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Abstract

Quantum states of light, with sub-classical noise statistics, are heralded
as a potential route towards enhanced absorption spectroscopy. In this
thesiswedevelop key infrastructure in the pursuit of quantum-enhanced

absorption spectroscopy in the 2 µm-band via the adoption of integrated silicon
photonics as a deployable and scalable solution.

Characterising quantum states of light in the 2 µm-band requires shot-noise
limited homodyne detectors and so we start by presenting the design and char-
acterisation of a homodyne detector that we use to make the first observation of
megahertz speed vacuum shot-noise in this band. The device, designed primar-
ily for pulsed illumination, has a 3-dB bandwidth of 13.2 MHz, total conversion
efficiency of 57% at 2.07 µm, and a common-mode rejection ratio of 48 dB at 39.5
MHz.

We then utilise a silicon chip to implement an all-optical noise suppression
scheme aimed at reducing the intensity noise of state-of-the-art pulsed lasers in
this band via nonlinear interferometry. We find initial designs capable of noise
suppression but with the addition of unwanted noise amplification from modu-
lation instability.

In the final results chapter we look to expand the applicability of quantum
states in absorption spectroscopy by analysing the effect of sample saturation
on estimate precision in absorption measurements. We compare both classical
and quantum probes. A limit is derived on the maximum precision gained from
using a nonclassical probe and ameasurement strategy for saturating this bound
is presented. Finally, we evaluate amplitude-squeezed light as a viable route to
gaining a quantum advantage under saturation.
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Introduction

Optical sensing exploits light to map information from any given domain
to the electrical domain. The history of optical sensing, reliant upon ab-
sorbance, emissive and florescence effects, dates back to the 16th century.

However, it was not until the advent of the laser in 1960 that the field reached
maturity1. Absorption-based optical sensing, a broad subset of optical sensing
techniques, takes advantage of the discrete, unique, electronic energy spectra of
atoms and molecules; a consequence of the laws of quantum physics2.

Encoded in the position, strength, and shape of each feature within an atomic
or molecular absorption spectrum is information about the atomic structure,
mass, and bond strengths, along with macroscopic properties of an ensem-
ble such as composition, concentration, temperature, mass flux, velocity and
pressure. Due to the vast amount of information obtainable, absorption spec-
troscopy techniques have enabled many advancements across atomic physics3,
astrophysics4, molecular5 & pharmaceutical chemistry6, and environmental7 &
atmospheric sensing8, with 12 noble prizes awarded to the development of such
techniques across physics and chemistry9.

Between 2 µm–5 µm, many gasses and biological molecules exhibit fundamen-
tal rotational and vibrational features, Fig. 1.1. Crucial to the application of ab-
sorption sensors in this region of the spectrum is the deployability of such tech-
nologies outside the lab to provide in situ and realtime data streams. Exam-
ples of such applications can be found in numerous industries including chem-
ical process monitoring10–14, climate research15–18, agricultural monitoring19–21,
and in the medical field, e.g. for breath analysis22,23. Each application demands
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Figure 1.1.Absorption spectra of several prominent absorbing gasses
in the 2 µm-5 µm region of the electromagnetic spectrum. Data was
taken from HITRAN, an open-access online database for molecular
absorption coefficients26

its own specification and threshold sensitivity with common desirable features
seen across the board that include: high stability, low power consumption, mass-
manufacturability, low cost, longevity, and high precision24. Liu et al presents a
comprehensive review of all major gas sensing technologies in 2012 and found
that although optical methods provide great promise in regards to the desired
features listed above, they still represent only a small portion of gas sensors in
use, with cost proving to be the main hurdle25. Integrated optics, that make use
of small photonic integrated circuits, are widely believed to be a promising so-
lution capable of overcoming this hurdle via the economies of scale afforded by
billion dollar fabrication houses.

Integrated photonic absorption gas sensors face a number of technical chal-
lenges in this region of the spectrum; a platform must be chosen that is not only
transparent at the central wavelength, but which also provides low loss propaga-
tion, laser & detector integration, and sufficient analyte overlap. Furthermore, en-
hanced absorption methods, reliant on fast modulation27–29 or cavity effects30,31,
are often required to provide sufficient sensitivity and place additional demands
on a given platforms capabilities. With a transparency window that reaches up
to 8 µm (Fig. 1.2)32, silicon photonic platforms are an obvious first choice as they
boast the most advanced fabrication tooling and are already supported by a tril-
lion dollar CMOS industry33 that has already been utilised to engineer numer-
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Figure 1.2. The electromagnetic spectrumwith particular reference to the
transparency windown of silicon and silicon dioxide. Figure taken
with permission from Ref.36.

ous breakthrough integrated photonic devices in the pursuit of quantum tech-
nologies in the telecoms band34. Miller et al. reviews progress made in adapting
silicon photonics for applications in the mid-infrared35.

Notable progress towards silicon based integrated, deployable, absorption
gas sensors in this region of the spectrum include: the development of a range
ofMIRmonolithic laser technologies Si-integrated via heteroepitaxy37–39, the de-
velopment of longwavelength, waveguide-integrated, photodetectors via hetero-
geneous semiconductor materials40–42, and progress in exploiting nonlinear op-
tics for the generation of integrated frequency combs for advanced multi-mode
techniques such as broadband dual comb spectroscopy43. Research is now heav-
ily focused on marrying together these engineering breakthroughs into a singu-
lar competitive device44. Sensitivity—the minimum detectable change in the tar-
get parameter—andprecision—the variance acrossmultiplemeasurements—are
also centre stage for any integrated gas sensor that wishes to gain a competitive
edge over other non-optical schemes. Therefore, it is informative to look towards
the cutting edge of optical metrology, pioneered by the use of quantum states
of light45, to guide the development of sensors capable of unparalleled limits of
detection.

The field of quantum optical metrology—interested in the study of non-
classical light for enhanced measurement precision and sensitivity—has iden-
tified optimal states for parameter estimation as being non-classical states of
light: single-photon states46, multi-photon states47, or squeezed states48–50. In
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Chapter 1. Introduction

Figure 1.3.Nonlinear refraction, nonlinear absorption, and Rayleigh scat-
tering in silicon. These values have been normalised to their value at
1.55 nm. The diamonds and squares are data taken from Z-scan mea-
surements in Refs.52 and53. The blue line, n2, is a guide for the eye.
The red line, βTPA, is plotted using a two-photon absorption model54.
The graph is taken with permission from Ref.36.

particular, squeezed states—a resource for reducing the inherent noise within
a bright laser beam—are heralded as the most viable route towards a deploy-
able quantum-enhanced sensor as they do not rely on cryogenic temperatures
for detection and can provide bright signals. Two key requirements for the pro-
duction of squeezed states, and indeed all the nonclassical states listed above,
are 1) highly nonlinear guiding materials to provide squeezed statistics (see Sec.
2.1.1.4) and 2) low linear and nonlinear losses to preserve high state generation
efficiency (see Sec. 2.1.5). In addition to these, low noise high efficiency detection
methods—such as homodyne detection (see Sec. 3.1)—are required not only for
quantum probe characterisation51, but also for the optimisation of many optical
absorption sensing schemes in which detector efficiency plays a key role in per-
formance.

Historically, telecoms band integrated silicon photonics has utilised a rela-
tively high nonlinear Kerr response to satisfy 1) above (see Sec. 4.1.1 for a de-
scription of Kerr nonlinearity). However, at these wavelengths the platform also
suffers from high nonlinear loss through a process called two-photon absorp-
tion (TPA)55. In TPA, two photons are absorbed to produce free carriers that are
then able to wreak havoc via broadband free carrier absorption and dispersion56.
Although TPA can in some instances be a useful property57,58—in most scenar-
ios it provides a fundamental limit on the efficacy of silicon for the production of
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nonclassical states59. Alternative materials with wider band gaps, such as silicon
nitride, are a potential solution to alleviating TPA60,61 at telecom wavelengths.
However, silicon nitride displays a lower nonlinear refraction and looser opti-
cal confinement meaning far higher pump powers are required to generate the
same nonlinearity36. Furthermore, variations in the fabrication of silicon nitride
across a wafer results in a varied refractive index—a challenge for the scalability
of a given technology62.

A second option is to remain in silicon and shift the working wavelength up
the spectrum so as to bring the two-photon energy below the band gap of silicon
(∼ 1.1 eV). This has the added benefit of shifting towards the application-rich
fingerprint region. Figure 1.3 shows the dispersion of the nonlinear TPA coeffi-
cient βTPA, nonlinear refractive index n2, and Rayleigh scattering cross-section.
At room temperature silicon displays a two-photon band edge around 2.2 µm

where the energy of two photons is insufficient to promote a valance band
electron, thus extinguishing TPA. The nonlinear refraction simultaneously has
a resonant spike, increasing the efficiency of squeezed state generation. This
wavelength band is also comfortably within the transparency range of the com-
monly used SiO2 cladding, enabling standard manufacturing processes. At long
wavelengths propagation losses are diminished due to reduced Rayleigh scatter-
ing from waveguide side-wall roughness63, and constraints on fabricating sub-
wavelength devices become relaxed64.

Rosenfeld et al. have proven the benefits of shifting to longer wavelength in
silicon via the first demonstration of single-photon interference above 2 µm65. In
this thesis, we aim to caplitalise on the enhanced nonlinearity and reduced losses
silicon offers at 2.1 µm to develop quantum resources which will pave the way
for future quantum-enhanced integrated absorption sensors operating in this re-
gion of the spectrum. Crucial resources include, low noise lasers and fast ho-
modyne detection46,66. The classical noise and inherent quantum noise within
a laser probe fundamentally limits the precision of optical metrology measure-
ments and as such, methods to reduce both noise sources are valuable for en-
hancing the precision of a given measurement scheme on a per photon basis45,46.
Once noise is sufficiently suppressed to (and below) the classical limit, low noise,
efficient, homodyne detection becomes important for the measurement and ver-
ification of the states properties67,68. In addition, fast homodyne detectors can
be used in conjunction with modulation techniques to shift target information to
higher frequencies and thereby circumvent low speed 1/ f noise present in most
sensing schemes69–71.
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Chapter 1. Introduction

At 2 µm, there are currently no shot-noise limited lasers (pulsed or
continuous-wave) or high speed homodyne detectors capable of measuring
quantum noise. In this thesis we address these shortcomings and develop the
first 2 µm homodyne detector with an efficiency > 50% (see Chap. 3)—a keymile-
stone in efficiency that enables the characterisation of exotic quantum states72. To
address the lack of lownoise lasers,we present an all-optical, chip-based,method
for the suppression of classical noise within a pulsed 2 µm laser (see Chap. 4). In
addition to this, we present theory work that looks to expand our understanding
of exactly when it is beneficial to upgrade a classical probe to a quantum probe in
absorption spectroscopy. Specifically, we explore the common scenario in which
the sample is prone to saturation effects which result in damage at higher probe
power73,74. In this scenario, we find the obtainable precision is naturally limited
by saturation, an effect that we prove can be mitigated via nonclassical states of
light (see Chap. 5).

1.1 Thesis Outline

Here I give an overview of the topics discussed in this thesis. Each chapter starts
with a declaration of my contribution which details the specific work I have per-
formed for each.

Chapter 2 is an introductory theory chapter covering relevant material in
quantum optics (Sec. 2.1) and integrated optics (Sec. 2.2). Quantum optics
includes an introduction of quantum electrodynamics (Sec. 2.1), single-mode
states (Sec. 2.1.1) and their properties & representations, continuous-mode
states (Sec. 2.1.3, and linearisation as a working model for the output state of
a continuous-wave laser (Sec. 2.1.4). Integrated optics covers guided modes in
waveguides (Sec. 2.2.1), the working principles of key components (Sec. 2.2.3,
2.2.4 & 2.2.5) and integrated beamsplitters (Sec. 2.2.6).

Chapter 3 presents the working principles of homodyne detection (Sec. 3.1),
key components required for homodyne detection (Sec. 3.2), simulation & de-
sign considerations of building an efficient, fast, homodyne detector for quan-
tum noise characterisation at 2 µm (Sec. 3.4), and the characterisation of the engi-
neered device (Sec. 3.5). Specifically, we discuss homodyne theory for the mea-
surement of continuous-wave (Sec. 3.1.0.1) & pulsed vacuum noise (Sec. 3.1.0.2),
and electronic readout of homodynedetection via an electrical spectrumanalyser
(Sec. 3.1.1.1). We discuss the working principles of the photodiode (Sec. 3.2.1),
transimpedance amplification (Sec. 3.2.2), and relative noise considerations for
quantummeasurements (Sec. 3.2.3).We then build and characterise a homodyne
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1.1. Thesis Outline

detector (Sec. 3.5), discussing its performance and impact in the wider field (Sec.
3.6).

Chapter 4 moves on to present work on an integrated all-optical noise sup-
pression scheme for pulsed light. In this chapter we utilise the detector built in
the previous chapter to asses noise suppression. We start by introducing noise
suppression using Kerr interferometers (Sec. 4.1). In this section we cover Kerr
nonlinearity (Sec. 4.1.1), self-phase modulation (SPM) (Sec. 4.1.2), pulsed SPM
(Sec. 4.1.3), SPM in a Kerr interferometer (Sec. 4.1.7), and quantum SPM (Sec.
4.1.5). We model the evolution of a shot-noise limited pulse laser through a Kerr
interferometer and simulate the expected squeezing resultant from the device
(Sec. 4.1.6). The model is adapted to include classical noise and we present the
expected classical noise reduction from the device (Sec. 4.1.7). We then move on
to discuss the optimal design for maximal noise suppression under 2 µm oper-
ation (Sec. 4.2). Previously fabricated devices are then characterised (Sec. 4.3)
and noise suppression is measured in comparison to strip waveguide propaga-
tion (Sec. 4.4), followed by a discussion and conclusion (Sec. 4.5).

Chapter 5 looks to expand the applicability of quantum states of light in in-
tegrated absorption spectroscopy. We present a theory project which models ex-
pected precision on estimates of linear absorption through a sample that displays
saturation. A semi-classical model of saturation is built (Sec. 5.1) and we em-
ploy Fisher information (Sec. 5.1.2) as a tool to quantify and compare the perfor-
mance of different classical (Sec. 5.3.2) and quantum states of light (Sec. 5.2.6).
We present classical probe performance under saturation, giving a few examples
of how this result can be applied to existing measurement schemes to enhance
performance (Sec. 5.2.1 & 5.2.1.1). We then motivate the use of quantum states
of light by deriving a bound on the achievable precision from any single-mode
state (Sec. 5.2.2) and proving that Fock states saturate this bound (Sec. 5.2.3).We
discuss the required probe brightness for a given target precision for both quan-
tum and classical strategies (Sec. 5.2.5) and introduce squeezed states as a viable
route to experimental realisation (Sec. 5.2.6). Finally, we present a fully-quantum
model (Sec. 5.3)whichwe solve numerically, commenting on the validity and ap-
plicability of the analytical semi-classical results (Sec. 5.3.2).

Chapter 6 ends the thesis with concluding remarks on a potential viable route
to 2 µm integrated silicon squeezing for absorption spectroscopy which over-
comes the issues uncovered during this PhD (Sec. 6.1) and amore general discus-
sion on the future of integrated absorption spectroscopy in the 2 µm–band (Sec.
6.2).
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Integrated Quantum Optics

Declaration of contribution: this chapter covers key concepts required for the
rest of the thesis and does not present new research.

In this chapter we cover key concepts on which the rest of the thesis re-
lies upon. These are broken down into two sections. Section 2.1 gives an
overview of quantum optics theory, introducing some key optical states. Sec-

tion 2.2 then follows on to introduce integrated optics, summarising howwe can
use photonic chips tomanipulate light. Each of the following chapters then builds
upon these concepts, introducing additional theory as required for each main re-
sult.

2.1 Quantum optics

In classical optics, the dynamics of an electromagnetic field propagating in free
space which contains no charges is well described by two vector-valued fields:
the electronic, E(r, t ), and magnetic fields, B(r, t ), obeying75:

∇·B = 0, ∇×E =−µ0
∂B

∂t
,

∇·E = 0, ∇×B = ε0
∂E

∂t
.

(2.1)
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Chapter 2. Integrated Quantum Optics

Here, ε0 and µ0 are the electric and magnetic permeability of free space. These
four, first order, differential equations that couple two fields, can be conveniently
recast via the following substitution into a single second-order differential equa-
tion for one field via:

E ≡−∂A

∂t
, B ≡ 1

µ0
∇×A, ∇·A ≡ 0, (2.2)

where A is coined the vector field. Note that the last equation in 2.2 is sufficient
but not necessary to reproduce Eqs. 2.1. It reflects the invariant nature of A to ad-
ditional arbitrary scalar fields. By choosing to set the divergence to zero, known
as the Coulomb gauge, we ensure field values are dependent only on their instan-
taneous values, a useful property in quantum analysis. Utilising vector calculus
identities, we can now express Eqs. 2.1 as:

∇2A− 1

c2

∂2A

∂t 2
= 0, (2.3)

where c = (ε0µ0)−1/2 is the speed of light in free space. Eq. 2.3 is known as the elec-
tromagnetic wave equation76. A general solution to this equation may be written
as a linear combination of possible plane wave solutions:

A(r , t ) =∑
k

Ak e i (k ·r−ωk t ). (2.4)

Each solution, k, represents a different electromagnetic ’mode’ with amplitude
vector Ak , wave vector k, and associated frequency ωk = c|k|, all defined by the
initial and boundary conditions of a particular propagation.Asmeasurable quan-
tities, E and B must be real-valued vector fields. As such, we require A−k = A∗

k . We
can therefore further expand A into:

A(r , t ) =∑
k

(
Ak e i (k .r−ωk t ) + A∗

k e i (ωk t−k .r )
)

. (2.5)

We can apply this anzatz to find a general solution to the wave equation for a
field propagating along z in a reflective box of cubic volume L3 to obtain56:

A(r , t ) =∑
k

( ~
2ωkε0L3

)1/2

eλ
[

ak ei (k .r−ωk t ) +a∗
k ei (ωk t−k .r )

]
. (2.6)

Here, eλ ∈ x̂ , ŷ representing the unit polarisation vector. Applying boundary con-
ditions gives k = 2π/L(nx ,ny ,nz) which defines the allowed wave vectors with
nx ,ny ,nz = 0,±1,±2.... In this equation, ak and a∗

k are complex scalar Fourier am-
plitudes that are defined to be dimensionless via the preceding normalisation
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2.1. Quantum optics

factor. Quantisation is achieved by recognising these amplitudes as mutually ad-
joint quantum operators that obey the following bosonic commutation relations:

[âk , âk ′] = [â†
k , â†

k ′] = 0, [âk , â†
k ′] = δkk ′ , (2.7)

such that we have:

Â(r , t ) =∑
k

( ~
2ωkε0L3

)1/2

eλ
[

âk ei (k .r−ωk t ) + â†
k ei (ωk t−k .r )

]
. (2.8)

Quantisation in this manner ensures the quantum description of each mode
of the electromagnetic field obeys a simple harmonic model with unit mass in
which the classical canonical structure of the coordinate system, position and
momentum, are adapted to reflect the quantum uncertainty principle77. The dy-
namics of the electric field amplitudes are now described by an ensemble of inde-
pendent harmonic oscillator modes. The quantum state of each mode may now
be discussed independently of one another with each state described by a state
vector of the Hilbert space appropriate to that mode. The classical vector poten-
tial for a given single-mode state is recovered via the expectation of the vector
potential operator. The state of the entire field is then defined in the tensor prod-
uct space across all modes.

The classical Hamiltonian for the field is given by75:

H = 1

2

∫
(ε0|E|2 +µ0|B|2)dr. (2.9)

Substituting Eq. 2.8 into Eqs. 2.2, and using those to solve for Ĥ via Eq. 2.9, we
get:

Ĥ =∑
k
~ωk

(
â†

k âk +
1

2

)
. (2.10)

This quantum Hamiltonian is the sum over the number of quanta in each har-
monic oscillators mode, each of which now has a nonzero vacuum point energy
of 1

2~ω
78.

2.1.1 Single-mode quantum optics

Wenowdrop the summation overmodes and consider a singlemode of the quan-
tum harmonic oscillator with governing Hamiltonian:

Ĥ = ~ω
(

â†â + 1

2

)
. (2.11)

We can represent any state of a single mode via a decomposition into any com-
plete orthogonal set of basis states that span the Hilbert space. We now cover a
few important examples of such decompositions.
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Chapter 2. Integrated Quantum Optics

2.1.1.1 Number states

The operator product â†â has special significance and is called the number op-
erator, denoted n̂. We denote |n〉 to be eigenstates of the Hamiltonian defined
by:

Ĥ |n〉 = En |n〉 (2.12)

It follows via the commutation relations for â and â† that

âĤ |n〉 = (En −~ω) |n〉 ,

â†Ĥ |n〉 = (En +~ω) |n〉 .
(2.13)

We see that â and â† act to lower or raise the total energy, or number of photons,
by one respectively; this is why they are referred to as the ’annihilation’ and ’cre-
ation’ operators56. The eigenstates |n〉, with n ∈ N+, are thus called the photon
number states with the vacuum defined by â |0〉 = 0. Together, the number states
form a complete and orthogonal set of states for the single mode Hilbert space,
known as the Fock basis77. The action of the creation and annihilation operators
is summarised by:

â |n〉 =p
n |n −1〉 ,

â† |n〉 =p
n +1 |n +1〉 .

(2.14)

Since â and â† are not Hermitian operators, they do not correspond
to measurable quantities. Furthermore, the number states, though well de-
fined energy states, are not states with well defined electric field since
〈n|Ê |n〉∝ 〈n|â + â†|n〉 = 077 i.e. the mean electric field of such states is always
zero. It is more convenient to consider the followingmeasurable operators, x̂ and
p̂; these are deeply related to the notion of classical position and momentum in
a simple harmonic oscillator:

x̂ = 1

2
(â + â†), p̂ = i

2
(â† − â), (2.15)

referred to as the position and momentum operators78. By observation, we can
immediately see that x̂ is directly proportional to the electric field, and conversely
p̂ is directly proportional to the magnetic field (or momentum of a classical har-
monic oscillator). The commutator relation between these two conjugate vari-
ables is:

[x̂, p̂] = i

2
, (2.16)
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Using the uncertainty principle, which relates the variance of the probability
distributions obtained from multiple measurements of each variable for a given
state, we get:

∆x̂∆p̂ ≥ [x̂, p̂]

2i
= 1

4
. (2.17)

Here, the variance is given by ∆•̂ ≡
√〈•2

〉−〈•〉2 . Any state which saturates this
bound is known as a minimum uncertainty state. For a number states, we have:

∆x̂ =∆p̂ = (2n +1)

2
, (2.18)

therefore |0〉 is a minimum uncertainty state77.

2.1.1.2 Coherent states

In order to have a nonzero electric field expectation, a superposition state with
more than one number state is required. Such a state can be considered as the
right eigenstates of the annihilation operator, denoted α̂ such that â |α〉 =α |α〉
where α ∈ C with α = |α|e iϑ. Conversely, the left eigenstates of the creation
operator is given by 〈α| â† =α∗ 〈α|. These states, known as coherent states, are
useful as their properties constitute a very good approximation to the quasi-
monochromatic states emitted by a narrow-band continuous-wave laser78. The
coherent state decomposition in the number basis is given by77:

|α〉 = exp

(
−1

2
|α|2

) ∞∑
n=0

αn

p
n!

|n〉. (2.19)

The coherent state is of importance as it provides the correct classical form of the
electric field expectation value whilst also including minimum uncertainty vac-
uum fluctuations. It is interesting to note that 〈α|β〉 6= 0 meaning coherent states
are not an orthogonal set of states, however, their overlap decays exponentially
with their complex separation.

The photon number statistics of the coherent state are found to be Poissonian,
i.e. their mean is equal to their variance:

〈α|n̂|α〉 =∆n̂ = |α|2, (2.20)

with a distribution given by:

P (n) = |〈n |α〉|2 = e
−|α|2

2 |α|2p
n!

. (2.21)

Phenomenologically speaking, each photon inside a laser undergoesmany in-
dependent interactions with excited two-level systems within the gain medium.
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Each interaction results in the combined state of the photon-atom entering a su-
perposition of stimulated emission (2 photons) or no stimulated emission event
(1 photon). Taking this interaction to a reasonable limit of infinite interactions
leads to Poissonian-distributed photon statistics and is the reason why the coher-
ent state is a good approximation to the output of a continuous-wave laser79.

2.1.1.3 State representation

The orthogonality of the two quadrature operators can be utilised as coordinates
to define a 2D space in which all single-mode states can be represented—known
as phase space. Under simple plane wave evolution of the mode, we can rede-
fine the phase space axes to be in the rotating frame of the mode such that the
state representation remains stationary as time evolves. Propagation along z then
leads to the state representation rotating about the origin with phase e i kz . In
phase space, the position and momentum quadratures are often referred to as
the amplitude and phase quadrature, respectively. This renaming stems from
the fact that direct measurement of the electric field intensity via a photodiode
gives a current that is directly proportional to the position quadrature80. Due to
the uncertainty relation given in Eq. 2.16, each space will be represented by a
distribution rather than a singular point. There are a number of intuitive ways to
define such a distribution via the expectation of each quadrature. Here we make
use of the Wigner representation defined by81:

W (x, p) = 1

2π

∫ ∞

−∞

〈
x − y

2

∣∣∣ρ̂∣∣∣x + y

2

〉
e i y p dy, (2.22)

in which ρ̂ is now a density matrix describing the single mode state ∣∣ψ〉 via
ρ̂ = ∣∣ψ〉〈

ψ
∣∣. The Wigner function shares many properties with a joint probabil-

ity distribution over (x, p) with ∫ ∞
−∞

∫ ∞
−∞W (x, p)dxdp = 1 and with the marginal

distributions for a given state calculated via:

P (x) = 〈x|ρ̂|x〉 =
∫ ∞

−∞
W (x, p)dp, P (p) = 〈p|ρ̂|p〉 =

∫ ∞

−∞
W (x, p)dx. (2.23)

Though the uncertainty principle forbids explicit measurement of theWigner
function, it can be used to calculate the distribution of a measurement of a given
quadrature. It is possible to have a negative-valuedWigner function, however, the
marginal distributions remain positive and thus the Wigner function is referred
to as a quasi-probability distribution. Highly non-classical states of light often
display such a Wigner function with a key example being a pure Fock state, Fig.
2.1(b)72.
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2.1. Quantum optics

Figure 2.1.Wigner representation of (a) the vacuum state and (b) a num-
ber state with 6 photons. EachWigner function has its marginals pro-
jected onto the X and P quadratures shown in red lines.

The Wigner function of a coherent state and Fock state are given by:

W (x, p) = 1

π
e−(x−x0)2−(p−p0)2

, W (x, p) = (−1)n

π
Ln

[
2
(
x2 +p2)]e−x2−p2

, (2.24)

respectively, where Ln[x] =∑n
k=0

n!
k !(n−k)!

(−1)k

k ! xk are the L’eguerre polynomial func-
tions77. The figure above plots the Wigner function in phase space for both the
coherent vacuum state and a pure number state containing 6 photons. We can
see that the number state Wigner function is symmetric across all quadratures
suggesting the state has no well-defined notion of phase. The Wigner function
also drops below zero in comparison to the Gaussian-shaped positive Wigner
function of the vacuum. Other quasi-probability distributions that can be used
to describe quantum states are the Husimi Q representation and the Glaube-
Sudarshan P representation56. In this thesis, we will stick to the Wigner repre-
sentation.

2.1.1.4 Squeezed states

A state is defined as quadrature squeezed if the variance of any quadrature is
less than one half78. Figure 2.2, below, depicts where squeezed states are located
on a map of amplitude and phase quadrature variance. Note that this is only one
such fixed set of orthogonal quadratures, with a state being said to be quadrature
squeezed for any quadrature phase with variance less than one half.

Squeezing can be generated by any process that mixes the input mode opera-
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Chapter 2. Integrated Quantum Optics

Figure 2.2.A map of non-physical, quadrature squeezed and classical
states as defined by the multiplication of their quadrature variances.

tors â or â† into a combination that obeys:

â 7→ uâ + v â†,

â† 7→ uâ† + v â,
(2.25)

such that u2 − v2 = 182. We can consider how a time-independent Hamiltonian,
Ĥ , maps an operator in the Heisenberg picture of quantum mechanics. The
Schrodinger equation states that ∣∣ψ〉 is mapped to ∣∣ψ′〉 via ∣∣ψ′〉 = Û

∣∣ψ〉 where
Û = exp(−i Ĥ t/~). As such, the expectation of a given operator of interest, Â, as
measured on the output state, is given by:

〈
Â

〉= 〈
ψ

∣∣Û † ÂÛ
∣∣ψ〉

. (2.26)

The operation may therefore be considered to map the operator via Â 7→ Û † ÂÛ .
To generate the required map, presented in Eq. 2.25, for squeezed statistics,

it can be proven that a quadratic term in creation or annihilation is required in
the generatingHamiltonian82. In practice, thismapping is provided by nonlinear
optics phenomena inwhich two ormore fields aremixed together83. A prototype
Hamiltonian of the form:

Ĥ = i~
2

(zâ2 − z∗â†2), (2.27)

can be considered in which z = r e iθ dictates the relative magnitude and quadra-
ture phase of the produced squeezing. We can act the associated squeezing op-
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2.1. Quantum optics

erator, Ŝ(z), on both the annihilation and creation operators to give78:

Ŝ(z)†âŜ(z) = â cosh(r )− â†e iθ sinh(r ), and Ŝ(z)†â†Ŝ(z) = â† cosh(r )− âe−iθ sinh(r ).

(2.28)
The Hamiltonian given above is of importance as it governs prominent non-

linear optics interactions, such as degenerate parametric down conversion and
four-wave mixing, often used as a practical means to create squeezing84. We can
produce a squeezed-coherent state by first squeezing the vacuum and then dis-
placing it via a coherent displacement. The resulting state, |α, z〉, has the follow-
ing statistics:

〈x̂〉 =p
2 |α|cos(ϑ), (∆x̂)2 = 1

2

[
e2r sin2

(
θ

2

)
+e−2r cos2

(
θ

2

)]
,

〈
p̂

〉=p
2 |α|sin(ϑ), (∆p̂)2 = 1

2

[
e2r cos2

(
θ

2

)
+e−2r sin2

(
θ

2

)]
.

(2.29)

Figure 2.3 shows the associated Wigner functions plotted for this type of
squeezed state with z = 1 and z = i for comparison. With a squeezing angle of
zero, the quadrature of minimum uncertainty is aligned along the x̂ quadrature.
For a general squeezing angle θ, the minimum uncertainty quadrature is orien-
tated along θ/2 in phase space—as can be seen in Fig. 2.3(b) for θ =π/2.

Figure 2.3.Wigner representation of (a) the squeezed vacuum state with
z = 1 and (b) the squeezed vacuum state with z = i . Each Wigner
function has its marginals projected onto the X and P quadratures
shown in red lines.

The photon number statistics of the coherent-squeezed state are given by:

〈n̂〉 = |α|2 + sinh2(r )

(∆n̂)2 = |α|2
(
e2r sin2

(
ϑ− 1

2
θ

)
+e−2r cos2

(
ϑ− 1

2
θ

))
+2sinh2(r )

(
sinh2(r )+1

)
.
(2.30)
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By observation of Eq. 2.30, we see that for specific values of squeezing angle and
strength, the state displays sub-Poissonian statistics. For the specific case of am-
plitude squeezed light, we have:

(∆n̂)2 = |α|2e−2r +2sinh2(r )
(
sinh2(r )+1

)
,

(∆x̂)2 = e−2r

2
.

(2.31)

By comparison of these two variances, the amount of amplitude squeezing be-
comes synonymous with the amount of photon number squeezing in the limit of
|α| À r i.e. e−2r . In the rest of this thesis, unless stated otherwise, we use bright
amplitude squeezing synonymously with photon number squeezing.

In the next chapter we will use this type of squeezed state to suggest a viable
route towards enhanced absorption sensing of delicate samples. In chapter 4 we
introduce a different type of squeezing Hamiltonian generated by the process of
self-phase modulation.

2.1.2 Displacement operator

In theHeisenberg picture of quantummechanics,we can generate coherent states
by acting an the coherent state in much the same way the squeezing operator
acts on creation and annihilation operators to produce squeezing. The operator is
know as the displacement operator since it can be visualised as applying a vector
displacement to the position of the vacuum state in quadrature space, whilst leav-
ing the states statistics unchanged. The displacement operator is defined by78:

D̂(α) = exp(αâ† −α∗â) (2.32)

and maps the creation and annihilation operators like:

D̂(α)†âD̂(α) = â +α, and D̂(α)†â†D̂(α) = â† −α. (2.33)

2.1.3 Modes in free space

In Section 2.1, wemake the assumption that the electric field is contained in some
box of finite volume which leads to a discrete set of supported modes. In free
space propagation, confinement along the direction of propagation z is extended
to infinitewhilst the field remains confined in the perpendicular plane. This leads
to a continuous space of supported frequencies with the summation in Eq. 2.6
replaced with an integral78:∑

k
→ 1

∆ω

∫
dω, δk,k ′ →∆ωδ

(
ω−ω′) , (2.34)
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where ∆ω= 2πc/L → 0 in the spacing between modes which approaches zero in
the limit of infinite confinement and is required to ensure the correct normalisa-
tion. In the continuous picture, the bosonic operators map to:

âk →
p
∆ω â(ω) and â†

k →
p
∆ω â†(ω), (2.35)

and as such, are no longer dimensionless quantities. This renormalisation en-
sures the following standard commutation relations:[

â(ω), â
(
ω′)†

]
= δ(

ω−ω′) and [
â(ω), â

(
ω′)]= 0. (2.36)

Putting this all together gives:

Â(r , t ) =
( ~

4πcε0 A

)1/2

eλ
∫ [

â(ω)ei (k .r−ωk t ) + â†(ω)ei (ωk t−k .r )
]

dω. (2.37)

Under the condition that the bandwidth of an excitation is much smaller than its
central frequency, we can define the Fourier transform of the continuous mode
creation and annihilation operators via:

â(t ) =
∫ ∞

−∞
â(ω)e−iωt dω, â(ω) =

∫ ∞

−∞
â(t )e iωt d t . (2.38)

As such, we see that the vector potential can be considered as a continuous set
of time dependent modes. It follows that â†(ω) = [

â(−ω)
]†. This will be a useful

property that we will use in the following discussion on the sideband picture.

2.1.4 Linearisation & the sideband picture

In the main results of this thesis, we will rely on linearisation as a method for
propagating continuous mode quantum noise through optical components. In
linearisation, we utilise the Heisenberg picture of quantum mechanics to repre-
sent a narrow-band quantum state, Â(t), as the sum of its classical mean value,
given by 〈

Â(t )
〉 = 〈0|D̂†(α)Â(t)D̂(α) |0〉 = α(t) (for a coherent state carrier), and a

small quantum fluctuation, â(t ), such that80:

Â(t ) = 〈Â(t )〉Î + â(t ) =α(t )Î + â(t ). (2.39)

Here, Â(t) is defined in a frame that rotates in phase space at the speed of the
carrier frequency, ω0. As we are operating in the Heisenberg picture, the expec-
tation taken above is over the initial state—the vacuum—with the displacement
operator evolving the continuum of quantum modes. Statistical variations are
accounted for via the second term â(t) which may have some initial continuum
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Chapter 2. Integrated Quantum Optics

state that is not the vacuum to reflect any additional noise ormodulations present
at frequencies about the narrow-band carrier accounted for by 〈Â(t )〉.

This representation is powerful as it allows us to more easily consider the
dynamics of both signals and noise as they propagate through a system. Addi-
tionally, the representation leads to an intuitive description of quantum noise in
Fourier space, the space often measured in experiments. Crucial to the approxi-
mation of linearisation is the assumption that the central frequency bandwidth
is much less than the central frequency such that all other frequencies can be
considered to be in orthogonal, well-defined, modes. As a simple example, we
consider straight detection via a photodiode which measures intensity via the
number operator N̂ (t ) = Â†(t )Â(t ). We consider the initial state to be a continuous-
wave laser well approximated by a coherent state and sufficiently narrow-band
such that linearisation holds and 〈Â(t )〉 =α ∈R. In this case, all other frequencies
about the carrier can be considered to be in the vacuum state. To first order, we
get:

N̂ (t ) =α2 +αx̂(t ), (2.40)
The quantum fluctuations in the intensity measurement stem from the continu-
ous mode equivalent of the position quadrature. We can take the Fourier trans-
form of this to analyse the spectrum of the detected current:

N̂ (Ω) = δ(Ω)α2 +α(
â†(Ω)+ â(Ω)

)
,

= δ(Ω)α2 +αx̂(Ω),

= δ(Ω)α2 +α(
[â(−Ω)]† + â(Ω)

)
.

(2.41)

Here,Ω=ω−ω0 as we are in the rotating frame of the carrier. The DC peak at ω=
ω0 corresponds to the average power from the carrier. The last equality highlights
an important point—measurements of a given quadrature at frequencyΩ contain
components from both the positive and negative sidebands symmetric about the
carrier. Therefore, in frequency space, we can consider the dynamics of the state
to be captured by a static DC component and noise in symmetric sidebands. We
will see in chapter 4 that squeezed statistics are a result of partial correlations
across these sidebands introduced by nonlinear effects.

We can further take the variance of this signal to give:

Var(N̂ (Ω)) =α2 〈0|∣∣x̂(Ω)2
∣∣|0〉 . (2.42)

This equation tells us that the PSD of the intensity noise in a coherent state is
linear in state amplitude, white, and generated by vacuum amplitude quadra-
ture fluctuations in sideband modes about the carrier. We will use linearisation
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in chapter 4 to consider how fluctuations and signals map through nonlinear
optical components. We now consider a crucial linear operation: a beamsplitter
operation.

2.1.5 Beamsplitters

A general, lossless, beamsplitter couples light from two spatial modes, labelled
a,b, into two orthogonal output modes, c,d . We may represented this operation
by the following unitary matrix. Here η is the transmission across a to c and 1−η
is the reflection from a into d 85:( p

η i
√

1−η
i
√

1−η p
η

)(
â

b̂

)
=

(
ĉ

d̂

)
. (2.43)

The matrix in this equation is defined as ÛBS and is a unitary matrix. The form
of this operation, with a phase upon reflection, stems from the requirement that
the commutation relations for each mode are preserved. As the beamsplitter is
lossless, photon number is also conserved with n̂a + n̂b = n̂c + n̂d .

A beamsplitter is a linear operation on the inputmodes and sowe can treat the
mapping of both the full quantum operators and fluctuations the same giving:

Var(q̂c ) = ηVar(q̂a)+ (1−η)Var(q̂b), (2.44)

where q is any given quadrature operator. This equation has important conse-
quences when one input mode has Piossonian statistics, even if the second input
mode is the vacuum with zero mean energy. We can model loss, or inefficient
detection, as a virtual beamsplitter transformation in which vacuumfluctuations
are added andpower is lost from themode of interest. Figure 2.4 plots the amount
of squeezing retained under varying levels of linear loss for 10 dB, 5 dB, and 2 dB

input quadrature squeezing.
We can see from the above graph that high amounts of squeezing are less

resilient to loss but that once squeezing is obtained, a small amount will endure
loss and will be measurable provided the detection resolution and shot-noise
clearance is sufficient.

2.2 Integrated optics

We now review integrated optics and the key operating principles behind com-
ponents utilised in this thesis.
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Figure 2.4. The effect of loss on quadrature squeeing for varying input
amounts of squeezing.

2.2.1 Light in a dielectric

Considering an isotropic dielectricmaterial, the total polarisation P induced from
the electric dipoles created within the medium is well approximated by a term
linear in the instantaneous applied field E86:

P = ε0(ω)χ(1)E. (2.45)

Here, ε0 is the vacuum permittivity constant and χ(1)(ω) is the wavelength-
dependent, first order susceptibility of the medium, given here by a complex
scalar.

We can adapt Maxwell’s equations for the flux densities induced by a propa-
gating electromagnetic field through a polarisedmaterial87. Eliminating themag-
netic field in favour of the electric field, we get a governing equation for the prop-
agation of an electric field through a dielectric86:

∇2E− 1

c2

∂2E

∂t 2
=µ0

∂2P

∂t 2
, (2.46)

We will make the assumption that the field is linearly polarised along the unit
vector x̂ which does not change as the wave propagates along z.

We can insert Eq. 2.45 into Eq. 2.46 and define a new, adapted, permittivity
ε(ω) = (1+χ(1)(ω)):

∇2E = ε(ω)

c2

∂2E

∂t 2
, (2.47)

where the index of refraction is now ε(ω) ≈ n(ω)2. We can represent the electric
field as a combination of a perpendicular mode distribution described by F (x, y)
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and a fast varying propagation phase along z such that:

E(r, t ) = x̂

2

(
F (x, y)e i (βz−ωt ) +c.c.

)
. (2.48)

Inserting Eq. 2.48 into Eq. 2.47 gives the following eigenvalue problem in β:

∇2F (x, y) =
(
β2 − ω2n(ω)2

c2

)
F (x, y), (2.49)

which, along with appropriate boundary conditions in x and y , can be solved to
give a wavelength-dependent propagation constant, β.

2.2.2 Waveguides

An optical waveguide is a structure that utilises two or more dielectric mediums
to give a refractive index contrast in the plane perpendicular to the desired prop-
agation direction to confine the light. The contrast in refractive index defines
confined modes which can then guide light of specific wavelengths over long
distances. A key example is an optical fiber which allows transatlantic low-loss
transmission of signals86. In an optical fiber, and in most standard integrated op-
tics waveguides, a core region of high refractive index, ncore, is surrounded by a
low index cladding, nclad, which is then extruded in the direction of travel. In a
purely classical picture, a light wave traveling down the core will reflect of the
interface multiple times in a process known as total-internal reflection. The num-
ber of modes supported at a given wavelength is defined by the geometry of the
cross-section. The speed of propagation along the waveguide is governed by the
effective mode index neff.

In general, Eq. 2.49 only has an analytically solution when a high level of sym-
metry is present in the confining cross-section, such as that provided by a slab.
Fully confined solutions in 2D require numerical mode solver techniques, often
requiring software such as Lumerical used in this thesis. We use such software
to model the propagation constant, dispersion and effective modal area of sup-
ported modes of a waveguide, focusing our discussion to strip waveguides, de-
picted in Fig. 2.5.

These waveguides provide good confinement in the x and y plane and are
therefore ideal for nonlinear optics. The height of the waveguide is mostly fixed
by themanufacturer and is determined by the uniform growth of the silicon layer.
The waveguide width can be tuned to change the dispersion properties of the
waveguide. In this thesis, strip waveguides are used for integrated beamsplitters,

23



Chapter 2. Integrated Quantum Optics

Figure 2.5. TE and TMmode electric field intensity in a strip waveguide.
Figure taken with permission from Ref.36.

nonlinear spirals and routing. The field intensity of a single-mode strip waveg-
uide at 2.07 µm, showing both the fundamental transverse electric (TE) and trans-
verse magnetic (TM) modes, is presented in Fig. 2.5. The TE mode is often the
preferredmode of choice as it provides higher confinement inside the core and is
more resilient to bend losses. The dominant loss mechanism of a TE waveguide
arises from overlap of the optical mode with variations in the sidewalls (see Sec.
4.2 where we present a model for this). This loss mechanism has been shown
to scale with λ−3 88,89 suggesting a natural benefit from moving to longer wave-
length light.

The modal area of a waveguide quantifies the size of the mode and is of great
importance in nonlinear optics in which nonlinear effects scale with the intensity
of the field inside the waveguide. There are a few definitions of modal area, for
this thesis we use90:

Aeff =
(Î ∞

−∞ |F (x, y)|2d xd y
)2Î ∞

−∞ |F (x, y)|4d xd y.
(2.50)

The dispersion in a waveguide is due to the combination of a material and
geometrical effects. A common approach is to Taylor expand the propagation
constant about a central frequency ω0

86:

β(ω) =β0 +β1 (ω−ω0)+ β2

2
(ω−ω0)2 + β3

6
(ω−ω0)3 + . . . , (2.51)

where
βn = d nβ

dωn

∣∣∣∣
ω=ω0

for n ∈ Z+. (2.52)
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β1 = 1/vg relates to the central frequency group velocity at which the pulse centre
propagates. β2 is known as the group velocity dispersion (GVD), determining
how fast a pulse contracts or spreads out. A positive GVD is often referred to as
normal and a negative GVD is referred to as anomalous.

2.2.3 Fiber to chip coupling

To couple light into an integratedwaveguide, we use a grating coupler. A grating
couplers consists of a periodic structures that diffracts polarisation-dependent
light incident from above the chip, at angle θi to the chip surface normal, into the
waveguide, Fig. 2.6. The main design parameters of a grating are the etch depth,
period, and fill factor (defined as the ratio of the tooth to grating periodicity). A
grating is characterised via its insertion loss and 3-dB bandwidth. Coupled light
must satify a phase-matching condition which occurs when the waves scattered
off the grating have matching phases that constructively add together. Grating
couplers have a typical bandwidth of order∼ 100 nm, limited by degraded phase-
matching across wider spectrums. A key benefit to grating couplers, however,
is there long term stability and ease of alignment of multiple channels via a V-
groove array (VGA). When phase-matched, we can obtain an expression for the
grating period via solving for the first diffraction order89:

Λ= λ

neff −nclad sinθi
. (2.53)

where neff is defined as the weighted effective index for the tooth and trench slab
modes and nclad is the index of the cladding.

2.2.4 Directional couplers

Directional couplers provide amethod of coupling light between separatewaveg-
uides. When two waveguide are routed close to one another, light from one tun-
nels through to the other via the evanescent field located outside the core of the
waveguide. The superpositions of the individual waveguide modes are coined
supermodes. Two orthogonal supermodes, known as the symmetric and anti-
symmetric supermodes, are excited, each with different effective indices. The dif-
ference between the indices of these supermodes, ∆n = |nodd −neven|, leads to a
beating effect in which the power oscillates between the two waveguides89. Via
tuning of the length of the coupling region, we can split the power 50/50 across
the two waveguides as depicted via an FDTD simulation of a direction coupler
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Figure 2.6. (a) top down schematic of a grating coupler and (b) in plane
schematic of a grating coupler used to couple light into a chip. (c)
normalised electric field intensity of a full 3D FDTD simmulation
of a balanced directional coupler tuned to 50/50. Figure taken with
permission from Ref.36.

shown in Fig. 2.6(c). At wavelength λ, the 50/50 transfer length is given by:

L50 = λ

4∆n
(2.54)

The unitary matrix that represents the action of a directional coupler on two
input mode fields is given by36:

ÛDC =
 cos

(
πz

4L50

)
i sin

(
πz

4L50

)
i sin

(
πz

4L50

)
cos

(
πz

4L50

)  . (2.55)

2.2.5 Thermo-optic phase shifters

We can change the phase of light traveling through a silicon waveguide via the
thermo-optic effect. Heat from a current-carrying metal element on top of the
waveguide alters the refractive index. The thermo-optic coefficient of silicon de-
termines the expected change in index per Kelvin:

∆φ= 2πL

λ

∂n

∂T
∆T. (2.56)
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Here, L is the optical path length inside the waveguide and ∆n is the induced
change in the refractive index. In silicon in the 2.1 µm–band, the thermo-optic
coefficient is approximately ∂n/∂T = 1.7x10−4 K−1 36,91. The temperature change
scales with electrical power through the resistive element atop the waveguide.
As such, the phase scales with the square of the applied voltage. Though limited
in speed and susceptible to thermo and electrical cross talk between multiple
heater channels, thermo-optic phase shifters are sufficient for low-component
applications which only require static phase adjustments.

2.2.6 Integrated beamsplitters

We can utilise two 50/50 directional couplers and a phase shifter to build aMach-
Zehnder interferometer (MZI), capable of achieving ÛBS for any value of η. Fig-
ure 2.7 shows a schematic of the interferometer. Using Eq. 2.55 with z = L50, we
can solve for the composite transfer function of the interferometer, found to be:

ÛMZI = 1

2

(
e iφ−1 i (e iφ+1)

i (e iφ+1) e iφ−1

)
, (2.57)

where φ is the phase imparted by the heater, as per Eq. 2.56.

Figure 2.7. (a) schematic of an MZI beamsplitter, mapping input modes
a,b to output modes c,d . (b) the normalised output mode power
with applied phase given input into mode a.
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Shot-noise Limited Homodyne Detection in the

2 µm–band

Declaration of contribution: the detector design was adapted for 2 µm oper-
ation from a design made by Joel Tasker, University of Bristol. All simulations,
component selection, and device assembly were carried out by myself, along with
full detector characterisation and measurement of vacuum noise. The research pa-
per on which this chapter is based was also written by myself, with feedback and
advice given by the additional authors.

In this chapter we present the design, characterisation and employment of
a novel homodyne detector capable of megahertz-speed shot-noise limited
quantum light characterisation in the 2 µm–band. Sections 3.1 & 3.2 present

key homodyne theory and relevant electrical design considerations. Section 3.5
then presents the characterisation of the devicewhich closely followswork I have
published in Ref.92, with some text quoted verbatim and figures adapted from
the publication.

Invented by Yuen and Chan in 198393, homodyne detection is a powerful tool
in both classical and quantumoptics for themeasurement of field quadratures. In
homodyne detection, the target field is mixed with a brighter optical field of the
same wavelength, known as a local oscillator (LO), via a 50:50 beamsplitter; the
two resulting fields are detected via high-efficiency photodiodes. The photocur-
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rents are then subtracted and amplified into a voltage via a current-to-voltage
converter. The output RF signal is proportional to the target field’s quadrature
with the quadrature phase determined directly by the LO phase.

In classical optics, this method is often used to provide a reference signal
for lock-in amplification94 or to suppress unwanted quadrature noise in sensing
measurements by isolating the target quadrature95. In quantum optics, homo-
dyne detection offers a unique method for the direct measurement of quadra-
ture noise within a state and can be used for full continuous-variable quantum
state tomography51. Although homodyne detection offers direct measurement
of a quantum phenomena at room temperature with standard laboratory signal
analysis equipment, the method is not without its complexities. The main com-
plexity arises from the fact that the DC currents generated in each photodiode
are orders of magnitude greater than the subtraction signal. Therefore the de-
tector circuit must feature a high common-mode rejection ratio (CMRR). In ad-
dition, the quantum noise level measured, although naturally amplified by the
technique, remains comparable to electronic 1/f noise and so requires extremely
low-noise voltage supplies and amplification to ensure the measurement is shot-
noise limited.

Off-the-shelf homodyne detectors have so far been limited to the visible and
telecoms bands for two main reasons: 1) they naturally required high-efficiency
photodiodes which historically have only been available in these bands and
2) key optical infrastructure such as low-noise lasers and passive components
have been lacking outside these regions. As a result, the investigation of quan-
tum light through homodyne detection has been extensively pursued in the
near-infrared and has enabled many flagship experiments across quantum com-
puting96, quantum entanglement97, quantum communications98, and quantum
state measurement99,100. Other key quantum use cases for homodyne detectors
include: quantum random number generation101, comb-based absorption spec-
troscopy102, and quantum teleportation103.

In recent years, the demand for homodyne detection in the mid-infrared
(MIR) spectral region has increased. This increase has largely been driven by
MIR quantum state preparation for novel sensing applications65,104,105 and free
space communications106. The atmosphere’s MIR transparency window, with
much reduced Rayleigh scattering cross sections compared to the telecoms band,
makes 2 µm a good candidate for free space communications106. In sensing, the
availability of continuous-variable quantum MIR sources has set the scene for
compelling quantum sensing applications in the fingerprint region with source
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characterisation often requiring homodyne detection. 2 µm has also been identi-
fied as a beneficial wavelength for avoiding nonlinear loss present at 1550 nm in
silicon quantum photonics.65

A similar technique to homodyne detection is balanced detection which has
already been investigated in the MIR for a number of classical applications in-
cluding frequency-modulation spectroscopy69, difference-frequency laser spec-
troscopy70, balanced radiometric detection71, and Doppler-free spectroscopy107.
To perform shot-noise limited homodyne detection, required for quantum state
measurement, greater electrical noise suppression is needed in comparison to
balanced detection, making it harder to engineer for. By developing a detector
that affords a high signal-to-noise ratio, we also help facilitate higher sensitivity
in classical schemes that employ balanced detection to monitor amplitude mod-
ulation signals108, reject classical laser noise109 or map information from opti-
cal frequencies to the RF via coherent heterodyne beating of optical frequency
combs110.

Mansell et al. and Yap et al. have both previously employ extended InGaAs
photodiodes in a homodyne configuration to measure squeezing at 1984 nm

in the audio band, however, these demonstrations require a pre-amplification
scheme for each photodetector and a post-processed photocurrent subtrac-
tion104,105. The bandwidth of both experiments is restricted to ≤ 500 kHz by the
need for high gain amplification required to provide shot-noise clearance above
excessive electrical noise. Using the same post-processing configuration, Gab-
brielli et al.111 recently demonstrated shot-noise limited homodyne detection in
the MIR (around 4.5 µm) enabling the first characterisation of quantum noise
with a quantum cascade laser source. Gabbrielli et al. were able to overcome the
low conversion efficiency of state-of-the-art 4.5 µm HgCdTe detectors to measure
shot-noise with a total efficiency of 38% and maximum clearance of 7 dB.

Here, we move beyond the audio band and employ extended InGaAs PIN
photodiodes integrated into a single device capable of megahertz-speed shot-
noise limited homodyne detection in the 2 µm–band with 57% efficiency. This
is already sufficient to use with squeezed light generation to construct optical
sensors with sensitivity112 and precision50 beyond the classical limit. This ef-
ficiency is also greater than the 50% threshold required to measure negative-
valued Wigner functions, which is a clear signature of non-classical behavior for
non-Gaussian quantum states113. We test this detector by using it to perform
a homodyne measurement of vacuum quadrature noise via a 2.07 µm pulsed
mode-locked fibre laser, proving the device capable of quantum noise measure-
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ment.We characterise the efficiency, bandwidth, shot-noise clearance (SNC), and
CMRR; these are each important considerations for using the detector to perform
future squeezed light detection at 2.07 µm. In the following chapter, we will em-
ploy this detector to measure how classical noise is affected in a nonlinear silicon
interferometer.

3.1 Homodyne theory

In this first section, we outline the key theory behind homodyne detection. Fol-
lowing the nomenclature of Ref.80 and inlinewith chapter 2, we represent the sig-
nal and LO fields via time-dependent continuum quantum operators Âs(t) and
ÂLO(t ). The word homodyne means pertaining to two waves which radiate from a
single radiation source and thus both fields are phase stable and have the same
wavelength. Figure 3.1 below shows a typical schematic for homodyne detection.
We interfere both fields on a 50:50 beamsplitter and then detect the mixed fields
with photodiodes. We have control of the LO phase, φ, via a phase shifter in the
LO arm.

Figure 3.1.A schematic of homodyne detection. The signal field and LO
field are mixed on a 50:50 beamsplitter. The mixed field amplitudes
are then detected via photodiodes. The resulting currents are sub-
tracted.

Following theory laid out in Section 2.1.4, we split the two fields via lineari-
sation into their classical, static, mean expectation value αs ,αLO ∈ C, plus some
small, fast varying, quantum noise â(t ):
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3.1. Homodyne theory

Âs(t ) =αs Î +δâs(t ),

ÂLO(t ) = (αLO Î +δâLO(t ))e iφ.
(3.1)

Where Î is the identity operator. We now make the following approximations:

1. The LO is brighter than the signal such that |αLO|2 À |αs |2 and |αLO|2 À
|âs(t )|2.

2. All higher order terms in quantum fluctuations, i.e. O(δn) where n ≥ 2, are
negligible.

3. Without loss of generalitywe can expandαLO = |αLO|e iφLO and assumeφLO =
0.

Under these assumptions we can represent the two fields as:

Âs(t ) = âs(t ),

ÂLO(t ) = Î |αLO|e iφ.
(3.2)

By applying the beamsplitter relations81 (Sec.2.2.6) we get:

Â1(t ) = 1p
2

(|αLO|e iφ+ âs(t )),

Â2(t ) = 1p
2

(|αLO|e iφ− âs(t )).
(3.3)

The instantaneous photocurrent generated by each photodiode is given by:

Î (t ) = ηcR Â†(t )Â(t ), (3.4)

where ηc is the coupling efficiency and R is the photodiode responsivity. The
photocurrent from each diode is therefore equal to:

Î1(t ) = ηcR

2

[|αLO|2 +|αLO|[âs(t )e iφ+ â†
s (t )e−iφ]

]
,

Î2(t ) = ηcR

2

[|αLO|2 −|αLO|[âs(t )e iφ+ â†
s (t )e−iφ]

]
.

(3.5)

Taking the subtraction of the photocurrents removes the larger, slow varying, DC
components from the LO mean power:

Î−(t ) = Î1(t )− Î2(t )

= ηcR|αLO|[âs(t )e iφ+ â†
s (t )e−iφ]

= ηcR|αLO|q̂s,φ(t ),

(3.6)
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where q̂s,φ(t ) is the instantaneous quadrature operator of the signalmode defined
by phase φ of the LO field.

Equation 3.6 holds under the assumptions that the total efficiency is equal for
both photodiodes and that the 50:50 homodyne beamsplitter is ideal. In reality,
each photodiode will have a slightly different responsivity and coupling coeffi-
cient, and the beamsplitter will not be perfectly 50:50. These imperfections only
degrade the efficiency of the quadrature measurement and can be minimised by
fine-tuning the coupling of each photodiode to ensure the detector remains bal-
anced. For a full analysis of the imperfect case, we direct the reader to Refs.114,115.

In reality, the detector will also have some finite response time. There will
also be some unwanted electrical noise. We can approximate for these effects by
adapting Eq.3.6 to:

Î−(t ) = ηcR

∫ ∞

−∞
r (t − t ′)|αLO|q̂s,φ(t ′)d t ′+ Îd(t ) (3.7)

Here, r (t ) is the detectors unit response function and Îd(t ) is the detector dark cur-
rent produced by local defects and minority carriers. In the ideal detector with
infinite bandwidth, r (t) = δ(t). We now apply this equation to two relevant sce-
narios, continuous-wave illumination, and pulsed illumination.

3.1.0.1 Homodyne with a continuous-wave laser

Let us consider the case where the LO is constant i.e. a continuous-wave (CW)
laser source well described by the coherent state |αLO〉, and we are interested
in measuring the signal quadrature defined by some desired temporal mode
Q̂targ = ∫ ∞

−∞Φ(t)q̂s,φ(t)d t where Φ(t) is our desired temporal mode. Due to the
finite response of the detector, each measurement of photocurrent will consist of
a weighted sum of instantaneous quadratures integrated over a temporal mode
defined by the response function r (t ). Let us define this measured quadrature to
be:

Q̂ ≡
∫ ∫ ∞

−∞
r (t − t ′)q̂s,φ(t ′)d t ′d t . (3.8)

Q̂d ≡ ∫ ∞
−∞ Îd(t)d t corresponding to the electrical noise contribution. Equation 3.7

then becomes:
Î− = ηcR|αLO|Q̂ +Q̂d (3.9)

Reference114 proves that in the common case that the desired signal temporal
mode bandwidth is known, and the detector bandwidth is comparable to or
greater than the desired measurement bandwidth, the effect of the detector re-
sponse on the measurement is negligible with Q̂ ≈ Q̂targ.
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3.1. Homodyne theory

3.1.0.2 Homodyne with a pulse laser

We now consider the case where the LO consists of a train of pulses with repe-
tition rate Rr and pulse width much shorter than the time resolution of the elec-
tronics. Under this assumption, we can assume the response of the detector to a
single pulse centred at t = 0 to be given by just the response function:

Î−(t ) = ηcRr (t )αLOQ̂p + Îd(t ). (3.10)

We define Q̂p to be the normalised quadrature operator corresponding to the
temporal mode defined by the shape of the single LO pulse, given by:

Q̂p =α−1
LO

∫ ∞

−∞
αLO(t )q̂s,φ(t )d t (3.11)

where αLO =
√∫ ∞

−∞ |αLO(t )|2d t is a normalisation coefficient114. For a pulse train,
we must consider the case where the detector bandwidth is less than Rr. In this
case, the output photocurrent is in fact the sum of detector responses to several
pulses. Each pulse will run into the previous pulse, consequently polluting the
measurement of the desired pulse quadrature with previous pulse quadratures.
We can represent this as a sum over the surrounding j pulses to the pulse of
interest with index j = 0. At time t , the current is given by:

Î (t )− = ηcRαLO

∞∑
j=−∞

Q̂p,jr (t − j /Rr)+ Îd(t ) (3.12)

The addition of this ringing effect degrades the efficiency with which Q̂p,0 is mea-
sured. Reference114 finds that in the case of a Gaussian response function, the
degradation in efficiency is non-negligible for detector bandwidths < 0.4Rr. i.e.
when j 6= 0 terms become comparable to the j = 0 term.

To test the homodyne detector’s efficacy of quantum noise measurement, we
will perform homodyne detection on the vacuum state (|α〉s = |0〉) with a pulsed
laser. Since measurements of vacuum quadrature are inherently phase invariant,
we will omit phase dependence from this point onwards.

3.1.1 Electronic readout

In the previous section we determined that the output current from the ho-
modyne configuration is proportional to the target field’s quadrature, with the
quadrature-phase determined directly by the phase of the LO . We now discuss
how that current is amplified into a voltage and analysed. Since flat, low noise,
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

amplification electronics are crucial for the accurate and efficient assessment of
quantum noise in the target light field, we employ a transimpedance amplifier
(TIA) to amplify the subtracted current into an output voltage116. Section 3.2.2
gives an in-depth discussion of TIA. Employing TIA, over passive conversion
through an RC-circuit, helps enable a greater measurement bandwidth with fa-
vorable noise statistics117.

The TIA amplifies the output subtraction photocurrent into a voltage given
by:

V̂ (t ) = R f Î−(t )

= R f

[
ηcRαLO

∞∑
j=−∞

Q̂p,jr (t − j /Rr)+ Îd(t )
] (3.13)

where R f is the TIA’s feedback gain resistor. Note that Îd(t ) is now a combination
of several noise sources that we will outline in Section 3.2.3.

3.1.1.1 Electronic spectrum analysers

To analyse the spectrum of quadrature noise, we use an electronic spectrum anal-
yser ( ESA) thatmeasures the power spectral density (PSD) of the amplified volt-
age signal. The ESAwe employmakes used of the heterodyne principle, depicted
in Fig .3.2118. In short, the input voltage signal is mixed with an internal LO, am-
plified, and then filtered by a fixed internal frequency filter. The 3-dB bandwidth
of this filter is known as the resolution bandwidth (RBW) of the measurement.
The filter position is fixed, with frequency selection performed by sweeping the
LO. For each LO frequency, the filter output is logarithmically amplified and de-
tected via an envelope detector which outputs a voltage corresponding to the
amplitude of the selected frequency component. A low-pass video filter is then
used to remove noise from the detector output, the bandwidth ofwhich is known
as the video bandwidth (VBW). For VBW<RBW, this filter effectively reduces
the noise in the output spectrum. Analog-to-digital converters are then used to
convert the signal for display or further processing and analysis. For an in-depth
discussion on ESAs, we point the reader towards Ref.119,120.

The PSD about frequency Ω is well approximated by50:

〈p̂Ω〉 = 2

Rimp

〈∫ Ω+B/2

Ω−B/2
| ˜̂V (ω)|2dω

〉
(3.14)

where ω is the radio frequency, Rimp is the analyser’s input impedance and B is
the RBW. Here, •̃ denotes the Fourier transform.
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3.1. Homodyne theory

Figure 3.2.A schematic of an electonic spectrum analyser operating on
the hetrodyne principle. Figure taken with permission from Ref.118.

When analysing the spectrum of optical noise for comparison to signal lev-
els in a signal-to-noise measurement, there are a few extra considerations to be
aware of regarding how the ESA processes the input signal. The first results from
the fact that the low-pass video filter is effectively averaging over the envelope
detector output which itself is proportional to the square of a logarithmically
amplified signal. Averaging of the logged power signal is fundamentally differ-
ent to logging the average power and produces a different result120. For signals
with Gaussian distributed noise, these measurements are the same118,120, how-
ever, for broadband noise measurements, which follow a Rayleigh distribution,
this effect results in an under-response of 2.51 dB. We must therefore correct for
this power when measuring an absolute value of broadband noise sources such
as optical shot-noise. The voltage of CW signals is typically Gaussian distributed,
and therefore this correction factor does not apply118.

A second important consideration is that the resolution filter has a Gaussian
shape, instead of a square shape, to improve the transient response and speed up
the measurement. In Eq. 3.14, a square shaped RBW, B , is assumed. We can cor-
rect for this assumption in the case of broadband noise by calculating the equiv-
alent square bandwidth that would measure the same 〈pΩ〉 as a Gaussian filter.
The required correction factor is calculated by Ref.120 to be 0.24dB which must
be subtracted from the measured noise power.
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

We take the Fourier transform of the voltage to give:

˜̂V (ω) = R f ηcRαLO

∞∑
j=−∞

Q̂p,je
−2πiω j

Rr r (ω)+R f
˜̂Id(ω) (3.15)

In the case of a pulsed vacuummeasurement, we can insert Eq. 3.15 into Eq. 3.14
and take the expectation with respect to the quantum ensemble of the signal
vacuum state. Doing so gives:

〈p̂Ω〉 =
2R2

f

Rimp

[
hc

λ
η2

cR
2α2

LO

∫ Ω+B/2

−Ω−B/2
|r̃ (ω)2|dω+|ĨΩ|

]
(3.16)

A factor of photon energy, hc/λ, results from the conversion of natural to stan-
dard units. Here, |ĨΩ| is the electronic-noise contribution integrated across the
resolution bandwidth. In this calculation, we have made use of the fact that
〈Q̂kQ̂†

j 〉vac = δ(k − j ).
Within the bandwidth of the detector, we assume the Fourier transform of the

unit impulse response function flat such that ∫ Ω+B/2
Ω−B/2 | ˜̂r (ω)|2dω≈ B . By analysing

how the output voltage scales with LO power, α2
LO , we asses the detectors ability

to measure quadrature noise. If the detector fully rejects classical noise, the PSD
will scale linearly with LO power as per Eq. 3.16, if not then we expect the PSD
to scale with the square of the power. We use this linear dependence to infer
whether the detectors are shot-noise limited in their measurement of the vacuum
and are thus suitable for sub-shot-noise quantum state measurement.

3.2 Key components and considerations

We now move on to discuss the key components required to build a Homodyne
detector, and the relevant consideration of each for utility in the 2 µm–band.

3.2.1 The photodiode

A photodiode is defined as a semiconductor PN junction which has the ability
to convert photons to electrons. Here, ’P’ and ’N’ refer to positive or negative
doped semi-conductor materials, typically from periodic groups III and V. At
the boundary where the two materials meet, carriers recombine to leave behind
charged ions which result in an intrinsic potential field, known as the depletion
region. When a photon of sufficient energy strikes the junction, an electron-hole
pair is created via the photoelectric effect which is then extracted via a reverse
bias potential (under photo-conductive operation)116. The resultant current is
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proportional to the square of the amplitude of the field or equivalently the num-
ber of incident photons121. With no photons incident on the junction, local im-
purities in the depletion region which require less energy to be excited into the
valency band can still generate electron-hole pairs through thermal excitation122.
This dark current is extracted at zero bias by the intrinsic potential in the de-
pletion region and grows in magnitude with increasing reverse bias. The wave-
length range overwhich a particular diode has a good responsivity is determined
by the choice of III-V material and absorption region depth. Crucially, a photon
must have enough energy to excite an electron into the valency band within the
depletion region.

Figure 3.3.A schematic of a vertically stacked PIN photodiode with a
heavily N-doped region (dark blue), lightly n-doped region (pale
blue) and a P-doped region (red). Photons enter the top window
and are absorbed across the intrinsic region, creating electron hole
pairs. These charge carriers are then extracted towards the Anode
andCathode via a reverse bias potential. The resulting current is pro-
portional to the number of photons entering the photodiode.

Figure 3.3 displays a typical configuration of a vertical PIN photodiode. Here,
the ’I’ stands for intrinsic region and is lightly N-doped in this example and typ-
ically highly resistive. The intrinsic region is added to some photodiodes as it
brings a number of benefits. Firstly, the wider absorption region (typically of
depth 1/α where α is the absorption coefficient of the material) allows for the
collection of more light thereby increasing the efficiency. Secondly, the diode be-
comes responsive over a larger wavelength range as photons release carriers over
a range of depths proportional to photonwavelength. Thirdly, the high resistivity
of the intrinsic region leads to a much larger depletion region. The has an effect
on the speed of the photodiode in response to a pulse of photons by reducing the
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

capacitance across the diode. Conversely, a greater reverse bias voltage is usually
required in PIN diodes as carriers have further to travel which can also increase
the amount of dark current extracted, negatively effecting the signal-to-noise ra-
tio.

The photocurrent of interest, I , can be directly calculated for a given incident
wavelength via the photodiode responsivity R(λ) [A/W]121:

I (λ) =R(λ)ηcPin

= ηQEλe

hc
ηcPin

(3.17)

Here, ηQE is the quantum efficiency of the diode, a direct measure of the percent-
age of incident photons that are converted to electrons and extracted from the
junction, Pin is the incident optical power, and ηc is the coupling efficiency. e is
the electron charge, c is the speed of light and h is Planck’s constant.

We can model the electronics of a photodiode with a discrete circuit model
consisting of an input current, dark current, and parasitic elements as seen in
Fig. 3.4. In the ideal photodiode model, the shunt resistance represents the resis-
tance felt by the dark current at zero bias voltage. This effective resistance has an
associated thermal-dependent noise that is well modelled by the Johnson noise
of an actual resistor (see Sec.3.2.3)121. A high shunt resistance is desireable to re-
duce photodiode Johnson noise. The series resistance models the semiconductor
material and pad resistance and is generally of order tens of ohms. The junc-
tion capacitance models the stored charge effect of the photodiode’s depletion
region which is well modelled by two parallel plates separated by the deple-
tion region. The capacitance is proportional to the active area of the photodiode
and inversely proportional to depletion width121. In response to AC signals, the
junction capacitance and shunt resistance give a combined impedance magni-
tude of |Z | = (

R−2
shunt+ (2π f Cpd)2

)−1/2, where f is the AC frequency. Close to DC, a
small shunt resistance will result in greater bias voltage noise coupling into the
photodiode current. Conversely, at higher frequencies, junction capacitance will
determine the strength of this additional noise source with smaller capacitance
presenting greater impedance. As we will see Section 3.2.2, junction capacitance
also contributes to the overall parasitic capacitance on the input of the homodyne
detector which will have an effect on not just the noise properties, but also the
stability and bandwidth of the detector.

Industry has delivered several photodiode options for the 2 µm–band with
applications geared towards classical absorption sensing of gasses active at this
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Figure 3.4.An equivalent photodiode model for a photodiode in reverse
biad. The photodiode is represented as a dark current source (Id),
light current source (Ipd), parallel capacitor, parallel resistor, and a
series resistor. This equivalentmodel is used to simulate the response
of a photodiode under illumination.

wavelength e.g. CO2, Fig. 1.1. These range from the first- developd GaInAsSb on
GaAs substrate architectures to the most popular current solution of extended
InGaAs on an InP substrate123,124. An InP substrate is chosen for its high reflec-
tivity in this band resulting in a higher collection efficiency as light is reflected
back into the intrinsic region. Here, we employ vertically-illuminated extended
InGaAs PIN photodidoes which have been made responsive up to 2.6 µm by in-
creasing the indium content and absorption region depth122. These differences,
required to gain a response at longerwavelengths, results in very different electri-
cal properties when compared to commonly used InGaAs PIN photodiodes for
1550 nm. For the sake of comparison, we compare Laser Components 1550 nm In-
GaAs photodiode (IG7X250S4i), labelled PD15,with their extended InGaAs pho-
todiode (IG26X250S4i) for operation up to 2.6 µm, labelled PD26, both of which
have the same active area. Firstly, additional strain applied in fabrication to ex-
tend the diode leads to a greater number of defects and results in a decrease in
shunt resistance and an increased dark current. At 0.25 V bias, PD15 has a dark
current of 45 pA compared to PD26 with 2 µA – a near 50000 increase. The shunt
resistance in PD26 at 10 mV bias is 60 kΩ compared to PD15 with 830 MΩ. At 0 V

bias, the junction capacitance of PD15 is 15 pF compared to PD26 with 35 pF. At
1 V bias, the capacitance of both diodes are near equalwith PD26 at 8 pF and PD15
at 9 pF. Although this suggests the limiting factor at 0 V bias was the intrinsic po-
tential, we cannot infer the cause of this difference for these particular diodes
without more information.

The transit time limited rise time of PD26 at 0 V bias in response to a square
pulse is approximately 230 ns compared to PD15 which shows a rise time 80 ns.
As such, the 3-dB bandwidth of the extended photodiode into a simple 50Ω load
resistor is limited to 1.5 MHz. At 0 V bias, the depletion region is smallest and
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

light will be absorbed in both the depletion region and charge neutral zone. For
extended diodes, the transit time is most likely limited by the diffusion of mi-
nority carriers in the charge neutral zone125. To gain a response from PD26 at
higher speeds, a reverse bias potential is required at the cost of greater dark cur-
rent. Additionally, all extended InGaAs photodiodes for 2 µm operation are free
space coupled as opposed to fiber coupled. This will result in additional cou-
pling losses from Fresnel reflections off the glass housing which ultimately limit
the coupling efficiency126.

3.2.2 Transimpedance amplification

We now cover TIA as a preferred method of photocurrent readout. Tran-
simpedance is defined as the ratio of the output voltage to the input current of a
current-to-voltage converter. We will consider TIA as a DC circuit first to under-
standhowamplification arises.We thendiscuss theAC case inwhichwe consider
the bandwidth and stability.

3.2.2.1 DC analysis

Rf
Cf

Cf

Rf

+Vb

-Vb

I1

I2

I- V=-RfI-

-Vs

+Vs

+

-

V+

V-
A

Figure 3.5.ADC electrical circuit diagram for TIA amplification of a pho-
tosubtraction signal.

The diagram above shows a TIA circuit employed to amplify the subtracted
photocurrent. TIA employs an operational amplifier (op-amp) in a inverting feed-
back configuration117,127. An op-amp can be considered to be a high gain DC
voltage amplifier128. It has two inputs labelled inverting (−) and non-inverting
(+). Given the input voltages V+ and V−, the op-amp will output a voltage given
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by:
V = A(V+−V−) (3.18)

where A is the open-circuit gain of the op-amp, considered to be large (∼ 106).
We note that the range of output voltages is limited by the supply rails of the
op-amp such that V ∈ {−Vs ,+Vs}.

In a TIA configuration, the central net of the two photodiodes which carries
the photocurrent subtraction is tied to the op-amp’s inverting input. The non-
inverting input is tied to ground such that we can consider V+ = 0. The input
nodes of an op-amp see a high impedance which shunts the photocurrent up
through the resistor R f . Using first principles to solve for the voltage drop across
a resistor, we can find V− to be given by V− =V +R f I−. Plugging this into Eq. 3.18
and solving for the transimpedance of the circuit gives:

V

I−
=−R f

( A

1+ A

)
≈−R f

(3.19)

In effect, the op-amp output signal is attempting to hold the potential dif-
ference between the two op-amp inputs to zero. This creates a virtual ground
between the two photodiode which has the immediate advantage of holding the
bias voltages stable. There are several other benefits to this scheme. We first note
that changing the feedback resistance will not effect the input impedance from
the prospective of the source. This is a desirable quality that helps isolate the
photodiode from the gain resistor impedance and is not achieved through sim-
ple loading of a resistor. In the negative feedback configuration, the output of the
op-amp has characteristically low input impedance which additionally isolates
the gain resistor from further loading of the circuit upstream.

In reality, the op-amp allows some small but non-zero input bias current, Ib ,
to flow into the two inputs. This results in a small DC offset voltage in the output
signal given by −IbR f . To counteract this, we add a resistor to ground in the non-
inverting arm which shifts the hold point up by IbR f , thereby correcting for this
offset. In addition, a capacitor is added in parallel to help shunt its noise.

3.2.2.2 AC analysis

To analyse the response of the detector to AC signals, we must consider the in-
herent bandwidth of the photodiode, all parasitic capacitance in the circuit, the
finite op-amp gain bandwidth product, Aω0, and the phase compensation of the
setup.
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Figure 3.6.AnAC electrical circuit diagram for TIA amplification of pho-
tosubtraction.

The photodiode bandwidth is determined by the response time of the diode
to a pulse of light. The overall response time of the diode is the sum of different
carrier drift, diffusion and relaxation process through the junction to the anode
and cathode that occur under illumination alongwith the RC time constant of the
connected circuit125. In the extended InGaAs PIN photodiode used here under
1 V reverse bias, the dominating time constant is likely to be set by the thermal
diffusion of minority carriers (holes) through the non-depleted region through
which they must travel to reach the cathode. This effect is more pronounced for
longer wavelength applications such as ours. In any case, the overall response
time of the photodiode is of the order nanoseconds under bias resulting in a
gigahertz frequency response that does not limit the overall response of the ho-
modyne detector.

Parasitic photodiode junction capacitance at the input of the op-amp results
in unstable operation at higher frequencies117. In AC analysis, we can consider
all voltage sources to be ground due to their constant nature. We can therefore
consider the parasitic junction capacitance to be coupled to ground on the input
to the TIA, Fig. 3.6. The input impedance of the TIA is similar to that of an induc-
tor in that it rises with frequency. This effective inductance, in combination with
the parasitic capacitance to ground, forms an LC circuit which oscillates with
some resonate frequency. The effect is unstable operation close to this frequency.
To counteract this, a feedback capacitance is added in parallel with the feedback
resistor creating an RC filter to reduce the gain about the resonance. Appropri-
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ate tuning of this capacitance can fully counteract the resonance leaving stable
operation across the full bandwidth of the detector.

We can solve for the gain spectrum, |r̃ (ω)|2 =
∣∣∣ V

I−R f

∣∣∣2, of a TIA by utilising first
principles to solve for I−:

I− = V−
Zin

+ (V−−V )

Z f
. (3.20)

where Zin is the impedance on the input and Z f is the impedance on the feedback
loop (defined in Fig. 3.5)129. To eliminate V− we use the open-loop op-amp gain,
Eq. 3.18, adapted to account for frequency dependence, given in Fig. 3.5. The
resulting function is a second-order Butterworth filter function:

|r̃ (ω)|2 = 1

1+ (p2 −2) ω
2

ω∗2 +
(
ω2

ω∗2

)2 ,

p =
(
2πR f C f +

1

A0 f0

)
ω∗,

ω∗ =
√

A0 f0

2πR f (2Cpd +C f +Coa)
.

(3.21)

where p andω∗ are parameterised by the components and feedback circuitry (see
Tab. 3.2 for variable definitions). To produce the desired flat second-order But-
terworth response, the feedback capacitor is chosen such that p ≈p

2 , at which
point ω∗ is then the 3-dB bandwidth of the device.

A further consideration with regards to stability is the phase acquired by
the feedback signal. The open-loop op-amp applies some frequency dependent
phase to the output signal. This frequency dependent phase, in combinationwith
that applied by the RC filter and feedback trace, degrades the efficacy of the feed-
back signal. If the total phase exceeds 180degrees then the feedback signalwill no
longer be held close to ground and will instead become unstable. We must there-
fore consider the total acquired phase when modelling potential components to
ensure stability over the detectors bandwidth.

As mentioned previously, phase compensation is required to balance the LC
circuit produced by the input circuit. Using these equations, we can find the op-
timal feedback capacitance to ensure a flat gain spectrum:

C f =
1+

√
1+8πR f A0 f0(2Cph +Coa)

4πR f A0 f0
(3.22)

By inspection of Eqs. 3.21 with an optimal choice of C f , we see that there is a
natural trade-off between gain and bandwidthwithω∗ ∝ 1/

√
R f . The bandwidth
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is also limited by the sum of parasitic capacitances in the system, which is ide-
ally minimised. In choosing an op-amp, we must therefore consider the op-amp
capacitance alongside the gain bandwidth product.

3.2.3 Noise considerations

In order to use the detector to measure vacuum quadrature noise, we need to
have extremely low electrical noise in conjunction with good dynamic range. To
give an idea of the level of current noise generated by a homodynemeasurement
of vacuum quadrature noise, let us assume that we have ideal, noiseless, detec-
tion such that ηc = 1 and |ĨΩ| = 0. Let us also assume that photodiode responsivity
is 1.4 A/W, and that we are operating with a 2.07 µm LO with an average power
of 1 mW. In this case, we can use Eq. 3.16 to find the expected current noise per
root hertz that results from the amplified vacuum noise:

〈I−(ω)〉 =R

√
2

hc

λ
α2

LO

= 19.4pA/
p

Hz

(3.23)

This small amount of current, as we will see, is comparable in magnitude to our
dominant noise sources.

To model shot-noise clearance we must consider all dominant noise sources
in the detector and compared them to the signal level. Since we are interested
in performing optical shot-noise measurements in the 1 MHz–25 MHz range, we
must also consider the frequency dependence of these sources.

Dark current shot-noise

Thefirst source of noise to consider is electrical shot-noise resulting fromelectron-
hole pairs that are generated in the depletion region, in the absence of light. Dark
current is Poissonian in nature and thus has a variance equal to itsmean value. By
modelling the extraction of these independent electrons-hole pairs from the junc-
tion, it can be proven that the electron shot-noise is frequency independent130
and gives rise to a white-noise current per root hertz of:

〈Id 〉 =
√

2eId . (3.24)

Transimpedance amplifier noise

In addition to the dark current shot-noise, TIA contributes electronic noise ob-
served in the absence of a signal. The total noise, 〈I tot

oa 〉, can be modelled as a
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combination of voltage, 〈Voa〉, and current, 〈Ioa〉, supplies on the op-amp input
originating from the internal elements of the op-amp, along with Johnson noise
from the feedback resistor. Reference129 provides a full derivation of TIA noise.
〈Voa〉 and 〈Ioa〉 are quoted by themanufacturers and can be considered frequency
independent above 100 kHz. In addition to these three sources, the input voltage
noise interacts with the capacitive impedance at the input of the op-amp and
gives rise to an additional current noise proportional to frequency. Johnson noise
originates from the thermal motion of charge carriers within the resistor and is
also considered a white-noise source. Combining all noise sources gives:

〈I tot
oa 〉 =

√√√√〈Ioa〉2 +
(〈Voa〉

R f

)2

+ 4kT

R f
+

(
A0 f0ω

R f ω∗2

)2

〈Voa〉 2. (3.25)

Here, T is the temperature of the feedback resistor and k is Boltzmann’s constant.

Bias voltage supply noise

In addition to TIA and photodiode noise sources, voltage supply noise, 〈Vreg〉,
will couple through the photodiode into the signal from the bias supplies. As
stated previously, the photodiode presents an impedance with magnitude given
by |Z | = (

R−2
shunt + (2π f Cpd)2

)−1/2 to the supply voltage. This frequency dependent
contribution results in a current noise given by:

〈Is〉 =
〈Vreg〉
|Z | (3.26)

To minimise this, we employ ultra low-noise linear regulators131. For our cho-
sen supplies, the voltage noise falls off exponentially across 1 MHz–25 MHz from
2 nV/

p
Hz to 0.1 nV/

p
Hz .

Shot-noise clearance

We can combine our equations for the signal with the sum total of all noise
sources to give an equation for the shot-noise clearance, expressed in dB. We will
later use this equation to model the expected SNC for our chosen components:

SNC = 10log10

(
1+ 〈I−〉√

〈I tot
oa 〉2 +〈Id 〉2 +〈Is〉2

)
(3.27)

To efficiently measure optical shot-noise, it is important to have sufficient
clearance above the noise floor of the detector, otherwise, the optical shot-noise
is polluted with electrical noise. This is especially important when performing
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sub-shot-noise measurements of optical noise in quantum states of light such as
squeezed states. In such measurements, the electrical noise will always degrade
the efficiency with which the true squeeze factor can be measured. Not only this,
the noise floor will ultimately limit the total amount of detectable squeezing.

There are a few options to improve the the SNC. Doubling the LO power will
provide double the clearance but this strategy is ultimately limited by op-amp
saturation. It is for this reason that improved dynamic range is desirable. Increas-
ing the feedback gain will also increase the SNC but at the expense of bandwidth.
This strategy is only effective when op-amp voltage noise dominates the elec-
tronic noise. If dark current shot-noise is dominant, increasing the gain will not
improve the SNC.

3.2.4 Common-mode rejection

The CMRR of a homodyne detector is defined as the ratio of the signal power
with one photodiode blocked compared to the balanced configuration132. It is a
measure of howwell the correlated signal from each photodiode is rejected in the
subtraction, leaving just the uncorrelated optical shot-noise. CMRR is degraded
by slight variations in photodiode performance which causes an imbalance in
the photocurrent. Under pulsed illumination, variation in the photodiodes ca-
pacitance will also effect common-mode rejection with each pulse becoming con-
volved with the finite response of each photodiode. The result is two slightly
different pulses which no longer perfectly overlap. Pre-detection, optical path
length differences between the two output ports of the homodyne detector will
also introduce suchmis-matches. Both effects degrade CMRRmore at higher fre-
quencies. To some extent, we can fine tune the optical path lengths to match and,
additionally, we can tune the bias voltages of each photodiode independently to
counteract photodiode variations.

The best CMRR achieved for 1550 nm homodyne detectors is 75.2 dB and re-
quires fine-tuning circuitry to account for slight differences in transit time and
responsivity between the two photodiodes133. Without this additional electronic
tuning, small variations between photodiodes make it difficult to improve the
CMRR beyond 60 dB. At 20 MHz, an optical path length difference of less than
1 mm is required to ensure an electronically-limited CMRR up to 60 dB134.
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3.2.5 Power considerations

The dynamic power range over which the detector can perform is bounded by
the noise-equivalent power at the lower end and op-amp saturation power at the
higher end. Each photodiode can also saturate, above which we can no longer
assume a linear relationship between incident power and photocurrent, however,
this tends to occur after the op-amp output saturates, despite DC rejection of
most of the current in the subtraction. The response from PD25 remains linear
below 2 mW of average optical power.

We can model the saturation power, Psat, in the balanced configuration as be-
ing approximately equal to the LO power at which the TIA output signal has a
Vpp ≈ 2Vs . In reality, the detector will start to saturate just before this point signi-
fied by a drop in power spectral density across all frequencies. It is important to
note that if the detector saturates at a single frequency, the electronics may oscil-
late and result in non-linear behavior across the rest of the spectrum. It is for this
reason that we aim for a bandwidth less than the repetition rate of the laser.

Conversely, the noise equivalent power Pnep is defined as the optical power
at which the signal-to-noise ratio is 3 dB. We will be considering both of these
important metrics as we decide which components to use.

3.3 Component choice and projected performance

We design for optimal shot-noise clearance over a desired bandwidth of approx-
imately 1 MHz–25 MHz. We are limited at the upper end of this frequency range
by the repetition rate of the pulse laser as the TIAmust have sufficiently low gain
at the repetition rate to avoid saturating at this frequency. The tables below sum-
maries the chosen components and their key metrics for optimal performance in
the 2 µm–band. We model the expected gain spectrum, dynamic range and SNC
in LTSpice135 given our chosen components.

Table 3.1.A list of the key component model IDs used to build the homo-
dyne detector. (Table taken from Ref.92.)

Component Model
Photodiodes Laser Components (IG26X250S4i)
Op-amp Analog Devices (ADA4817)
Negative Linear Regulators Linear Technology (LT3094)
Positive Linear Regulators Linear Technology (LT3045)
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

PD26 were used due to their relatively low junction capacitance and high
responsivity compared with other leading manufacturers. A responsivity of
1.45 A/W gives a projected quantum efficiency of ηQE = 86.5% at 2.07 µm. We bias
the detectors at Vb = 1V . Biasing at this higher voltage will ensure the diodes
transit time response is sufficient for the diode to recover from pulse-to-pulse
and therefore remain linear in power. The detector bandwidth is then limited by
the TIA response. High bias voltage also has the benefit of further reducing the
parasitic capacitance from the photodiode and thus improves detector speed for
a given gain. The dark current is not specified above 0.25 V but using a source me-
ter, we measure the dark current across 0 V to 1.1 V with a 1 V bias giving 6.4 µA

dark current per photodiode, FIg. 3.7. We can extract the shunt resistance at 1 V

bias as the reciprocal of the gradient giving 60 kΩ.

Figure 3.7. (a) photodiode IV curve under reverse bias asmeasuredwith
a source meter and (b) the reciprocal of the gradient giving resis-
tance at each bias voltage.

The resulting dark current shot-noise from two photodiodes in series is
2.03 pA/

p
Hz . Junction capacitance and dark current both increase with active

area and so the photodiode with the smallest active area was chosen. Ideally,
several photodiodes would be purchased and tested, with the most similar pair
selected for use. We do not perform this step here due to limited funds.

Op-amp ADA4817 was chosen due to its low noise and appropriate gain
bandwidth product. A gain resistor of 3.9 kΩ was chosen with a predicted 3-dB

bandwidth ofω∗ = 25 MHz, assuming an estimated optimal feedback capacitor of
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3.3. Component choice and projected performance

Table 3.2.A list of key components and their key properties including
the photodiodes, op-amp and feedback circuitry. (Table taken from
Ref.92.)
Component Property Value
Photodiode Responsivity @ 2.1µm 1.45 A/W

Junction Capacitance (Cpd) @ 1 Vb 8 pF
Shunt Resistance (Rsh) @ T = 20°, 0 Vb 60 kΩ
Dark Current @ 1 Vb 6.4 µA
Active Region Diameter 250 µm
Reverse bias 1 V

Op-amp Gain Bandwidth Product (A0 f0) 410 MHz
Voltage Noise @ 1 MHz 2 nV/

p
H z

Current Noise @ 100 kHz 2.5 fA/
p

H z
Input Bias Offset Current 1 pA
Input Capacitance (Coa) 1.3 pF

Circuitry Gain Resistor (R f ) 3.9 kΩ
Feedback Capacitor (C f ) 4.7 pF

Supplies Voltage Noise @ 1 MHz 2 nV/
p

H z

1.43 pF. Using the key metrics in Tab. 3.2, we can calculated the theoretical noise
contributions from each term discussed in the previous section along with the
total predicted noise.

Table 3.3.A breakdown of expected photocurrent noise contributions
from components presented in Tab. 3.1 using equations presented
in the previous section. (Table taken from Ref.92.)

Noise Source pA/
p

Hz

Dark current shot-noise @ 1 Vb 2.03
Op-amp input current noise 0.0025
Op-amp voltage noise through the feedback resistor @ 1 MHz 0.51
Feedback resistor Johnson noise @ T = 300 K 2.06
Op-amp frequency dependent noise @ ω∗= 25 MHz, 1 MHz 0.34
Bias supply current noise @ 1 Vb, 1 MHz 1.42

Root sum squared total noise @ 1 MHz: 3.28

The two largest noise sources are from the dark current shot-noise and feed-
back resistor. Increasing the gain resistor would mitigate the resistor noise to a
certain extent but would not help counter the dark current shot-noise. Wemodel
the circuit in LTSpice to more accurately predict the key characteristics and fine
tune the feedback capacitance. Based on this analysis, a feedback capacitor of
4.7 pF was chosen. Figure 3.8 models the gain spectrum with an estimated 3-dB

bandwidth of 15 MHz and −7.5 dB of suppression at the repetition rate of the
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

laser. The acquired phase in the feedback signal remains well below the stability
threshold of 180 ◦. We expect to see a SNC of up to 12.5 dB at 1 MHz with an LO
power of 0.5 mW. Pnep ≈ 30 µW at 1 MHz.
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Figure 3.8. Simulated homodyne detector (a) gain spetcrum (blue, left)
and phase (purple, right). The 3 dB gain point is marked (dashed
blue). (b) shot-noise clearance for several local oscillator powers.
Both plots have a logged x-axis.

3.4 Detector design and layout

Figure 3.9.A 3D model of the printed circuit board designed for homo-
dyne detection. A circuit schematic is given in Fig. 3.10
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band
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Figure 3.11. Experimental diagram of the characterisation setup. A
pulsed laser propagates through a variable optical attenuator, split
50:50 via a homodyne beamsplitter and then coupled into each side
of the photodiode. Readout is performed via an oscillacope (DC)
and spectrum analyser (AC). (Figure adapted from Ref.92.)

Figures 3.9 & 3.10 show the board layout and schematic respectively. A num-
ber of decoupling capacitors have been set to ground on the power and bias sup-
plieswith the aim to decouple excess noise in these signals. The power is supplied
via two 9 V batteries as batteries provide a lower noise DC voltage source com-
pared to that obtained via a mains transformers. To enable free space coupling
into each diode with minimal trace length between them, one is soldered to the
back of the PCB and one to the front. The subtraction trace has been isolated from
the other planes to reduce parasitic capacitance.

3.5 Device characterisation and vacuum noise
detection

The setup used to characterise the detector is depicted in Fig. 3.11. A pulsed
2.07 µm fibre mode-locked laser (AdValue Photonics AP-ML-1) is used for full
characterisation. The laser light passes through a free space variable optical at-
tenuator (VOA) and is then coupled back into SMF28 fibre. The VOA consists of
a razor blade on a motorised translation stage, used to partially block the beam.
The overall insertion loss of theVOA is 4.1 dB. Fromhere, the laser passes through
a fibre beam splitter with an intended splitting ratio of 90:10. We characterise
this splitter to have an insertion loss of 0.44 dB and an actual splitting ratio of
88.7:11.3. The 11.3% arm is detected via a power meter and is used to monitor
the input power. The 88.7% arm is split again via a 50:50 fibre splitter (Thorlabs
TW2000R2F1B) with each arm coupled into the photodiodes (PD+ and PD−) of
the detector. A set of lenses with anti-reflection coating (Thorlabs C037TME-D)
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3.5. Device characterisation and vacuum noise detection

are used to focus the beams down onto PD+ and PD−. It is important to match
the path lengths to each photodiode from the fibre splitter to ensure good tem-
poral overlap in the subtraction with imbalances in path length leading to poor
common-mode rejection at higher frequencies. This is achieved by maximising
the rejection of the repetition rate in the output RF signal. The RF output of the
detector is split via a bias tee into its DC and AC components. The DC is coupled
into an oscilloscope (Tektronix TDS2012B) and the AC component is coupled
into an 6 GHz electrical spectrum analyser (FieldFox model N9912A).

We optimise the coupling of each arm separately by temporarily blocking the
other and maximising the DC signal for fixed input power. The beam must be
focused onto the photodiode’s active region with the optimal coverage given by
a beam waist slightly less than the active area diameter. We do not focus any
tighter to avoid the risk of a nonlinear response from the detector.

The total conversion efficiency, defined as the product of the coupling ηc and
quantum ηQE efficiencies, is extracted for each photodiode. This is achieved by
successively blocking each photodiode andmeasuring the increase inDC voltage
as a function of incident power. PD+ and PD− have total efficiencies of 65.3%±1.5%

and 66%±2% respectively, Fig. 3.12(a). The voltage offset ismeasured to be 2.4 mV

at room temperature, though this is expected to be temperature-dependent.
Figure 3.12(b) plots the detector gain as a function of frequency. Fitting to

the data, we obtain p = 1.76. Fine-tuning the feedback capacitor can improve
this further. Since the response is not perfectly flat, ω∗ will overestimate the true
bandwidth. By reading off −3 dB from the fit we determine the bandwidth to be
13.2 MHz.

For homodyne detection of the vacuum, we ensure the detector remains bal-
anced on Voffset via the DC signal. We then measure 〈p̂Ω〉 with the spectrum
analyser for a range of input laser powers. Figure 3.13(a) plots the output spec-
trum for increasing laser powers with a resolution bandwidth of 100 kHz. By
subtracting the electronic-noise spectra from the shot-noise response and aver-
aging over 1 MHz–13 MHz, we can perform a linear fit to the average voltage vari-
ance from the detector with power (Fig. 3.13(b)). We obtain a linear fit with
an R2 = 0.99. Note that the detector starts to display saturation above 1.8 mW;
these points have been omitted from the regression. The detector electronic cur-
rent noise level averaged across 1 MHz–13 MHz is 2.79 pA/

p
Hz with a shot-noise

equivalent incident power of 19 µW.
As mentioned previously, the CMRR of a homodyne detector is defined as

the ratio of the signal power with one photodiode blocked compared to the bal-
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

ba

Figure 3.12. (a) the DC response from consecutively blocking PD+ and
PD−. Statistical deviation from a continuous 10-secondmeasurement
has been accounted for and total conversion efficiency has been ex-
tracted via linear regression. (b) is the detector response with the
electronic noise subtracted. From this signal we can fit to the gain
spectrum.Data acquiredwith a resolution bandwidth of 100 kHz and
video bandwidth of 100 Hz (blue) fit to a second-order Butterworth
function (red) Eq. 3.21 with p = 1.76, f ∗ = 16 MHz, R2 = 0.82. (Figure
adapted from Ref.92.)

anced configuration132. We perform this measurement using the signal power at
the repetition rate of the laser since this supplies a strong classical signal that is
not fully rejected by the subtraction. In contrast to the definition of CMRR, we
perform the blocked measurement by re-routing all optical power to one photo-
diode, labelled ‘Addition’ in Fig. 3.14. When only one photodiode is used, the
photocurrent is proportional to optical intensity, and thus, the PSD of the electri-
cal signal is proportional to optical intensity squared. The addition signal from
the detector contains twice the optical power (+ 3 dB) compared to the subtrac-
tion and consequently the detector PSD is (+ 6 dB) greater when compared to
the standard definition of CMRR. We therefore correct the difference of 54 dB by
-6 dB to extract a true CMRR of 48 dB, Fig. 3.14.

3.6 Discussion

The detector quantum efficiency ηQE at 2.1 µm is quoted by the manufacturer to
be 86.5%. In practice, it is difficult to decouple the true responsivity of each pho-
todiode from the coupling efficiency ηcoup obtained in our setup. Assuming the
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3.6. Discussion

a b

a b

Figure 3.13. (a) PSD averaged over 30 traces for varying input power
as measured with a the balanced homodyne detector. The measure-
ment resolution bandwidth is 300 kHz, with a video bandwidth of
10 kHz. A moving point average with a Gaussian kernel has been ap-
plied with a FWHM of 1.5 MHz. (b) the average noise variance over
the frequency range 1 MHz–13 MHz as a function of incident power
(blue). Linear regression has been performed via least-squares giv-
ing a fit with R2 = 1.00 (red). (Figure adapted from Ref.92.)

54 dB

Figure 3.14.A comparisson of subtracted and addition photocurrents at
the repetition rate of the laser obtained to calculate the CMRR. An
LO power of −4.5 dB was used and rejection was first optimised via
optical path length tuning. (Figure adapted from Ref.92.)
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

quoted ηQE is nominal, we then calculate ηcoup to be 75% for both photodiodes
(Eq. 3.17). Coupling efficiency is limited by Fresnel reflections at the air-glass in-
terfaces of the fibre launch, the focus lens and the photodiode housing. It can in
principle be improved by using fibre coupled photodiodes with ≤1 dB insertion
loss, which are currently only commercially available, at greater expense, when
custom made.

In measurements of continuous-variable quantum states, the signal-to-noise
ratio (SNR) also effectively degrades the total efficiency. For a given SNR in dB,
the corresponding measurement efficiency is ηSNC = (SNC−1)/SNC68. In practice,
the negative effect of electronic noise on such measurements can be mitigated by
increasing LO power to just below the detector saturation power. The SNR of the
detector close to saturation is 9 dB (at 5 MHz) with a corresponding efficiency of
ηSNC = 88%. The total efficiency of the detectors for squeezed light detection at
5 MHz is therefore limited to ηtot = ηSNCηcoupηQE = 57%. The main limitation here
is not linked to the fundamental properties of the detector but is instead due
to the poor coupling efficiency of the photodiodes. Employing state-of-the-art
fibre-coupled photodiodes, the total detector efficiency at 2 µm could be readily
increased to ηtot = 73%. Although this is still below standard telecoms band effi-
ciencies of ηtot = 95%136, sub-shot-noise measurements are possible with such a
device.

By developing a shot-noise limited detector that demonstrates 57% efficiency
at megahertz-speeds, we remove a crucial roadblock to quantum state develop-
ment in the 2 µm–band that will help enable further development of prospec-
tive technologies including broadband 2 µm squeezing for quantum-enhanced
metrology50, SWIR-based ground-to-satellite quantum-key distribution106 and
remote LIDAR sensing137,138. Specifically, the increase in speed from kilohertz
to megahertz could help facilitate the implementation of CV quantum informa-
tion processing139 and optical neural networks140,141 which stand to benefit from
reduced two-photon absorption in silicon in the 2 µm–band. By developing a de-
tector that affords a high signal-to-noise ratio, we also help facilitate higher sensi-
tivity in classical schemes that employ balanced detection to monitor amplitude
modulation signals108, reject classical laser noise109 or map information from op-
tical frequencies to the RF via coherent heterodyne beating of optical frequency
combs110.

The detector bandwidth was designed to sufficiently suppress amplification
of the repetition rate of the laser used in our experiment (39.5 MHz). Without
doing so, the detector is at risk of saturating at a single frequency which in turn
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3.7. Characterisation of pulsed laser noise

can cause non-linear behavior in other parts of the spectrum, which can skew the
quadraturemeasurement. By observing theAC signal on the oscilloscope, we see
that the detector saturates at the repetition rate first suggesting greater suppres-
sion may increase the saturation power further. However, this would come at
the cost of decreased detector bandwidth and must be considered for each spe-
cific application. Another important consideration is that the quadrature mea-
surement efficiency has been proven to be negatively affected for detector band-
widths less than half the repetition rate of the laser114. This is a direct result of
eachpulse running into the previous pulsewhichmixes the temporalmode of the
quadrature measurement across consecutive pulses. One approach to increase
the bandwidth of shot-noise limited performance is to miniaturise the detector’s
electronic and optoelectronic components to curtail overall capacitance68. GeSn
integrated detectors for integrated photonics platforms are also being developd
that are sensitive to the SWIR and promise a considerable increase in speed142.

The best CMRR achieved for 1550 nm homodyne detectors is 75.2 dB and re-
quires fine-tuning circuitry to account for slight differences in transit time and
responsivity between the two photodiodes133. Without this additional path tun-
ing, small variations in transit timemake it difficult to improve theCMRRbeyond
60 dB. The path length difference between each arm was fine-tuned to maximise
rejection inferring 48 dB to be limited by such variations.

3.7 Characterisation of pulsed laser noise

In the next chapter, we present a device capable of classical noise suppression. In
preparation for the design & simulations of the device used, we measure the ad-
ditional classical intensity noise present in the pulsed laser above the shot-noise,
Fig. 3.15. Thismeasurement is carried out using the setup depicted in Fig. 3.11. To
measure the total noise signal in the pulse laser, we divert all power to one pho-
todiode on the detector. This is then compared to a balanced measurement with
the same total input power in which classical noise is rejected leaving only shot
noise. Figure 3.15 plots the total noise (red), shot-noise (green) and background
detector noise (blue) for an input power of −5 dBm.

The pulsed laser has additional intensity noise above the shot-noise limit
across the detector bandwidth, with a peak around 5 MHz of 6 dB of additional
noise. Additional intensity noise from pulse-to-pulse can stem from a number
of sources and we refer the reader to Section 4.5.1 for a discussion on this. We
attribute the peak to intensity noise coupling from the Thulium seed laser used
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Chapter 3. Shot-noise Limited Homodyne Detection in the 2 µm–band

Figure 3.15.Abreakdownof pulsed laser classical noise (red), shot-noise
(green) and background detector noise (blue) for an input power of
−5 dBm. A resolution bandwidth of 300 kHz and video bandwidth of
100 Hz was used to acquire the data.

to pump the gain medium in which the pulses are formed143. We note that the
level of noise above the shot-noise is power dependent with a doubling of inci-
dent power leading to a 6 dB increase in classical noise but only a 3 dB increase
in shot-noise.

3.8 Conclusion

We have given an overview of the theory and operating principles of homodyne
detection for quantum technology, and we have presented a shot-noise limited
homodyne detector designed for quantum measurement of pulsed light in the
2 µm–band. Using this detector, wemeasuremegahertz vacuumfluctuations and
verified the detector to be shot-noise limited, indicating its efficacy for detecting
quantum light and for characterising quantum light fields. Despite the sub-
optimal electrical characteristics of the available photodiodes in this band, we
show that this does not preclude quantum measurements. The device efficiency
of 57% is sufficient to measure Wigner function negativity72 which requires
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3.8. Conclusion

≥ 50% overall detector efficiency. We comment on the efficiency of the detector in
relation to applications of squeezed light. We note the main limitation on device
efficiency to be coupling efficiency, not the fundamental speed or dark current of
the extended InGaAs photodiodes. The advent of such a detector opens the door
to the measurement and verification of exotic quantum states in the 2 µm–band
and is of sufficiency efficacy to employ in future cutting-edge quantum noise
limited and quantum-enhanced metrology schemes. Additionally, this detector
can also provide a route towards increased signal-to-noise ratio of balanced
detectors utilised in schemes to measure weak modulation signals.

Figure 3.16.A photograph of the homodyne detector presented in this
chapter (taken by J. W. Silverstone).
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An All-optical Noise Reduction Scheme for
Integrated Absorption Spectroscopy in the

2 µm-band

Declaration of contribution: the integrated devices investigated here were de-
signed by Euan Allen and Lawrence Rosenfeld. The modelling of both the quan-
tum and classical noise limited pulse propagation through the devices was com-
pleted solely by me, along with device characterisation and the experimental noise
suppression investigation.

In this chapter, we present an all-optical silicon photonic integrated circuit
(PIC) capable of broadband pulsed-laser amplitude noise reduction in the
2 µm-band. In chapter 1 we discussed themotivation behind developing low

noise sources of light for absorption spectroscopy schemes and we saw how util-
ising silicon PIC technology for 2 µm-based applications has the potential to ben-
efit from reduced TPA and increased Kerr-nonlinearity. In the scheme presented
here, it is exactly these two favorable properties that we leverage in an attempt to
reduce the relative intensity noise (RIN) from a state-of-the-art 2 µm pulsed laser.
The devices presented in this chapter are asymmetric Kerr interferometers that
were originally designed by Allen et al. in Ref.144 for 2 µm amplitude squeezing
and were fabricated by the Cornerstone fabrication facility based in Southamp-
ton. Here, we model two scenarios 1) their ability to reduce amplitude quadra-
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Spectroscopy in the 2 µm-band

ture noise under a shot-noise limited laser approximation and 2) their ability to
reduce intensity noise under a noisy laser approximation (Sec. 4.1).We then fully
characterise the devices (Sec. 4.3), and measure their effect on RIN (Sec. 4.5).

The intensity noise in a laser is a combination of 1/f classical noise sources,
such as thermal vibrations in the resonator, noisy drive electronics & mode
hopping, and quantum noise sources stemming from intracavity spontaneous
emission near resonance and loss-induced vacuum fluctuations far from reso-
nance145,146. These noise sources present a significant limitation to high-precision
metrology with classical 1/f noise dominating at slower speeds and quantum
noise dominating at faster speeds.While some sensing schemes circumvent noise
limitations bymodulating the target information out to higher frequencieswhere
laser noise is limited only by quantum shot-noise27,28,147, others employ active
or passive noise reduction techniques to overcome this limitation148. In active
noise suppression, feedback or feed-forward circuitry is used in conjunctionwith
electro-optic modulators to correct for intensity fluctuations in the laser149,150.
Such schemes, reliant on potentially noisy electronic feedback, are often band-
width limited by the speed and accuracy of the feedback circuit to ≤10 kHz. In
addition, active schemes are limited by the noise characteristics of their drive elec-
tronics and can therefore not suppress noise arbitrarily close to the the shot-noise
limit. It is possible to employ a hybrid approach in which an optical amplifier is
used to improve the bandwidth of the suppression out to GHz151, however, there
are currently no active noise eaters commercially available for 2 µm applications.

Passive techniques employ optical interference, often in conjunction with
photocurrent subtraction, to suppress classical intensity noise in the laser. Ex-
amples include: rejection of classical noise via balanced detection71, frequency
dependent noise suppression via coherent pulse train interferometry144, and
suppression via nonlinear interferometry (often to levels below the shot-noise
limit)152–154. Pioneering work in fiber-based and free space optical sensing has
already demonstrated bright squeezing via nonlinear interferometry which has
subsequently enabled numerous quantum-enhanced metrology schemes50,112.

Integrated, passive, classical intensity noise reduction in the telecoms band
has so far been limited, despite several promising schemes well-proven in
fiber153,155. Admittedly, this is mostly due to the relative ease of purchasing a
shot-noise limited laser at these well supported wavelengths. As such, the last
20 years has seen a strong research focus on the generation of integrated sub-
classical noise suppression, with the first integrated squeezing demonstrations
using lithium niobate in 2002156. With low propagation losses, a relatively high
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χ(3) nonlinearity, and the advent of dual platform silicon – silicon nitride fabri-
cation capabilities which enable the smooth integration of active components,
silicon nitride has recently taken over as the preferred integrated squeezing plat-
form. Integrated SiN squeezing dates back to 2015 and all subsequent results are
summarised in Table 4.1 below. To date, squeezed state production in silicon has

Table 4.1.A summary of silicon nitride integrated squeezing results.
DFWM—degenerate fourwavemixing, OPO—optical parametric os-
cillator and DPFWM—dual pump four wave mixing.

Author Year Type of Squeezing Method Amount
Hoff136 2015 Bright Kerr SiNRing-enhancedKerr 4.5 dB
Dutt157 2015 Photon number difference SiN ring DFWM 5 dB
Dutt158 2016 Two-mode squeezing SiN OPO 3.9 dB
Cernensky159 2019 Kerr squeezed vac. SiN Asymmetric Sagnac 1 dB
Vaidya160 2020 Single-mode squeezed

vac.
SiN Ring-based FWM 4 dB

Vaidya160 2020 Photon number difference SiN Ring-based FWM 7 dB
Zhang161 2021 Single-mode squeezed

vac.
SiN DPFWM 8 dB

not been achieved due to a range of parasitic effects at 1550 nm. These include
power-limiting nonlinear loss from TPA and parasitic broadband noise, stem-
ming from free-carrier absorption and inelastic scattering effects, that swamp
any achieved noise reduction162. As mentioned in chapter 1, some of these ef-
fects are circumvented by moving to 2 µm, however, shot-noise limited lasers are
not available at this wavelength and, to the author’s knowledge, all previous in-
tegrated squeezing result have relied on shot-noise limited lasing. Since active
noise eaters are also not yet commercially available in this band, we must there-
fore look to passive solutions to suppress the excess classical noise in currently
available lasers.

In this chapter we present a passive silicon PIC device which we model to
be capable of classical intensity noise suppression via the use of a Sagnac-style
nonlinear Kerr-based interferometer. We start by reviewing classical Kerr non-
linearity and how it leads to SPM (Sec. 4.1). We then move on to discuss how
SPM may be utilised in an asymmetric interferometer to reduce classical inten-
sity noise (Sec. 4.1.4).We utilise a well knownmodel to estimate an upper bound
for the amount of amplitude squeezing attainable with these devices, assuming
a shot-noise limited pulse laser (Sec. 4.1.6). We then adapt this model to account
for excess classical noise over quantum noise (Sec. 4.1.7). Although these specific
devices were designed by Allen, we discuss the key design considerations with
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respect to optimal noise suppression (Sec. 4.2). In the final section, we present
device characterisation and discuss the measured noise suppression capabilities
(Sec. 4.3).

4.1 Noise suppression using Kerr interferometers

We start by examining how silicon responds to a bright optical fields.

4.1.1 Kerr nonlinearity

Given a sufficiently intense electromagnetic field, the response from any guiding
dielectric medium will become nonlinear86. In affect, this is due to the anhar-
moinc motion of electrons within the medium no longer being sufficiently cap-
tured by a simple harmonic model. In an isotropic material, the total polarisation
P induced from the electric dipoles created within the medium is nonlinear in
E, the applied instantaneous electric field (assumed to have linear polarisation).
Since P(E) can be considered a continuous function, we can perform a Taylor ex-
pansion in E and keep only leading order terms86:

P = ε0
(
χ(1) +χ(3)|E|2)E. (4.1)

Here, ε0 is the vacuum permittivity constant and χ(i ) is the i-th order susceptibil-
ity, given here by a complex scalar. By performing this expansion, we can char-
acterise materials by their level and order of susceptibility. Due to the inversion
symmetry of silicon its second-order susceptibility is zero making χ(3) its largest
non-zero nonlinear response163.Materials inwhich χ(3) dominate are coinedKerr
mediums after John Kerr who discovered a resulting effect known as nonlinear
refraction164. In general, the Kerr effect describes the parametric coupling of two
fields of frequency ω1 and ω2 to two output fields of equal frequency. For real
χ(3), where the silicon polarisation does not lead to absorption, a nonlinear re-
fractive index is induced, known as self-phase modulation (SPM), which affects
the spectral properties of the laser.

4.1.2 Self-phase modulation

The refractive index of the material, given by n = √
1+χ , is consequently ex-

panded into a leading term and small perturbation:
n = n +∆n,

= n1 +n2|E|2
(4.2)
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n1 =
√

1+χ(1) is the linear refraction coefficient and n2 = 3χ(3)/4n2
1ε0c is the non-

linear refraction coefficient. For a wave packet with frequency ω propagating a
distance L along the material, with propagation constant k, the induced instan-
taneous SPM is given by:

φNL = kLn2P

A
,

= γLP [2π].
(4.3)

where P is the power, A is the modal areas and γ ≡ ωn2/Ac is the waveguide,
material and wavelength specific nonlinear propagation constant used to char-
acterise the amount of SPM applied to the field. We will now use the nonlinear
propagation constant in a formal derivation of the governing differential equa-
tion for a bright classical pulse propagating through a Kerr medium, known as
the nonlinear Schrödinger equation.

4.1.3 Pulsed self-phase modulation

Using Maxwell’s equations for the flux densities induced by a propagating elec-
tromagnetic field through a polarised material87, we can eliminate the magnetic
fields in favour of the electric fields to give a governing equation for the propa-
gation of an electric field through a dielectric86:

∇2E− 1

c2

∂2E

∂t 2
=µ0

∂2P

∂t 2
, (4.4)

in which µ0 = 1/ε2
0c2, and E(r, t ) and P(r, t ) are the applied electric field and polar-

isation field, respectively. We will make the assumption that the field is linearly
polarised along the unit vector x̂ which does not change along the length of prop-
agation.We alsomake the assumption that the pulse is quasi-monochromatic, i.e.
∆ω/ω0 ¿ 1 where ∆ω is the pulse width and ω0 is the central frequency.

Immediately, we can insert our third order approximation for the polarisation
field of a Kerr medium, Eq.4.1, into Eq.4.4. Defining a new, adapted, permittivity
ε= (1+χ(1) +χ(2)|E|2), we get:

∇2E = ε

c2

∂2E

∂t 2
, (4.5)

the governing wave equation with a power dependent propagation constant. We
can represent the electric field as a combination of a slowly varying pulse enve-
lope along the direction of propagation, A(z, t), a perpendicular mode distribu-
tion described by F (x, y) and a fast varying propagation phase such that:

E(r, t ) = x̂

2

(
F (x, y)A(z, t )e i (βz−ω0t ) +c.c.

)
. (4.6)
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Figure 4.1. (a) Input envelope magnitude (blue), input envelope
phase (blue-dashed) and output envelope phase after propagation
through 1 mm of lossless silicon waveguide (Cornerstone strip). (b)
the associated pulse spectrums. (c) The electric field of the input
pulse showing carrier oscillations. (b) the chirped output electric
field (blue) with phase shift proportional to the rate of change of
the envelope magnitude (green-dashed).

To solve Eq.4.5, we take the Fourier transform and apply separation of vari-
ables to give an eigenvalue problem. The Fourier transform of Eq.4.6 is given by

Ẽ(r,ω−ω0) =
∫ ∞

−∞
E(r, t )e i (ω−ω0)t d t . (4.7)

Taking the Fourier transform of the differential Eq.4.5,we get
∇2Ẽ+εk2

0Ẽ = 0, (4.8)
where k0 =ω0/c. We assume the solution to this equation has the separable form:

Ẽ(r,ω−ω0) = F (x, y)Ã(z,ω−ω0)e iβ0z , (4.9)
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where Ã(z,ω) is the Fourier transform of the slowly varying pulse envelope and
β0 is to be determined later. Plugging Eq.4.9 into Eq.4.8 and applying separation
of variables with eigenvalues arbitrarily labelled as −β̃2F gives the following two
governing equations

∂2F

∂x2
+ ∂2F

∂y2
+F (εk2

0 − β̃2) = 0,

2iβ0
∂Ã

∂z
+ (β̃2 −β2

0)Ã = 0.

(4.10)

Here we have assumed the second derivative ∂2 Ã
∂z2 is negligible as Ã is a slowly

varying function of z. The first equation is solvable by considering the nonlinear
refraction as a small perturbation to the linear coefficient. In doing so, we can
obtain F (x, y) and the corresponding propagation constant β̃. We do not solve
this here but in summary, the effect on the propagation is to perturb the linear
propagation constant by an amount ∆β(ω) found to be86:

β̃(ω) =β(ω)+∆β(ω),

= n1ω

c
+γ(ω)|A|2.

(4.11)

The second equation describes how the pulse envelope will vary along z. The
characteristic dispersion length, defined in Ref.86 as LD = ∆τ2/|β2|, is approxi-
mately 6.7 m in our Cornerstone devices where ∆τ is the pulse width and β2 is
the dispersion parameter. We can therefore consider β̃(ω) ≈ β̃(ω0) to be a good ap-
proximation across the pulse for typical integrated waveguide lengths of ∼ cm. It
then follows that β̃(ω)2 −β2

0 ≈ 2β0∆β0. Using this approximation and taking the
inverse Fourier transform of the second equation gives:

∂A

∂z
= i∆β0 A

= iγ(ω0)|A|2 A.
(4.12)

From this equation we see that as the pulse propagates along z, a phase is ap-
plied to the slowvarying pulse envelope proportional to the instantaneous power
at z. Figure 4.1(a) shows how a typical sech-squared pulse envelope accumulates
phase after propagating a distance L along z. The spectrum of the pulse becomes
broadened due to the additional length-dependent phase acquired by each point
on the envelope, Fig. 4.1(b). It is important to note that the pulse envelope in time
remains unchanged but is no longer transform-limited. By reintroducing the car-
rier oscillations, Fig. 4.1(c), we can see the effect of this additional phase on the
carrier frequency which acquires a chirp dependent on the rate of change of the
envelope intensity, Fig. 4.1(d).
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4.1.4 Self-phase modulation in a Kerr interferometer

Shirasaki and Haus first suggested placing Kerr mediums inside interferome-
ters to combine the effect of SPM and interference to give a nonlinear power re-
sponse165. We will see later in the discussion that this nonlinear behavior can
lead to a reduction in both classical and quantum noise. For the purpose of this
thesis, we will limit our discussion to a Sagnac interferometer configuration and
we refer the reader to Ref.166 for an in depth discussion on Sagnac interferometry.
Below is a schematic of the exact interferometer we employ.

The interferometer consists of an integrated tunable beamsplitter, with trans-
mission η, and a spiral of length L in which the pulse will acquire SPM depen-
dent on the power in each arm. In chapter 2 we state the transfer matrix of an
integrated tuneable beamsplitter with transmission η, dependent on the phase,
θ, applied by a heating element above the waveguide. To analyse the power re-
lation of this device, let us input a single-mode plain wave into port 1 such that
E1 = Eine iφ and E2 = 0. Wemay assume φ= 0 and Ein ∈Rwithout loss of generality
and the input power, Pin is then given by Pin = E 2

in. Using the beamsplitter trans-
fer matrix and Eq.4.3 for acquired SPM, the output power of each port is found
to be:

P1 = 2η(1−η)Pin

(
cos(γLPin(1−2η))+1

)
P2 = Pin −P1

(4.13)

In this ideal model with η= 0.9, step-like behavior occurs in the output power
of each port that is dependent on the relative phase acquired between the two
arms, as seen in Fig. 4.2. The relative phase is driven by unequal SPM in each
arm and is thus power dependent. By observation of Eq.4.13 we see that as the
interferometer approaches a symmetric configuration with η = 0.5, the steps be-
come more pronounced via the factor η(1−η) but, at the same time, their period
approaches infinite through (1−2η) meaningmore power is needed to reachmul-
tiple steps. In reality, visibility of this behavior is degraded by poor interference
in the beamsplitter. We can witness the effect by either varying Pin with constant
splitting ratio or varying splitting with constant power. Witnessing step-like be-
havior in the output power is a hallmark of nonlinearity and is a strong sign that
the device can be utilised to suppress or amplify intensity noise in the input state.

To understand how noise suppression might result from a nonlinear power
response, let us consider that we artificially add noise to a constant power signal
by applying a weak intensity modulation about 7.5 mW, depicted in Fig.4.2 by
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P2PinP1

L

50:50

50:50

θ

Figure 4.2.A schematic of an integrated Sagnac Kerr interferometer. The
graph plots the power relations for each port assuming a fixed beam-
splitter transmission of η= 0.9. The purple and green lines show how
input power modulation depths are altered by the nonlinearity.

the turquoise oscillation. At this point the power relation for P2 is close to a turn-
ing point meaning comparatively large variations in input power are mapped
to smaller variations in the output power. In effect, the modulation depth will
decrease. Conversely, driving the same modulation about 9.5 mW will target a
steeper part of the curve resulting in a greater modulation depth in the output. It
is important to recognise that in the purely classical case, linear loss would also
have this effect on the modulation, however, the RIN of the state, defined as the
ratio of average power in the modulation to average total power, would remain
constant as both are equally effected by loss. In a Kerr interferometer, this is not
the case and a reduction in RIN is possible.

We can consider both classical and quantum intensity noise to be the sum
of small randommodulations occurring simultaneously at a variety of sideband
frequencies80. The picture given above for a singular modulation frequency also
holds true for broadband noise due to the linear nature of an interferometer.
Noise suppression is greatest when driving close to the turning point of the
power relation curve. The toy model analysed above assumes perfect interfer-
ence at the beamsplitter and neglects the effect of other processes that will occur
concurrently that negatively effect interference, such as spectral broadening from
self-phase modulation, which must be considered when analysing noise reduc-
tion in a pulse.

Schmitt et al. showed that the nonlinear response is a necessary but not suffi-

71



Chapter 4. An All-optical Noise Reduction Scheme for Integrated Absorption
Spectroscopy in the 2 µm-band

cient condition for the device to suppress quantum noise in the state due to para-
sitic losses in the device degrading any squeezing that results from the nonlinear-
ity167. The initial schemepresented by Shirasaki andHaus in 1989165 used optical
fiber as a Kerr medium. In their scheme, a pulse is split via a 50:50 beamsplitter
and each arm propagates through identical Kerr mediums to acquire squeezing
and matched linear phase. The two arms are then combined again on a second
50:50 splittermapping the pulse to one output and squeezed vacuum to the other.
The scheme was considered a breakthrough in that the broadband nature of the
squeezing, limited only by the characteristic response time of the beamsplitters,
enabled the use of pulsed light which has a higher average power than CW light
resulting in a stronger nonlinear effect152. The scheme was later adapted to pro-
duce bright squeezing and was demonstrated in fiber for the first time in 1998167.
In this adapted scheme, the 50:50 beamsplitters are changed for 90:10 beamsplit-
ters. Bright amplitude squeezing then arise from the combination of SPM in the
bright arm followed by a slight rotation of the squeezed quadrature, via interfer-
ence with the weak arm, to bring it inline with the amplitude quadrature.

In order to fully understand these quantum noise suppression schemes, we
must discuss a quantum analysis of self-phase modulation, first acting on a co-
herent state, and later on a pulse propagating through an interferometer.

4.1.5 Quantum analysis of self-phase modulation

In the quantum regime, one can derive the (non-Gaussian) generator of SPM via
full quantisation of the field as shown by168. Assuming a lossless Kerr medium
that displays an isotropic response and which is guiding a single circularly-
polarised mode, the unitary Kerr operator for that mode is found to be168:

ÛK = e iγ~ωzn̂(n̂+1). (4.14)

It is intuitive to consider Kerr evolution of a coherent state ∣∣ψ〉
K = ÛK |α〉. The

resulting state, ∣∣ψ〉
K, is known as a Kerr state and is expressed here in the Fock

basis50: ∣∣ψ〉
K = e−(1/2)|α|2 ∞∑

n=0

αne−iγ~ωzn(n+1)

p
n!

|n〉 . (4.15)

Under Kerr propagation, a relative phase is applied to each basis state dependent
on the number of photons present. This can be thought of as an amplitude depen-
dent phase, which agrees with our classical interpretation of Kerr evolution. If
we now consider an arbitrary quadraturemeasurement q̂φ = âe−iφ+â†e iφ and cal-
culate the variance, Eq.4.16, we find that for certain values of φ, the state displays
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sub-classical variance and is therefore already quadrature squeezed without the
use of an interferometer168. We can plot the evolution of the quantum noise in
phase space via the Wigner representation of the quasi-probability distribution,
Fig.4.3 (see Sec. 2.1.1.3). A radially proportional phase is applied as the state
propagates resulting in a smeared banana shaped distribution. We can see in the
graph that the radial extent of the state remains unchanged, or equivalently – the
Kerr operator commutes with the photon number operator leaving the photon
number statistics Poissonian. It is for this reason that Kerr evolution alone cannot
provide photon number squeezing (or equivalently amplitude squeezing in the
high power limit).

Var(q̂φ) = 2Re{〈∆â2〉e−2iφ}+2(〈â†â〉− |〈â〉|2)+1 (4.16)

Figure 4.3. The Wigner representation of a coherent state with α = 3 be-
fore and after Kerr evolution. This graph was created using QuTip
quantum systems modelling software169.

4.1.6 Quantum evolution of a pulse through a Kerr
interferometer

We will combined the theory presented in the previous sections to model noise
reduction in a shot-noise limited pulse propagating through an asymmetric Kerr
interferometer. We follow the method presented in Ref.152,153, which utilises lin-
earisation of the field as presented in Sec. 2.1.4, but tailored for optimal compu-
tation of a 2.07 µm high-power pulse laser propagating through the Cornerstone
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devices. See Appendix B for a detailed list of pulsed laser and Cornerstone de-
vices specifications used in this chapter.

The pulsed laser, to a good approximation, outputs a transform-limited sech-
squared pulse envelope which we discritise into M , equally spaced, modes in
time separated by ∆τ, labelled j . These modes are considered orthogonal and
centred on the co-moving time frame of the laser pulse such that τ = t − z/vg

where vg is the group velocity of the pulse in the waveguide (defined at the peak
wavelength). This approximation is valid only when a frequency independent
group velocity adequately captures the evolution of the envelope across its full
bandwidth. Each mode j is linearised into a time-independent classical field am-
plitude, A(z) j , plus a continuum of small quantum noise operators â j (z, t ) which
obeys the following commutation relations:

[â j (z,τ), â†
j (z,τ′)] = δ(τ−τ′),

[â j (z,τ), â j (z,τ)] = 0,
(4.17)

as per standard linearisation, presented in chapter 2 and depicted in Fig. 4.4(a)
for a the pulse.

We further discritise each continuum of quantum noise operators into the set
of M time modes. This is achieved by representing each continuum as a linear
combination across the temporal modes j such that â j (z, t ) ≡ 1p

M

∑M
k=1

(
µ(z)k

j b̂k +
ν(z)k

j b̂†
k

)
, where b̂k are now time-independent quantum noise operators which

obey:

[b̂i , b̂†
j ] = δi j ,

[b̂i , b̂ j ] = 0,
(4.18)

for all i , j in the set {1, ..., M }. Here, µ(z)k
j and ν(z)k

j are matrix elements in CMxM

which, togetherwith A(z) j , fully capture the dynamics of the system. The normal-
isation factor is required to recover the correct commutation relations for â j (z, t ).

The decomposition of the j -th temporal mode of the pulse, A(z) j + â j (z, t), is
depicted in Fig. 4.4(b) in the sideband picture. In converting to the sideband pic-
ture, we take the discrete Fourier transform of A(z) j + 1p

M

∑M
k=1

(
µ(z)k

j b̂k +ν(z)k
j b̂†

k

)
and plot the resulting state as a combination of electric field modes across fre-
quency. Note that we remain in the rotating frame of the carrier and thus apply
the relevant translation to the axises. The classical contribution gives a DC com-
ponent at the carrier frequency δ(ω0)A(z) j . The discrete Fourier transform of the
quantum noise results in pairs of sideband modes symmetrically placed about
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Figure 4.4. (a) a schematic showing pulse discretisation and linearisation
as performed in the quantum pulsed Kerr propagation model. Each
slice has a static classical contribution and a time dependent quan-
tum noise contribution depicted in phase space via the shaded cir-
cles. (b) the equivalent sideband model of a single pulse slice which
has been discretised further into complex field vectors in sideband
modes symmetric about the DC carrier which oscillate in time. The
magnitude of these vectors is determined by the vacuum noise level.

DC. All sidebands has a fixed vector of equal magnitude but random phase that
reflects the Gaussian nature of the quantum noise in the time domain. As wewill
see, partial correlation of these random phases across a given sideband, through
the action of SPM, gives rise to Piossonian noise statistics in that sideband.

At z = 0, the laser is assumed to be shot-noise limited and thus the photon
number variance of each temporal mode is exactly ∣∣A(0) j

∣∣2. This dictates that
ν(0) = 0M and µ(0) = IM , where 0M and IM are the zero and unit matrices of di-
mension M 2. Putting this all together we get:

Â(z, t ) =
M∑

k, j=1

(
A(z) j + 1p

M

(
µ(z)k

j b̂k +ν(z)k
j b̂†

k

))
(4.19)

We adapt Eq.4.12 for the evolution of a pulse envelope to include linear prop-
agation loss along the length of the waveguide:

∂Â(z, t )

∂z
=

(
iγ|Â(z, t )|2 − α

2

)
Â(z, t ). (4.20)

It is important to note that including propagation loss in this way only classically
accounts for the effect of loss. As noise is suppressed below the shot-noise limit,
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loss will couple in vacuum noise and counter the noise suppression. As an upper
bound on the achievable noise suppression, we apply classical loss to the ampli-
tude of the envelope but not the quantum statistics. Full analysis of the lossy case
is covered in Ref.153.

We can substitute Eq.4.19 into this governing differential to give equations of
motion for µ j , ν j and A j :

∂A(z) j

∂z
=

(
iγ|A j |2 − α

2

)
A(z) j ,

∂µ(z)k
j

∂z
= 2iγ|A(z) j |2µ(z)k

j + iγA(z)2
jν(z)k∗

j ,

∂ν(z)k
j

∂z
= 2iγ|A(z) j |2ν(z)k

j + iγA(z)k
j

2
µ(z)k∗

j .

(4.21)

To solve these equations numerically, we discritise z into n = 1...N steps equally
spaced by ∆z. Each A(n +1) j is solved for using the first equation via A(n +1) j =
exp

(
(iγ

∣∣A(n) j
∣∣2 −α/2)∆z

)
A(n) j . This is then fed into the coupled first order dif-

ferentials, along with µ(n)k
j and ν(n)k

j , to solve for µ(n +1)k
j and ν(n +1)k

j . As we
have found dispersion to be negligible, both µ(z) and ν(z) will remain diagonal
with zero off-diagonal elements. Making use of this fact allows us to simplify the
numerical computation and reduce the calculation time.

As depicted in Fig. 4.2, the input pulse first propagates through a beamsplit-
ter. Using the transfer matrix for an integrated beamsplitter, we map the input
pulse Â(0,0) into two modes inside the interferometer labelled Âc(0,0) for clock-
wise propagation and Âac(0,0) for anticlockwise propagation. Each mode is then
propagated through the same length of Kerr waveguide using the numerical ap-
proach outlined above. The beamsplitter transfer matrix is then applied to the
two modulated states such that we get the following two outputs:

Â1 =p
η Âc(N )+ i

√
1−η Âac(N ),

Â2 = i
√

1−η Âc(N )+ i
p
η Âac(N ),

(4.22)

in which

Âc(N ) =
M∑

k, j=1

(
A(N )c, j + δp

M

(
µ(N )k

c, j b̂c,k +ν(N )k
c, j b̂†

c,k

))
,

Âac(N ) =
M∑

k, j=1

(
A(N )ac, j + δp

M

(
µ(N )k

ac, j b̂ac,k +ν(N )k
ac, j b̂†

ac,k

))
.

(4.23)

We are interested in calculating the resulting PSD of the photocurrent gener-
ated via detection of the brighter state with a photodiode, Î1 = Â†

1 Â1. Comparing
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this to the current generated by a shot-noise limited state of equal power will in-
form us as to how much noise reduction has occurred. The PSD generated by a
photodiode at low frequencies compared to thewidth of the pulse can be approx-
imated via the DC component of Wiener–Khintchine’s theorem, given by152:

Φ= 1

2M 2

M∑
j ,k=1

〈Â1, j Â1,k ,〉 (4.24)

where the expectation is taken over the vacuum as we have assumed the laser
to be shot-noise limited. Note that the summation indices j and k represent a
discrete autocorrelation. The noise reduction factor is then found by comparing
this value to the shot-noise limited case in which µ(N )c =µ(N )c = IM and ν(N )c =
ν(N )c = 0M .

In this model, care in needed in choosing M , N , ∆z and ∆t such that the pulse
is well sampled. ∆z must be an order of magnitude less than the characteristic
nonlinear length of the waveguide given by LNL = Rr∆τ/γPin where ∆τ is the
pulse width in the time domain. We calculate LNL = 3 mm for our Cornerstone
devices, therefore, ∆z is chosen to be 1 µm. The product M∆t must be sufficient
to cover the full width of the pulse post-broadening. Convergence analysis over
all simulation parameterswas carried out to ensure a stable and accurate solution.
M was chosen to be M = 211 and ∆t = 0.013 ps such that M∆t = 10∆τ.

The second axis in Fig. 4.5 belowplots the expected power relation from aCor-
nerstone device with spiral length 5.5 cm. We have accounted for −3 dB/cm prop-
agation loss and −5 dB of grating loss as measured for this device. γ is estimated
to be approximately 220 1/Wm using the current best estimate of n2 = 1.5x10−18

m2/W in silicon at 2 µm65.
The first axis in Fig. 4.5 shows the associated expected noise reduction with

the greatest reduction of −1.8 dB occurring at the turning point of the first step.
Schmitt et al. proved that optimal suppression occurs at 92 : 8 splitting ratiowhere
the two turning points form a saddle point. Divergence away from this point
gives two more steep, but less deep, noise suppression minima167. This unintu-
itive behavior stems from the banana-shaped distribution that occurs in SPM.
The maximum squeezing ratio is mainly limited by the pulse shape with greater
squeezing as the pulse approaches a square shape. This is because at speeds less
than the repetition rate of the laser, the measured squeezing is in fact a weighted
average of instantaneous squeezing over the high-power section of the pulse and
the low-power section between, and on the wings of, the pulse. We also note that
this model does not account for additional noise sources that may be present
inside the waveguide such as thermo-refractive noise170.
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Figure 4.5. The power in – power out relations for a Cornerstone 1 de-
vice with spiral length 5.5 cm. Propagation loss is −3 dB/cm, chip
coupling losses are −5 dB and detector efficiency is assumed to be
unity (green). γ is estimated to be approximately 220 1/Wm36. Ex-
pected relative noise power from the device (blue) compared to the
shot-noise limit (dashed blue). Shaded blue regions are regions of
expected noise suppression and shaded red are regions of noise am-
plification.

4.1.7 Accounting for excess classical noise

We have seen how we can use an asymmetric Kerr interferometer to suppress
quantumnoise in a pulse train below the shot-noise limit. Unfortunately, the only
pulsed laser available at 2 µm is far from shot-noise limited (see Sec. 3.7).Wemust
therefore adapt thismodel to account for classical noise instead of quantumnoise.
We make the reasonable assumption that the classical noise is Gaussian in phase
and amplitude. Adapting themodel is straightforward in in a linearisedmodel by
replacing the continuum quantum noise operators â(z, t ) j , which previously had
a fixed variance of exactly 1 (defined by the shot-noise of a coherent state), with
classical stochastic functions s j (z, t) that now have an allowed variance greater
than 1 and which obey:

〈s j (z, t )s j (z,τ)〉 = δ(t −τ),

〈s j (z, t )s∗j (z,τ)〉 = 〈s j (z, t )〉〈s∗j (z,τ)〉 = 0,
(4.25)

the classical equivalent to the commutation relations presented in Eq. 4.17. These
relations state that the noise on each time mode is independent across time and
uncorrelated across orthogonal quadratures.

78



4.2. Optimal design of an integrated Kerr interferometer

Taking the same approach as before, we discritise these into time-
independent modes; we employ µ(z)k

j ζk and ν(z)k
j ζ

∗
k , where ζk and ζ∗k are or-

thogonal stochastic functions that account for the contribution of each discrete
pair of symmetric sidebands to the motion of s j (z, t ). By definition, each stochas-
tic function has zero expectation, 〈ζ j 〉 = 0 and 〈ζ∗j 〉 = 0, and is independent across
all modes, 〈ζ jζk〉 = δ j k . As previously stated, define these classical fluctuations to
have Gaussian statistics such that 〈ζ2

j 〉 = 1, 〈ζ∗2
j 〉 = 1 and 〈ζ jζ

∗
j 〉 = 0, with vanishing

higher-order moments. Figure 4.6(a) depicts how a single timemode j is broken
down into a large stationary vector and a linear combination of two orthogonal
stochastic functions in phase space. The input pulse is then given by:

A(z, t ) =
M∑

k, j=1

(
A(z) j + δp

M

(
µ(z)k

j ζk +ν(z)k
j ζ

∗
k

))
, (4.26)

with initial conditions ν(0) =µ(0) = IMσ/
p

2 , whereσ is a constant that defines the
level of noise above the vacuum in each sideband. This initial condition ensures
the quadrature variance of each time mode is exactly σ times that of the vacuum.
Here, we model a quadrature noise level 20 dB greater than vacuum.

Using the same method as in the quantum case and utilising the identities
listed above when taking the expectation value in Eq.4.24 to cancel terms, we can
plot the expected noise suppression in relation to the input noise variance σ.

In Fig. 4.6(b) we see noise is suppressed in line with the change in gradient in
the average output power as expected. In the classical case, the double dip phe-
nomenamentioned previously ismore pronouncedwithmaximal noise suppres-
sion expected to be around −15 dB. This sets the upper limit on what we should
expect to measure from a Cornerstone device due to expected degradation of
the effect from imperfect interferometer visibility. We also note that as noise is
suppressed close to the shot-noise limit, the error in this purely classical model
will grow due to the absence of quantum noise in the model. The power of a lin-
earised model is that both the classical and quantum noise could be combined
into the same model to give a complete picture.

4.2 Optimal design of an integrated Kerr
interferometer

2 µm integrated optics components in silicon have been pioneered by Rosenfeld
who spent his PhD designing key components, such as single mode waveguides,
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a b

Figure 4.6. (a) schematic of classical quadrature noise brokendown into
two orthognal stocastic function. (b) the power in – power out re-
lations for a Cornerstone 1 device with spiral length 5.5 cm. Propa-
gation loss is −3 dB/cm and chip coupling losses are −5 dB (green).
γ is estimated to be approximately 220 1/Wm. The expected relative
noise power from the device (blue) compared to the input noise level
(dashed blue). Shaded blue regions are regions of expected noise
suppression and shaded red are regions of noise amplification.

gratings, evanescent couplers and integrated beamsplitters, for single photon
source development36. Allen et al., in collaboration with Rosenfeld, utilised this
arsenal of optimised passive components to build a Sagnac interferometer. Below,
we outline the key design considerations in designing such a device for noise sup-
pression of a pulsed laser.

One key benefit to performing this scheme in integrated optics, compared to
traditional fiber optics50,171,172, is the relaxed dispersion engineering constraints
afforded by low dispersion integrated waveguides. In fiber, it is crucial to main-
tain soliton behavior in the spiral to ensure the pulse train is not broken down.
This is achieved via careful balancing of anomalous dispersion and self-phase
modulation173, thereby placing additional constraints on fiber engineering.

340 x 500 nm single-mode strip waveguides, designed by Rosenfeld for Cor-
nerstone have β2 =−1.2 ps2/m at 2.07 µm. Figure 4.3 below shows the pulse spec-
trum obtained via an optical spectrum analyser. The spectral width of the pulse
is 2.65 nm. We can estimate the amount of pulse spreading expected due to dis-
persion via ∆τ ≈ DL∆λ where L is the length of the spiral and D is the group
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velocity dispersion parameter given by D = −2πcβ2/λ2. Using these values we
get D = 5.28x10−4 s/m2 and ∆τ=0.08 ps for a spiral of length 6 cm. Since the tem-
poral width of the pulse has been measured by the manufacture to be 2.8 ps, we
can consider this pulse broadening to be negligible. Note that this remains true
for a broad range of waveguide widths, Fig. 4.7(inset), giving us the freedom to
focus the optimisation of waveguide width and spiral length on the nonlinear
coefficient of the waveguide, the acquired SPM, and expected propagation loss.

Δλ = 2.65 nm

Figure 4.7. Raw pulsed laser spectrum displaying a FWHM of 2.65 nm.
The inset shows dispersion as a function of waveguidewidth for Cor-
nerstone technology65.

Propagation loss from waveguide sidewall roughness is notoriously difficult
to model due to the stochastic nature of the variations. Nonetheless, Payne and
Lacey have devised a provenmodelwhich estimates propagation loss due to side-
wall roughness88,174 via an idealised autocorrelation function which describes
the sidewall variation profile. Here, we use this model to estimate the expected
sidewall roughness induced propagation loss of strip waveguides of varying
width. Hagan found that an autocorrelation with an exponential form produced
results that agree well with measured values for waveguides fabricated via opti-
cal lithography174. The function is defined as follows:

R(u) =σ2e− |u|
Lc , (4.27)
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where Lc is the sidewall roughness correlation length, typically measured via
scanning-electron microscopy, σ is the mean squared standard deviation of the
sidewall roughness and u is distance along the waveguide. These are approxi-
mated to be 100 nm and 1 nm respectively for Cornerstone devices. Let us assume
the waveguide cross-sectional profile is centred on (x, y) = (0,h/2), with width w

such that the sidewalls are located at x =±w/2 and height h such that the bottom
of the waveguide is at y = 0. The closed form expression for the propagation loss
in dB/m is given by Ref.88 to be:

α(w)L = 4.343E(w/2)2(n2
core −n2

clad)2 k3
0

4πnclad

∫ π

0
R̃(β−ncladkcos(θ))dθ (4.28)

where E(w/2) is the normalised-integrated modal field evaluated at the waveg-
uide edge, solved for using Lumerical. nclad is the cladding index, ncore is the
core index, β is the mode propagation constant and R̃ is the Fourier transform of
the auto-correlation function. First we integrate the field over the height of the
waveguide and then normalise across the full width of the mode to give:

E(w/2) =
∫ h

0 E(w/2, y)2d y∫ ∞
−∞ E(x)2d x

. (4.29)

The integral in Eq. 4.28 has a closed form solution presented in63 which allows
for an analytical solution.

a b

Figure 4.8. a) estimated propagation loss andmodal area in Cornerstone
as a function ofwaveguidewidtha and (b) expected SPMand output
power assuming a waveguide width of 500 nm, propagation loss of
−3 dB and input average power of 10 mW

As waveguide width is increased, propagation loss falls of exponentially due
to an exponential drop in the power concentrated at the sidewalls of the strip. Fig-
ure 4.8(a) shows that increasing the width much beyond 0.5 µm has little effect
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on the loss and decreases the nonlinear coefficient of the waveguide through in-
creasing mode area. Above 0.561 µm, the waveguide becomes multi-mode which
is best avoided, especially in the corners of the spiral wheremode-mixing is likely
to occur. Based on these simulations, the optimal waveguide width is likely to be
close to 0.5 µm.

We can account for the effect of propagation loss via an effective spiral length
scaling, a common approximation described in Ref.86, which scales the length
of the waveguide to one that has no loss but which gives the same amount of
acquired SPM. Using effective length, Eq. 4.3 is adapted to:

φNL = kn2|Pin|2
A

1−e−αL

α
. (4.30)

The abovemodel of propagation loss does not account for bend loss. As such, we
base our estimate of loss on measurements carried out by Rosenfeld and assume
αL = −3 dB65. Inserting this estimate into Eq. 4.30, we plot the expected SPM as a
function of spiral length, Fig. 4.8(a). SPMplateaus due to the effect of waveguide
loss. Nonetheless, 0.5 rad acquired by the peak of the pulse is sufficient to see step-
like behavior and noise suppression, Fig. 4.5.

4.3 Device characterisation

Before measuring noise suppression from our integrated devices, we first charac-
terise their linear and nonlinear performance. Unless stated otherwise, all char-
acterisation was performed with the pulsed laser. Light is coupled into each test
structure at a vertical angle of 12° via VGA consisting of 8 SMF28 fiber ports with
127 µm pitch. Coupling is optimised across all 6 alignment axis.

To characterise the linear propagation loss in the waveguides, along with the
grating coupler loss, we use a range of spiral waveguides of increasing length,
known as a waveguide cutback (see Fig. 4.9(c)). By plotting the total waveguide
length against the transmission for a fixed input power and fitting this data to
a linear fit, we can extract the loss per centimeter, given by the gradient. The
intercept will be equal to twice the grating coupling loss.

Using this method we characterise a propagation loss of −3.08 dB/cm with a
grating loss of −5.85 dB per grating, Fig. 4.9(a). Each spiral contains 54 90° bends
with bend radius 19.5 µm. The additional loss acquired in the bends is modelled
to be negligible using Lumerical bend analysis. Each spiral has exactly the same
number of bends meaning the additional loss will not effect the measurement
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a b

c

Figure 4.9. (a) loss as a function of spiral waveguide length, acquired us-
ing the spiral cutback depicted in (c). Data is fit to a linear function to
extract propragation loss per centimeter and grating loss. (b) Sagnac
dark port transmission, normalised by input power, as a function of
heater voltage squared (black), fit to a cos2 function (dashed red).

of propagation loss but instead will present as a small error in our estimate of
grating loss. The input pulse power was kept below 1 mW to minimise the effect
of additional nonlinear losses skewing the data, resulting in an overestimate of
the linear propagation loss.

In the Sagnac configuration, it is impossible to distinguish between the inter-
ference visibility of the Sagnac and the integrated MZI visibility. Access to a tap
on the interior of the interferometer would remedy this. Unfortunately, there are
are no MZI test structures available of the design depicted in Fig. 4.9(b). By plot-
ting the transmission from the dark port of the Sagnac as a function of heater
voltage squared, we can asses the combined visibility of the device, defined as36:

V = Pmax −Pmin

Pmax +Pmin
. (4.31)

Here, Pmax and Pmin are the maximum and minimum output powers of the de-
vice across heater voltage. Using a least-squares regression, we fit the data to
y = Acos(B x +C )2 +D where V is then given by V = A/(A +2D). This gives a visi-

84



4.3. Device characterisation

Figure 4.10.Grating transmission spectrum acquired via a super con-
tinuum laser and optical spectrum analyser. The plot shows the
background signal from the laser (red), the grating structure out-
put (blue) and the differenece between the two, the transmission,
(green). The structure investigated is depicted in the top right cor-
ner.

bility of V = 99.30%. As we increase the pulse power, we expect the visibility to
decrease due to pulse broadening in the spiral beyond the working bandwidth
of the integrated MZI (see chapter 2 for a discussion on integrated MZI band-
width.)

The grating coupler bandwidth and central wavelength is characterised via
the test structure shown in the top right of Fig. 4.10 with a super-continuum laser
source which emits a broadband spectrum. Figure 4.10 shows the optimal wave-
length is 2050 nm, 20 nm off from Rosenfeld’s design target of 2070 nm. Decreas-
ing the angle of incidence will red-shift the optimal wavelength but may also
lead to an overall reduction in coupling efficiency. The bandwidth of the coupler
is found to be 50 nm.

We can characterise the nonlinear losses through the spiral by measuring
transmission as a function of input peak pulse power. Rosenfeld measured the
nonlinear loss parameter, β2, to be 0.5 cm/GW36. Transmission is related to the
nonlinear loss parameter via:

Pout(x)

Pin
= 1

1+β2xPin
(4.32)

where x is distance travelled along the waveguide. Eq. 4.32 is fit to transmission
data from a grating coupled 8.8 cm spiral, Fig. 4.11(a)(green), and is found to be
0.21±0.04 cm/GW, resulting in higher loss than expected. For comparison, Fig.
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4.11(a)(red) plots the expected relation as per Rosenfeld’s measured value for
Cornerstone.

L=8.8cm

a b

Figure 4.11. (a) Sprial transmission as a function of input pulse peak
power (blue). The data is fit to Eq. 4.32 over the nonlinear loss co-
efficient β2 (green). Expected β2 is plotted for comparison (red). (b)
Pulse spectrums from an 8.8 cm spiral for a range of input pulse pow-
ers showing spectral broadening from SPM.

As the pulse propagates through the spiral, TPA will occur alongside pulse
broadening. The additional nonlinear loss measured is most likely to be the com-
bined result of pulse broadening and grating filtering, as per the spectrum in Fig.
4.10. Rosenfeld pre-filtered the pulse in his measurement resulting in a narrower
spectral width by the time the pulse exits the grating. Figure. 4.11(b) shows how
the combined effects leads to an asymmetric pulse spectrum, with greater loss
applied to the red side of the spectrum due to the pulse being off-center. Interest-
ingly, this type of composite nonlinear effect has also been utilised in fiber-based
experiments to produce 4.5 dB of squeezing in sub-picosecond pulsed solitons155.
In such a scheme, a narrow-band tunable filter-function is optimal rendering the
broad filter function generated by the grating sub-optimal for squeezed state pro-
duction.

4.4 Measuring noise suppression

The setup used to measure noise suppression in the laser is depicted in Fig. 4.12.
The laser propagates through a VOA consisting of a razor blade on a motorised
stage. The light is then coupled back into SMF28 fibre. VOA insertion loss is mea-

86



4.4. Measuring noise suppression

sured to be −4.1 dB. The laser is then coupled through a 90:10 fiber beamsplitter
to tap the input power. This splitter is characterised to have insertion loss−0.44 dB

and splitting ratio 88.7:11.3. The 11.3% output is incident on a powermeter and is
used tomonitor the input power. The 88.7% arm is coupled into the silicon device
via a VGA. The integrated beamsplitter voltage is set via a Qontrol heater driver
and determines the splitting ratio. Light from the other port is collected via the
VGA and is incident onto one photodiode of the homodyne detector presented in
chapter 3. In this configuration, the detector is used as a amplified photodetector
with a current proportional to optical signal intensity. The RF output of the detec-
tor is split via a bias tee into its DC and AC components. The DC is coupled into
an oscilloscope (Tektronix TDS2012B) and acts as an average power meter and
the AC component is passed through a DC-22 MHz low pass filter and then cou-
pled into a 1 GHz electrical spectrum analyser (R&S FPC 1007) giving a measure
of the optical intensity squared per hertz.

Figure 4.12. Experimental diagram of the integrated noise suppression
scheme. The pulsed laser is passed through a VOA and is optically
coupled to the chip via a VGA. A 10% fiber splitter acts as in input
power monitor. Light is collected from the chip via the VGA and is
coupled into on side of the homodyne detector. The output RF signal
is analysed via an oscilloscope and spectrum analyser.

To asses the noise level of the laser, we measure RIN – a measure of the noise
power per hertz normalised by the total average power in the signal. For a classi-
cal noise limited laser beam, the RIN is constant with increasing average power
since both components scale at the same rate. Note this does not hold true for a
shot-noise limited source. Using the standard definition of RIN in linear units, as
measured by an ESA with 50Ω input impedance, we get175:

RIN = 50Ω ·PSDlin

BV 2
DC

[1/Hz]. (4.33)
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Here, B is the resolution bandwidth of the ESA, PSDlin is the power spectral den-
sity as measured by the ESA but converted to linear units, VDC is the DC voltage
asmeasured by the oscilloscope (proportional to average laser intensity) and the
factor of 50Ω converts voltage PSD to optical PSD. In the results below, we plot
the logged-RIN in units of [dBc/Hz] for specific frequencies as functions of input
optical power.

Figure 4.13.A photo of Cornerstone Sagnac squeezing devices taken via
an Olympus microscope (negative image).

In eachmeasurement, the PSD andDC voltage is averaged over 5 traces of the
ESA with a video bandwidth of 100 Hz, resolution bandwidth of 300 kHz, span
of 45 MHz and sweep time of 1.6 s. A key benefit to measuring the RIN via our
homodyne detector is that both DC and AC components are measured from the
same electrical signal. As a result, the RINmeasurement is immune to variations
in detector coupling or chip coupling on time scales greater than the sweep time
of one trace as these dependencies cancel. Chip coupling has been measured to
have a standard deviation of 1.1 µW over a 2 s measurement. Detector coupling
has been measured to have a standard deviation of 2.6 mV. All other dependen-
cies, such as ESA input impedance and resolution bandwidth, along with para-
sitic electrical losses, can be considered stable across the trace averaging, giving

88



4.4. Measuring noise suppression

a measure that is sufficiently precise and repeatable for output voltage greater
than 10 mV.

We start by utilising the setup to measure the RIN of the laser through both
an in-out grating and spiral test structure of similar length to the Sagnac spiral.
In this measurement, we can asses both the base RIN of the laser through the
silicon device, Fig. 4.14(a), and the effect of propagating through a longer sec-
tion of waveguide to check for additional noise added by the waveguide, Fig.
4.14(b). When performing this measurement, we were expecting the RIN to re-
main constant and the same for both structures. What we found is that propa-
gation through the spiral introduces additional broadband noise consistent with
the theory of modulation instability (MI).

Modulation instability is a nonlinear effect in which small variations in the
intensity of the laser grow exponentially across a broadband frequency range
about the carrier due to a combination of anomalous dispersion and self-phase
modulation176. In the frequency domain, it can be considered as four-wave mix-
ing with phase-matching provided by SPM. MI is a well established phenomena
often witnessed in near-infrared optical fibers and has been utilised for optical
amplification177. Following the linear stability analysis of Eq. 4.20, adapted to in-
clude the effect of group velocity dispersion as derived by Alem et al., we can
model the linear loss corrected MI gain spectrum via176:

GMI =
e−αL

(
1+2

(γPp

g

)2sinh2(g Leff)
)

ω< 2γPp

|β2|
0 ω≥ 2γPp

|β2|
(4.34)

where g =−β2ω
(
γPp + β2ω

4

)
and Pp is the pulse peak power at the input.

Due to the waveguide having low anomalous dispersion, the bandwidth
over which MI gain occurs is much larger than the detection bandwidth. Figure
4.14(b) plots theMI correctedRIN at 3 MHz which agreeswith themeasuredRIN
for average powers less then 20 mW. The resulting RIN is near 10 dB greater than
its base value due to the effects of MI. Above 20 mW, this model overestimates
the RIN most likely due to the fact that peak power depletion is not accounted
for in the linear stability analysis of MI. Figure 4.14(c) shows that this additional
noise is indeed broadband across the detector bandwidth. This additional noise
presents a significant problem with using anomalous waveguides for classical
noise reduction in this scheme. Next, we characterise the RIN from the asymmet-
ric Kerr interferometer.

Figure 4.15(a) shows the step-like behavior as measured from the the inter-
ferometer with three different heater voltages corresponding to three splitting
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a

b

c

Figure 4.14.A comparison of RIN at 3 MHz with power through (a) an
in-out grating structure (red), fit to a constant (blue), and (b) a spi-
ral of length 0.64 cm (red), plotted along side the MI corrected RIN
(blue). (c) the RIN spectrum through both structures with 40 mW
input power.

ratios listed in the legend. As the splitting ratio approaches the balanced 50:50
case, the first step occurs at higher input powers as discussed in Section 4.1.4.

The power scan range has been limited to 0–15 mW as above this range our
model for MI has been proven to over-predict the RIN and could therefore lead
to an overestimation of noise suppression. The associated RIN for each beam-
splitter setting is plotted in Figure 4.15(b), alongside both the laser baseline RIN
and theMI corrected RIN. Note that here, we have adapted theMI corrected RIN
from that shown in Rig. 4.14(b) to reflect the fact that the Sagnac spiral is slightly
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a b

Figure 4.15. (a) measured power relations for three Sagnac asymmetric
Kerr interferometers with a spiral lenght of 0.58 cm and splitting ra-
tios 94:6 (blue), 80:20 (red) and 63:37 (green). (b) RIN at 3 MHz as
a function of input power for each splitting ratio. Data is plotting
against the modulation instability corrected RIN from a strip waveg-
uide of equal length (purple) and the laser baseline RIN (black).

shorter with a length of 0.58 cm. In comparing the RIN from each interferometer
with the laser baseline RIN, we find that the scheme does not suppress noise
below the level of noise exiting the laser. However, noise is suppressed by ap-
proximately −2 dB when comparing to propagation through a strip waveguide
of equal length.

4.5 Discussion

Modulation instability from a single pump does not occur in normal dispersive
waveguidesMI176. We note that generallymodulation instability can occur in the
normal dispersion regime but requires cross-phase modulation (XPM) between
twowavelengths178 or orthogonal polarizations in high-birefringence fibers179 to
take effect. As such, designing for a normal dispersivewaveguide should counter
MI and may result in a device that can suppress noise below the laser baseline
RIN, thus providing a benefit for integrated absorption sensing schemes180.With
a waveguide height of 340 nm, achieving normal dispersion is not possible for
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waveguides of reasonable width. Most silicon fabrication houses offer a standard
silicon height of 220 nm. At this height, β2 =13.9 ps2/m for a waveguide 500 nm

wide suggesting this scheme may be better suite to 220 nm technology.
Nonetheless, this device can be used to traverse sections of waveguide in in-

tegrated sensors that may have otherwise added to the intensity noise through
MI. One point to note in this application is that the output power will also be
less depending on the splitting ratio. For example, a Sagnac interferometer with
splitting ratio 80:20 could be used to propagate through 0.58 cm of waveguide
giving the benefit of −2.2 dB intensity noise reduction in comparison to a strip of
equal length but with the additional cost of −1.0 dB less average power.

The applications of such a technology in integrated sensing are not immedi-
ately obvious, however, having the ability to offset the unwanted effects of MI
may have applications in integrated optical pulse delay lines. Optical delays are
essential in communication applications, where they are mainly used for optical
signal buffering and synchronization181,182, and in sensing where they are used
in optical coherence tomography183. Integrated solutions have been explore as a
potential replacement for fiber as they offer greater, sub-ps, delay resolution184,
however, in pulsed applications, real time integrated delays require strict nonlin-
ear optics and dispersion engineering to maintain pulse form, with pulse broad-
ening ultimately limiting communication bit rates. This is typically overcome
with soliton engineering which requires broadening from anomalous dispersion
be balanced by SPM173. In such anomalous waveguides, the effects of additional
noise due to MI has been proven to limit the achievable time-division multiplex
bit rate of a communication system185.

4.5.1 Barriers to pulsed noise suppression in silicon

We can summarise several factors that limit the noise suppression performance
of the Cornerstone devices, and which stand in the way of an integrated Kerr-
based squeezing measurement at this wavelength in silicon:

1. Excess laser noise at megahertz speeds present a greater initial noise floor
that must be overcome when attempting to squeeze.

2. The build up of additional broadband noise from modulation instability
inside anomalous silicon waveguides.

3. Potential thermo-refractive noise within the silicon waveguides.
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In the introduction of this chapter we discuss the potential options for over-
coming additional laser noise and conclude that no commercial technology cur-
rently exists to actively suppress noise in this region of the spectrum. The RIN
dynamics of passive mode-locked fiber lasers are complex and rely on many in-
tracavity and external cavity parameters186,187. At megahertz speeds, prominent
intensity noise sources are likely to be intensity noise coupling through from the
driving laser diode and amplified spontaneous emission. Historically, methods
to overcome such noise and provide shot-noise limited pulsed operation rely on
techniques that engineer the laser itself such as intracavity spectral filtering or
feedback loops into the laser cavity187. External methods, such as feedback or
feed-forward circuits coupled to an optical modulator or external cavity filter-
ing, all require fast and low-noise electronics187. Until the development of such
a laser at 2 µm, excess laser noise will continue to be an issue for squeezed state
development requiring pulsed lasers.

It is possible to adapt the scheme presented here to provide squeezed vac-
uum by setting the Sagnac beasmplitter to 50:50188. In this configuration, classi-
cal noise in the laser is theoretically rejected from the squeezed vacuum output.
However, near perfect interference visibility is required to fully reject the classical
noise. The broadband spectrum of the pulse presents an issue for high visibility
interference due to the limited operational bandwidth of the integrated beam-
splitter. One option to improve the bandwidth is to switch the direction couplers
for multi-mode interference couplers (MMIs), however, MMIs typically display
greater losses which will pollute any squeezed statistics produced. As a rough
estimate for the level of extinction required we can use Eq. 2.30 to estimate the
number of photons present in a squeezed vacuumwith 3 dB squeezing to be just
〈n〉 = 13. To preserve squeezed statistics the coherent amplitude must be suffi-
ciently rejected to a similar magnitude. Attempts to achieve good visibility using
the Cornerstone devices presented here were limited to 99.8%. Additionally, the
Sagnac configuration will only reject slow classical noise that is correlated across
the two counter propagating arms. As such, any noise at speeds comparable to
the repetition rate of the laser introduced by the waveguide itself will be present
in the output vacuum. In comparison, the second point listed above can be over-
come relatively easily via migration to a 220 nm silicon platform that displays
normal dispersion at 2 µm.

Thermo-refractive noise stems from statistical variations in the temperature
of the chip which drive fluctuations in the refractive index through the thermo-
optic coefficient170. This effect was recent observed in a silicon nitride squeez-
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ing scheme carried out by Cernansky et al. who measured excess noise below
500 MHz from this effect159. Fast detection was required to overcome this. We cite
this as a likely concern here due to the thermo-optic coefficient being an order of
magnitude larger in silicon compared to silicon nitride189. This noise source has
been proven to have a characteristic scaling of 1/ω2. It is possible that once MI is
suppressed, thermo-refractive noise will limit the scheme, at which point access
to a faster detector would be significant for characterisation.

4.6 Conclusion

In conclusion, we have simulated 2.2 dB as an upper bound on the amount of am-
plitude squeezing possible when utilising a shot-noise limited 2 µm pulsed laser
with pulse properties listed in Appendix B. We present an asymmetric Kerr in-
terferometer device, initially designed for squeezing, as a broadband, all-optical,
classical noise suppression device simulated to be capable of up to −15 dB inten-
sity noise suppression at the cost of a 5.6 dB drop in average power. We measure
preliminary devices and find that modulation instability, due to anomalous dis-
persion, adds broadband parasitic intensity noise to the pulsed laser. Despite this,
we measure an intensity noise suppression of 2 dB below the level present in a
field that traverses the same length in a strip waveguide of equal geometry. We
discuss further limitations of this particular scheme for the production of 2 µm

squeezed states from enhanced absorption sensing. Note that in chapter 6 we dis-
cuss a more viable route towards integrated silicon squeezing at 2 µm based on
more recent progress in the field of integrated squeezing.

This concludes experimental work carried out on the production of quan-
tum resources for integrated absorption spectroscopy in the 2 µm–band. We now
move on to discuss theory-based work on the utility of quantum states for en-
hanced sensing applications.
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Maximising Precision in Saturation-Limited

Absorption Spectroscopy

Declaration of contribution: worked carried out in this chapter was solely car-
ried out by myself, under the supervision of Euan Allen. The research paper on
which this chapter is based was also written solely by myself, with feedback and
advice given by the additional authors.

In this chapter we explore the effect of unwanted sample saturation on the
precision of absorption spectroscopy. Thiswork closely follows results I have
published in Ref.190. The figures have been adapted from those presented in

Ref.190 with some text quoted verbatim.
In absorption spectroscopy, exceeding sample-specific probe intensities of-

ten leads to irreversible damage through a host of saturation-dependent mecha-
nisms73,74. It is therefore crucial to investigate how different optical probes per-
form in the presence of saturation.Only then canwe simultaneously optimise per-
formance and minimise the irreversible damage191–193 of delicate samples such
as archaeological finds, living cells, or food products194–196. Notably, UV absorp-
tion spectroscopy of biological samples is often limited to intensities as low as
1 nW/µm2 to ensure damage does not occur.

As discussed in chapter 2, many optical probes contain inherent intensity
noise stemming from the quantum nature of light. In a coherent state this quan-
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tum noise scales favorably with probe power but fundamentally limits the preci-
sion of classical absorption measurements. It follows that using a brighter probe
will give favorable performance, however, this strategy is limited by the satura-
tion intensity of the sample which places a bound on the achievable measure-
ment precision. By conducting a Fisher information analysis197 – a measure of
how much information about an unknown parameter we can extract – of how
saturation affects measurement precision, we are able to present a probe-sample
optimisation scheme to help classical measurements obtain the highest precision
possible with a classical probe. We find that the optimal probe power is always
in the saturation regime (≥ 50% of the saturation power) which highlights an
inherent trade-off between precision and damage that saturation-limited classi-
cal schemes will have to navigate. This lower bound motivates the need to find
alternative probe states that can provide greater precision per photon.

Previous work in the field of quantum metrology45 has identified optimal
states for parameter estimation as being non-classical states of light capable of
enhancing performance when sensing a linear loss or acquired phase for a fixed
number of photons196,198–200. Results thus far have focused on the linear absorp-
tion regime, with the exception of work byMitchell et al.201 that models the effect
of constrained photon number on the performance of Gaussian states for single-
parameter estimation. They numerically explored the performance of Gaussian
states for measuring optical depth under a semi-classical model of saturation.
Here, we derive an analytical bound on the performance of any single mode
states (both Gaussian and non-Gaussian) under saturation. To help identify the
best strategy for a given measurement, we assess the ability of classical coherent
states, technically challenging Fock states, and readily available squeezed states
to saturating this bound. The results presented in this chapter show that the Fock
state remains optimal for probing in the saturation regime, giving a deeper un-
derstanding of when to consider quantum light sources a worthwhile and viable
upgrade to saturation-limited measurements. Additionally, the new theoretical
framework outlined here opens the door to further analysis of nonlinear absorp-
tion spectroscopy schemes which directly employ saturation to enhance image
resolution202,203. These schemes often incorporate transmission measurements
of weak signals into more complex estimators and can therefore build upon the
model presented here for further optimisation.

We start by constructing a semi-classical model of saturation. We outline
Fisher information (FI) and quantum Fisher Information (QFI) formalisms and
uses these to investigate achievable measurement precision for the states men-
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tioned above. Using our results, we present a sample-probe optimisation strategy
which we later apply to two examples. We then derive a bound on the achievable
precision of any single-mode quantum state. Our work shows the FI obtained by
the Fock state saturates this bound and is thus an optimal state in the presence of
saturation. For a given target precision, we show the quantum probe brightness
to be of an order of magnitude less than the required classical probe brightness,
making it desirable for ultra-sensitive samples. We identify amplitude-squeezed
states as a viable route towards quantum precision enhancement for saturation-
limited sensors. The analytical results presented are based on a semi-classical
approximation of sample saturation. Complementary to these results, we com-
plete a fully-quantum numerical analysis of the effect of saturation on the higher
order moments of the probes photon statistics and find the analytical quantum
advantage to be a lower bound on the achievable advantage of employing quan-
tum light.

5.1 Saturation modelling and parameter estimation

We start by presenting a semi-classical model of saturation in guided absorption
spectroscopy measurements.

5.1.1 A Semi-classical model of saturation

A schematic of the semi-classical model we consider is shown in Fig. 5.1. A
saturable absorber of fixed, known, length L ∈ (0,∞) cm and saturation inten-
sity ns is probed with a resonant optical state. The linear absorption coefficient
a ∈ (0,∞) cm−1 is unknown and is the target variable we wish to estimate. The
probe is considered a single optical mode with known mean input photon num-
ber 〈n̂〉. The sample is modelled via an ensemble of independent two-level atoms
which are considered to be isolated from the environment, exhibiting no inter-
nal interactions or temperature dependent effects. The ensemble distribution is
static and homogeneous.We alsomake the assumption that the evolution is dom-
inated by decoherent effects such that the interaction between the optical mode
and ensemble remains classical. This assumption holds true for nearly all absorp-
tion spectroscopy measurements that are not specifically designed to exploit co-
herent interactions such as Rabi oscillations. Although simplified, this two-level
model can be readily extended to more complex multi-level systems which dis-
play a dominant radiative or non-radiative decay path back to ground204,205. To
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E Ground state

Excited state

0

1

=

Figure 5.1. The model schematic: a probe state of mean input photon
number 〈n̂〉 is propagated along a sample of length L. The sample
consists of homogeneously distributed two-level absorbers with den-
sity nt , characteristic transition cross-section σ, and lifetime τ. The
output transmission η is measured and used to infer an estimate of
the linear absorption coefficient a. (Figure adapted from Ref.190.)

estimate the linear absorption coefficient, the mean photon number is measured
at the output via direct photo-detection. Repeatedmeasurements of the transmis-
sion then enable us to build up an estimate of the absorption. It is the precision
of this estimate that we analysis to compare the performance of different probe
states.

We start by performing a standard population analysis of the ground and
excited states in the ensemble as originally performed by Enstien206. By doing
so, we find an expression for the transmission which expands on the linear Beer-
Lambert law207 to account for nonlinear absorption that occurs across the sample
in the high power, low saturation intensity, regime. We solve for the intensity of
an optical mode, 〈n̂(z)〉, as a function of position z along the sample. Note that we
assume a unit modal area of 1 without loss of generality and so refer to photon
number and intensity synonymously. Each particle has a given interaction cross
section σ – the probability a particle will absorb a photon – and a transition re-
laxation time τ. The total number of particles in the ensemble, nt , is conserved
with n0 and n1 accounting for the number of particles in the ground and excited
states respectively. It follows that:

nt = n0 +n1. (5.1)

Following Enstien’s derivation, the rate equations for the populations of the
ground and excited states at a given position z, accounting for absorption, stim-
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ulated emission, and spontaneous emission are206:
dn0

d t
=−σ〈n̂(z)〉n0 +σ〈n̂(z)〉n1 +τ−1n1,

dn1

d t
=σ〈n̂(z)〉n0 −σ〈n̂(z)〉n1 −τ−1n1.

(5.2)

As the flux of photons passes through a slab of thickness d z, we make the as-
sumptions that the relaxation time of the transition is long enough such that the
populations of n1 and n0 can be considered constant. Under this steady-state as-
sumption, dn1

d t = 0 and dn0
d t = 0. This allows us to solve for n1 and n0 using Eq. 5.1

and either one of 5.2:

n0 = nt (σ〈n̂(z)〉+τ−1)

2σ〈n̂(z)〉+τ−1
,

n1 = ntσ〈n̂(z)〉
2σ〈n̂(z)〉+τ−1

.

(5.3)

Propagating along d z, the change in the probe intensity, d〈n̂(z)〉, is given by the
net change in population:

d〈n̂(z)〉
d z

=σ〈n̂(z)〉(n1 −n0). (5.4)

Herewe assume spontaneous emission coupling back into themode is negligible,
as is the case for measurement schemes that do not employ cavities. Using the
solutions for n1 and n0 gives a differential equation for 〈n̂(z)〉:

d〈n̂(z)〉
d z

=− τ−1ntσ〈n̂(z)〉
τ−1 +2σ〈n̂(z)〉 . (5.5)

Let a := ntσ and ns := 1
στ
. These are the standard definitions of the linear ab-

sorption coefficient and saturation intensity. Recast with these substitutions:
d〈n̂(z)〉

d z
=− a〈n̂(z)〉

1+2〈n̂(z)〉/ns
. (5.6)

Interestingly, we may expand the quotient into a geometrical series to give:
d〈n̂(z)〉

d z
=−a〈n̂(z)〉

(
1−2〈n̂(z)〉/ns +O((2〈n̂(z)〉/ns)2)

)
(5.7)

The leading order term recovers the linear Beer-Lambert law of absorbance with
additional terms becoming non-negligible as 〈n̂(z)〉/ns grows.

We can now solve for 〈n̂(z)〉 via separation of variables followed by integration
from 0 to z. Let 〈n̂(0)〉 := 〈n̂in〉,

e
2〈n̂(z)〉

ns

(
2〈n̂(z)〉

ns

)
= e ln

(
2〈n̂in〉

ns

)
+ 2〈n̂in〉

ns
−az . (5.8)
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Equation 5.8 has been rearrange into a form with which we can use the Lambert-
W function, defined by:

W
(
zez) = z. (5.9)

Furthermore, using a special case of the Lambert-W function, known as the
Wright Omega function208, defined by W (ez) =W (z), gives the final solution:

〈n̂(z)〉 = ns

2
W

(
ln

(2〈n̂in〉
ns

)
+ 2〈n̂in〉

ns
−az

))
. (5.10)

The intensity through a sample of length L with linear absorption coefficient
a, saturation intensity ns and input probe intensity 〈n̂in〉 is therefore given by:

η= ns

2〈n̂in〉
W

(
ln

(2〈n̂in〉
ns

)
+ 2〈n̂in〉

ns
−aL

)
. (5.11)
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Figure 5.2. Sample transmission as a function of length for several κ. κ= 0
(dashed blue) recovers the linear Beer-Lambert law. α = 1 /cm and
ns = 4. (Figure adapted from Ref.190.)

To simplify the maths, we introduce κ= 2〈n̂in〉/ns as a dimensionless quantity
giving:

η(κ) = 1

κ
W (ln(κ)+κ−aL). (5.12)

We have plotted a few examples of how this function varies with increasing
length in Fig. 5.2. As we increase κ, the transmission function shifts from an ex-
ponential, as determined by the linear Beer-Lambert law, to a linear fall-off con-
ducive of saturated absorption. From here onwards, we refer to probing in the
saturation regime as κ > 1. Conversely, κ ≤ 1 is defined as probing in the linear
regime.
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5.1.2 Fisher information analysis

In this section, we outline FI formalism and use it in conjunction with our equa-
tion for transmission to calculate the precision gained on our estimate from a
given optical probe. To build some intuition for FI, we start with an informally
example. We then move onto a formal definition.

What is Fisher information?

Let us suppose we are trying to estimate the mean number of visits to A&E per
hour, ymean. Since this is a discrete random variable, it must follow some proba-
bility mass function which we can assume in this case to be Poissonian. We start
by collecting a data set, noting down the number of visits per hour over a fixed
period. We can then fit this data to a Poissonian and extract an estimate for the
mean yest

mean. It is important to note two points: (1) there is no way of knowing
whether our chosen probability mass function is a true description of the process
and (2) whether the estimate of the mean obtained from our limited data set is
close to the true mean. Since we can never know how close to the true mean our
estimate is, we instead ask the question: for a given measured number of visits
in an hour, y , how much information does that measurement contain about the
true mean? Here, information is a defined quantity which evaluates the number
of probable y true

mean that could have reasonable lead to the measurement y .
To quantify this notion of information in a data set, we start bymathematically

assessing how likely it was that each possible true mean, y true
mean, could have led to

each measured value. This is exactly quantify by the probability mass function
employed not as a function of the discrete variable y with some fixed mean, but
as a function of true mean for some measured y . This is known as the likelihood
function and it displays a peak for mean values equal to y and approaches zero
for mean values far from y . At this point we note that an assumption about the
true probability mass function is still required. We can plot the likelihood for
each measurement in a set of measurements, giving a distribution of likelihood
(functions).

To quantify the information acquired about the true mean from a set of mea-
surements,we take the derivative of each logged-likelihood functionwith respect
to y true

mean, known as the score function. The derivatives approach zero for ymean = y

on eachmeasurement. These scores, as functions of a discrete random variable y ,
are also themselves discrete random variables, and therefore display some distri-
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bution over the set of measurements. If it is the case that each measured value is
likely explained by several possible true mean values i.e. the peak in each score
is broad, then we state that our measurements carries low information about the
true mean as it is reasonable to conclude that the true mean could have been
a large number of plausible values. To capture this notion, the Fisher informa-
tion is then defined as the variance of the distribution of scores. It follows that
the smaller the variance, the greater the likelihood that the observed values will
give an accurate estimate of the true mean.

Formally, the FI on an unknown target variable x, obtained by the set of quan-
tum positive-operator valued measurements (POVMs), M̂ = {mi } with ∑

i mi = 1,
is defined as

F (x) =∑
i

p(mi |x)

(
∂ ln p(mi |x)

∂x

)2

(5.13)

197,209. Here, the probability measurement outcome i is given by

p(mi |x) = tr
{∣∣ψx

〉〈
ψx

∣∣mi
}

. (5.14)

Instead of calculating the FI explicitly using the definition above, we invoke
what’s known as the Cramér-Rao bound (CRB) relating the FI to the variance
of a given estimator of x, inequality 1 of Eq. 5.15210. The CRB states that the FI
on x is lower bounded by the inverse of the variance of x over a measurement set.
This bound is necessarily saturated by an optimal, unbiased, estimator. Here, an
unbiased estimator is defined as one that supplies a mean that converges on the
true value of x over infinite measurements.

The quantumFisher information (QFI)Q(x) is defined as themaximumpossi-
ble FI obtained by further optimising over allmeasurement POVMs and is related
to the FI via the quantumCramér-Rao bound (QCRB), inequality 2 of Eq. 5.15211:

1

Var(x)

1≤ F (x)
2≤Q(x). (5.15)

To calculate the FI gained from a probe state ∣∣ψ〉 on the unknownparameter a,
we invoke the CRB. This is possible because transmission is an optimal unbiased
estimator for the linear absorption coefficient in direct absorption schemes200.
The FI on the transmission measurement, η̂, is thus given by:

F (η) = 1

Var(η)
. (5.16)

Given that η := 〈n̂〉/〈n̂i n〉 is a continuous linear differentiable function of output
intensity 〈n̂〉, we can relate the variance in the transmission to the variance of the
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output photon number via the error propagation formula212:

Var(η) =
(
∂η

∂n̂

)2

Var(n̂)

= Var(n̂)

〈n̂in〉2
.

(5.17)

The FI is therefore given in terms of the photon number variance Var(n̂) of the
output state:

F (η) = 〈n̂in〉2

Var(n̂)
. (5.18)

Using error propagation again, the FI on η can be related to the FI on a via the
formula:

F (a) =
(∂η
∂a

)2
F (η)

=
(∂η
∂a

)2 〈n̂in〉2

Var(n̂)
.

(5.19)

Using the following formula for the derivative of the Wright Omega function208:
dW (x)

d x
= W (x)

1+W (x)
. (5.20)

we can calculate the derivative of η via a substitution u = ln(κ)+κ−aL:
∂η

∂a
=−L

κ

∂W

∂u

=− Lη

1+ηκ .
(5.21)

Combining Eq. 5.19 with Eq. 5.21 gives an expression for the FI gained by a state∣∣ψ〉 on a as a function of output state photon number variance:

F (a) =
( Lη

1+ηκ
)2 〈n̂in〉2

Var(n̂)
. (5.22)

We now apply Eq.5.22 to several different states, commenting on how satura-
tion effects measurement precision.

5.2 Semi-classical estimation of absorption under
saturation

In our saturation model thus far, we make the assumption that the quantum loss
channel acts like a beam splitter on the optical modewith reflectivity determined

103



Chapter 5. Maximising Precision in Saturation-Limited Absorption Spectroscopy

by 1−η(κ, a). This semi-classical approximation only accounts for the effect of
saturation on the first-ordermoment of the input state’s photon number and thus
does not account for the effect on its quantumnoise. In effect, we approximate the
loss on each basis state of a given probe to be the the loss experienced by the states
mean photon number. Without this assumption, we cannot analytically solve for
the FI. In Sec.5.3, we go beyond this assumption and numerically solve the fully-
quantum model allowing us to comment on both the validity and utility of this
assumption.

5.2.1 Classical probe performance

In chapter 1, we saw how a classical laser probe is well approximated by a co-
herent state213 |α〉 with 〈n̂i n〉 = |α|2 and Var(n̂i n) = 〈n̂i n〉. The semi-classical loss
approximation allows us to define the output photon number variance analyti-
cally via a virtual beamsplitter80,200:

Var(n̂) = η2Var(n̂i n)+η(1−η)〈n̂i n〉. (5.23)

For a coherent input state, the FI, Fc (a), is therefore given by:

Fc (a) =
( Lη

1+ηκ
)2 〈n̂i n〉

η
, (5.24)

which is plotted in Fig. 5.3(a). We also define efficiency to be Fc (a)/〈n̂i n〉, the FI
normalised by the number of input photons.

The first thing to note is that the negative effect of saturation on classical probe
efficiency, Fig. 5.3(a), is visible for κ¿ 1 suggesting sample saturation has a mea-
surable impact on shot-noise limited schemes probed far below saturation. For a
given sample of known length and estimated absorption, we can maximise the
FI over probe power. We find the optimal probe intensity nopt to be:

nopt = ns

2
W [1+aL] ≥ ns

2
, (5.25)

with a corresponding sample transmission of ηopt =W [1+aL]−1. Interestingly, the
probe power resulting in the greatest precision is lower bounded by κ= 1 imply-
ing all classical strategies must be probed in the saturation regime to fully opti-
mise performance. This result highlights an inherent trade-off between potential
damage anddesired precision that under-performing classical schemeswill need
to navigate. Such a compromise furthermotivates amove to the quantum regime
which is capable of being more effective on a per photon basis.

104



5.2. Semi-classical estimation of absorption under saturation

ba

c

Figure 5.3. Precision (blue) and efficiency (red) obtained using (a) a
classical probe or (b) an optimal quantum probe, calculated across
the linear (κ< 1) and saturated (κ≥ 1) pump regimes. (c) shows the
quantum advantageΛ(a). The sample has a fixed length L = 1 cm and
is plotted for absorption coefficients a ∈ {0.5 cm−1, 1 cm−1, 2 cm−1}190.
(Figure adapted from Ref.190.)
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5.2.1.1 Examples optimising classical schemes

To highlight the benefits of classical power optimisation, we apply our method
to the quantum-limited high-precision absorption spectroscopy of a dilute Ce-
sium vapour cell, used to define the Boltzmann constant k via Doppler broad-
ening thermometry (DBT)214. In DBT the characterisation of the line-width pro-
file of a specific transition enables precise estimation of the Boltzmann constant
k. DBT is also frequently used to accurately detect and monitor gasses215 with
high measurement precision being imperative to both applications of the tech-
nique. In Ref.214 a shot-noise limited 895 nm laser is used to probe a transition
with characteristic saturation intensity ns = 2.5 mW/cm2 through a cell of length
75 mm. A laser intensity of 7 µW/cm2 (κ= 0.005) is used resulting in a total trans-
mission of η= 17%. We can therefore estimate the linear absorption coefficient
to be a = 2.53 cm−1. Using Eq. 5.25, we find the optimal probe intensity to be
2.67 mW/cm2 (κ= 2.14) with a resulting sample transmission of η= 47%. Employ-
ing such a power would result in a 24 dB improvement in the linear absorption
estimate precision (total Fisher information). In the absence of saturation, a fur-
ther 6 dB increase in powerwould result in a 6 dB increase in precision.Ourmodel
shows that once saturation is properly accounted for such an increase in probe
power actually results in a −3 dB reduction in precision highlighting the impor-
tance of including saturation. Note, the only source of noise we consider here
is laser shot-noise. Other sources of noise may scale unfavorably with power
(e.g. temperature stability) and therefore may limit the practicality of witness-
ing such an increase in precision. This example demonstrates the potential gains
in accounting for saturation when optimising measurements and highlights the
potential for miscalculation when only considering linear absorption.

For a given intensity damage threshold, we can similarly maximise the FI
over sample length. As a further example, we investigate the resonant absorp-
tion of Chlorophyll A Acetone solution, probed at 661 nm216. Chlorophyll A
density is routinely measured via absorption spectroscopy in a wide variety of
settings217,218. The commonly-targeted transition has absorption cross-section
σ= 4×10−17 cm2 with lifetime τ= 4 ns195,219. Chlorophyll absorption measure-
ments use a typical cuvette width of 1 cm and aim to prepare sample densities
that give an output transmission somewhere in the range of 15%−50%216. Sup-
pose we probe a sample with a commercially available high power laser at 1 W

(κ= 0.02) and measure a transmission of 50%. We can infer from this measure-
ment that a ≈ 0.7 cm−1. The optimal sample length of such a measurement is
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found to be L = 2.9 cm which results in a 3 dB improvement in precision over
the standard 1 cm cuvette width. Principally, this precision improvement maps
directly onto the concentration estimate. As demonstrated above, these results
provide simple but powerful optimisation strategies to help improve precision.
We now derive a limit on the precision gained via any single-mode state and
explore the ability of quantum states to saturate this bound.

5.2.2 A bound on single-mode precision

Birchall et al. derived an upper bound on the QFI for single parameter estimation
that results in a correlated linear phase and loss being applied to a single mode
optical probe220, which reduces to the following when there is no phase shift
applied by the sample:

Q(x) ≤ 〈n̂i n〉
η(1−η)

(
∂η

∂x

)2

(5.26)

The saturationmodel presented above is insensitive to phase information and
depends only on the mean intensity of the input state and sample parameters.
Therefore, we can apply this result to our model and note that an optimal quan-
tum probe is one that necessarily saturates this bound. Using Eq. 5.26 in conjunc-
tion with Eq. 5.11, we derive a bound on the QFI gained on the linear absorption
coefficient a, estimated via the transmission η:

Q(a) ≤
(

Lη

1+ηκ
)2 〈n̂i n〉
η(1−η)

. (5.27)

Equation 5.27 defines the quantum limit on precision (shown in Fig. 5.3(b)). The
Heisenberg limit on precision states that the FI gained from a measurement can-
not scale faster than 〈n̂i n〉221. Through numerical analysis of Eq. 5.27, we find

lim
〈n̂i n〉→∞

Q(a)

〈n̂i n〉
= 0 (5.28)

Interestingly, the equivalent result under linear absorption converges to a con-
stant200. The addition of saturation has therefore degraded the optimal states
performance in the high power limit. We now seek to find quantum strategies
that saturate this bound and the separation of such strategies from those reliant
on classical resources only.

5.2.3 Finding an optimal probe

It is well-known that the Fock state-probe provides an optimal strategy in the
linear absorption model222,223. We expect this probe to remain optimal under
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saturation. To prove this hypothesis, we combine Eq. 5.22 and Eq. 5.23 for a Fock
state (Var(n̂i n) = 0) to give an expression for the FI achieved via Fock state probing
F f (a):

F f (a) =
(

Lη

1+ηκ
)2 〈n̂i n〉
η(1−η)

. (5.29)

The FI for a Fock state is indeed equivalent to Eq. 5.27, hence Fock state probing
remains an optimal quantum strategy formaximising the precision of the absorp-
tion coefficient estimate in the presence of saturation. By setting κ= 0, we recover
well-known linear absorption estimation results with new insight gained for all
κ> 0.

To benchmark the optimal quantum strategy against an equally bright classi-
cal strategy we define the quantum advantageΛ(a) :=Q(a)/Fc (a) explicitly given
by Λ(a) = 1

1−η , shown in Fig. 5.3(c). By performing a Taylor expansion around
a = 0 cm−1 we find an expression for the quantum advantage gained under the
saturated probing of weakly absorbing samples:

Λ(a) = 1+κ
aL

, (5.30)

valid for κ≥ 1 and a ≤ 1+κ
L . This tells us thatwe can expect to obtain at best a linear

increase in precision with probe power when switching from the classical probe
to an optimal quantum probe.

5.2.4 The effect of saturation on precision

Saturation imposes a limit on the maximum precision a Fock, Fig. 5.3(b), or co-
herent, Fig. 5.3(a), state provides with increasing optical power. This is diametri-
cal to linear loss which suggests probe brightness can always be increased to en-
hance precision200. The knock-on effect is impaired efficiency due to diminishing
returns in precision. Whilst the probe power is above saturation, the effective lin-
ear absorption is low which limits the information on the loss coefficient carried
by each photon. Both the quantum and classical strategies suffer due to this effect,
however, the coherent state performance is affected further due to greater optical
noise in the input state. The combined effect is a quantum advantage that scales
linearly with κ in the saturation regime. The quantum advantage is strongest for
weakly absorbing samples, as is the case in trace detection schemes224,225 or even
single-molecule direct absorption schemes202.
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Figure 5.4. The probe power reduction achievable by switching from a
coherent probe of input intensity κc to a Fock state probewithout loss
of precision. The sample has a fixed length L = 1 cm and is plotted for
several absorption coefficient. (Figure adapted from Ref.190.)

5.2.5 Inefficient detection and probe brightness

For a fair comparison between classical and quantum strategies, we can account
for the effect of imperfect detection in the quantum case by adding in a static loss
pre-detector.Wemodel this again via a beamsplitter with reflectivity 1−γ, where
γ is the quoted detector efficiency (see Eq. 5.23). Under this model, themeasured
transmission is defined as ηm := ηγ. Following the same analysis as above, the FI
on the measured transmission accounting for inefficient detection is given by the
CRB:

F (ηm) = 1

Var(ηm)
. (5.31)

Using the formula Var(aX ) = a2Var(X ) gives:

F (ηm) = 1

γ2Var(η)
. (5.32)

The FI on the measured transmission can be related to the FI on the linear coeffi-
cient via:

F (a) =
(

Lηγ

γ+ηκ
)2 〈n̂in〉2

Var(n̂)
. (5.33)

The superior performance in combinationwith resilience to saturation allows
for probing with a Fock state at much weaker probe powers, without a compro-
mise in performance. This enables a significant reduction in the energy flux inci-
dent upon the sample, even with imperfect detection. In Fig. 5.4 we quantify this
reduction in required power for a given linear absorption coefficient and classical
probe power κc . For a target absorption of a = 1 µm−1 probed at κ= 1, assuming

109



Chapter 5. Maximising Precision in Saturation-Limited Absorption Spectroscopy

85% efficient detection, employing the optimal quantum probe offers a reduc-
tion in probe brightness of −36 dB which has the potential to drastically reduce
sample damage.

Returning to our example of DBT and accounting for a detector efficiency of
85%, if we allow the classical strategy to optimise its power such that κ= 2.14 as
previously calculated, we find a possible power reduction factor of −3 dB avail-
able by switching to the optimal quantum probe without a compromise in preci-
sion.

State-of-the-art multiplexed single-photon sources are not yet bright enough
to provide the required power tomatch performancewith typical repetition rates
of the order ∼ 106 Hz226. Such a source would only begin to saturate samples
with relaxation rates ∼ µs, with typical biophysical relaxation rates ∼ ns227,228. Al-
though current single-photon sources lack the brightness to outperform classical
probes, bright amplitude-squeezed states are readily available and are capable of
approaching the limit on quantum performance.

5.2.6 Amplitude-squeezing: a viable route to enhanced
performance

The precision gained from such a bright amplitude-squeezed state, Fs(a), is given
by:

Fs(a) =
( Lη

1+ηκ
)2 〈n̂i n〉
η210−R/10 +η(1−η)

(5.34)

where R is the input state’s squeezing factor in dB, valid for bright amplitude-
squeezing such that |α|2 À R2 229. Squeezed state performance is thus found
to approach the quantum limit for infinite squeezing values, Fs(a)

R→∞−−−−→Q(a).
Fig. 5.4(b) shows squeezed state performance normalised byQ(a). A state-of-the-
art squeezed vacuum source with 15 dB squeezing could be displaced to provide
precision within 85% of the quantum limit and is almost unaffected by satura-
tion effects for κ≤ 4230. We note that losses other than those caused by the target
sample absorption, such as coupling losses or additional propagation losses, will
dilute the squeezed statistics with vacuum noise, negatively affecting the state’s
performance.However, these results strongly indicate that advances can bemade
by employing squeezed states in the absence of bright Fock states.
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Figure 5.5. Squeezed state precision, Fs(a), normalised by the quantum
limit Q(a). The graph displaying the relative performance of sev-
eral amplitude-squeezed stateswith squeezing factor R. Results have
been plotted on a logarithmic x-axis. (Figure adapted from Ref.190.)

5.3 A fully-quantum model of saturation

The results presented thus far have assumed a semi-classical model of saturation
inwhich the effect on input state noise is not properly accounted for.We present a
fully-quantummodel of saturation as a quantum loss channel acting on the probe
state. To allow for a fully-quantum simulation, the loss channel is discritise along
its length z into slices each consisting of na absorbers. The optical probe state is
then propagated through each slice, with photon number statistics extracted at
each step to show how optical quantum noise is propagated along the sample.
Each slice interacts for a time τint = d z/c where c is the speed of propagation
through the sample. The model used is closely related to the Dicke model231 for
an open quantum system under Markovian evolution232.

Though we account for both coherent and decoherent processes within our
model, sensors that have not been specifically designed to operate coherently
will be dominated by decoherent processes that result from spontaneous emis-
sion, variational atomic trajectories and inhomogeneous broadening across the
ensemble. Since this is by far the most common type of dynamic seen in direct
absorption schemes, we focus our discussion on this. Specifically we account for
decoherence due to the spontaneous emission of each independent absorber at a
rate Γsp := 1/T1 to the environment and due to the dephasing at a rate Γdp := 1/T2.
Here, T1 & T2 are the characteristic energy and phase relaxation time scales of
the specific absorber under consideration.

To solve for the evolution of the combined probe-sample system for a time τint,
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we first outline the governing Hamiltonian, Ĥ , that applies to our model. Using
open-system quantum modelling, we then numerically propagate this Hamilto-
nian through time allowing for spontaneous emission into the environment. We
do not fully derive the Hamiltonian from first principles, instead we start with
the standardDickeHamiltonian231,233 which describes N-atoms resonantly inter-
acting with a privileged optical mode. A full derivation of this Hamiltonian can
be found in the following textbook by Walls and Milburn234,235 which follows
canonical quantisation of the classical electromagnetism Lagrangian. It is impor-
tant to note that the Dicke Hamiltonian given below in Eq. 5.35 is derived under
the following assumptions:

• Density of particles & interaction frequency approximations: a term
quadratic in vector potential is considered negligible given that the ab-
sorbers are spaced at a distance greater than their Bohr radius and the the
interaction frequency is greater than the Rydberg frequency.

• Rotating wave approximation: fast rotating terms within the Hamiltonian
can be considered negligible over appreciable time scales.

• Two-level system approximation: each absorber can be considered to be a
two level system fully described by a 2D Hilbert space.

The governing Hamiltonian is then found to be

Ĥ = ~ωâ†â +
na∑

k=1

{
~ωσ̂†

kσ̂k + g (âσ̂†
k + â†σ̂k )

}
. (5.35)

Here, σ̂†
k is the excitation operator for the k th absorber within the slice which

has the form σ̂k = ∣∣g〉〈e| (these operators follow standard spin-1/2 algebra). â is
the quantum oscillator probe field annihilation operator. The first term propa-
gates the radiation field. The second term propagates na two-level systems (the
absorbers). The third and fourth terms account for absorption and its reverse
process, stimulated emission, at a rate determined by the single absorber-field
interaction strength g . By assuming a homogeneous sample density and probe
intensity, we can approximate each absorber to be equally coupled to the field
which is considered to be resonant with the absorber transition frequency ω.

We assume each absorber to bewell approximated by a charge pair with sepa-
ration r . Under the dipole approximation, the electric field applied to each pole of
the dipole can be considered to be equal. This assumption holds under resonant
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5.3. A fully-quantum model of saturation

probing with monochromatic light of wavelength λwhere r ¿λ. The interaction
strength g is then approximated by235:

g = µ12E

~
, (5.36)

where µ12 is the dipole transition moment and E is the energy per photon within
the interaction volume. There is some debate over the definition of E in free
space, however, it is common practice to use the cavity based interaction defi-
nition where the volume V is now given by the interaction volume defined by
the probe optical mode cross-section and duration. As such, E is given by236:

E =
√

~ω
2ε0V

. (5.37)

The free space transition cross-section and spontaneous emission rates can be
recast in terms of the dipole transition moment237:

σ= πωµ2
12

3ε0~c
, (5.38)

Γsp = ω3µ2
12

3ε0π~c3
. (5.39)

We note that deriving the dephasing rate for a given system is much more com-
plex and so is typically measured experimentally for a given setup and is often
found to be orders of magnitude greater than g 238.

Following reference239, we express the optical mode area A =πr 2
focus in multi-

ples of the wavelength rfocus :=βλ. We normalise the interaction time τint by the
absorber lifetime Γsp such that τint :=α/Γsp. Using the following anzats for the
interaction volume:

V =πβ2λ2cτint (5.40)
we can express the interaction rate as:

g

~ω
=

√
3

2α

3

π2β
. (5.41)

Crucially, in the free space model, the coupling strength is dependent on the
interaction time through the parameter α. Note that in this model we do not
include the saturation intensity ns as this only arises in the semi-classical model
as a direct result of the constraint that only one photonmay be absorbed per cross-
section per transition lifetime. Here, this is already built into theHamiltonian. As
mentioned above, the strategy will be to use this model to propagate the probe
through each i th sample slice of width d z.
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The probe-sample Hilbert space is given by the tensor product of the single
optical mode with the na two-level absorbers. The input density matrix of the 1st

slice is given by:

ρ1(0) = |ψ1(0)〉 〈ψ1(0)|⊗ |0k〉 〈0k | (5.42)

where the optical input state ∣∣ψ1(0)
〉 ∈ {|α〉 , |N〉} is either a Fock state or a coher-

ent state with mean photon number 〈n̂in〉. The absorbers are assumed to initially
be in the ground state.

5.3.1 Open-systems modelling

So far we have considered a closed systemHamiltonian that describes the probe-
sample system and its coherent dynamics. Now we expand on this model to ac-
count for spontaneous emission and dephasing to the environment.

Open-system quantum modelling is a powerful tool to describe the non-
unitary evolution of a system’s density matrix by considering the system as a
sub-space of a larger system-environment Hilbert space which undergoes uni-
tary evolution. Under certain assumptions (listed below) about the nature of
the interaction with the environment, the environment can be traced out leav-
ing a equation of motion for the systems density matrix. In general, the govern-
ing equation is coined the master equation. Here, we employ the Linbladian form
of the master equation, derived fully in240. The Linbladian master equation is a
completely positive trace preserving map which evolves the system density ma-
trix under the following Markovian assumptions:

• Separability: at t = 0 there exsists no correlations between the probe-
sample system and the environment.

• Born approximation: (1) the interaction with the probe-sample system
does not significanly alter the state of the environment during the inter-
action; (2) the combined density matrix of the environment and probe-
sample system remain separable throughout the interaction.

• Markov approximation: the environment can be considered static i.e. the
environment time-scale is much shorter than the probe-sample system in-
teraction time.
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5.3. A fully-quantum model of saturation

Under these assumption, the Linbladian master equation is given by:
∂ρi (t )

∂t
=−i [Ĥ ,ρi (t )]+∑

i

(
L̂iρi (t )L̂†

i −
1

2

{
L̂†

i L̂i ,ρi (t )
}) (5.43)

where L̂i are the so-called collapse operators which describe the non-Hermitian
loss of energy to the environment. For an intuitive derivation of this equation, we
point the reader towards Ref.232. Within our model, we have the following two
collapse operators,

L̂1 =
√
Γsp σ̂,

L̂2 =
√
Γdp σ̂z ,

(5.44)

for each absorber. L̂1 accounts for spontaneous emission of each absorber to
the environnement. L̂2 is proportional to the Pauli-z dephasing operator and ac-
counts for the dephasing of each absorber. Inserting Eq. 5.35 and Eq. 5.44 into
Eq. 5.43 gives:

∂ρi (t )

∂t
=−i

[
â†â +

Na∑
k=1

{
σ̂†

kσ̂k + g (âσ̂†
k + â†σ̂k ),ρi

}]
+Γsp

Na∑
k=1

(
σ̂kρi σ̂

†
k −

1

2
{σ̂†

kσ̂k ,ρi }
)

+Γdp

Na∑
k=1

(
σ̂z kρi σ̂z

†
k −

1

2
{σ̂z

†
kσ̂z k ,ρi }

)
.

(5.45)

Note we have switched to natural units in which ~≡ 1 and c ≡ 1, we also set ω= 1

such that λ= 2π. This is for convenience and does not effect the physics. We solve
this equation numerically via the open-source software QuTip169,241. After prop-
agating the system for a time τint, we perform a partial trace over the absorbers
Hilbert space to extract the optical state’s density matrix:

|ψi (τint)〉 〈ψi (τint)| = trna

{
ρi (τint)

}
. (5.46)

This state is then coupled forward as the input state of the i +1th slice and the
algorithm is thus repeated for the full length of the sample:

ρ̂i+1(0) = |ψi (τint)〉 〈ψi (τint)|⊗ ( |0k〉 〈0k |). (5.47)

At each step, we use the optical states density matrix to solve for the photon num-
ber statistics, comparing it directly with that predicted by a linear loss channel.

For the purpose of this investigation we set τint = 1 and assume α= 0.5 such
that the interaction time is half the transition relaxation time. This allows satura-
tion to take effect during the interaction. When focusing close to the diffraction

115



Chapter 5. Maximising Precision in Saturation-Limited Absorption Spectroscopy

limit, the coupling constant can no longer be considered the same for each ab-
sorber due to the state’s polarisation becoming non uniform242.We therefore con-
sider amaximal focusing of β= 10. This gives an interaction rate g = 0.1 in natural
units. We set the dephasing rate to be Γdp = 2 such that decoherence dominates
the evolution with Γdp À g ,Γsp. The model can be used to recreate the famous
optical Bloch equations under a classical probe approximation which describe
the evolution of an ensemble of absorbers coupled to a classical coherent field243.
Here, we will use the model to probe the intensity profile along a sample consist-
ing of 20 slices. To enable full simulation of the Hilbert space na = 4 for each slice
andwe probewith an optical state consisting of 〈n̂i n〉 = 12 input photons. Despite
the simplicity of this model, we can use it to lend insight into how probing a loss
channel above saturation effects quantum noise in the probe state.

5.3.2 A comparison to the semi-classical model

To compare the two models, we plot the evolution of the probe state’s Fano fac-
tor – the variance-to-mean ratio of the photon number probability distribution –
defined as F := 〈n̂〉/Var(n̂), for classical (Fig. 5.6(a)) and Fock (Fig. 5.6(b)) input
states.

As the state propagates along the sample, the photon number distribution
evolves according to the effective loss applied to each component number state.
In the fully-quantum model, this effective loss is dependent on the number of
photons in each basis state and is therefore different for each component of the
distribution. By comparison, the semi-classical model assumes the effective loss
is the same for all component number states and is dependent only on the mean
photon number. The overall effect of accounting for the differential effective loss
across the distribution is to increase or decrease the photon number variance in
comparison to the semi-classical approximation, as is the case with all nonlinear
processes.

We find that the addition of noise to the Fock state is suppressed in compar-
ison to the semi-classical model whilst the probe intensity remains above satu-
ration. During a saturated interaction only na photons may be absorbed per in-
teraction time which suppresses the rate at which noise, through loss, is added
to the state. F f (a) is therefore underestimated for output powers κ≥ 1. For co-
herent state propagation, saturation increases the optical noise due to a differen-
tial effective absorption rate across the state’s photon number distribution. This
acts to stretch the Poissonian photon number statistics such that the probe be-
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b

a

Figure 5.6. Coherent (a) and Fock (b) state evolution along a saturable
sample.We plot the evolution of the probe state’s Fano factor F (blue)
and transmission η (red) comparing the fully-quantummodel (solid
blue) to the semi-classical approximation (dashed blue). Shaded red
represents additional noise and shaded blue represents suppressed
noise. The dot-dashed purple line is the point along the channel at
which the number of photons present in the probe state drops below
na . (Figure adapted from Ref.190.)

comes super-Poissonian. We therefore conclude that Fc (a) presented under the
semi-classical approximation is an upper bound on the true classical state perfor-
mance. Consequently, the quantum advantage given by Eq. 5.30 is a lower bound
on the true quantum advantage under saturated probing.

In alignment with the results presented by Kumar et al. in Ref. 244, the semi-
classical approximation for classical sensing experiments is sufficient when the
mean photon number of the state remains one standard deviation above or be-
low the saturation intensity during the analyte-probe interaction. This ensures
that the effective absorption strength across the states poissonian photon num-
ber statistics is well approximated by its mean value, minimising the effect of the
nonlinearity on the states statistics.
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5.4 Conclusion

We have explored the damaging effects of saturation on absorption spectroscopy
precision. These results are of most importance to saturation-limited classical
measurements demanding greater precision or efficiency such as those often per-
formed in high-precision absorption spectroscopy experiments214,215. We have
proven Fock states are optimal for mitigating the limiting effects of saturation
and, through performance comparison, have shown classical schemes probing
weak absorptions stand to gain the most from a quantum upgrade191–193. For
schemes that do not have access to quantum resources we present a classical
sample-probe optimisation strategy to help improve performance with minimal
experimental adaptation. Further, we have shown that in the absence of bright
Fock states, state-of-the-art squeezed states provide an effective alternative to
overcoming saturation with today’s technology. Whilst the analysis here finds
saturation to be a detrimental effect on standard absorption spectroscopy, there
are a number of more advanced techniques, such as stimulated depletion mi-
croscopy202 or saturated structured-illumination microscopy245, where satura-
tion is used as a tool to enhance the information gained on a sample. Adapting
the analysis here to optimise the performance of these strategies and to inves-
tigate any potential quantum advantages may lead to further enhancement of
these optical sensors.
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Conclusion

The work presented in chapter 3 presents a state-of-the-art 2 µm homodyne
detector. The device was purpose built for enabling pulse squeezing mea-
surements and is sufficient for future measurements of squeezing with a

reasonable total efficiency of 57%, far above any previous demonstration. Shot-
noise limited detection atmegahertz speedswill support the future development
of both integrated and off-chip squeezed states in the 2 µm-band. The bandwidth
of the device presented here, though currently limited by the performance of the
op-amp and parasitic capacitance on the input of the op-amp, is also sufficient
to enhance the signal-to-noise ratio of classical absorption sensing schemes that
modulate information into megahertz sidebands69or that employ balanced de-
tection to reject classical laser noise71,109.

Chapter 4 presents an attempt at integrated classical noise reduction, via a
device that was originally intended to provide sub-classical noise suppression of
a pulsed 2 µm laser. We note the work in this chapter, along with the characteri-
sation of noise in the pulsed laser presented at the end of chapter 3, was enabled
by the detector developd in chapter 3 proving the device’s utility. We conclude
the scheme does suppress noise but in addition to added noise from unwanted
modulation instability present in the waveguide. This effect can be countered
by switching to a normal dispersive geometry. We also discuss barriers to sub-
classical noise suppression and conclude the main barriers to a squeezing result
to be limited integrated beamsplitter extinction and excess classical laser noise.
The former could be overcome in future rounds of PIC development via low-loss,
broadband, integrated MZI design such as the one utilised in Ref.246.
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In chapter 5 we asses the effect of saturation on the performance of classical
and nonclassical states of light used to probe absorption. Under a semi-classical
approximation, we derive a bound on precision and prove Fock states optimal.
Squeezed states are presented as a viable route towards experimental realisa-
tion. A fully quantum model is presented and we find the analytical quantum
advantage to be a lower bound on the actual advantage. The analytic formu-
lae derived in this chapter can be directly applied to classical, shot-noise lim-
ited, spectroscopy measurements214 to help optimised measurement precision.
Furthermore, the intuition gained about the obtainable quantum advantage for
high-power, saturation-limited, spectroscopy measurements, will prove useful
for those looking to preform a cost-benefit analysis of switching to a squeezed
state probe.

6.1 In pursuit of integrated 2 µm squeezing for
absorption sensing

Since the start of this PhD, integrated silicon squeezing, even in the well sup-
ported telecoms band, has proven elusive. The field of integrated telecoms
squeezing has pivoted away from pulsed Kerr-interferometers in silicon and
towards resonator-based four-wave mixing in silicon nitride160,161. A key ben-
efit of this switch is the fact that greater amounts for squeezing are obtainable
from resonators than from pulsed Kerr-interferometery160. Additional benefits
include continuous-wave operation, no two-photon absorption, ultra-low loss
waveguides, and silicon integration via multi-platform fabrication capabilities
that enable silicon to silicon nitride coupling on the same chip .

At 2 µm, silicon resonator squeezing still holds promise with most of these
benefits gained not from a change of platform but by a shift in photon energy.
The scheme is dependent on the availability of 2 µm continuous-wave lasers and
high power EDFAswhich have now become commercially available. A downside
of switching to a continuous-wave source is the need for faster (∼ 100 MHz) de-
tection electronics. As discussed in chapter 3, this presents a significant problem
at 2 µm.

A potential solution is to utilise a bichromatic local oscillator (BLO) homo-
dyne detection scheme247. In this adapted homodyne detection scheme, the LO
consists of two coherent frequencies at symmetric sidebands to the original car-
rier. It can be proven that using such an LO maps quadrature statistics from the

120



6.2. An outlook on integrated absorption sensing in the MIR

LO sideband frequency to DC enabling the signal to be probed about the LO
sideband frequency. Adopting acusto-optic or phase modulation techniques, it is
then possible to create a BLO at a sideband frequency faster than the bandwidth
of the detector presented in chapter 3, thereby increasing the overall bandwidth
of the measurement.

6.2 An outlook on integrated absorption sensing in
the MIR

The dense number of absorption features in the fingerprint region creates difficul-
ties in the distinguishability and selectivity of target analytes from background
features. These difficulties can bemitigated to some extent by additonal reference
signals248 or sample pre-processing, however, both of these methods can come
with significant cost to measurement speed or deployability. Wavelength resolu-
tion is by far the best solution and, in the absence of nonlinear optics techniques,
is often provided by one of three main solutions: 1) a tuneable laser source, 2) a
broadband laser with either a multichannel or filter-based spectrometer, or 3) a
broadband laser & tuneable filter combination.

Option 1, requiring only one detection channel, is by far the simplest to de-
sign, however, integrated tuneable lasers are often an order of magnitude more
expensive than broadband lasers. Option 2 shifts the complexity onto the design
of integrated spectrometers, such as AWGs249, which are notoriously difficult to
design to a high specification and which can have costly footprints. Additionally,
the scheme requires multiple detectors or a line-scanning detector withmeasure-
ment sensitivity likely to be limited bydetection electronics as advancedmethods
such as balanced detection71 become untenable. Option 3 requires a tuneable fil-
ter with a working bandwidth on the order of GHz or less to be able to resolve
single transitions. A fourth option is to exploit the superior nonlinear optics ca-
pabilities afforded by integrated platforms, such as silicon, to craft functional
multi-wavelength probes, such as frequency combs250. Edge emitting quantum
cascade lasers available in this part of the spectrum can be integrated into amono-
lithic device to power comb generation251. The ability to generate integrated fre-
quency combs provides integrated optical gas sensors a competative edge over
other promising scalable and deployable, non-optical, gas sensing technologies
such as semiconductor metal oxide sensors252 or calorimetric sensors253.

A key issues faced by integrated optical gas sensors is limited probe-analyte
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overlap which often bounds the limit of detection for a given probe power . High
probe confinement achieved by high index contrast materials, whilst conducive
to nonlinear phenomena, hinders analyte-probe overlap with the majority of
power concentrated inside the waveguide. Solutions to enhance analyte-probe
interactions make use of the additional benefits of integrated optics, namely the
ability to engineer sub-wavelength structures and the ability to engineer the ox-
ide of local regions of the chip. These capabilities have been used to slow the
probe down, providing a strong enhancement factor254.

Classical integrated sensing schemes using silicon PICs have begun to bring
together key components onto the same chip to exploit multi-wavelength or
modulation-enhanced absorption techniques. Wang et al. presents a silicon PIC
consisting of a tunable laser sources, detectors andwaveguide circuits with prop-
agation losses of ∼0.5 dB/cm which enable spectrometry via an arrayed waveg-
uide grating centred on 2.3 µm range44. As the field of integrated silicon absorp-
tion sensing grows at 2 µm, low frequency intensity noise in both high power
pulsed lasers and continuous-wave lasers will become more of a pressing is-
sue that limits measurement precision. While active noise suppression technol-
ogy and shot-noise limited lasing is developd in industry, we look to passive
noise suppression methods50 and modulation-enhanced sensing schemes255 to
circumvent this noise.

In rudimentary demonstrations of integrated gas sensing, sensitivity is lim-
ited by the need for stability across two consecutive measurements—a refer-
ence measurement and a signal that passes through the gas. In the 2 µm–band,
a promising solution is to utilise recently developd fast modulation in silicon
to modulate absorption information out to higher frequencies256. Modulation
speeds are then limited by detection bandwidths which are set to gain from the
integration of photodiodes41,257. A key barrier to this will be the adoption rate of
detector materials, such as GaInAsSb, responsive at 2 µm by fabrication houses.

6.3 Closing remarks

In closing, the field of integrated absorption sensing in the 2 µm-band faces some
significant engineering challenges to provide competative sensing devices, how-
ever, as we have discussed above, encouraging progress is being made on these
challenges that should place integrated silicon devices at the forefront of the gas
sensing industry in the years to come.
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We have seen in this thesis that integrated silicon devices specifically are not
only suitable for 2 µm-band classical sensing but are also well suited to quan-
tum enhancement through squeezed state production. As 2 µm laser technology
catches up to telecoms standards, we can utilise the same properties that afford
squeezing to suppress classical laser noise and thereby improve the measure-
ment precision of both linear and saturation-limited absorption schemes. Guided
by the characterisation of noise enabled by the detector presented here, the field
can continue to leverage PIC technology to develop low noise states in the hope
of one day applying them in a commercially viable monolithic package that rep-
resents the cutting-edge of optical sensing in the 2 µm-band.
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List of symbols

Constants

Electron charge e 1.60x10−19 C
Speed of light c 3.00x108 m/s

Reduced Planck’s constant ~ 1.06x10−34 Js

Bolzmann’s constant k 1.38x10−23 m2kgs−2K−1

Vacuum permitivity ε0 8.85x10−12 F/m

Magnetic constant µ0 1.38x10−6 H/m

Functions

Delta function δ(x)

Leguerre polynomial functions Ln[x]
∑n

k=0
n!

k !(n−k)!
(−1)k

k ! xk

Transverse mode distribution F (x, y)

Wigner function W (x, p)

Kronecker delta function δi j

Square indentity matrix IM

Square zero matrix 0M

Lambert-W function W (x) W (zez) ≡ z

Wright Omega function W (x) W (ez) ≡W (z)

Electrodynamics

Electric field E(r, t ) [V/m]
Magnetic field B(r, t ) [T]
Vector field A(r, t ) [Vs/m]
Frequency f [Hz]
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Wavelength λ [m]
Angular frequency ω 2π f [rad/s]
Wave number k 2π/λ [m−1]
Refractive index n

Polarisation vector eλ {x,y}

Volume V [m3]
Characteristic dispersion length LD [m]

Nonlinear Optics

Polarisation field P(r, t ) ε0χE

Electric susceptability χ n2 −1

Third order susceptability χ(3)

TPA coefficient βTPA [m/W]
Nonlinear refractive index n2 3χ(3)/4n2

1ε0c [m2/W]
Permitivity ε 1+χ
Nonlinear parameter φNL ωn2/c Aeff [1/Wm]
Characteristic nonlinear length LNL [m]

Integrated Optics

Waveguide length L [m]
Core refreactive index ncore

Cladding refreactive index nclad

Effective index neff

Effective propagation constant β neff2π/λ [1/m]
Effective mode area Aeff [m2]
Group velocity vg [m/s]
Group velocity dispersion β2 [s2/m]
Dispertion parameter D −sπcβ2/λ2 [ps/nmkm]
Propagation loss αL [dB/cm]
Thermo-optic coefficient ∂n/∂T [1/K]
Tempurature T [K]
Odd supermode index nodd

Even supermode index neven

Angle of incidence θi

50:50 coupling length L50

Interference visibility V

Beamsplitter transmission η

Propagation loss correlation function R(u)
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Correlation length Lc [m]
Sidewall roughness mean squared deviation g [m]
Waveguide width w [m]
Waveguide heigth h [m]

Single-mode Quantum Optics

Generic state ∣∣ψ〉
Creation operator â

Annihilation operator â†

Hamiltonian Ĥ

Eigen-enegry En

Photon number N

Number operator n̂

Amplitude quadrature operator x̂ (â + â†)/2

Phase quadrature operator p̂ i (â† − â)/2

Quadrature operator q̂ âe iφ+ â†e−iφ

Squeezing factor r

Squeezing angle θ

Squeeze parameter ξ r e iθ

Squeezing operator Ŝ(ξ)

Coherent amplitude α

Coherent state phase ϑ

Coherent state |α〉
Fock state |n〉
Coherent squeezed state |α,ξ〉
Unitary Kerr operator ÛK

Kerr state |α〉K ÛK |α〉
Electronics

Bias voltage Vb [V]
Supply voltage Vs [V]
Inverting input voltage V− [V]
Non-inverting input voltage V+ [V]
Op-amp open gain A0

Op-amp output voltage V [V]
Photodiode shunt resistance Rshunt [Ω]
Photodiode junction capacitance Cpd [F]
Op-amp capacitance Coa [F]
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Feedback capacitance C f [F]
Freedback resistance R f [Ω]
Impedance z [Ω]
Op-amp gain bandwidth product A0 f0 [Hz]
Dark current shot noise 〈Id 〉 [A/

p
H z ]

Voltage supply noise 〈
Vreg

〉 [A/
p

H z ]
Op-amp voltage noise 〈Voa〉 [V/

p
H z ]

Op-amp current noise 〈Ioa〉 [A/
p

H z ]
Total current noise 〈

I tot
oa

〉 [A/
p

H z ]
Saturation power Psat [W]
Noise equivalent power Pnep [W]
Peak-to-peak voltage Vpp [V]
Detector unit response function r (t )

Photodiode responsivity R [A/W]
Homodyne Detection

LO field operator ÂLO

LO field mean value ALO

LO field time-dependent quantum noise operator âLO

LO amplitude αLO

LO phase φ

Signal amplitude αs

Signal field mean value As

Signal field time-dependent quantum noise operator âs

Signal field operator Âs As + âs

Time-dependent signal quadrature q̂s,φ(t )

Photocurrent operator Î (t )

Detector noise operator Îd (t )

Target time-independent quadrature Q̂targ

Single pulse quadrature Q̂p

Time-independent detected quadrature Q̂

Quadrature integration weighting function Φ(t )

Photodiode coupling efficiency ηc

Photodiode quantum efficiency ηQE

Detector SNR efficiency ηSNR

Total detector efficiency ηtot

ESA resolution bandwidth B [Hz]
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Radio/sideband frequency Ω [Hz]
ESA PSD 〈p̂Ω〉 [W]

Noise suppression modelling

Pulse envelope temporal discretisation index j

Number of discritisation modes M

Temporal discretisation spacing ∆τ

Propagation length discritisation spacing ∆z [m]
j-th mean field value A(z) j

j-th slice quantum fluctuation operator â j (z, t )

Quantum fluctuation decomposition matracies µ(z),ν(z)

Classical stochastic functions s j (z, t )

Orthognal classical stochastic basis functions ζ j

Level of classical noise above shot noise σ

DC signal component Φ

Relative intensity noise RIN

Modulation instability gain spectrum GMI

Peak laser power Pp [W]
Saturation modelling

Ground state occupation number n0

Excited state occupation number n1

Total number of absorbers nt

Absorption cross section σ [1/m]
Excited state lifetime τ s

Saturation intensity ns

Linear absorption coefficient a [1/m]
Normalised intensity κ

Optimal intensity nopt

Fisher information F (x)

Coherent state fisher information Fc (x)

Squeezed state fisher information Fs(x)

Quantum advantage Λ(x)

Spontaneous emission rate Γsp [Hz]
Dephasing rate Γsp [Hz]
Single-atom interaction rate g [J]
Dipole transition moment µ12 []
Collapse operators L̂1,2
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Key specifications & parameters

Here, we list all relevant specifications for the pulsed laser used in Chap-
ters 3 & 4, alongside key parameters of the Cornerstone devices investi-
gated in Chapter 4.

B.1 Pulsed laser specifications

Table B.1.A list of 2 µm pulsed laser specifications.

Property Value
Central wavelength λ0 2.07 µm
Bandwidth ∆λ 2.6 nm
Max average power 17 dBm
Repetition rate Rrep 39.5 MHz
Pulse width ∆τ 2.8 ps
Pulse shape ≈ sech2

Coupling type free space
Gain medium Thulium/Holmium
Laser type passive mode-locked
Model number AdValue Photonics AP-ML-1
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B.2 Cornerstone device parameters

Table B.2.A list of Cornerstone device specifications.

Property Value
Platform silicon-on-silicon dioxide
Fabrication method optical lithography
Technology passive with heaters (TiN)
Silicon height 340 nm
TOX/BOX thickness 1 µm/2 µm
Heater sheet resistance 10Ω/�
Single-moded strip waveguide width @ 2.07 µm 500 n
Strip effective modal area Aeff @ 2.07 µm 0.39 µm2

Strip waveguide effective index @ 2.23 µm 2.12
Group velocity vg @ 2.07 µm 0.7x108 m/s
Group velocity dispersion D @ 2.07 µm 5.28x10−4 s/m2

Thermo-optic coefficient of silicon 1.7x10−4 K−1

Nonlinear refractive index @ 2.07 µm n2 1.5x10−18 m2/W
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