
Supertree construction by matrix representation with flip

b~-

D uhong Chen

~ thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

:MASTER OF SCIE~'CE

Major: Computer Science

Program of Study COIIlI211ttee:

David Fernandez-Baca. Major Professor
Oliver Eulenstein

Gavin ?~ aylor

Iowa State University

Ames , Iowa

2003

Cop~~right ©Duhong Chen, 2003. All rights reserved.

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

D uhong Chen

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

111

DEDICATION

I would like to dedicate this thesis to my wife Jing and to my daughter Vivian without

whose support I would not have been able to complete this work. I would also like to thank

my friends and family for their loving guidance during the writing of this work.

1V

TABLE OF CONTENTS

LIST OF FIGURES vi

CHAPTER 1. INTRODUCTION 1

1.1 Basic Concepts and Methods 1

l.l.l Phylogenetic Zees 1

1.1.2 Phylogenetic Inference 2

1.1.3 Character Compatibility and Phylogenetic Inference 3

1.1.4 Parsimony 6

1.2 Review of Supertree Reconstruction Methods 7

1.2.1 Phylogenetic Zees and their Binary Character Coding 8

1.2.2 Matrix Representation with Parsimony(MRP} and Matrix Representa-

tion with Flip(MRF) 9

1.2.3 MinCut(MC) and Modified MinCut(MMC) Algorithm 9

1.3 Outline 10

CHAPTER 2. COMPLEXITY OF THE MINIMUM FLIP PROBLEM 12

2.1 Introduction 12

2.2 Flip and the Minimum Flip Problem 12

2.3 Complexity of the Minimum Flip Problem 13

CHAPTER 3. ALGORITHMS FOR SOLZTING THE MINIMUM FLIP PROB-

LEM 18

3.1 Introduction 18

3.2 Exact Methods 20

3.2.1 Exhaustive Enumeration 20

3.2.2 Branch-and-bound Method 20

3.3 Heuristics Algorithm for Minimum Flip 25

3.3.1 Branch-swapping Operations 25

3.3.2 Greedy Algorithm 27

3.3.3 Heuristics 28

CHAPTER 4. SIMULATION STUDIES OF SUPERTREE CONSTRUC-

TION METHODS 29

4.1 Introduction 29

4.2 Criteria Used for 'I~ee Comparison 29

4.3 Exact Solution Comparison Experiment 31

4.3.1 Materials and Methods 31

4.3.2 Results and Analysis 34

4.4 Heuristic Solution Comparison Experiment 36

4.4.1 Materials and Methods 36

4.4.2 Results and Analysis 39

CHAPTER 5. CONCLUSION AND FUTURE STUDY 45

BIBLIOGRAPHY 47

ACKNOWLEDGEMENTS 50

Vl

LIST OF FIGURES

Figure 1.1 (a) an unresolved triplet and (b) a resolved triplet 2

Figure 1.2 (a) a tuple of characters ~ _ {Cl , C2, C3, C4}over h7 = {ml , m2, m3, m4, m5}

is denoted by a 5 x 4 matrix .~[.. (b) A binary matrix B represents the

completion of .A. and the set of characters ~. (c) A tree T~ is consistent

with the set of characters ~ where each C~. induces a cluster in T~. 4

Figure 1.3 A set of pairwise compatible incomplete characters, but the whole set

is not compatible 5

Figure 1.4 Flip to achieve perfect phylogeny 6

Figure 1.5 A collection of trees and its matrix representation 8

Figure 2.1 Example of a flip tuple ~", and s(~') = 2 13

Figure 3.1 A binary matrix representing a tree T 19

Figure 3.2 Enumeration of all possible trees for 4 species, An initial tree is formed

from the first two taxa. The third taxon is added transversely to each

possible location of the initial tree to obtain all the three taxon trees.

The four taxon tree is formed from adding the fourth taxon transversely

to each location of every possible three taxon trees. 21

Figure 3.3 An example of lower bound for minimum flip problem, the thick edges

is a maximum weighted matching whose total weight is 3. Thus, the

lower bound for the input characters ~ _ (Cl , . . . C5) is 3. 22

Figure 3.4 Two rearrangements are possible for. one NNI operation on an internal

node 25

vii

Figure 3.5 A general case of SPR operation. Subtree A is detached from the orig-

inal tree T, and attached to any possible branch of remaining part of

the tree T — A, such that different trees are created. 1,2 and 6 are

represented any branch inside subtree B,C and D respectively. B (A)

denotes a tree formed by regrafting subtree A to a branch in subtree B.

C(A), D(A) have similar meanings. 26

Figure 3.6 A special case of SPR operation. The prune node's parent is the root

of original tree T. A general SPR operation is performed, and then the

root is changed to the prune node's sister. 26

Figure 3.7 A tree T is divided into two subtrees t and T — t by a cut. Subtree t` is

formed by "bending" the branch 1 in subtree t. A TBR tree is created

when subtree t' is regrafted to one of the branches in subtree T — t. 27

Figure 4.1 Flowchart of the experiment to assess the accuracy of different supertree

methods 32

Figure 4.2 Variable taxa, and fixed sequence length experiment. 35

Figure 4.3 Fixed sequence length, and fixed taxa experiment 36

Figure 4.4 Proportional sequence length, and fixed taxa experiment 37

Figure 4.5 Flowchart of the heuristics solution comparison experiment 38

Figure 4.6 Tree comparison criteria used in heuristic solution comparison exper-

iment. (a) and (~) was used to evaluate how well source trees incor-

porate the true tree and how well supertrees recovering information in

source trees respectively. ('y) was used to measure the degree of su-

pertrees reflecting the true tree 40

Figure 4.7 Fixed sequence model with 1,000 characters: average MAST f it (first

column) and tripl et f it (second column) of supertrees and source trees.

The figures from top to down represents deletion probabilities of 0.25,

0.50, and 0.75 respectively 42

Vlll

Figure 4.8

Figure 4.9

Proportional sequence model with a total of 20,000 characters: average

MAST f it (first column) and triplet f it (second column) of supertrees

and source trees. The figures from top to down represents deletion

probabilities of 0.25, 0.50, and 0.75 respectively 43

Average MAST f it of of supertrees and true tree: The figures of fixed

sequence length model is listed in the first column and proportional

model in the second column. Figures in both columns from top to

down represents deletion probabilities of 0.25, 0.50, and 0.75 respectively. 44

1

CHAPTER 1. INTRODUCTION

This thesis is about a new method for evolutionary tree inference and phylogenetic supertree

construction. A phylogenetic tree or simply phylogeny represents the evolutionary history of a

set of species. It can be used to determine the genetic connections and relationships between

species. In recent years the explosive growth in phylogenetic trees on difFerent small sets of

species, systematic biologists have become interested in assembling those trees in one supertree

called the "tree of life" which represents evolutionary history among all living things(1) .

1.1 Basic Concepts and Methods

In this section, I will introduce some basic terminology, theorems, and notation that are

used in this thesis.

1.1.1 phylogenetic Trees

A tree is a acyclic, connected graph which consists of a set of nodes(vertices) connected by

a set of branches (edges) . The degree of a vertex equals to the number of edges to which it is

connected. Let M = {ml , . . . , m s } be a taxon set. A phylogenetic tree T over M is a tree with

exactly s leaves, each of which is labelled with a distinct element of M. Such a tree is used

to represent biological evolutionary relationships among the taxon set M. A phylogenetic tree

can be rooted or unrooted. A rooted tree is a tree in which one of the nodes is stipulated to be

the root, from which a unique path leading to every other node. An unrooted tree, as could be

imagined, has no pre-determined root and therefore induces no hierarchy.

Suppose T = (V, E) is a tree. A vertex v E V is internal if its degree is greater than one;

otherwise, it is a leaf. An edge e = (u, v) E E is internal if both u and v are internal vertices;

2

otherwise we say e is an external edge. We write .G (T) to denote the leaf set of tree T . A

vertex a is a descendent of a vertex b if the path from a to the root passes through b. Then b is

called the ancestor of a. For a vertex v E V , the set containing all leaves that are descendants

of v is called a cluster. The set M is always a cluster of T; every other cluster is said to be

proper.

A rooted tree is fully resolved if its root has degree two and all other internal nodes have

degree three. Any binary tree is fully resolved. A triplet is a tree with three leaves. There are

two types of triplets: resolved and unresolved. In Figure 1.1, Tree 1.1(a) is an unresolved triplet,

it contains no internal branches and is thus uninformative about cladistic relationships. Tree

1.1(b) is a resolved triplet which contains one internal branch and conveys cladistic information.

m, m2

(a)

m3 m, m2

(b)

Figure 1.1 (a) an unresolved triplet and (b) a resolved triplet

1.1.2 Phylogenetic Inference

m3

Under the natural assumption, species with similar characters(features) are genetically

close. Thus, the basic idea of phylogenetic inference is to compare specific characters of the

species. Phylogenetic analysis was originally developed by biological systematists who wanted

to reconstruct evolutionary genealogies of species based on morphological similarities. The

German entomologist Willi Hennig was the first author to propose an explicit method of

phylogenetic analysis, and the publication of his work in English quickly led to the widespread

use of his approach. Classic phylogenetic inference dealt mainly with physical, or morphological

features -size, color, number of legs, etc. Modern phylogeny uses information directly from

genetic material -mainly DNA or protein sequences. The characters used are usually DNA

3

or protein sites,where a site is a single position in the sequence after alignment with several

such sequences. Since phylogenetic trees play an important role in the study of molecular

evolution, determining the evolutionary history of species is one of the fundamental tasks of

computational biology.

The construction of optimal evolutionary trees is a very challenging problem, many different

instances of this problem have been defined and studied and most of them are N7~-complete.

Many of the popular phylogenetic inference methods attempt to solve N1~-hard optimization

problems, such as maximum parsimony(2), maximum character compatibility(3), and maxi-

mum likelihood which has not been proved but behaves as it is(4). Polynomial time methods,

such as neighbor-joining, also exist. Even though these problems have been studied extensively,

phylogenetic tree construction is still an open problem (5) .

1.1.3 Character Compatibility and phylogenetic Inference

Given a set of species M, a character over 1~1 is a partition of M. A partial character of

M is a partition of a subset of 111. The elements of a character are called states. A character

state tree is a tree whose node is labelled by a distinct element of that character states. A

character is directed if its character state tree is rooted; otherwise, it's .undirected. A character

with exact two states is a bipartition C = {Co, C. } of a subset MC of M, called a binary

character. The sets Co and C. are, respectively, the 0-state and the 1-state of C. If MC = M,

C is said to be complete, otherwise, it is incomplete. The set M -- Mc is called the unl~nown

state or ?-state and is denoted by C~. A complete character C' is a completion of C if Co C Co

and C. C C;. In the rest part of this thesis, without special specification, we will simply call

rooted phylogenetic trees as trees, and binary directed characters as characters.

In what follows (Figure 1.2 (a) and (b)), C = (Ci) 1 denotes a tuple of characters over M.

A completion of ~ is a tuple ~' _ (C'i)z 1 of complete characters such that, for i E { 1, . . . , r},

C' is a completion of CZ. The characters ~ over M can be represented by a {0, 1, ?} s x r

matrix ,~i. _ [a2~] where a2~ is 0, 1, or ?, depending on whether mi is in Cho, C~., or C~?. A

completion of .A. is a binary matrix B = [b2,] where aid E { b2~ , ? } for all i, j . Thus, each column

4

of B represents the completion of a character of ~ and B represents a completion of ~.

Cl C2 C3 C4

mJ 1 1 0 0
m2 0 1 0 1
m3 1 ? 0 0
m4 0 0 1 ?
ms ? 0 1 0

(a)

CI C2 C3 C4
ml 1 1 0 0
m2 0 1 0 1
m3 1 1 0 0
m4 0 0 1 0
ms 0 0 1 0

~)

CZ

CI

ml m.~ m2 m4 ms

(c)

Figure 1.2 (a) a tuple of characters ~ _ {C1, C2, C3, C4} over
1t~1 = {ml, m2, m3, m4, m5} is denoted by a 5 x 4 matrix ,A..
(b) A binary matrix B represents the completion of .A and the
set of characters ~. (c) A tree T~ is consistent with the set of
characters ~ where each Cj. induces a cluster in T~.

Definition 1 Two characters Cl and CZ are said to be pairwise compatible, written

as PC(Cl , C2), if there exists a tree T such that both CZ. and C2. induce a cluster.

Two binary characters are incompatible if and only if all three possible combinations of

states (0-1; 1-0; 1-1) are present in the characters.

Definition 2 A tuple of characters ~ is said to be compatible if and only if there is a

phylogenetic tree T~ in which every character in ~ its Cj. induces a cluster. The tree T~

is said to consistent with the character set ~.

As shown in figure 1.2 (c) the tree T~ is consistent with the set of characters ~ with each

Cj. induces a cluster in T~. The following basic result is proved by Estabrook et al (4).

Theorem 1 A tuple ~ of complete characters is compatible, if and only if for every pair

Note that this theorem does not hold for incomplete characters. Here is an example:

the matrix is taken from (6),whose rows represent species and whose columns correspond to

characters. Every pair of characters is compatible, but the whole set is not since for the

5

character Cl , if the ? is set to 0, then it is incompatible with C2; and incompatible with C3 if

the ?set to 1.

(~ 1 C2 C3
ml 1 0 0
m2 1 1 0
m3 ? 1 1
m4 0 ? 1

Figure 1.3 A set of pairwise compatible incomplete characters, but the
whole set is not compatible

Definition 3 (Perfect Phylogeny Problem)

Given: A character tuple C over the tc~on set M.

Questions: Does there exist a phylogenetic tree T~ consistent to C ? If so, build one.

The tree T~ is called perfect phylogeny for the set of characters ~ which has the property that

for each state of a character, the set of all nodes that have that state induces a subtree. The

general perfect phylogeny problem is NP-hard(7). When considering the number of possible

states per character as a parameter, the problem is fixed parameter tractable(8). For binary

characters, having only two states for each character, perfect phylogeny problem is linear time

solvable (6). When one of character in ~ has ?-state, this problem is call Incomplete Perfect

Phylogeny Problem.

When no perfect phylogenies possible for the full set of characters, (the most common case

in real phylogenetic analysis), we need some ways of choosing among them a best estimate.

For example we may consider a subset of characters for which a perfect phylogeny exist.

Definition 4 (Maximum Character Compatibility Problem)

Given: A character tuple C over the ta~on set M.

Questions: Find the largest subset ~' of ~ such that a phylogenetic tree T~ can be inferred

from C'.

6

Maximum character compatibility problem is .JV~-hard(9). The proof is based on a poly-

nomial reduction- from the clique problem.

Several factors can cause incompatibility among characters. For example, errors in data,

loss of function during evolution, convergent evolution, etc. Convergent evolution is a trait

developed independently by two evolutionary paths (e.g. wings in birds and bats} . If only error

in data causes lack of perfect phylogeny, we are interested in building a perfect phylogeny with

minimum changes in the input data. For binary characters, assuming the states are 0 and 1,

then the changes or error corrections, simply called flips, are either 0 --~ 1 or 1 —~ 0. Figure

1.4 (a) shows a tuple of characters C = {Cl, C2, C3, C4} over ~7 = {ml, m2, m3, m4, m5}.

Character Cl is incompatible with C2. So are C3 and C4. After two flips, the set of characters

(Figure 1.4(b)) is compatible and thus a perfect phylogeny (Figure 1.4(c)) can be constructed

and called such phylogeny as minimum flip tree. This problem is going to be described formally

in chapter 2.

C, CZ C.~ C4
ml 1 1 0 0
mz 0 1 0 1
m3 1 0 0 0
m4 ? 0 1 1
ms 0 0 1 0

(a)

1.1.4 Parsimony

CI C2 C.~ C4
ml 1 1 0 0
m2 0 1 0 1
m3 1 1 0 0
m4 ? 0 1 ~
ms 0 0 1 0

ro~

CI

~1

C2

Figure 1.4 Flip to achieve perfect phylogeny

m3 ~2 ~4 ~S

(~)

Parsimony is one of the most popular methods for phylogenetic inference. In order to define

this method, we begin with the following definition.

The Hamming distance between two vectors x and y of same length is ~ {i : ~i ~ y2 } (and

is denoted by H(x, y). The parsimony length of a tree T = (V, E) in which each node v E V is

labelled by a sequence is the sum of the Hamming distance of the sequences labelling endpoints

of the edges in the tree, i.e., ~(a,b)EE I~(a, b).

Definition 5 (Maximum Parsimony Problem)

Given: A set of sequences S with each has r sites.

Questions: Find a tree leaf labelled by S and assigned sequences for the internal nodes of

minimum parsimony length.

Maximum parsimony or simply parsimony chooses that phylogeny on which the characters

can evolve with the fewest evolutionary events. Unfortunately, this is an J~P-hard problem,

even when the sequences are binary(10) .

1.2 Review of Supertree Reconstruction Methods

The trees that will be used to construct the supertree are the source trees. For the purposes

of this thesis, all trees will be considered rooted. Species found on only one source tree are

unique. Those found on two or more are shared. Any tree containing all the species found

among the source trees is a supertree. If all the input trees have same leaves, the supertree is

usually called consensus tree.

A rooted phylogenetic tree T' is said to be obtained from T by contraction if T' can be

obtained from T by contracting a sequence of internal edges. A rooted. phylogenetic tree T

displays a rooted phylogenetic tree t if t can be obtained from an induced subtree of T by

contraction (or, equivalently, t is an induced subtree of a contraction of T) .

Definition 6 (Tree Compatibility Problem)

Given: A set of trees ?".

Questions: Does there exist a phylogenetic tree T that displays every tree t E T ?.

Unfortunately, the general version of determining whether a set of source trees are com-

patible is NP-complete (7) . However, if the source trees are rooted then it is polynomial time

solvable (7) (11) .

8

1.2.1 Phylogenetic Trees and their Binary Character Coding

Let T be a phylogenetic tree over a subset of ltf~ and let X be anon-trivial cluster in

T. Vt~e ignore the trivial clusters that are useless in supertree reconstruction. The character

representation of X is the incomplete binary character C over M, where C. contains all taxa

in the cluster, Co = .G (~') — C. and C? = M — ~G (T) . Let X 1, ... , X~ be the non-trivial

clusters in T. The character representation of T is the tuple ~T = (Cl, . . . , Ck), where, for

i E { 1, . . . ,1~}, Ci is the character representation of Xi. The matrix representation of T is the

matrix representation of ~~.

Let ~" _ {Ti }i_ 1 be a set of phylogenetic trees over subsets of M. The character represen-

tation of ~" is the character tuple

i i t t

where, for i E {1, ... , l}, (CI, . . . , C~i) is the character representation of Ti. The matrix

representation of ~" is the matrix A~ obtained by concatenating the matrix representations of

Tl , ... , T,.. A set of trees ~" _ {Tl , T2, T3 } and its matrix representation is shown in Figure 1.5.

a b c d a

~'i T2 T3

~1 c 2 ~' 1 c 2 ~' 1 ~' 2
a 1 1 1 1 1 1
b 1 1 0 0 1 1
c 0 1 1 1 0 1
d 0 0 ? ? ? ?
e ? ? 0 1 0 0

e

Figure 1.5 A collection of trees and its matrix representation

9

1.2.2 Matrix Representation with Parsimony(MRP} and Matrix Representation

with Flip(MRF)

When the source trees are compatible, they can be included in a single full consistent

supertree. In fact, source trees conflict is very common during tree assembly. Thus the

relationships between certain shared species must be taken into account during tree building

since they cause incompatible. One of the common supertree methods is to re-code trees by

incomplete binary characters and then apply phylogenetic inference. The most widely used

supertree method, MRP,is based on this idea. Unfortunately, this method is JV~-hard due

to finding maximum parsimonious tree. M RF does the same way as M RP except that the

objective of MRF is to find the minimum flip trees instead of the most parsimonious trees.

1.2.3 MinCut(MC) and Modified MinCut(MMC} Algorithm

The mincut supertree algorithm(12) can construct a rooted supertree for a set of rooted

input trees in polynomial time. The M C algorithm is derived from the Algorithm 1 described

by Aho et al(13) which determines the the rooted tree compatibility problem in polynomial

time. That is, whether there is a supertree with which each input tree is compatible can be

answered in polynomial time. The Aho's algorithm construct a graph ~=(V, .E), where the

vertices V are species, a edge (a, b) E E if and only if species a and b are in a proper cluster

in at least one of the input trees. Let T be a family of rooted phylogenies on subsets of M.

Given a set X C M, T ~ X denotes {T (X : T E T}.

Semple and Steel modified step 8 in Algorithm 1 so that it always returns a tree. The idea

is when only one component occurs in step 8 M C algorithm would find a min cut set in ?-1 to

break it up into several connected components. Thus, the computation can be continued until

return a tree. M C algorithm also assigns weight to the graph ?-~ and might collapse some edges

in ?-~ in order to preserve strict cluster nestings which appears in the source trees. The cut set is

helpful to solve conflict and preserve some desirable nesting property in the source trees. That

is, any nesting cluster in all the source trees will appear in the mincut supertree. However,

the original algorithm has two drawbacks: (i) it is not efficient in calculating all the minimum

10

Algorithm 1 Rooted'I~eeCompatibility(~", M)
D T is a set of input(source) trees over species M = {ml , . . . , ms}

1: if size[M~=1 then
2: return a single node labelled by ml
3: end if
4: if size [M] =2 then
5: return a tree with two taxa labelled by ml and m2.
6: end if
7: Otherwise,construct graph ?-~ as described
8: if ?-~ has only one connected component then
9: return nil

~0: end if
11: for each component 1112 of ~l do
12: T2 ~— RootedTreeCompatibili~y(T~M2, M2)
13: if T2 =nil then
14: return nil
15: end if
16: end for
17: construct a new tree T by connecting the roots of trees T2 to a new root .
18: return T

cut set of the graph; (ii) it is too sensitive to the size of the input tree and fails to include

the compatible clusters in the supertree. Page's modified mincut approach (1) improved M C

algorithm by avoiding these two drawbacks.

1.3 Outline

Chapter 2, Complexity of the Minimum Flip Problem, commences with the Minimum

Flips Problem(MFP) and proceeds with a study of the complexity of the problem.

Chapter 3, Algorithms for Solving the Minimum Flip Problem, deals with the issue

of solving minimum flips problem. Since MFP is NP-hard, it's impossible to find an efficient

algorithm unless P=NP. Abranch-and-bound algorithm is given in this chapter to solve small

problem (the number of taxa is less than 16), and a uphill searching heuristic is discussed for

large input trees.

Chapter 4, Simulation Studies on supertree Construction Methods, studies the

performance of different methods in supertree construction using simulation data. Those al-

11

gorithms include: ~~Tatrix Representation with Parsimony, Matrix Representation with Flip,

Semple and Steel's MinCutSupertree, and Page's Modified mincut suptertree algorithms.

The last chapter is the Conclusion and Future Study.

12

CHAPTER 2. COMPLEXITY OF THE MINIMUM FLIP PROBLEM

2.1 Introduction

We have introduced the goal and some basic concepts of phylogenetic inference in the

previous chapter. In this chapter we will introduce our new tree inference method called

minimum flip method which is base on smallest changes on input data to achieve perfect

phylogenies. Its application is used in supertree construction and the results of simulation

study is reported in chapter 4.

2.2 Flip and the Minimum Flip Problem

In this section, we will discuss some relevant terminology and notations. M is a finite set

of taxa, f~(N} denotes the power set of a set 1V. We define ~~,~ to be the set of all characters

over the set M, ~" is a collection of phylogenetic trees over the set M .

Definition 7 For a character C E C and a set F E f~(M}, define the flip-operation O as

follows,

C'=CaF:< >Co=CoOF n C;=C.QF

The set F is called a f-lip for the character C, or simply a flip, we refer only when the

character C is obvious. A f lip F is called a d-flip if F C C., and an i-flip if F C C. _ ~.

The flip operator is generalized to character tuples C = (Ci) 1 as follows. Let ~' _ (.FZ) i

be a flip tuple. Then C' = C d ~' is the character tuple (C'} 1 where, for i E {1, . . . , r},

C2 = Ci O Fi . The size of ~' is defined as s (~") _ ~ 1 ~ F Z ~ .

13

Flipping can be viewed as an operation on the matrix representation of character tuples.

Suppose that A is the matrix representation of C and that ~' is a flip tuple. A f dip for entry aid

such that a2~ ~? is the operation of replacing a2~ by its complement. The matrix representation

of ~ D ~' is the matrix obtained by, for all i, j, flipping entry air if mi E F~ .

The minimum flip problem is, given a character tuple ~, find aminimum-size flip tuple

~" such that C' = C ~ ~' is compatible. Figure 2.1 shows a matrix representing a collection

of incompatible characters, a flip tuple ~', the matrix of compatible characters obtained by

flipping according to ~'. The number of flip s(~') in this example is 2. Note that the number

of changes of flipping the character C to the character C' is the .Hamming distance between C

and C' . Thus, in the following example, s (~') = I~ (Cl , Ci) -+- H (G'3 , C3) = 2 .

C 1 C2 C3 C4
mi 1 1 1 1
m2 1 0 0 0
m3 0 1 0 0
m4 0 0 1 0
m5 1 1 0 1

Ci C2 C3 C4
ml 1 1 1 1
m2 1 0 0 0
m3 1 1 0 0
m4 0 0 0 0
m5 1 1 0 1

Figure 2.1 Example of a flip tuple ~', and s(~') = 2.

Definition 8 (Flip Problem (FP) -the decision version of minimum flip problem)

Given: A character tuple C E CM where r E IY and a number ~ E l~.

Questions: Does there exist a flip tuple ~" E ~(1V1)'' where s(~") < 1~, such that ~ D ~' is

compatible ?

2.3 Complexity of the Minimum Flip Problem

In this section we show that FP is N~-complete if the input is constrained to complete

characters. From this follows directly the N~-completeness for (partial) characters. All char-

acters in this section are complete characters in ~M. The proofs shown in this subsetcion use

only set theoretical definitions of characters.

14

Lemma 2 Let ~ _ (CI , C2) E ~~, such that I CI. I = I C2, I = 3 and I CI, n C2~ (< l . If

~' _ (FI , F Z) E t~(M)2 is a flip-tuple, such that IFI I = 0, IFZI = 1, and ~ d ~' _ (Ci, C2) is

compatible, then Ci, n C2. = Q~.

Proof. Let F2 = { e } . Since Ci and C2 are compatible, it follows from Theorem 1 that

either Cl, ~ C2, , or Ci, C C2. , or Ci, n C2. = Q~. We have C1 = CI O Fl = CI , since I FI I = 0.

It follows that either CI, ~ C2~ , or CI. C C2~ , or CI. n C2. _ ~. We will prove the lemma by

showing that the first two cases are impossible.

~C'2~ ~ E {2, 4}, since ~C2~ ~ _ ~C2~ D{e}~ and ~C2~ ~ = 3.

• Case C2. C CI.: It follows that I C2. I < I CI. I = 3. Thus, I C2. I = 2 and further, { e } is

a d-flip. Since { e} is a d-flip we have C2. = C2, — { e} where e E C2.. It follows that

C2. — {e} C CI, . Hence, ICI, n C2, (= IC2, — {e} I = 2, which is in contradiction to

ICI, n C2. I <_ 1.

• Case CI, C C2.: It follows that 3 = I CI. i < I C2. (. Thus, I C2. (= 4 and further {e}

is an i-flip. Since {e} is an i-flip we have C2. = C2. U {e} where e ~ C2, . It follows

that CI, C C2. U { e } . So I CI, n C2. (> I CI, I — 1 = 2, which is in contradiction to

ICI,nC2.I <1.

0

Lemma 3 Let ~ _ (CI , . . . , Cr) E ~M for some r E I~, such that I Ci. I = 3, and I Ci, n C~, I < 1

for any i, j E {l, . . . , r} where i ~ j. If there exists a flip tuple ~' _ (FI, . . . , Fr) E A(M)T,
such that IFiI = 1 for any i E {1, . . . , r}, and (Ci, . . . , CT) _ ~,~ ~` is compatible, then

Proof. A flip in ~' is either a d-flip or an i-flip, since I Fi (= 1 for any i ~ { 1, . . . , r} . W.l.o.g.

we assume that ~'d = (FI , . . . Fl) consists only of d-flips and ~"i = (Fl+ 1, . . . , F,,) only of i-flips,

for some l E { 0, . . . , r } . Thus

(C2~~=2foriE{1, . . . ,1} and ~C'~~=4foriE{l-~-1, . . . ,r }

15

Claim 1: C'. n C~~ _ (~ for either i, j E {1, . . . , l} or i, j E {l -}- 1, . . . , r}, where i ~ j.

Proof of claim: From theorem 1 it follows either Ci. C C~. , or C'. ~ C?. , or C`, n C~. _ (~,

since CZ and C~ are compatible. We will prove the claim by showing that the first two cases

are impossible. It is sufficient to show this by proving that Ci. C C~, is impossible, since either

i,jE{1, . . . ,1}ori,jE{1, . . . ,r}.

Suppose C'. C C~.. We have I Ci. I = I C~. I = 2 in the case i, j E { 1, ... , l } and I C`. I = I C~. I = 4

otherwise. It follows that I C'. I = I C~. I . From this and our assumption that Ci. C C~, it follows

that Ci. = C~.. Now, if FZ and F; are d-flips we have I C2, n C;, I > ((Ci, — FZ) n (C;, — F;) I =

((Ci, O FZ) n (C; , O F;) (= I Ci, n C~. (= I C'. I = 2. Otherwise Fi and F; are i-flips and we have

i~z, n c;. I + 2 >_ I (ci, u FZ) n (c;, u F;) I - I (ci, o Fi) .n (c~. o F;) I = Ic2, n c;, I = ici, I = 4.
Hence in both cases we have I Ci, n C;, I > 2, which is in contradiction the pre-condition

I Ci, n C;. I < i .

Claim 2: For any i E {l -}- 1, . . . , r} there exists at most one j E {l, . . . , l}, such that

C2, n C~. ~ ~.

Proof of claim: Suppose there exist v, w E { 1, . . . , l } where v ~ w, such that C'. n Cv. ~ ~

and C', n Cw! ~ 0.
First we show C' C C' . From Theorem 1 follows that C' n C' E {C' C' (~} since

the characters Ci, Cv, Cw are compatible. By our assumption Ci. n Cv, ~ Q~ this reduces to

Ci, n Cv, E { C'. , Cv, } . From this, I C'. I = 4, and I Cv, I = 2 it follows that Cv. C C'.. By a

similar reasoning Cw. C C', follows, and we conclude Cv. U Cw, C C'..

Second, we show Cv. U Cw. = Ci.. Cv, n Cam,. _ ~ follows directly from Claim 1, and hence

I Cv. U Cw. I = I C;~ I -}- I Cw. I . As shown before in (* } , it is I Cv. I = I Cw. I = 2 and I Cis I = 4.

So I C'. I = I Cv. I -#- I Cw, I = (Cv. U Cw, I . Now, from (C'~ I = (Cti,, U Cw. I and the prior result,

C;, U Cw, C CZ. , it follows that Cv, U Cw, = C'. .

We are prepared to give the contradiction. Let Fv = {ev }, Fw = {ew } and Fi = {ei } . Fv, Fw

are d-flips and Fi is an i-flip . Thus Cv. = Cv, — { ev } , Cw~ = Cw, — { ev } where ev E C~,, ,

ew E Cw, , and C2. = C2, U { ew }where ei ~ C2, . Replacing Cw. Cw, and C', in C;. U Cw~ = C'.

leads to (C~,, — { ev }) U (Cw, — { ew }) = Ci, U { ei } where ev E Cv, , ems, E Cw, , CZ ~ C2, and

16

Cti•, — { e~, } n Cw, — { ev } = Q~ . So, either ei E Cv, — { ev } or ei E Cw, — { ew } . VV.I. o. g. we assume

ei E Cv, —{ev}. Thus Cw, —{e2„} C Ci, . From this follows (~iw, nCii, I > ~ (Cw, -{e w })nCi, (_ `Z,

since ~ Cw, — { e -I-~ w } = 2, which is in contradiction to the pre-condition (Cw, n Ci, ~ < 1.

From Claim 1 it follows that (UiE{i,...,t} Cz. ~ = 2l and ~ UiE{t+l,...,r} Ci. ~ = 4l. Claim 2

states that for any i E {l -}- 1, . . . , r} there exists at most one j E { 1, . . . , l }, such that Ci, f1

C~. ~ ~. Hence, any Ci, for i E {l + 1, . . . , r} counts for at least 2 new elements. It follows

In the fallowing we use a polynomial time reduction from CX3C to show that FP is N~-

complete. The problem CX3C is an input constrained version of exact 3-cover (X3C) (14) and

is known to be N~-complete (15) .

Definition 9 (Constrained Exact 3-Cover (CX3C})

Given A set 1~' with ~X (= 3q for some q E I~, and a collection S of 3-element subsets of X,

such that for any set { S, S' } C S, (S n S' ~ < 1.

Question Does there exist a set S' C S that covers X ? (S' covers X , ifs`' X = USEs, S and

for any {S, S'} C S' holds S n S' = Q1.)

Theorem 4 FP is N1~-complete.

Proof. Clearly, FP E NP. The reduction CX3C <~ FP, will be shown by a modification

of a proof given in (15).

Construction: Let a possible instance for CX3C be a set X , where ~ X (= 3bq for some

q E I~, and S = {Sl , . . . , Sr } be a collection of 3-element subsets of X . From this instance a

possible instance for FP is constructed as follows: For every i E { 1, ... , r} a character Ci is

constructed, such that Ci, = Si and Cio = X — Si . From the resulting characters the character

r-tuple ~ _ (Cl , . . . , Cr) is constructed and the number I~ = 2(r — q) is calculated.

Obviously, ~ and 1~ can be calculated in polynomial time. Thus, the N~-completeness of

F P derives from the following statement .

17

Claim: S contains a 3-cover for X, iff there exists aflip-tuple ~" where s(~') < ~ and ~ O ~'

is compatible.

Proof of claim:

>" : Let S' _ { Sz , . . . , Sq } be a subset of S that is a 3-cover for X . Let ~ _ (Fl , . . . , FQ, Fq+~ ,

. F,.) be a flip tuple where F Z = ~ for any i E { 1, . . . , q} and Fi C Ci, , such that ! Fi ~ = 2 for

any i E {q -f- 1, . . . , r}. Thus, s(~') = I~. Now we show in two steps that C ~ ~ is compatible.

First we show that Ci — Fi is compatible with any character in ~M for any i E {q -E- 1, . . . , r}.

We have Ci ~ Fi = Ci — F Z where F 2 C C2, since Fi is a d-flip for Ci . From this follows that

~ Ci ~ Fi (= ~ Ci — Fi ' = 1, since ~ F Z ~ = 2 and ~ Ci (= 3 . From Theorem 1 it follows that a character

C E CM, where ~C.) = 1, is compatible with any character in CM. Thus, the character CZ D Fi

is compatible with any character in CM .

Second we show that C' = Ci O Fi and C~ = C~ ~ F~ are compatible for different i, j E

{ 1, . . . , q } . It is Ci = CZ and C~ = C~ , since F Z = F~ _ ~ . Next we have Ci, n C~, _ ~, since

by our construction Ci, = Si, C~. = S~, and Si, S~ are elements of the 3-cover for X . Thus,

Ci, n C3~ = 0. From this it follows by Theorem 1 that C' and C~ are compatible.

From the first and second part follows directly that C ~ ~" is compatible.

"< ": Suppose that there exists aflip-tuple ~" such that s(~') < 1~ and ~ 0 ~' _ (Cl, . . . , Cr)

is compatible. W.l.o.g. let ~" _ (Fo, . . . , F Z, F2+1, ... , F3, F~+l, ... F,.) such that (F~~ = 0 for

k E { 1, . . . , i}, (F~ ~ = 1 for k E {i -}- 1, . . . , j }, and ~F~ (> 1 for 1~ E { j +- 1, . . . , r}. Let fo = i,

f l = j — i, and f2< = r — j. We show 3/2(fo — q) > fl > 2(fo — q). From this it follows q = fo

and hence f o is a 3-cover for X.

• It holds that 1~ = 2(n —q) > fl -}-2 f2< and replacing n by fo+- f l -}- f2< yields f l > 2(fo—q).

• From the construction it follows that 3q > ~ UtE{1,...~} Cl ~• By Lemma 2 we have ~ USE{1,...~}

c l ~ - 3 .f0 + ~ UlE{i+1,...~} Ci ~ . Lemma 3 states (UlE{i+1,...~} Ci ~ > 2fi • Thus 3q > 3fo -~- 2 f i

which is equivalent to 3/2(fo — q) > fl.

18

CHAPTER 3. ALGORITHMS FOR SOLVING THE MINIMUM FLIP

PROBLEM

3.1 Introduction

This chapter describes methods used for solving the minimum flip problem. We have proved

that the FP problem is N~-complete so there is probably no efficient algorithm to achieve a

perfect phylogeny based on minimum change of the input characters. The search space of

possible trees increases exponentially with the number of species. In general, the number of

phylogenetic trees for a data set of s taxa is given by ~n_i (2n — 3} for n > 2, since for an

arbitrary tree with n taxa, there are 2n — 1 possible places for the (n -~- 1 }th to be added.

An exact solution to the minimum flip problem can be obtained using exhaustive search or

branch-and-bound algorithm when the number of taxa is less than or equal to 15. Given a

character tuple ~ _ (Cl , . . . , Cr} our algorithm exhaustively evaluates every tree T over 1Vf

by the minimum number of flips to make ~ compatible with T. A tree is in our solution if it

has the minimum number of flips over all of the possible trees. For large data sets, heuristics

must be employed. Exact and heuristic methods will be discussed in section 2 and section 3

respectively.

Before solving the minimum flip problem, we first define a basic estimation problem. Re-

member that a rooted binary phylogenetic tree T over ~7 can be represented as a tuple of

characters called character coding of T and denoted by CT = (Ci , . . . , C s_1), where s = ~M~,

CT is a s-dimensional complete binary character which corresponds to a cluster in the tree T,

with Ci. containing all taxa in the cluster, Cio = M — Ci,. The matrix representation of T

is the matrix representation of CT. Figure 3.1 is the matrix representation of the tree T in

Figure 1.2 (c) .

19

Ci C2 C3 C 4 C 5 ~' 6 C 7 Cg Cg

ml 1 1 0 0 0 0 1 1 0
m2 1 0 1 0 0 0 0 1 0
m3 1 0 0 1 0 0 1 1 0
m4 1 0 0 0 1 0 0 0 1

m5 1 0 0 0 0 1 0 0 1

Figure 3.1 A binary matrix representing a tree T

Definition 10 Flips Estimation Problem (FEP)

Given A set of characters C = (Cl , . . . , C,.) over M, where r E l~ and a phylogenetic tree T

over ta~a M .

Questions What is the minimum number of f dips in order to mare ~ consistent with the T ?

Algorithm 2Flips-Estimate (C , T)
1: Codes T into a set of characters ~T
2: flips F— 0
3: for all x E ~ do
4: distance E-- o0

5: for all y E CT do
6: if distance > H{x, y) then
7: distance ~— H(x, y)
8: end if
9: end for

l0: flips E-- flips -{- distance
11: end for
12: return flips

Algorithm 2 first codes the tree T as a set of characters ~T and then maps each char-

acter Ci E ~ to a character C~ E ~T such that H(Ci, C~) is minimal among all H(Ci, C')

forall C' E ~~. Let ~'Z~ be the flip tuple such that C~ = Ci ~ ~'2~, and s(~, ~T) be the

number of flips to make input characters ~ compatible with the phylogenetic tree T. Thus,

s (~, ~T) _ ~ 1 min { ~ ~i~ ~ ,1 < j < 2 s — 1 } . Clearly, this can be done in O (r x s2) because

there are r binary characters in ~, and each of them maps to one of the 2s — 1 characters in

~T with minimum Hamming distance. Note that the calculation of Hamming distance H(x, y)

20

takes O(s).

-Since the phylogenetic tree T is binary, any character C' ~ ~T must be incompatible with

T. Algorithm 2 maps each character in ~ to a character in ~T with minimum number of

flips. Let ~~ _ ~ d ~". Then the algorithm guarantees that each character in ~~- (after flip) is

compatible with the tree T and the number of flips is minimal. i.e. ~~ C ~~ and s(~, ~T) is

minimal. Therefore, Algorithm 2 solves the FEP.

3.2 Exact Methods

3.2.1 Exhaustive Enumeration

For a small input data set (generally, one where the number of taxa is less than 15), it is

possible to find the optimal flipping tree by enumerating all of the possible trees and applying

Algorithm 2 to evaluate the minimum number of flips for each of these trees. A simple method,

"transverse add" (Figure 3.2), is used to enumerate all the trees with s taxa. Initially, a

phylogenetic tree with two taxa is built. All possible three taxon trees are then constructed

by adding the the third taxon at all possible places in the initial tree. The remaining taxa are

added in this manner until all taxa have been added, which results in the enumeration of all of

the possible trees for s taxa. For each complete tree, a tree with s taxa, the minimum number

of flips is evaluated by applying Algorithm 2. The trees with smallest score are kept.

3.2.2 Branch-and-bound Method

We first specify an upper bound, U, on the number flips to make the input character

set C compatible. We then consider the enumeration of the set of all complete trees with s

taxa. Specifically, we begin with a tree with two taxa and then consider the three taxon tree

constructed from the initial tree by adding the third taxon. From the remaining s — 3 taxa, we

can calculate the lower bound using Algorithm 3 described below. If the value of the minimum

flip of three taxon tree plus its lower bound exceeds the upper limit U then we do not need to

consider any of the trees that are obtained by adding taxa to this three taxon tree. Otherwise,

21

2

2 3

3 2

3 2 ~~.

1

/

4 3 2

! ~~~
t t 3 2

~~/~~~~
1 ~ 3 2

1///1~~
1 3 4 2

Figure 3.2 Enumeration of all possible trees for 4 species, An initial tree
is formed from the first two taxa. The third taxon is added
transversely to each possible location of the initial tree to obtain
all the three taxon trees. The four taxon tree is formed from
adding the fourth taxon transversely to each location of every
possible three taxon trees.

we evaluate each of the four taxon trees obtained by adding the fourth taxon to this tree. The

remaining taxa are added in the manner. If at any time a complete tree is encountered with

a value U* which is less than U, U is reset to U* and the search is continued. Algorithm 4 is

a branch-and-band algorithm to solve the minimum flip problem.

The branch-and-bound algorithm explores each possible topology until the upper limit is

reached. Thus, it ensures that all trees are tested and guarantees that a phylogenetic tree

which optimizes the criteria is found.

22

3.2.2.1 Lower Bound for Minimum Flip

A maximum weight matching in an undirected edge weight graph G = (V, E, w) is a collec-

tion of node-disjoint edges with maximum total weight. A lower bound for the flip problem is

the sum of a maximum weight matching for the following edge weighted graph G = (V, E, w):

i E V, if Ci is a character in C; {i, j } E E, if Ci and C~ are incompatible, and w ({i, j }} is

the minimum number of flips to make Ci and C~ compatible. Note that a tuple ~ of complete

characters is compatible if and only if every pair C, C' E C is compatible. A maximum weight

matching for the graph G is a subset of flips making the characters pairwise compatible. Thus,

it is a lower bound. We used Algorithm 3 to calculate the lower bound. In the following

example (Figure 3.3), the lower bound for the set of ~ _ (Cl , . .. C5) characters is 3.

CI C2 C3 C4 CS

ml 1 0 1 1 1
m2 0 0 1 0 1
m3 0 1 1 0 1
m4 0 1 0 1 0
m5 1 ? 0 1 0
m6 I 0 0 1 1

c,

cs

Figure 3.3 An example of lower bound for minimum flip problem, the thick
edges is a maximum weighted matching whose total weight is 3.
Thus, the lower bound for the input characters ~ _ (Cl, . . . C5)
is 3.

Algorithm 3 GetLowerBound (~)
1: construct the edge weighted graph G = (V, E, w) from ~
2: M ~ MAX_WEIGHT~VIAT~HING(G) D returns maximum weighted matching as a list of edges
3: L ~-- 0
4: for all e E 1~T do

6: end for
7: return L

23

3.2.2.2 Upper Bound for Minimum Flip

An initial upper bound can be computed by a quick heuristic search or obtained from a

random tree T. In the second case, a bound is given by the minimum number of flips to make

~ compatible with T. During the search, if a complete tree over M with a smaller minimum

flip number is found, we replace the upper bound with the smaller value. The better the upper

limit, the faster the search. Clever programming, including an appropriate choice of the, initial

upper bound can greatly improve the running time of the algorithm.

3.2.2.3 Branch-and-bound algorithm

Let A be a subset of M, and ~!A denote the restriction of set of characters ~ to A. For each

C E C, C ~ A is a character C' over A such that C; = C. (~ A, Co = Co (~ A, and C~ = C~ (~ A.

We wrote ~ ~ A to denote the multiset {C' : C' = C i A f or C E ~ } . Let T be a tree over taxa

set A, and x, y, and z are nodes where x is a node in tree T , y is a new leaf node to be added

to the tree, and z is a new internal node. Now, we introduce two functions AddTaxon and

RemoveTaxon that are used in the Algorithm 5.

The function AddTaxon(T, x, y, z) inserts the nodes z and y to the tree T such that y and

x become z's left and right children respectively.

The function Remover axon (T, y, z) removes the nodes y and its parent z from the tree T .

Algorithm 4 BandBMinFlip(C)
D ~ _ { Ci , . . . C,. } is a t uple of characters over M = { m 1, . . . , ms }

1: generate a random tree T
2: U 4— Flips...Estimate(C, T) D obtain upper bound
3: create the initial tree T with the taxa ml and m2
4: A <-- {ml , m2} D A is the set of taxa that have been added to the tree T
5: form--3tosdo
s: A ~-- A U{mi}
7: .R E-- M — A D R is the set of taxa what not appear in tree T
8: L[i~ F— GetLowerBound(~~R) D Get the lower bounds for the added taxa
9: end for

lo: return TraverseAdd(~, T, root[T], 3, {ml , m2}, U, L)

24

Algorithm 5 'I~averseAdd(~, T, x, i, A, U, L)
D T is a tree on the leaves set A, ~ is one of its nodes, i is the index of the taxon to be added to the tree T

D U and L are upper bound and lower bounds repectively

1: y <— CreateNode(mi) D create a leaf node labelled by mi

2: z F— CreateNode() D create a empty internal node

3: AddTaxon(T, x, y, z)
4: AE—AU{mi}
5: flip = Flip~stimate(C~A, T) ~- L[i]
6: if flip < U then
7: if i < s then
8: TraverseAdd(C, T, x, i -~- 1, A U{mi}, U, L)
9: else

10: U E-- flip Da complete tree is reached, update the upper bound
11: end if
12: end if
13: RemoveTaxon(T, y, z)
14: AF--A—{mi}
15: if x is not a leaf node then
16: TraverseAdd(~, T, le f t[x], i, A, U, L)
17: TraverseAdd(~, T, right[x], i, A, U, L)
18: end if
19: return U

25

3.3 Heuristics Algorithm for Minimum Flip

We now describe a heuristic algorithm for solving minimum flip problem with a large data

set. This heuristic uses the uphill searching strategy employed in PAUP and commonly used

among biologists. The main idea of this strategy is to start from a tree, called starting point,

and rearrange branches in this tree to form different trees. If a better tree, that is, a tree with

smaller number of flips, is found, then replace the starting point with this better tree. This

uphill algorithm continues until no possible rearrangements of a given tree result in a better

tree and that tree is returned as the estimate of the minimum flip tree. In this section, we first

introduce three types of branch-swapping methods that are widely used to create new trees

by rearranging branches. Then, we describe a greedy algorithm to obtain a starting point.

Finally, we will give a detailed uphill algorithm which is used for minimum flip problem.

3.3.1 Branch-swapping Operations

3.3.1.1 Nearest Neighbor Interchange (NNI)

For a rooted binary tree T, a NNI operation On an internal node consists of swapping one

of its children with its sister. For one NNI operation, there are 2s — 4 different trees that can

be possibly obtained from the tree T with s taxa, because there are s —1 internal nodes in the

tree T and only two possible rearrangements for each internal node except the root (as shown

in Figure 3.4).

Figure 3.4 Two rearrangements are possible for one NNI operation on an
internal node.

26

3.3.1.2 Subtree Pruning and Regrafting (SPR)

A SPR operation proceeds by removing a subtree t from a rooted binary tree T and then

attaching t to each possible branch of the remaining subtree T — t. The root of the pruned

subtree t is called a prune node. A general case of SPR is illustrated in Figure 3.5. A special

case of the SPR operation (Figure 3.6} occurs when the the parent of the prune node is the

root of the original tree T. In this case, after regrafting subtree t to the subtree T — t, the

prune node's sister is set as new root. Note that the NNI operation can be considered as a

SPR operation but not vice versa.

1

Figure 3.5 A general case of SPR operation. Subtree A is detached from
the original tree T, and attached to any possible branch of re-
maining part of the tree T — A, such that different trees are
created. 1,2 and 6 are represented any branch inside subtree
B,C and D respectively. B(A) denotes a tree formed by regraft-
ing subtree A to a branch in subtree B. C(A), D(A) have similar
meanings.

Regraft at position 2

Figure 3.6 A special case of SPR operation. The prune node's parent is the
root of original tree T. A general SPR operation is performed,
and then the root is changed to the prune node's sister.

27

3.3.1.3 Tree Bisection and Reconnection (TBR)

A TBR operation cuts ofd an edge of a rooted binary tree T, dividing the tree T into two

parts: t and T — t. It then chooses a subtree, say t without loss of generality, which does

not contain the root node of the original tree T, from the subtree t, create a new subtree t'

by "bending" each possible edge to obtain a new root, and then attaching t' to any possible

branch in the subtree T — t. This is similar to regrafting in SPR operation. An example is

shown in figure 3.7. Note that SPR operation can be viewed as a TBR operation but not vice

versa.

a b e d e f g

T
e f a b c d g h

T

Figure 3.7 A tree T is divided into two subtrees t and T — t by a cut.
Subtree t' is formed by "bending" the branch 1 in subtree t. A
TBR tree is created when subtree t' is regrafted to one of the
branches in subtree T — t.

3.3.2 Greedy Algorithm

This algorithm is used to get a starting point for the heuristic algorithm described later.

Similarly to exhaustive enumeration, the greedy search begins with the unique initial tree

formed from the first two taxa in the input data set. The third taxon is inserted into every

possible branch in the initial tree to form all possible three taxon trees. Algorithm 2 is then

applied to estimate the minimum number of flips for each of those three taxon trees. The best

three taxon tree, a tree with the minimum number of flips among all possible three taxon trees,

is chosen to add the fourth taxon. Taxa are added to the tree in such a way until a complete

tree is reached. The running time for this algorithm is O(s4 x r).

28

3.3.3 Heuristics

For Iarge data sets, Algorithm fi is used for minimum flip problem.

Algorithm 6 HeuristicMinFlip (~, branchswap)
D ~ is a set of characters, branchswap is a function pointer referring to one of the procedures in

D {NNI, SPR, and TBR }and returns all the neighbor trees according to {NNI, SPR, and TBR } .

1: order taxa randomly, and obtain starting point T using above Greedy Algorithm.
2: initialize besttreelist empty
3: add the tree T to besttreelist
4: bestscore E-- Flips~stimate(C, T)
5: for all Tl E besttreelist do
6: for all T2 E branchswap(T1 } do
7: if Flips~stimate(C, T2) < bestscore then
s: if Flips_Estimate(C, T2) < bestscore then
9: . bestscore ~— Flips~stimate(~, T2)

lo: empty besttreelist
11: end if
12: add TZ to besttreelist
13: end if
14: end for
15: end for
16: return besttreelist

This algorithm does not test all possible trees and thus do not guarantee that the resulting

trees are optimal. It is clear that the result trees obtained by such a algorithm depends on

the starting point. From this reason, we usually run this algorithm several times and choose

the best result. This is equivalent to repeating the procedure with different taxon addition

orderings.

29

CHAPTER 4. SIMULATION STUDIES OF SUPERTREE

CONSTRUCTION METHODS

4.1 Introduction

To test the effectiveness of flipping as a supertree construction method, we conducted a

series of tests on artificial data, and ran both the exact branch-and-bound algorithm and the

uphill searching heuristics described in the previous chapter. Our goal was to examine several

parameters that affect the performance of building supertrees. By fixing those parameters,

we can compare MRP, MRF, MC and NIMC supertrees. The simulation studies are divided

into two kinds of experiments: those where exact solutions were computed and those where

heuristics were used. The former are based on very small artificial data set and use abranch-

and-bound algorithm to construct exact MR.P and MRF supertrees; while the latter using

uphill searching heuristics to build heuristic MRP and MRF supertrees. The two experiments

will be described in the section 3 and section 4 respectivel~~.

4.2 Criteria Used for Tree Comparison

In this section, we first define some metrics used for tree comparison. Then, we describe

the criteria used in our simulation result analysis. Let MT denote the true tree, ZT denote a

set of source trees, and ST denote a set of supertrees.

A maximum agreement subtree (MAST) of two phylogenetic trees Tl and T2, denoted by

MAST(T1,T2), is an agreement subtree with the largest possible number of leaves. The maxi-

mum agreement subtree can best represent the common information provided by the two input

trees. The MAST fct of two input trees Tl and TZ is the size of MAST(T1,T2) divided by the

30

number of common leaves in both T1 and T2. That is,

MAST fit Tl , T2) —_ (MAST(T1,T2)I
(I,G(Ti } (1 ~(T2)

To assess the accuracy of supertree methods, we need to consider two issues: the degree to

which a supertree agrees with the true tree and the degree to which a supertree recovers the

information in the source trees.

The first issue concerns how well different supertree building methods based on subsets of

taxa reflect the true tree. Since some methods such as M RP and M RF might produce more

than one supertree, we used the average MAST fit of supertrees and the true tree as a metric to

measure how well those supertrees agree with the true tree. The average MAST fit is calculated

as following:

~tEST MAST f it(M~, t)
average MAST fit (S7, MT) = IsTI

The second issue concerns how well a supertree incorporates information in source trees.

Here we used the average MAST fit of supertrees and source trees as one of metrics, which

was calculated by

~tEs?- ~t,EZT MAST fit(t, t')
average MAST fit (ST, ZT) = IsT I X IzT I

However, this MAST based metric has drawbacks to measure tree similarity especially for

those input trees that are not fully resolved. Following a suggestion by Roderic Page, we

used average triplet fit to measure how well a supertree agrees with source trees (1) . Given a

supertree Tl and a source tree T2, let d(Tl , T2) be the number of triplets resolved differently in

Tl and T2; s(Tl , T2) be the number of triplets resolved identically in Tl and T2; rl(Tl , TZ) be

the number of triplets resolved in Tz but not in T2 i and r2 (Tl , T2) be the number of triplets

resolved in tree T2 but not in Tl. A triplet fit is defined and calculated by the following:

t ri let fit Tl , T2) = 1 — d (T1,T2) +T2 (T1,T2)
P (d(Ti,7'2)+s(7'1,T2)+r2(T1,T2)

The average triplet fit of supertrees and source trees is the average value of triplet fit over

each pair of supertree and source tree. That is,

31

~tES?- ~t'EZT tri~letfit(t, t')
average triplet fit (ST, zT) _ (sT ~ x ~zT ~

Note that the metrics described above is only used in heuristic solution comparison exper-

invent .

4.3 Exact Solution Comparison Experiment

4.3.1 Materials and Methods

• Hardware: Four Linux based Dell workstations each with one 667MHz Pentium-III

CPU and 512MB memory was used in this study.

• Software: Several programs were involved in this simulation study. They are listed

below:

1. r8s version 1.5(16): A program from Michael J.Sanderson that is used to generate

a set of random trees as "true" trees.

2. Seq-Gen version 1.2.3 (17) : Several artificial data sets (simulation of DNA se-

quences)were created by this program based on the "true" trees.

3. PAUP version 4.0(18): This is used to build most parsimonious trees.

4. BBMFT: A program written by myself for constructing exact minimum flip trees

using branch-and-bound algorithm described in previous chapter.

5. MCSupertree: My implementation of Semple and Steel's mincut algorithm. This

is used to construct mincut supertree.

• Method:

The parameters we chose to study are the size and the number of source trees, the fraction

of shared taxa between source trees, and the level of disagreement between source trees

(19) . The level of disagreement is largely a product of evolutionary noise that was added.

Each parameter combination was replicated 50 times. A single replicate of the simulation

is shown in figure 4.1. The details of each step are described below.

32

i

generate model tree
1

model tree

i

generate DNA sequences

data set 1

i

randomly delete taxa

partial
data set 1

i

construct MP trees
l

MP trees

i

strict consensus

source tree
1

i

data set 2

i

randomly delete taxa
{

partial
data set 2

i

construct MP trees

MP trees

i

strict consensus

source tree
2

data set ns

i

randomly delete taxa
1

partial
data set ns

i

construct MP trees
1

MP trees

strict consensus

source tree
ns

MRP-algorithm

matrix
representation

MRP-supertrees

i

semi-strict consensus

semi-strict
MRP-supertree

coding

MRF-algorithm-

collection of
source trees

MRF-supertrees

semi-strict consensus

semi-strict
MRF-supertree

normalized
MAST-distance

m-p

MGalgorithm

MGsupertree

normalized
MAST-distance

m-f

normalized
MAST-distance

m-c

Figure 4.1 Flowchart of the experiment to assess the accuracy of different
supertree methods.

33

1. Randomly generate a model tree: In our simulation study, we generated a

model tree with n taxa using the program R8s with the default parameter setting.

This produced a model tree according to a stochastic Yule birth process conditional

on a fixed number of tips and a fixed time between the root of the tree and the

present (20) . Thus, the model tree fulfilled the desirable property of preserving a

constant age distribution of node times independent of the number of tips, allowing

comparisons between different tree sizes.

2. Generate data sets of DNA sequences, and construct source trees from

them: We used the program SEQ-GEN to generate a certain number, ns data

sets (data sets 1 to ns, in Figure 4.1) . Each data set contained nDNA-sequences of

length l generated according to a standard HKY85 Markov substitution model (21},

assuming equal base frequencies, atransition-transversion ratio of 2.0 and gamma

distributed rates with ashape-parameter of 0.5. We imposed partial overlap between

data sets by randomly deleting taxa in each of them (partial data sets 1 to ns, in

Figure 4.1) . A taxon was deleted by a fixed probability 25%, 50% or 75%.

For each data set, we constructed M P trees using PAUP * 4.0 (M P trees in Fig-

ure 4.1), and used their strict consensus as a source tree. As a result of the deletion

process our source trees varied in size according to a binomial probability distribu-

tion. According to the number of data sets and their sequences length, we specified

two experiments.

— firmed sequence length e~~eriment: We generated a large data set in which each

taxon has a fixed sequence length L. By partitioning the large data set, we

obtained small data sets in which each taxon has the same sequence length

l = L/ns (thus l declines as ns increases). From the small data sets, the source

trees were generated.

— ~roPortional sequence length experiment: Each of the ns data sets has a fixed

sequence length l and the total sequence length L is proportional to l and ns.

That is, L = ns * 1.

34

Note that in the model of character evolution described above, evolution is inde-

pendent and identical at each site and independent along each lineage, so it is valid

to generate one large data set and then partition it into smaller data sets.

3. Coding source trees: For a collection of source trees derived from the same model

tree, we generated its matrix representation.

4. Building MRP, M R F, and M C supertrees: For each matrix obtained from step

3, we used exact MRP, M RF, and M C algorithms to construct MRP, M RF, and the

M C supertrees respectively. MRP, and M RF supertrees are not necessarily unique.

Thus, we used the semi-strict consensus of MRP, and MRF supertrees respectively

for comparison against the model tree.

5. Assessing accuracy: To assess the accuracy of supertree methods, we calculated

the normalized MAST -distance of the semi-strict supertrees (semi-strict MRP, semi-

strict M RF, and M C supertree), against the model tree respectively. The normalized

MAST -distance of a supertree against the model tree is the number of the leaves of

their maximum agreement subtree (22) normalized by the number of leaves of the

supertree. The average normalized MAST-distance of all replicates (50) was used

to evaluate the MRP, M RF and M C algorithms.

4.3.2 Results and Analysis

Two factors, the number of taxa and the number of characters, are known to influence the

accuracy of all phylogenetic reconstruction methods, and supertree methods are no exception.

Figure 4.2 shows an overall decline in accuracy with increasing size of the source trees, probably

reflecting the increasing difficulty of estimating larger trees with the same number of characters

(19) . This effect gets larger as the degree of overlap between source trees declines (deletion

fraction increases) . Not surprisingly, overall accuracy increased with the number of characters

under both fixed and proportional sequence length models (results not shown) .

The 95% confidence intervals for the mean normalized MAST-distances (~2 standard er-

rors) were about 0.05 — 0.10 in all experiments. In almost all comparisons between methods

35

1.0

0.9

w
p O.T -

~ O.i

O.s

0.4

G 0.3
Z

0.2 -

0.1

0.0

--ff-- m-p
-a- rrHt
"~- m-c

e

t.o

0.9

o.i

c o.T
~ o.i a
~ o.s
~ 0.4 w

0.3
2

0.2

O.t

to u
t+Nnnt~t of Tana

14 t

0.0
8 /0 72 /4 ti

P~rttbK of Tara

to

0.9 t

0.8
i
~ 0.T

O.i
3 ~

0.4

E ~
Z

0.2

0.1

0.0
e to 12 t4 ti

t4~r of Taxa

Normalized MAST-distance between model tree

and MRP ("m-p"), MRF ("m-f") and MC ("m-c")

semistrict consensus supertree estimates of that

tree, as a function of size of source tree. Fixed se-

quence model with 1250 characters was used. Clock-

wise the figures represent deletion probabilities of

0.25, 0.50, 0.75 respectively.

Figure 4.2 variable taxa, and fixed sequence length experiment.

(Figures. 4.2-4.4) the performance of the MRF method was consistently better than MRP and

M C methods, but was rarely distinguishable from the other two with statistical confidence.

The efFect of number of source trees depended somewhat on whether the total number

of characters was fixed or proportional to the number of trees. When the number was fixed

(Figure. 4.3), accuracy was nearly independent of the number of source trees, possibly because

the benefits of combining more independent source trees were matched by lowered accuracy

of each source tree because of fewer characters. When the number of characters was allowed

to be proportional to the number of trees, such that each source tree had a constant number

(Figure 4.4), accuracy increased monotonically with the number of source trees, although

rather slowly.

Deletion probability controls the amount of taxonomic overlap between trees. When it is

high, source trees often contain very different subsets of taxa. Comparisons between columns in

Figures. 4.2-4.4 show consistently that increasing deletion probability (and hence decreasing

overlap) decreases accuracy. At a high deletion fraction of 0.75, for example, no method

performed better than aMAST-distance of 0.6 — 0.7, regardless of how many source trees were

36

to

0.9

o.e
a 0-T

4 6 • 10 12 14

Nwnber of Source Tees

is li

0.6

OS
,

= a4 w
~.

al~

o.o
2 4 6 i /0 12 14 /6 Si

lkxf~bsr of Sown T►ses
20

1A

0.9

0.!
w
p 0.T

~ 0.6 ~.
~ ~
v
•
'0 0.4 a

0„ ~
Z

0.2

0.1

0.0

-~--'~~.

4 6 i 10 12 /4 16 ti

~x,n+o« a souro. Tnes

Distance between model tree and MRP, MRF, MC su-

pertree estimates as a function of number of source

trees, ns. Fixed sequence length model was used with

12 taxa and a total of 1000 characters. See Figure 4.2

for abbreviations and deletion probabilities

Figure 4.3 Fixed sequence length, and fixed taxa experiment

added. Accuracy improves somewhat if the accuracy of the source trees is improved by adding

characters {data not shown), but deletion probability remains perhaps the most important

determinant of overall success of these supertree methods (as shown also by Bininda-Emonds

and Sanderson { 19) for the MRP method alone) .

4.4 Heuristic Solution Comparison Experiment

4.4.1 Materials and Methods

Since this simulation study involved a large amount of computational work, it required

many powerful computers and several software packages. We now describe our experimental

setup.

• Hardware: A 38 nodes Linux cluster in the University of California, Davis was used in

our simulation study. Each of those node consists of dual AMD Athlon(tm) 1400MHz

CPUs and 1GB memory.

• Software: Besides r8s, Seq-Gen, and PAUP, the packages described in previous section,

we also used the following programs:

37

,.o
0.9

O.i
_M
~ a7

F~ ~j
0.6 =~-

~ 0.5
0
w 0.4
E ~

z
a2

ai

ao

to

0.9

ai

c a~
r-
a ~ _

~ a4
E
i5 ~ z

0.2

-~-m-c -+-T-~
j

T 4 6 i 10 /2 14 16 ti

,.o
0.9

O.i
w
0 a7

0.6
~ ~

0.4
E ~

Z
0.2

a~

QO

-,~- "''p
 -~- m-~

_.~rn-C
i
i•

s i i ~o ~z a ti ~i
Nunber of Source Trees Number of Sous Tress

0.1

ao

~ i
-~ --m l I'
-a-~ ~.

2 4 i i ~o ~s u
Number of Sours Trees

ti u

so

Distance between model tree and MRP, MRF, MC

supertree estimates as a function of number of

source trees, ns. Proportional sequence length

model was used with 12 taxa and 100 characters

per source tree data matrix. See Figure 4.2 for

abbreviations and deletion probabilities.

Figure 4.4 Proportional sequence length, and fixed taxa experiment

1. HeuristicMFT: A program written by myself for constructing minimum flip trees

using uphill searching heuristics.

2. supertree(1}(23): A program written by Roderic Page. That implements Semple

and Steel's mincut algorithm and his Modified mincut algorithm.

• Methods: Two parameters: the number of source trees and the fraction of shared taxa

between source trees were studyed in this experiment. We repeated each parameter

combination 100 times. A single replicate of the simulation is shown in Figure 4.5 and

4.6. This is very similar to the methods used in exact solution comparison experiment.

The details of each step are described below. We skip the detailed description if the

procedure is identical to that in the exact simulation experiment.

1. Randomly generate a model tree

2. Generate data sets of DNA sequences, and construct source trees and

total evidence trees from them: This is the same as step 2 in exact simulation

experiment except that we added building total evidence trees and changed the

scheme to control the fraction of shared taxa among source trees.

38

generate
I
model tree

t

model tree

generate DN
I
A sequences

t

data set 1 data set 2 data set ns

randomly delete taxa

t

randomly delete taxa randomly delete taxa

total data set partial
data set 1

partial
data set 2

partial
data set ns

construct MP trees construct MP trees construct MP trees

MP trees MP trees MP trees

strict consensus strict consensus strict co
l
nsensus

t
source tree soun~ tree source tree

1 2 ns construct MP trees

total evidence
trees

matrix
representation

MRP algorithm
i

MRP supertrees

coding

MRF algorithm

collection of
soun~ trees

MRF supertrees

MC algorithm--

MC supertree

MMC algorithm

MMC supertree

Figure 4.5 Flowchart of the heuristics solution comparison experiment

After creating those ns small data sets, we merge all of them into a big total data

set by concatenating the DNA sequences in each data set. We built MP trees, called

total evidence trees, from the total data set using PAUP's heuristic search. The

parameters used for heuristic search in PAUP 4.0 are 5random-addition-sequence

addiction replications, TBR branch-swapping, and 5 equivalent parsimony trees

kept .

We imposed partial overlap between data sets by randomly deleting a certain

number of taxa in each of them (partial data sets 1 to ns, in Figure 4.5}. A fixed

39

probability 25%, 50% or 75% of taxa in each data set was deleted.

3. Coding source trees

4. Building MRP, M RF, MC, and M MC supertrees: We used uphill searching

heuristics to build MRP and M R F supertrees instead of using bunch-and-bound

algorithm, as in the exact solution comparison experiment. The parameters for

building MRP tree are the same as in constructing total evidence trees. Constructing

M RF supertrees used the same parameters, except the branch-swapping was SPR.

We construct M C supertree by Roderic's implementation and added M M C method

in this study.

5. Assessing accuracy: To assess the accuracy of supertree methods, we need to

consider the degree to which the supertree agrees with the source trees and the

supertree recovers the true tree. It is also important to know how well the source

trees reflect the true tree. Otherwise, the measurement of the supertree and the true

tree becomes meaningless if the source trees does not contain any information of the

true tree. As shown in Figure 4.6, we used average triplet fit and average normalized

MAST as metrics to measure the degree of source trees reflect the true tree and

supertree recovers the information in the source trees. How good a supertree agrees

with the true tree is measured by average normalized MAST.

4.4.2 Results and Analysis

To assess the accuracy of different supertree methods by measuring how well a supertree

reflects the true tree in the simulation study, the quality of source trees plays an very important

roles. The result shows that the quality of MRP, M R F, M C, and M M C-supertrees measured by

average MAST fit or average triplet fit were waved according to the quality of source trees in

both fixed sequence length model (Figure 4.7) and proportional model(Figure 4.8. Figure 4.7

and 4.8 also show that the metrics average MAST fit and average triplet fit are coincident in

measuring how well supertrees incorporated the information in the source trees.

40

model tree

source trees

 T
(a) average triplet fit
8 average MAST fit

(MRP-, MRF-, MC-,
MMC-) supertrees

(~) average triplet fit
8 average MAST fit (Y) average MAST fit

total evidence trees

Figure 4.6 Tree comparison criteria used in heuristic solution comparison
experiment. (a) and (/3) was used to evaluate how well source
trees incorporate the true tree and how well supertrees recov-
ering information in source trees respectively. (~y) was used to
measure the degree of supertrees reflecting the true tree.

The degree of overlap between source trees is an important factor to construct supertree.

Figure 4.9 show that when the degree of overlap between source trees declines (deletion fraction

increases), the MRF, MRP, M C, and MMC supertrees become worse. While the total evidence

tree is not affected by this factor since it construed from the total data set not direct or indirect

from the source trees.

From Figure 4.7, 4.8, and 4.9, we can see that MRF method is slightly better than MRP

method, especially when the deletion probability is high. In other words, M RF is more accurate

when the shared taxa among source trees is low. However, the performance of MRF and MRP

are not distinguishable as shown in exact solution comparison experiment. Those figures also

show that the metric of supertree covering source trees is consistent to the metric of supertree

reflecting true tree when the source trees are "good" or source trees incorporate the true tree

well. In real supertree reconstruction, we don't know the true tree. However, we can use the

metric of supertree covering source trees to measure how well the supertree is.

Figure 4.9 shows that the accuracy of MRF or MRP supertrees are closed to that of the

41

total evidence trees when the source size and the number of source trees is not too small.

Thus, estimates of supertree can be obtained with reasonably high accuracy from collections

of fragmentary smaller trees but not extremely small with reasonable number of source trees.

42

e

~a

a

as
4 s • ~0 12 u

Mw~iv M •ww Tnw

N~M~Mr d swp Taw

~~ ~~ m

OS

0.4 -
z ~o a ~+ ~s u

MrwY~r d •Mnp TINS

s 4 • ~o t2
IM~i~r M iwa Trw

2 4 6 8 10 12

M~wY~r d !ww TnM

2 4 6 d 10 12

Nu~Mr of ~ww hw

u

14

14

Figure 4.7 Fixed sequence model with 1,000 characters: average MAST f it
(first column) and triplet f it (second column) of supertrees and
source trees. The figures from top to down represents deletion
probabilities of 0.25, 0.50,. and 0.75 respectively.

~s

16

16

11

1e

1e

m

20

43

~ 4~
a•

os

a~
• w u u u u

IM~~Mr d •wa T~

IIrYr M •w~ Taw

• ~o u u

Nw~Mr d •wM T~

+• +•

o.a

a.t

0.7

o.t

o.s

O.t

0.7

0.6

0.5

2

1U.M.. d iwrw 7w.r

~ t e 1a 12 14

w.~..r ~.... Tom..
16 1t

~-r.w ~o-[.w...~ ~-~wr
tw -s~rc erlt

2 4 6 t 10 12 14 it 1t

Mawr. ~R Mrw Tww

Figure 4.8 Proportional sequence model with a total of 20,000 characters:
average MAST f it (first column) and triplet f it (second col-
umn) of supertrees and source trees. The figures from top to
down represents deletion probabilities of 0.25, 0.50, and 0.75
respectively.

44

o,

E

a.

a4

•~

OA

o.

4 • /o a /4 /s la

Mwrr rf Mues Twss

m

~` 0.7

o.s ?

os

0.4

o.a

os

0.f

0.t

~ 0.7

at

< 0.S

a4

0.3

02
2

~srw..~ ~-w~ trw -o-~c -e-~re

2 • 10 12 /4 td /t

IMssYsr d trier Tars

• to u
MrMw r/ iswp Tors

u Is u

20

m

~ ai

a•

< a:

0.f

a•

~ a7

as

~~

a4

as

~ -~

4 • 10 12 14 It 1•

IMrsr r1 •a/w Trrrr

-QHr1~~ -~s~1~1► -~►I~II ~-~C -~s-1~1e

'~~~

• ro a 14 Is 1•

Nrsiw d twMer Tarr

f0 t2 /4

INwisr M ssenr Twrs

Figure 4.9 Average MAST f it of of supertrees and true tree: The figures of
fixed sequence length model is listed in the first column and pro-
portional model in the second column. Figures in both columns
from top to down represents deletion probabilities of 0.25, 0.50,
and 0.75 respectively.

t{ /a

m

m

45

CHAPTER 5. CONCLUSION AND FUTURE STUDY

Biologists interested in constructing the evolutionary history of life are faced with a large

collection of small phylogenetic trees many of which overlap in their label sets. Hence, strong

interest has developed in recent years regarding development of methods for constructing su-

pertrees, which combine information from collections of individual trees (24). Disagreement

about the precise definition of a supertree, meaning what properties it should exhibit and

what information from the source trees it should attempt to preserve (12), has led to a variety

of strategies for supertree construction. One key issue is how to resolve the often conflicting

information about relationships among the source trees.

In this paper we have outlined one strategy for resolving this conflict between source trees.

Starting with the combined matrix of the matrix representations of all source trees, it defines an

optimization problem based on minimizing the number of changes between 0 and 1-flips-needed

to convert this combined matrix into a perfect phylogeny--that is, one perfectly consistent with

a single supertree. This problem is N~-complete, as is the MRP parsimony version of this

problem, which is used by most biologists working with real data.

Polynomial time algorithms are known for other kinds of supertree construction, such as

Semple and Steel's M C and Page's M M C algorithms, but our experimental studies suggest

that MRF and MRP usually outperforms M C and M M C in both accurately reconstructing

the correct supertree and heuristic supertrees. The exact solution experiment is limited to

relatively small trees (< 16 taxa), so that an exact MRF and MRP algorithm could be used.

The heuristic solution experiment is limit on 100 taxa trees since MRF is pretty slow and many

other computational work.

Experiments showed that accuracy of MRF is affected by many of the same factors influ-

46

encing other supertree strategies (e.g., (19)) . Accuracy generally improves with the number of

source trees included, with the degree of overlap in their label sets, and with the accuracy of

the source trees themselves.

It is very important to measure how well the supertree that we constructed. Does it reflects

the "true" tree? Our simulation studies show that we can use the quality of the supertree fitting

source trees to measure how well the accuracy of supertree recovering the "true" tree.

These performance analyses are encouraging, because they suggest that estimates of a su-

pertree can be obtained with reasonably high accuracy from collections of fragmentary smaller

trees. MRF is one method for extracting the signal from the ever present noise contained

in these collections of trees, and it apparently is relatively successful compared to available

methods. However, the computational time for M RF is much slower than M RP.

A fast heuristic of MRF is needed for future study. In addition, the accuracy of supertree

is highly related to the quality of source trees. How to discover the "bad" trees among the

source trees using statistics is also need to study.

47

BIBLIOGRAPHY

[1] R.D.M. Page (2002). Modified mincut supertrees. Lecture Notes in Computer Science,

~4 5~, 537-551

[2] J . Felsenstein (1981) . Evolutionary trees from gene frequencies and quantitative charac-

ters: finding maximum likelihood estimates. Evolution, 35, 1229-1242.

[3] E. Adams III (1986) . N-trees as nestings: complexity, similarity and consensus. Journal

of Classification, ~, 299-317.

[4] G.F. Estabrook, C.S. Johnson and F.R. McMorris (1975). An idealized concept of the true

cladistic character. Mathematical Biosciences, ,2~, 263-272.

[5] C. Korostensky, G. H. Gonnet (2000) . Using traveling salesman problem algorithms for

evolutionary tree construction. Bioinformatics, 16(2), 101-103.

[6] I. Peer , R. Shamir, and R. Sharan (2000). Incomplete directed perfect phylogeny. Lecture

Notes in Computer Science, 1848, 143-153.

[7] M. A. Steel (1992). The complexity of reconstructing trees from qualitative characters and

subtrees. Journal of Classification, 9, 91-116.

[8] S. Kannan and T. Warnow (1997). A fast algorithm for the computation and enumeration

of perfect phylogenies. SIAM Journal on Computing, 26(6), 1749-1763.

[9] W.H.E. Day, and D. Sankoff (1986). Computational Complexity of Inferring Phylogenies

by Compatibility. Systematic Zoology, ~5 (2}, 224-229.

48

[10] J. Felsenstein (1982) . Numerical methods for inferring evolutionary trees. Quarterly Re-

view of Biology, 57, 379-404.

[11] M. Constantinescu and D. Sankoff (1995). An efficient algorithm for supertrees. Journal

of Classification, 1,2, 101-112.

[12] C. Semple, M. Steel(2000). A supertree method for rooted trees. Discrete Applied Math-

ematics, 105, 147-158.

[13] A.V. Aho, S. Yehoshua, T.G. Szymanske, J.D. Ullman (1981). Inferring a tree from lowest

common ancestors with an application to the optimization of relational expressions. SIAM

Journal on Computing, 10 (3), 405-421.

[14] M. R. Carey and D. S. Johnson (1979). Computers and Intractability: A guide to the

theory of NP-completeness. New York: W.H. Freeman.

[15] P. Kearney, 1~1. Li, J. Tsang, and T. Jiang (1999) . Recovering branches on the tree of life:

an approximation algorithm. SODA, 537-5465.

[16] M. J. Sanderson (2001). r8s software. http://ginger.ucdavis.edu/r8s/r8s.html (date ac-

cessed :Dec. 11, 2001}.

[17] A. Rambaut and N. C. Crassly (1997). Seq-Gen: an application for the Monte-Carlo

simulation of DNA sequence evolution along phylogenetic trees, Comput. Appl. Biosci.,

13, 235-238.

[18] D. L. Swofford (1999). PA UP*: Phylogenetic analysis using parsimony (*and other meth-

ods), Version .~.

[19] O. R. P. Bininda-Emonds, and M. J. Sanderson (2001). An assessment of the accuracy

of MRP supertree construction, Systematic Biology, 50, 565-579.

[20] S. M. Ross (1996). Stochastic processes. New York: Wiley Press.

49

[21] D. L. Swofford, G. J. Olsen, P. J. Wa.ddel, and D. ~1 Hillis (1996). Phylogenetic inference.

In (D. M. Hillis, C. Moritz, and B. h. Mable, eds.), Molecular Systematics(,2nd ed.), 407-

514. Sinauer Associates, inc., Sunderland, Ma.

[22] M. Farach, T. Przytycka, and M. Thorup (1995) . Agreement of many bounded degree

evolutionary trees. Information Processing Letters, 55,279-301.

[23~] R.D.M. Page (2002). Supertree Softulare. http://darwin.zoology.gla.ac.uk/ rpage/supertree

(date accessed :Oct. 8, 2002)

[24] M. J. Sanderson, A. Purvis, and C. Henze (1998) . Phylogenetic supertrees: assembling

the trees of life. Trends Ecol. Evol., 13, 105-109.

50

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

David Fernandez-Baca for his guidance, patience and support throughout this research and

the writing of this thesis. His insights and words of encouragement have often inspired me

and renewed my hopes for completing my graduate education. I would also like to thank my

committee members for their efforts and contributions to this work: Dr. Oliver Eulenstein

and Dr. Gavin Naylor. I am also grateful the for guidance and many advice given by Dr. Mike

Sanderson and Dr. John G Burleigh. Thanks them for helping me to design experiment and

analyze the results. I would additionally like to thank my of~icemates Wen-Chiek Chang and

Justin Schonfeld for their many helpful discussions on research.

