 1 if main meal preparer’s education is some college, 0 otherwise
No edu 1 if main meal preparer’s education is not reported, 0 otherwise
Cash less 5000 1 if household has savings of cash assets of more than 5000
Northwest 1 if household is located in the Northwest, 0 otherwise
Midwest 1 if household is located in the Midwest, 0 otherwise
South 1 if household is located in the South, 0 otherwise (omitted)
West 1 if household is located in the West, 0 otherwise
Central City 1 if household is located in Central City, 0 otherwise (omitted)
Suburbs 1 if household is located in suburbs, 0 otherwise
Rural 1 if household is located in rural area, 0 otherwise
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Table 2.5 Variables and Mean Values (weighted)

WIC WIC Non-Targeted Non-WIC Non-WIC
Variable Sample Targeted Non-Targeted Targeted Non-Targeted
N 2421 423 612 706 680
mg milk 233.70 454.32 147.90 402.30 162.37
mg cheese 68.10 66.41 60.41 76.71 70.31
mg milk cheese 292.65 509.92 200.43 466.35 224.64
Income 18600 14210 17381 19522 20222
Household size 4.99 4.48 5.33 4.71 5.00
Children ages 1-5 0.91 0.95 0.77 0.98 0.98
Food Stamp 0.37 0.57 0.53 0.26 0.24
PregLactPost 0.04 0.15 0.01 0.14 0.00
Infant 0.01 0.01 0.02 0.00 0.00
Age 1-4 0.28 0.87 0.07 0.87 0.00
Age 5-8 0.13 0.00 0.14 0.00 0.21
Age 9-18 0.13 0.01 0.20 0.01 0.18
Age 19-50 0.44 0.12 0.57 0.12 0.58
Age 51-up 0.03 0.00 0.03 0.00 0.04
White 0.46 0.40 0.39 0.52 0.50
Black 0.22 0.26 0.22 0.20 0.21
Hispanic 0.26 0.27 0.34 0.22 0.22
Other 0.04 0.05 0.03 0.05 0.05
Male 0.46 0.46 0.45 0.46 0.47
Female 0.54 0.54 0.55 0.54 0.53
Edushs 0.12 0.15 0.15 0.09 0.11
Eduhs 0.56 0.56 0.56 0.58 0.55
Eduscol 0.29 0.26 0.26 0.31 0.32
No edu 0.02 0.03 0.03 0.01 0.02
Northwest 0.18 0.16 0.19 0.16 0.18
Midwest 0.21 0.20 0.18 0.23 0.22
South 0.35 0.38 0.36 0.32 0.34
West 0.27 0.26 0.27 0.29 0.27
Central City 0.39 0.45 0.43 0.38 0.35
Suburbs 0.39 0.29 0.34 0.41 0.44
Rural 0.22 0.26 0.23 0.21 0.21
Instrument
Cash less 5000 0.92 0.97 0.94 0.91 0.90
Means provided for individuals characteristics are weighted by the CSFII sampling weights
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Table 2.6 First-Stage Probit Estimates

Parameter Estimate Std Error
Intercept −0.48∗∗∗ 0.18
Household size 0.09∗∗∗ 0.02
Children ages 1-5 −0.26∗∗∗ 0.04
Infant 0.76∗∗∗ 0.27
Food Stamp 0.90∗∗∗ 0.06
PregLactPost 0.01 0.16
Eduhs −0.18∗∗ 0.09
Eduscol −0.14 0.10
No edu 0.06 0.19
Black −0.16∗∗ 0.08
Hispanic 0.38∗∗∗ 0.08
Other −0.03 0.14
Northwest −0.18∗∗ 0.08
Midwest −0.25∗∗∗ 0.08
West −0.36∗∗∗ 0.08
Suburbs −0.21∗∗∗ 0.07
Rural 0.12 0.08
Instrument
Cash less 5000 0.22∗∗ 0.12
Ln L -1460
N 2421

Notes: ∗∗∗ =significance at 1% level;∗∗ =significance at 5% level
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Table 2.7 Second-Stage Tobit Estimates for Consumption of Milk and Cheese

Milk Cheese Milk&Cheese

Variable Estimate Std Err Estimate Std Err Estimate Std Err
Intercept 472.82∗∗∗ 43.97 −36.15 28.84 554.22∗∗∗ 42.43
D2 −318.92∗∗∗ 36.30 −27.10 24.33 −302.31∗∗∗ 35.36
D3 −87.51∗∗∗ 22.97 19.32 15.22 −67.50∗∗∗ 22.47
D4 −325.12∗∗∗ 41.11 −28.35 27.10 −314.37∗∗∗ 39.85
Income 0.001 0.00 0.001∗∗ 0.00 0.001 0.001
Household size −4.72 5.24 −10.57∗∗∗ 3.48 −10.69∗∗ 5.05
Food Stamp −13.19 19.18 13.18 12.44 −0.147 18.52
PregLactPost −140.03∗∗∗ 49.54 −23.88 32.47 −175.05∗∗∗ 48.16
Age 5-8 99.59∗∗∗ 39.32 47.12∗ 26.08 93.44∗∗∗ 38.27
Age 9-18 −80.02∗∗ 39.15 51.93∗∗ 25.53 −66.79∗ 37.82
Age 19-50 −193.31∗∗∗ 34.75 60.88∗∗∗ 22.83 −118.09∗∗∗ 33.52
Age 51-up −220.15∗∗∗ 56.35 −30.56 37.31 −201.49∗∗∗ 53.68
Black −92.04∗∗∗ 22.49 −20.70 14.32 −96.64∗∗∗ 21.60
Hispanic 7.90 21.39 −43.01∗∗∗ 13.77 −16.52 20.62
Other −1.34 40.17 −129.89∗∗∗ 29.16 −46.73 38.98
Male 8.51 15.34 8.13 9.83 18.61 14.79
Eduhs 34.02 25.72 8.96 16.74 12.80 24.57
Eduscol 54.49∗∗ 28.67 34.15∗ 18.44 41.87 27.39
No edu 46.89 54.78 −21.47 37.05 25.34 52.89
Northwest 27.88 23.54 −14.20 15.28 19.42 22.73
Midwest 34.48∗ 21.44 26.92∗∗ 13.40 46.45∗∗ 20.61
West 83.94∗∗∗ 21.47 18.43 13.78 86.79∗∗∗ 20.76
Suburbs 15.60 18.50 15.21 11.99 21.53 17.90
Rural −56.02∗∗∗ 21.39 20.15 13.62 −37.18∗ 20.57
Ln L -14345 -8389 -15801
N 2421 2421 2421

Table 2.8 Predicted Conditional Means of Milk, Milk & Cheese Intake (base
500mg)

Group Milk Milk and Cheese
(mg calcium) (mg calcium)

D1=Targeted recipient WIC household 503 (1.06) 555 (1.11)
D2=Non-targeted in WIC household 180 (0.36) 238 (0.48)
D3=Targeted in non-WIC household 447 (0.89) 514 (1.03)
D4=Non-targeted in non-WIC household 179 (0.36) 242 (0.48)
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3. INTRA-HOUSEHOLD ALLOCATION AND

CONSUMPTION OF WIC-APPROVED FOODS:

A BAYESIAN APPROACH

Abstract

WIC, the Special Supplemental Nutrition Program for Women, Infants, and Chil-

dren, is a widely studied public food assistance program that aims to provide foods,

nutrition education and other services to at-risk, low-income children and pregnant,

breastfeeding and postpartum women. From a policy perspective, it is of interest to

assess the efficacy of the WIC program - how much, if at all, does the program improve

the nutritional outcomes of WIC families? In this paper we address two important is-

sues related to the WIC program that have not been extensively addressed in the past.

First, although the WIC program is primarily devised with the intent of improving the

nutrition of “targeted” children and mothers, it is possible that WIC may also change

the consumption of foods by non-targeted individuals within the household. Second,

although WIC eligibility status is predetermined, participation in the program is volun-

tary and therefore potentially endogenous. We make use of a treatment-response model

in which the dependent variable is the requirement-adjusted calcium intake from milk

consumption and the endogenous variable is WIC participation, and estimate it using

Bayesian methods. Using data from the CSFII 1994-1996, we find that the correlation

between the errors of our two equations is strong and positive, suggesting that families
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participating in WIC have an unobserved propensity for high calcium intake. The direct

“structural” WIC parameters, however, do not support the idea that WIC participation

leads to increased levels of calcium intake from milk.

Keywords: nutrition, WIC, Bayesian econometrics, treatment-response.

JEL Classification: C11; C31; C34; I38.
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Introduction

In fiscal year 2006, the United States Department of Agriculture (USDA) spent

nearly $53 billion on food assistance programs (Oliveira 2007). The third largest of

these programs, the Special Supplemental Nutrition Program for Women, Infants, and

Children (commonly and henceforth denoted as WIC), has been widely studied in the

health and nutrition literatures and aims to serve the public by providing supplemental

foods, nutrition education and other services to foster the growth, development and

long-term health of participating individuals.

For families that qualify for WIC participation, the program provides access to nu-

tritious foods to supplement the diets of infants, children up to age five, and pregnant,

breastfeeding and postpartum women. The program benefits, usually in the form of

checks or vouchers, allow participants to obtain specific “packages” of foods. These foods

include infant formula, milk, cheese, eggs, juice, cereals, peanut butter/dried beans, and,

for fully breast-feeding mothers, these also include carrots and tuna.

From a policy perspective, it is of primary interest to assess the efficacy of the WIC

program - how much, if at all, does the program improve the nutritional outcomes of WIC

families? In this paper we employ a Bayesian methodology to address this question and

estimate the impact of WIC participation on a specific nutritional outcome - calcium

intake via milk consumption. Our study is certainly not the first in this regard, as

other efforts using different models and maintained assumptions have been conducted

in the past. For example, Oliveira and Chandran (2005) find that participation in the

WIC program increases consumption for some types of WIC-approved foods for WIC

children compared to eligible nonparticipating children and children living in households

with income too high to be eligible for WIC (income greater than 185% of the poverty

threshold). Other efforts in this regard include the studies of Rose et al. (1998), Burstein,

et al. (2000), Oliveira and Gundersen, (2000) Ponza, et al. (2004) and Siega-Riz, et al.
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(2004), who generally find positive impacts associated with the WIC program.

There are, however, two important issues related to the WIC program that have

not been extensively addressed in past work, and we seek to address these issues in the

current paper. First, although the WIC program is primarily devised with the intent of

improving the nutrition of “targeted” children and mothers, it is possible that WIC may

also change the consumption of foods by non-targeted individuals within the household.

This has been referred to as “spillover” (Oliveira and Chandran 2005) or “leakage”

(Barrett 2002) of WIC benefits. As Oliveira and Chandran note, this might occur if 1)

receipt of WIC benefits frees up food dollars for use to benefit other, nonparticipating

children; 2) nutrition education changes food selection for all members; or 3) WIC foods

are shared with non-WIC household members. Little is known about the degree to

which this occurs. In the current paper, we formally address this issue by comparing

the impact of WIC participation on both targeted household members as well as non-

targeted members of WIC families.

Second, the previous literature on this topic has certainly been aware of the poten-

tial endogeneity of WIC participation and, in some cases, has interpreted the obtained

results with caution in light of this concern. To our knowledge, however, no study in

the literature has dealt with this problem extensively. To address this endogeneity issue,

we make use of a treatment-response model in which the dependent variables are the

requirement-adjusted calcium intake from milk consumption and the decision to partic-

ipate in WIC. We estimate this two equation system jointly and handle the endogeneity

issue by introducing covariates that affect WIC participation directly but (presumably)

are conditionally uncorrelated with levels of calcium intake. These instruments include

indicators of household assets as well as variables exploiting regional variation in re-

quirements for WIC participation. Ostensibly, WIC participation will lead to increased

calcium intake from milk, though in the presence of endogenous participation, this need

not be the case. For example, families who choose to participate in WIC may simulta-
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neously (and unobservably) be quite concerned regarding the nutritional intake of each

family member, and thus members of households participating in WIC may have high

calcium intake even in the absence of WIC. Moreover, freed resources enable families to

consume calcium through other sources, so that WIC could actually lead to a reduction

in calcium intake through milk.

In terms of our posterior predictive distributions of calcium intake from milk, we

find results consistent with our prior expectations and the majority of past work on

this topic. That is, WIC targeted individuals have higher levels of calcium intake than

their non-WIC counterparts. However, the posterior predictives combine two sources of

information: what we might term the “structural” effect of WIC participation as well

as an unobserved correlation between the errors of the participation and outcome equa-

tions. As one might suspect, we find that the correlation between errors in the WIC

participation and calcium consumption equations is strong and positive, suggesting that

families participating in WIC have an unobserved propensity for high calcium intake.

What drives the intuitive ordering among the posterior predictives is primarily the se-

lection effect - those families in WIC would have had large levels of calcium intake in

the absence of the program. The direct “structural” WIC parameters do not directly

support the idea that WIC participation leads to increased levels of calcium intake, a

finding that is, to our knowledge, new to this literature. Indeed, these families may be

substituting away from milk and toward other preferred alternatives, a finding that has

significant implications for the selection of foods within the WIC program.

The paper proceeds as follows. The next section describes the model specification

and the associated Bayesian posterior simulator. The data used in the analysis are

described followed by a description of empirical results. The paper concludes with a

summary of the findings.
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The Model, Posterior Simulator and Posterior Predictives

We first let wh be a binary variable equal to one if household h participates in WIC

and equal to zero otherwise. Within a given household, some members, including chil-

dren under five and pregnant/breastfeeding mothers, will be targeted individuals, i.e.,

those family members the WIC program is primarily designed to serve. To this end,

we will let Tih be an exogenous binary variable denoting if individual i in household

h is a WIC targeted individual. The construction of these two variables leads to the

categorization of all individuals in our sample into four mutually exclusive groups:

G1,ih = wh ∗ Tih (targeted individual in a WIC participating household),

G2,ih = wh ∗ (1− Tih) (non-targeted individual in a WIC participating household),

G3,ih = (1−wh)∗Tih (targeted individual in a WIC eligible but non-participating house-

hold),

G4,ih = (1−wh)∗(1−Tih) (non-targeted individual in a WIC eligible but non-participating

household).

Our outcome variable of interest is requirement-adjusted calcium intake through

milk consumption. We represent this variable as cih. Importantly, there is a censoring

problem associated with calcium intake in our data, since approximately 16% of our

sample has identically zero consumption values. To this end, we follow Chib (1992) and

Albert and Chib (1993) and work with latent consumption c∗ih, which is assumed to be

generated by:1

c∗ih = xihα + εih, (3.1)

and

cih = max{0, c∗ih}. (3.2)

1We follow standard conventions of using capital letters to denote matrix quantities and bold script
to denote vectors or matricies.
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The group identifiers G2 → G4
2 above together with other relevant demographic

variables such as age, income, gender indicators, etc., are included in the vector xih. By

comparing the α coefficients across these groups, we can determine if WIC participation

has an important effect on calcium intake, and, moreover, we can test for the presence of

the hypothesized “spillover” effects within a WIC household. That is, we can determine

whether or not non-targeted members in WIC households have higher levels of calcium

intake through milk consumption than non-targeted members of non-WIC households.

As stressed in the introduction of this paper, WIC participation is voluntary, and thus

the binary indicator wh (and associated group identifiers G2 → G4) is not necessarily

exogenous in (3.1). That is, household heads choosing to participate in WIC could,

for example, be very concerned about the nutritional intakes of its constituents, thus

leading to higher levels of calcium intake for these families on average. To this end, we

first consider the household-level decision to participate in WIC:

w∗
h = zhβ + νh, νh

iid∼ N(0, 1) (3.3)

where

wh =

 1 if w∗
h > 0

0 if w∗
h ≤ 0

(3.4)

and zh is a vector of instruments and household specific characteristics.

To account for the potential endogeneity of WIC participation, we allow the errors

of (3.1) and (3.3) to be correlated. That is, household-level unobservables that make

a family more likely to participate in WIC may also make that family more likely to

have high levels of calcium intake. We choose to accommodate this type of correlation by

including a household-specific error term in (3.1) and allowing this error to be correlated

with νh in (3.3). The intuition behind this modeling assumption is that a household

head who chooses to participate in WIC will also tend to guide meal preparation in

2Here G1 (targeted individuals participating in WIC) is the excluded category.
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the household and monitor the nutritional habits of the household members. Thus,

unobservable factors affecting WIC participation will likely spill over and correlate with

the nutritional intakes of all the family members and should probably correlate in a

similar way across each member. To this end, we consider the following model:

c∗ih = xihα + ψs∗ih + uh + εih, (3.5)

w∗
h = zhβ + νh, (3.6)

where  uh

νh

 ∣∣∣∣ x, z, s∗ iid∼ N


 0

0

 ,

 σ2
u σuv

σuv 1


 , (3.7)

and

εih| x, z, s∗
iid∼ N(0, σ2

ε ). (3.8)

Equations (3.5) and (3.6) now represent a standard two-equation treatment-response

model using only observed rather than potential outcomes.3 However, we note that

equation (3.5), unlike its counterpart in (1), has included a latent variable s∗ih. This latent

variable is included, like the model of Chen, Dey and Shao (1999), to capture possible

skew in the distribution of calcium intake.4 These latent variables are specified to be

generated from a known distribution with one-sided support, thereby introducing the

possibility of accommodating skew in the outcome distribution beyond what is implied

by normality (given that c∗ih > 0). A rather standard choice in this regard, as employed

in Chen, Dey and Shao (1999), is to assume that s∗ih is generated from a half-normal

3For more on related posterior simulators for such models, see Koop and Poirier (1997), Chib and
Hamilton (2000, 2002), Poirier and Tobias (2003) and Chib (2007).

4Note that, unlike adopting the log specification, the model in (3.5) introduces skew without having
to address potential issues such as taking the log of negative values (and simultaneously considering the
mass point at zero consumption), or introducing an additional “hurdle” or “threshold” to the analysis.
This representation is, of course, not as flexible as other alternatives such as Gaussian mixtures or
Dirichlet processes but is a simpler alternative that may be adequately flexible to capture the salient
features of a given problem.
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distribution,

s∗ih| x, z
iid∼ TN(0,∞)(0, 1),

with TN(a,b)(µ, σ
2) denoting a normal distribution with mean µ and variance σ2 trun-

cated to the interval (a, b). When integrating the conditional density for c∗ih (given s∗ih)

over this half-normal for s∗ih, it can be shown that, marginally, c∗ih will have a skew-

normal distribution (e.g., Azzalini and Dalla Valle [1996], Chen, Dey and Shao [1999]

and Branco and Dey [2002]). The sign of the parameter ψ governs the direction of the

skew (i.e., positive values produce a distribution with a right-skew, conversely for nega-

tive values of ψ, and ψ = 0 reduces to joint normality). Since the potential for such skew

exists in both the conditional and unconditional distributions of calcium intake (Figure

3.1), we adopt the above procedure for handling this issue. As shown in our empirical

results section, the data strongly support the hypothesis of ψ 6= 0 so that the default

assumption of joint normality is not appropriate for this data. This is suggested in the

following graph of the raw calcium intake data:

With the formulation in (3.5), the composite error term ψs∗ih + uh + εih is not mean

zero since s∗ih is not mean zero. Though this shift will be “absorbed” by the intercept

parameter, this creates a muddled interpretation of the parameter ψ and may lead to

slower mixing of the posterior simulations.5 We handle this issue by simply shifting the

distribution of s∗ih back by its mean,
√

(2/π). Thus, in our analysis, we specify6

s∗ih| x, z
iid∼ TN (−

√
2/π,∞)(−

√
2/π, 1) (3.9)

and the model is given by (3.5)-(3.8) together with the revised distributional assumption

on s∗ih given in (3.9).

5This issue has been pointed out by Pewsey (2000) and others.
6In generated data experiments, this simple transformation seemed to improve the mixing of the

posterior simulations.
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The Joint Posterior

For the implementation of the posterior simulator, it will be instructive to work with

the population expectation of uh given νh. Given the joint normality assumption above,

we can write

uh = σuvνh + ηh,

where

ηh
iid∼ N(0, σ2

η), and σ2
η ≡ σ2

u − σ2
uv.

Thus, we can re-write our initial equation system in the following way:

c∗ih = xihα + ψs∗ih + σuvνh + ηh + εih

w∗
h = zhβ + νh

where

εih
iid∼ N(0, σ2

ε )

νh
iid∼ N(0, 1)

ηh
iid∼ N(0, σ2

η).

Thus, conditioned on the common νh, the consumption and WIC participation equa-

tions are independent.

Let

δ = [α′ β′ ψ σuv σ
2
ε σ

2
η]
′

denote the parameters of our model other than the random effects η. In addition,

let nh denote the number of individuals in household h, H denote the total number of

households in the sample, NH ≡
∑H

h=1 nh, k denote the number of explanatory variables
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and, finally, define

c∗h =



c∗1h

c∗2h

...

c∗nhh


, Xh =



x1h

x2h

...

xnhh


, s∗h =



s1h

s2h

...

snhh


,

c∗ =



c∗1

c∗2
...

c∗H


, s∗ =



s∗1

s∗2
...

s∗H


, w∗ =



w∗
1

w∗
2

...

w∗
H


, and η =



η1

η2

...

ηH


,

where xih is a 1 × k covariate vector for agent i, Xh is the NH × k matrix of stacked

covariate data and c∗, s∗, w∗ and η are NH×1 vectors. As in Albert and Chib (1993),

we will include the latent c∗, w∗, s∗ and vector of random effects η into our posterior

and thus will work with an augmented posterior of the form

p(c∗,w∗, s∗, δ,η|c,w) ∝ p(c,w|c∗,w∗, s∗, δ,η)p(c∗,w∗, s∗|δ,η)p(η|δ)p(δ)

= p(δ)
[ H∏

i=1

p(wh|w∗
h)p(c

∗
h, w

∗
h|s∗h, δ, ηh)p(ηh|δ)

×

(∏
i∈h

p(cih|c∗ih)p(s∗ih)

)]
.

In the first line above, we write the posterior as proportional to the full joint distribution

(of parameters, latent and observed data), and decompose this joint distribution into a

sequence of conditionals times marginals. The densities p(η|δ) and p(δ) denote prior

distributions for these parameters, and, in the second line of the above, we incorporate

the assumed (conditional) independence across households. Finally, in regard to the

density p(c,w|c∗,w∗, s∗, δ,η), we note that the distribution of wh depends only on w∗
h

(and is degenerate given its value), and, likewise, the distribution of cih depends only on

c∗ih (and is degenerate given its value). That is,

p(wh|w∗
h) = I(wh = 1)I(w∗

h > 0) + I(wh = 0)I(w∗
h ≤ 0)
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and

p(cih|c∗ih) = I(cih = c∗ih)I(c
∗
ih > 0) + I(cih = 0)I(c∗ih ≤ 0).

As for the joint distribution of household h’s calcium intake, c∗
h, and WIC participation,w∗

h,

note that c∗h

w∗
h

 ∣∣s∗h, δ, ηh
ind∼ N


 xhα + ψs∗h + ηhιnh

zhβ

 ,

 σ2
ε Inh

+ σ2
uvιnh

ι′nh
σuvιnh

σuvι
′
nh

1


 ,

where ιnh
is an nh×1 vector of ones, and, likewise, Inh

is the identity matrix of dimension

nh.

To complete our Bayesian analysis we must also introduce our priors. To this end,

we let

γ ≡


α

ψ

β


and specify priors of the form

γ ∼ N(µγ,Vγ) (3.10)

σuv ∼ N(µuv, Vuv) (3.11)

σ2
ε ∼ IG(aε, bε) (3.12)

σ2
η ∼ IG(aη, bη). (3.13)

The Posterior Simulator

We fit this model using recent advances in Markov Chain Monte Carlo (MCMC)

techniques, namely, the Gibbs sampler (e.g., Gelfand et al [1990], Casella and George

[1992], Albert and Chib [1993]). Implementation of the Gibbs sampler involves deriving

and then iteratively simulating from the conditional posterior distributions of the model’s

parameters. The sequence of simulations produced from this sampling procedure forms

a Markov chain that, under certain regularity conditions, converges to the targeted
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distribution (i.e., the joint posterior). To mitigate the effect of initial conditions on this

chain, an initial set of pre-convergence or “burn-in” simulations is discarded, and the

remaining set of simulations is then used to calculate posterior features of interest.

Our complete Gibbs algorithm consists of 8 steps, and the first two of these form

a blocking step (e.g., Chib and Carlin [1999]), where the parameters γ = [α′ ψ β′]′

and random effects η are sampled in a single block. We do this via the method of

composition. That is, we first sample γ from its conditional posterior, where the random

effects η have been integrated out. We then sample η by drawing each ηh independently

from its complete conditional posterior. For simplicity in notation below, we let Γ =

[δ′ c∗′ w∗′ s∗′]′ and let Γ−x denote all parameters other than x.

Step 1: γ|Γ−γ , c,w.

First, define

Xh ≡

 Xh s∗h 0

0 0 zh

 , c∗h ≡

 c∗h

w∗
h

 ,
and

Σh ≡

 [σ2
ε Inh

+ (σ2
η + σ2

uv)ιnh
ι′nh

] σuvιnh

σuvι
′
nh

1

 .
It follows that

γ|Γ−γ , c,w ∼ N(Dγdγ,Dγ), (3.14)

where

Dγ =

[∑
h

(X
′
hΣ

−1
h Xh) + V−1

γ

]−1

and dγ =
∑

h

(X
′
hΣ

−1
h c∗h) + V−1

γ µγ.

Step 2: ηh|Γ−ηh
, c,w

ηh|Γ−ηh
, c,w

ind∼ N(Dηh
dηh

, Dηh
), h = 1, 2, · · · , H, (3.15)

where

Dηh
=

σ2
ησ

2
ε

nhσ2
η + σ2

ε
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dηh
=

1

σ2
ε

∑
i∈h

(c∗ih − xihα− s∗ihψ − σuv[w
∗
h − zhβ]) .

Step 3: σuv|Γ−σuv , c,w

First, define the NH × 1 vectors V and η as follows:

V ≡



ιn1 [w
∗
1 − z1β]

ιn2 [w
∗
2 − z2β]

...

ιnH
[w∗

H − zHβ]


, η ≡



ιn1 [η1]

ιn2 [η2]

...

ιnH
[ηH ]


.

It follows that

σuv|Γ−σuv , c,w ∼ N (Dσuvdσuv , Dσuv) , (3.16)

where

Dσuv =
(
V′V/σ2

ε + V −1
uv

)−1
, dσuv = V′(c∗ −Xα− s∗ψ − η)/σ2

ε + V −1
uv µuv.

Step 4: σ2
ε |Γ−σ2

ε
, c,w

σ2
ε |Γ−σ2

ε
, c,w

∼ IG

(
NH
2

+ aε,
[
b−1
ε + 1

2

∑NH
i=1 (c∗ih − xihα− s∗ihψ − ηh − σuv[w

∗
h − zhβ])2

]−1
)
.

(3.17)

Step 5: σ2
η|Γ−σ2

η
, c,w

σ2
η|Γ−σ2

η
, c,w ∼ IG

H
2

+ aη,

[
b−1
η +

1

2

H∑
h=1

(η2
h)

]−1
 . (3.18)

Step 6: w∗|Γ−w∗ , c,w

Each of the latent variables in the WIC participation equation are sampled indepen-

dently as follows:

w∗
h|Γ−w∗ , c,w ∼

 TN(0,∞)(µw∗h
, σ2

w∗h
) if wh = 1

TN(−∞,0](µw∗h
, σ2

w∗h
) if wh = 0

, (3.19)
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where

µw∗h
= zhβ + σuvι

′
nh

[
σ2

ε Inh
+ σ2

uvιnh
ι′nh

]−1
(c∗h −Xhα− s∗hψ − ηhιnh

),

and

σ2
w∗h

= 1− σ2
uvι

′
nh

[
σ2

ε Inh
+ σ2

uvιnh
ι′nh

]−1
ιnh

.

Step 7: c∗|Γ−c∗ , c,w

Note that, conditioned on ηh and the remaining parameters of the model, each latent

c∗ih can be sampled independently from its conditional posterior:

c∗ih|Γ−c∗ih
, c, w ∼ TN(−∞,0)(µc∗ih

, σ2
ε ) if cih = 0, (3.20)

where

µc∗ih
= xihα + s∗ihψ + ηh + σuv(w

∗
h − zhβ).

When cih > 0, the conditional posterior for c∗ih is degenerate around the observed cih

and does not need to be simulated.

Step 8: s∗ih|Γ−s∗ih
, c,w

The assumptions of our model imply that each s∗ih can be sampled independently

from its complete conditional posterior. Completing the square in s∗ih yields a posterior

conditional of the form:

s∗ih|Γ−s∗ih
, c,w

ind∼ TN
(−
√

2/π,∞)
(µs∗ih

, σ2
s∗), i = 1, 2, · · · , NH, (3.21)

where

µs∗ih
=
ψ
(
c∗ih − xihα− ηh − σuv[w

∗
h − zhβ]

)
−
√

2/πσ2
ε

σ2
ε + ψ2

and

σ2
s∗ =

σ2
ε

σ2
ε + ψ2

.

A Gibbs sampler proceeds by iteratively sampling from (3.14)-(3.21).
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Posterior Predictive Intake Distribution

In our empirical application we are primarily concerned with the calculation and

comparison of intake distributions for individuals in each of the four groups of interest.

To this end, we focus on posterior prediction and fix the exogenous covariates’ values

for simplicity. Given our model, the posterior predictive intake distribution for such

a representative agent with fixed covariates and wh = 1, conditioned on the model

parameters Γ, is given as

p
(
c∗n+1,h|wh = 1,Γ

)
= p

(
c∗n+1,h|w∗

h > 0,Γ
)

= [Pr (w∗
h > 0|Γ)]−1

∫ ∞

0

p
(
c∗n+1,h, w

∗
h|Γ
)
dw∗

h,

where the n+1 subscript is used to denote an out-of-sample, “representative” agent.

After some manageable algebra, we perform the required integration and obtain:

p
(
c∗n+1,h|wh = 1,Γ

)
= Φ

[
zhβ + [σuv/(σ

2
uv + σ2

ε )]
(
c∗n+1,h − xn+1,hα− ψs∗n+1,h − ηh

)√
σ2

ε/[σ
2
ε + σ2

uv]

]

×
φ
(
c∗n+1,h; xn+1,hα + ψs∗n+1,h + ηh, σ

2
ε + σ2

uv

)
Φ (zhβ)

.

(3.22)

The density in (3.22) is not of an immediately recognizable form, though the steps

leading to its derivation suggest a method of obtaining draws directly from this density.

Specifically, draws from (3.22) can be obtained from the following procedure:

First, sample

w∗
n+1,h ∼ TN(−zhβ,∞) (0, 1) .

Then, set

c∗n+1,h = π0,n+1 + π1w
∗
n+1,h + π2ε (3.23)
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where

ε ∼ N (0, 1)

π0,n+1 = xn+1,hα + ψs∗n+1,h + ηh,

π1 = σuv

π2 = σε.

It can be shown that c∗n+1,h has the density given in (3.22). The proof of this fact is

reasonably straightforward, noting that p(c∗n+1,h) =
∫
p(c∗n+1,h|w∗

n+1,h)p(w
∗
n+1,h)dw

∗
n+1,h

and substituting in the formulas above to perform the necessary integration.

Since this procedure obtains a draw from the posterior predictive for a given vector of

parameters Γ, the influence of these parameters can be marginalized out of the predictive

by noting:

p(c∗n+1,h|wh = 1, c,w) =

∫
p(c∗n+1,h|wh = 1,Γ)p(Γ|c,w)dΓ. (3.24)

Thus, for every post-convergence Γ draw produced from the simulator, we apply the

above procedure to obtain a draw from the posterior predictive. Though the details are

suppressed here, similar steps can be used to obtain the posterior predictive associated

with the event that wh = 0. Finally, calcium intake is linked to the latent c∗n+1,h by

noting: cn+1,h = max{0, c∗n+1,h}, which is calculated for each iteration of the sampler.

The Data

Our empirical analysis makes use of data from the USDA 1994-96 Continuing Survey

of Food Intake by Individuals (CSFII). The CSFII is a nationally representative, cross-

sectional survey of individuals in households in the United States. The survey uses a

randomization strategy to select certain members of the household to participate in a

complete food intake survey; thus, not all members of a WIC household are present in
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our sample. For each of the sampled individuals, questions involving a 24-hour recall of

food intake were conducted on two nonconsecutive days. Importantly for our purposes,

respondents report milk consumption and the consumption of milk-containing foods

during this period.

Household and individual characteristics can be used to identify WIC eligible house-

holds, and we focus only on those individuals and households that are WIC eligible in

our analysis. To be eligible for WIC, at least one individual in the household must be in

a WIC-qualifying population group (women who are pregnant; non-breastfeeding women

up to six months postpartum; breastfeeding women up to one year postpartum; infants

under one year of age; or children from one year old up to the child’s fifth birthday). The

household’s income must also be at or below 185% of the federal poverty guidelines, or

the household must participate in other qualifying programs (Medicaid, Food Stamps,

Temporary Assistance for Needy Families [TANF]). Finally, individual applicants must

be at nutritional risk, as determined by a health professional. Although it is not possible

to determine individuals that are at nutritional risk from the CSFII data, nearly all U.S.

women and children meet this criterion (IOM 2002) so that, in practice, this additional

constraint can be assumed to apply to all eligible individuals. Finally, we follow Oliveira

and Chandran (2005) and define eligible households as those with incomes within 200%

of the federal poverty guidelines.

Our final sample consists of 2,372 individuals from 1,036 households. As discussed

in the previous section, these individuals were assigned into one of the four mutually

exclusive groups (Table 3.1). For our analysis we define WIC targeted individuals as

children of ages one through four and pregnant, breastfeeding and postpartum women,

and non-targeted individuals as children or adults in the household age five and older. 7

All households in our final sample are identified as WIC eligible by meeting the income

7Infants of age less than one year old are not included in the analysis because of their unique dietary
requirements and intakes.
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criterion and having at least one targeted individual living in the household.

Each of the four population groups described in Table 3.1 may have both adults and

children. In order to compare the food intakes of individuals of varying age and gender,

we convert the dependent variable, amount of milk consumed (grams), to a calcium-

equivalent measure and then normalize the consumption in terms of the individuals’

dietary requirement for calcium. This is accomplished in several steps. First, the CSFII

94-96 data set contains information on grams of milk consumed as a single food or an

ingredient in a food containing dairy products. However, milk is commonly included

as an ingredient in other non-dairy foods, and it is important to capture this aspect of

calcium intake in the construction of our dependent variable. To this end, we consult the

Pyramid Servings Database for USDA Survey Food Codes, Version 2.0, which provides

information on the amount of milk per 100 grams contained within a variety of different

foods.8 The amounts of milk from all foods consumed by an individual are then added

together to produce the total amount of calcium intake from milk and milk product

consumption by the individual.

The Dietary Reference Intake (DRI) value expresses the average intake of calcium

required by a given population subgroup (i.e., children age one to three years old) (IOM

1997). The calcium requirement for children of ages one through three (500 mg of

calcium/day) was used as the base or reference amount to normalize consumption by

other population groups. That is, the calcium intake of the surveyed individuals was

converted into an age and gender equivalent measure. Thus, the dependent variable is

measured as a requirement-adjusted amount of calcium (mg) received from the foods

consumed. For example, if a young child reported an intake of 600 mg per day of

calcium, their reported intake of 600 mg would be measured relative to their DRI (500

mg) and converted to a 500mg reference value 600 mg: (=[600 mg / 500 mg] * 500

mg). For an adult with a DRI of 1000 mg, an actual intake of 600 mg is converted to a

8For reference, one cup of liquid milk is set equal to 244 grams.
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requirement-adjusted intake of 300 mg (=[600 mg / 1000 mg] * 500 mg).

Table 3.2 lists a summary of the data for the total sample and for each of the four

groups of interest observed at the individual and at the household levels. The individual-

level controls that are used in the analysis include household income, household size, an

indicator if an individual is currently receiving food stamps, an indicator if an individual

is currently lactating or postpartum, and a set of dummies for age, main food preparer’s

education level, urban residence, gender and race. The household-level controls include

household income, household size, an indicator for the presence of lactating or postpar-

tum women in the household, an indicator for the presence of an infant, an indicator

denoting if the household receives food stamps, and a set of dummies for the main food

preparer’s education and race.

In order to deal with the potential endogeneity of WIC program participation in our

model, it is useful to have an instrument. This instrument must affect the household’s

WIC participation decision but not be correlated with unobservables in the consumption

equation. Our choice of instrument in this regard is to exploit state-level institutional

characteristics of the WIC program in which the individuals reside. Specifically, we

make use of information regarding whether or not the state WIC program allows par-

ticipants to self-declare their income in order to prove eligibility. Less strict states (i.e.,

those that allow individuals to self-declare) should generally be associated with higher

participation rates in WIC. However, allowing households to self-declare income in order

to establish WIC eligibility should play no structural role in calcium intake, conditioned

on WIC participation.9 We also make use of a second instrument, which is an indicator

denoting if household savings are less than $5000. Our argument in this regard is that

families with little savings may be more likely to participate in WIC, while levels of

9Owing to confidentiality concerns, our data do not provide state identifiers but do provide region
identifiers. To this end, we obtain an average of state policies within each region, using the fraction
of WIC participants in state s within region r to weight the policy associated with state s. This
instrument is not ideal but should still provide some overall degree of conditional correlation with WIC
participation to aid identification. Empirically, we find that this is the case.
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asset accumulation should have little to do with calcium intake, conditioned on current

income, WIC participation, education and other demographic controls.

Empirical Results

Using the algorithm of section 3.2, we fit our model, running the Gibbs sampler

for 100,000 iterations and discarding the first 10,000 as the burn-in period. The prior

hyperparameters used in the calculations are µγ = 0kγ , Vγ = 100Ikγ , µuv = 0, Vuv = 100,

aε = 3, bε = 1/(2 ∗ .3), aη = 3 and bη = 1/(2 ∗ .3). Generated data experiments were

also performed with large sample sizes to suggest that our code performs well and that

our algorithm can adequately recover parameters of the data generating process in these

cases. Parameter posterior means, standard deviations and probabilities of being positive

associated with the model in (3.5) - (3.9) are reported in Table 3.3.

With respect to WIC participation, the results shown in Table 3.3 are generally

consistent with our prior expectations. Larger households with smaller incomes and

infants present in the house are clearly more likely to participate in WIC. Similarly, our

instruments appear to play strong roles in the WIC participation decision and operate in

the direction that we expect a priori. That is, families living in regions where self-reports

of income are more likely to provide sufficient proof of WIC eligibility are associated

with higher probabilities of WIC participation. Similarly, families with relatively small

amounts of savings are also associated with higher probabilties of WIC participation.

We also conduct a variant of the standard “overidentification” test to investigate an

aspect of the instrument’s validity. That is, conditioned on the assumption that self-

reports of income is a valid instrument, our savings indicator is superfluous in the sense

that it is not needed for identification. To this end, we re-estimate the model and include

this variable in the latent calcium consumption equation. Doing this, we find a posterior

mean (and posterior standard deviation) associated with the Savings < 5000 coefficient
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equal to -.15 (.32), and an associated posterior probability of being positive equal to

.32. Thus, we do not see a strong role for our asset accumulation variable in the calcium

consumption equation. Moreover, we calculate the relevant Bayes factor (via the Savage-

Dickey density ratio) which, under equal prior odds and under the employed priors, gives

the posterior odds in favor of the model imposing that (βasset = 0). The Bayes factor in

this case turns out to be (approximately) 22.7, again providing evidence that the asset

accumulation variable can be omitted from the calcium consumption equation.

With respect to calcium intake, few variables emerge as strong predictors. Larger

households tend to consume more calcium through milk while households with higher

incomes tend to consume less calcium through milk. Of course, the most important

of the coefficients in Table 3.3 are the coefficients associated with the group identifiers

G2 → G4.
10 These findings first suggest, quite sensibly, that non-targeted members

living in WIC households (G2) have a lower (adjusted) calcium intake through milk

than targeted members of WIC households (G1). Surprisingly, however, the results also

suggest that non-WIC members, both targeted and non-targeted, receive more calcium

intake through milk than their WIC counterparts.

Although these results might seem startling, and potentially suggest that the WIC

program is ineffective, this is not necessarily the correct interpretation. Individuals

participating in WIC may, in fact, use the benefits provided by the WIC program to

purchase other products and receive an adequate level of calcium intake through the

consumption of these alternative products. What the results do tell us, however, is that

the WIC program does not appear to be effective at increasing calcium intake through

milk. In short, the coefficients associated with the group identifiers do not necessarily call

into question the effectiveness of the WIC program, but at the same time, and unlike past

studies in the literature, they cannot be used to speak to its virtues. At a minimum, we

10Given that G1 (targeted individuals participating in WIC) represents the excluded category, the
coefficients on G2 → G4 should be interpreted relative to this base group.
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find that the presence of the WIC program leads to repackaging of consumption bundles

and a substitution away from milk consumption toward other possible foods providing

calcium. To our knowledge, these results represent a new contribution to the existing

literature on this topic.

Table 3.3 also shows significant evidence of skew through positive values associated

with the skewness parameter ψ. The table also shows, quite interestingly, a large,

positive value associated with the correlation parameter ρ. This suggests, consistent with

our prior views, that unobservable factors making a family more likely to participate in

WIC also lead that family to consume higher levels of calcium through milk.

Table 3.4 presents posterior predictive means and standard deviations associated

with calcium intake levels, as described in section 2.3, while Figure 3.2 plots the entire

posterior predictive calcium distributions for each of the four groups. When performing

these calculations, we set the continuous covariates at sample mean values specific to the

“targeted” or “non-targeted” populations. (Setting age, for example, to the overall mean

of 12.6 would seem inconsistent with both the targeted and non-targeted populations,

leading us to set the covariates to group-specific means for this exercise). For the binary

indicators, we round the targeted-/non-targeted-specific sample means to either zero or

one.

Since these posterior predictive densities account for both the “structural” impacts

of WIC participation as well as the role of unobserved confounding, we would expect

these predictives to match, to a reasonable degree, the means found in the raw data.

A comparison of the entries of Tables 3.2 and 3.4 shows that this is (approximately)

the case - targeted members of WIC households and targeted members of non-WIC

households have the highest levels of calcium intake with posterior means equal to 470

and 387 milligrams, respectively. Similarly, non-targeted WIC and non-WIC members

have lower levels of adjusted calcium intake with posterior means equal to 192 and 183,

respectively, which is also broadly consistent with the mean intake levels found in the raw
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data. Figure 3.2 and Table 3.4 also offer little evidence in favor of the potential “leakage”

or “spillover” benefits associated with the WIC program; the posterior predictives for

the non-targeted WIC (G2) and non-targeted non-WIC (G4) individuals are very similar

and nearly indistinguishable in Figure 3.2. Finally, the posterior standard deviations of

Table 3.4 and plots in Figure 3.2 also reveal considerable heterogeneity associated with

the calcium intakes for each of these four groups, with targeted individuals associated

with the highest levels of uncertainty.

While inspection of just the “structural” WIC coefficients in Table 3.3 would appear

to suggest that targeted non-WIC individuals will have more calcium intake through milk

than targeted WIC individuals, the posterior predictives tell a different story. Like the

raw data, these posterior predictives reveal that targeted WIC individuals will have the

highest levels of calcium intake through milk. What is responsible for this finding is the

role of unobserved correlation - those families that select into WIC possess unobserved

factors that also strongly correlate with calcium intake. This finding is broadly consistent

with the idea that the families participating in WIC, holding all else constant, also take

great care in the nutritional intakes of their children and thus would likely consume

relatively high levels of calcium even in the absence of WIC. What we have offered in this

paper, which to our knowledge is new to this literature, is a model that seeks to separate

the influences of unobservables and direct “structural” impacts. When combining these

influences, we generate predictions that are consistent with the raw data and the findings

of past work on this topic. When separating them, we produce no direct evidence that

WIC itself is responsible for increases in calcium intake and improved overall nutrition.

Again, we must interpret this finding with care, as it is certainly possible that the WIC

program leads individuals to substitute away from traditional consumption bundles and

meet necessary nutritional requirements through other foods. If true, this result does

not seem to have been documented in the literature and has important implications for

designing efficient mechanisms for achieving desired nutrient intake levels.
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Conclusion

In this paper we have described a Bayesian posterior simulator for fitting a two-

equation treatment-response model and employed this method to investigate the ef-

fectiveness of a widely used food assistance program. This program, commonly de-

noted as WIC, seeks to improve the nutrition of at-risk low-income children and preg-

nant/breastfeeding mothers. We evaluate this program by focusing on calcium intake

through milk consumption and comparing such intake levels across WIC and non-WIC

households and individuals. Though this metric is, admittedly, rather narrow, we also

recognize that adequate calcium intake is one of the primary focuses of the WIC program,

and milk is a primary vehicle through which calcium is consumed.

Overall, we find little direct evidence that speaks to the efficacy of WIC. Instead,

most of the benefits that might potentially be attributed to the program seem to arise

from differences in unobservables across WIC and non-WIC families. Furthermore, we

find little evidence associated with possible “spillover” or “leakage” benefits that have

been suggested in the literature, as non-targeted members of WIC households have

consumption patterns that are quite consistent with non-targeted members of non-WIC

households. We must interpret our results with caution, however, as it remains possible

that WIC benefits lead individuals to substitute away from milk and toward other goods

that also provide adequate nutrition. To our knowledge, no studies in the area have

attempted to separate the effects of unobservables and direct impacts, yet doing so has

clearly been quite important in the context of our application.
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Figure 3.1 Distribution of Positive Calcium Intake
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Figure 3.2 Predictive Posterior Intake Distributions for Four Groups
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Table 3.1 Number of Individuals in Each Group by WIC Status

No. of Individuals Group WIC Status
526 G1 Targeted individuals in WIC household
488 G2 Non-targeted individuals in WIC household
712 G3 Targeted individuals in non-WIC household
646 G4 Non-targeted individuals in non-WIC household
2372 Total individuals
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Table 3.2 Variables and Sample Mean Values

WIC Non-WIC
Variable Sample Targeted Non-Targeted Targeted Non-Targeted

Individual
Number of indiv. 2372 526 488 712 646
Milk/100g 3.17 4.68 1.49 4.42 1.82
Income/$1000 17.83 15.37 16.63 18.68 19.81
Household size 4.96 4.84 5.45 4.62 5.07
Food stamp indiv. 0.38 0.56 0.52 0.28 0.24
PregLactPost indiv. 0.03 0.07 0.00 0.05 0.00
Age 12.61 3.31 23.63 3.42 22.01
College 0.30 0.27 0.26 0.32 0.32
Urban 0.76 0.76 0.75 0.77 0.76
White 0.47 0.40 0.35 0.56 0.49
Male 0.49 0.48 0.53 0.48 0.49

Household
Number of hhlds. 1036
Income/$1000 17.19 15.07 15.21 18.69 18.72
Household size 4.56 4.64 4.85 4.48 4.71
Food stamp present 0.44 0.60 0.54 0.33 0.34
College 0.30 0.27 0.29 0.33 0.34
Children ages 1-5 0.94 0.98 0.76 0.99 0.98
Urban 0.76 0.75 0.73 0.78 0.78
White 0.60 0.54 0.51 0.64 0.61
Infant present 0.20 0.25 0.42 0.08 0.08
PregLactPost present 0.15 0.20 0.16 0.12 0.11
Self-report income 0.16 0.16 0.17 0.16 0.15
Savings less $5,000 0.94 0.98 0.95 0.91 0.91
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Table 3.3 Posterior Means, Standard Deviations and Probabilities of Being Pos-
itive

Variable E(·|y) Std(·|y) Pr(· > 0|y)
Consumption Equation

Intercept 3.40 0.42 1.00
G2 -1.37 0.24 0.00
G3 1.21 0.37 1.00
G4 0.50 0.39 0.90
Household size 0.07 0.06 0.94
Income/$1000 -0.02 0.01 0.06
Food stamp indiv. -0.09 0.20 0.31
PregLactPost indiv. -0.51 0.34 0.07
Age -0.07 0.01 0.00
White 0.21 0.18 0.88
Male -0.03 0.11 0.61
College -0.10 0.20 0.29
Urban 0.50 0.22 0.99

Participation Equation
Intercept 0.31 0.35 0.81
Household size 0.06 0.03 0.99
Income/$1000 -0.02 0.01 0.00
Infant present 0.89 0.11 1.00
Food stamp present 0.45 0.10 1.00
PregLactPost present 0.12 0.12 0.84
College -0.03 0.09 0.37
Children ages 1-5 -0.95 0.22 0.00
White -0.13 0.09 0.06
Urban -0.15 0.10 0.07
Savings less $5,000 0.35 0.18 0.97
Self-report income 0.60 0.31 0.98

Covariance Matrix and Skew Parameters
ρ 0.53 0.10 1.00
σ2

ε 0.15 0.07 1.00
σ2

u 3.45 0.43 1.00
ψ 4.55 0.10 1.00

Table 3.4 Posterior Predictive Statistics Associated with Calcium Intake for
Four Groups

Group E(·|y) Std(·|y)
G1 470 337.1
G2 192 337.6
G3 387 324.0
G4 183 324.2
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4. BAYESIAN ESTIMATION OF A CENSORED AIDS

MODEL FOR WHOLE GRAIN PRODUCTS

Abstract

When using household-level data to examine consumer demand it is common to find

that consumers purchase only a subset of the available goods, setting the demand for the

remaining goods to zero. Ignoring such censoring of the dependent variables can lead to

estimators with poor statistical properties and estimates that lead to poor policy deci-

sions. In this paper we investigate household demand for four types of grain products

using a censored Almost Ideal Demand System (AIDS) and estimate the parameters

of the model via Bayesian methods. Using 2006 ACNielsen Homescan data we find

that demand for all types of cereals is inelastic to changes in prices. The expenditure

elasticity is slightly above unity for the whole grain ready-to-eat cereals suggesting that

as the expenditure on cereals increases households will allocate proportionally more on

whole-grain ready-to-eat cereals and less on other cereals.

Keywords: AIDS model, Bayesian econometrics, censored, cereals, whole grains

JEL Classification: C11; C34; D12
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Introduction

The U.S. Department of Health and Human Services (USDHHS) and the U.S. De-

partment of Agriculture (USDA) have published the Dietary Guidelines for Americans

since 1980. The Guidelines provide dietary recommendations to aid the development of

nutrition programs and to help and encourage consumers to choose diets that meet their

nutritional needs and improve their health. The Guidelines are revised every 5 years

based on findings from available research. The 2005 Dietary Guidelines for Americans

put new emphasis on whole grain consumption by recommending consumption of at

least three 1-ounce-equivalent 1 servings of whole grains 2 per day. In the Guidelines,

whole grains are described as follows: “Whole grains, as well as foods made from them,

consist of the entire grain seed, usually called the kernel. The kernel is made of three

components - the bran, the germ and the endosperm. If the kernel has been cracked,

crushed, or flaked, then it must retain nearly the same relative proportion of bran, germ,

and endosperm as the original grain in order to be called whole grain” (US DHHS and

USDA 2005). Consumption of diets high in whole grains have been reported to have a

number of beneficial health effects including reduced risk of cancer (Jacobs, et al. 1998),

cardiovascular disease (Truswell, 2002; Liu et al. 1999), diabetes (Fung et al. 2002; Liu

et al. 2000), blood pressure (Hallfrisch et al. 2003) and cholesterol (Lumpton, et al.

1994).

The U.S. Food and Drug Administration (FDA), which regulates U.S. nutrition la-

beling of most foods and authorizes the use of nutrient and health claims, has allowed

three health claims related to grain intakes (FDA, 2008). A specific claim for whole

grain foods allows the statement that diets rich in whole grain foods and other plant

foods and low in total fat, saturated fat, and cholesterol may reduce the risk of heart

1In general, 1-ounce slice of bread; one cup of ready-to-eat cereal, or 1
2 cup of cooked rice,

cooked pasta, or cooked cereal can be considered as one-ounce-equivalent from the grains group
(http://www.mypyramid.gov).

2see Table 4.1 for the list of whole grains
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disease and some cancer. The release of the 2005 Dietary Guidelines and FDA’s consid-

eration of health-related claims gave whole grain product manufacturers the opportunity

to differentiate their products from refined grain products and the incentive to produce

more whole grain products or reformulate the existing products to meet the whole grain

requirements. While FDA has no mandatory labeling requirements regarding whole

grains, manufacturers can use nutrient labels such as “100 percent whole grain” or “10

grams of whole grain” on the label of their products as long as the statements are not

false or misleading (FDA, 2008).

Mandatory labeling provides greater information and therefore more informed con-

sumer choices. However, in the absence of mandatory labeling it is common for third-

party labeling service to emerge. In the case of grain products, the Whole Grain Council

(WGC), a nonprofit organization, promotes consumption of whole grains through a pack-

aging symbol, a Whole Grain Stamp 3, indicating whole grain content. The Stamp serves

as a tool to help consumers easily indentify whole grain products.

Although the lack of clear labeling makes it more difficult for consumers to identify

whole grain food products, the availability and consumption of whole grain products are

likely to increase (Buzby, Farah and Volke 2005). Policymakers use recommendations

from the 2005 Dietary Guidelines in the development of food program guidance. One

example is the recently revised food packages for the Supplemental Nutrition Program

for Women, Infants and Children (WIC), which include provisions to allow participants

to obtain whole grain products effective in 2009.

There are relatively few recent studies of grain consumption. Evidence from food

intake surveys indicates that Americans consume less whole grain than recommended.

On average, individuals were eating 10 servings of grains a day in 2003, more that

3Two types of stamps can be awarded, based on the product ingredients and amount of whole grains
in the food. Products must contain at least 8 grams of whole grain per labeled serving in order to use
the basic Stamp and at least 16 grams of whole grain and where all grains are whole grain to the 100
percent Whole Grain Stamp
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recommended daily allowance, of which whole grain accounted for just over 1 serving

(Mancino and Buzby 2005). Similar results were found by Lin and Yen (2007). Using

data from 1994-96 and 1998 Lin and Yen compared grain consumption of individuals by

economic and demographic characteristics and found that individuals consumed more

than the recommended daily amount of all grain, while consuming only 34 percent of the

amount of whole grain recommended by the 2005 Dietary Guidelines. Analysis of 1999-

2000 National Health and Nutrition Examination survey (NHANES) data shows only

15 % of all grains consumed by individuals are whole grain, and most whole grains come

from crackers and snacks and from cereals. More specifically, whole grain crackers and

snacks account for 5 % of the total grains consumed by individuals, where as ready-to-eat

cereals account for 3 % (Mancino and Buzby 2005).

Given the public health interest in increased consumption of whole grains, it is im-

portant to have a good understanding of basic demand parameters for grain and cereal

products. We consider demand for cereals, one of the major sources of whole grains in

the diet, and estimation based on household level data.

When using household-level data to examine consumer food demand, it is common to

find that consumers choose only a subset of the available goods, leaving observed demand

for some of the goods to be zero. Ignoring such censoring of the dependent variables

can lead to estimators with poor statistical properties and estimates that lead to poor

policy decisions. Hence, we carefully address the issue of censoring in a demand system

framework. There exist a number of estimation procedures that handle this censoring

problem (Wales and Woodland 1983; Lee and Pitt 1986). Although theoretically consis-

tent, these approaches suffer from the drawback that in the case of many non-consumed

goods for some households, evaluation of multiple integrals is necessary. An alternative

approach is an Amemiya-Tobin approach, which is the generalization of Tobin’s (1958)

limited dependent variable model proposed by Amemiya (1974) and implemented by

Wales and Woodland (1983). However, the use of Amemiya-Tobin type estimators is
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also complicated by the need for evaluating multiple integrals in cases where censoring

is severe. Due to the complexity of estimating the models above, a two-step procedure

based on the Amemiya-Tobin approach has sometimes been used to estimate censored

demand systems (Shonkwiler and Yen (1999)). This method has been widely used in the

applied literature. Although the two-step procedure holds an advantage in its ability to

estimate large systems, the two-step procedures are known to be inefficient and overlook

the adding-up condition of the observed shares.

A number of papers have used variations of the Amemiya-Tobin approach to deal

with the issues of censoring in food demand (e.g. Yen and Roe (1989), Perali and Chavas

(2000), Golan, Perloff and Shen (2001), Yen, Kan and Su (2002) and Yen (2005)). Ad-

vances in simulation methods that allow approximations of high-dimensional integrals

have been used in the estimation of the censored demand system (Yen, Lin and Small-

wood (2003), Dong, Gould and Kaiser (2004)).

We propose a Bayesian procedure for estimating the censored demand system using

the Almost Ideal Demand System (AIDS) of Deaton and Muellbauer (1980). Estimating

an AIDS model with a Bayesian approach avoids the need to evaluate the multiple

probability integrals. The marginal distribution of model parameters and latent shares

are simulated by numerical methods. Specifically, we fit the model using the Gibbs

sampler. The method developed is used to examine the demand for different types of

breakfast cereals. We use data from 2006 ACNielsen Homescan household level scanner

data files.

The estimation focuses on cereal (whole grain and other, ready-to-eat and hot) prod-

ucts which form a product group widely consumed in the United States. Lin and Yen

(2007) found that breakfast was a good source of whole grain. Individuals consumed 40

percent of whole grain at breakfast, compared with 23 percent at lunch and 17 percent

at dinner and the rest provided by snack foods. Although scanner data provide informa-

tion on foods purchased only for at home consumption, cereals are generally purchased
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in retail food stores, and in case of the breakfast cereals, generally consumed at home.

Hence, scanner data are well suited for estimating demand relationships for this product

group.

In estimating the demand system for cereal products we assume that demand for

cereal is separable from the demand for other goods in the consumer budget. In a

multistage budgeting framework, it is usually assumed that consumers first allocate their

expenditures to broad aggregate commodity groups. Subsequently, consumer’s decisions

are based on group expenditures and commodity prices within each group. Hence, by

weak separability we focus on a demand structure in which cereal expenditures are

allocated to various types of cereals.

The paper is organized as follows. The next section describes the AIDS model and the

associated Bayesian posterior simulator. Then data used in the analysis are described,

followed by a description of empirical results. The paper concludes with a summary of

the findings and the directions for the future research.

AIDS Model and Posterior Simulator

The Model

The AIDS model of Deaton and Muellbauer (1980) can be expressed in the latent

expenditure share form as: 4

s∗ih = αi +zihδi +
n∑

j=1

γijln (pjh)+βiln (yh/Ph)+εih, i, j = 1, ..., n, h = 1, .., H (4.1)

and

sih =

 s∗ih if s∗ih > 0

0 if s∗ih ≤ 0
(4.2)

4Matrices and vectors are denoted by bold letters.
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where, s∗ih and sih are the latent and observed expenditure shares, respectively, for good

i of household h, pjh is the price of the jth good, zih is a set of household specific

characteristics, yh represents total expenditure of household h on all n goods and Ph is

a price index defined as:

lnPh = α0 +
n∑

i=1

αiln(pih) +
1

2

n∑
i=1

n∑
j=1

γijln(pih)ln(pjh). (4.3)

In this paper we use the Stone price index lnPh =
∑

i sihln(pih) instead of nonlinear

price index given above and estimate the so-called LA/AIDS (Linear Approximate AIDS)

model.

The theoretical properties of the demand function given by equation (4.1) can be

imposed by the following equality restrictions on the parameters 5:

adding-up:
∑

i αi = 1,
∑

i γij =
∑

i βi =
∑

i δi = 0;

homogeneity:
∑

j γij = 0 and

symmetry: γij = γji, i 6= j, i, j = 1, ..., n.

For each household h stacking (4.1) over i = 1, ...n we obtain:

s∗h = α + Zhδ + ln(ph)γ + βln(yh/Ph) + εh, (4.4)

where

α =



α1

α2

...

αn


, δ =



δ1

δ2

...

δn


, γ =



γ1

γ2

...

γn


, β =



β1

β2

...

βn


,

s∗h =



s∗1h

s∗2h

...

s∗nh


, Zh =



z1h 0 . . . 0

0 z2h . . . 0

...
...

. . .
...

0 0 . . . znh


,

5Here, we are not imposing the adding up to unity restriction,
∑

i s
∗
ih = 1, on the latent shares.
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ln(ph) =



ln(p1h) 0 . . . 0

0 ln(p2h) . . . 0

...
...

. . .
...

0 0 . . . ln(pnh)


,

and

ln(yh/Ph) = ln(yn/Ph)in,

We can rewrite (4.4) as:

s∗h = Xhθ + εh, (4.5)

where Xh = [I Zh ln(ph) ln(yh/Ph)] is the n × k matrix of stacked covariate data,

k =
∑n

i=1 ki, ki denotes the number of explanatory variables, θ = [α′ δ′ γ′ β′]′ is k × 1

vector and εh
iid∼ N(0,Σ) where Σ is n× n.

Stacking (4.5) over h = 1, .., H we obtain:

s∗ = Xθ + ε (4.6)

where X is nH × k, ε
iid∼ N(0,Ω) and Ω is IH ⊗Σ matrix.

The AIDS model specified above is a Seemingly Unrelated Regression (SUR) model

proposed by Zellner (1962) on the latent data s∗, with the same regressors in each

equation. Since the expenditure shares are censored we follow Huang et al.(1987) and

estimate a SUR Tobit model.

To impose the parameter restrictions in the estimation of (4.6) we follow the method

specified in Griffiths, O’Donnell and Tan Cruz (2000). Let J , where J < k, be the

number of equality restrictions imposed on the parameters of the model, then

Rθ = r, (4.7)

where R is J × k and r is J × 1.
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As an example, suppose we want to estimate the following two equation system:

s∗1 = α1 + γ11x11 + γ12x12 + ε1

s∗2 = α2 + γ21x21 + γ22x22 + ε2

and the linear restrictions that we want to impose are∑
i

αi = 1,
∑

i

γij = 0 and γ12 = γ21.

Then Rθ = r in this case will be:



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 1 0 −1 0





α1

γ11

γ12

α2

γ21

γ22


=



1

0

0

0

0

0


.

These restrictions imply that some of the parameters of the model are redundant and

can be recovered from the estimated parameters and imposed parameter restrictions.

We will rearrange the elements of θ and partition it into vectors of redundant and free

parameters, denoted θ1 and θ2, respectively, where θ1 is J × 1 and θ2 is (k − J) × 1.

Accordingly, we partition X by reordering its columns so that equations (4.6) and (4.7)

can be written as:

s∗ = Xθ + ε =

[
X1 X2

] θ1

θ2

+ ε, (4.8)

and

Rθ =

[
R1 R2

] θ1

θ2

 = r, (4.9)
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where X1 and X2 are nH × J and nH × (k − J) submatrices of X, respectively, R1 is

J × J , R2 is J × (k− J) and rank(R1) = J . In this notation the covariate matrix is no

longer block-diagonal. For the example mentioned above

θ1 =



γ12

α2

γ21

γ22


, θ2 =

 α1

γ11

 , R1 =



0 1 0 0

0 0 1 0

1 0 0 0

1 0 −1 0


, R2 =



1 0

0 1

0 0

0 0


,

X1 =

 x12 0 0 0

0 1 x21 x22

 and X2 =

 1 x11

0 0

 .
As mentioned earlier, we only need to estimate θ2, since θ1 is redundant and can be

recovered from θ2 and imposed restrictions. Solving for θ1 from (4.9) we get:

θ1 = R−1
1 (r−R2θ2). (4.10)

By substituting θ1 into (4.8) and rearranging terms we get

s̃∗ = X̃θ2 + ε (4.11)

where s̃∗ = s∗ − X1R
−1
1 r and X̃ = X2 − X1R

−1
1 R2. Thus, (4.11) is a latent variable

SUR model with no restrictions on θ2.

The Augmented Posterior

For computational simplicity, we follow Albert and Chib (1993) and treat the latent

data s̃∗ as additional parameters of the model. The augmented posterior p(̃s∗,θ2,Σ|s)

is then proportional to
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p(̃s∗,θ2,Σ|s) ∝ p(s|̃s∗,θ2,Σ)p(̃s∗|θ2,Σ)p(θ2,Σ) (4.12)

∝ p(θ2,Σ)

(
H∏

h=1

p(sh|̃s∗h)p(̃s∗h|θ2,Σ)

)
(4.13)

∝ p(θ2,Σ)

[
H∏

h=1

p(̃s∗h|θ2,Σ)

(
n∏

i=1

p(sih|s̃∗ih)

)]
, (4.14)

where

p(sih|s̃∗ih) = I(sih = s̃∗ih)I(s̃
∗
ih > ch) + I(sih = 0)I(s̃∗ih ≤ ch),

and ch is the hth element of −X1R
−1
1 r.

From (4.4), the sampling density of the latent data, s̃∗, is given as:

p(̃s∗h|θ2,Σ) ∝ |Σ|−
H
2 exp

(
−1

2

H∑
h=1

(̃s∗h − X̃hθ2)
′Σ−1

H∑
h=1

(̃s∗h − X̃hθ2)

)
(4.15)

To implement a Bayesian analysis, we must introduce the priors. We assume that

the priors are independent and of the conditionally conjugate forms:

θ2 ∼ N(µθ2 ,V θ2) (4.16)

Σ−1 ∼ W (A, ν), (4.17)

where W denotes a Wishart distribution (Koop, Poirier and Tobias, 2007, pg. 339).

The Posterior Simulator

In this section we introduce our posterior simulator for fitting the demand model

given by (4.11) together with the priors in (4.16)-(4.17). We use the Gibbs sampling

algorithm to iteratively draw values from the posterior distribution of each parameter

conditional on other parameters of the model. Those posterior conditionals are enumer-

ated below.

Step 1: θ2|s,Σ

θ2|s,Σ ∼ N(Dθ2dθ2 ,Dθ2), (4.18)
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where

Dθ2 =
(
X̃′(Σ−1 ⊗ IH)X̃ + V −1

θ2

)−1

dθ2 =
(
X̃′(Σ−1 ⊗ IH)s̃∗ + V−1

θ2
µθ2

)
Step 2: Σ−1|θ2, s

Σ−1|θ2, s∼W
(
A, ν

)
(4.19)

where

ν = H + ν

and

A =

[
A−1 +

H∑
h=1

(
s̃∗h − X̃hθ2

)(
s̃∗h − X̃hθ2

)′]−1

Step 3: s̃∗ih|s,θ2,Σ

From (4.14) the posterior conditional of s̃h is multivariate truncated normal. We

therefore follow Geweke (1991) and draw each latent, s̃∗ih from a univariate truncated

normal density.

Let ωij denote the (i, j) element of Σ−1 and ch be the hth element of −X1R
−1
1 r as

defined before. For each household h we can idependently sample each of the n goods,

i = 1, ..., n as follows 6:

s̃∗ih|s,θ2,Σ∼TN(−∞,ch)

(
µi|−i, ω

−1
ii

)
, if s̃ih = 0, (4.20)

where

µi|−i = µi − ω−1
ii

∑
i6=j

ωji(s̃
∗
−i − µ−i)

then repeat for h = 1, 2, . . . , H.

6The way the dependent variables are specified in our model it is possible that the observed shares
are clustered both at zero and at one. Accounting for the two-sided censoring in the specification of the
model is appropriate. However, only 5%, 4%, 3% and 2% of observed shares in our data are clustered
at one. Hence, in this analysis we consider only the case when the observed shares are clusterd at zero.
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In the above, TN(a,b)(µ, σ
2) denotes a normal density with mean µ and variance σ2

truncated to the interval (a, b), µi is the ith row element of µ, µ−i denotes all the elements

of µ other than µi.

The posterior simulator involves iteratively drawing from (4.18)-(4.20).

A Generated Data Experiment

In this section we conduct a generated data experiment to demonstrate the perfor-

mance of our posterior simulator. A sample of 10,000 households is generated from the

following demand model:

s∗1h = α1 + γ11ln(p1h) + γ12ln(p2h) + γ13ln(p3h) + γ14ln(p4h) + β1ln(yh/Ph) + ε1h

s∗2h = α2 + γ21ln(p1h) + γ22ln(p2h) + γ13ln(p3h) + γ24ln(p4h) + β2ln(yh/Ph) + ε2h

s∗3h = α3 + γ31ln(p1h) + γ32ln(p2h) + γ33ln(p3h) + γ34ln(p4h) + β3ln(yh/Ph) + ε3h

s∗4h = α4 + γ41ln(p1h) + γ42ln(p2h) + γ43ln(p3h) + γ44ln(p4h) + β4ln(yh/Ph) + ε4h

where ln(pih) and ln(yh/Ph) are drawn independently from a N(0, 1) and the error terms

[ε1h ε2h ε3h ε4h]
′ are drawn jointly from the multivariate Normal distribution:

ε1h

ε2h

ε3h

ε4h


iid∼ N





0

0

0

0


,



.5 −.45
√
.5
√
.3 .5

√
.5
√
.1 −.35

√
.5
√
.6

−.45
√
.5
√
.3 .3 −.2

√
.3
√
.1 .4

√
.3
√
.6

.5
√
.5
√
.3 −.2

√
.3
√
.1 .1 −.5

√
.1
√
.6

−.35
√
.5
√
.6 .4

√
.3
√
.6 −.5

√
.1
√
.6 .6




Some of the variables in our actual data have high degree of censoring. To imitate

the actual data as close as possible we generate the data with 30 %, 21 %, 56 % and 70

% of censoring.

We fit our model using the posterior simulator described in previous section, ran the

algorithm 100,000 iterations, and discarded the first 30,000 draws as the burn-in period.
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Table 4.2 and Figures 4.1 and 4.2 summarize the results of the generated data experi-

ment. We plot the lagged autocorrelations up to order 8 for several selected parameters:

γ14, α2, γ33, γ41, ρ12, ρ24, σ
2
1 σ

2
4, and ρ13. From the plots we can see that the Gibbs

sampler displays good mixing of the parameters.

In Table 4.2 we report the estimates of the posterior means, standard deviations

and probabilities of being positive from the generated data along with their true values.

As we can see from the table, all the parameters have been estimated with reasonable

accuracy and the estimated results are quite close to their true values.

The Data

Household Data

We use data from the ACNielsen 2006 Homescan survey of households. The data

come from a nationally representative sample of U.S. households that scan their pur-

chased foods at home after each shopping occasion using a scanning device and report

the results to the collection firm once a week. The dataset includes product modules

of dairy department purchase data, dry grocery department purchase data, produce,

meat and frozen departments purchase data and a module for random-weight purchase

data for the year of 2006. Each product module and the random-weight data includes

product codes that identify brand, size, flavor, form, formula, container, style, type and

variety. Each food item was represented by a unique UPC or product number. The

data also contain information on purchase date, quantity purchased, total expenditures

on the item, whether the price was paid with a deal or not and the coupon value used

if any.

The 2006 Homescan data include information from over 37,000 households, although

only 7,534 households reported purchases of both random-weight and UPC coded food

items. Of these, 7,415 households reported purchases for at least 10 months in 2006.
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Our final sample comes from the household panel and consists of 7,081 households that

had expenditures on ready-to-eat and hot cereals at some time during the year.

We matched the household purchases with the household demographic data. The

household characteristics include household size, income, age of household head, educa-

tion and employment of female and male heads, marital status, race, presence of children

and region of residence.

Whole Grains Identification

We constructed a dataset for purchases of four cereal types: whole grain ready-

to-eat, non-whole grain ready-to-eat, whole grain hot, and non-whole grain hot cere-

als. Although the 2005 Dietary Guidelines recommend that Americans eat three or

more one-ounce-equivalent servings of whole grains per day, the government offers no

straightforward way for consumers to identify whole grain products, and guidance to

the industry on labeling is still not mandated by the Food and Drug Administration.

Manufacturers have begun to label their products on whole grain content and the Whole

Grains Council provides an approved stamp to indicate products that are good sources

of whole grain. ACNielsen provided information on the grain type of some products

reported in the HomeScan files. We used these three sources to identify cereals as whole

grain and non-whole grain: the Whole Grains Council listing; manufacturers’ sites; and

the ACNielsen indicator of grain content.

Where information on whole grain content was lacking from the Whole Grain Council,

we verified manufacturers’ websites and specifically checked if the product was claimed

as a whole grain or contained whole grain as a first ingredient. In most cases we were

able to identify whole grain products. For example, all General Mills ready-to-eat cereals

carry a whole grain claim and listed whole grain as a first ingredient. Many websites

had information on ingredients. In some cases, when we were not able to find a manu-

facturer’s whole grain claim, we identified cereals as whole grain if the first ingredient
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listed was whole grain. Again we found some discrepancies in whole grain coding, but

resolved them based on evidence from similar products.

Table 4.3 shows the total number of UPC’s by cereal type in our data set and number

and percent of cereals identified as whole grain from the three sources: scanner data

“grain type” variable, Whole Grain Council and manufacturer’s claim. As indicated in

the table, we considered 3810 unique UPC product types; most were in the ready-to-eat

cereal category. Included in the data were UPC codes for a large number of private

label cereals. Private labels represent 61%, and 68% of total UPC’s of ready-to-eat

cereals and hot cereals, respectively. Without a manufacturer site, we needed to assign

these products to whole grain and non-whole grain product groups. We developed two

approaches to classification. In the first, we coded cereals as whole grain if they (a)

carried the Whole Grain Council stamp or (b) were identified as a whole grain product

by the manufacturer. The remaining products were coded as non-whole grain. In the

second approach, we coded products as whole grain if they (a) carried a Whole Grain

Stamp, or (b) were identified as a whole grain product by the manufacturer, and the

remaining products, including the private labels, were assigned to whole grain if the

majority of the observations in the grain type variable were identified as whole grain.

That is, if the private label hot cereal indicated the grain type was “rolled oats”, then

the private label hot cereal was classified as “whole grain”.

The two resulting classifications are shown in Table 4.4. As we can see, there are

substantial differences in the number of whole grain UPC’s identified by the two classi-

fications. From the total of 2,850 different UPCs available for ready-to-eat cereals, only

18 % is identified as whole grain by classification 1 and almost double of this amount is

identified as whole grain by classification 2. With respect to hot cereals, 91% of all UPCs

available are identified as whole grain by classification 2, compared to only 22% by clas-

sification 1. Compared to classification 1, which assignes all private labels to non-whole

grain group, classsification 2 seems more reasonable. Although some concerns may be



82

raised regarding the sensitivity of the analysis to the classifications used, it is clear that

estimating a demand system using classification 1 can could lead to unreliable results.

Variables and Descriptive Statistics

The data include repeated expenditures and quantities for each purchased item.

The price of each commodity was calculated as the unit value, defined as the aggregated

household expenditure for the product divided by quantity purchased in ounces (reported

for the year). The household’s expenditure was calculated by subtracting the value of

any coupons used during the purchase from the amount paid. We also calculated average

regional prices. The dataset provides information on 52 Scantrack markets and rural

areas. We derived average prices for all four commodities by 52 Scantrack markets and

rural areas. For households not purchasing a particular product, we replaced missing

prices with the average prices (unit values) based on prices paid by the purchasing

households for the household’s corresponding market area.

Table 4.5 presents purchase frequencies, mean expenditure shares, mean expendi-

tures, quantities purchased and unit values for the purchasing households for the com-

modities used in the analysis. Whole grain ready-to-eat cereal was consumed by the

majority of the households and also had the highest mean expenditure and expenditure

share among different types of cereals. Ready-to-eat non-whole grain cereal was next

most frequently purchased by the households in our sample.

Table 4.6 presents the definitions of the variables used in the analysis along with

the means and standard deviations of the variables for the whole sample. The average

household income was $59,270. The average household size was 2.34, 23 percent of the

sample were households with children, and 59 percent were married couple households.

For the analysis reported in this paper, the estimates were unweighted.

Table 4.7 presents the means and standard deviations for the variables used in the

model for the four commodities. As indicated in Table 4.7, not much difference exists
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among the mean values of the variables across product categories, except for some vari-

ables of households purchasing non-whole grain hot cereals. These households were more

likely to have lower income, be over the age of 65 and be married compared to the other

three groups.

Empirical Results

A system of four equations was estimated using data based on classification 2 in

Table 4.4 (the classification that assigns whole grain values to private label items). We

fit our model using the algorithm specified in previous section. We ran our posterior

simulator for 100,000 iterations and discarded the first 30,000 as the burn-in. For our

prior hyperparameters, we set µθ2 equal to a zero vector of the dimension (k − J) × 1,

V θ2 and A to identity matrices of the appropriate dimensions and ν = 5.

Tables 4.8 and 4.9 present the posterior means, posterior standard deviations and

probabilities of being positive for the demographic, price and expenditure related pa-

rameters for whole grain and non-whole grain ready-to-eat and hot cereals, respectively.

We find that larger households are less likely to consume either type of whole-grain

cereals and more likely to consume non-whole grain cereals, both ready-to-eat and hot.

Households with higher income tend to consume more whole grain ready-to-eat and

non-whole grain hot cereals and less non-whole grain ready-to-eat and whole grain hot

cereals. Households with children present tend to consume both types of ready-to-eat ce-

reals and are less likely to consume both types of hot cereals. There are some race/ethnic

differences. Ready-to-eat cereal is a prevalent food in the diets of Americans, especially

children (Song and et al. 2006).

Estimated parameters were used to calculate price and cereal expenditure elasticities

in order to examine the responsiveness of the consumers to economic incentives (Table

4.10). The uncompensated and compensated own-price elastiticities are all negative, as
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expected for normal goods for which demand responds negatively to increases in prices.

The uncompensated (Marshallian) price elasticities include an income effect as well as

price effect.

The values of uncompensated own-price elasticities range from -0.89 for non-whole

grain hot cereals to -0.44 for non-whole grain ready-to-eat. All are price inelastic, with

largest (absolute) values being for whole grain cereals.

The mean unit prices for hot cereals reported in Table 4.5, especially for non-whole

grain, were relatively smaller compared to mean unit prices for both ready-to-eat cereals

and whole-grain hot cereals. Most of the (Hicksian) cross-price elasticities are positive

indicating substitutability among the cereal types. Results indicate that most of the

cross-price elasticities are small; the largest one is between the ready-to-eat and hot

whole grain cereals. Relatively lower values (in absolute terms) for the cross-price effects

indicate that consumers are more responsive to own-price rather than prices of the other

goods.

The total expenditure elasticities do not vary widely in the magnitude. The total

expenditure elasticity is slightly above unity for the whole grain ready-to-eat cereals

suggesting that as the expenditure on cereals increases households will allocate propor-

tionally more on whole-grain ready-to-eat cereals and less on other cereals.

Discussion and Conclusion

This paper describes a procedure for estimating a censored AIDS model using Bayesian

methods. ACNielsen 2006 scanner data are used in estimating the demand for breakfast

cereals. We disaggregate the cereals by grain type and by type of cereal and estimate the

system of four equations. Within the cereal groups demand we find demand for all four

cereals to be price inelastic. Demand for whole grain hot cereals (which includes rolled

oats) is the most sensitive to price changes. Cross price elasticities indicate consumers
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substitute among the four types, although the cross-price subsitution effects (elasticities)

are small.

Using information from several different sources we were able to classify ready-to-eat

and hot cereals into whole grain and non-whole grain product groups. However, results

of this research can be sensitive to this classification, since more that 50 percent of

cereals in our data carry private labels. In additional extensions to our work, we plan to

improve the classfications proposed in this paper an examine how sensitive the results

are to the classifications.

Although the observed shares for the four products we analyzed do add-up to unity,

by construction, the estimation method we used does not account for the adding-up

to unity of the latent expenditure shares. Further work is needed to specify a model

that imposes an adding-up to unity restriction on both the latent and observed expen-

diture shares. Nonetheless, this is the first attempt in estimating the censored AIDS

model using Bayesian methods and addresses an important issue in empirical demand

estimation.
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Appendix

Let y be the total expenditure on some or all of n goods. These goods can be

bought in non-negative quantities qi = (q1, q2, ..., qn) , i = 1, . . . , n, at given prices

pi = (p1, p2, ..., pn). The budget contraint of the household is
∑n

i=1 piqi = y. Defining

the utility function as u(q), the households aim is to maximize the utility subject to the

budget constraint:

max u(q) subject to
n∑

i=1

piqi = y

The solution of this maximisation problem leads to the Marshallian (uncompensated)

demand functions qi = gi(p, x).

Alternatively, the consumers problem can be defined as the minimization of the total

expenditure necessary to attain a specified level of utility u∗, at given prices:

min
n∑

i=1

piqi = y subject to u(q) = u∗

The solution to this minimization problem leads to the Hicksian (compensated) de-

mand function qi = fi(p, u). Therefore, a cost function can be defined as

C(p, u) =
n∑

i=1

pifi(p, u) = y

The AIDS model specify the following cost function:

lnC(p, u) = a(p) + ub(p)

where a(p) = α0 +
∑

i αiln(pi) + 1
2

∑
i

∑
j γijln(pi)ln(pj) and b(p) = β0

∏
i p

βi

i

The derivative of lnC(p, u) with respect to lnpi is:

∂lnC(p, u)

∂lnpi

= αi +
∑

j

γijln(pj) + uβiβ0

∏
i

pβi

i
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Since C(p, u) = y ⇔ lnC(p, u) = lny ⇒ lny = a(p) + ub(p). From here solving for u

we get

u =
lny − a(p)

b(p)
.

Substituting u in ∂lnC(p,u)
∂lnpi

we get

∂lnC(·)
∂ln(pi)

=
∂C(·)
∂pi

pi

C(·)
= fi(·)

pi

C(·)
=
piqi
y

= αi +
∑

j

γijln(pj) + βi(lny − a(p))

If we set a price index P such that lnP = a(p), then

∂C(p, u)

∂ln(pi)
= αi +

∑
j

γijln(pj) + βi(lny − lnP )

or

si = αi +
∑

j

γijln(pj) + βiln
( y
P

)
,

where lnP = a(p) = α0 +
∑

i αiln(pi) + 1
2

∑
i

∑
j γij]n(pi)ln(pj).

Elasticities

The following formulae are used in the calculation of the elasticities: Expenditure

elasticity: ei = βi

si
+ 1;

Uncompensated own-price elasticities: ηii = γii

si
− βi − 1;

Uncompensated cross-price elasticities: ηij = γii

si
− βi

sj

si
;

Compensated own-price elasticities: η∗ii = ηii + eisi;

Compensated cross-price elasticities: η∗ij = ηij + eisj.
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Figure 4.1 Lagged Autocorrelations for γ14, α2, γ33 and γ41
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Figure 4.2 Lagged Autocorrelations for ρ12, ρ24, σ2
1 and σ2

4
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Table 4.1 Examples of Whole Grains

Brown rice
Buckwheat
Bulgur (cracked wheat)
Millet
Popcorn
Quinoa
Sorghum
Triticale
Whole-grain barley
Whole-grain corn
Whole-oats/oatmeal
Whole rye
Whole wheat
Wild rice

Source: Dietary Guidelines for Americans.
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Table 4.2 True Values and Posterior Estimates of the Parameters

Posterior Estimates
Variable True Value E(·|y) Std(·|y)

Regression Parameters
α1 0.64 0.6323 0.0066
γ11 0.35 0.3547 0.0039
γ12 0.39 0.3852 0.0028
γ13 -0.53 -0.5297 0.0019
γ14 -0.21 -0.2103 0.0031
β1 -0.49 -0.494 0.0046
α2 0.93 0.9311 0.0049
γ21 0.39 0.3852 0.0028
γ22 0.3 0.3023 0.0035
γ23 0.2 0.1997 0.0018
γ24 -0.89 -0.8872 0.0029
β2 0.25 0.2515 0.0041
α3 -0.12 -0.1213 0.0031
γ31 -0.53 -0.5297 0.0019
γ32 0.2 0.1997 0.0018
γ33 0.1 0.0992 0.0021
γ34 0.23 0.2308 0.0019
β3 0.34 0.3404 0.0024
α4 -0.45 -0.4421 0.0063
γ41 -0.21 -0.2103 0.0031
γ42 -0.89 -0.8872 0.0029
γ43 0.23 0.2308 0.0019
γ44 0.87 0.8668 0.0041
β4 -0.1 -0.098 0.0048

Covariance Matrix Parameters
ρ12 -0.45 -0.4543 0.0079
ρ23 -0.2 -0.1997 0.0095
ρ13 0.5 0.5034 0.0075
ρ14 -0.35 -0.3405 0.0088
ρ24 0.4 0.3967 0.0085
ρ34 -0.5 -0.4899 0.0076
σ2

1 0.5 0.505 0.0071
σ2

2 0.3 0.3038 0.0043
σ2

3 0.1 0.1008 0.0014
σ2

4 0.6 0.5982 0.0085
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Table 4.3 Cereals Identified as Whole Grain from Different Sources

Total UPC’s Manufacturer WG Council By Grain Type
N N % N % N %

Ready-to-eat 2850 514 18.0 198 6.9 603 21.2
Hot Cereal 960 212 22.1 60 6.3 633 65.9
All 3810

Table 4.4 Classification of Cereals into Whole Grain

Total UPC’s Classification 1 Classification 2
N N % N %

Ready-to-eat 2850 519 18.2 938 32.9
Hot Cereal 960 212 22.1 877 91.4
All 3810
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Table 4.6 Definition of Variables, Sample Mean Values and Standard Deviations

Variable Definition Mean Std.
N Number of households 7081.00
Income/$1000 Household income/$1000 59.27 39.02
Household size Household size 2.34 1.29
Age of Head<30 1 if household heads age is under 30 0.01 0.09
30≤Age of Head ≤49 1 if household heads age is between 30&49 0.31 0.46
50≤Age of Head≤64 1 if female heads age is between 50&64 0.40 0.49
65≤Age of Head 1 if female heads age is 65 and older 0.28 0.45
Presence of children 1 if household has children 0.23 0.42
Male head employed 1 if the male head is employed 0.66 0.47
Female head employed 1 if the female head is employed 0.59 0.49
≤ High school (male) 1 if the male heads education is high school 0.27 0.44
Some college (male) 1 if the male heads education is some college 0.31 0.46
College + (male) 1 if the male heads education is college 0.43 0.49
≤ High school (female) 1 if female heads education is high school 0.27 0.44
Some college (female) 1 if the female heads education is some college 0.31 0.46
College (female) 1 if female heads education is college 0.41 0.49
Married 1 if married 0.59 0.49
White 1 if race is white 0.77 0.42
Black 1 if the race is black 0.13 0.34
Other 1 if race is other 0.10 0.30
Hispanic 1 if Hispanic 0.07 0.26
East 1 if the household lives in the East region 0.22 0.42
Central 1 if the household lives in the Central region 0.17 0.37
South 1 if the household lives in the South region 0.38 0.49
West 1 if the household lives in the West region 0.23 0.42
Urban 1 if the household lives in urban area 0.87 0.34
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Table 4.7 Variables and Sample Mean Values (N=7081)

Ready-to-Eat (n=6875) Hot Cereal (N=5031)
Variable WG Non-WG WG Non-WG
N 6382 5960 4414 1922
Income/$1000 60.19 59.43 60.82 55.76
Household size 2.40 2.45 2.43 2.47
Age of Head<30 0.01 0.01 0.01 0.01
30≤Age of Head ≤49 0.32 0.33 0.30 0.30
50≤Age of Head≤64 0.40 0.39 0.39 0.36
65≤Age of Head 0.28 0.27 0.30 0.33
Presence of Children 0.24 0.25 0.24 0.25
Male Head Employed 0.67 0.67 0.65 0.62
Female Head Employed 0.59 0.59 0.58 0.54
≤ High School (male) 0.27 0.28 0.26 0.29
Some College (male) 0.31 0.31 0.31 0.30
College + (male) 0.43 0.41 0.42 0.41
≤ High School (female) 0.27 0.28 0.27 0.29
Some College (female) 0.32 0.32 0.33 0.32
College + (female) 0.41 0.40 0.40 0.39
Married 0.61 0.62 0.63 0.65
White 0.78 0.77 0.78 0.79
Black 0.13 0.13 0.13 0.13
Other 0.10 0.10 0.10 0.08
Hispanic 0.08 0.08 0.08 0.08
East 0.23 0.23 0.23 0.21
Central 0.17 0.17 0.16 0.20
South 0.38 0.38 0.38 0.38
West 0.23 0.22 0.23 0.21
Urban 0.87 0.87 0.87 0.83
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Table 4.8 Ready-to-Eat Cereals: Posterior Means and Probabilities of Being Pos-
itive

Ready-to-Eat
WG Non-WG

Variable E(·|y) Std(·|y) Pr(· > 0|y) E(·|y) Std(·|y) Pr(· > 0|y)
Demographic Characteristics

Intercept 0.2333 0.0041 1 0.3559 0.0038 1
Income/ $1000 0.0006 0 1 -0.0005 0 0
Household size -0.0201 0 0 0.0266 0 1
Age of Head<30 0.0506 0.0003 1 0.0641 0.0003 1
30 ≤ Age of Head ≤ 49 -0.0244 0.0001 0 0.0629 0.0001 1
50 ≤ Age of Head ≤ 64 -0.0005 0.0001 0 0.0126 0.0001 1
Presence of Children 0.0076 0.0001 1 0.0051 0.0001 1
Male Head Employed 0.0126 0.0001 1 0.001 0.0001 0.8
Female Head Employed -0.0084 0.0001 0 0.0087 0.0001 1
≤ High School (male) -0.0245 0.0001 0 0.0354 0.0001 1
Some College (male) -0.0137 0.0001 0 0.0176 0.0001 1
≤ High School(female) -0.0037 0.0001 0 0.0171 0.0001 1
Some College (female) -0.0063 0.0001 0 0.011 0.0001 1
Married 0.0105 0.0001 1 -0.0093 0.0001 0
White 0.0547 0.0002 1 -0.0389 0.0002 0
Black -0.0262 0.0003 0 0.0188 0.0003 1
Hispanic -0.0197 0.0003 0 0.0171 0.0003 1
East 0.0229 0.0002 1 -0.0022 0.0001 0
Central -0.0015 0.0003 0 0.0092 0.0002 1
South -0.0074 0.0003 0 0.0145 0.0002 1
Urban 0.0164 0.0002 1 -0.0142 0.0002 0

Price Coefficients
RTE WG 0.0909 0.0008 1 -0.0536 0.0006 0
RTE NWG -0.0536 0.0006 0 0.0909 0.0004 1
Hot WG 0.0044 0.0004 1 -0.0066 0.0003 0
Hot Non-WG -0.0417 0.0017 0 -0.0307 0.0013 0

Total Expenditure
Expenditure 0.0388 0.0001 1 -0.0107 0.0001 0
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Table 4.9 Hot Cereals: Posterior Means and Probabilities of Being Positive

Hot Cereal
WG Non-WG

Variable E(·|y) Std(·|y) Pr(· > 0|y) E(·|y) Std(·|y) Pr(· > 0|y)
Demographic Characteristics

Intercept 0.4335 0.0035 1 -0.0227 0.0114 0
Income/ $1000 -0.0001 0 0 0.001 0 1
Household size -0.0079 0 0 0.0014 0 1
Age of Head<30 -0.1059 0.0003 0 -0.0088 0.0005 0
30 ≤ Age of Head ≤ 49 -0.0346 0.0001 0 -0.0039 0.0001 0
50 ≤ Age of Head ≤ 64 -0.0107 0.0001 0 -0.0014 0.0001 0
Presence of Children -0.0102 0.0001 0 -0.0025 0 0
Male Head Employed -0.0136 0.0001 0 0.0009 0.0002 1
Female Head Employed 0.0027 0.0001 1 -0.003 0.0003 0
≤ High School (male) -0.0124 0.0001 0 0.0015 0.0001 1
Some College (male) -0.0075 0.0001 0 0.0037 0.0002 1
≤ High School(female) -0.0102 0.0001 0 -0.0032 0 0
Some College (female) -0.005 0.0001 0 0.0002 0.0001 1
Married -0.0017 0 0 0.0006 0 1
White -0.0291 0.0002 0 0.0133 0.0005 1
Black -0.0152 0.0003 0 0.0226 0.0009 1
Hispanic -0.0137 0.0003 0 0.0163 0.0008 1
East -0.0262 0.0001 0 0.0056 0.0004 1
Central -0.0218 0.0002 0 0.0141 0.0006 1
South -0.0208 0.0002 0 0.0137 0.0007 1
Urban 0.0072 0.0001 1 -0.0095 0.0005 0

Price Coefficients
Hot WG 0.0235 0.0002 1 -0.0213 0.001 0
Hot Non-WG -0.0213 0.001 0 0.0937 0.004 1

Total Expenditure
Expenditure -0.024 0.0001 0 -0.0042 0.0003 0
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