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Abstract 23 

Foot-and-mouth disease virus (FMDV) remains an important pathogen of livestock more than 24 

120 years after it was identified, with annual costs from production losses and vaccination 25 

estimated at €5.3 to €17 billion EURO ($6.5 to $21 billion USD) in FMDV-endemic areas.  26 

Control and eradication are difficult because FMDV is highly contagious, genetically and 27 

antigenically diverse, infectious for a wide variety of species, able to establish subclinical 28 

carriers in ruminants, and widely geographically distributed.  For early detection, sustained 29 

control, or eradication, sensitive and specific FMDV surveillance procedures compatible with 30 

high through-put testing platforms are required.  At present, surveillance relies on the detection 31 

of FMDV-specific antibody or virus, most commonly in individual animal serum, vesicular fluid 32 

or epithelial specimens.  However, FMDV and/or antibody are also detectable in other body 33 

secretions and/or specimens, e.g., buccal and nasal secretions, respiratory exhalations (aerosols), 34 

mammary secretions, urine, feces, and environmental samples.  These alternative specimens 35 

offer non-invasive diagnostic alternatives to individual animal sampling and the potential for 36 

more efficient, responsive, and cost-effective surveillance.  Herein we review FMDV testing 37 

methods for contemporary and alternative diagnostic specimens and their application to FMDV 38 

surveillance in livestock (cattle, swine, sheep, and goats). 39 

 40 
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 42 

  43 



3 

 

1.0  Introduction 44 

Foot-and-mouth disease virus (FMDV) is a member of family Picornaviridae, genus 45 

Aphthovirus (Bachrach, 1977; Rodrigo and Dopazo, 1995; Rueckert, 1996).  FMDV was the first 46 

virus of vertebrates to be identified, i.e., Loeffler and Frosch (1897) collected vesicular fluid, 47 

passed it through ceramic filters impermeable to bacteria, and reproduced clinical signs in cattle 48 

exposed to the filtrate.  FMDV consists of a single-stranded, positive-sense RNA genome of 49 

approximately 8,500 bases organized in three major regions (5′ non-coding regulatory region, 50 

polyprotein coding region, and 3′ non-coding regulatory region), with a polyadenylated 3′-end 51 

and a small, covalently linked protein (VPg) at the 5′-end.  Polyproteins are post-translationally 52 

cleaved by viral protease into four structural proteins (VP1, VP2, VP3, and VP4) and 8 53 

nonstructural proteins (L, 2A, 2B, 2C, 3A, 3B, 3C, and 3D) (Ryan et al., 1989).  Structural 54 

proteins VP1, VP2, and VP3 assemble to form an icosahedral structure that is internally bound 55 

by VP4.  Nonstructural proteins function in virus replication and interactions with host cell 56 

factors and for processing of the structural proteins (Domingo et al., 2002; Grubman and Baxt, 57 

2004). 58 

 59 

The classic clinical signs of FMDV infection (vesicles on the mouth and feet), were first 60 

described by Hieronymous Fracastorius (1546) after observing an outbreak in cattle near Verona, 61 

Italy (Mahy, 2005).  FMDV is infectious for most animals in the order Artiodactyla (even-toed 62 

ungulates), but especially cattle, buffalo, swine, sheep, and goats (Alexandersen and Mowat, 63 

2005; Bastos et al., 2000; Burrows, 1968; Gibbs et al., 1975a,b; Kitching et al., 2002a,b).  In 64 

addition, more than 70 wildlife species are known to be susceptible to FMDV, including white-65 

tailed deer (Odocoileus virginianus) (Fenner et al., 1993; Moniwa et al., 2012; Snowdon, 1968).  66 
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FMDV in wildlife species is a serious concern because of the problems entailed in eradicating 67 

the virus from such populations.  In the United States, 20,000 mule deer (Odocoileus hermionus) 68 

were killed in Stanislav National Forest to control the 1924-1926 FMDV outbreak in California.   69 

 70 

The virus is highly contagious and, depending on the route of exposure, ≤ 10 tissue culture 71 

infectious doses are sufficient to infect and produce clinical disease in susceptible ruminants 72 

(Alexandersen et al., 2003b; Sellers, 1971).  Although incubation time can be considerably 73 

longer depending on dose and route of infection, viremia typically appears 24 to 48 hours post 74 

exposure and vesicles in the mouth and on the feet, thereafter (Baxt and Mason, 1995; Yilma, 75 

1980).  In an FMDV outbreak, transmission within and between populations can be rapid due to 76 

the short in vivo replication cycle (4 to 6 hours) and acute onset of shedding (1 to 3 days) 77 

(Donaldson et al., 1987; Grau et al., 2015; Grubman and Baxt, 2004).  The most common route 78 

of FMDV transmission is direct contact, however, transmission can occur over significant 79 

distances due to aerosol and mechanical dissemination of virus through water, feed, and fomites 80 

(Brooksby, 1982; Thomson et al., 2003).  Clinically healthy FMDV carriers (reported up to 3.5 81 

years in cattle, 9 months in sheep, and 4 months in goats) occur in both naïve and vaccinated 82 

ruminants, complicating control and eradication efforts (Alexandersen et al., 2002a; 83 

Alexandersen et al., 2003b; Kitching, 1998; Pereira, 1981).   84 

 85 

Infection elicits a rapid immune response, but as a result of extensive antigenic variation, 86 

immunity against one FMDV isolate does not necessarily protect against others (Bedson et al., 87 

1927, Galloway et al., 1948; Gebauer et al., 1988; Salt, 1993; Sutmoller, 2003; van Bekkum et 88 

al., 1959).  Variation in VP1, VP2, and VP3 proteins made it possible for early investigators to 89 
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use cross-neutralization tests to classify serotypes.  In 1922, Vallée and Carré reported the 90 

presence of what is known today as serotype O in France and serotype A in Germany.  Shortly 91 

thereafter, Waldmann and Trautwein, (1926) reported what is now identified as serotype C in 92 

Germany (Brown, 2003).  Three more serotypes (South African Territories; SAT 1, SAT 2, and 93 

SAT 3) were discovered in South Africa by Brooksby et al. (1958) and Asia 1 was identified in 94 

Pakistan in 1957 (Brooksby and Roger, 1957).  Antigenic variation is a challenge to FMDV 95 

control because it has the potential to complicate vaccinology and diagnostics. 96 

 97 

Depending on the geographic region, serotype-specific, inactivated FMDV vaccines are used to 98 

control clinical disease in endemic areas, but have also been used in FMDV eradication 99 

campaigns, e.g. Uruguay, Argentina, and Paraguay (Sumption et al., 2008).  Outbreaks have 100 

occurred in every livestock-containing region of the world with the exception of New Zealand.  101 

According to the World Animal Health Organization (OIE, 2017), 66 countries are free of 102 

FMDV without vaccination, 9 countries are free of FMDV with vaccination and the remainder 103 

are endemically infected or lack reliable data upon which to base their true status. 104 

 105 

Originally, FMDV used in vaccine production was derived from fluid collected from vesicular 106 

lesions on virus-inoculated cattle, just as was done previously for the production of smallpox 107 

vaccine virus (vaccinia virus) (Fenner et al.., 1990; Sutmoller et al., 2003).   Thus, Vallée et al. 108 

(1926) attempted to produce a FMDV vaccine using formaldehyde-inactivated fluid and loose 109 

epithelial tissues from vesicles on calves.  Thereafter, Frenkel (1947) used macroscopic slices of 110 

tongue epithelium to propagate virus and prepare formaldehyde-inactivated vaccine.  This 111 

approach was used by Rosenbusch et al. (1948) to produce enough FMDV vaccine to vaccinate 112 
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more than 2 million cattle in Argentina (Brown, 2003).  Over time, various cell lines e.g. pig 113 

kidney (IBRS-2, MVPK-1), porcine kidney (LFBK) or baby hamster kidney fibroblast (BHK-114 

21), were used in diagnostics or for FMDV propagation (Capstick et al., 1962; Mohapatra et al., 115 

2015; Snowdon, 1966; Swaney, 1976).  Among these cell lines, BHK-21 has been used for large-116 

scale production of FMDV vaccine (Doel, 2003).  In addition, a variety of contemporary vaccine 117 

technologies have been evaluated under experimental conditions, e.g. subunit, vector expression 118 

of subunit components, and DNA vaccines. 119 

 120 

Protective immunity is directed toward structural proteins (Longjam et al., 2011).  Therefore, 121 

elimination of non-structural proteins (NSPs) (L, 2A, 2B, 2C, 3A, 3B, 3C, and 3D) during 122 

vaccine production results in vaccinates without antibodies against these proteins, i.e., DIVA 123 

(differentiating infected from vaccinated animals) vaccines.  That is, DIVA-vaccinated animals 124 

produce antibodies against FMDV structural proteins, but not against NSPs, whereas FMDV-125 

infected animals produce antibodies against both structural and NSPs.  Implementation of a 126 

DIVA strategy based on the detection of antibodies against NSPs in infected animals is used to 127 

monitor the on-going success of FMDV eradication and to maintain “FMD-free with 128 

vaccination” status (Bergman et al., 2004).  However, it has been observed that inadequately 129 

purified FMDV vaccines can contain enough residual NSP to induce anti-NSP antibody and 130 

produce false positive ELISA results (Uttenthal et al., 2010). 131 

 132 

Whether the goal is early detection, sustained control, or eradication, diagnostically and 133 

analytically sensitive and specific (but affordable) FMDV surveillance tools are mandatory.  134 
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Herein we review FMDV testing methods, contemporary and alternative diagnostic specimens, 135 

and their application in FMDV surveillance in livestock (cattle, swine, sheep, and goats). 136 

 137 

2.0  Tests and testing 138 

Prior to the development of the complement fixation test (1929), FMDV infection was diagnosed 139 

primarily by clinical signs, i.e., the presence of vesicles on epithelial surfaces of the feet, mouth, 140 

nasal regions, and mammary glands (Bachrach, 1968).  However, diagnosis based on clinical 141 

signs is complicated by the fact that other viral infections, e.g., swine vesicular disease virus 142 

(SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV), may 143 

produce lesions which are indistinguishable from FMDV.  Today, the detection of FMDV 144 

infections relies on the detection of FMDV-specific antibody (virus neutralization, antibody 145 

ELISA) or on the detection of the virus and/or viral components (virus isolation, antigen-capture 146 

ELISA, or reverse transcription-polymerase chain reaction (RT-PCR)).  These techniques are 147 

reviewed below. 148 

 149 

2.1  Virus detection 150 

2.1.1  Direct complement fixation test 151 

Prior to the development of techniques for virus isolation, Ciuca (1929) showed that the direct 152 

complement fixation test could be used to detect FMDV and serotype isolates.  The method was 153 

based on the fact that guinea pig-derived complement is bound by virus-antibody complexes.  If 154 

virus-antibody binding does not occur, the free complement will lyse sheep red blood cells 155 

(RBC) in the presence of anti-sheep RBC antibody.  It was possible to identify FMDV serotypes 156 

using the direct complement fixation test because FMDV antibodies are serotype specific.  Later, 157 
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Traub and Mohlmann (1943) used the direct complement fixation test to serotype FMDV in 158 

cattle.  The direct complement fixation test is best used early in infection because it requires a 159 

high concentration of virus in the test specimen; thus, it is not useful when vesicles begin to 160 

resolve (Rice and Brooksby, 1953).  Further, serum with pro- or anti-complementary activity will 161 

affect the test results (Ferris and Dawson, 1988). 162 

 163 

2.1.2  Virus isolation 164 

FMDV isolation was first described by Frenkel (1947) using primary bovine tongue epithelial 165 

cells, but Sellers (1955) and Bachrach et al. (1955) adapted primary bovine and swine kidney 166 

cells to FMDV diagnostics.  Historically, bovine thyroid cells were considered the best primary 167 

cells for FMDV isolation, but more recently, continuous cell lines, e.g., IBRS-2, MVPK-1 clone 168 

7, LFBK, BHK21, and BHK21-CT, have been widely used (Dinka et al., 1977; Ferris et al., 169 

2006a,b; House et al., 1989; Nair, 1987).  Among several stable cell lines, bovine kidney cells 170 

expressing β6 and αV and integrin subunits (LFBK-αVβ6) were highly susceptible to all FMDV 171 

serotypes (LaRocco et al., 2013).  The availability of cell culture techniques and the realization 172 

that FMDV could be grown in vitro made typing of FMDV isolates more practical 173 

(Rweyemamu, 1982). 174 

 175 

Virus isolation is the only way to confirm the presence of live FMDV, despite well-recognized 176 

challenges:  (1) working with infectious FMDV presents a significant biosafety risk;  (2) cell 177 

cultures lose susceptibility to the virus over time;  (3) cell lines lose permissiveness to the virus 178 

over passages;  (4) antibodies present in samples from infected animals may completely or 179 

partially neutralize FMDV;  (5) virus isolation is much less analytically sensitive than RT-PCR 180 
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(Alexandersen et al., 2003a);  (6) cytopathic effect can be caused by a variety of factors, not just 181 

FMDV, thus positive results must be confirmed using other methods.   182 

 183 

Propagating virus on cell culture requires technical skill, adequate laboratory facilities, and more 184 

time than molecular assays.  The diagnostic sensitivity of FMDV isolation varies among 185 

laboratories, virus serotype, and the cells used in the procedure (Alexandersen et al., 2003a).  186 

Ferris et al. (2006a) evaluated five European FMDV reference laboratories using a set of 187 

vesicular samples from FMDV-infected cattle (serotypes O, A, Asia 1, and SAT 2), SVDV-188 

infected  pigs, and negative control samples from cattle and pigs.  Among primary cells, bovine 189 

thyroid cells provided the highest rate of FMDV isolation (94%) compared to primary lamb 190 

kidney cells (69%).  The rate of isolation also varied among continuous cell lines:  69% for 191 

IBRS-2, 56% for BHK21, and 25% for BHK21-CT.  In addition, primary bovine thyroid cells 192 

and IBRS-2 cells were susceptible to all FMDV serotypes, whereas primary lamb kidney cells, 193 

BHK21, and BHK21-CT cells were not susceptible to FMDV serotype SAT2.  Data from more 194 

recent studies suggested that newer cell lines are highly susceptible to FMDV, but only partial 195 

comparisons among cell lines have been done.  Brehm et al. (2009) compared primary bovine 196 

thyroid cells, IBRS-2, BHK21, and ZZ-R 127 (fetal goat) cell lines using FMDV isolates 197 

representing all 7 serotypes.  Although less sensitive than primary bovine thyroid cells, cell line 198 

ZZ-R 127 was more sensitive than the other cell lines included in the comparison.  Similarly, 199 

LaRocco et al. (2013) found the LFBK-αVβ6 continuous cell line to more susceptible to FMDV 200 

than primary lamb kidney, IBRS-2, and BHK21 cells. 201 

 202 
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2.1.3  Antigen-capture ELISA 203 

The OIE (2012) recommends the use of FMDV antigen-capture ELISA for the detection of viral 204 

antigen and identification of viral serotype in clinical specimens and culture isolates (Ferris and 205 

Donaldson, 1992; Roeder and Le Blanc Smith, 1987).  Crowther and Elzein (1979a,b; 1980) 206 

initially reported the use of antigen-capture ELISA to detect FMDV in cell culture and later 207 

applied the test to the detection of FMDV in cattle epithelial tissues.  Currently, antigen-capture 208 

ELISAs based on polyclonal antibodies or various monoclonal antibodies targeting structural or 209 

non-structural proteins are available (Ferris and Dawson, 1988; Hamblin et al., 1984; Roeder and 210 

Le Blanc Smith, 1987).  Antigen-capture ELISA is capable of rapidly testing large numbers of 211 

samples, i.e., results can be obtained in 3 to 4 hours (Alexandersen et al., 2003a; Grubman and 212 

Baxt, 2004).  However, the antigenic variability within and between serotypes further 213 

compromises the limited analytical sensitivity of the antigen-capture ELISA format.  Studies 214 

showed that 70% to 80% of cell culture-positive samples and 63% to 71% of RT-PCR positive 215 

oral/nasal swabs were detected by Ag-capture ELISA (Alexandersen et al., 2003a; Morioka et 216 

al., 2014).   217 

 218 

2.1.4  Antigen-capture lateral-flow assay 219 

FMDV antigen-capture lateral flow assays or rapid chromatographic strip tests allow rapid on-220 

site diagnosis in areas where the disease is endemic and in reference laboratories when a rapid 221 

result is needed.  These assays detect FMDV antigens in vesicular fluids or epithelial suspension 222 

from infected animals using monoclonal or polyclonal antibodies (Ferris et al., 2009; 2010; Jiang 223 

et al., 2011; Oem et al., 2009; Reid et al., 2001).  Oem et al. (2009) reported that a monoclonal 224 

antibody-based lateral-flow assay showed 87% diagnostic sensitivity and 99% diagnostic 225 
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specificity for the detection of FMDV serotypes O, A, Asia1, and C when testing epithelial 226 

suspension specimens. 227 

 228 

2.1.5  Reverse transcription-polymerase chain reaction (RT-PCR)  229 

Relative to other virus detection methods, RT-PCR is considered to offer shorter turn-around 230 

time plus higher diagnostic and analytical sensitivity and specificity (Alexandersen et al., 2003a; 231 

Callens et al., 1998; King et al., 2006; Moss and Haas, 1999; Reid et al., 1998; Reid et al., 1999; 232 

Reid et al., 2000; Shaw et al., 2004).  Although FMDV is highly resistant to degradation in the 233 

environment, RT-PCR can detect nucleic acid from both infectious or inactivated virus, thereby 234 

reducing the impact of sample handling deficiencies on virus detection (Cottral, 1969; Longjam 235 

et al., 2011).  The FMDV genome is heterogeneous.  To avoid false negative results, RT-PCR 236 

primers and probes must target nucleic acid sequences that are broadly conserved across all 237 

serotypes.  For surveillance, RT-PCR can be used in parallel with virus isolation to achieve a 238 

more complete epidemiological picture (Callens and De Clercq, 1999; Callens et al., 1998; 239 

Hofner et al., 1993; Laor et al., 1992; Marquardt et al., 1995; Rodriguez et al., 1994). 240 

 241 

Realtime RT-PCR 242 

Realtime RT-PCR has been widely used in FMDV diagnosis because it offers improved 243 

analytical sensitivity and a simpler testing format, i.e., electrophoresis is not required.  The first 244 

universal FMDV realtime RT-PCR used primers and probes specific to a highly conserved 245 

region within a polypeptide gene (P3) and achieved an analytical sensitivity for all FMDV 246 

serotypes estimated at 1 × 102 TCID50 (Meyer et al., 1991).  Carillo et al. (2005) compared whole 247 

genome sequences of 113 FMDV isolates and found that the 5′UTR and 3D (RNA-dependent 248 
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RNA polymerase gene) regions shared a high degree of nucleotide identity among FMDV 249 

isolates, i.e., 83% (5'UTR) and 91% (3D) homology.  Further studies showed that primers and 250 

probes based on 5'UTR or 3D were analytically specific, i.e., no false positives were observed 251 

when testing specimens containing swine vesicular disease virus (SVDV), vesicular stomatitis 252 

virus (VSV), or vesicular exanthema of swine virus (VESV) (Callahan et al., 2002; Ferris et al., 253 

2006a,b; Reid et al., 2002; Shaw et al., 2007).  Although OIE currently recommends the use of 254 

"universal" primers and probes targeting conserved sequences within the 5′ UTR or 3D regions, 255 

serotype specific assays have also been created (Bachanek-Bankowska et al., 2016; Reid et al., 256 

2014).   257 

 258 

Several studies have evaluated the diagnostic performance of 5′UTR and 3D FMD RT-PCRs.  259 

Using a variety of specimens containing viruses representing O, A, and Asia-1 serotypes plus 260 

serum and vesicular samples from FMDV-negative animals, Reid et al. (2014) reported no false 261 

positive results and detection rates of 91% and 96% for 3D and 5′UTR rRT-PCRs, respectively. 262 

Hindson et al. (2008) evaluated 5′UTR, 3D, or both rRT-PCRs using vesicular epithelium 263 

samples containing FMDV (serotypes O, C, Asia-1, SAT1, SAT2, SAT3), SVDV, or VESV.  264 

The diagnostic sensitivity of the 5′UTR and 3D rRT-PCRs was 87% and 97%, respectively.  265 

Combining the two methods resulted in a diagnostic sensitivity of 98%.  King et al. (2006) 266 

compared the diagnostic sensitivity of the 5′UTR and 3D FMDV rRT-PCRs using 394 FMDV 267 

clinical specimens (serum, vesicular epithelium).  Approximately 94% (367 of 392) samples 268 

were positive on one of the two rRT-PCRs, with 88.1% (347 of 394) positive on both assays.  269 

Sequence analyses showed that all false negative results were the result of nucleotide 270 

substitutions within the region targeted by the primers or probes (King et al., 2006).  Therefore, 271 
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laboratories may need to provide for both 3D and 5′UTR RT-PCR testing to reduce the 272 

likelihood of false negative results caused by nucleotide changes in the 3D or 5'UTR target areas 273 

(Moniwa et al., 2007). 274 

 275 

2.2  Antibody detection 276 

FMDV antibody detection methods are routinely used for several purposes, e.g., in import/export 277 

to certify that animals and/or animals from which by-products were derived are free from FMDV 278 

infection, to demonstrate previous FMDV infection or vaccination, or to evaluate antigenic 279 

matching of vaccines.   280 

2.2.1  Indirect complement fixation test 281 

The indirect complement fixation test was the first in vitro test developed for the detection of 282 

FMDV-specific antibody (Rice and Brooksby, 1953).  The assay was further developed to detect 283 

FMDV antibodies from multiple FMDV serotypes (Nordberg and Schjerning-Thiesen, 1956; 284 

Sakaki et al., 1977; Sakaki et al., 1978).  At present, use of the indirect complement fixation test 285 

is recommended by OIE only if FMDV ELISA testing is not available (OIE, 2012). 286 

 287 

2.2.2  Serum-virus neutralization test 288 

The FMDV serum-virus neutralization test (SVN) is a serotype-specific assay for the detection 289 

of neutralizing antibodies elicited by vaccination and/or infection (Golding et al., 1976).  Post-290 

vaccination sero-surveys for FMDV are a major indicator in the assessment of preventive 291 

vaccination programs (Sobrino et al., 2001).  The existence of circulating neutralizing antibody is 292 

associated primarily with resolution of viremia (Pacheco et al., 2010).  The test may be 293 

performed on various cell lines, although Moonen et al. (2000) found that BHK or IBRS-2 cells 294 
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provided better results than PK-2 cells.  The test is more specific than the indirect complement 295 

fixation test and is recommended for international trade by OIE, but the slow throughput (72 296 

hours to perform the test) is incompatible with rapid response and/or routine commerce.  In 297 

addition, the assay's requirement for infectious virus mandates that testing be performed in a 298 

high-level biocontainment facility; often a difficult and expensive hurdle to clear. 299 

 300 

2.2.3  Enzyme-linked immunosorbent assay (ELISA) 301 

Elzein and Crowther (1978) developed the first indirect FMDV antibody ELISA.  Subsequently, 302 

various FMDV ELISAs have been developed for the detection of antibodies and/or serotyping of 303 

viruses (Hamblin et al., 1984; Ouldridge et al., 1982; Ouldridge et al., 1984; Pattnaik and 304 

Venkataramanan, 1989; Rai and Lahiri, 1981; Roeder and Le Blanc Smith, 1987).  ELISAs are 305 

highly repeatable, cost-effective, and compatible with a variety of sample types, e.g., milk, 306 

probang, and oral fluid specimens (Longjam et al., 2011; Senthilkumaran et al., 2017; Blackwell 307 

et al., 1981; Burrows, 1968; de Leeuw et al., 1978). 308 

 309 

2.2.3.1  Structural protein ELISAs 310 

FMDV structural protein ELISAs are serotype-specific tests designed to detect antibodies 311 

elicited by vaccination and/or infection.  Several blocking or competitive ELISAs have been 312 

developed based on serotype-specific polyclonal or monoclonal antibodies against the capsid 313 

proteins (VP1, VP2, and VP3), 146S or 12S subunit epitopes (Cartwright et al., 1980; Roeder 314 

and Le Blanc Smith, 1987; Sáiz et al., 1994).  These assays provide faster throughput than SVN 315 

and avoid the need for tissue culture and live FMDV.     316 

 317 
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2.2.3.2  Non-structural protein ELISAs 318 

Several FMDV recombinant NSPs, e.g. 3ABC, 3AB, 3A, 3B, 3C, 2A, 2B, and 2C have been 319 

used as target antigens in FMDV blocking and indirect ELISAs.  Among these, antibodies 320 

against the 3ABC polyprotein are the most sensitive indicator of FMDV replication (Grubman, 321 

2005; Henderson, 2005).  Brocchi et al. (2006) compared four commercial NSP ELISAs and the 322 

OIE index screening assay using serum samples (n = 3551) from vaccinated and unvaccinated 323 

cattle, pigs, and sheep exposed to FMDV (Table 1).  Diagnostic specificity was adequate for all 324 

tests (97 to 98%) and all tests displayed excellent diagnostic sensitivity (100%) when testing 325 

samples from recently exposed, unvaccinated animals.  However, detection rates were much 326 

lower when testing vaccinated/exposed animals.  As discussed previously, NSP antibody 327 

ELISAs can play a key role in verifying the status of countries considered FMD-free with 328 

vaccination. 329 

 330 

3.0  Sampling and sample types 331 

3.1  Serum  332 

Transmission of FMDV can occur via respiratory, oral, or percutaneous exposure (Alexandersen 333 

et al., 2003a).  The initial replication of virus usually occurs at the site of entry followed by 334 

spread to regional lymph nodes through the circulatory system (Henderson, 1948).  Viremia 335 

appears as soon as 24 hours post-exposure (Alexandersen et al., 2002a, 2003a,b; Cottral and 336 

Bachrach, 1968; Kitching et al., 2002a; Murphy et al., 2010).  Viremia typically lasts 4 to 5 days 337 

in ruminants and 2 to 10 days in pigs, although the level of viremia is usually higher in pigs than 338 

in ruminants (Alexandersen et al., 2001, 2002b,c2003 a,b; Alexandersen and Donalsdon, 2002; 339 

Hughes et al., 2002; Murphy et al., 2010; Stenfeldt et al., 2016). 340 
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 341 

Serum specimens are useful for detection of FMDV during viremia, i.e., serum samples collected 342 

≤ 7 days post-infection can be used for FMDV detection by virus isolation, rRT-PCR, and 343 

antigen capture ELISA, with later samples useful for antibody detection.  In cattle and pigs, 344 

Alexandersen et al. (2002) reported the appearance of ELISA-detectable FMDV serum antibody 345 

by 5 days post inoculation (DPI) and neutralizing antibodies ≤ 2 days later (Alexandersen et al., 346 

2002a, 2003a).  In sheep, ELISA-detectable serum antibody appeared by 9 DPI and neutralizing 347 

antibody between 6 and 10 DPI (Armstrong et al., 2005).  Coincident with the first detection of 348 

antibody is the progressive clearance of virus from circulation and a reduction of virus in most 349 

tissues, with the exception of the pharyngeal region of ruminants (Alexandersen et al., 2003b; 350 

McCullough et al., 1992).  Paired serum samples collected 7 to 14 days apart may be used to 351 

diagnose FMDV on the basis of rising antibody levels in response to infection.  Serum antibody 352 

remains at high levels for several months post-infection and is detectable for years, with the 353 

exception that FMDV specific antibody may be detected for only a few months in young pigs 354 

(Alexandersen et al., 2003a).  The use of filter papers for antibody detection or FTA cards for 355 

nucleic acid detection has been reported as a method to achieve diagnosis without the need to 356 

refrigerate or freeze serum samples (OIE, 2008).   357 

 358 

3.2  Vesicular epithelium and fluid 359 

During viremia, FMDV is distributed to secondary replication sites, i.e., tongue epithelium, nasal 360 

mucosa, salivary glands, coronary band epithelium, myocardium, kidney, spleen, and liver 361 

(Alexandersen et al., 2001, 2003a).  Viral amplification occurs mainly in cornified stratified 362 

squamous epithelium, e.g. feet, teats, dental pad, gum, tongue, and lip, resulting in the formation 363 
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of liquid-filled vesicles (Alexandersen et al., 2001; Arzt et al., 2011a,b; Oleksiewicz et al., 2001).  364 

FMDV replication in pharyngeal epithelial and lymphoid tissues of cattle, sheep, and goats 365 

occurs in both the acute and persistent phases of disease (Alexandersen et al., 2001, 2003a). 366 

 367 

Depending on the route of introduction, vesicles become visible 1 to 3 days after exposure 368 

(Alexandersen et al., 2001, 2003a; Arzt et al., 2011a; Murphy et al., 2010).  However, subclinical 369 

infection is common in small ruminants, e.g. sheep and goats (Cardassis et al., 1966; Gibson and 370 

Donaldson, 1986; Kitching et al., 2002; McVicar and Sutmoller, 1972; Pay, 1988).  If present, 371 

vesicles are generally on the feet of small ruminants, e.g. sheep and goats (Cardassis et al., 1966; 372 

Gibson and Donaldson, 1986; Littlejohn, 1970; Pay, 1988).  If oral lesions are present in small 373 

ruminants, they commonly occur on the dental pad, rather than tongue as occurs in cattle 374 

(Geering, 1967).  Vesicular fluid from unruptured vesicles on the dental pad, gum, tongue, lip, or 375 

feet of clinically affected animals is an ideal specimen for FMDV identification because it 376 

contains a high concentration of virus (there no reports of antibody detection in vesicular fluid) 377 

(Alexandersen et al., 2001).  However, vesicular fluid is generally only present in 1 to 2 day-old 378 

lesions before they have ruptured.  Alternatively, vesicular epithelium from ruptured lesions can 379 

be collected.  FMDV can be detected in these samples up to 10-14 days (Alexandersen et al., 380 

2003).  These samples are stored in glycerine containing 0.04 M phosphate buffer 382 saline 381 

(PBS, pH 7.6) (Ferris and Dawson, 1988).  This specimen can be crushed with sterile sand or 382 

beads and then mixed with laboratory medium to make a 10% suspension for diagnostic analysis 383 

by virus isolation, rRT-PCR, and/or antigen-capture ELISA (Alexandersen and Donaldson, 384 

2002; Oliver et al., 1988; Reid et al., 2001, 2002; Sakamoto et al., 2002).  Presently, in a 385 

clinically suspect case, FMDV RNA can be detected directly from dry vesicular material by 386 



18 

 

homogenized with RNA extraction kit’s lysis buffer followed by rRT-PCR (Howson et al., 2017; 387 

2018).   Collection of vesicular fluid and epithelium are most appropriate in the acute stage of 388 

infection.  Both specimens are the sample of choice for FMDV detection using RT-PCR, 389 

antigen-capture ELISA, and antigen-lateral flow device (OIE, 2017). 390 

 391 

3.3  Buccal samples 392 

FMDV replicates in pharyngeal epithelial tissues and may be detected in esophageal-393 

oropharyngeal fluid by 24 hours post-exposure (Salt, 1993).  In ruminants, FMDV replication in 394 

pharyngeal epithelial tissues is protracted, i.e., the virus may be isolated from esophageal-395 

oropharyngeal fluid samples for up to 9 months in sheep and 3.5 years in cattle (Arzt et al., 396 

2011a,b; Juleff et al., 2008; McVicar and Sutmoller, 1969; Straver et al., 1970; Zhang and 397 

Kitching, 2001).  In swine, infectious FMDV is present in most buccal samples for < 28 days 398 

(oral fluid, nasal swab, esophageal-oropharyngeal fluid, tissues of the pharynx, tonsil, tongue, 399 

epiglottis, larynx, soft palate, nasopharynx, lung), although FMDV RNA was still detected in the 400 

tonsils of the soft palate at 28 DPI (Arzt et al., 2011b; Stenfeldt et al., 2016; Zhang and 401 

Bashiruddin, 2009). 402 

 403 

Probang sampling was first described as a method to collect esophageal-oropharyngeal fluid 404 

from ruminants by Sutmoller and Gaggero (1965).  The sample is collected by inserting a small 405 

metal cup (“probang cup”) on a long shaft through the mouth and into the pharyngeal region, 406 

thereby allowing the esophageal-oropharyngeal secretions to pool in the cup.  Different sizes of 407 

probang cups are used, depending on the ruminant species.  Probang sampling from pigs has 408 

only been reported under research conditions (Parida et al., 2007; Stenfeldt et al., 2013).  409 
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Although esophageal-oropharyngeal fluid samples are the only method that offers a realistic 410 

chance of detecting FMDV in late-stage infection and in persistently infected ruminants, probang 411 

sampling is labor-intensive (involves several persons), requires technical skill, and necessitates 412 

animal restraint during the collection process (Kitching, 2002; Kitching and Alexandersen, 2002; 413 

Kitching and Hughes, 2002).  Stenfieldt et al. (2013) reported that farmers were reluctant to 414 

allow probang sampling because of concerns that the collection process might harm their 415 

animals.   416 

 417 

Oral fluid samples from pigs and cattle have been used to detect FMDV antibody and/or nucleic 418 

acid (Alexandersen et al., 2003b; Callens et al., 1998; Grau et al., 2015; Mouchantat et al., 2014; 419 

Parida et al., 2006; Parida et al., 2007; Senthilkumaran et al., 2017; Stenfeldt et al., 2013; Vosloo 420 

et al., 2015).  Oral fluid samples can be collected from individual animals using various 421 

absorbent materials or from groups housed in the same space (pens or corrals) by allowing them 422 

to chew on rope suspended in the pen (Alexandersen et al., 2003b; Kittawornrat et al., 2010; 423 

Mouchantat et al., 2014; Prickett et al., 2008; Senthilkumaran et al., 2017; Stenfeldt et al., 2013; 424 

Vosloo et al., 2015).  Oral fluid collection is simple, non-invasive, rapid, and cost-effective; for 425 

which reasons it has been widely applied to livestock surveillance, especially swine (Prickett and 426 

Zimmerman, 2010).  FMDV can be detected in oral fluid samples by RT-PCR for up to 15 DPI 427 

in cattle, 8 DPI in sheep, and more than 27 DPI in pigs (Alexandersen et al., 2003b; Parida et al., 428 

2007).   429 

 430 

Conventional inactivated FMDV vaccines induce only a systemic antibody response whereas 431 

viral replication in infected animals produces both systemic and mucosal immune responses 432 
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(McCullough et al., 1992).  Therefore, FMDV infection results in antibody-positive oral fluid or 433 

esophageal-oropharyngeal fluid samples, but vaccinated animals remain antibody negative 434 

(DIVA) (Kitching, 2002b; Parida et al., 2006).  Virus neutralization assays and IgA-specific 435 

ELISAs for esophageal-oropharyngeal or oral fluid samples have been developed to detect 436 

FMDV infected animals in vaccinated populations (Amadori et al., 2000; Archetti et al., 1995; 437 

Biswas et al., 2008; Eblé et al., 2007; Mohan et al., 2008; Pacheco et al., 2010; Parida et al., 438 

2006; Salt et al., 1996; Stenfeldt et al., 2016).  Using an experimental ELISA based on a 3ABC 439 

polyprotein, FMDV-specific IgA was detected in oral fluids from pigs by 14 DPI 440 

(Senthilkumaran et al., 2017).  Earlier workers reported that FMDV-specific IgA could be 441 

detected in esophageal-oropharyngeal or oral fluid samples for up to 182 DPI in cattle and 112 442 

DPI in pigs (Eblé et al., 2007; Mohan et al., 2008). 443 

 444 

3.4  Mammary secretions 445 

In 1968, Burrows reported that FMDV appeared in the milk of cattle exposed to infected animals 446 

an average of 2.2 days before clinical signs.  Subsequent experiments showed extensive viral 447 

replication in bovine mammary gland parenchyma beginning 8 to 32 hours post exposure 448 

(Alexandersen et al., 2003b; Burrows, 1971).  FMDV can also be detected in pig, sheep, and goat 449 

milk coincident with the appearance of viremia, but higher viral titers are present in sheep milk 450 

vs serum, suggesting either FMDV replication in small ruminant mammary gland tissue and/or 451 

the concentration of virus in milk (Arzt et al., 2011a,b; Burrows et al., 1968; McVicar et al., 452 

1977).  Blackwell et al. (1981) reported that FMDV could be shed in cattle mammary secretions 453 

for up to 14 DPI and was detectable in pasteurized whole milk, skim milk, cream, and cellular 454 

components in mammary secretions.  Using rRT-PCR, FMDV nucleotide can be detected in 455 
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cattle milk for up to 23 days.  These data justify the testing of bulk tank milk samples by RT-456 

PCR for the early detection of FMDV in dairy herds (Reid et al., 2006).  Modeling the 457 

concentration of FMDV in bulk milk as a function of the number of cows shedding virus at any 458 

point in time, Thurmond and Perez (2006) predicted that FMDV nucleic acids could be detected 459 

in bulk tank milk samples between 2.5 and 6.5 days post-exposure, depending on the within-herd 460 

transmission rate.  Further, it was predicted that nucleic acid could be detected in bulk tank milk 461 

before 10% of the cows showed clinical signs. 462 

 463 

Individual and bulk tank milk samples have also been tested for FMDV-specific antibody, either 464 

for detection or for monitoring the response to vaccination (Armstrong and Mathew, 2001; Fayed 465 

et al., 2013; Rémond et al., 2002; Thurmond and Perez, 2006).  Serum antibody is concentrated 466 

into mammary secretions by active transport mediated by neonatal Fc receptors on the 467 

basolateral surface of the mammary epithelial cells.  As a result, mammary secretion collected 468 

from FMDV-infected cattle can contain higher levels of antibody than serum (Stone and DeLay, 469 

1960).  FMDV neutralizing antibody can be detected in mammary secretions within 7 days after 470 

exposure in cattle (Stone and Delay, 1960).  ELISA-detectable FMDV antibody can be detected 471 

in mammary secretions for up to 12-months post-vaccination in cattle, 24 weeks post-vaccination 472 

in pigs, and 83 days post-vaccination in sheep (Armstrong, 1997; Blackwell et al., 1982; 473 

Burrows, 1968; de Leeuw et al., 1978; Francis and Black, 1983; Kim et al., 2017). 474 

 475 

3.5  Nasal and upper respiratory tract secretions 476 

Respiratory tract mucosa is the initial site of FMDV replication and the virus is present in both 477 

upper and lower respiratory tract secretions during the acute phase of infection (Alexandersen et 478 
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al., 2003a,b; Donaldson and Ferris, 1980; Korn, 1957).  The specimens can be used in preclinical 479 

diagnosis because FMDV RNA may be detected in nasal swabs from one day before clinical 480 

signs through 10 to 14 days after the appearance of serum antibodies (Alexandersen et al., 481 

2003a,b; Callahan et al., 2002; Marquardt et al., 1995).  In pigs, FMDV RNA can be detected in 482 

nasal swabs from 6 hours through 7 DPIs, i.e., up to 2 days after the appearance of serum 483 

antibody (Alexandersen et al., 2003a). 484 

 485 

3.6  Aerosols 486 

Airborne infectious FMDV can be resuspended from any FMDV source that can become 487 

aerosolized, e.g., from secretions or excretions produced in respiratory, oral, and/or pedal 488 

epithelia (Brown et al., 1992; Burrows et al., 1981; Sorensen et al., 2000; Sutmoller et al., 1976).  489 

Re-analysis of epidemiological and meteorological data collected during the 1982–1983 490 

epidemic in Denmark suggested that FMDV was aerosolized and transmitted over a distance of 491 

70 km (Christensen et al., 2005).  Infectious FMDV can be detected in respiratory exhalations 1 492 

to 6 days post-exposure in cattle (Alexandersen et al., 2003a).  FMDV RNA can be detected in 493 

respiratory exhalations 6 hours to 4 days post-exposure in pigs (Alexandersen et al., 2001; 494 

Oleksiewicz et al., 2001). Notably, pigs aerosolize more virus than ruminants, i.e., 1 x 106.1 495 

median tissue culture infective dose (TCID50) per  day in pigs (Sellers, 1971) compared to 1 x 496 

104.3 TCID50/day in cattle and sheep (McVicar and Sutmoller, 1976), because the virus replicates 497 

more extensively in swine respiratory mucosa (Alexandersen and Donaldson, 2002; 498 

Alexandersen et al., 2002a,b,c; Arzt et al., 2011a; Oleksiewicz et al., 2001).  In sheep, FMDV 499 

was detectable in respirations 17 hours to 13 days post-exposure, i.e.,  FMDV is shed in aerosol 500 

1 to 2 days before the appearance of clinical signs (Alexandersen et al., 2002b; Burrows, 1968; 501 
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Sellers et al., 1969).  Experimentally, cattle and sheep can be infected by airborne exposure to as 502 

little as 1 x 101 TCID50, whereas pigs require more than 1 x 103 TCID50 (Alexandersen and 503 

Donaldson, 2002; Alexandersen et al., 2002a; Donaldson and Alexandersen, 2001; Stenfeldt et 504 

al., 2016). 505 

 506 

Air samples for FMDV detection have been collected using a variety of sampling devices.  507 

Pacheco et al. (2017) reported that air samples containing FMDV RNA can be collected by 508 

pulling air in a room containing FMDV infected cattle through Fluoropore membrane filter (1.0 509 

µm) or polyester filter disc (1.0 µm) using an air pump (4.6 to 144 L/min air flow capacity) for 510 

24 hours.  The filters were then cutted into 433 nm3 pieces, then disrupted by glass beads and 511 

tissue mixer system.  FMDV RNA could be extracted from the pieces of filter using column 512 

RNA extraction kit using procedure described elsewhere (Pacheco et al., 2012).  Exhaled air 513 

containing FMDV RNA from infected cattle can be collected individually using a microchip-514 

based hand-held air sampling device (Ilochip A/S, Denmark).  FMDV RNA can be harvested by 515 

washing the chip chamber with 25 µl of 0.1% (v/v) TritonX-100 solution (Sigma-Aldrich) 516 

following by RNA extraction (Oem et al., 2005).  517 

 518 

Aerosol sampling has primarily been a research tool for understanding and modeling the 519 

transmission of FMDV over distances, but theoretically, on-farm air sampling could be used for 520 

pre-clinical non-invasive FMDV surveillance.  Such a system would need to account for the fact 521 

that viral aerosols are highly dynamic, non-uniform, and subject to atmospheric and climactic 522 

conditions (Verreault et al., 2008). 523 

 524 
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3.7  Other sample types 525 

Information concerning the shedding and/or detection of FMDV in urine and/or feces from 526 

FMDV-susceptible species is sparse, but shedding of FMDV in cattle urine and feces between 2 527 

and 6 DPI has been reported (Garland, 1974; Bachrach, 1968).  FMDV may be resistant in the 528 

environment, depending on the virus strain and the ambient conditions, and has been detected by 529 

virus isolation for up to 39 days in cattle urine and 14 days in feces (Alexandersen et al., 2003a; 530 

Bachrach, 1968; Cottral, 1969; Donaldson et al., 1987; McColl et al., 1995).  In general, urine 531 

and feces have not been considered suitable diagnostic specimens because they contain little 532 

virus and are likely to be mixed with environmental contaminants and other body fluids 533 

(Alexandersen et al., 2003a; Parker, 1971).  However, in the context of molecular diagnostics, 534 

these sample types may deserve further evaluation in terms of their suitability for environmental 535 

surveillance and monitoring. 536 

 537 

Conclusions 538 

FMDV remains an important pathogen of livestock more than 120 years after it was first 539 

identified because it is highly contagious, genetically and antigenically diverse, infectious for a 540 

wide variety of species, able to establish subclinically infected carriers in some species, and 541 

widely geographically distributed (Brito et al., 2017).  The "burden of disease" imposed by 542 

FMDV is economically astonishing.  Globally, Knight-Jones et al. (2013), estimated the annual 543 

costs from production losses and vaccination at €5.3 to €17 billion EURO ($6.5 to $21 billion 544 

USD) in FMDV-endemic areas.  In FMDV-free areas, they estimated the annual costs of FMDV 545 

outbreaks at ≥ €1.2 billion EURO ($1.5 billion USD). 546 

 547 



25 

 

With good reason, the World Animal Health Organization (OIE) and the Food and Agriculture 548 

Organization (FAO) have proposed the global eradication of FMD by the year 2030 (Rodriguez 549 

and Gay, 2011).  This objective creates the needs for alternative control methods, i.e., vaccines 550 

that provide broad-range protective immunity and diagnostic methods that can differentiate the 551 

vaccinated from infected animals.  Nevertheless, eradication is not feasible without the inclusion 552 

of accurate, cost-effective surveillance. 553 

 554 

Historically, FMDV surveillance has been typically based on individual animal serum, vesicular 555 

fluid, or epithelial samples.  Although current methods are still necessary for FMDV diagnoses, 556 

individual animal sampling/testing is impractical and expensive for surveillance in countries 557 

endemic with the disease.  In an outbreak scenario, it would be feasible for individual sampling 558 

to occur.  However, FMDV and/or antibody are also present in other body secretions, e.g., buccal 559 

and nasal secretions, respiratory exhalations (aerosols), mammary secretions, urine, feces, and 560 

environmental samples (Table 2).  Alternative specimens can be used to support control and/or 561 

elimination programs by enabling herd-level sampling for FMDV surveillance at a lower cost 562 

and with less effort.  Future research should focus on the development of diagnostic assays able 563 

to exploit the detection opportunities offered by alternative specimens because without these 564 

tools the goal of FMDV eradication is unlikely to succeed. 565 

566 
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Table 1.  Detection of FMDV infection in cattle using non-structural protein-based ELISAs (modified from Brocchi et al., 2006)a 

 

 Days post- 

exposure 
n 

- - - - - - - - - - -    Percent positive (95% confidence intervalb)    - - - - - - - - - - - 

 3ABC ELISAc 3ABC ELISAd 3ABC ELISAe 3ABC ELISAf 3B ELISAg 

1.   Non-vaccinated 

cattle exposed to 

infection (n = 54) 

7 - 14 5 100 (48, 100) 100 (48, 100) 100 (48, 100) 100 (48, 100) 100 (48, 100) 

15 - 27 27 100 (87, 100) 100 (87, 100) 100 (87, 100) 100 (87, 100) 100 (87, 100) 

28 - 100 26 100 (87, 100) 100 (87, 100) 96 (80, 100) 92 (75, 100) 100 (87, 100) 

2.   Vaccinated cattle 

exposed to infection 

(n = 285) 

7 - 14 180 -181 49 (41, 56) 49 (41, 56) 41 (34, 49) 50 (43, 58) 32 (26, 40) 

15 - 27 131 60 (51, 69) 53 (45, 62) 50 (42, 59) 53 (44, 61) 38 (30, 47) 

28 - 100 107 - 108 69 (60, 78) 64 (54, 73) 58 (49, 68) 50 (40, 61) 56 (46, 65) 

>100 47 72 (57, 84) 75 (60, 86) 57 (42, 72) 38 (25, 54) 47 (32, 62) 

 

aCattle serum samples obtained from experimental and known-status field animals  

b95% confidence intervals calculated from proportional data given in Brocchi et al., 2006. 

c NCPanaftosa-screening (Panaftosa, Pan American Health Organization, Rio de Janeiro, Brazil). 
d Ceditest® FMDV-NS (Cedi diagnostics B.V., Lelystad, The Netherlands.  Currently produced and marketed as Priocheck® FMDV-NS by 

Thermo Fisher Scientific Prionics Lelystad B.v., Lelystad, The Netherlands). 

e SVANOVIRTM FMDV 3ABC-Ab ELISA (Svanova, Upsala, Sweden). 

f CHEKIT-FMD-3ABC (Bommeli Diagnostics/Idexx, Bern, Switzerland). 

g UBI® FMDV NS ELISA (United Biomedical Inc., New York, USA). 
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Table 2.  Temporal range for the detection of FMDV and/or viral components in alternative specimens 

Species Assay Specimen DPIa References 

Cattle rRT-PCR Serum 1 - 6 Alexandersen et al., 2003, Stenfeldt et al., 2013 

Probang sample 1 - 553 Alexandersen et al., 2002; Moonen et al., 2004; Stenfeldt et al., 2013; Subramanian 

et al., 2012 

Buccal sampleb 1 - 15 Alexandersen et al., 2003; Stenfeldt et al., 2013 

Nasal swab 3 - 18 Subramanian et al., 2012 

Feces 4 - 8 de Rueda et al., 2015 

Virus 

isolation 

Serum 1 - 8 Burrows, 1968, Blackwell et al., 1982 

Respiratory exhalation 1 - 4 Alexandersen et al., 2003 

Probang sample 1 - 469 Blackwell et al., 1982; Burrows, 1968; de Leeuw et al., 1978; Moonen et al., 2004; 

Subramanian et al., 2012 

Nasal swab 3 - 5 Subramanian et al., 2012 

Milk 1 - 13 Blackwell et al., 1982; Burrows, 1968; de Leeuw et al., 1978 

Swine Ag-ELISA Buccal sampleb 1 - 7 Morioka et al., 2014; Senthilkumaran et al., 2017 

rRT-PCR Serum 1 - 11 Alexandersen et al., 2003; Doel et al., 2009; Senthilkumaran et al., 2017; Stenfeldt 

et al., 2013 

Buccal sampleb 1 - 27 Alexandersen et al., 2003; Grau et al., 2015; Mouchantat et al., 2014; Parida et al., 

2007; Senthilkumaran et al., 2017; Stenfeldt et al., 2013; Vosloo et al., 2015 

Respiratory exhalation 1 - 5 Doel et al., 2009; Parida et al., 2007 

Pharyngeal swab 1 - 15 Mouchantat et al., 2014 

Probang sample 1 - 27 Parida et al., 2007; Stenfeldt et al., 2013 

Nasal swab 1 - 14 Alexandersen et al., 2003; Parida et al., 2007; Senthilkumaran et al., 2017 

Feces 3 - 11 Fukai et al., 2015 

Virus 

isolation 

Serum 1 - 4 Alexandersen et al., 2003 

Buccal sampleb 1 - 5 Parida et al., 2007; Senthilkumaran et al., 2017 

Respiratory exhalation 1 - 5 Alexandersen et al., 2003; Parida et al., 2007 

Pharyngeal fluid 2 - 10 Burrows, 1968 

Nasal swab 2 - 5 Parida et al., 2007 

Feces 3 - 4 Fukai et al., 2015 

Rectal swab 1 - 7 Burrows, 1968 

aDay post inoculation (DPI) represents the minimum and maximum detection points reported. 
bBuccal samples including samples collected with cotton swabs, cotton rope, or rope-in-a-bait collection devices 


