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CHAPTER 1. INTRODUCTION 

This thesis is about a new method for evolutionary tree inference and phylogenetic supertree 

construction. A phylogenetic tree or simply phylogeny represents the evolutionary history of a 

set of species. It can be used to determine the genetic connections and relationships between 

species. In recent years the explosive growth in phylogenetic trees on difFerent small sets of 

species, systematic biologists have become interested in assembling those trees in one supertree 

called the "tree of life" which represents evolutionary history among all living things(1) . 

1.1 Basic Concepts and Methods 

In this section, I will introduce some basic terminology, theorems, and notation that are 

used in this thesis. 

1.1.1 phylogenetic Trees 

A tree is a acyclic, connected graph which consists of a set of nodes(vertices) connected by 

a set of branches (edges) . The degree of a vertex equals to the number of edges to which it is 

connected. Let M = {ml , . . . , m s } be a taxon set. A phylogenetic tree T over M is a tree with 

exactly s leaves, each of which is labelled with a distinct element of M. Such a tree is used 

to represent biological evolutionary relationships among the taxon set M. A phylogenetic tree 

can be rooted or unrooted. A rooted tree is a tree in which one of the nodes is stipulated to be 

the root, from which a unique path leading to every other node. An unrooted tree, as could be 

imagined, has no pre-determined root and therefore induces no hierarchy. 

Suppose T = (V, E) is a tree. A vertex v E V is internal if its degree is greater than one; 

otherwise, it is a leaf. An edge e = (u, v) E E is internal if both u and v are internal vertices; 
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otherwise we say e is an external edge. We write .G (T) to denote the leaf set of tree T . A 

vertex a is a descendent of a vertex b if the path from a to the root passes through b. Then b is 

called the ancestor of a. For a vertex v E V , the set containing all leaves that are descendants 

of v is called a cluster. The set M is always a cluster of T; every other cluster is said to be 

proper. 

A rooted tree is fully resolved if its root has degree two and all other internal nodes have 

degree three. Any binary tree is fully resolved. A triplet is a tree with three leaves. There are 

two types of triplets: resolved and unresolved. In Figure 1.1, Tree 1.1(a) is an unresolved triplet, 

it contains no internal branches and is thus uninformative about cladistic relationships. Tree 

1.1(b) is a resolved triplet which contains one internal branch and conveys cladistic information. 

m, m2

(a) 

m3 m, m2

(b) 

Figure 1.1 (a) an unresolved triplet and (b) a resolved triplet 

1.1.2 Phylogenetic Inference 

m3

Under the natural assumption, species with similar characters(features) are genetically 

close. Thus, the basic idea of phylogenetic inference is to compare specific characters of the 

species. Phylogenetic analysis was originally developed by biological systematists who wanted 

to reconstruct evolutionary genealogies of species based on morphological similarities. The 

German entomologist Willi Hennig was the first author to propose an explicit method of 

phylogenetic analysis, and the publication of his work in English quickly led to the widespread 

use of his approach. Classic phylogenetic inference dealt mainly with physical, or morphological 

features -size, color, number of legs, etc. Modern phylogeny uses information directly from 

genetic material -mainly DNA or protein sequences. The characters used are usually DNA 
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or protein sites,where a site is a single position in the sequence after alignment with several 

such sequences. Since phylogenetic trees play an important role in the study of molecular 

evolution, determining the evolutionary history of species is one of the fundamental tasks of 

computational biology. 

The construction of optimal evolutionary trees is a very challenging problem, many different 

instances of this problem have been defined and studied and most of them are N7~-complete. 

Many of the popular phylogenetic inference methods attempt to solve N1~-hard optimization 

problems, such as maximum parsimony(2), maximum character compatibility(3), and maxi-

mum likelihood which has not been proved but behaves as it is(4). Polynomial time methods, 

such as neighbor-joining, also exist. Even though these problems have been studied extensively, 

phylogenetic tree construction is still an open problem (5) . 

1.1.3 Character Compatibility and phylogenetic Inference 

Given a set of species M, a character over 1~1 is a partition of M. A partial character of 

M is a partition of a subset of 111. The elements of a character are called states. A character 

state tree is a tree whose node is labelled by a distinct element of that character states. A 

character is directed if its character state tree is rooted; otherwise, it's .undirected. A character 

with exact two states is a bipartition C = {Co, C. } of a subset MC of M, called a binary 

character. The sets Co and C. are, respectively, the 0-state and the 1-state of C. If MC = M, 

C is said to be complete, otherwise, it is incomplete. The set M -- Mc is called the unl~nown 

state or ?-state and is denoted by C~. A complete character C' is a completion of C if Co C Co 

and C. C C;. In the rest part of this thesis, without special specification, we will simply call 

rooted phylogenetic trees as trees, and binary directed characters as characters. 

In what follows (Figure 1.2 (a) and (b)), C = (Ci) 1 denotes a tuple of characters over M. 

A completion of ~ is a tuple ~' _ (C'i )z 1 of complete characters such that, for i E { 1, . . . , r}, 

C' is a completion of CZ. The characters ~ over M can be represented by a {0, 1, ?} s x r 

matrix ,~i. _ [a2~] where a2~ is 0, 1, or ?, depending on whether mi is in Cho, C~., or C~?. A 

completion of .A. is a binary matrix B = [b2, ] where aid E { b2~ , ? } for all i, j . Thus, each column 
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of B represents the completion of a character of ~ and B represents a completion of ~. 

Cl C2 C3 C4 

mJ 1 1 0 0 
m2 0 1 0 1 
m3 1 ? 0 0 
m4 0 0 1 ? 
ms ? 0 1 0 

(a) 

CI C2 C3 C4
ml 1 1 0 0 
m2 0 1 0 1 
m3 1 1 0 0 
m4 0 0 1 0 
ms 0 0 1 0 

~) 

CZ

CI

ml m.~ m2 m4 ms 

(c) 

Figure 1.2 (a) a tuple of characters ~ _ {C1, C2, C3, C4} over 
1t~1 = {ml, m2, m3, m4, m5} is denoted by a 5 x 4 matrix ,A.. 
(b) A binary matrix B represents the completion of .A and the 
set of characters ~. (c) A tree T~ is consistent with the set of 
characters ~ where each Cj. induces a cluster in T~. 

Definition 1 Two characters Cl and CZ are said to be pairwise compatible, written 

as PC(Cl , C2), if there exists a tree T such that both CZ. and C2. induce a cluster. 

Two binary characters are incompatible if and only if all three possible combinations of 

states (0-1; 1-0; 1-1) are present in the characters. 

Definition 2 A tuple of characters ~ is said to be compatible if and only if there is a 

phylogenetic tree T~ in which every character in ~ its Cj. induces a cluster. The tree T~ 

is said to consistent with the character set ~. 

As shown in figure 1.2 (c) the tree T~ is consistent with the set of characters ~ with each 

Cj. induces a cluster in T~. The following basic result is proved by Estabrook et al (4). 

Theorem 1 A tuple ~ of complete characters is compatible, if and only if for every pair 

Note that this theorem does not hold for incomplete characters. Here is an example: 

the matrix is taken from (6),whose rows represent species and whose columns correspond to 

characters. Every pair of characters is compatible, but the whole set is not since for the 
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character Cl , if the ? is set to 0, then it is incompatible with C2; and incompatible with C3 if 

the ?set to 1. 

(~ 1 C2 C3
ml 1 0 0 
m2 1 1 0 
m3 ? 1 1 
m4 0 ? 1 

Figure 1.3 A set of pairwise compatible incomplete characters, but the 
whole set is not compatible 

Definition 3 (Perfect Phylogeny Problem) 

Given: A character tuple C over the tc~on set M. 

Questions: Does there exist a phylogenetic tree T~ consistent to C ? If so, build one. 

The tree T~ is called perfect phylogeny for the set of characters ~ which has the property that 

for each state of a character, the set of all nodes that have that state induces a subtree. The 

general perfect phylogeny problem is NP-hard(7). When considering the number of possible 

states per character as a parameter, the problem is fixed parameter tractable(8). For binary 

characters, having only two states for each character, perfect phylogeny problem is linear time 

solvable (6). When one of character in ~ has ?-state, this problem is call Incomplete Perfect 

Phylogeny Problem. 

When no perfect phylogenies possible for the full set of characters, (the most common case 

in real phylogenetic analysis), we need some ways of choosing among them a best estimate. 

For example we may consider a subset of characters for which a perfect phylogeny exist. 

Definition 4 (Maximum Character Compatibility Problem) 

Given: A character tuple C over the ta~on set M. 

Questions: Find the largest subset ~' of ~ such that a phylogenetic tree T~ can be inferred 

from C'. 
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Maximum character compatibility problem is .JV~-hard(9). The proof is based on a poly-

nomial reduction- from the clique problem. 

Several factors can cause incompatibility among characters. For example, errors in data, 

loss of function during evolution, convergent evolution, etc. Convergent evolution is a trait 

developed independently by two evolutionary paths (e.g. wings in birds and bats} . If only error 

in data causes lack of perfect phylogeny, we are interested in building a perfect phylogeny with 

minimum changes in the input data. For binary characters, assuming the states are 0 and 1, 

then the changes or error corrections, simply called flips, are either 0 --~ 1 or 1 —~ 0. Figure 

1.4 (a) shows a tuple of characters C = {Cl, C2, C3, C4} over ~7 = {ml, m2, m3, m4, m5}. 

Character Cl is incompatible with C2. So are C3 and C4. After two flips, the set of characters 

(Figure 1.4(b)) is compatible and thus a perfect phylogeny (Figure 1.4(c)) can be constructed 

and called such phylogeny as minimum flip tree. This problem is going to be described formally 

in chapter 2. 

C, CZ C.~ C4
ml 1 1 0 0 
mz 0 1 0 1 
m3 1 0 0 0 
m4 ? 0 1 1 
ms 0 0 1 0 

(a) 

1.1.4 Parsimony 

CI C2 C.~ C4
ml 1 1 0 0 
m2 0 1 0 1 
m3 1 1 0 0 
m4 ? 0 1 ~ 
ms 0 0 1 0 

ro~ 

CI

~1 

C2

Figure 1.4 Flip to achieve perfect phylogeny 

m3 ~2 ~4 ~S 

(~) 

Parsimony is one of the most popular methods for phylogenetic inference. In order to define 

this method, we begin with the following definition. 

The Hamming distance between two vectors x and y of same length is ~ {i : ~i ~ y2 } ( and 

is denoted by H(x, y). The parsimony length of a tree T = (V, E) in which each node v E V is 

labelled by a sequence is the sum of the Hamming distance of the sequences labelling endpoints 



of the edges in the tree, i.e., ~(a,b)EE I~(a, b). 

Definition 5 (Maximum Parsimony Problem) 

Given: A set of sequences S with each has r sites. 

Questions: Find a tree leaf labelled by S and assigned sequences for the internal nodes of 

minimum parsimony length. 

Maximum parsimony or simply parsimony chooses that phylogeny on which the characters 

can evolve with the fewest evolutionary events. Unfortunately, this is an J~P-hard problem, 

even when the sequences are binary(10) . 

1.2 Review of Supertree Reconstruction Methods 

The trees that will be used to construct the supertree are the source trees. For the purposes 

of this thesis, all trees will be considered rooted. Species found on only one source tree are 

unique. Those found on two or more are shared. Any tree containing all the species found 

among the source trees is a supertree. If all the input trees have same leaves, the supertree is 

usually called consensus tree. 

A rooted phylogenetic tree T' is said to be obtained from T by contraction if T' can be 

obtained from T by contracting a sequence of internal edges. A rooted. phylogenetic tree T 

displays a rooted phylogenetic tree t if t can be obtained from an induced subtree of T by 

contraction (or, equivalently, t is an induced subtree of a contraction of T) . 

Definition 6 (Tree Compatibility Problem) 

Given: A set of trees ?". 

Questions: Does there exist a phylogenetic tree T that displays every tree t E T ?. 

Unfortunately, the general version of determining whether a set of source trees are com-

patible is NP-complete (7) . However, if the source trees are rooted then it is polynomial time 

solvable (7) (11) . 
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1.2.1 Phylogenetic Trees and their Binary Character Coding 

Let T be a phylogenetic tree over a subset of ltf~ and let X be anon-trivial cluster in 

T. Vt~e ignore the trivial clusters that are useless in supertree reconstruction. The character 

representation of X is the incomplete binary character C over M, where C. contains all taxa 

in the cluster, Co = .G (~') — C. and C? = M — ~G (T) . Let X 1, ... , X~ be the non-trivial 

clusters in T. The character representation of T is the tuple ~T = (Cl, . . . , Ck), where, for 

i E { 1, . . . ,1~}, Ci is the character representation of Xi. The matrix representation of T is the 

matrix representation of ~~. 

Let ~" _ {Ti }i_ 1 be a set of phylogenetic trees over subsets of M. The character represen-

tation of ~" is the character tuple 

i i t t 

where, for i E {1, ... , l}, (CI, . . . , C~i ) is the character representation of Ti. The matrix 

representation of ~" is the matrix A~ obtained by concatenating the matrix representations of 

Tl , ... , T,.. A set of trees ~" _ {Tl , T2, T3 } and its matrix representation is shown in Figure 1.5. 

a b c d a 

~'i T2 T3

~1 c 2 ~' 1 c 2 ~' 1 ~' 2 
a 1 1 1 1 1 1 
b 1 1 0 0 1 1 
c 0 1 1 1 0 1 
d 0 0 ? ? ? ? 
e ? ? 0 1 0 0 

e 

Figure 1.5 A collection of trees and its matrix representation 
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1.2.2 Matrix Representation with Parsimony(MRP} and Matrix Representation 

with Flip(MRF) 

When the source trees are compatible, they can be included in a single full consistent 

supertree. In fact, source trees conflict is very common during tree assembly. Thus the 

relationships between certain shared species must be taken into account during tree building 

since they cause incompatible. One of the common supertree methods is to re-code trees by 

incomplete binary characters and then apply phylogenetic inference. The most widely used 

supertree method, MRP,is based on this idea. Unfortunately, this method is JV~-hard due 

to finding maximum parsimonious tree. M RF does the same way as M RP except that the 

objective of MRF is to find the minimum flip trees instead of the most parsimonious trees. 

1.2.3 MinCut(MC) and Modified MinCut(MMC} Algorithm 

The mincut supertree algorithm(12) can construct a rooted supertree for a set of rooted 

input trees in polynomial time. The M C algorithm is derived from the Algorithm 1 described 

by Aho et al(13) which determines the the rooted tree compatibility problem in polynomial 

time. That is, whether there is a supertree with which each input tree is compatible can be 

answered in polynomial time. The Aho's algorithm construct a graph ~=(V, .E), where the 

vertices V are species, a edge (a, b) E E if and only if species a and b are in a proper cluster 

in at least one of the input trees. Let T be a family of rooted phylogenies on subsets of M. 

Given a set X C M, T ~ X denotes {T (X : T E T}. 

Semple and Steel modified step 8 in Algorithm 1 so that it always returns a tree. The idea 

is when only one component occurs in step 8 M C algorithm would find a min cut set in ?-1 to 

break it up into several connected components. Thus, the computation can be continued until 

return a tree. M C algorithm also assigns weight to the graph ?-~ and might collapse some edges 

in ?-~ in order to preserve strict cluster nestings which appears in the source trees. The cut set is 

helpful to solve conflict and preserve some desirable nesting property in the source trees. That 

is, any nesting cluster in all the source trees will appear in the mincut supertree. However, 

the original algorithm has two drawbacks: (i) it is not efficient in calculating all the minimum 
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Algorithm 1 Rooted'I~eeCompatibility( ~", M ) 
D T is a set of input(source) trees over species M = {ml , . . . , ms} 

1: if size[M~=1 then 
2: return a single node labelled by ml
3: end if 
4: if size [M] =2 then 
5: return a tree with two taxa labelled by ml and m2. 
6: end if 
7: Otherwise,construct graph ?-~ as described 
8: if ?-~ has only one connected component then 
9: return nil 

~0: end if 
11: for each component 1112 of ~l do 
12: T2 ~— RootedTreeCompatibili~y(T~M2, M2) 
13: if T2 =nil then 
14: return nil 
15: end if 
16: end for 
17: construct a new tree T by connecting the roots of trees T2 to a new root . 
18: return T 

cut set of the graph; (ii) it is too sensitive to the size of the input tree and fails to include 

the compatible clusters in the supertree. Page's modified mincut approach (1) improved M C 

algorithm by avoiding these two drawbacks. 

1.3 Outline 

Chapter 2, Complexity of the Minimum Flip Problem, commences with the Minimum 

Flips Problem(MFP) and proceeds with a study of the complexity of the problem. 

Chapter 3, Algorithms for Solving the Minimum Flip Problem, deals with the issue 

of solving minimum flips problem. Since MFP is NP-hard, it's impossible to find an efficient 

algorithm unless P=NP. Abranch-and-bound algorithm is given in this chapter to solve small 

problem (the number of taxa is less than 16), and a uphill searching heuristic is discussed for 

large input trees. 

Chapter 4, Simulation Studies on supertree Construction Methods, studies the 

performance of different methods in supertree construction using simulation data. Those al-
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gorithms include: ~~Tatrix Representation with Parsimony, Matrix Representation with Flip, 

Semple and Steel's MinCutSupertree, and Page's Modified mincut suptertree algorithms. 

The last chapter is the Conclusion and Future Study. 
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CHAPTER 2. COMPLEXITY OF THE MINIMUM FLIP PROBLEM 

2.1 Introduction 

We have introduced the goal and some basic concepts of phylogenetic inference in the 

previous chapter. In this chapter we will introduce our new tree inference method called 

minimum flip method which is base on smallest changes on input data to achieve perfect 

phylogenies. Its application is used in supertree construction and the results of simulation 

study is reported in chapter 4. 

2.2 Flip and the Minimum Flip Problem 

In this section, we will discuss some relevant terminology and notations. M is a finite set 

of taxa, f~(N} denotes the power set of a set 1V. We define ~~,~ to be the set of all characters 

over the set M, ~" is a collection of phylogenetic trees over the set M . 

Definition 7 For a character C E C and a set F E f~(M}, define the flip-operation O as 

follows, 

C'=CaF:< >Co=CoOF n C;=C.QF 

The set F is called a f-lip for the character C, or simply a flip, we refer only when the 

character C is obvious. A f lip F is called a d-flip if F C C., and an i-flip if F C C. _ ~. 

The flip operator is generalized to character tuples C = (Ci) 1 as follows. Let ~' _ (.FZ) i 

be a flip tuple. Then C' = C d ~' is the character tuple (C'} 1 where, for i E {1, . . . , r}, 

C2 = Ci O Fi . The size of ~' is defined as s (~") _ ~ 1 ~ F Z ~ . 
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Flipping can be viewed as an operation on the matrix representation of character tuples. 

Suppose that A is the matrix representation of C and that ~' is a flip tuple. A f dip for entry aid

such that a2~ ~? is the operation of replacing a2~ by its complement. The matrix representation 

of ~ D ~' is the matrix obtained by, for all i, j, flipping entry air if mi E F~ . 

The minimum flip problem is, given a character tuple ~, find aminimum-size flip tuple 

~" such that C' = C ~ ~' is compatible. Figure 2.1 shows a matrix representing a collection 

of incompatible characters, a flip tuple ~', the matrix of compatible characters obtained by 

flipping according to ~'. The number of flip s(~') in this example is 2. Note that the number 

of changes of flipping the character C to the character C' is the .Hamming distance between C 

and C' . Thus, in the following example, s (~') = I~ (Cl , Ci) -+- H (G'3 , C3) = 2 . 

C 1 C2 C3 C4
mi 1 1 1 1 
m2 1 0 0 0 
m3 0 1 0 0 
m4 0 0 1 0 
m5 1 1 0 1 

Ci C2 C3 C4 
ml 1 1 1 1 
m2 1 0 0 0 
m3 1 1 0 0 
m4 0 0 0 0 
m5 1 1 0 1 

Figure 2.1 Example of a flip tuple ~', and s(~') = 2. 

Definition 8 (Flip Problem (FP) -the decision version of minimum flip problem) 

Given: A character tuple C E CM where r E IY and a number ~ E l~. 

Questions: Does there exist a flip tuple ~" E ~(1V1)'' where s(~") < 1~, such that ~ D ~' is 

compatible ? 

2.3 Complexity of the Minimum Flip Problem 

In this section we show that FP is N~-complete if the input is constrained to complete 

characters. From this follows directly the N~-completeness for (partial) characters. All char-

acters in this section are complete characters in ~M. The proofs shown in this subsetcion use 

only set theoretical definitions of characters. 
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Lemma 2 Let ~ _ (CI , C2) E ~~, such that I CI. I = I C2, I = 3 and I CI, n C2~ (< l . If 

~' _ (FI , F Z) E t~(M)2 is a flip-tuple, such that IFI I = 0, IFZI = 1, and ~ d ~' _ (Ci, C2) is 

compatible, then Ci, n C2. = Q~. 

Proof. Let F2 = { e } . Since Ci and C2 are compatible, it follows from Theorem 1 that 

either Cl, ~ C2, , or Ci, C C2. , or Ci, n C2. = Q~. We have C1 = CI O Fl = CI , since I FI I = 0. 

It follows that either CI, ~ C2~ , or CI. C C2~ , or CI. n C2. _ ~. We will prove the lemma by 

showing that the first two cases are impossible. 

~C'2~ ~ E {2, 4}, since ~C2~ ~ _ ~C2~ D{e}~ and ~C2~ ~ = 3. 

• Case C2. C CI.: It follows that I C2. I < I CI. I = 3. Thus, I C2. I = 2 and further, { e } is 

a d-flip. Since { e} is a d-flip we have C2. = C2, — { e} where e E C2.. It follows that 

C2. — {e} C CI, . Hence, ICI, n C2, (= IC2, — {e} I = 2, which is in contradiction to 

ICI, n C2. I <_ 1. 

• Case CI, C C2.: It follows that 3 = I CI. i < I C2. (. Thus, I C2. (= 4 and further {e} 

is an i-flip. Since {e} is an i-flip we have C2. = C2. U {e} where e ~ C2, . It follows 

that CI, C C2. U { e } . So I CI, n C2. (> I CI, I — 1 = 2, which is in contradiction to 

ICI,nC2.I <1. 

0 

Lemma 3 Let ~ _ (CI , . . . , Cr ) E ~M for some r E I~, such that I Ci. I = 3, and I Ci, n C~, I < 1 

for any i, j E {l, . . . , r} where i ~ j. If there exists a flip tuple ~' _ (FI, . . . , Fr ) E A(M)T, 
such that IFiI = 1 for any i E {1, . . . , r}, and (Ci, . . . , CT) _ ~,~ ~` is compatible, then 

Proof. A flip in ~' is either a d-flip or an i-flip, since I Fi (= 1 for any i ~ { 1, . . . , r} . W.l.o.g. 

we assume that ~'d = (FI , . . . Fl) consists only of d-flips and ~"i = (Fl+ 1, . . . , F,,) only of i-flips, 

for some l E { 0, . . . , r } . Thus 

(C2~~=2foriE{1, . . . ,1} and ~C'~~=4foriE{l-~-1, . . . ,r } 
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Claim 1: C'. n C~~ _ (~ for either i, j E {1, . . . , l} or i, j E {l -}- 1, . . . , r}, where i ~ j. 

Proof of claim: From theorem 1 it follows either Ci. C C~. , or C'. ~ C?. , or C`, n C~. _ (~, 

since CZ and C~ are compatible. We will prove the claim by showing that the first two cases 

are impossible. It is sufficient to show this by proving that Ci. C C~, is impossible, since either 

i,jE{1, . . . ,1}ori,jE{1, . . . ,r}. 

Suppose C'. C C~.. We have I Ci. I = I C~. I = 2 in the case i, j E { 1, ... , l } and I C`. I = I C~. I = 4 

otherwise. It follows that I C'. I = I C~. I . From this and our assumption that Ci. C C~, it follows 

that Ci. = C~.. Now, if FZ and F; are d-flips we have I C2, n C;, I > ((Ci, — FZ) n (C;, — F;) I = 

((Ci, O FZ) n (C; , O F; ) (= I Ci, n C~. (= I C'. I = 2. Otherwise Fi and F; are i-flips and we have 

i~z, n c;. I + 2 >_ I (ci, u FZ) n (c;, u F; ) I - I (ci, o Fi) .n (c~. o F;) I = Ic2, n c;, I = ici, I = 4. 
Hence in both cases we have I Ci, n C;, I > 2, which is in contradiction the pre-condition 

I Ci, n C;. I < i . 

Claim 2: For any i E {l -}- 1, . . . , r} there exists at most one j E {l, . . . , l}, such that 

C2, n C~. ~ ~. 

Proof of claim: Suppose there exist v, w E { 1, . . . , l } where v ~ w, such that C'. n Cv. ~ ~ 

and C', n Cw! ~ 0. 
First we show C' C C' . From Theorem 1 follows that C' n C' E {C' C' (~} since 

the characters Ci, Cv, Cw are compatible. By our assumption Ci. n Cv, ~ Q~ this reduces to 

Ci, n Cv, E { C'. , Cv, } . From this, I C'. I = 4, and I Cv, I = 2 it follows that Cv. C C'.. By a 

similar reasoning Cw. C C', follows, and we conclude Cv. U Cw, C C'.. 

Second, we show Cv. U Cw. = Ci.. Cv, n Cam,. _ ~ follows directly from Claim 1, and hence 

I Cv. U Cw. I = I C;~ I -}- I Cw. I . As shown before in (* } , it is I Cv. I = I Cw. I = 2 and I Cis I = 4. 

So I C'. I = I Cv. I -#- I Cw, I = (Cv. U Cw, I . Now, from (C'~ I = (Cti,, U Cw. I and the prior result, 

C;, U Cw, C CZ. , it follows that Cv, U Cw, = C'. . 

We are prepared to give the contradiction. Let Fv = {ev }, Fw = {ew } and Fi = {ei } . Fv, Fw

are d-flips and Fi is an i-flip . Thus Cv. = Cv, — { ev } , Cw~ = Cw, — { ev } where ev E C~,, , 

ew E Cw, , and C2. = C2, U { ew }where ei ~ C2, . Replacing Cw. Cw, and C', in C;. U Cw~ = C'. 

leads to (C~,, — { ev }) U (Cw, — { ew }) = Ci, U { ei } where ev E Cv, , ems, E Cw, , CZ ~ C2, and 



16 

Cti•, — { e~, } n Cw, — { ev } = Q~ . So, either ei E Cv, — { ev } or ei E Cw, — { ew } . VV.I. o. g. we assume 

ei E Cv, —{ev}. Thus Cw, —{e2„} C Ci, . From this follows (~iw, nCii, I > ~ (Cw, -{e w })nCi, (_ `Z, 

since ~ Cw, — { e -I-~ w } = 2, which is in contradiction to the pre-condition (Cw, n Ci, ~ < 1. 

From Claim 1 it follows that (UiE{i,...,t} Cz. ~ = 2l and ~ UiE{t+l,...,r} Ci. ~ = 4l. Claim 2 

states that for any i E {l -}- 1, . . . , r} there exists at most one j E { 1, . . . , l }, such that Ci, f1 

C~. ~ ~. Hence, any Ci, for i E {l + 1, . . . , r} counts for at least 2 new elements. It follows 

In the fallowing we use a polynomial time reduction from CX3C to show that FP is N~-

complete. The problem CX3C is an input constrained version of exact 3-cover (X3C) (14) and 

is known to be N~-complete (15) . 

Definition 9 (Constrained Exact 3-Cover (CX3C} ) 

Given A set 1~' with ~X (= 3q for some q E I~, and a collection S of 3-element subsets of X, 

such that for any set { S, S' } C S, (S n S' ~ < 1. 

Question Does there exist a set S' C S that covers X ? (S' covers X , ifs`' X = USEs, S and 

for any {S, S'} C S' holds S n S' = Q1.) 

Theorem 4 FP is N1~-complete. 

Proof. Clearly, FP E NP. The reduction CX3C <~ FP, will be shown by a modification 

of a proof given in (15). 

Construction: Let a possible instance for CX3C be a set X , where ~ X (= 3bq for some 

q E I~, and S = {Sl , . . . , Sr } be a collection of 3-element subsets of X . From this instance a 

possible instance for FP is constructed as follows: For every i E { 1, ... , r} a character Ci is 

constructed, such that Ci, = Si and Cio = X — Si . From the resulting characters the character 

r-tuple ~ _ (Cl , . . . , Cr ) is constructed and the number I~ = 2(r — q) is calculated. 

Obviously, ~ and 1~ can be calculated in polynomial time. Thus, the N~-completeness of 

F P derives from the following statement . 
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Claim: S contains a 3-cover for X, iff there exists aflip-tuple ~" where s(~') < ~ and ~ O ~' 

is compatible. 

Proof of claim: 

>" : Let S' _ { Sz , . . . , Sq } be a subset of S that is a 3-cover for X . Let ~ _ (Fl , . . . , FQ, Fq+~ , 

. F,.) be a flip tuple where F Z = ~ for any i E { 1, . . . , q} and Fi C Ci, , such that ! Fi ~ = 2 for 

any i E {q -f- 1, . . . , r}. Thus, s(~') = I~. Now we show in two steps that C ~ ~ is compatible. 

First we show that Ci — Fi is compatible with any character in ~M for any i E {q -E- 1, . . . , r}. 

We have Ci ~ Fi = Ci — F Z where F 2 C C2, since Fi is a d-flip for Ci . From this follows that 

~ Ci ~ Fi (= ~ Ci — Fi ' = 1, since ~ F Z ~ = 2 and ~ Ci (= 3 . From Theorem 1 it follows that a character 

C E CM, where ~C.) = 1, is compatible with any character in CM. Thus, the character CZ D Fi 

is compatible with any character in CM . 

Second we show that C' = Ci O Fi and C~ = C~ ~ F~ are compatible for different i, j E 

{ 1, . . . , q } . It is Ci = CZ and C~ = C~ , since F Z = F~ _ ~ . Next we have Ci, n C~, _ ~, since 

by our construction Ci, = Si, C~. = S~, and Si, S~ are elements of the 3-cover for X . Thus, 

Ci, n C3~ = 0. From this it follows by Theorem 1 that C' and C~ are compatible. 

From the first and second part follows directly that C ~ ~" is compatible. 

"< ": Suppose that there exists aflip-tuple ~" such that s(~') < 1~ and ~ 0 ~' _ (Cl, . . . , Cr) 

is compatible. W.l.o.g. let ~" _ (Fo, . . . , F Z, F2+1, ... , F3, F~+l, ... F,.) such that (F~~ = 0 for 

k E { 1, . . . , i}, (F~ ~ = 1 for k E {i -}- 1, . . . , j }, and ~F~ (> 1 for 1~ E { j +- 1, . . . , r}. Let fo = i, 

f l = j — i, and f2< = r — j. We show 3/2(fo — q) > fl > 2(fo — q). From this it follows q = fo 

and hence f o is a 3-cover for X. 

• It holds that 1~ = 2(n —q) > fl -}-2 f2< and replacing n by fo+- f l -}- f2< yields f l > 2(fo—q). 

• From the construction it follows that 3q > ~ UtE{1,...~} Cl ~• By Lemma 2 we have ~ USE{1,...~} 

c l ~ - 3 .f0 + ~ UlE{i+1,...~} Ci ~ . Lemma 3 states (UlE{i+1,...~} Ci ~ > 2fi • Thus 3q > 3fo -~- 2 f i 

which is equivalent to 3/2(fo — q) > fl. 
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CHAPTER 3. ALGORITHMS FOR SOLVING THE MINIMUM FLIP 

PROBLEM 

3.1 Introduction 

This chapter describes methods used for solving the minimum flip problem. We have proved 

that the FP problem is N~-complete so there is probably no efficient algorithm to achieve a 

perfect phylogeny based on minimum change of the input characters. The search space of 

possible trees increases exponentially with the number of species. In general, the number of 

phylogenetic trees for a data set of s taxa is given by ~n_i (2n — 3} for n > 2, since for an 

arbitrary tree with n taxa, there are 2n — 1 possible places for the (n -~- 1 }th to be added. 

An exact solution to the minimum flip problem can be obtained using exhaustive search or 

branch-and-bound algorithm when the number of taxa is less than or equal to 15. Given a 

character tuple ~ _ (Cl , . . . , Cr} our algorithm exhaustively evaluates every tree T over 1Vf 

by the minimum number of flips to make ~ compatible with T. A tree is in our solution if it 

has the minimum number of flips over all of the possible trees. For large data sets, heuristics 

must be employed. Exact and heuristic methods will be discussed in section 2 and section 3 

respectively. 

Before solving the minimum flip problem, we first define a basic estimation problem. Re-

member that a rooted binary phylogenetic tree T over ~7 can be represented as a tuple of 

characters called character coding of T and denoted by CT = (Ci , . . . , C s_1), where s = ~M~, 

CT is a s-dimensional complete binary character which corresponds to a cluster in the tree T, 

with Ci. containing all taxa in the cluster, Cio = M — Ci,. The matrix representation of T 

is the matrix representation of CT. Figure 3.1 is the matrix representation of the tree T in 

Figure 1.2 (c) . 
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Ci C2 C3 C 4 C 5 ~' 6 C 7 Cg Cg 

ml 1 1 0 0 0 0 1 1 0 
m2 1 0 1 0 0 0 0 1 0 
m3 1 0 0 1 0 0 1 1 0 
m4 1 0 0 0 1 0 0 0 1 

m5 1 0 0 0 0 1 0 0 1 

Figure 3.1 A binary matrix representing a tree T 

Definition 10 Flips Estimation Problem (FEP) 

Given A set of characters C = (Cl , . . . , C,.) over M, where r E l~ and a phylogenetic tree T 

over ta~a M . 

Questions What is the minimum number of f dips in order to mare ~ consistent with the T ? 

Algorithm 2Flips-Estimate (C , T) 
1: Codes T into a set of characters ~T 
2: flips F— 0 
3: for all x E ~ do 
4: distance E-- o0 

5: for all y E CT do 
6: if distance > H{x, y) then 
7: distance ~— H(x, y) 
8: end if 
9: end for 

l0: flips E-- flips -{- distance 
11: end for 
12: return flips 

Algorithm 2 first codes the tree T as a set of characters ~T and then maps each char-

acter Ci E ~ to a character C~ E ~T such that H(Ci, C~) is minimal among all H(Ci, C') 

forall C' E ~~. Let ~'Z~ be the flip tuple such that C~ = Ci ~ ~'2~, and s(~, ~T) be the 

number of flips to make input characters ~ compatible with the phylogenetic tree T. Thus, 

s (~, ~T) _ ~ 1 min { ~ ~i~ ~ ,1 < j < 2 s — 1 } . Clearly, this can be done in O (r x s2) because 

there are r binary characters in ~, and each of them maps to one of the 2s — 1 characters in 

~T with minimum Hamming distance. Note that the calculation of Hamming distance H(x, y) 
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takes O(s). 

-Since the phylogenetic tree T is binary, any character C' ~ ~T must be incompatible with 

T. Algorithm 2 maps each character in ~ to a character in ~T with minimum number of 

flips. Let ~~ _ ~ d ~". Then the algorithm guarantees that each character in ~~- (after flip) is 

compatible with the tree T and the number of flips is minimal. i.e. ~~ C ~~ and s(~, ~T) is 

minimal. Therefore, Algorithm 2 solves the FEP. 

3.2 Exact Methods 

3.2.1 Exhaustive Enumeration 

For a small input data set (generally, one where the number of taxa is less than 15), it is 

possible to find the optimal flipping tree by enumerating all of the possible trees and applying 

Algorithm 2 to evaluate the minimum number of flips for each of these trees. A simple method, 

"transverse add" (Figure 3.2), is used to enumerate all the trees with s taxa. Initially, a 

phylogenetic tree with two taxa is built. All possible three taxon trees are then constructed 

by adding the the third taxon at all possible places in the initial tree. The remaining taxa are 

added in this manner until all taxa have been added, which results in the enumeration of all of 

the possible trees for s taxa. For each complete tree, a tree with s taxa, the minimum number 

of flips is evaluated by applying Algorithm 2. The trees with smallest score are kept. 

3.2.2 Branch-and-bound Method 

We first specify an upper bound, U, on the number flips to make the input character 

set C compatible. We then consider the enumeration of the set of all complete trees with s 

taxa. Specifically, we begin with a tree with two taxa and then consider the three taxon tree 

constructed from the initial tree by adding the third taxon. From the remaining s — 3 taxa, we 

can calculate the lower bound using Algorithm 3 described below. If the value of the minimum 

flip of three taxon tree plus its lower bound exceeds the upper limit U then we do not need to 

consider any of the trees that are obtained by adding taxa to this three taxon tree. Otherwise, 
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Figure 3.2 Enumeration of all possible trees for 4 species, An initial tree 
is formed from the first two taxa. The third taxon is added 
transversely to each possible location of the initial tree to obtain 
all the three taxon trees. The four taxon tree is formed from 
adding the fourth taxon transversely to each location of every 
possible three taxon trees. 

we evaluate each of the four taxon trees obtained by adding the fourth taxon to this tree. The 

remaining taxa are added in the manner. If at any time a complete tree is encountered with 

a value U* which is less than U, U is reset to U* and the search is continued. Algorithm 4 is 

a branch-and-band algorithm to solve the minimum flip problem. 

The branch-and-bound algorithm explores each possible topology until the upper limit is 

reached. Thus, it ensures that all trees are tested and guarantees that a phylogenetic tree 

which optimizes the criteria is found. 
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3.2.2.1 Lower Bound for Minimum Flip 

A maximum weight matching in an undirected edge weight graph G = (V, E, w) is a collec-

tion of node-disjoint edges with maximum total weight. A lower bound for the flip problem is 

the sum of a maximum weight matching for the following edge weighted graph G = (V, E, w): 

i E V, if Ci is a character in C; {i, j } E E, if Ci and C~ are incompatible, and w ({i, j }} is 

the minimum number of flips to make Ci and C~ compatible. Note that a tuple ~ of complete 

characters is compatible if and only if every pair C, C' E C is compatible. A maximum weight 

matching for the graph G is a subset of flips making the characters pairwise compatible. Thus, 

it is a lower bound. We used Algorithm 3 to calculate the lower bound. In the following 

example (Figure 3.3), the lower bound for the set of ~ _ (Cl , . .. C5) characters is 3. 

CI C2 C3 C4 CS 

ml 1 0 1 1 1 
m2 0 0 1 0 1 
m3 0 1 1 0 1 
m4 0 1 0 1 0 
m5 1 ? 0 1 0 
m6 I 0 0 1 1 

c, 

cs

Figure 3.3 An example of lower bound for minimum flip problem, the thick 
edges is a maximum weighted matching whose total weight is 3. 
Thus, the lower bound for the input characters ~ _ (Cl, . . . C5) 
is 3. 

Algorithm 3 GetLowerBound (~) 
1: construct the edge weighted graph G = (V, E, w) from ~ 
2: M ~ MAX_WEIGHT~VIAT~HING(G) D returns maximum weighted matching as a list of edges 
3: L ~-- 0 
4: for all e E 1~T do 

6: end for 
7: return L 
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3.2.2.2 Upper Bound for Minimum Flip 

An initial upper bound can be computed by a quick heuristic search or obtained from a 

random tree T. In the second case, a bound is given by the minimum number of flips to make 

~ compatible with T. During the search, if a complete tree over M with a smaller minimum 

flip number is found, we replace the upper bound with the smaller value. The better the upper 

limit, the faster the search. Clever programming, including an appropriate choice of the, initial 

upper bound can greatly improve the running time of the algorithm. 

3.2.2.3 Branch-and-bound algorithm 

Let A be a subset of M, and ~!A denote the restriction of set of characters ~ to A. For each 

C E C, C ~ A is a character C' over A such that C; = C. (~ A, Co = Co (~ A, and C~ = C~ (~ A. 

We wrote ~ ~ A to denote the multiset {C' : C' = C i A f or C E ~ } . Let T be a tree over taxa 

set A, and x, y, and z are nodes where x is a node in tree T , y is a new leaf node to be added 

to the tree, and z is a new internal node. Now, we introduce two functions AddTaxon and 

RemoveTaxon that are used in the Algorithm 5. 

The function AddTaxon(T, x, y, z) inserts the nodes z and y to the tree T such that y and 

x become z's left and right children respectively. 

The function Remover axon (T, y, z) removes the nodes y and its parent z from the tree T . 

Algorithm 4 BandBMinFlip(C) 
D ~ _ { Ci , . . . C,. } is a t uple of characters over M = { m 1, . . . , ms } 

1: generate a random tree T 
2: U 4— Flips...Estimate(C, T) D obtain upper bound 
3: create the initial tree T with the taxa ml and m2
4: A <-- {ml , m2} D A is the set of taxa that have been added to the tree T 
5: form--3tosdo 
s: A ~-- A U{mi} 
7: .R E-- M — A D R is the set of taxa what not appear in tree T 
8: L[i~ F— GetLowerBound(~~R) D Get the lower bounds for the added taxa 
9: end for 

lo: return TraverseAdd(~, T, root[T], 3, {ml , m2}, U, L) 
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Algorithm 5 'I~averseAdd( ~, T, x, i, A, U, L ) 
D T is a tree on the leaves set A, ~ is one of its nodes, i is the index of the taxon to be added to the tree T 

D U and L are upper bound and lower bounds repectively 

1: y <— CreateNode(mi) D create a leaf node labelled by mi 

2: z F— CreateNode() D create a empty internal node 

3: AddTaxon(T, x, y, z) 
4: AE—AU{mi} 
5: flip = Flip~stimate(C~A, T) ~- L[i] 
6: if flip < U then 
7: if i < s then 
8: TraverseAdd(C, T, x, i -~- 1, A U{mi}, U, L) 
9: else 

10: U E-- flip Da complete tree is reached, update the upper bound 
11: end if 
12: end if 
13: RemoveTaxon(T, y, z) 
14: AF--A—{mi} 
15: if x is not a leaf node then 
16: TraverseAdd(~, T, le f t[x], i, A, U, L) 
17: TraverseAdd(~, T, right[x], i, A, U, L) 
18: end if 
19: return U 
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3.3 Heuristics Algorithm for Minimum Flip 

We now describe a heuristic algorithm for solving minimum flip problem with a large data 

set. This heuristic uses the uphill searching strategy employed in PAUP and commonly used 

among biologists. The main idea of this strategy is to start from a tree, called starting point, 

and rearrange branches in this tree to form different trees. If a better tree, that is, a tree with 

smaller number of flips, is found, then replace the starting point with this better tree. This 

uphill algorithm continues until no possible rearrangements of a given tree result in a better 

tree and that tree is returned as the estimate of the minimum flip tree. In this section, we first 

introduce three types of branch-swapping methods that are widely used to create new trees 

by rearranging branches. Then, we describe a greedy algorithm to obtain a starting point. 

Finally, we will give a detailed uphill algorithm which is used for minimum flip problem. 

3.3.1 Branch-swapping Operations 

3.3.1.1 Nearest Neighbor Interchange (NNI) 

For a rooted binary tree T, a NNI operation On an internal node consists of swapping one 

of its children with its sister. For one NNI operation, there are 2s — 4 different trees that can 

be possibly obtained from the tree T with s taxa, because there are s —1 internal nodes in the 

tree T and only two possible rearrangements for each internal node except the root (as shown 

in Figure 3.4). 

Figure 3.4 Two rearrangements are possible for one NNI operation on an 
internal node. 
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3.3.1.2 Subtree Pruning and Regrafting (SPR) 

A SPR operation proceeds by removing a subtree t from a rooted binary tree T and then 

attaching t to each possible branch of the remaining subtree T — t. The root of the pruned 

subtree t is called a prune node. A general case of SPR is illustrated in Figure 3.5. A special 

case of the SPR operation (Figure 3.6} occurs when the the parent of the prune node is the 

root of the original tree T. In this case, after regrafting subtree t to the subtree T — t, the 

prune node's sister is set as new root. Note that the NNI operation can be considered as a 

SPR operation but not vice versa. 

1 

Figure 3.5 A general case of SPR operation. Subtree A is detached from 
the original tree T, and attached to any possible branch of re-
maining part of the tree T — A, such that different trees are 
created. 1,2 and 6 are represented any branch inside subtree 
B,C and D respectively. B(A) denotes a tree formed by regraft-
ing subtree A to a branch in subtree B. C(A), D(A) have similar 
meanings. 

Regraft at position 2 

Figure 3.6 A special case of SPR operation. The prune node's parent is the 
root of original tree T. A general SPR operation is performed, 
and then the root is changed to the prune node's sister. 
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3.3.1.3 Tree Bisection and Reconnection (TBR) 

A TBR operation cuts ofd an edge of a rooted binary tree T, dividing the tree T into two 

parts: t and T — t. It then chooses a subtree, say t without loss of generality, which does 

not contain the root node of the original tree T, from the subtree t, create a new subtree t' 

by "bending" each possible edge to obtain a new root, and then attaching t' to any possible 

branch in the subtree T — t. This is similar to regrafting in SPR operation. An example is 

shown in figure 3.7. Note that SPR operation can be viewed as a TBR operation but not vice 

versa. 

a b e d e f g 

T 
e f a b c d g h 

T 

Figure 3.7 A tree T is divided into two subtrees t and T — t by a cut. 
Subtree t' is formed by "bending" the branch 1 in subtree t. A 
TBR tree is created when subtree t' is regrafted to one of the 
branches in subtree T — t. 

3.3.2 Greedy Algorithm 

This algorithm is used to get a starting point for the heuristic algorithm described later. 

Similarly to exhaustive enumeration, the greedy search begins with the unique initial tree 

formed from the first two taxa in the input data set. The third taxon is inserted into every 

possible branch in the initial tree to form all possible three taxon trees. Algorithm 2 is then 

applied to estimate the minimum number of flips for each of those three taxon trees. The best 

three taxon tree, a tree with the minimum number of flips among all possible three taxon trees, 

is chosen to add the fourth taxon. Taxa are added to the tree in such a way until a complete 

tree is reached. The running time for this algorithm is O(s4 x r). 
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3.3.3 Heuristics 

For Iarge data sets, Algorithm fi is used for minimum flip problem. 

Algorithm 6 HeuristicMinFlip (~, branchswap) 
D ~ is a set of characters, branchswap is a function pointer referring to one of the procedures in 

D {NNI, SPR, and TBR }and returns all the neighbor trees according to {NNI, SPR, and TBR } . 

1: order taxa randomly, and obtain starting point T using above Greedy Algorithm. 
2: initialize besttreelist empty 
3: add the tree T to besttreelist 
4: bestscore E-- Flips~stimate(C, T) 
5: for all Tl E besttreelist do 
6: for all T2 E branchswap(T1 } do 
7: if Flips~stimate(C, T2) < bestscore then 
s: if Flips_Estimate(C, T2) < bestscore then 
9: . bestscore ~— Flips~stimate(~, T2) 

lo: empty besttreelist 
11: end if 
12: add TZ to besttreelist 
13: end if 
14: end for 
15: end for 
16: return besttreelist 

This algorithm does not test all possible trees and thus do not guarantee that the resulting 

trees are optimal. It is clear that the result trees obtained by such a algorithm depends on 

the starting point. From this reason, we usually run this algorithm several times and choose 

the best result. This is equivalent to repeating the procedure with different taxon addition 

orderings. 
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CHAPTER 4. SIMULATION STUDIES OF SUPERTREE 

CONSTRUCTION METHODS 

4.1 Introduction 

To test the effectiveness of flipping as a supertree construction method, we conducted a 

series of tests on artificial data, and ran both the exact branch-and-bound algorithm and the 

uphill searching heuristics described in the previous chapter. Our goal was to examine several 

parameters that affect the performance of building supertrees. By fixing those parameters, 

we can compare MRP, MRF, MC and NIMC supertrees. The simulation studies are divided 

into two kinds of experiments: those where exact solutions were computed and those where 

heuristics were used. The former are based on very small artificial data set and use abranch-

and-bound algorithm to construct exact MR.P and MRF supertrees; while the latter using 

uphill searching heuristics to build heuristic MRP and MRF supertrees. The two experiments 

will be described in the section 3 and section 4 respectivel~~. 

4.2 Criteria Used for Tree Comparison 

In this section, we first define some metrics used for tree comparison. Then, we describe 

the criteria used in our simulation result analysis. Let MT denote the true tree, ZT denote a 

set of source trees, and ST denote a set of supertrees. 

A maximum agreement subtree (MAST) of two phylogenetic trees Tl and T2, denoted by 

MAST(T1,T2), is an agreement subtree with the largest possible number of leaves. The maxi-

mum agreement subtree can best represent the common information provided by the two input 

trees. The MAST fct of two input trees Tl and TZ is the size of MAST(T1,T2) divided by the 
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number of common leaves in both T1 and T2. That is, 

MAST fit Tl , T2) —_ (MAST(T1,T2)I 
( I,G(Ti } (1 ~(T2) 

To assess the accuracy of supertree methods, we need to consider two issues: the degree to 

which a supertree agrees with the true tree and the degree to which a supertree recovers the 

information in the source trees. 

The first issue concerns how well different supertree building methods based on subsets of 

taxa reflect the true tree. Since some methods such as M RP and M RF might produce more 

than one supertree, we used the average MAST fit of supertrees and the true tree as a metric to 

measure how well those supertrees agree with the true tree. The average MAST fit is calculated 

as following: 

~tEST MAST f it(M~, t) 
average MAST fit (S7, MT) = IsTI 

The second issue concerns how well a supertree incorporates information in source trees. 

Here we used the average MAST fit of supertrees and source trees as one of metrics, which 

was calculated by 

~tEs?- ~t,EZT MAST fit(t, t') 
average MAST fit (ST, ZT) = IsT I X IzT I 

However, this MAST based metric has drawbacks to measure tree similarity especially for 

those input trees that are not fully resolved. Following a suggestion by Roderic Page, we 

used average triplet fit to measure how well a supertree agrees with source trees (1) . Given a 

supertree Tl and a source tree T2, let d(Tl , T2) be the number of triplets resolved differently in 

Tl and T2; s(Tl , T2) be the number of triplets resolved identically in Tl and T2; rl(Tl , TZ) be 

the number of triplets resolved in Tz but not in T2 i and r2 (Tl , T2) be the number of triplets 

resolved in tree T2 but not in Tl. A triplet fit is defined and calculated by the following: 

t ri let fit Tl , T2) = 1 — d (T1,T2) +T2 (T1,T2 ) 
P ( d(Ti,7'2)+s(7'1,T2)+r2(T1,T2) 

The average triplet fit of supertrees and source trees is the average value of triplet fit over 

each pair of supertree and source tree. That is, 
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~tES?- ~t'EZT tri~letfit(t, t') 
average triplet fit (ST, zT) _ (sT ~ x ~zT ~ 

Note that the metrics described above is only used in heuristic solution comparison exper-

invent . 

4.3 Exact Solution Comparison Experiment 

4.3.1 Materials and Methods 

• Hardware: Four Linux based Dell workstations each with one 667MHz Pentium-III 

CPU and 512MB memory was used in this study. 

• Software: Several programs were involved in this simulation study. They are listed 

below: 

1. r8s version 1.5(16): A program from Michael J.Sanderson that is used to generate 

a set of random trees as "true" trees. 

2. Seq-Gen version 1.2.3 (17) : Several artificial data sets (simulation of DNA se- 

quences)were created by this program based on the "true" trees. 

3. PAUP version 4.0(18): This is used to build most parsimonious trees. 

4. BBMFT: A program written by myself for constructing exact minimum flip trees 

using branch-and-bound algorithm described in previous chapter. 

5. MCSupertree: My implementation of Semple and Steel's mincut algorithm. This 

is used to construct mincut supertree. 

• Method: 

The parameters we chose to study are the size and the number of source trees, the fraction 

of shared taxa between source trees, and the level of disagreement between source trees 

(19) . The level of disagreement is largely a product of evolutionary noise that was added. 

Each parameter combination was replicated 50 times. A single replicate of the simulation 

is shown in figure 4.1. The details of each step are described below. 
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Figure 4.1 Flowchart of the experiment to assess the accuracy of different 
supertree methods. 
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1. Randomly generate a model tree: In our simulation study, we generated a 

model tree with n taxa using the program R8s with the default parameter setting. 

This produced a model tree according to a stochastic Yule birth process conditional 

on a fixed number of tips and a fixed time between the root of the tree and the 

present (20) . Thus, the model tree fulfilled the desirable property of preserving a 

constant age distribution of node times independent of the number of tips, allowing 

comparisons between different tree sizes. 

2. Generate data sets of DNA sequences, and construct source trees from 

them: We used the program SEQ-GEN to generate a certain number, ns data 

sets (data sets 1 to ns, in Figure 4.1) . Each data set contained nDNA-sequences of 

length l generated according to a standard HKY85 Markov substitution model (21}, 

assuming equal base frequencies, atransition-transversion ratio of 2.0 and gamma 

distributed rates with ashape-parameter of 0.5. We imposed partial overlap between 

data sets by randomly deleting taxa in each of them (partial data sets 1 to ns, in 

Figure 4.1) . A taxon was deleted by a fixed probability 25%, 50% or 75%. 

For each data set, we constructed M P trees using PAUP * 4.0 (M P trees in Fig-

ure 4.1), and used their strict consensus as a source tree. As a result of the deletion 

process our source trees varied in size according to a binomial probability distribu-

tion. According to the number of data sets and their sequences length, we specified 

two experiments. 

— firmed sequence length e~~eriment: We generated a large data set in which each 

taxon has a fixed sequence length L. By partitioning the large data set, we 

obtained small data sets in which each taxon has the same sequence length 

l = L/ns (thus l declines as ns increases). From the small data sets, the source 

trees were generated. 

— ~roPortional sequence length experiment: Each of the ns data sets has a fixed 

sequence length l and the total sequence length L is proportional to l and ns. 

That is, L = ns * 1. 
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Note that in the model of character evolution described above, evolution is inde-

pendent and identical at each site and independent along each lineage, so it is valid 

to generate one large data set and then partition it into smaller data sets. 

3. Coding source trees: For a collection of source trees derived from the same model 

tree, we generated its matrix representation. 

4. Building MRP, M R F, and M C supertrees: For each matrix obtained from step 

3, we used exact MRP, M RF, and M C algorithms to construct MRP, M RF, and the 

M C supertrees respectively. MRP, and M RF supertrees are not necessarily unique. 

Thus, we used the semi-strict consensus of MRP, and MRF supertrees respectively 

for comparison against the model tree. 

5. Assessing accuracy: To assess the accuracy of supertree methods, we calculated 

the normalized MAST -distance of the semi-strict supertrees (semi-strict MRP, semi-

strict M RF, and M C supertree), against the model tree respectively. The normalized 

MAST -distance of a supertree against the model tree is the number of the leaves of 

their maximum agreement subtree (22) normalized by the number of leaves of the 

supertree. The average normalized MAST-distance of all replicates (50) was used 

to evaluate the MRP, M RF and M C algorithms. 

4.3.2 Results and Analysis 

Two factors, the number of taxa and the number of characters, are known to influence the 

accuracy of all phylogenetic reconstruction methods, and supertree methods are no exception. 

Figure 4.2 shows an overall decline in accuracy with increasing size of the source trees, probably 

reflecting the increasing difficulty of estimating larger trees with the same number of characters 

(19) . This effect gets larger as the degree of overlap between source trees declines (deletion 

fraction increases) . Not surprisingly, overall accuracy increased with the number of characters 

under both fixed and proportional sequence length models (results not shown) . 

The 95% confidence intervals for the mean normalized MAST-distances (~2 standard er-

rors) were about 0.05 — 0.10 in all experiments. In almost all comparisons between methods 
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Figure 4.2 variable taxa, and fixed sequence length experiment. 

(Figures. 4.2-4.4) the performance of the MRF method was consistently better than MRP and 

M C methods, but was rarely distinguishable from the other two with statistical confidence. 

The efFect of number of source trees depended somewhat on whether the total number 

of characters was fixed or proportional to the number of trees. When the number was fixed 

(Figure. 4.3), accuracy was nearly independent of the number of source trees, possibly because 

the benefits of combining more independent source trees were matched by lowered accuracy 

of each source tree because of fewer characters. When the number of characters was allowed 

to be proportional to the number of trees, such that each source tree had a constant number 

(Figure 4.4), accuracy increased monotonically with the number of source trees, although 

rather slowly. 

Deletion probability controls the amount of taxonomic overlap between trees. When it is 

high, source trees often contain very different subsets of taxa. Comparisons between columns in 

Figures. 4.2-4.4 show consistently that increasing deletion probability (and hence decreasing 

overlap) decreases accuracy. At a high deletion fraction of 0.75, for example, no method 

performed better than aMAST-distance of 0.6 — 0.7, regardless of how many source trees were 
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added. Accuracy improves somewhat if the accuracy of the source trees is improved by adding 

characters {data not shown), but deletion probability remains perhaps the most important 

determinant of overall success of these supertree methods (as shown also by Bininda-Emonds 

and Sanderson { 19) for the MRP method alone) . 

4.4 Heuristic Solution Comparison Experiment 

4.4.1 Materials and Methods 

Since this simulation study involved a large amount of computational work, it required 

many powerful computers and several software packages. We now describe our experimental 

setup. 

• Hardware: A 38 nodes Linux cluster in the University of California, Davis was used in 

our simulation study. Each of those node consists of dual AMD Athlon(tm) 1400MHz 

CPUs and 1GB memory. 

• Software: Besides r8s, Seq-Gen, and PAUP, the packages described in previous section, 

we also used the following programs: 
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Figure 4.4 Proportional sequence length, and fixed taxa experiment 

1. HeuristicMFT: A program written by myself for constructing minimum flip trees 

using uphill searching heuristics. 

2. supertree(1}(23): A program written by Roderic Page. That implements Semple 

and Steel's mincut algorithm and his Modified mincut algorithm. 

• Methods: Two parameters: the number of source trees and the fraction of shared taxa 

between source trees were studyed in this experiment. We repeated each parameter 

combination 100 times. A single replicate of the simulation is shown in Figure 4.5 and 

4.6. This is very similar to the methods used in exact solution comparison experiment. 

The details of each step are described below. We skip the detailed description if the 

procedure is identical to that in the exact simulation experiment. 

1. Randomly generate a model tree 

2. Generate data sets of DNA sequences, and construct source trees and 

total evidence trees from them: This is the same as step 2 in exact simulation 

experiment except that we added building total evidence trees and changed the 

scheme to control the fraction of shared taxa among source trees. 
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After creating those ns small data sets, we merge all of them into a big total data 

set by concatenating the DNA sequences in each data set. We built MP trees, called 

total evidence trees, from the total data set using PAUP's heuristic search. The 

parameters used for heuristic search in PAUP 4.0 are 5random-addition-sequence 

addiction replications, TBR branch-swapping, and 5 equivalent parsimony trees 

kept . 

We imposed partial overlap between data sets by randomly deleting a certain 

number of taxa in each of them (partial data sets 1 to ns, in Figure 4.5}. A fixed 
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probability 25%, 50% or 75% of taxa in each data set was deleted. 

3. Coding source trees 

4. Building MRP, M RF, MC, and M MC supertrees: We used uphill searching 

heuristics to build MRP and M R F supertrees instead of using bunch-and-bound 

algorithm, as in the exact solution comparison experiment. The parameters for 

building MRP tree are the same as in constructing total evidence trees. Constructing 

M RF supertrees used the same parameters, except the branch-swapping was SPR. 

We construct M C supertree by Roderic's implementation and added M M C method 

in this study. 

5. Assessing accuracy: To assess the accuracy of supertree methods, we need to 

consider the degree to which the supertree agrees with the source trees and the 

supertree recovers the true tree. It is also important to know how well the source 

trees reflect the true tree. Otherwise, the measurement of the supertree and the true 

tree becomes meaningless if the source trees does not contain any information of the 

true tree. As shown in Figure 4.6, we used average triplet fit and average normalized 

MAST as metrics to measure the degree of source trees reflect the true tree and 

supertree recovers the information in the source trees. How good a supertree agrees 

with the true tree is measured by average normalized MAST. 

4.4.2 Results and Analysis 

To assess the accuracy of different supertree methods by measuring how well a supertree 

reflects the true tree in the simulation study, the quality of source trees plays an very important 

roles. The result shows that the quality of MRP, M R F, M C, and M M C-supertrees measured by 

average MAST fit or average triplet fit were waved according to the quality of source trees in 

both fixed sequence length model (Figure 4.7) and proportional model(Figure 4.8. Figure 4.7 

and 4.8 also show that the metrics average MAST fit and average triplet fit are coincident in 

measuring how well supertrees incorporated the information in the source trees. 



40 

model tree 

source trees 

 T 
(a) average triplet fit 
8 average MAST fit 

(MRP-, MRF-, MC-, 
MMC-) supertrees 

(~) average triplet fit 
8 average MAST fit (Y) average MAST fit 

total evidence trees 

Figure 4.6 Tree comparison criteria used in heuristic solution comparison 
experiment. (a) and (/3) was used to evaluate how well source 
trees incorporate the true tree and how well supertrees recov-
ering information in source trees respectively. (~y) was used to 
measure the degree of supertrees reflecting the true tree. 

The degree of overlap between source trees is an important factor to construct supertree. 

Figure 4.9 show that when the degree of overlap between source trees declines (deletion fraction 

increases), the MRF, MRP, M C, and MMC supertrees become worse. While the total evidence 

tree is not affected by this factor since it construed from the total data set not direct or indirect 

from the source trees. 

From Figure 4.7, 4.8, and 4.9, we can see that MRF method is slightly better than MRP 

method, especially when the deletion probability is high. In other words, M RF is more accurate 

when the shared taxa among source trees is low. However, the performance of MRF and MRP 

are not distinguishable as shown in exact solution comparison experiment. Those figures also 

show that the metric of supertree covering source trees is consistent to the metric of supertree 

reflecting true tree when the source trees are "good" or source trees incorporate the true tree 

well. In real supertree reconstruction, we don't know the true tree. However, we can use the 

metric of supertree covering source trees to measure how well the supertree is. 

Figure 4.9 shows that the accuracy of MRF or MRP supertrees are closed to that of the 
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total evidence trees when the source size and the number of source trees is not too small. 

Thus, estimates of supertree can be obtained with reasonably high accuracy from collections 

of fragmentary smaller trees but not extremely small with reasonable number of source trees. 
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CHAPTER 5. CONCLUSION AND FUTURE STUDY 

Biologists interested in constructing the evolutionary history of life are faced with a large 

collection of small phylogenetic trees many of which overlap in their label sets. Hence, strong 

interest has developed in recent years regarding development of methods for constructing su- 

pertrees, which combine information from collections of individual trees (24). Disagreement 

about the precise definition of a supertree, meaning what properties it should exhibit and 

what information from the source trees it should attempt to preserve (12), has led to a variety 

of strategies for supertree construction. One key issue is how to resolve the often conflicting 

information about relationships among the source trees. 

In this paper we have outlined one strategy for resolving this conflict between source trees. 

Starting with the combined matrix of the matrix representations of all source trees, it defines an 

optimization problem based on minimizing the number of changes between 0 and 1-flips-needed 

to convert this combined matrix into a perfect phylogeny--that is, one perfectly consistent with 

a single supertree. This problem is N~-complete, as is the MRP parsimony version of this 

problem, which is used by most biologists working with real data. 

Polynomial time algorithms are known for other kinds of supertree construction, such as 

Semple and Steel's M C and Page's M M C algorithms, but our experimental studies suggest 

that MRF and MRP usually outperforms M C and M M C in both accurately reconstructing 

the correct supertree and heuristic supertrees. The exact solution experiment is limited to 

relatively small trees (< 16 taxa), so that an exact MRF and MRP algorithm could be used. 

The heuristic solution experiment is limit on 100 taxa trees since MRF is pretty slow and many 

other computational work. 

Experiments showed that accuracy of MRF is affected by many of the same factors influ-
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encing other supertree strategies (e.g., (19)) . Accuracy generally improves with the number of 

source trees included, with the degree of overlap in their label sets, and with the accuracy of 

the source trees themselves. 

It is very important to measure how well the supertree that we constructed. Does it reflects 

the "true" tree? Our simulation studies show that we can use the quality of the supertree fitting 

source trees to measure how well the accuracy of supertree recovering the "true" tree. 

These performance analyses are encouraging, because they suggest that estimates of a su-

pertree can be obtained with reasonably high accuracy from collections of fragmentary smaller 

trees. MRF is one method for extracting the signal from the ever present noise contained 

in these collections of trees, and it apparently is relatively successful compared to available 

methods. However, the computational time for M RF is much slower than M RP. 

A fast heuristic of MRF is needed for future study. In addition, the accuracy of supertree 

is highly related to the quality of source trees. How to discover the "bad" trees among the 

source trees using statistics is also need to study. 
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