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Abstract: Precise in-season corn grain yield estimates enable farmers to make real-time accurate
harvest and grain marketing decisions minimizing possible losses of profitability. A well developed
corn ear can have up to 800 kernels, but manually counting the kernels on an ear of corn is
labor-intensive, time consuming and prone to human error. From an algorithmic perspective, the
detection of the kernels from a single corn ear image is challenging due to the large number of kernels
at different angles and very small distance among the kernels. In this paper, we propose a kernel
detection and counting method based on a sliding window approach. The proposed method detects
and counts all corn kernels in a single corn ear image taken in uncontrolled lighting conditions.
The sliding window approach uses a convolutional neural network (CNN) for kernel detection.
Then, a non-maximum suppression (NMS) is applied to remove overlapping detections. Finally,
windows that are classified as kernel are passed to another CNN regression model for finding the
(x, y) coordinates of the center of kernel image patches. Our experiments indicate that the proposed
method can successfully detect the corn kernels with a low detection error and is also able to detect
kernels on a batch of corn ears positioned at different angles.

Keywords: corn kernel counting; object detection; convolutional neural networks; digital agriculture

1. Introduction

Commercial corn (Zea mays L.) is processed into numerous food and industrial products and
it is widely known as one of the world’s most important grain crops. Based on the United States
Department of Agriculture’s yearly results, in 2019, corn added $142.6 billion to the U.S. economy and
is estimated to increase to $183.6 billion by 2029 [1]. Corn serves as a source of food for the world and
is a key ingredient in both animal feed and the production of bio-fuels [2,3]. In the U.S. approximately
40% of corn is used for ethanol [4] and nearly 49.0% is used to feed animals (pigs, cows, cattle, etc.) [5].
Moreover, the direct use of corn for food worldwide exceeds 150 million tons/year [6]. The importance
of corn cannot be understated, and due to the world’s reliance on corn it is imperative that we work to
maximize the yield of each ear of corn.

Corn grain yield is driven by optimizing the number of plants per given area and providing
sufficient inputs to maximize total kernels per ear within a given environment. Determining corn
grain yield is complicated and requires a detailed understanding of corn breeding, crop physiology,
soil fertility, and agronomy, but accurate estimates using simple data inputs can provide reliable
information to drive certain management decisions. A well developed corn ear can expect to have
over 650–800 kernels. However, various environmental stresses can affect corn ear development
impacting the total number of kernels per ear. When an ear faces unfavorable environmental conditions,
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such as drought, heat, moisture, high wind speeds, etc., there is the possibility for the reduction in
its yield potential due to the genetic make-up of the corn being vulnerable to theses environmental
conditions [7,8]. For instance, drought and heat stress will have a negative correlation with the number
of kernels on an ear, due to the fact that some specific types of corn needs more water and cooler
climate than others. Moreover, soil fertility limitations and intense pest pressure throughout a growing
season can have adverse effects on total kernels developed resulting in lower total grain yield [9,10].
Plant breeders work to maximize the amount of material we gain from corn by breeding existing corn
with the most resilient, high-yielding genetics. If total kernels per ear, kernel depth, kernel width and
estimated kernel weight can be quickly and accurately measured, additional information could be
gathered about the crop and allow farmers to make early accurate management decisions.

1.1. Motivation

Precise in-season corn grain yield estimates enable farmers to make real-time accurate harvest
and grain marketing decisions minimizing possible losses of profitability [11]. These decision can
vary from management practices (applying fungicide, nitrogen, fertilizer, etc.) to determining future
holding costs with respect to yield futures from the Chicago Mercantile Exchange [12–14]. Due to the
manual labor needed to count the number of kernels on an ear of corn, high-throughput phenotyping
is not possible due to the necessary manual labor and the possibility of human error. With modern
technology, executing yield estimates in real-time digital applications can be done efficiently and
consistently, compared to past methods, while providing the ability to make historical comparisons
following harvest [15]. Agronomically, accurate in-season yield estimates deliver the unique potential
for agronomists and farmers to diagnose potential issues that have or may impact corn grain yield,
and equip them with the informed knowledge to make real-time decision with respect to their harvest.
Recently, image-processing, machine learning, and deep learning have shown great potential in
progressing the digital capabilities needed for the future of agriculture. These techniques have
shown to be reliable for high-throughput phenotyping and enable farmers to make real-time decision,
something that was previously not possible.

Due to the need to count corn kernels on numerous ears and because of the manual limitation of
this task, this work proposes a new deep learning approach to estimating the number of kernels on
an ear of corn that can be used for real-time decision making. This methodology takes an image of a
single or multiple ears of corn and outputs the estimated number of kernels in the entire image with
no assumptions on either the background environment nor the lighting conditions of the image.

1.2. Literature Review and Related Works

Succinctly, machine learning is a method of data analysis to automatically identify patterns within
data which can be tabular, images, text, etc. The process of machine learning requires building a model
on an initial dataset, called the training dataset, and then using an independent dataset, called the test
set, to validate the performance of the model on data which was not used for training. This procedure
allows for a true representation of the accuracy of the trained machine learning model. There exists a
large literature on various machine learning models in a variety of domains [16–19]. However, we will
not provide a review here as ultimately we want to focus our attention on a special case of machine
learning often referred to as deep learning.

Deep learning models are representation learning methods with multiple levels of representations.
Each level of representations has nonlinear modules to transform the representation at the current level
(starting with the raw input) to a slightly more abstract level [20]. Deep neural networks also belong to
a class of universal approximators [21], which means regardless of what function we want to learn,
they can be used to approximately represent such a function [22]. Deep learning models automatically
perform feature extraction on input data without the need of using any handcrafted input of features.

As one of the fundamental components of computer vision, object detection provides information
about the concepts and locations of objects contained in each image [23]. As such, the goal of object
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detection is to localize objects in a given image and determine which category each object belongs to.
Traditional object detection methods first extract feature descriptors such as HOG [24] and SIFT [25].
They then train a classifier such as a support vector machine (SVM) [26] and AdaBoost [27] based on
extracted feature descriptors to distinguish a target object from all the other categories. More recently,
deep learning based object detection methods have been proposed. These methods such as single
shot detection (SSD) [28], you only look once (YOLO) [29], and fast R-CNN [30] automatically extract
necessary feature descriptors which significantly improves their accuracies compared to traditional
object detection methods. However, these methods are very data hungry and computationally
expensive to train.

In terms of applying machine learning, image processing, and deep learning for object detection
in agriculture, there has been no shortage of use-cases. Traditional image processing based approaches
often referred to as image segmentation (filtering, watershedding, thresholding, etc.) have been applied
to mangoes, apples, tomatoes, and grapes for detecting and counting within images [31–36]. Although,
successful, these approaches typically require large amounts of high-resolution images with minimal
noise, cannot handle large variation in crop sizes, and can only identify a single crop per image.

Using a machine learning approach, Ok et al. [37] demonstrated that the random forest (RF)
algorithm [38] and maximum likelihood classification [39] were indeed suitable at successfully classifying
wheat, rice, corn, sugar beet, tomatoes, and peppers within fields using satellite imagery. Additionally,
Zawbaa et al. [40] designed an experiment to automatically classify images of apples, strawberries,
and oranges using RF and k-nearest neighbors model [41]. Their study further demonstrates the
success that machine learning capabilities have in agriculture. Moreover, Guo et al. [42] applied a
quadratic-SVM [26] to accurately detect and count sorghum heads from unmanned aerial vehicle
(drone) images. Although these example show the power that modern machine learning has in object
detection, specifically in agriculture, they are not without fault. Namely, tradition machine learning
approaches cannot generalize well to objects with varying image resolutions, different image scaling
(distance from camera to object) and different object orientations (object angles).

Due to the power of deep learning being able to recognize multiple objects within images and the
lack of requirements towards object orientations, there has been a large amount of recent literature
in deep learning in agriculture. In 2019, Ghosal et al., applied their method based on a RetinaNet to
detect and count sorghum heads from drone images [43]. This deep learning approach significantly
outperformed prior sorghum detection and counting work by Guo et al. [42]. Various other deep
learning models have also been proposed in disease detection, quality assessment and detection and
counting of various crops [44–47]. DeepCrop is an image repository consisting of 31,147 images with
over 49,000 annotations from 31 different crop classes [48]. This dataset has been instrumental in
the advancement of object detection in agriculture where often times gathering annotated data is a
challenge [49,50]. With the advent of transfer learning, models can be pre-trained on such datasets
and have their information transferred to detect similar objects without the need for long training
times [51]. Due to the large literature combining deep learning and agriculture, we cannot do justice in
providing a comprehensive review. Instead, we point the reader towards a survey paper which gives a
thorough overview of image-based plant phenotyping using deep learning [52].

We have provided an overview of image processing, machine learning, and deep learning in
various agricultural tasks, as such now we turn our attention to the focus of this paper, namely,
work that has been completed in counting corn kernels. In 2014, Zhao et al. [53] applied traditional
image processing based approaches to count kernels, but was still limited to the previously mention
limitations of requiring high resolution images, low signal to noise ratio, and only being able to count
from a single ear per image. Grift et al. [54] also invoked an image processing based approach but
limits ear images to be taken within a soft box fitted with controlled and uniform lighting conditions.
Moreover, the images in their study contained 360 degree photos, that is, they designed a special
lighting box so that lighting conditions were controlled and to take complete photos of the ear. Ni et al.,
in 2018 [55] and Li et al., in 2019 [56] both utilized deep learning to count corn kernels, however,
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their algorithms were designed to count kernels already removed from the cob. Although both were
able to accurately count kernels, their problem is easier than directly counting kernels while on the ear,
due to the distinct spacing between kernels in their images. Additionally, this process does not allow
for real-time in-field decision making due to having to shell the kernels off the ear before proceeding
with the counting. Although, each of these previous methods have “moved the needle” in regards to
kernel counting there is not a concise method which address all of theses limitations.

Due to the difficult nature of this problem and the demand for in-field corn kernel count estimates,
we propose a deep learning approach to detect and count corn kernels where kernels are still intact on
an ear simply using a 180 degree image. This approach will be robust enough to handle any set of ears
regardless of the orientation of the ears and the light conditions present.

2. Methodology

The goal of this study is to localize and count corn kernels in a corn ear image taken in uncontrolled
lighting conditions. To solve this problem, we first detect all kernels in a corn ear image and then
estimate the total number of kernels by counting the number of detected kernels. As a result,
the underlying research problem is a single class object detection problem. As shown in Figure 1,
the number of objects (kernels) in a corn ear is extensive (up to 800 kernels) and the objects are in close
proximity to one another, making the problem more challenging.

Figure 1. Three genetically different corn ears. Images (a–c) have different backgrounds. We included
different types of backgrounds such as soil, grass, and hands in the training data to make the proposed
method robust against the image background.

We use a sliding window approach for kernel detection in this study. At each window position,
a convolutional neural network classifier returns a confidence value representing its certainty that the
current window contains a kernel or not. After computing all confidence values, a NMS is applied
to remove redundant and overlapping detections. Finally, windows that are classified as a kernel
are passed to a regression model. The regression model takes in a set of kernel-classified windows
which are image patches chosen by the kernel classifier model. Then, each of these selected image
patches is fed to the regression model. For example, all kernel-classified windows are shown with blue
bounding boxes in Figure 2. The regression model predicts (x, y) coordinates of the center of kernels
given image patch of kernels. Figure 2 shows the modeling structure of our proposed corn kernel
detection method. Detailed description of the kernel classifier, NMS, and the regression model is
provided in the following sections. In this study, we did not use popular object detection methods such
as SSD [28], YOLO [29], and fast R-CNN [30] mainly because these methods need considerable amount
of annotated images which do not exist publicly for the corn kernel detection. In addition, we could
not use transfer learning since corn kernel detection is very different than other object detection tasks
such as leaf or human detections.
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Figure 2. Modeling structure of our proposed corn kernel detection method. A detailed description is
given in Section 2.

2.1. Corn Kernel Classifier

In this paper, we apply a sliding window approach for kernel detection problem which requires
a supervised learning model to classify the current window as either kernel or non-kernel. We use
a CNN to classify image patches as CNNs have been shown to be a very powerful method for the
image classification tasks [57–61]. The CNN model takes in image patches with size of 32 × 32 pixels.
The CNN architecture for kernel classification is defined in Table 1. All layers are followed by a batch
normalization [62] and ReLU nonlinearity except the final fully connected layer which has a sigmoid
activation function to produce a confidence value representing the CNN’s certainty that an input image
patch contains a kernel or not. Down sampling is performed with average pooling layers. We do not
use dropout [63], following the practice in [62].

Table 1. The CNN architecture for kernel classification. The Conv, FC, and Avg pool stand for
convolutional layer, fully connected layer, and average pooling layer, respectively.

Type/Stride Filter Size Number of Filters Output Size

Conv/s1 3 × 3 32 30 × 30 × 32

Conv/s1 3 × 3 32 28 × 28 × 32

Avg pool/s2 2 × 2 - 14 × 14 × 32

Conv/s1 3 × 3 64 12 × 12 × 64

Conv/s1 3 × 3 64 10 × 10 × 64

Conv/s1 3 × 3 64 8 × 8 × 64

Avg pool/s1 7 × 7 - 2 × 2 × 64

FC-256

FC-128

Sigmoid

2.2. Non-Maximum Suppression

The kernel classifier outputs a set of candidate proposal bounding boxes for detected kernels.
However, these proposal bounding boxes highly overlap and need to be pruned. As such, the
non-max suppression algorithm [64], which is a key post-processing step in object detection, is used
to remove redundant and overlapping bounding boxes. Let P, S, λ, and D denote the set of initial
proposal bounding boxes, set of corresponding confidence scores, overlapping threshold, and set
of final proposal bounding boxes, respectively. The non-max suppression algorithm includes the
following steps:
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1. Select the highest confidence score bounding box from P and add it to D which is initially empty.
2. Remove the selected bounding box from P.
3. Compute the intersection over union (IOU) [65] of the selected proposal box with other proposal

boxes in P.
4. Remove all proposal boxes in P which have IOU greater than λ.
5. Repeat the above process until the P is empty.

2.3. Regression Model

As shown in Figure 1, the kernels are very close to each other on corn ears. As such, if we
visualized all detected kernels with bounding boxes in a corn ear image, it would be almost impossible
to see the corn ear, especially on the left and right sides of the ear due to having many close bounding
boxes. Furthermore, some kernels have different shapes and angles which might not fit perfectly in
a rectangle bounding boxes. As such, we use a convolutional neural network as a regression model
which takes in an image of kernel with size of 32 × 32 pixels and predicts (x, y) coordinates of the
center of the kernel. The primary reason for not simply using the center of the windows being classified
as kernel as the center of detected kernels is that the center of the kernels are not always in the center of
the windows, especially for the kernels on the sides of the corn ear. The CNN architecture for finding
the (x, y) coordinates of the center of kernel image is defined in Table 2. All layers are followed by
ReLU nonlinearity except the final fully connected layer which has no nonlinearity. Down sampling
is performed with max pooling layers. We did not use dropout for this model as it did not improve
overall performance. The regression model is applied only on the final windows being classified as a
kernel after the NMS. As such, the proposed regression model does not add a lot of computational cost
to the kernel detection approach considering the number of final windows being classified as kernel
is small.

Table 2. The CNN architecture for finding the (x, y) coordinates of the center of a kernel image. The
Conv and FC stand for convolutional layer and fully connected layer, respectively.

Type/Stride Filter Size Number of Filters Output Size

Conv/s1 3 × 3 32 30 × 30 × 32

Conv/s1 3 × 3 32 28 × 28 × 32

Max pool/s2 2 × 2 - 14 × 14 × 32

Conv/s1 3 × 3 64 12 × 12 × 64

Conv/s1 3 × 3 64 10 × 10 × 64

Conv/s1 3 × 3 64 8 × 8 × 64

Max pool/s2 2 × 2 - 4 × 4 × 64

FC-100

FC-50

FC-10

FC-2

3. Experiments and Results

This section presents the dataset used for our experiments, the training hyperparameters, and the
final results. We consider standard evaluation measures such as false positive (FP), false negative (FN),
accuracy, and f-score. All our experiments were conducted in Python using the TensorFlow [66] library
on a NVIDIA Tesla V100 GPU.
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3.1. Dataset

The proposed sliding window approach requires a trained kernel classifier before it can be applied.
Therefore, positive samples of kernels and negative samples of non-kernel are necessary. The authors
manually cut and labeled kernel and non-kernel images from 43 different corn ear images to generate
the training dataset. Each kernel sample is cut out and scaled to 32 × 32 pixels. Negative samples
are generated in the same way using random crops at different positions. The positive samples only
include image of one kernel. If the image patch contains two or more kernels, it is considered a negative
sample. The training dataset consists of 6978 kernel and 9413 non-kernel samples. Figures 3 and 4
show a subset of kernel and non-kernel images, respectively. For the regression model, we only
used the kernel image part of the dataset. We manually labeled the kernel images by finding the
(x, y) coordinates of their centers using Labelme [67] software. Figure 5 depicts a subset of annotated
kernel images.

Figure 3. A random subset of kernel images.

Figure 4. A random subset of non-kernel images.
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Figure 5. A random subset of annotated kernel images. The blue dot indicates the center of the kernel.

3.2. Corn Kernel Classifier Training

We trained the CNN as described in Section 2.1 for kernel classification using the following
training hyperparameters. The weights were initialized with the Xavier initialization [68]. A stochastic
gradient descent (SGD) was used with a mini-batch size of 128. The learning rate started from
0.03% and was reduced to 0.01% when error plateaued. The model was trained for 25,000 iterations.
Adam optimizer [69] was used to minimize the log loss. For our data, we randomly took 20% of the
data as the test data (3278 images) and used the rest as the training data. We augmented around
70% the training data with flip and color augmentations. After augmentation, we had total of 22,292
training images. Figure 6 shows the plot of training and test losses for the CNN. To better evaluate the
CNN classifier, a comparison of the CNN classifier with the HOG+SVM model was performed [24].
This model uses the Histogram of Oriented Gradient (HOG) to extract edge features to describe the
object’s shape and then trains a support vector machine (SVM) classifier based on the extracted features.
The best results achieved for the HOG+SVM were with the parameters 4 × 4 pixels per cell, 2 cells
per block, and 9 histogram bins. Table 3 compares the performances of the CNN and HOG+SVM
classifiers on the training and test datasets. We used the CNN model as our final kernel classifier
because it resulted in a more reliable kernel detection and counting. Moreover, the CNN model can
successfully generalize the prediction to different backgrounds.

Figure 6. Plot of the log loss of the CNN classifier during training process.

Table 3 indicates that the CNN model outperforms the HOG+SVM model with respect to all
evaluation measures. One of the reasons for the higher accuracy of the CNN classifier compared to



Sensors 2020, 20, 2721 9 of 16

the HOG+SVM is that the CNN automatically extracts necessary features from the data. However,
the HOG+SVM model is faster to train and test from computational perspective.

Table 3. Performance comparison of the CNN and HOG+SVM classifiers on the training and test datasets.

Classifier
Evaluation Measures

FP FN Accuracy F-Score

Tr
ai

ni
ng HOG+SVM 596 595 0.947 0.937

CNN 0 0 1.0 1.0

Te
st HOG+SVM 135 135 0.918 0.906

CNN 19 22 0.987 0.985

3.3. Regression Model Training

The CNN model was trained as described in Section 2.3 for finding the (x, y) coordinates of the
center of a kernel image using the following training hyperparameters. The weights were initialized
with the Xavier initialization. A stochastic gradient descent (SGD) was utilized with a mini-batch size
of 45. The model was trained for 25,000 iterations with the learning rate of 0.03%. Adam optimizer
was used to minimize the smooth L1 loss as in [30], which is less sensitive to the outliers compared
to the L2 loss. We randomly took 20% of the data as the test data (1,396 images) and used the rest as
the training data (5582 images). Figure 7 shows the plot of the training and test losses for the CNN
regression model.

Figure 7. Plot of the smooth L1 loss of the CNN regression model during training process. The unit of
the loss is pixel.

3.4. Final Results

Having trained our kernel detection model, we can now apply the sliding window approach
with the trained CNN classifier on several test images containing full ears. After applying the NMS,
the windows that were classified as kernel were passed to the regression model for finding their
corresponding centers. We used window size of 32 × 22 for the sliding window approach. To fully
evaluate the proposed approach, we tested the approach on the multiple corn ears with different
angles, backgrounds and lighting conditions. Farmers and agronomists assume that corn ears are
symmetric [70]. As such, they count the number of kernels on the one side and then double it to
approximately find the total number of corn kernels on a corn ear. We used a similar approach except
that we multiplied the number of detected kernels on the one side by 2.5 because around 2 columns of
kernels on the very left and right sides of the ear are not captured in the image and consequently not
counted. The inference time for a corn ear is 5.79 s.
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Figure 8 shows the results of the proposed approach on 5 different test images. As shown in
Figure 8, the proposed approach successfully found the most of kernels in the test image 1. Test
image 2 in Figure 8 shows the results of the proposed approach on the image of an angled corn ear,
which was obtained by turning the ear around 45 degrees. Test image 2 is considered a difficult test
image because we did not include any angled kernel image in the training dataset. But, the results
indicate that the approach can generalize the detection to the images of angled corn ears. We also
applied the approach on another difficult test image of a corn ear whose kernels are slightly angled,
and as shown in test image 3 in Figure 8, the proposed approach is still able to detect most of the
kernels. Test images 4 and 5 in Figure 8 also show the performance of the proposed method on two
other test corn ears. Table 4 shows the predicted and the ground truth numbers of the kernels on test
images shown in Figure 8. Our proposed approach has the following advantages for kernel counting:
(1) our proposed approach can be used on a batch of corn ears, and (2) our proposed approach can be
used on a slightly angled corn ear.

Figure 8. The results of the proposed approach on 5 different test images.

To completely evaluate our proposed approach, we manually counted the entire number of
kernels on 20 genetically different corn ears and used the proposed method to estimate the number
of kernels on these corn ears. We also implemented the method proposed by Chuan et al. [71] called
Deep Crowd which was originally developed for people counting in extremely dense crowds using
convolutional neural networks. Deep Crowd is one of the state-of-the-art methods proposed for people



Sensors 2020, 20, 2721 11 of 16

counting in dense crowds in the literature. The people counting in extremely dense crowds problem is
similar to the corn kernel counting problem for two main reasons: (1) they both want to count a large
number of objects, and (2) objects are very close to each other. We used the following hyperparameters
for training the Deep Crowd method. We used the exact same network architecture as in [71]. We used
43 corn ear images with size of 768 × 1024 pixels as training data. We randomly cropped 120 patches
with 227 × 227 pixels from each ear image which resulted in the 5160 patches for training the CNN.
We also augmented the training data using color and flip augmentations. The CNN was trained using
SGD with learning rate of 0.03%.

Table 4. The predicted and the ground truth numbers of the kernels on test images shown in Figure 8.

Test Image Predicted
Number of Kernels

Actual
Numbers of Kernels

1 1012 1046

2 312 323

3 550 585

4 342 296

5 390 394

Table 5 compares the performances of the competing methods with respect to the root-mean-
squared error (RMSE), mean absolute error (MAE), and correlation coefficient. Figure 9 shows the
plot of the estimated number of kernels versus the ground truth number of kernels. The proposed
method outperforms the Deep Crowd method with respect to all performance measures. Compared to
the Deep Crowd method which only performs counting without localization, the proposed method
performs both localization and counting. However, the Deep Crowd method has a smaller inference
time compared to our proposed method.

Figure 9. The left and right plots show the predicted number of kernels versus ground truth number of
kernels for the Deep Crowd method and proposed method, respectively.
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Table 5. The performances of the competing methods on the kernel counting task of 20 different corn ears.

Method RMSE MAE Correlation Coefficient

Proposed 33.11 25.95 95.86

Deep Crowd [71] 45.29 35.25 93.12

4. Discussion

In this paper, we propose a kernel detection and counting method based on the sliding window
approach. The proposed method detects and counts kernels on single or multiple corn ears from an
image. Compared to the previous studies, the main novelties of our proposed method are summarized
as follows: (1) the proposed method detects and counts corn kernel without having to remove the
kernels from the corn cob, (2) the proposed method can be used in uncontrolled lighting conditions,
(3) the proposed deep learning based method can be utilized without requiring huge amount of
annotated images, (4) the proposed method outputs a set of (x, y) coordinates of the center of kernels
instead of bounding boxes, which helps better visualize the detected kernels, and (5) our proposed
method is also able to detect kernels on a batch of corn ears at different angles.

The sliding window approach uses a CNN classifier for kernel detection. We compared the
performance of the CNN classifier with HOG+SVM method. The CNN classifier model performed
better than the HOG+SVM method with respect to all evaluation measures because the CNN
automatically extracts necessary features from the data which results in a higher prediction accuracy.
As such, we selected the CNN model as our final kernel classifier because it resulted in a more reliable
kernel detection and counting. In addition, the CNN model can successfully generalize the prediction
to different backgrounds.

Moreover, we applied a non-maximum suppression to remove overlapping detections, and finally,
windows that are classified as kernel are passed to a regression model for finding the (x, y) coordinates
of the center of kernel image patches. We used L1 smooth loss for the CNN regression model since
we found it to be more robust against the outliers and noises in the data. Due to the effectiveness
of the CNN classifier, this approach does not make any assumptions on the lighting conditions, the
background quality or the number of ears, or the orientation of the ear like previous approach do.
Removing these limitations allows farmers and agronomists to use this in-field to estimate the number
of kernels on an ear of corn, given them additional decision making power when it comes to their crop.
To evaluate our proposed method, we manually counted the entire number of kernels on 20 genetically
different corn ears and used the proposed method and another method called Deep Crowd [71] to
estimate the number of kernels on these corn ears. Our proposed method outperformed the Deep
Crowd method with respect to all consindered performance measures. The proposed method achieved
a RMSE of 8.16% of the average number of kernels for the kernel counting task. We also visualized the
detection performance of the proposed method on 5 different test images. As shown in Figure 8, the
proposed approach successfully found the most of kernels in the test images. The results suggested
that the proposed method can generalize the detection to the images of angled corn ears.

We did not use popular object detection methods such as SSD [28], YOLO [29], and fast R-CNN [30]
mainly because these methods need considerable amount of annotated images which do not exist
publicly for the corn kernel detection. In addition, we could not use transfer learning since corn kernel
detection is very different than other object detection tasks such as car and human detections and
features learned from pre-trained models cannot be easily transferred to our kernel detection task.
In addition, we included different types of backgrounds such as soil, grass, and hands in the training
data to make our proposed method more robust against the image background. This approach could
be extended to address several future research directions. For example, similar approach could be
used for disease detection and quality assessment of corn.
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