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Abstract

We present a discrete model of band modules of special biserial (SB) algebras; complementing

existing models for string modules. We provide efficient theoretical algorithms for calculating

syzygies of band modules in terms of this discrete model, along with other functors relating to the

delooping level for both string and band modules.

We first use these tools to prove some small results about the delooping levels of string and band

modules for a general SB algebra; then we use these ideas specifically with radical-cube-zero SB

algebras, where we show that all such algebras are either syzygy-finite or satisfy a very strict

structural condition.

We also use these ideas to characterise, for a given SB algebra A, the string and band modules,

M ∈ mod-A, with Ext1A(M,A) = 0, which (along with the syzygy algorithms for these models)

can be used when the algebra has small dimension to identify all Gorenstein-projective modules.

For example, we classify the Gorenstein-projective modules for a handful of example SB algebras

of dimension ≤ 20. We build on this by classifying the Gorenstein-projective band modules for

any SB algebra, and then we determine some sufficient and/or necessary conditions for certain

Gorenstein-homological properties, including an equivalent condition for an SB algebra to have

finitely many indecomposable Gorenstein-projective modules.
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Chapter 1

Introduction

Special biserial algebras (SB algebras) are a class of finite-dimensional algebras that have often

been used as a testing ground for new methods in representation theory. They are comparatively

easy to define, and yet have been non-trivial to study; providing a rich source of examples for (and

counterexamples to) various ideas.

As an illustration of this, we consider the trichotomy result for representation types by Drozd

[Dro80]; that any finite-dimensional algebra is either representation-finite, representation-tame or

representation-wild (in increasing order of complexity). A few years later, Wald and Waschbüsch

showed that SB algebras are representation-tame [WW85]; in particular, they showed that there is

a trichotomy of classes of modules of SB algebras; pin modules, string modules and band modules,

where the first class is finite, the second is countable, and the third can be partitioned into a

countable collection of one-parameter families.

Another important measure of complexity for a finite-dimensional algebra is its finitistic dimension;

the supremum of all finite projective dimensions of modules over that algebra. There are two types

of finitistic dimension that are widely considered; the big and little finitistic dimensions (where

we respectively consider all modules, or just the finite-dimensional ones). It is conjectured that

both the big and little finitistic dimensions are always finite for finite-dimensional algebras; these

are respectively called the big and little finitistic dimension conjectures (FDCs), neither of which

are known to hold in full generality. The finitistic dimension conjectures are at the top of a

chain of implications of interconnected “homological conjectures”, and thus they are widely studied
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CHAPTER 1. INTRODUCTION

throughout representation theory; for an overview of these implications, we direct the interested

reader to [GPS21]. It is also worth noting the importance of the syzygy functor, Ω, (as defined in

Definition 2.2.14) when studying the finitistic dimensions, as projective dimensions can be expressed

in terms of syzygies (as discussed in Definition 2.2.20).

If we restrict our attention to SB algebras, it is known that the little FDC holds (this follows from

[IT05] and [Erd+04]) but the big FDC is still open. Huisgen-Zimmermann subsequently showed

that despite being representation-tame, SB algebras may not be “homologically tame” [HZ16]; in

other words, there exist SB algebras which have an arbitrarily large (finite) difference between the

big and little finitistic dimensions.

In [All21], Allen introduced a combinatorial approach for systematically encoding string modules

and their syzygies. This approach combines “syllables” in lines to form “strips”. These “strips”

encode string modules in a way which makes it easier to formally study their properties (a brief

review of this formalism is given in Sections 2.3 and 2.4). Allen also introduced “patches” and

“patch coverings” which respectively encode indecomposable projectives and projective covers of

string modules. This allowed the introduction of a syzygy algorithm for string modules using these

tools.

One particular advantage of this framework is that it allowed many problems involving string

modules to be studied using computer algebra software. In particular, Allen built a GAP package

called SBStrips [SBS23] which implemented key parts of his model; it allows you to encode a

string module as a strip, perform calculations on these strips and thus to determine properties

of the string module that the strip represents. For example, for a given SB algebra you could

define a strip (to represent a string module) then use the SyzygyOfStrip function to calculate

a collection of strips to represent the syzygy of the original string module. Similarly, you can

use TransposeOfStrip to calculate a collection of strips to represent the transpose of the original

string module. By combining these functions you can calculate invariants like delooping level for

a particular string module, and thus calculate the delooping level of an SB algebra (as introduced

in [Gé22], see Definition 2.2.64). All of the functions implemented in SBStrips are orders of

magnitude more efficient than the previous best way to perform these computations, using another

GAP package called QPA [QPA22]. QPA is designed for performing calculations on a much wider

class of finite-dimensional algebras, and thus can’t take advantage of the additional combinatorial

structure that SB algebras have. Note that QPA is used in some of the underlying parts of SBStrips,

2



but the improved syzygy algorithm in particular means that the study of larger SB algebras is

now considerably less computationally intense than when using QPA, making calculations involving

bigger examples tractable.

In Chapter 2, we review the relevant background for the remainder of the thesis. We pay

particular attention to the combinatorial framework introduced by Allen, and in some cases provide

improvements to their results. One notable example of this is the latter half of Section 2.3, where

we introduce the notion of “minimally connected overquivers”. This has allowed us to implement

a function, SBAlgsFromNumVerticesAndRadLength, in SBStrips which can generate a complete

collection of SB algebras with a given number of vertices in their quiver and a given radical length

and can thus be used to verify that a condition holds for all such SB algebras. Another important

addition to the combinatorial framework of Allen is a description of the action of the transpose

functor on string modules in terms of its effect on strips. This begins in Paragraph 2.4.28, and

is based on a description in terms of “string graphs” given by Wald and Waschbüsch in [WW85].

This combinatorial description is extended to cover band modules in Chapter 3, and is vital to the

results of Chapter 4.

The framework of “strips” is only useful when studying string modules of SB algebras; as discussed

above there is another main class of finitely generated modules, band modules, and these require a

new construction. In Chapter 3, we introduce a formalism for studying band modules called “belts”;

they are also built in terms of “syllables”, but instead of combining them in lines, we combine

them in cycles. An informal overview of the ideas behind “belts” is given in Subsection 3.1.1 as a

preview to the formal definitions being introduced in Subsection 3.1.2. Similar techniques to those

for “strips” can be used to study how the syzygy functor acts on “belts”, though extra care must

be taken to handle the fact that the class of band modules is not generally closed under taking

syzygies. The formal details of this syzygy algorithm are given in Section 3.2, followed by some

small examples and a discussion of some of the immediate consequences of this algorithm. This

new algorithm for “belts” means that we can now compute the syzygy of any finitely generated

module of an SB algebra within the combined combinatorial framework of this thesis and Allen’s;

the ideas in this thesis handle the band modules, those in Allen’s thesis handle the string modules,

and since the pin modules are projective, their syzygy is always zero.

In Chapter 4, we give a “syllable-by-syllable” characterisation of the action of the functor

ΩTr : mod-A → mod-Aop in terms of strips and belts. This functor plays a key role when

3



CHAPTER 1. INTRODUCTION

considering the delooping level of a module. We then use this characterisation to better understand

the delooping level of string and band modules; in particular, we give a new necessary condition for

band modules to have non-zero delooping level (Proposition 4.2.1), a sufficient condition for band

modules to have zero delooping level (Proposition 4.2.2), and a necessary and sufficient condition

for simple non-projective modules to have non-zero delooping level (Lemma 4.2.4).

In Chapter 5, we use the tools we have developed to study string and band modules to show that a

(connected) SB algebra, A, satisfying rad3(A) = 0 is particularly well-behaved.

Theorem 5.1.6. Suppose that A is a connected SB algebra with rad3(A) = 0. Then one of the

following mutually exclusive conditions must hold:

� A is syzygy-finite,

� the regular module AA is a direct sum of pin modules.

This immediately implies the following result about the delooping level of these SB algebras, which

was previously proved by Goodearl and Huisgen-Zimmermann and stated in [HZ22, Thm 4]. (For

reference, the delooping level, dell(A), of an algebra A is an invariant defined by Gélinas in [Gé22],

which has implications for the big FDC. We discuss it further in Subsection 2.2.5.)

Corollary 5.1.8. Suppose that A is an SB algebra with rad3(A) = 0. Then dell(A) <∞.

(Note that we no longer need the SB algebra to be connected for this result.)

We can improve this by proving various upper bounds for dell(A) in this case. Section 5.2 includes

various bounds, the best of which is quadratic in the number of vertices of the underlying quiver.

Using SBStrips we checked the true values of the delooping level for all SB algebras on at most 4

vertices which satisfy rad3(A) = 0. This involved calculations for several thousand algebras, all of

which satisfy a linear bound. In Example 5.2.6, we construct a family of example showing that if

this linear bound holds in general, then it is sharp. This leads us to make the following conjecture

of a linear bound:

Conjecture 5.2.8. Suppose that A is an SB algebra with rad3(A) = 0. Let n be the number of

(isomorphism classes of) indecomposable projective A-modules. Then dell(A) ≤ 2n− 2.

In Chapter 6, we begin with a classification of string and band modules, M ∈ mod-A, for a given

SB algebra, A, which satisfy Ext1A(M,A) = 0. This classification is done in terms of “peaks” which

are pieces of a “strip” (or a “belt”) consisting of two adjacent syllables. The classification assigns

4



each “peak” a colour (red, yellow or green) and then determines whether or not Ext1A(M,A) = 0

based on the colours of “peaks” present in a “strip” or “belt” representing this module.

If A is a small SB algebra, then this characterisation, along with the syzygy algorithm, is often

sufficient to characterise all Gorenstein-projective M ∈ mod-A. By repeatedly applying the syzygy

algorithm, we can rule out the presence of almost all combinations of peaks in a “strip” (or

“belt”) representing a module M ∈ mod-A where ExtiA(M,A) = 0 for all i ≥ 1. The remaining

combinations of peaks can be checked by hand to see if they correspond to Gorenstein-projective

modules.

However, when working with a larger SB algebra, this can become impractical. Fortunately,

classifying Gorenstein-projective band modules can be done for general SB algebras. For example,

the following result gives a single equivalent condition for a band module to be Gorenstein-projective,

and appears as part of a wider collection of equivalent conditions in Theorem 6.2.13.

Theorem. Let M be a band module of A. Then M is Gorenstein-projective if and only if the

Q-vertex corresponding to each simple summand of soc(M)⊕ top(M) lies on a cycle of the pin

graph, ΦA.

(For reference, the pin graph ΦA is a sub-1-regular quiver associated to the SB algebra A, which has

a vertex set equal to that of the defining quiver Q of A. This was introduced in [All21], and we give

the definition in Definition 2.3.39.)

Since the pin graph is very simple to calculate, it is now very simple to verify whether or not a

band module is Gorenstein-projective.

Section 6.3 then uses our improved understanding of (semi-)Gorenstein-projectives to investigate

necessary and/or sufficient conditions for SB algebras to be CM-finite, CM-free and/or weakly

Gorenstein (in the sense of [RZ20]). For example, our classification of Gorenstein-projective band

modules is sufficient to give an equivalent condition for when an SB algebra is CM-finite (i.e. has

finitely many indecomposable Gorenstein-projective modules).

Proposition 6.3.4. An SB algebra A is CM-finite if and only if it has no Gorenstein-projective

band modules.

5
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Chapter 2

Background

We assume throughout that k is some fixed algebraically closed field of any characteristic.

To avoid confusion, we clarify that N = {k ∈ Z : k ≥ 0} and Z+ = {k ∈ Z : k > 0}. We also write

⌊−⌋, ⌈−⌉ : R → Z for the floor function and ceiling function respectively, and write P(X) for the

power set of X.

We will write g ◦ f or gf for the composition of functions X
f−→ Y and Y

g−→ Z, and f(x) for the

image of an element x ∈ X. Note that this differs from [All21], which uses the reverse notation for

composition where possible.

2.1 General prerequisites

2.1.1 Graphs

2.1.1. Graphs. A graph Γ is a triple (Γ0,Γ1, e) consisting of two sets: Γ0 (the vertices) and Γ1

(the edges) along with an incidence function e; a function e : Γ1 → P(Γ0) such that for each edge

e ∈ Γ1 we have 1 ≤ |e(e)| ≤ 2.

The graph is finite if both Γ0 and Γ1 are.

2.1.2. Paths in graphs. A path in Γ is an alternating sequence of vertices and edges

(v0, e1, v1, . . . , vn−1, en, vn) where for each i ∈ {1, . . . , n} we have e(ei) = {vi−1, vi}. The length of

7



CHAPTER 2. BACKGROUND

such a path is n ∈ N.

Note that some sources would call this construction a “walk”, and place further restrictions to call

it a “path”.

2.1.3. Connectedness for graphs. In a graph Γ, two vertices v, v′ are connected if they are the

extremal vertices of some path. It is immediate that the notion of connectedness is an equivalence

relation. To each equivalence class under this relation we call the corresponding full subgraph, Γ, a

connected component. A graph Γ is called connected if any pair of vertices v, v′ in Γ are connected

(i.e. there is a unique connected component).

2.1.2 Quivers

2.1.4. Quivers. A quiver, Q, is a tuple (Q0, Q1, s, t) consisting of two sets: Q0 (the vertices) and

Q1 (the arrows) along with source (s : Q1 → Q0) and target functions (t : Q1 → Q0). It is called

finite if both Q0 and Q1 are finite sets, and is called locally finite if for every vertex v ∈ Q0, there

are finitely many arrows α ∈ Q1 whose source is v (s(α) = v) or target is v (t(α) = v).

The opposite quiver of Q = (Q0, Q1, s, t) is Q
op := (Q0, Q1, t, s).

Some particularly important classes of vertices are source and sink vertices. These are the vertices

v ∈ Q0 where |t−1(v)| = 0 (resp. |s−1(v)| = 0). It follows immediately that source vertices of Q

correspond to sink vertices of Qop, and vice versa.

2.1.5. Quiver homomorphisms. For two quivers Q = (Q0, Q1, s, t, ) and Q′ = (Q′
0, Q

′
1, s

′, t′, ) a

quiver homomorphism ϕ : Q→ Q′ is a pair of maps ϕk : Qk → Q′
k for k = 0, 1 which are compatible

with the source and target maps; in other words, the following squares commute:

Q1 Q0

Q′
1 Q′

0

s

ϕ1 ϕ0

s′

and

Q1 Q0

Q′
1 Q′

0

t

ϕ1 ϕ0

t′

If both ϕk are injective, we call ϕ an inclusion and call Q a subquiver of Q′. Dually, if both ϕk are

surjective, we call ϕ a projection and call Q′ a quotient of Q.

If Q0 = Q′
0, ϕ0 = id and ϕ1 is injective, then we call Q′ an augmentation of Q, and call its

additional arrows augmented arrows.
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We now give an example of a quiver, its opposite, and a quiver homomorphism between them.

2.1.6. Example. Let Q be the quiver given by:

1 2 3α

β1

β2

γ

δ1

δ2

Then Qop is given by:

1op 2op 3opαop

βop
1

βop
2

γop

δop1

δop2

There is a quiver homomorphism ϕ : Q→ Qop given by:

ϕ0(1) = 2op ϕ0(2) = 1op ϕ0(3) = 1op

ϕ1(α) = γop ϕ1(β1) = βop
2 ϕ1(β2) = βop

1 ϕ1(γ) = αop ϕ1(δ1) = αop ϕ1(δ2) = αop

Since neither ϕ0 or ϕ1 are surjective or injective, ϕ : Q→ Qop is not an inclusion or a projection.

None of the vertices in Q are source or sink vertices, as they are all the source of an arrow and the

target of an arrow. This immediately means that Qop has no source or sink vertices either.

2.1.7. Underlying graph. The underlying graph of a quiver Q = (Q0, Q1, s, t) is the graph

(Q0, Q1, α 7→ {s(α), t(α)}).

2.1.8. Connectedness for quivers. For a quiver Q, we define a connected component of Q to be

the full subquiver of Q specified by the vertices in a connected component of the underlying graph

of Q. We call Q connected if it has a unique connected component (i.e. the underlying graph of Q

is connected).

2.1.9. Paths in quivers. Let Q be a quiver. A path, p, of length l ≥ 1 is a sequence of arrows

(α1, α2, . . . , αl)

where for each 1 ≤ k < l we have t(αk) = s(αk+1). We often denote such a path as α1α2 . . . αl. We

define the source and target of this path by s(p) := s(α1) and t(p) := t(αl).

9
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A path of length zero (a stationary path) is associated to each vertex i of Q, denoted by ei. We

define both the source and target of ei to be i.

We may also refer to paths in Q as Q-paths. This is particularly useful when it may be unclear

which quiver a path belongs to.

2.1.10. Concatenation of paths. Let p and q be paths in Q. If t(p) = s(q), then we define pq,

the concatenation of p and q as follows:

� if p is stationary, then pq := q,

� if q is stationary, then pq := p, and

� if neither of p, q are stationary, they can be written as p = α1 . . . αl and q = β1 . . . βl′ for some

arrows αi, βi and pq := α1 . . . αlβ1 . . . βl′ .

If t(p) ̸= s(q), then we leave pq undefined.

2.1.11. Regular and subregular quivers. Let m ∈ Z+. A quiver Q is called sub-m-regular

if for each vertex i ∈ Q0, we have inequalities |s−1({i})| ≤ m and |t−1({i})| ≤ m, and is called

m-regular if both of these inequalities are actually equalities. (Note that here s−1 and t−1 denote

the preimage set).

2.1.12. Example. The quiver in Example 2.1.6 is sub-4-regular, but not 4-regular or sub-3-regular.

2.1.13. It is equivalent to define a quiver Q as 1-regular if its source and target maps are bijections

s, t : Q1 → Q0. In this case they have inverse functions s−1, t−1 : Q0 → Q1, which can be combined

to obtain permutations of vertices ((t ◦ s−1) : Q0 → Q0) and arrows ((s−1 ◦ t) : Q1 → Q1). Both of

these permutations “move with the flow of the quiver”. Repeated application of these permutations

give Z-actions on the sets of vertices and arrows respectively; to simplify notation later, for k ∈ Z

we write:

i− k := (t ◦ s−1)k(i) and α− k := (s−1 ◦ t)k(α).

We can visualise this notation using the following diagrams:

· · · (i− 2) (i− 1) i (i+ 1) (i+ 2) · · ·

· · · ◦ ◦ ◦ ◦ · · ·α−2 α−1 α α+1 α+2

2.1.14. In a 1-regular quiver a path is uniquely determined by its source (resp. target) and length.

For a path with source i and length l, we will often use the notation ( i
l
◦ ). Dually, we will

10
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occasionally denote a path with target i and length l by ( ◦
l

i ). At times where the length

is clear, we may denote a path with source i and target j by ( i j ).

2.2 Algebraic prerequisites

2.2.1 Quiver algebras

2.2.1. Path algebra. Let Q be a quiver. We define the path algebra kQ by first defining its vector

space structure, then defining its multiplicative structure. The set of Q-paths forms the basis of a

vector space; we call this basis the standard basis. We define multiplication on basis vectors p and

q by p · q := pq (the concatenation of the paths p and q) when t(p) = s(q), and p · q := 0 otherwise.

2.2.2. Lemma. [ASS06, Section II.2]

Let Q be a quiver and kQ be its path algebra. Then:

(a) kQ is an associative algebra,

(b) kQ has an identity element if and only if Q0 is finite, and

(c) kQ is finite dimensional if and only if Q is finite and acyclic.

2.2.3. Arrow ideal. The arrow ideal, J , of a path algebra kQ is the two-sided ideal generated by

the arrows, considered as elements of kQ.

2.2.4. Admissible ideals and quiver algebras. Let Q be a finite quiver and J be the arrow

ideal of kQ. We call a two-sided ideal I of kQ an admissible ideal if there is an integer m ≥ 2 such

that Jm ⊆ I ⊆ J2.

If I is an admissible ideal of kQ, then we call the quotient algebra kQ/I a quiver algebra. This

notion is also sometimes called a bound quiver algebra.

If A = kQ/I is a quiver algebra, then an A-path is any non-zero residue of a Q-path in A. We

define A-arrows similarly.

2.2.5. Relations of path algebras. Let Q be a quiver. A relation in kQ is a k-linear combination

of paths of length ≥ 2 having the same source and target. In other words, a relation is an element

11
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of the form:
m∑
i=1

λiwi,

where the λi ∈ k are not all zero and the wi are Q-paths of length at least 2 with s(wi) = s(wj)

and t(wi) = t(wj) for all i, j ∈ {1, . . . ,m}.

If m = 1, the relation is called a monomial relation. If it is of the form λ1w1 − λ2w2, then it is

called a skew commutativity relation, and if additionally λ1 = λ2 = 1, it is called a commutativity

relation.

Part of the reason we care about relations is that if I is an admissible ideal of kQ, then I is the

k-linear span of the relations in kQ that it contains.

2.2.6. Lemma. [ASS06, Section II.2]

Let Q be a finite quiver and I be an admissible ideal of kQ. Then:

(i) the quiver algebra kQ/I is finite dimensional.

(ii) there is a finite set of relations of kQ, {ρ1, . . . , ρm}, such that I = ⟨ρ1, . . . , ρm⟩.

Since, by item (ii), we can generate any admissible ideal by relations, for simplicity and clarity, we

will always do so.

2.2.7. Residues of paths. If p is a Q-path and A = kQ/I, then we call the element p + I ∈ A

the A-residue of p.

2.2.2 Representation theory

For this section, unless otherwise specified, A will denote an arbitrary finite-dimensional algebra

over k.

2.2.8. Module categories. A (right) A-module is a pair (M, ·), consisting of a k-vector space,

M , and a binary operation · :M ×A→M, (m, a) 7→ ma satisfying the following conditions:

(a) · is linear in M ; i.e. ∀x, y ∈M,a ∈ A we have (x+ y)a = xa+ ya,

(b) · is linear in A; i.e. ∀x ∈M,a, b ∈ A we have x(a+ b) = xa+ xb,

(c) · is compatible with multiplication in A; i.e. ∀x ∈M,a, b ∈ A we have x(ab) = (xa)b,

(d) multiplication by 1 ∈ A acts as the identity on M ; i.e. ∀x ∈M we have x1 = x;

12
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(e) · is compatible with the k vector space structures of both M and A; i.e. ∀x ∈M,a ∈ A, λ ∈ k

we have (xλ)a = x(aλ) = (xa)λ.

A (right) A-module homomorphism f : (M1, ·1) → (M2, ·2) is a k-linear vector space map

f :M1 →M2 which satisfies f(m ·1 a) = f(m) ·2 a for any m ∈M1, a ∈ A.

We denote the category of all A-modules by Mod-A.

A module M is called finite-dimensional if its dimension as a k-vector space is finite. We denote

the category of all finite-dimensional A-modules by mod-A.

2.2.9. Submodules and quotients. An A-submodule M ′ ≤ M is a vector subspace M ′ of M

where for any m′ ∈ M ′ and a ∈ A we have m′a ∈ M ′. For a given submodule M ′ ≤ M , the

quotient vector space M/M ′ has a natural and well-defined A-module structure; thus we also use

the notation M/M ′ for the quotient A-module.

An non-zero A-module M is called simple if its only submodules are 0 and M . A module is called

semi-simple if it is a direct sum of simple modules.

The largest semi-simple submodule of M is called the socle, soc(M), of M . The smallest submodule

M ′ of M for which the quotient M/M ′ is semi-simple is called the radical, rad(M), of M . The top,

top(M), of M is the quotient M/ rad(M).

Note that the socle and radical of the regular module AA are both two-sided ideals of A.

Since M ⊋ rad(M) for any non-zero module, we can consider a descending chain of the form

M ⊇ rad(M) ⊇ rad2(M) ⊇ . . . .

When M is finite-dimensional, this chain must eventually stabilise at the zero module. We define

the radical length of M ∈ mod-A to be min{n ∈ N : radn(M) = 0}.

2.2.10. Direct sums, indecomposable modules and additive closure. Note that both mod-A

and Mod-A are abelian categories. This means that we can consider the direct sum of modules in

these categories, denoted by ⊕.

A non-zero module M is indecomposable if M =M1 ⊕M2 implies M1 or M2 is zero.

For a set of A-modules, M ⊆ Mod-A, we define Add(M) to be the full subcategory of Mod-A

whose objects are isomorphic to direct summands of coproducts of members ofM.
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If M ⊆ mod-A, we define add(M) to be the full subcategory of Mod-A whose objects are

isomorphic to direct summands of finite direct sums of members of M. Note that this is equal to

Add(M) ∩mod-A.

2.2.11. Duals and reflexivity. We denote the standard k-dual functor by

D(−) = Homk(−, k) : mod-A→ mod-Aop.

Similarly, we denote the standard A-dual functor by

(−)∗ = HomA(−, A) : mod-A→ mod-Aop.

Note that both the k-dual and the A-dual are contravariant functors.

For a given M ∈ mod-A, the evaluation morphism for M , evM : M → M∗∗, is defined by

evM (m)(f) = f(m) ∈ A for any choice of m ∈M,f ∈M∗ = HomA(M,A).

A module M is called reflexive if the evaluation morphism evM is an isomorphism.

2.2.12. Representation type. One of the main aims of representation theory is to classify the

isomorphism classes of indecomposable finite-dimensional modules of a given algebra. In [Dro80],

Drozd proves that for any finite-dimensional algebra, A, the representation theory of A has one of

three representation types.

� there are finitely many isomorphism classes of indecomposable modules in mod-A; in this case

we say that A has finite representation type (or is representation finite);

� there are infinitely many isomorphism classes of indecomposable modules in mod-A, and

for all n ∈ N, all but finitely many isomorphism classes of n-dimensional indecomposable

A-modules occur in a finite number of one-parameter families; in this case we say that A has

tame representation type;

� there is a finitely generated k⟨x, y⟩-A-bimodule M which is free as a left k⟨x, y⟩-module, such

that the functor (−) ⊗k⟨x,y⟩ M : mod-(k⟨x, y⟩) → mod-A preserves indecomposability and

reflects isomorphism class; in this case we say that A has wild representation type.

If an algebra has wild representation type, then, informally speaking, classifying the isomorphism

classes of its indecomposable finite-dimensional modules is at least as difficult as performing this

14



2.2. ALGEBRAIC PREREQUISITES

classification for k⟨x, y⟩, which is widely considered to be intractable. For a more in depth discussion

of representation type, we refer to [Ben91, Section 4.4]

2.2.13. Projective and injective modules. An A-module, M , is called projective if for any

surjection u : U ↠ V and homomorphism f : M → V , there is a homomorphism f̄ : M → U such

that u ◦ f̄ = f .

Dually, an A-module, M , is called injective if for any injection v : V ↪→ U and homomorphism

g : V →M , there is a homomorphism ḡ : U →M such that ḡ ◦ v = g.

2.2.14. Projective covers and syzygies. For a given M ∈ mod-A there is a unique smallest

(in the sense of k-dimension) projective module P(M) that surjects onto it, by some map

π : P(M) ↠ M . We call this map (and sometimes this projective module) the projective cover of

M .

The syzygy of M , Ω(M) is the kernel of this map. For k ≥ 2, the k-th syzygy of M , Ωk(M) is

defined inductively by Ωk(M) = Ω(Ωk−1(M)).

2.2.15. Remark. Syzygies play a key role in many important concepts in representation theory

(for example, projective dimensions and finitistic dimensions, which are both defined later). A

large part of this thesis will be devoted to a formalism for calculating syzygies of particular types

of modules, to aid in understanding some of these concepts.

2.2.16. Ω-periodicity and syzygy-finiteness. A module M ∈ mod-A is called Ω-periodic if

there exists k ∈ Z+ such that Ωk(M) ∼=M .

An algebra A is called k-syzygy-finite if there exists N ∈ mod-A such that {Ωk′
(M) : k′ ≥

k,M ∈ mod-A} ⊆ add(N). If there exists k ∈ Z+ such that A is k-syzygy-finite, then A is called

syzygy-finite; otherwise it is called syzygy-infinite.

2.2.17. Complexes of modules. A complex of modules is a diagram of the form:

C• := ( · · · → C−1 d−1
C−−→ C0 d0

C−−→ C1 d1
C−−→ C2 → · · · ),

where the boundary morphisms di = diC satisfy didi−1 = 0 (or equivalently where im(di) ≤

ker(di+1)). We will occasionally use the notation Zi(C•) (resp. Bi(C•)) for ker(di+1
C ) (resp.

im(di)).
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2.2.18. Homology of a complex. Fix a complex C•. For any i ∈ Z, the quotient module

ker(diC)/ im(di−1
C ) is well-defined; as such we call it the i-th homology module of C• and denote it

by Hi(C•). A complex C• is called acyclic if Hi(C•) = 0 for all i ∈ Z. (Note that C• is acyclic if

and only if Zi(C•) = Bi(C•) for all i ∈ Z).

2.2.19. Projective/injective resolution of a module. A projective resolution of an A-module

M is a complex of projective A-modules of the form:

P • := ( · · · → P−2 d−2
P−−→ P−1 d−1

P−−→ P 0 → 0→ 0→ · · · ),

where Hi(P •) = 0 for i ̸= 0 and H0(P •) ∼= M . A projective resolution, P •, is called finite if

P i = 0 for all but finitely many i ∈ Z. If P • is a finite projective resolution, its length is defined as

len(P •) = max{i ∈ N : P−i ̸= 0}

Dually, an injective resolution of an A-module M is a complex of injective A-modules of the form:

Q• := ( · · · → 0→ 0→ Q0
d0
Q−−→ Q1

d1
Q−−→ Q2 → · · · ),

where Hi(Q•) = 0 for i ̸= 0 and H0(Q•) ∼= M . A injective resolution, Q•, is called finite if

Qi = 0 for all but finitely many i ∈ Z. If Q• is a finite injective resolution, its length is defined as

len(Q•) = max{i ∈ N : Qi ̸= 0}

2.2.20. Projective/injective dimension. Fix an A-module M . The projective dimension,

proj.dim(M), of M is the minimal length of a finite projective resolution of M , if such a projective

resolution exists; otherwise we define proj.dim(M) = +∞.

Projective dimension can also be defined equivalently using syzygies:

proj.dim(M) := inf{i ∈ N : Ωi(M) is projective}.

Dually, the injective dimension, inj.dim(M), of M is the minimal length of a finite injective

resolution of M , if such an injective resolution exists; otherwise we define inj.dim(M) = +∞.
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2.2.21. Ext functor. Fix i ∈ N and two A-modules M and N . Let P • be a projective resolution

of M and consider the following complex of k-vector spaces:

HomA(P
•, N) := ( · · · → 0→ 0→HomA(P

0, N)
HomA(d−1

P ,N)
−−−−−−−−−→ · · ·

· · · →HomA(P
−j , N)

HomA(d
−(j+1)
P ,N)

−−−−−−−−−−−−→ HomA(P
−(j+1), N)→ · · · )

The i-th extension group of M and N is then defined as Hi(HomA(P
•, N)) and denoted by

ExtiA(M,N). (Note that this does not depend on the choice of projective resolution used.)

2.2.22. Transpose functor. For a given module M ∈ mod-A we take a minimal projective

presentation

P1
p1−→ P0

p0−→M → 0,

in other words an exact sequence where p0 : P0 → M and p1 : P1 → ker(p0) are both projective

covers. The transpose, Tr(M), ofM is then defined to be coker(p∗1) ∈ mod-Aop, where p∗1 : P ∗
0 → P ∗

1 .

2.2.3 Gorenstein-projective modules

For this section, A will denote an arbitrary finite-dimensional algebra.

2.2.23. Totally acylic complexes. A complex P • of projective A-modules is totally acyclic if it

is acyclic, and the Hom complex HomA(P
•, A) is also acyclic.

2.2.24. Gorenstein-projective modules. An A-module M is called Gorenstein-projective if

there is a totally acyclic complex P • of projective modules where Z0(P •) ∼=M . The complex P • is

called a complete resolution ofM . The full subcategory of mod-A consisting of Gorenstein-projective

modules is denoted Gproj-A.

2.2.25. Remark. Gorenstein-projective modules go under many names: they are sometimes

called maximal Cohen-Macaulay modules (e.g. [Bel05, Def 3.2]), modules of G-dimension zero (e.g.

[AB69]), or totally reflexive modules (e.g. [AM02, Section 2]).

2.2.26. Note that projective modules are always Gorenstein-projective; this can be seen by

considering the totally acyclic complex:

· · · → 0→ P
id−→ P → 0→ · · · .
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2.2.27. Gorenstein-projective modules have been well studied, and various properties are known.

The next few results state the properties that will be of interest for us later on.

2.2.28. Proposition. [Che17, Lem 2.1.4]

Let M ∈ mod-A. Then M is Gorenstein-projective if and only if all of the following hold:

(G1) for all i ∈ Z+, we have ExtiA(M,A) = 0;

(G2) for all i ∈ Z+, we have ExtiAop(M∗, Aop) = 0; and

(G3) M is reflexive.

2.2.29. Proposition. [Che17, Prop 2.1.7]

Let ξ : 0 → N
f−→ M

g−→ L → 0 be a short exact sequence of A-modules. Then we have the

following statements:

(1) if N,L are Gorenstein-projective, then so is M ;

(2) if ξ splits and M is Gorenstein-projective, then so are N,L;

(3) if M,L are Gorenstein-projective, then so is N ;

(4) if Ext1A(L,A) = 0 and N,M are Gorenstein-projective, then so is L.

2.2.30. Proposition. Let M ∈ mod-A.

� [Che17, Cor 2.1.9] if M is Gorenstein-projective, then so is Ω(M);

� [Che17, Prop 2.1.10] M is Gorenstein-projective if and only if Tr(M) is.

There are some particular classes of algebra where the Gorenstein-projective modules are better

understood.

2.2.31. Gorenstein algebra. A finite-dimensional algebra A is Gorenstein if both regular

modules AA and AA have finite injective dimension.

In such a case, inj.dim(AA) = inj.dim(AA) [AR91a, Lem 6.9] and we call the common value

G.dim(A). A finite-dimensional algebra A is called d-Gorenstein if G.dim(A) ≤ d.

The following result illustrates how well-behaved Gorenstein-projective modules are over Gorenstein

algebras.
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Theorem 2.2.32. [Che17, Thm 2.3.3]

Let A be a finite-dimensional algebra and let d ≥ 0. Then A is d-Gorenstein if and only if

Gproj-A = Ωd(mod-A). In this case, any module M ∈ mod-A with ExtiA(M,A) = 0 for all

i ∈ Z+ is Gorenstein-projective.

As mentioned in Paragraph 2.2.26, all projective modules are Gorenstein-projective; however, they

are usually not the only Gorenstein-projectives. The following classes of algebra place restrictions

on the number of (isomorphism classes of) non-projective indecomposable Gorenstein-projectives.

2.2.33. CM-finite and CM-free. An algebra, A, is called CM-finite if there are only finitely

many indecomposable modules in Gproj-A (up to isomorphism).

An algebra, A, is called CM-free if Gproj-A = proj-A. Clearly a CM-free algebra is automatically

CM-finite.

(The CM in these definitions stands for Cohen-Macaulay, following from one of the names discussed

in Remark 2.2.25.)

2.2.34. In the study of Gorenstein-projective modules, very few examples of modules that satisfy

(G1) in Proposition 2.2.28 but not (G2) and (G3) have been found. Thus the modules satisfying

(G1) have been considered for study themselves, so that the interaction between the conditions of

Proposition 2.2.28 can be better understood.

2.2.35. Semi-Gorenstein-projective modules. We call a moduleM ∈ mod-A semi-Gorenstein-

projective if for all i ∈ Z+, we have ExtiA(M,A) = 0.

We denote the class of semi-Gorenstein-projective A-modules by ⊥A.

2.2.36. It is clear from Proposition 2.2.28 that all Gorenstein-projective modules are semi-

Gorenstein-projective; thus we have an inclusion Gproj-A ⊆ ⊥A. An example of a semi-Gorenstein-

projective module that is not Gorenstein-projective is given in [RZ20, Section 6] so this inclusion

may be strict (i.e. Gproj-A ⊊ ⊥A).

Similarly to Gorenstein-projective modules, semi-Gorenstein-projective modules behave well with

short exact sequences. Compare the following to Proposition 2.2.29 above.

19



CHAPTER 2. BACKGROUND

2.2.37. Proposition. Let ξ : 0→ N
f−→M

g−→ L→ 0 be a short exact sequence of A-modules.

Then we have the following statements:

(1) if N,L are semi-Gorenstein-projective, then so is M ;

(2) if ξ splits and M is semi-Gorenstein-projective, then so are N,L;

(3) if M,L are semi-Gorenstein-projective, then so is N ;

(4) if Ext1A(L,A) = 0 and N,M are semi-Gorenstein-projective, then so is L.

Proof. Parts (1), (3) and (4) follow immediately from considering the long exact sequence:

0→ HomA(L,A)→ HomA(M,A)→ HomA(N,A)→ Ext1A(L,A)→ Ext1A(M,A)→ · · ·

Part (2) follows immediately from the additivity of the functors ExtiA(−, A) for i ∈ Z+.

2.2.38. As discussed in Paragraph 2.2.36, we have an inclusion Gproj-A ⊆ ⊥A, which in some

cases is strict. In [RZ20], the term weakly Gorenstein was introduced for when this inclusion is an

equality.

2.2.39. Weakly Gorenstein algebra. An algebra A is called weakly Gorenstein if Gproj-A = ⊥A;

in other words, A is weakly Gorenstein if all semi-Gorenstein-projective A-modules are Gorenstein-

projective.

It follows immediately from Theorem 2.2.32 that any Gorenstein algebra is also weakly Gorenstein.

2.2.4 Special biserial algebras

2.2.40. SB algebras. A special biserial (SB) algebra is a quiver algebra kQ/I where

(a) Q is a finite sub-2-regular quiver,

(b) for every arrow α of Q, there is at most one arrow β with αβ /∈ I and at most one arrow γ

with γα /∈ I.

It follows immediately from the definition that A is an SB algebra if and only if Aop is.
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2.2.41. Running example. Throughout this thesis, it will be helpful to have a concrete example

of an SB algebra to work with. In these cases, we will use:

A := k

 1 2α

β

γ
δ

 /⟨α2, βδ, γβ, δγ, αβγ − βγα, δ3⟩.

The A-paths of length 2 are αβ, βγ, γα, δ2. The collection of all A-paths gives a basis of the regular

A-module as depicted in Figure 2.1.

The graphical notation used in this diagram (and for many subsequent diagrams) is as follows:

� the vertices are basis vectors (which in this case are labelled by A-paths),

� the arrows denote connections between these vectors; an arrow labelled α′ ∈ Q1 indicates that

α′ + I ∈ A = kQ/I maps the basis vector at the source to a non-zero k-multiple of the vector

at the target,

� if a vertex is not the source of an arrow labelled β′ ∈ Q1, then β
′ + I ∈ A = kQ/I annihilates

the corresponding basis vector.

Note that the vertices at the top of the diagram (e1 and e2) correspond to basis vectors of top(AA),

and the remaining vertices correspond to basis vectors of rad(AA). Also note that the vertices

at the bottom of the diagram (αβγ, γαβ and δ2) correspond to basis vectors of soc(AA); this

makes the connection to the word “socle” for the base of sculptures more clear. It is simple to

see from this diagram that dim(A) = 12 (as there are twelve vertices in the whole diagram), that

dim(rad(AA)) = 10 (as there are ten vertices not in the top row), that dim(rad2(AA)) = 6 (as there

are six vertices not in the top two rows), that dim(rad3(AA)) = 2 (as there are two vertices not in

the top three rows), and that rad4(AA) = 0 (as there are no vertices beyond the fourth row). Thus

the radical length of AA is four.

One thing that you can see in our example is that the ideal we quotient by to form our special

biserial algebra is generated by monomial relations and commutativity relations. The next

proposition states that this is possible in general (up to allowing the commutativity relations to be

skew).
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e1

α β

αβ βγ

αβγ

e2

γ δ

γα δ2

γαβ

α

β

γ

β

γ

α

γ

α

β

δ

δ

Figure 2.1: Structure of the regular module of our running example algebra A. The left graph
shows the structure of P1 = e1A, the unique indecomposable pin module for A; the right graph
shows that of P2 = e2A, the unique indecomposable projective string module for A

2.2.42. Proposition. [WW85, Prop 1.3]

Let A = kQ/I be a special biserial algebra. Then the defining admissible ideal I is generated

by monomial relations and skew commutativity relations.

2.2.43. String graphs. A string graph for A is a quiver homomorphism w : G→ Q such that:

(a) each connected component of the underlying (undirected) graph of G is linear,

(b) (i) for any subgraph (◦ x←− i y−→ ◦) of G, we have w(x) ̸= w(y) ∈ Q1,

(ii) for any subgraph (◦ x−→ i
y←− ◦) of G, we have w(x) ̸= w(y) ∈ Q1,

(c) if (◦ x1−→ ◦ x2−→ · · · xl−→ ◦) is a path in G, then the A-residue of p := w(x1x2 . . . xl) is non-zero

and linearly independent of all other A-paths.

We follow the convention of depicting a string graph as a labelled quiver; each vertex v (resp. arrow

x) is labelled by w(v) (resp. w(x)).

If G is connected, we call w an indecomposable string graph.

Note that we don’t assume that G is finite; some of its connected components could be unbounded

in one or both directions. We also don’t assume that G is non-trivial; the empty graph is also

considered a string graph.
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2.2.44. String modules. Let w : G→ Q be a string graph. The string module Str(w) associated

to w is the A-module constructed as follows:

� its basis is the vertex set of G,

� for each arrow v
x−→ v′ in G, the A-arrow w(x) sends v to v′. Otherwise, each A-arrow acts as

zero on these basis vectors.

Note that the connected components of G correspond to indecomposable summands of Str(w).

We call a string module w : G→ Q bi-infinite if the underlying (undirected) graph of G is connected

and unbounded in both directions.

A general string module is an A-module isomorphic to one of these Str(w). Since it is sufficient to

only work with these representatives of the isomorphism classes, we shall do so.

2.2.45. Remark. Note that some sources (e.g. [HZ16]), assume (either implicitly or explicitly)

that all string graphs are indecomposable. This often means that they assume that all string

modules are indecomposable too.

We now briefly discuss how the class of string modules interacts with some functors that will be of

interest later.

2.2.46. Lemma. [WW85, Lem 3.1(1)]

Suppose that M ∈ mod-A is a string module with associated string graph w : G → Q.

Then the vector-space dual D(M) := Homk(M,k) ∈ mod-Aop of M is a string module with

associated string graph given by wop : Gop → Qop.

2.2.47. Example. In Figure 2.2 the first diagram is a string graph for our running example

algebra A. Denote the string module that this represents by M ∈ mod-A. The second diagram is

the string graph for Aop corresponding to D(M) ∈ mod-Aop.

2.2.48. Proposition. Let M := Str(w) be a string module over A.

(a) [WW85, Lem 3.2(2)] The transpose Tr(M) of M is a string module over Aop.

(b) [LM04, Prop 2.2] The syzygy Ω(M) of M is a string module over A.
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2

1

1

2

1

1

2

2β

α β

γ α

γ δ

(a) A string graph, w, associated to a string module M ∈ mod-A.

2op

1op

1op

2op

1op

1op

2op

2op

βop

αop βop

γop αop

γop δop

(b) A string graph associated to the string module D(M) ∈ mod-Aop.

Figure 2.2: Calculating the vector-space dual of a string module.

2.2.49. Band graphs. A band graph for A is a quiver homomorphism w : G→ Q such that:

(a) the underlying (undirected) graph of G is cyclic (and in particular connected), but G is not

cyclic as a quiver,

(b) (i) for any subgraph (◦ x←− i y−→ ◦) of G, we have w(x) ̸= w(y) ∈ Q1,

(ii) for any subgraph (◦ x−→ i
y←− ◦) of G, we have w(x) ̸= w(y) ∈ Q1,

(c) if (◦ x1−→ ◦ x2−→ · · · xl−→ ◦) is a path in G, then the A-residue of p := w(x1x2 . . . xl) is non-zero

and linearly independent of all other A-paths.

We follow the convention of depicting a band graph as a labelled quiver; each vertex v (resp. arrow

x) is labelled by w(v) (resp. w(x)).

2.2.50. Remark. We note that the definition for band graphs is identical to that of string graphs,

except for in part (a). This means that all band graphs can be obtained from a special class of

string graphs by identifying endpoints.

2.2.51. Powerable string graphs. A finite indecomposable string graph w : G → Q is called

powerable if it has two sink vertices i, j, with |t−1(i)| = |t−1(j)| = 1 such that w(i) = w(j) but

w(t−1(i)) ̸= w(t−1(j)). These sink vertices are called endpoint vertices.

For m ≥ 1, the m-th power of a powerable string graph with endpoint vertices i ̸= j, is the string

graph obtained from m disjoint copies of w by identifying the r-th copy of j with the (r + 1)-th

copy of i. Note that this means that wm is also powerable.

A powerable string graph u is primitive if it is not wm for any powerable string graph w and integer

m ≥ 2. Every powerable string graph is a power of some primitive powerable string graph.
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(a) The second power, w2, of w.

· · ·
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δ

β

α β

γ α

γ
δ

(b) The bi-infinite power, ŵ, of w.

Figure 2.3: Powers of the powerable string graph, w, from Figure 2.2(a).

If w is a powerable string graph with endpoint vertices i ̸= j, we define the bi-infinite power,

· · ·www · · · , of w to be the string graph formed by taking a Z-indexed disjoint union of copies of w

and then identifying the r-th copy of i with the (r+1)-th copy of j. We will use the notation ŵ for

the bi-infinite power of w.

2.2.52. Example. The string graph, w, depicted in Figure 2.2(a) is powerable, where its endpoint

vertices are those labelled 2 at either end. We also note that w is primitive, as it can’t be written

as a power of any other powerable string graphs.

The 2nd power of w is depicted in Figure 2.3(a). The bi-infinite power of w is depicted in

Figure 2.3(b). Observe that, as we expected, w2 is also powerable.

2.2.53. Band graphs from powerable string graphs. Let w be a powerable string graph with

endpoint vertices i ̸= j. Identifying i and j yields a band graph which we denote by w̃. Every band

graph u can be obtained in this way from some powerable string graph w. Since every powerable

string graph w can be expressed as um for some primitive u and m ≥ 1, it follows that every band

graph can be expressed as ũm for such u and m.

We now state an obvious lemma without proof; we give an example of this lemma in action

afterwards.

2.2.54. Lemma. Suppose u : G → Q, u′ : G′ → Q are primitive string graphs and

m,m′ ∈ Z+. Then ũm ∼= (̃u′)m′ if and only if ũ ∼= ũ′ and m = m′.
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2.2.55. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Let w

be the band graph:

2

1

1

2

1

1

2

2

1

1

2

1

1

2

2

β

α β

γ α

γ δ β

α β

γ α

γ δ

where the dashed circles denote vertices which are identified. We can express this band graph in

the form discussed above in multiple ways. Let:

2

1

1

2

1

1

2

2β

α β

γ α

γ δ

1

1

2

2

1

1

2

1
α

γδβ

αβ

γ

be denoted by u, u′ respectively. They are clearly both primitive string graphs.

Then ũ2 ∼= w ∼= (̃u′)2; the first isomorphism is obvious from the diagram of w above, while the

second isomorphism can be seen by reflecting the diagram of w above and shifting the point where

we “cut the band graph” over to the 1s at the bottom rather than the 2s at the bottom. This

second isomorphism is perhaps easier to see by noting that the “middle two peaks” of our above

diagram of w are simply a reflection of our diagram for u′.

We can also see that ũ ∼= ũ′ by performing a similar reflection and shifting.

Moving on from this example, we now define band modules in terms of these primitive string graphs

(we follow the notation of [All21] and [HZ16]).

2.2.56. Band modules. Let v be a primitive string graph with endpoint vertices i ̸= j. Further,

let m ≥ 1 be an integer and ψ : km → k
m be an indecomposable vector-space automorphism with

companion matrix as in Figure 2.4.

For 1 ≤ r ≤ m, let ir be the m vertices of vm corresponding to i and, (with a slight abuse of

notation), write j for the sink vertex of vm corresponding to the m-th copy of j. Each of these

vertices is a basis vector of Str(vm). Furthermore, there is a unique vertex idempotent ek of A
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

0 0 0 · · · 0 0 λ1
1 0 0 · · · 0 0 λ2
0 1 0 · · · 0 0 λ3
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 λm−2

0 0 0 · · · 1 0 λm−1

0 0 0 · · · 0 1 λm



Figure 2.4: Companion matrix of an indecomposable automorphism associated to a band module.

which fixes each member of this particular collection of basis vectors. Therefore, j and the ir each

span an isomorphic simple submodule of Str(vm).

The band module Bnd(vm, ψ) is the quotient module Str(vm)/⟨j −
∑m

r=1 λrir⟩.

2.2.57. Associating band graphs to band modules. The band graph associated to a band

module Bnd(vm, ψ) is defined to be the band graph associated to the powerable string graph vm,

i.e. it is ṽm.

A priori, it is not clear that band graphs are an isomorphism invariant of band modules. This is

shown as part of the next much stronger result.

We now give a restated form of [WW85, Prop 2.3], using our notation for string and band modules

(which they call representations of the first and second kind respectively).

Theorem 2.2.58. [WW85, Prop 2.3]

The modules Str(v) and Bnd(um, ψ) (where v, u are indecomposable string graphs, u is

additionally primitive, m ∈ Z+ and ψ : km → k
m is an indecomposable automorphism) are all

indecomposable. Each finitely generated indecomposable module of A is isomorphic to one of

them, or is projective, injective and non-uniserial.

Moreover no module of the form Str(v) is isomorphic to one of the form Bnd(um, ψ).

Furthermore, Str(v) is isomorphic to Str(v′) if and only if there is a quiver isomorphism

σ : G′ → G such that v ◦ σ = v′ : G′ → Q.
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Finally, Bnd(um, ψ) is isomorphic to Bnd((u′)m
′
, ψ′) if and only if

(i) the band graphs of Bnd(um, ψ) and Bnd((u′)m
′
, ψ′) are isomorphic,

(ii) m = m′, and

(iii) ψ and ψ′ have the same eigenvalue.

It follows from Theorem 2.2.58 and Lemma 2.2.54 that Bnd(um, ψ) ∼= Bnd((u′)m
′
, ψ′) if and only if

ũ ∼= ũ′, m = m′ and ψ has the same eigenvalue as ψ′.

This result also means that there is a unique isomorphism class of band modules associated to

each band graph ũm and indecomposable automorphism ψ : km → k
m, and that all band modules

belong to such an isomorphism class. Thus we will occasionally use the notation Bnd(w,ψ) for a

band module associated to a band graph, w, and compatible indecomposable automorphism, ψ,

even though this is only well-defined up to isomorphism.

We now give a name to those finitely generated indecomposable modules that are not string or

band modules.

2.2.59. Pin modules. We refer to the those indecomposable modules that are projective, injective

and non-uniserial by the abbreviation pin, or as pin modules.

2.2.60. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Then

the projective e1A is pin, while the projective e2A is not (it is a string module).

2.2.5 The stable module category and delooping level

In this section, A denotes an arbitrary finite-dimensional algebra over k.

2.2.61. Stable module category. The stable module category modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A is the category whose

objects are the same as those of mod-A and whose morphisms are residue classes of homomorphisms

modulo those that factor through projective modules.

We will call isomorphisms in this category stable isomorphisms, and denote them by ≃.

Note that for M,M ′ ∈ mod-A, we have M ≃M ′ if and only if there exists N,P, P ′ ∈ mod-A, where

P, P ′ are projective such that M ∼= N ⊕ P and M ′ ∼= N ⊕ P ′.

2.2.62. Remark. The syzygy functor Ω : mod-A→ mod-A that we defined in Definition 2.2.14 is

also well-defined on modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A, so we will also denote it by Ω : modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A→ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A.
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2.2.63. The following invariant was introduced by Gélinas in [Gé22] (for the more general class of

Noetherian semi-perfect rings), and will be helpful when we later discuss the finitistic dimension

conjectures in Subsection 2.2.6.

It will also be a key point of focus in Chapter 4.

2.2.64. Delooping level of a module. The delooping level of M ∈ mod-A is defined as:

dell(M) := inf{k ∈ N | Ωk(M) is a stable retract of Ωk+1(N) for some N ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A}.

The delooping level of an algebra A is defined as:

dell(A) := sup{dell(S) | S is a simple A-module}.

Note that, in general, the delooping level of either a module or an algebra may be infinite, as shown

in [KR23].

2.2.65. Lemma. Let A,B be finite-dimensional algebras and M1 (resp. M2) be an A-module

(resp. B-module). Then:

(i) dellA×B(M1 ⊕M2) = sup(dellA(M1),dellB(M2)),

(ii) dell(A×B) = sup(dell(A),dell(B)),

(iii) dell(A) = 0 when A is self-injective.

Proof. Part (i) follows immediately from the definition of delooping level and the fact that

ΩA×B(N1, N2) = (ΩA(N1),ΩB(N2)). Part (ii) follows from Part (i).

Part (iii) follows from the fact that mod-A = Ω(mod-A) when A is self-injective.

To better understand the delooping level, we define a new functor:

2.2.66. Suspension functor. We define the suspension functor Σ := TrΩTr : modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A→ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A.

This functor allows us to state an equivalent version of our definition of delooping level. The

following result is part of [Gé22, Thm 1.10].
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Theorem 2.2.67. The following are equivalent for any M ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A and n ∈ N:

(i) dell(M) ≤ n;

(ii) Ωn(M) is a stable retract of Ωn+1(N) for some N ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A;

(iii) Ωn(M) is a stable retract of Ωn+1Σn+1Ωn(M).

2.2.68. n-torsionfree modules. We call a module M torsionfree1 if Ext1Aop(Tr(M), A) = 0.

Furthermore, we call a module M n-torsionfree if ExtiAop(Tr(M), A) = 0 for 1 ≤ i ≤ n.

We can use the functors Ω and Σ to better understand the properties of n-torsionfree modules. The

following result is part of [Gé22, Prop 1.9].

2.2.69. Proposition. Let M ∈ mod-A. The following properties hold in modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A.

(a) M ≃ ΩΣ(M) if and only if M is torsionfree.

(b) If M is n-torsionfree, then we have a chain of n stable isomorphisms:

M ≃ ΩΣ(M) ≃ · · · ≃ ΩnΣn(M).

(c) If Tr(M) is n-torsionfree, then we have a chain of n stable isomorphisms:

ΣnΩn(M) ≃ · · · ≃ ΣΩ(M) ≃M.

(d) If M is Gorenstein-projective, then so is Σ(M) and we have stable isomorphisms:

ΣΩ(M) ≃M ≃ ΩΣ(M).

Another result that will be useful later is:

2.2.70. Lemma. Let M ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A and n ∈ Z+. Then M ≃ ΣnΩn(M) if and only if

Tr(M) ≃ ΩnΣn(Tr(M)).

Proof. Suppose that M ≃ ΣnΩn(M). Then

Tr(M) ≃ TrΣnΩn(M) ≃ Tr(TrΩn Tr)Ωn(M) ≃ Ωn TrΩn(Tr2M) ≃ ΩnΣn(Tr(M)),

as required.

1This notion is often referred to as torsionless; we follow the terminology used in [Gé22; AB69]
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Now suppose that Tr(M) ≃ ΩnΣn(Tr(M)). Then

M ≃ Tr2(M) ≃ Tr(ΩnΣn(Tr(M))) ≃ TrΩn(TrΩn Tr)(Tr(M))

≃ TrΩn TrΩn(Tr2(M)) ≃ ΣnΩn(M)

as required.

2.2.71. Lemma. Let A be a finite-dimensional algebra and M ∈ mod-A. Suppose that there

exists N ∈ N and a finite set, M, of indecomposable A-modules where Ωn(M) ∈ add(M) for

all n ≥ N . Then dell(M) ≤ N + |M| for all M ∈ mod-A.

Proof. For k ∈ N, defineMM,k to be the set of isomorphism classes of indecomposable summands

of modules in {Ωn(M) : N + k ≤ n}. Clearly MM,0 ⊇ MM,1 ⊇ . . . ⊇ MM,k ⊇ . . ., and thus we

have the following chain of inequalities:

|M| ≥ |MM,0| ≥ |MM,1| ≥ . . . ≥ |MM,k| ≥ . . . .

Since all entries in this chain are non-negative integers, this chain stabilises and there exists

i ∈ {0, . . . , |M|} such that |MM,i| = |MM,i+1|. Since MM,i ⊇ MM,i+1, this means that

MM,i =MM,i+1. Hence ΩN+i(M) ∈ add(MM,i+1), so ΩN+i(M) is a summand of ΩN+i+1(Y ) for

some Y ∈ mod-A. Hence dell(M) ≤ N + i ≤ N + |M|, as required.

2.2.72. Corollary. Let A be a finite-dimensional algebra. Suppose that there exists N ∈ N

and a finite set,M, of indecomposable A-modules where Ωn(S) ∈ add(M) for all n ≥ N and

all simple A-modules S. Then dell(A) ≤ N + |M|.

2.2.6 The finitistic dimension conjectures

We now give the definitions of the (big and little) finitistic dimensions, and introduce the

corresponding finitistic conjectures.

In this section, A denotes an arbitrary finite-dimensional algebra over k.
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2.2.73. Finitistic dimensions. The big and little finitistic dimensions of an algebra A are:

Fin.dim(A) := sup{proj.dim(M) : M ∈ Mod-A,proj.dim(M) <∞}

fin.dim(A) := sup{proj.dim(M) : M ∈ mod-A,proj.dim(M) <∞}

An algebra A is said to satisfy the big or little finitistic dimension conjectures when:

Fin.dim(A) <∞ or fin.dim(A) <∞,

respectively.

We may occasionally abbreviate these conjectures to big and little FDC ; or the FDCs when talking

about both.

2.2.74. Since mod-A ⊆ Mod-A, it is clear that we always have fin.dim(A) ≤ Fin.dim(A). These

conjectures were originally publicised in a paper of Bass [Bas60] (though Bass attributes the

questions to Rosenberg and Zalinsky).

It is also important to note that, since we can express proj.dim in terms of the syzygy functor,

Ω, (as in Definition 2.2.20) the study of syzygies is very important for understanding finitistic

dimensions.

2.2.75. Due to the long-standing nature of these conjectures, various techniques and connected

conjectures have been built up around them.

In particular, there is a collection of connected open conjectures (often referred to collectively as

the “homological conjectures”), which are implied by the (little) finitistic dimension conjecture. For

a diagram showing the connections by implication between these conjectures, we refer the reader to

[GPS21, Section 1].

For an overview of the history of the finitistic dimension conjectures, and the techniques that have

been used to to work on them, we refer to [HZ95].

2.2.76. While the finitistic dimension conjectures remain open in general, it is known that they

hold in numerous special cases, particularly for the little FDC.

We now give a short (and thus necessarily, incomplete) list of properties which imply the little
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FDC. Not all of the required definitions have been given above, though relevant references are given

for the interested reader.

For an algebra A, the little finitistic dimension conjecture holds if:

(a) the representation dimension of A is at most 3 [IT05] (this includes all SB algebras [Erd+04,

Cor 1.3]);

(b) we have rad3(A) = 0 (i.e. A is radical-cube-zero) [GZH91, Thm 16];

(c) A is local (in this case fin.dim(A) = 0 by [AR91b, proof of Prop 2.1(b)]);

(d) A is monomial [HZ91; HZ92];

(e) A is syzygy-finite, as this means that there exists a finite set of indecomposable modules N

and an integer s ≥ 0 such that {Ωt(M) : t ≥ s,M ∈ mod-A} ⊆ add(N ), in which case we

have fin.dim(A) ≤ k +max{proj.dim(N) <∞ : N ∈ N}.

2.2.77. Bounding the big finitistic dimension. Since the big FDC implies the little one,

proving the big version is sufficient to prove both. One new approach to proving the big FDC for

an algebra uses delooping level as a bound for Fin.dim. The following result is one half of [Gé22,

Prop 1.3].

2.2.78. Proposition. Let Λ be a Noetherian semi-perfect ring. Then we have an inequality:

fin.dim(Λop) ≤ dell(Λ).

If Λ is Artinian, then we have the additional bound:

fin.dim(Λop) ≤ Fin.dim(Λop) ≤ dell(Λ).

Since the delooping level can be calculated by considering the properties of finitely many (simple)

modules instead of all (not necessarily finitely-generated) modules, this provides an avenue for

proving that an algebra satisfies the big FDC more computationally. It is also helpful for calculating

a bound on Fin.dim for algebras, A, where we know that Fin.dim(A) < ∞, but don’t have the

exact value.

2.2.79. Motivation. Bounding the big finitistic dimension through the delooping level has

provided the main motivation for most of the ideas in this thesis. The hope was that by improving

the combinatorial understanding of Ω and ΩTr for modules of SB algebras, we would build enough

33



CHAPTER 2. BACKGROUND

tools to prove a general bound on dell(A) when A is an SB algebra. While we did not manage to

prove such a bound in general, Chapter 4 contains proofs of a variety of bounds for the delooping

level of special biserial algebras, A, satisfying rad3(A) = 0.

2.3 Permissible data and syllables

In this section we begin an overview of the methods of [All21], focusing on the encoding of special

biserial algebras and the combinatorial building blocks of their methods.

While most of the ideas in this section are from [All21], there are some extensions of these ideas

that are original to this thesis. For example, the ideas around “minimally connected overquivers”

(see Definition 2.3.24) are original, and allow us to reduce the complexity of the combinatorial

framework in some cases.

All definitions and results that are not original are cited as such.

In this section, A denotes an SB algebra over k of the form kQ/I.

2.3.1 Permissible data

In [All21, Section 3.1], the concept of “permissible data” for an SB algebra was introduced. This is

a collection of combinatorial data used to store the most important information about the algebra.

This combinatorial data is key in later definitions and for the study of SB algebras by computer;

for example it is used extensively in SBStrips. We will give a brief overview of the functionality of

SBStrips in Section 2.5.

Here we review the definitions of the pieces of this collection, and follow each definition with how it

applies to our running example (Paragraph 2.2.41).

2.3.1. Overquiver and vertex exchange map. [All21, Def 3.1.2]

Choose a 2-regular augmentation Q̃ of Q and identify Q with its image in Q̃.

We extend our notion of A-residue to Q̃-arrows that aren’t Q-arrows by defining their A-residue as

0 ∈ A. This extends to Q̃-paths in the natural way.
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An overquiver is a quiver homomorphism O ↠ Q̃ satisfying the following:

(a) O is 1-regular and has 2|Q0| vertices,

(b) the induced map O1 ↠ Q̃1 on arrows is a bijection,

(c) the induced map O0 ↠ Q̃0 on vertices is 2-to-1

(d) all Q̃-paths with non-zero A-residue are images of O-paths under this homomorphism.

We will often label the edges of O with the same names as their corresponding arrows in Q̃, which

makes the homomorphism in question unambiguous. In these cases, we will often abuse notation,

and simply call O an overquiver.

The vertex exchange map of an overquiver is the fixpoint-free involution † : O0 → O0 that exchanges

O-vertices with common image in Q.

2.3.2. Example. Our running example algebra (see Paragraph 2.2.41) has a ground quiver,

Q = ( 1 2α
β

γ
δ ), which is already 2-regular, and thus is equal to its 2-regular

augmentation Q̃. This algebra has a unique overquiver O, depicted below:

s(α)

s(β) s(γ)

s(δ)

α

β

γ

δ

where the dashed lines denote the † correspondence.

2.3.3. Existence and (degree of) uniqueness of overquivers. The fact that any SB algebra

has at least one overquiver follows almost entirely from the discussions of tracks in [WW85, Section

1], and is formalised in [All21, Paragraph 3.1.4]. This formalisation shows that there are two types

of choices involved in constructing an overquiver for A = kQ/I:

� choosing a different 2-regular augmentation, Q̃, of Q;

� choosing a different bijection πi : Xi → Yi for vertices i ∈ Q̃0 (there are either one or two

choices here for each vertex).

(The details of the definitions of Xi, Yi are not important here; for a full definition and discussion

we refer to [All21, Paragraph 3.1.4]. The bijections, πi, and their implication on the construction of

an overquiver will be discussed more in Lemma 2.3.21.)
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2.3.4. Definition. [All21, Def 3.1.7]

We denote the set of O-paths with non-zero A-residue by N , and simply call these paths non-zero.

2.3.5. Definition. [All21, Def 3.1.8]

Some of the non-zero paths have A-residue which depends linearly on the residue of some other

non-zero path. We call these components and write C ⊆ N for the set of them.

It follows from the admissibility of I that all components must have length at least 2.

Since Proposition 2.2.42 tells us that the defining ideal of A is generated by monomial relations

and skew commutativity relations, it is clear that all components of A come in pairs p, q ∈ C

where p− λq is a skew commutativity relation for A. This means that we can define a component

exchange map which exchanges p ∈ C with the unique q ∈ C such that p ̸= q, but the A-residues

of p and q are linearly dependent. We denote this map by † : C → C, since it is compatible with

the vertex exchange map † : O0 → O0 and the source and target maps of O. In particular we have

† ◦ s = s ◦ † : C → O0 and † ◦ t = t ◦ † : C → O0.

2.3.6. Definition. [All21, Def 3.1.11]

The permissible data of an SB algebra A is the tuple (O, N,C, †), where O is an overquiver for A,

C ⊆ N are the collection of components and non-zero O-paths, and † is the compatible pair of

involutions C → C and O0 → O0, as above.

Note that in general, there may be more than one choice of permissible data for a given SB algebra,

but that once a choice of overquiver has been made, there are no further choices in this data.

2.3.7. Example. For our running example algebra, we have a single choice of overquiver, O, and

exchange map, † (see Example 2.3.2). The remaining parts of the permissible data are as follows:

C = {αβγ, βγα} ⊆ {es(α), es(β), es(γ), es(δ), α, β, γ, δ, αβ, βγ, γα, δ2, αβγ, βγα, γαβ} = N.

2.3.8. It is often convenient to encode the sets C ⊆ N numerically, as a pair of sequences; one a

sequence of integers, the other a binary sequence, both indexed by the vertex set, O0.

Assume for the following that we have a fixed tuple of permissible data (O, N,C, †) for an SB

algebra A = kQ/I. There are two dual ways of defining an encoding for this choice of permissible

data:
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2.3.9. Definition. [All21, Def 3.1.14]

For i ∈ O0, we define:

ai := max{len(p) : s(p) = i and p ∈ N}

bi :=


0 ∃p ∈ C with s(p) = i,

1 otherwise.

We then call the pair ((ai)i∈O0
, (bi)i∈O0

) the source encoding of the permissible data (O, N,C, †).

2.3.10. Definition. [All21, Def 3.1.15]

For i ∈ O0, we define:

ci := max{len(p) : t(p) = i and p ∈ N}

di :=


0 ∃p ∈ C with t(p) = i,

1 otherwise.

We then call the pair ((ci)i∈O0 , (di)i∈O0) the target encoding of the permissible data (O, N,C, †).

2.3.11. Example. Recall our running example algebra, with permissible data as constructed in

Examples 2.3.2 and 2.3.7. The source and target encodings of this data are below:

i ai bi ci di

s(α) 3 0 3 0

s(β) 3 0 3 0

s(γ) 3 1 3 1

s(δ) 2 1 2 1

We now note a few inequalities involving permissible data that will be useful in future arguments.

Both of these lemmas follow from discussion in [All21, Remark 3.1.20].

2.3.12. Lemma. Fix i ∈ O0. Then for all 0 ≤ k ≤ ai, we have ci−k ≥ k. Dually, for all

0 ≤ k ≤ ci, we have ai+k ≥ k.

2.3.13. Lemma. Fix i ∈ O0. Then for all k > ai, we have ci−k < k. Dually, for all k > ci,

we have ai+k < k.
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An additional useful inequality is the following, which is a strengthening of [All21, Lem 3.1.22]. To

compare, note that [All21, Lem 3.1.22] can be obtained by replacing the second summand in each

inequality with 1 and then performing the obvious rearrangement.

2.3.14. Lemma. For any i ∈ O0 we have ai ≤ ai−1 + bi−1 and, dually, ci ≤ ci+1 + di+1.

Proof. We prove the result for the source encoding; the result for the target encoding follows dually.

We proceed by splitting into cases based on the value of bi−1, and by contradiction.

Suppose that bi−1 = 0 and that ai > ai−1. Then ai ≥ ai−1 + 1. Thus ( i
ai−1 + 1

◦ ) belongs to N ,

but the strict subpath ( i− 1
ai−1

◦ ) belongs to C. This gives a contradiction, as required.

Now instead, suppose that bi−1 = 1 and that ai > ai−1+1. Then ai ≥ ai−1+2. Thus ( i
ai−1 + 2

◦ )

belongs to N , but the strict subpath ( i− 1
ai−1 + 1

◦ ) does not. This gives a contradiction, as

required.

Another result that we can give a strengthening of is [All21, Prop 3.1.29]. To compare, note that

in [All21, Prop 3.1.29] their conditions (a) and (b) correspond to our conditions (ii) and (iii), and

their condition (c) follows from a combination of our conditions (ii) and (iii) and the fact that our

permutation is fixed across all of the conditions. Our conditions (i), (iv) and (v) are not reflected

in [All21, Prop 3.1.29] at all.

2.3.15. Proposition. Let (O, N,C, †) be the permissible data and ((ai)i∈O, (bi)i∈O),

((ci)i∈O, (di)i∈O) its encodings. Then there exists a permutation π : O0 → O0 such that:

(i) for each connected component C of O, im(π|C) = C,

(ii) for each i ∈ OO, we have aπi = ci,

(iii) for each i ∈ OO, we have bπi = di,

(iv) for each i ∈ O0 with bi = 0, we have πi = i− ai,

(v) for each i ∈ O0 with di = 0, we have π−1i = i+ ci.

Proof. We first note that in [All21, Lem 3.1.27(b)], s(p) and t(p) are on the same connected

component of O. Thus the argument for [All21, Prop 3.1.29(a)] gives a permutation π : O0 → O0

satisfying conditions (i) and (ii) of the claim.
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We now proceed by an inductive argument to construct a permutation satisfying conditions (i), (ii)

and (iv). Let

m : Sym(O0) −→ N

ρ 7−→ m(ρ) = |{i ∈ O0 | bi = 0 and ρi ̸= i− ai}|.

Clearly if m(σ) = 0 then condition (iv) is satisfied by π = σ.

We now assume that m(σ) > 0. Thus there exists i0 ∈ O0 such that bi0 = 0 and σi0 ̸= i0 − ai0 .

Now consider σ′ : O0 → O0 defined by:

σ′i :=


i0 − ai0 if i = i0

σi0 if i = σ−1(i0 − ai0)

σi otherwise

.

It is immediately clear that since σ is a permutation, so is σ′.

Since σ restricts to a permutation on each connected component of O and the Z-action on vertices

[All21, Paragraph 2.1.37] restricts to an action on each connected component, it follows that σ′ also

restricts to a permutation on each connected component. Thus σ′ still satisfies condition (i). Since

bi0 = 0, it follows from the definition of the encodings of (O, N,C, †) that ci0−ai0
= ai0 . Thus σ′

also satisfies condition (ii).

We now show that m(σ′) < m(σ). Clearly i0 ∈ {i ∈ O0 | bi = 0 and iσ ̸= i− ai} but i0 /∈ {i ∈ O0 |

bi = 0 and iσ′ ̸= i − ai}. It is also clear that (i0 − ai0)σ−1 ∈ {i ∈ O0 | bi = 0 and iσ ̸= i − ai}.

Therefore we have a proper inclusion {i ∈ O0 | bi = 0 and iσ′ ̸= i− ai} ⊊ {i ∈ O0 | bi = 0 and iσ ̸=

i− ai}. Thus m(σ′) < m(σ) as required.

By induction, it follows that there exists a permutation satisfying conditions (i), (ii) and (iv).

We now show that any permutation σ : O0 → O0 satisfying condition (iv) automatically satisfies

conditions (iii) and (v) as well. Fix i0 ∈ O0.

Suppose that bi0 = 0. Since ( i0

ai0

◦ ) ∈ C, this means that dσi0 = di−ai = 0, as required.

By [All21, Prop 3.1.29(b)], |{i ∈ O | bi = 0}| = |{i ∈ O | di = 0}| <∞, and since bi, di ∈ {0, 1}, we

know that the remaining vertices i ∈ O0 with bi = 1 have diσ = 1, as required.
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Finally, suppose that di0 = 0. Since ( ◦
ci0

i0 ) ∈ C, this means that bi0+ci0
= 0 and that

ai0+ci0
= ci0 . Hence, by (iv), we have σ(i0 + ci0) = i0 + ci0 − ai0+ci0

= i0. Thus σ−1i = i+ ci, as

required.

Therefore we have shown that a permutation satisfying all five conditions exists.

We can also use the permissible data to characterise the paths corresponding to standard basis

elements of soc(P ) where P is one of the indecomposable projectives.

2.3.16. Lemma. A path ( i
l
◦ ) in the overquiver represents a basis element of the

socle of the projective corresponding to the vertex i if and only if l = ai and one of the

following hold:

� bi = 0, or

� bi = 1 and ai > 0, or

� bi = 1 and ai = ai† = 0.

Proof. Let P be the indecomposable projective corresponding to i.

We first handle the case where bi = 0. In this case, P is pin, and has simple socle. The socle of P

is thus represented by the (necessarily non-stationary) component paths with source i or i†. By the

definition of our source encoding, this means that ( i
l
◦ ) represents a basis element of the

socle of P if and only if l = ai, as required.

We now handle the case where bi = 1 and ai > 0. In this case, P is a string module and P has at

least one standard basis vector represented by a non-stationary O-path (by the definition of the

source encoding). This means that there is a basis vector of the socle of P represented by the

maximal non-zero O-path with source i. By the definition of our source encoding, this means that

( i
l
◦ ) represents a basis element of the socle of P if and only if l = ai, as required.

Finally, we handle the case where bi = 1 and ai = 0. This means that P is a uniserial projective.

This also means that the only non-zero O-path with source i is the stationary one, ( i
0
◦ ),

so this is the only path we need to consider. Hence, it is automatic that l = ai = 0. Clearly

( i
0
◦ ) represents a basis element of the head of P ; therefore it will only represent a basis

element of the socle of P if P is a simple projective. This occurs exactly when ai† = 0, as

required.
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2.3.17. As discussed in [All21, Paragraph 3.1.4], an overquiver is not uniquely determined by an SB

algebra, A = kQ/I. It depends on the choice of 2-regular augmentation, Q̃, of Q, and on the choice

of bijections, πi, used in [All21, Paragraph 3.1.4]. This makes it more difficult to computationally

iterate through a large collection of SB algebras; if you aren’t careful, you will end up with a large

number of trivially isomorphic algebras in your list.

These choices give rise to methods of constructing a new set of permissible data for A from another.

Note that these constructions focus on the source encoding instead of the target encoding for an

SB algebra, but this is not required; dual results work with the target encoding too.

2.3.18. Lemma. Let A be an SB algebra with permissible data (O, N,C, †) and source

encoding (ai)i∈O0
, (bi)i∈O0

. Suppose that i1 ̸= i2 ∈ O0 with ai1 = ai2 = 0. Then there exists

another set of permissible data (O′, N ′, C ′, †′) for A where the overquiver O′ satisfies:

O′
0 = {i′ | i ∈ O0}

i′ − 1 =


(i2 − 1)′ if i = i1

(i1 − 1)′ if i = i2

(i− 1)′ otherwise

Proof. Let Q̃ be the 2-regular augmentation of Q used in the construction of O. Let β1, β2 be the

arrows of Q̃ corresponding to the O-arrows s−1(i1) and s
−1(i2) respectively.

We define Q̃′ to be another 2-regular augmentation of Q as follows:

Q̃′
0 := {v′ | v ∈ Q̃0} Q̃′

1 := {α′ | α ∈ Q̃1}

s : Q̃′
1 → Q̃′

0, α′ 7→ s(α′) := s(α)′

t : Q̃′
1 → Q̃′

0, α′ 7→ t(α′) :=


t(β2)

′ if α = β1

t(β1)
′ if α = β2

t(α)′ otherwise

We now define an overquiver O′ ↠ Q̃′ as follows (with the homomorphism implicit from the

labelling):
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O′
0 := {i′ | i ∈ O0} O′

1 := {α′ | α ∈ O1}

s : O′
1 → O′

0, α′ 7→ s(α′) := s(α)′

t : O′
1 → O′

0, α′ 7→ t(α′) :=


t(s−1(i2))

′ if α = s−1(i1)

t(s−1(i1))
′ if α = s−1(i2)

t(α)′ otherwise

It is immediate from the definition that this is a well-defined overquiver, and that this overquiver

satisfies the stated condition.

2.3.19. Remark. This operation corresponds to exchanging the target vertices of “augmented

arrows” in the 2-regular augmentation, Q̃. Therefore, repeated application of this operation allows

us to change the choice of 2-regular augmentation used in the creation of the overquiver to any of

the other options.

The process of this operation can be thought of in terms of the following diagram comparing the

initial overquiver to the resulting one:

· · ·

· · · · · ·

· · ·
i1 + 1 i1

i1 − 1i1 − 2 i2 + 1i2

i2 − 1 i2 − 2

i′1 + 1 i′1 i′1 − 1 i′1 − 2

i′2 + 1i′2i′2 − 1i′2 − 2

In this diagram, the red labels, red lines and black lines denote the initial overquiver; the blue

labels, blue lines and black lines denote the resulting overquiver (we have omitted the usual dashed

lines for the † correspondence as it is not relevant here). Note that applying this operation to the

resulting (blue) overquiver, gives us an overquiver isomorphic to the initial (red) one.

2.3.20. While the previous lemma handled the choice of 2-regular augmentation in constructing

an overquiver, the following result handles the choice of bijections, πi, used in [All21, Paragraph

3.1.4].
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2.3.21. Lemma. Let A = kQ/I be an SB algebra with permissible data (O, N,C, †) and

source encoding (ai)i∈O0
, (bi)i∈O0

. Suppose that i0 ∈ O0 satisfies ai0+1 ≤ 1 and ai†0+1 ≤ 1.

Then there exists another set of permissible data (O′, N ′, C ′, †′) for A where the overquiver

O′ satisfies: O′
0 = {i′ | i ∈ O0}

i′ − 1 =


(i†0)

′ if i = i0 + 1

(i0)
′ if i = i†0 + 1

(i− 1)′ otherwise

Proof. Let Q̃ be the 2-regular augmentation of Q used in the construction of O.

We now define an overquiver O′ ↠ Q̃ as follows (with the homomorphism implicit from the

labelling): O′
0 := {i′ | i ∈ O0} O′

1 := {α′ | α ∈ O1}

s : O′
1 → O′

0, α′ 7→ s(α′) := s(α)′

t : O′
1 → O′

0, α′ 7→ t(α′) :=


(i†0)

′ if α = t−1(i0)

(i0)
′ if α = t−1(i†0)

t(α)′ otherwise

It is immediate from the definition that this is a well-defined overquiver, and that this overquiver

satisfies the stated condition.

2.3.22. Remark. This operation corresponds to swapping the choice of one of the πi bijections

from [All21, Paragraph 3.1.4]. Therefore, repeated application of this operation allows us to change

the selection of all these bijections to any other selection.

The process of this operation can be thought of in terms of the following diagram comparing the

initial overquiver to the resulting one:

· · ·

· · · · · ·

· · ·
i0 + 2 i0 + 1

i0i0 − 1 i†0 + 2i†0 + 1

i†0 i†0 − 1

(i†0)
′ + 2 (i†0)

′ + 1 (i†0)
′ (i†0)

′ − 1

i′0 + 2i′0 + 1i′0i′0 − 1
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In this diagram, the red labels, red lines and black lines denote the initial overquiver; the blue

labels, blue lines and black lines denote the resulting overquiver (we have omitted most of the

dashed lines for the † correspondence as they are not relevant here). Note that applying this

operation to the resulting (blue) overquiver, gives us an overquiver isomorphic to the initial (red)

one.

2.3.23. The remainder of this section introduces and investigates a new idea of a “minimally

connected” overquiver associated to an SB algebra, A = kQ/I.

2.3.24. Minimally connected overquivers. Let A be an SB algebra. An overquiver O is called

minimally connected if it has the maximum number of connected components, compared to all

other overquivers of A.

Since the number of connected components of a quiver is bounded above by the number of its

vertices, all SB algebras have at least one minimally connected overquiver. Restricting our attention

to minimally connected overquivers places extra conditions on the permissible data of SB algebras

and their encodings.

2.3.25. Proposition. Let A be an SB algebra. Let (O, N,C, †) be permissible data for A

where O is a minimally connected overquiver of A. Let (ai)i∈O0
, (bi)i∈O0

be a source encoding

of this permissible data. Then for every connected component, C, of O:

(i) there is at most one vertex i of C where ai = 0, and

(ii) if i, i† are both vertices of C, then at least one of ai+1, ai†+1 is strictly greater than 1.

Proof. Suppose that condition (i) is not met; in other words, that there exists vertices i1, i2 ∈ O0

which lie on the same connected component C of O, and which satisfy ai1 = ai2 = 0. Then

applying the construction of Lemma 2.3.18 to O using these vertices results in an overquiver of A

with strictly more connected components. This contradicts the assumption that O is a minimally

connected overquiver, as required.

Now instead suppose that condition (ii) is not met; in other words that there exists a vertex i ∈ O0

such that i, i† both lie on the same connected component C of O, and which satisfy ai+1 ≤ 1 and

ai†+1 ≤ 1. Then applying the construction of Lemma 2.3.21 to O using the vertex i results in an

overquiver of A with strictly more connected components. This contradicts the assumption that O

is a minimally connected overquiver, as required.
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Unfortunately, even though a minimally connected overquiver is more restricted than a general one,

an SB algebra may still have more than one minimally connected overquiver.

2.3.26. Example. Let Q be the following sub-2-regular quiver:

1

2

3

4

5

α1 β1

α2

β3

γ4γ5

γ5′

δ3

and let

A := kQ/⟨αβ, αδ, βα, γβ, γδ, δγ, γ4γ5⟩,

where the indices of the arrows are inserted as appropriate.

Then Q has two possible 2-regular augmentations:

Q̃1 :=

1

2

3

4

5

α1 β1

α2

β3

γ4γ5

γ5′

δ3

κ2

κ4

Q̃2 :=

1

2

3

4

5

α1 β1

α2

β3

γ4γ5

γ5′

δ3

λ2 λ4

Each of these 2-regular quivers have two corresponding choices of overquiver for A, based on the

choice of π3 (as defined in [All21, Paragraph 3.1.4]). This is the only choice we have to make with

the πi maps, as 3 is the only vertex with no non-zero paths of length 2 going through it. The two

choices of overquiver corresponding to Q̃1 are:

1 2

34 5

1′ 2′3′

4′5′

α1

α2

δ3

κ4

β1

κ2

γ5γ4

γ5′

β3
1 2

34 5

1′ 2′3′

4′5′

α1 α2

δ3

κ4

β1

κ2

γ5γ4γ5′

β3
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where we omit the usual dashed lines for vertex identification, and instead write i, i′ for the vertices

of the overquiver corresponding to i in Q̃1. The two choices of overquiver corresponding to Q̃2 are:

1 2

1′2′ 3′

3 4

54′5′

α1 α2 δ3

λ4

β1

λ2

γ5γ4γ5′β3

1 2

1′2′ 3′

3 4

54′5′

α1

α2

δ3

λ4

β1

λ2

γ5γ4

γ5′

β3

where we again omit the dashed lines for vertex identification, and instead i, i′ are the vertices of

the overquiver corresponding to i in Q̃2.

Looking at all four options for an overquiver of A, it is clear that the maximum number of connected

components is 2, and that this is achieved by two non-isomorphic overquivers.

2.3.27. Remark. Choosing a minimally connected overquiver to represent a particular SB algebra

is helpful when computationally iterating through a large collection of SB algebras, but it is also

helpful for our intuition around this encoding of the algebra.

When considering an overquiver for an SB algebra, it is natural to think that those arrows that are

on the same connected component of the overquiver have the potential for interaction. This line

of thinking becomes even more natural when considering “syllables” and “descent”, both of which

play a key role in the combinatorial formalism, and are defined in the next section.

If you choose to use an overquiver other than a minimally connected one, then your overquiver

necessarily has arrows on the same connected component which will not have any interaction in

the combinatorial formalism. However, if we maximise the number of connected components, and

use a minimally connected overquiver, it helps us to avoid considering arrows together that don’t

actually interact.

2.3.28. Remark. Note that the SBStrips function OverquiverOfSBAlg does not always generate a

minimally connected overquiver. However, the SBStrips functions which are used to iterate through

collections of special biserial algebras (e.g. SBAlgsFromNumVerticesAndRadLength) generate the

algebras by constructing them from candidate overquivers which are minimally connected. This

reduces the number of repeated SB algebras generated (up to isomorphism), but does not eliminate

all repeats (since, as discussed above, some SB algebras have multiple minimally connected

overquivers). The implementation of this function (and those it relies on) into SBStrips is the main
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contribution of the ideas of this thesis to the capabilities of computer algebra software in this area.

This is particularly important when trying to test conjectures in small examples, as is done in

Section 5.2.

We will discuss SBStrips further in Section 2.5.

2.3.2 Syllables

We now introduce the building blocks of Allen’s theory for encoding modules of special biserial

algebras, syllables. We will later reuse these syllables when expanding upon Allen’s theory in

Chapter 3. For the remainder of this section, we fix a choice of permissible data (O, N,C, †).

We give the same definition as [All21, Def 3.2.1].

2.3.29. Syllables. [All21, Def 3.2.1]

A syllable is a tuple (p, ε, s) comprised of:

� a non-zero non-component path p ∈ N − C (the underlying path),

� a binary bit ε ∈ {0, 1} (the stability term), and

� a sign s ∈ {+1,−1} (the orientation)

where len(p) + ε > 0.

We will generally denote syllables pictorially as ( ◦
p

◦
ε
◦ )s (although we will often omit

the orientation s when it is unimportant or clear from context). Occasionally, the underlying path

of a syllable will be specified by its length l and its source (resp. target); in these cases we will

denote the syllable as ( i
l

◦
ε
◦ )s (resp. ( ◦

l

i
ε
◦ )s).

We have some adjectives that we use to describe syllables based on their constituent parts. Consider

( ◦
p

◦
ε
◦ )s:

� it is stationary or non-stationary if and only if p is;

� it is positive or negative if and only if s is;

� it is interior if ε = 0 and boundary if ε = 1.
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2.3.30. Compression, source and target of syllables. [All21, Def 3.2.1]

The compression of a syllable p := ( i
l

◦
ε
◦ ) is the O-path q := ( i

l + ε

◦ ). We then

define the source and target of a syllable in terms of its compression; respectively as s(p) := s(q)

and t(p) := t(q).

2.3.31. Perturbation of interior syllables. Let p be an interior syllable of the form

( ◦
p

◦
0
◦ )s ∈ Syll(A). Then the perturbation of p, is the syllable ( ◦

p

◦
1
◦ )s ∈

Syll(A).

2.3.32. Opposite of interior syllables. Let p be an interior syllable of the form

( ◦
p

◦
0
◦ )s ∈ Syll(A). Then the opposite of p, denoted pop, is the syllable

( ◦
pop

◦
0
◦ )−s ∈ Syll(Aop).

When we later use syllables to represent string modules, the socle-quotients of pin modules will

require special attention. The following are the syllables that appear in these cases.

2.3.33. Pin-boundary syllables. [All21, Def 3.2.10]

A pin-boundary syllable is a syllable of the form ( i
ai + bi − 1

◦
1
◦ ) for a vertex i ∈ O0 with

bi = 0.

2.3.34. When we later define Allen’s method for taking syzygies by considering syllables, we will

need a procedure for moving from one collection of syllables (representing a given module) to

another collection of syllables (representing that modules syzygy). This will also be necessary when

we expand on Allen’s method in Chapter 3. The main operation in this procedure is the following

partial function.

2.3.35. Descent. [All21, Def 3.2.12]

We define a partial operation on syllables called descent and denoted ∇. For ( i
l

◦
ε
◦ )s ∈

Syll(A), we define

∇
(
( i

l

◦
ε
◦ )s

)
= ( i− (l + ε)

ai − (l + ε)

◦
bi
◦ )−s

whenever the right-hand side is a well-defined syllable.

2.3.36. Remark. Note that this is the same definition as [All21, Def 3.2.12], but there, descent

would be denoted by p∇, rather than ∇p, as we do.
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A few key facts about descent are combined into the following:

2.3.37. Proposition. Fix a syllable p := ( i
l

◦
ε
◦ )s.

(i) if p ∈ supp(∇), then ∇p has orientation −s, and the orientation of p has no other effect

on ∇p;

(ii) p /∈ supp(∇) if and only if (l, ε) = (ai + bi − 1, 1);

(iii) if p is interior, then p ∈ supp(∇);

(iv) if p is pin-boundary, then p /∈ supp(∇);

(v) if p,q are syllables of the same orientation with the same compression, then p ∈ supp(∇)

if and only if q ∈ supp(∇). Furthermore, if this is the case, ∇p = ∇q.

Proof. Parts (i)-(iv) are exactly [All21, Results 3.2.13-3.2.16]. Part (v) follows immediately from

the definition of ∇.

2.3.38. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41,

and let (O, N,C, †) be its previously discussed permissible data. Let p = ( ◦
γ

◦
0
◦ )

and q = ( ◦
δ2

◦
1
◦ ). Then the compression of p is ( ◦

γ

◦ ) and the compression

of q is ( ◦
δ3

◦ ). Thus s(p) = s(γ) = t(β), t(p) = t(γ) = s(α), s(q) = s(δ) = t(δ) and

t(p) = t(δ) = s(δ).

We also know that p is interior, and hence belongs to supp(∇). Furthermore, q is boundary, not

pin-boundary (as bs(δ) = 1) and does not belong to supp(∇).

The image of p under descent is ∇p = ( ◦
αβ

◦
1
◦ ), which is pin-boundary (and hence does

not belong to supp(∇)).

2.3.3 Pin graph

We now associate another quiver to each SB algebra, whose vertex set is equal to that of its

underlying quiver. We give the same definition as in [All21, Def 5.2.14].
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2.3.39. Pin graph. [All21, Def 5.2.14]

Let A be an SB algebra with underlying quiver Q. The pin graph ΦA of A is the quiver with

� vertex set equal to Q0,

� an arrow i→ j if there exists a pin module P with top(P ) ∼= Si and soc(P ) ∼= Sj .

2.3.40. Some basic properties of pin graphs from the start of [All21, Section 5.2.1] include:

� A pin graph ΦA is always sub-1-regular, and if it is 1-regular, then A is self-injective;

� A pin graph ΦA is not necessarily connected, and it is discrete (has no arrows) if and only if

A is monomial;

� The opposite of a pin graph is also a pin graph, as ΦAop = (ΦA)
op.

2.3.41. The rest of this section contains new properties of pin graphs that will be helpful in proving

later results.

Since a pin graph is sub-1-regular, it has two types of connected components: cyclic components

and linear (acyclic) components. The next result shows that a single connected component of the

overquiver can’t give rise to multiple cyclic components of the pin graph of different sizes.

The details of the proof of the next result are quite complicated; the remark following the proof

aims to give intuition for the argument.

2.3.42. Proposition. Let C be a connected component of the overquiver O. Let i, j be

vertices of C. Suppose that the Q-vertices associated to i and j both lie on cycles of the pin

graph ΦA. Then the length of those cycles is the same.

Proof. Let us denote the Q-vertices associated to i and j by u and v respectively.

Suppose that u and v lie on distinct cycles, of lengths l1 and l2, on ΦA. Suppose without loss of

generality that l1 ≤ l2.

Let i0 := i and then inductively define in+1 := in − ain ∈ O for all n ∈ N. Similarly define jn for

all n ∈ N. Then we know that in+l1 = in and that jn+l2 = jn for all n ∈ N. It is clear that

i0, . . . , il1−1, j0, . . . , jl2−1 is a (not necessarily complete) collection of distinct vertices of C, by the

definition of l1 and l2.

Let k0 ∈ Z+ be the minimal positive integer such that i0 − k0 is equal to one of the jn. For

simplicity of notation, we now assume, without loss of generality, that i0 − k0 = j0, and that the

50



2.3. PERMISSIBLE DATA AND SYLLABLES

indices of the remaining jn are shifted accordingly.

We know that k0 ̸= ai0 , else the in and jn would not be distinct. Since jl2−1− ajl2−1
= j0, we know

that the O-path ( jl2−1

ajl2−1

j0 ) is non-zero when considered as an A-path. Hence the strict

suffix ( i0
k0

j0 ) is also non-zero when considered as an A-path. Therefore k0 < ai0 , and the

O-path ( i0

ai0

i1 ) can be written as the product of two non-stationary paths ( i0
k0

j0 )

and ( j0
ai0

− k0

i1 ).

Now, since we know that j0 − (ai0 − k0) = i1, we can apply the symmetric argument to see that

ai0 − k0 < aj0 , and the O-path ( j0
aj0

j1 ) can be written as the product of two non-stationary

paths ( j0
ai0 − k0

i1 ) and ( i1

k0 + (aj0 − ai0 )

j1 ).

Inductively applying this argument, we see that for all n ∈ N, we have:

(i) in − (k0 +
∑n

m=1(aim − ajm−1)) = jn;

(ii) k0 +
∑n

m=1(aim − ajm−1) < ain ;

(iii) jn − (ain − k0 −
∑n

m=1(aim − ajm−1
)) = in+1;

(iv) ain + k0 −
∑n

m=1(aim − ajm−1
) < ajn .

Now define S :=
∑l1

m=1(aim − ajm−1
) and consider jl1 = il1 − (k0 + S) = i0 − (k0 + S). We handle

the cases where S < 0, S > 0 and S = 0 separately.

Firstly, if S < 0, then k0 was not chosen minimally, as k0 + S < k0. Thus we have a contradiction.

We now assume that S > 0.

Now we know that the non-zero O-path ( i0

ai0

i1 ) can be written as the product of the

paths ( i0
k0

j0 ), ( j0
S

jl1 ) and ( jl1

ai0 − (k0 + S)

i1 ). Applying the same argument as

before, this means that the non-zero O-path ( j0
aj0

j1 ) can be written as the product of

three non-stationary paths ( j0
S

jl1 ), ( jl1

ai0
− (k0 + S)

i1 ) and ( i1

k0 + (aj0
− ai0

)

j1 ). Repeating this

argument, we see that the non-zero O-path ( jl1

ajl1

jl1+1
) can be written as the product of

three non-stationary paths ( jl1

ai0
− (k0 + S)

i1 ), ( i1

k0 + (aj0
− ai0

)

j1 ) and ( j1

ajl1
− aj0

+ S

jl1+1
).

We can repeat this procedure to see that the non-zero O-path ( j2l1−1

aj2l1−1

j2l1 ) can be written

as the product of three non-stationary paths ( j2l1−1 il1 = i0 ), ( i0 = il1 jl1 ) and
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( jl1 j2l1 ) (we omit the lengths of these paths to avoid overcomplicated notation).

We already know that the path ( i0 jl1 ) factors through j0, it follows that the non-zero

path ( i0

ai0

i1 ) can be written as the product of the four non-stationary paths ( i0 j0 ),

( j0 jl1 ), ( jl1 j2l1 ) and ( j2l1 i1 ).

If we repeated this whole procedure again, we would see that the non-zero path ( i0

ai0

i1 ) can

be written as the product of five non-stationary paths. Repeating the whole procedure another

ai0 − 4 times shows that the non-zero path ( i0

ai0

i1 ) can be written as the product of ai0 + 1

non-stationary paths. This is clearly a contradiction.

The only case remaining is when S = 0. If S = 0, then jl1 = il1 − k0 = i0 − k0 = j0. Thus l2 = l1,

and our claim holds.

2.3.43. Remark. The key idea of the above proof is that if two vertices i, i′ of the overquiver

O satisfy bi = bi′ = 0, and the path ( i
ai

◦ ) passes through i′, then the path ( i′
ai′

◦ )

passes through i− ai.

In other words, we have a “leap-frogging effect”, illustrated in the diagram below:

C ⊆ O

i

i′

i− ai

i′ − ai′

where arrows denote components of commutativity relations (in the sense of Definition 2.3.5).

If we have two different length cycles of ΦA coming from one component of the overquiver, O, then

repeatedly applying the leap-frogging effect gives rise to a diagram like:

C ⊆ O

i0 = il1

j0
jl1

i1

j1
jl1+1

Repeating this process further results in an ever diminishing space for subsequent applications of
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the process to work in:

C ⊆ O

i0 = il1

j0
jl1 j2l1 j3l1

i1

. . .

Since there are only finitely many vertices between i0 and i1, no such sequence of jn can exist.

Thus the length of cycles of ΦA coming from one component of the overquiver must all be the same.

2.3.44. Note that while a single connected component of the overquiver can’t give rise to multiple

cyclic components of the pin graph of different sizes, it can give rise to arbitrarily many of the

same size. The following example illustrates this (and for any m ∈ Z+, similar examples can be

constructed to give pin graphs with an arbitrary number of connected components, all of size m).

2.3.45. Example. Let Q be the quiver on n vertices depicted below:

n− 3

n− 2

n− 1

0

1

2

3

· · ·

αn−3
βn−3

αn−2 βn−2

αn−1

βn−1

α0

β0
α1

β1

α2
β2

Let A := kQ/ ⟨αβ, βα, αn − βn⟩ where the indices of the α and β are inserted into the relations as

appropriate. It is clear that the overquiver of A consists of two cyclic components of length n; one

corresponding to the α arrows, one corresponding to the β arrows.

The pin graph, ΦA, of A is:

0 1 2 3 · · · n− 3 n− 2 n− 1

53



CHAPTER 2. BACKGROUND

Moving on from this example, we now note that there is a relationship between the pin graph and

the action of descent on syllables p with bs(p) = 0.

2.3.46. Lemma. Let p be a syllable of A where bs(p) = 0. Then there is an arrow in ΦA

from the Q-vertex corresponding to s(p) to the Q-vertex corresponding to t(∇p).

Proof. Since bs(p) = 0, we know that t(∇p) = s(p) − as(p). This means that the projective

corresponding to the same Q-vertex as s(p) is pin, and that the socle of this projective corresponds

to the same Q-vertex as t(p), as required.

This lemma is particularly useful when the Q-vertices corresponding to the source and target of the

syllable both lie on a cycle of ΦA.

2.3.47. Proposition. Let p be a syllable of A where the Q-vertices corresponding to s(p)

and t(p) both lie on cycles of the pin graph, ΦA. Then the length of those cycles are the same.

Furthermore, if l is the common length of the cycles, then:

∇2lp = ( s(p)
len(p)

◦
0

t(p) ).

Proof. The fact that the length of the cycles is the same follows immediately from Proposition 2.3.42.

Now, let l be the common length of these cycles. The fact that the source and target of ∇2lp are

as claimed follows from Lemma 2.3.46 and the fact that ΦA is sub-1-regular. It is also clear that

the stability term of ∇2lp is zero; i.e. that ∇2lp is an interior syllable.

It remains to show that len(p) = len(∇2lp). Following the notation of Proposition 2.3.42, let

i0 := s(p), and then inductively define in+1 := in − ain ∈ O for all n ∈ N. Similarly define jn

inductively with j0 := t(p).

Since there is a non-zero O-path from i0 to j0, we know that properties (i) - (iv) hold. Combining

properties (ii) and (iv) yields the following inequalities for all n ∈ N:

ain + k0 − ajn <
n∑

m=1

(aim − ajm−1
) < ain − k0.
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Since for each m ∈ N, im+l = im and jm+l = jm, it follows that:

n0l∑
m=1

(aim − ajm−1) = n0 ·
l∑

m=1

(aim − ajm−1).

Combining this with the above inequalities implies that
∑l

m=1(aim − ajm−1
) = 0. Since the in and

jn are periodic with period l, we can rearrange this sum to see that:

l−1∑
m=0

(aim − ajm) = 0.

Since for all n ∈ N we have bin = bjn = 0, applying the definition of descent, ∇, repeatedly gives:

∇2np = ( in

len(p) −
∑n−1

m=0(aim − ajm )

◦
0

jn ).

Since we have shown that
∑l−1

m=0(aim−ajm) = 0, and we know that il = i0 = s(p) and jl = j0 = t(p),

the result follows.

2.4 Patches and strips

In this section we complete our overview of the methods of [All21], focusing on how the syllables of

the last section can be used to represent;

� indecomposable projective A-modules (using (2× 2)-grids called patches); and

� string modules of A (using rows called strips).

While most of the ideas in this section are from [All21], there are some extensions of these ideas

that are original to this thesis. For example, we include a bound on the number of string modules

of a given “size”, beginning in Paragraph 2.4.19. We also include a description of the action

of the transpose functor, Tr, on string modules in terms of its effect on strips, beginning in

Paragraph 2.4.28.

All definitions and results that are not original are cited as such.
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-1 +1

+1 -1

Figure 2.5: Orientations of syllables in patches.

2.4.1 Patches

We first introduce our set of patches for an SB algebra A = kQ/I. Throughout, we have a fixed set

of permissible data (O, N,C, †) for A, and we let (ai)i∈O, (bi)i∈O, (ci)i∈O, (di)i∈O be the sequences

given by the source and target encodings of this permissible data.

Each patch will be a (2× 2)-grid populated with syllables with orientations as in Figure 2.5. Since

the orientations of syllables are specified by their position, we will not indicate the orientations of

these syllables going forward.

Following the framework of [All21, Section 4.1.1], we split our construction of patches into five

cases, and give an example of each case at the end:

2.4.1. Blank patch. There is a single patch with all of its cells blank, which we call the blank

patch.

2.4.2. Patches with no pin-boundary syllable in the top row. For every pair of syllables

(p,p′), neither of which is pin-boundary, and which satisfy s(p)† = s(p′), we construct a patch.

On one side it has ∇p below p, on the other it has ∇p′ below p′.

From this patch, we create additional amended patches if either of p,p′ is stationary. In either

case, we create a copy of the original patch, replacing one of the stationary syllables with the

blank syllable and leaving the other cells unchanged. Note that we don’t perform this replacement

simultaneously if both of p,p′ are stationary, and only create two amended patches in this case.

2.4.3. Patches with one pin-boundary syllable in the top row. For every pin-boundary

syllable p and non-pin-boundary syllable p′ satisfying s(p)† = s(p′), we define q′ to be the

perturbation of ∇p′. We then construct two patches. The first has a blank cell below p on one

side, and q′ below p′ on the other. The second is its reflection.
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αβ βγ

γ α

αβ βγ

α

αβ βγ

es(α)es(β)

es(α)

es(α)

α

βγ γα

γ

αβ δ

βγ

βγ

δ2

αβ

Figure 2.6: Examples of patches for our running example algebra..

For each of these patches, we create additional amended patches if p′ is stationary. Similarly to the

previous case, we create a copy of these patches where p′ is replaced with the blank syllable.

2.4.4. Patches with two pin-boundary syllables in the top row. For each pair of

pin-boundary syllables p,p′ satisfying s(p)† = s(p′), we define the virtual syllables q =

( t(p)
0

◦
0
◦ ) and q′ = ( t(p′)

0

◦
0
◦ ). We then create a patch with q below p

on one side and q′ below p′ on the other side.

2.4.5. Virtual patches. For each vertex i ∈ O0 with di = 0, we construct two virtual patches.

The first has a virtual syllable ( i
0

◦
0
◦ ) in the top-left cell with the corresponding

stationary syllable ( i
0

◦
1
◦ ) in the bottom-left cell, and the remaining cells blank. The

second is its reflection.

2.4.6. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Then

the top row of Figure 2.6 depicts a single (unamended) patch in each of the above cases, while the

bottom row depicts a selection of amended patches.

2.4.7. Remark. For more detail on patches, and further examples, we refer the reader to [All21,

Section 4.1.1].
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2.4.8. Properties of patches. The remainder of this section is a brief rundown of the technical

results from [All21, Section 4.1.2], as we will need them later.

2.4.9. Lemma. [All21, Lem 4.1.15]

The only patches containing virtual syllables are virtual patches (having one such, which lies

in the top row) and patches with two pin-boundary syllables in the top row (having two such,

in the bottom row).

2.4.10. Lemma. [All21, Lem 4.1.16]

Let X be a patch with entries p and p′ in the top row, and with entry q under p.

(a) If neither p nor p′ is blank, then s(p)† = s(p′).

(b) If p is non-blank, then q = ∇p unless

(i) both p,p′ are pin-boundary (in which case q is a virtual syllable), or

(ii) p′ is pin-boundary and p is not (in which case q is the perturbed version of ∇p), or

(iii) p is a virtual syllable (in which case q is the corresponding stationary syllable).

(c) If p is blank, then q is either blank or is ∇ei for some stationary syllable ei.

(d) If p = ( i
l

◦
0
◦ ), then s(q) = t(p).

2.4.11. Lemma. [All21, Lem 4.1.17]

No two patches have the same top row.

2.4.12. Projective associated to a patch. [All21, Paragraph 4.1.18]

To each non-virtual patch, X, we can associate either an indecomposable projective or the zero

module.

If the patch is blank, then it is associated to the zero module. If the patch is non-blank (and

non-virtual), then it has at least one non-blank syllable p in its top row. Then s(p) corresponds to

a Q-vertex, i; if there is another non-blank syllable p′ in the top row, then s(p)† = s(p′), and thus

they correspond to the same Q-vertex. Hence it is well-defined to associate X to the projective

Pi = eiA.
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2.4.2 Strips

We now introduce our encoding of string modules in terms of syllables, following the definitions

given in [All21, Section 4.2.1].

2.4.13. Peaks and valleys. [All21, Def 4.2.9]

Let (p,q) be a pair of (non-virtual) syllables for A.

(a) We say p and q are peak compatible if: both are blank (this is called a blank peak), or exactly

one is blank (an implied peak), or neither is blank, s(p)† = s(q) and the orientations of p and

q are respectively −1 and +1 (an interior peak).

(b) We say p and q are valley compatible if: both are blank (this is called a blank valley), or one

is blank and the other is boundary (a boundary valley), or both are interior and t(p)† = t(q)

and the orientations of p and q are respectively −1 and +1 (an interior valley).

A peak is a pair of peak compatible syllables, often denoted as p q , leaving the orientations

implicit. Similarly, a valley is a pair of valley compatible syllables, denoted as p q . This

notation makes defining their reflections as q p , and q p obvious.

2.4.14. Strips. [All21, Def 4.2.11]

A strip w is a concave, not necessarily bounded juxtaposition of (non-virtual) syllables alternately

forming peaks and valleys (here concave means that no blank syllable is between two non-blank

syllables).

Formally we consider the juxtaposition to be a single row of cells with columns indexed by Z. Thus,

a strip w is a function w : Z→ Syll(A). The entry of cell k is w(k).

The support, supp(w), of a strip w is the interval subset of Z where the entries are non-blank. The

interior, int(w), of a strip w is the interval subset of Z where the entries are interior syllables. The

interior width, intwid(w), of a strip w is defined as intwid(w) := | int(w)|.

The reflection of a strip w : Z → Syll(A) is obtained by precomposing with the reflection k 7→ −k

of Z and postcomposing with the orientation involution ps 7→ p−s of Syll(A).

2.4.15. Any strip represents a string graph (and hence a string module), as formalised by the

following:
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2

1

1

2

1

1

2

2β

α β

γ α

γ δ

(a) An indecomposable string graph associated to a string module of our running example algebra.

· · · · · ·
αβ βγ γα δ

(b) A strip corresponding to the above string graph.

Figure 2.7: Representing an indecomposable string graph with a strip.

2.4.16. Proposition. [All21, Prop 4.2.17]

Any strip w represents a well-defined indecomposable string graph, hence an indecomposable

string module, and moreover w and its reflection both represent the same string graph.

Conversely, any indecomposable string graph can be represented by a strip.

While we won’t go into an explicit discussion of the association of a string graph to a strip (we

refer the reader to the above reference for that), we will give a small example which is indicative

and leads to the correct intuition.

2.4.17. Example. In Figure 2.7, the first diagram is a string graph for our running example

algebra A (the same string graph as in Figure 2.2(a)). The second diagram is a strip representing

this string graph.

2.4.18. Rounding off a strip. [All21, Paragraph 4.2.3]

However, Proposition 2.4.16 doesn’t completely classify when two strips represent the same string

graph. We also have to handle “rounding off”.

When a strip contains an implied peak, we can replace the blank syllable in that peak with the

unique stationary syllable that is still peak compatible. This process (which we call rounding off )

does not change the string graph (and hence string module) represented by a strip.

We will almost always work with rounded off strips, as they are more convenient for performing

syzygy calculations.
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2.4.19. One of the advantages of this formalism for representing string graphs, is that it allows us

to completely enumerate all string graphs of a given size (where “size” here means interior width).

The following few results provide bounds on how many strips (or string modules) there are of a

given size.

2.4.20. Proposition. Let d ∈ N and r ∈ Z+. Then:

∣∣{Str(w) : intwid(w) = 2d, radr+1(Str(w)) = 0
}∣∣ ≤ n · (r + 1)2 · r2d

where n is the number of simple modules of A.

Proof. For any strip, we can uniquely encode it by the following data:

� the vertex of O that is the source of the left boundary syllable,

� the ordered sequence of lengths of underlying paths of the interior syllables,

� the ordered pair of lengths of underlying paths of the two boundary syllables.

There are clearly at most |O| = 2n options for the first piece of data. For the second piece of data,

there is a ordered sequence of 2d choices, each of which has at most r choices (the length can be

any value in {1, . . . , r}). Thus there are at most r2d choices for the second piece of data. For the

third piece of data, there is a ordered pair of 2 choices, each of which has at most r+1 choices (the

length can be any value in {0, 1, . . . , r}).

Thus it follows that there are at most 2n · (r + 1)2 · r2d choices of encoding.

To show the required bound holds, it is now sufficient to show that each isomorphism class of a

string module in our set has exactly two choices to encode it. Recall from Proposition 2.4.16 that a

strip and its reflection both represent the same string module. Hence it is sufficient to show that

no strip is equal to its own reflection.

Suppose that w is a strip which is equal to its own reflection. This means that there are two

adjacent non-blank syllables of w which have identical underlying path and stability term, and

opposite orientation. However, no non-blank syllable is peak or valley compatible in this way.

Hence we have a contradiction, as required.
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2.4.21. Corollary. Let d ∈ N and r ∈ Z+. Let n denote the number of simple modules of A.

Then, if r > 1:

∣∣{Str(w) ∈ mod-A : intwid(w) ≤ 2d, radr+1(Str(w)) = 0
}∣∣ ≤ n · (r + 1) · r

2d − 1

r − 1

while if r = 1,

∣∣{Str(w) ∈ mod-A : intwid(w) ≤ 2d, radr+1(Str(w)) = 0
}∣∣ ≤ n · (r + 1)2 · (d+ 1).

Proof. First we fix notation N = |{Str(w) ∈ mod-A : intwid(w) ≤ 2d, radr+1(Str(w)) = 0}|.

Assume that r > 1. Since intwid(w) ∈ 2N for all strips w, applying Proposition 2.4.20 gives:

N ≤ n · (r + 1)2 ·
d∑

k=0

r2k = n · (r + 1)2 · r
2d − 1

r2 − 1
= n · (r + 1) · r

2d − 1

r − 1
,

as required.

Now instead suppose that r = 1. Since intwid(w) ∈ 2N for all strips w, applying Proposition 2.4.20

gives:

N ≤ n · (r + 1)2 ·
d∑

k=0

r2k = n · (r + 1)2 ·
d∑

k=0

1 = n · (r + 1)2 · (d+ 1),

as required.

2.4.22. Example. It is easy to verify that for any member of the family of SB algebras (indexed

by n ∈ Z+) given in Example 2.3.45, each of the bounds in Proposition 2.4.20 and Corollary 2.4.21

is sharp when r < n.

While we mostly deal directly with string modules (which by our definition are indecomposable), it

is sometimes helpful to be able to encode direct sums of string modules in a similar way to strips.

We can do this by extending our definition of valleys.

2.4.23. Pseudo-valleys. Let (p,q) be a pair of (non-virtual) syllables for A. We say p and q are

pseudo-valley compatible if: they are valley compatible or both are boundary.

A pseudo-valley is a pair of pseudo-valley compatible syllables, denoted similarly to a valley. Its

reflection is also defined analogously.
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1

1

2

2
α β

(a) A string graph associated to a string module of our running example algebra.

· · · · · ·
α β es(δ)

(b) A flattened family of strips corresponding to the above string graph. Note that this flattened family of
strips contains an implied peak, so could be rounded off without changing the string graph represented.

· · · · · ·
es(δ) es(γ) α β

(c) Another flattened family of strips corresponding to the above string graph. Note that this flattened
family of strips has no implied peaks; also note that the components of the string graph are depicted in a
different order to the above.

Figure 2.8: Representing a string graph with a flattened family of strip.

2.4.24. Flattened families of strips. A flattened family of strips is defined identically to a strip

(see Definition 2.4.14) apart from replacing all instances of “valley” with “pseudo-valley”.

2.4.25. Remark. A flattened family of strips can be thought of as a family of strips arranged

boundary to boundary. Note in particular that we still require the collection of non-blank syllables

to be concave.

2.4.26. Example. In Figure 2.8, the first diagram is a string graph for our running example

algebra A. The second and third diagram depict two different flattened families of strips representing

this string graph.

2.4.27. Remark. Observe from Example 2.4.26 that a string graph which is not indecomposable

can be represented as a flattened family of strips in multiple ways which can’t be reached from each

other by reflections and rounding off. Hence there is no equivalent result to Proposition 2.4.16 for

flattened families of strips.

2.4.28. The remainder of this section focuses on a characterisation of the action of the

transpose functor Tr : mod-A → mod-Aop on string modules, in terms of its effect on strips.

Propositions 2.4.30–2.4.32 handle all non-projective string modules between them, relying on the
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construction of TrD from [WW85]. Thus we first give a remark explaining how the notation of

[WW85] translates into our notation of strips and syllables.

2.4.29. Remark. In [WW85], they call string modules “representations of the first kind”, and

represent them in terms of “V -sequences”. These “V -sequences” are analogous to string graphs,

and can therefore be uniquely identified with a strip (up to reflections and rounding off).

The construction for TrD takes a string graph which is thought of as “W-shaped” as an input,

which is exactly the way we would think of a dual of a string module represented by a strip (see

Lemma 2.2.46 and Example 2.2.47).

The other key notion used in the construction is whether a “V -sequence” is “extendable”. This

corresponds exactly with the cases where the underlying path of a syllable does not have maximal

length, i.e. the syllable belongs to supp(∇).

2.4.30. Proposition. Suppose that M ∈ mod-A is a string module with intwid(M) > 0,

represented by a strip of the form:

· · · p1 p2 · · · · · · pn−1 pn · · ·

We denote the compression of each pi by pi. We also denote the target of each pi by ti (note

that ti may not be the same as the target of the underlying path of pi when the syllable is

boundary).

Then Tr(M) ∈ mod-Aop is a string module represented by a strip of the form:

· · · q0 q1 q2 · · · · · · qn−1 qn qn+1 · · ·

where q3 = pop
3 , . . . ,qn−2 = pop

n−2, for i ∈ {0, 1, 2} the qi are defined as:

q0 :=


( (top1 )†

c
(t1)† + d

(t1)† − 1

◦
1

◦ ) if p1 ∈ supp(∇A)

( ) if p1 /∈ supp(∇A)
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q1 :=


( top1

len(p1)

◦
0
◦ ) if p1 ∈ supp(∇A)

( ) if p1 /∈ supp(∇A)

q2 :=


pop
2 if p1 ∈ supp(∇A)

( top2

len(p2) − 1

◦
1
◦ ) if p1 /∈ supp(∇A)

and for i ∈ {n− 1, n, n+ 1}, the qi are defined symmetrically as:

qn+1 :=


( (topn )†

c
(tn)† + d

(tn)† − 1

◦
1

◦ ) if pn ∈ supp(∇A)

( ) if pn /∈ supp(∇A)

qn :=


( topn

len(pn)

◦
0
◦ ) if pn ∈ supp(∇A)

( ) if pn /∈ supp(∇A)

qn−1 :=


pop
n−1 if pn ∈ supp(∇A)

( topn−1

len(pn−1) − 1

◦
1
◦ ) if pn /∈ supp(∇A)

Proof. This result follows immediately from [WW85, Section 3] when considered in the language of

syllables introduced in [All21]. This selection of strips corresponds to the case where m ≥ 3 in their

argument (note that m is always odd). In this case the (−)1 and (−)2 constructions are always

non-empty, and will never interact with each other.

2.4.31. Proposition. Suppose that M ∈ mod-A is a non-projective string module with

intwid(M) = 0, represented by a strip of the form:

· · · p1 p2 · · ·

where p1 ∈ supp(∇A).

We denote the compression of each pi by pi. We also denote the target of each pi by ti (note

that ti may not be the same as the target of the underlying path of pi when the syllable is

boundary).
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Then Tr(M) ∈ mod-Aop is a string module represented by a strip of the form:

· · · q0 q1 q2 q3 · · ·

where qi are defined as follows:

q0 := ( (top1 )†
c
(t1)† + d

(t1)† − 1

◦
1

◦ )

q1 :=


( top1

len(p1)

◦
0
◦ ) if p2 ∈ supp(∇A)

( top1

len(p1) − 1

◦
1
◦ ) if p2 /∈ supp(∇A)

q2 :=


( top2

len(p2)

◦
0
◦ ) if p2 ∈ supp(∇A)

( ) if p2 /∈ supp(∇A)

q3 :=


( (top2 )†

c
(t2)† + d

(t2)† − 1

◦
1

◦ ) if p2 ∈ supp(∇A)

( ) if p2 /∈ supp(∇A)

Proof. This result follows immediately from [WW85, Section 3] when considered in the language of

syllables introduced in [All21]. This selection of strips corresponds to the case where m = 1 in their

argument and the (−)1 construction increases the size of the string graph. In this case the (−)1

construction is always non-empty, and can thus be computed first.

Note that if you are considering a strip for M with intwid(M) = 0, and that strip has

p2 ∈ supp(∇A), you can reflect the strip to apply this result (as reflected strips always represent

the same string modules).

2.4.32. Proposition. Suppose that M ∈ mod-A is a non-projective string module with

intwid(M) = 0, represented by a strip of the form:

· · · p1 p2 · · ·

where p1,p2 /∈ supp(∇A).

66



2.4. PATCHES AND STRIPS

We denote the compression of each pi by pi. We also denote the target of each pi by ti (note

that ti may not be the same as the target of the underlying path of pi when the syllable is

boundary).

Then Tr(M) ∈ mod-Aop is a string module represented by a strip of the form:

· · · q1 q2 · · ·

where qi are defined as follows:

q1 := ( top1

len(p1) − 1

◦
1
◦ ), q2 := ( top2

len(p2) − 1

◦
1
◦ ).

Proof. Note that since M is non-projective, it is necessary for bs(pi) = 0 for i = 1, 2.

This result follows immediately from [WW85, Section 3] when considered in the language of

syllables introduced in [All21]. This selection of strips corresponds to the case where m = 1 in their

argument and both the (−)1 and (−)2 constructions reduce the size of the string graph.

The fact that these propositions cover all non-projective string modules follows from the fact that

projective string modules M always have intwid(M) = 0.

This characterisation also makes the following corollary much easier to notice.

2.4.33. Corollary. Suppose that M ∈ mod-A is a non-projective string module. Then

M is a socle-quotient of a pin A-module if and only if Tr(M) is a socle-quotient of a pin

Aop-module.

Proof. First suppose that M is a socle-quotient of a pin A-module. Then M is represented by a

strip of the form required for Proposition 2.4.32. In particular, M is represented by a strip of the

form:

· · · p1 p2 · · ·

where pi = ( si
asi

− 1

◦
1

ti ) for i = 1, 2 and bsi = 0 for i = 1, 2. Thus applying

Proposition 2.4.32, we know that Tr(M) ∈ mod-Aop is a string module represented by a strip of the
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form:

· · · q1 q2 · · ·

where qi = ( (ti)
op

asi
− 1

◦
1

(si)
op ) for i = 1, 2. Since asi = cti(= a(ti)op) and 0 = dti(= b(ti)op)

for i = 1, 2, this means that Tr(M) is a socle-quotient of a pin Aop-module.

For the converse, suppose that Tr(M) is a socle-quotient of a pin Aop-module. Then by applying the

first part, we know that Tr2(M) is a socle-quotient of a pin A-module. SinceM ≃ Tr2(M) ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A,

the result follows.

2.4.3 The syzygy fabric

We now briefly review the results of [All21, Sections 4.2.2-4.2.3]. For proofs and more examples, we

point the reader to this reference.

We first note that there is a correspondence between peaks and patches.

2.4.34. Proposition. [All21, Prop 4.2.18]

Any peak p q is the top row of exactly one patch.

This gives us a way to associate a line of patches to a strip.

2.4.35. Corollary. [All21, Cor 4.2.19]

Any strip is the top row of a well-defined line of patches.

This line of patches corresponds to a projective cover of the associated string module in an obvious

way.

2.4.36. Proposition. [All21, Prop 4.2.20]

If the strip w is the top row of a line of patches, then P(Str(w)) is the direct sum of the

associated projectives (using the association given in Paragraph 2.4.12).

This gives a canonical way to assign a line of patches to a strip.

2.4.37. Patch covers. [All21, Def 4.2.22]

We define the patch cover P(w) of a strip w to be the corresponding line of patches, given in

Corollary 2.4.35. (Note that this line is “bi-infinite” and features blank patches on either end as

required.)
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· · · · · ·

· · · · · ·

αβ βγ γα δ

α β δ

(a) An example of a patch cover.

· · · · · ·

· · · · · ·

α β

δ

(b) Strips corresponding to summands of a flattened family of strips. These strips represent summands of
the string module corresponding to the bottom row of (a).

Figure 2.9: Example of a patch cover and summands of syzygies using (flattened families of) strips.

We can use these patch covers to calculate syzygies of string modules in terms of strips (and

flattened families of them). The following is exactly equivalent to [All21, Prop 4.2.24], but uses the

language of “flattened families of strips” (see Definition 2.4.24) instead of “segments”.

2.4.38. Proposition. Suppose that the strip w does not represent the socle-quotient of a

pin module.

(a) The bottom row of P(w) is a valid flattened family of strips, w′.

(b) That flattened family of strips, w′, represents the syzygy, Ω(Str(w)).

2.4.39. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41.

Then Figure 2.9(a) depicts an example of a patch cover. Figure 2.9(b) then depicts the two

strips corresponding to the parts of the flattened family of strips in the bottom row of (a). By

Proposition 2.4.41, these are the summands of the syzygy of the string modules corresponding to

the top row of (a).

2.4.40. Since the above result only applies to strips that don’t represent socle-quotients of pin

modules, we need a separate result to handle calculating the syzygies of socle-quotients of pin

modules in this formalism.
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· · · · · ·

· · · · · ·

· · · · · ·

αβ βγ

t(γ) t(α)

es(α) es(β)

Figure 2.10: Example of a syzygy of a socle-quotient of a pin module.

2.4.41. Proposition. [All21, Prop 4.2.28]

If the strip w represents the socle-quotient P/ soc(P ) of a pin module P , then the bottom row

of P(w) is blank except for two virtual syllables.

Moreover, the bottom row of P(w) is the top row of a new line of (virtual and blank) patches

whose bottom row is a strip representing the simple module soc(P ) = Ω(P/ soc(P )).

2.4.42. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41.

Then Figure 2.10 depicts an example of the two lines of patches constructed when applying

Proposition 2.4.41. In fact, since there is a unique pin module of A (up to isomorphism), this is the

only arrangement of patches resulting from Proposition 2.4.41 for A (up to reflection).

2.4.43. Syzygy fabric for a strip. [All21, Def 4.2.29]

Let w be a strip representing a string module. By iteratively applying the above algorithm we can

construct an array which contains strips representing all the syzygies of a given string module. We

call this array the syzygy fabric associated to w.

Each row of this array is a strip indexed by the vertices of a rooted tree T . The columns of the

array are indexed by Z (corresponding to the indices of syllables in each strip).

The row corresponding to the root of T contains w. For a row corresponding to t ∈ T0, containing

a strip v, the child vertices of t in T correspond to the strips contained in the flattened family of

strips at the bottom row of P(v).
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· · · · · ·(b)

· · · · · ·(c)

· · · · · ·(d)

· · · · · ·(a)

es(δ) γαβ δ2 es(γ)

δ

es(γ) es(δ)

αβ

· · · · · ·(d)

· · · · · ·(c)

· · · · · ·(b)

δ

αβ

es(δ)

· · · · · ·(d)

· · · · · ·(b)

· · · · · ·(c)

es(γ) es(δ)

αβ

δ

· · · · · ·(d)

· · · · · ·(d)

αβ

αβ

Figure 2.11: Pieces of the syzygy fabric associated to an injective string module. Note that some
strips which are labelled the same are not identical; however, they can be made so by a combination
of rounding off and reflecting. This means that they represent the same string modules.
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2.4.44. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41, and w

the strip:

· · · · · ·
es(δ) γαβ δ2 es(γ)

Note that w represents the indecomposable injective string module associated to the vertex 2 ∈ Q0.

We now describe the tree T that we use to index the rows of the syzygy fabric. We define T

to be the limit of an increasing sequence of rooted trees T(0) ⊆ T(1) ⊆ T(2) ⊆ · · · , with each T(k)

containing all vertices reachable from the root of T by paths of length at most k. Thus our initial

tree T(0) consists of a single vertex, our root, which we label (a), and contains no arrows.

If we have constructed the k-th tree T(k), then we construct T(k+1) by adding child vertices to the

leaves of T(k) based on their label in accordance with the following diagrams:

(a)

(b) (c) (d)

(b)

(d) (c)

(c)

(d) (b)

(d)

(d)

The rows corresponding to each of the vertices of T are populated by the strips present in

Figure 2.11. Iteratively connecting one row to its children rows yields our complete syzygy fabric

for w.

2.5 SBStrips

Here we provide a brief overview of the functionality in SBStrips. For more detail, we refer to the

documentation (available on the SBStrips site) which also contains a full worked example going

through the various methods available.

Strips are the principal objects of the SBStripspackage. You can construct a particular strip using

the Stripify method, but often you will want to be working with a canonical type of strip; in these

cases there is often a helpful method for constructing them, for example SimpleStripsOfSBAlg,
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IndecProjectiveStripsOfSBAlg and IndecInjectiveStripsOfSBAlg. Many common oper-

ations on strips have been implemented; we have already mentioned SyzygyOfStrip and

TransposeOfStrip, but there is also VectorSpaceDualOfStrip and NthSyzygyOfStrip, which do

what you would expect from the name. Other helpful methods include:

� ModuleOfStrip - this takes in a strip and returns a module in the form used by QPA, allowing

further calculations in a more general context.

� IsFiniteSyzygyTypeStripByNthSyzygy - this takes in a strip and an integer, N , and returns

true if the strips appearing in the N -th syzygy of the input strip have all appeared among

earlier syzygies, and false otherwise.

� DeloopingLevelOfStripIfAtMostN - this takes in a strip and an integer, N , and returns the

delooping level of the strip if it is at most N , and fail if the delooping level is greater than

N .

Another method from SBStrips that is worth mentioning is DeloopingLevelOfSBAlgIfAtMostN

which takes in an SB algebra and an integer, N , and returns the delooping level of the algebra if it

is at most N , and fail if the delooping level is greater than N .

All of the previous methods were implemented by Allen. Using the ideas of minimally connected

overquivers (see Definition 2.3.24), we have added some more helper methods for generating

complete collections of SB algebras with particular properties.

The most commonly used will probably be SBAlgsFromNumVerticesAndRadLength, which takes

in two positive integers, N and R, and produces a collection of all SB algebras on N vertices

with radical length R. This is useful for trying to verify conjectures for all SB algebras up

to a given size; we use it for exactly this purpose in Section 5.2. For instance, our running

example algebra (as defined in Paragraph 2.2.41) would appear in the collection generated by

SBAlgsFromNumVerticesAndRadLength(2,4) as its underlying quiver has 2 vertices and it has

radical length 4.

If you require more control over the structure of the SB algebras that are generated, then you

can use SBAlgsFromCyclesAndRadLength which takes as an input, a list of positive integers, L,

and another positive integer, R. It then generates a collection of all SB algebras of radical length

at most R which have a minimally connected overquiver, O, where the multiset formed by the

number of vertices of each connected component of O match with the list L. Note that since

any overquiver has an even number of vertices, it is necessary that the list L sums to an even
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number. For instance, our running example algebra (as defined in Paragraph 2.2.41) would appear

in the collection generated by SBAlgsFromCyclesAndRadLength([3,1],4) as it has a minimally

connected overquiver where the two connected components have 3 and 1 vertices respectively, and

it has radical length 4.

There are also various methods for working with permissible data, overquivers, and syllables; for

these we refer to the documentation, as working with them directly is not necessary for the vast

majority of computations.
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Beltsandsyzygiesofbandmodules

In this chapter, we extend the approach to syzygy calculations for string modules of special biserial

algebras (introduced by Allen [All21]), to syzygy calculations for band modules. This approach

involves representing band modules as finite words made up of syllables; these words only contain

interior syllables, the start and end of the word are thought of as identified, and they are called

belts.

We first establish how to represent a band module as a belt and its projective cover as an associated

set of patches. We then demonstrate and verify our method is compatible with syzygies of band

modules, and that these syzygies can be recorded into an array in a similar way to the syzygy fabric

for strips when calculating syzygies of string modules.

3.1 Belts

3.1.1 Preview of belts

Before we dive into the formal definition of belts, we will explore our method for encoding band

modules and their syzygies using several worked examples. The aim is to build intuition first;

the details of definitions and precise properties will follow afterwards. Recall our running example
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algebra:

A := k

 1 2α

β

γ
δ

 /⟨α2, βδ, γβ, δγ, αβγ − βγα, δ3⟩,

whose uniserial A-modules can be identified with the strict prefixes of αβγ, βγα, γαβγ and δ3.

3.1.1. Overview of the idea. Similarly to the method of representing string graphs in terms of

rows of syllables, we will represent a band graph as a cyclic row of interior syllables. As with strips,

the cells of a belt alternate between orientations, positive (pointing to the right from top to

bottom) and negative (pointing to the left from top to bottom). Thus adjacent pairs of cells

alternately form peaks (a negative syllable then a positive) and valleys (a positive

syllable then a negative).

Again, like strips, the content of a peak in one row uniquely determines the contents of a valley

in a row underneath it. The possibility of branching (one row having several rows underneath it)

remains in our handling of belts. However, we also have to contend with the possibility of the

row beneath remaining cyclic (and thus containing a belt) or splitting into a collection of acyclic

(linear) rows (and thus containing a collection of strips).

While with strips it is strictly necessary to operate “peakwise” (due to the perturbations caused by

pin-boundary syllables), for belts it is possible to operate “cellwise”. This is due to the fact that in

a patch with two interior syllables in its top row, the lower row is exactly the image of the upper

row under descent. However, while it is possible to proceed “cellwise”, there are several points in

our arguments where it is useful to continue working “peakwise”, so we will proceed on that basis

for the time being.

3.1.2. Peaks and valleys. Consider the band graph w1, shown in Figure 3.1(a). It has four linear

subgraphs that start at source vertices and end at sink vertices. The corresponding restrictions are

(2
β←− 1

α←− 1), (1
β−→ 2

γ−→ 1), (1
α←− 1

γ←− 2) and (2
δ−→ 2). The first and last of these end at the

same vertex, as illustrated by the dashed circles in the diagram. We represent w1 using the belt in

Figure 3.1(b).

Let us now review this figure. Firstly, it comprises a finite (Z/4Z-indexed) row of cells which

alternate between positive orientation and negative orientation . Therefore they alternately

form potential peaks and potential valleys .

Next, notice that the left edge of the leftmost cell is identified with the right edge of the rightmost
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2

1

1

2

1

1

2

2β

α β

γ α

γ δ

(a) Diagram of the band graph w1.

αβ βγ γα δ

(b) Diagram of a belt representing w1.

Figure 3.1: First example of representing a band graph with a belt. Note that the circled vertices
in the band graph are identified.

cell. Thus the leftmost cell and the rightmost cell also form a potential valley.

As with strips representing string graphs, the entries in the cells are syllables that uniquely identify

the subgraphs of the band graph that we highlighted earlier. Unlike strips representing (finite)

string graphs, all of our syllables are interior. This is due to the fact that in a band graph, all

source vertices have outdegree 2 and all sink vertices have indegree 2.

We now notice that the leftmost syllable is valley compatible with the rightmost syllable. So in fact

the entries in these extremal cells don’t just form a potential valley, they form a bona fide valley.

The fact these syllables should be valley compatible follows from condition (b)(ii) in the definition

of a band graph.

Again, like strips representing string graphs, the underlying path of a syllable represents a path in

A, but it is not itself an A-path. The underlying paths of syllables are paths in the overquiver O,

not in the ground quiver Q. This distinction is sometimes important, particularly when dealing

with stationary paths. Fortunately, since all of the syllables in a belt are interior, none of the

underlying paths are stationary.

3.1.3. Rotation of cyclic rows. We now consider the band graph w2, shown in two forms in

Figure 3.2(a). The first diagram shows w2 as a string graph with two sink vertices identified, the

second shows w2 as a string graph with two source vertices identified. The fact that these diagrams

represent the same band graph can be seen by “rotating” the point where we identify vertices to

the next source/sink vertex. We represent w2 using a belt, which is illustrated in two different ways

in Figure 3.2(b).
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1

1

2

2

2

1

1

2

1

α

γ δ

δ β

α β

γ

1

2

1

1

2

2

2

1

1

α

γ δ

δ β

αβ

γ

(a) Two diagrams of the band graph w2.

γα δ2 αβ βγ αββγ γα δ2

(b) Diagram of two belts representing w2.

Figure 3.2: Example of ‘rotation’ of band graph and associated belt.

Let us now review this figure. As with Figure 3.1, there is an obvious correspondence between the

maximal linear subgraphs of the band graph and the syllables in the belt. The “rotation” of the

band graph corresponds to shift of the syllables in the belt, where the endpoint wraps around.

3.1.4. Moving to the next row. Unlike string modules, the class of band modules is not

generally closed under taking syzygies. Fortunately, like string modules, there is a local rule for

calculating the belt (or strip) representing the syzygy of a band module. To demonstrate how this

works when the syzygy of a band module is (or isn’t) a band module, we will give an example in

each case.

First, consult Figure 3.3. In Figure 3.3(a), we see a diagram of the band graph w3. There could

be infinitely many band modules associated to this band graph (if k is infinite), but all of them

have a similar structure. In particular, the syzygies of each of these representative band modules

are all band modules represented by the same band graph (we will discuss this fact further in

Subsection 3.2.2).

To better understand the structure of these syzygies, we look at Figure 3.3(b). The first row is a

belt representing w3, and the second row is a belt which we claim represents the band graph of

these syzygies, and where the entries are determined by our local rule. This second belt has the

same number of cells (so its intwid is the same), and the wrapping columns are aligned with the

row above. In fact, this second belt is actually a rotation of the first; this may be easier to see by

observing the band graph it represents in Figure 3.3(c). This means that the class of band modules

with underlying band graph w3 is closed under taking syzygies.
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1

2

1

1

2

1

1

γ

β α γ

β α

(a) Diagram of the band graph w3.

βγ α βγ α

α βγ α βγ

(b) Calculating syzygies of band modules associated to w3.

1

1

2

1

1

2

1

γ

β α γ

β

α

(c) Another diagram of the band graph w3. This helps to illustrate that the bottom row of (b) represents
the same band graph as the upper row.

Figure 3.3: First example of representing syzygies of band modules with belts.

2

2

2

1

1

2

1

2

2

α

γδ

δ β

α β

γ

2

2

2

1

1

2

1

2

2

α

γδ

δ β

α β

γ

(a) Two diagrams of the band graph w2.

αββγ γα δ2 γαδ2 αβ βγ

(b) Diagram of two belts representing w2.

Figure 3.4: Two ‘rotations’ of a band graph and associated belt. The right-hand belt is more
useful for calculations, since the wrapping splits a peak whose source is a non-pin vertex.
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βγ γα δ2 αβ

α β δ γ

(a) Using a bad choice of representative belt.

· · · · · ·

δ2 αβ βγ γα

δ γ α β

(b) Using a good choice of representative belt.

Figure 3.5: Unfurling the syzygy fabric. The choice in (b) is better as we have boundary syllables
where the wrapping would be. This means that we no longer have to consider the wrapping, and
can consider the second row as a strip in the usual way.

Now, consult Figure 3.4. In Figure 3.4(a), we see a previous diagram of a band graph from earlier,

w2, alongside a new diagram of w2. Figure 3.4(b) contains diagrams of the corresponding belts to

represent w2. We will see that the right-hand choice of belt is more useful for calculations involving

syzygies. This is due to the fact that the choice of wrapping point splits a peak with non-pin source

vertex. Observe Figure 3.5 to see why this is helpful.

Since our local rule puts boundary syllables beneath syllables with non-pin source, by using this

choice of wrapping point, we ensure that two of our boundary syllables in the second row appear

in the leftmost cell and the rightmost cell. This means that any wrapping in these positions would

have no effect, and we can safely consider this row as a strip in the usual way.

By choosing a representative belt in this way, it is easier to see (and work with) the “unfurling of

the syzygy fabric” as we switch from a cyclic row (that is Z/4Z-indexed) to an acyclic one (that is

Z-indexed).

This calculation also shows that no matter which band module we choose for the band graph w2,

its syzygy is always a string module represented by the same string graph. In particular, this means

that these syzygies are all isomorphic.
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3.1.5. Branching. As with string modules, sometimes the syzygy of a band module has a

non-trivial direct sum decomposition. Whereas in our examples so far, applying our local rule to

belts has resulted in rows with at most two boundary syllables, it is possible to have any even

number of boundary syllables, depending on the structure of the original belt.

Consider Figure 3.6. In Figure 3.6(a), we see a diagram of a band graph with three source vertices

which are non-pin (note the identification between the left and right ends). The fact that the

vertices we are identifying are non-pin source vertices means that the choice of belt corresponding

to this diagram is an example of a “good” representative of the band graph in the sense of

Paragraph 3.1.4. If we take this choice of belt (see the top row of Figure 3.6(b)) and apply our

local rule, we end up with a (flattened) row with six boundary syllables (see the bottom row of

Figure 3.6(b)).

As this bottom row represents a collection of strips, it is best to avoid this flattening. We do this

by assigning each of these strips its own row as in Figure 3.6(c). This means that we must generally

use the vertices of a rooted tree to index our rows (whether they are cyclic or acyclic). Thus we

can use the branching of the tree to represent the direct sum decomposition of the syzygies of the

(family of) band module(s). One thing to note is that this branching only occurs when we are

moving to an acyclic row; in other words, there is a non-trivial direct sum decomposition of the

syzygy only when the syzygy is the sum of a family of string modules (this will be formalised in

Section 3.2).

3.1.2 Belts and bandmodules

We first refer the reader back to Definition 2.4.13, as the definitions of peaks and valleys are

instrumental in what follows.

3.1.6. Belts. A belt w is a cyclic juxtaposition of (non-virtual, non-blank) interior syllables

alternately forming peaks and valleys.

Formally we consider the juxtaposition to be a single row of cells with columns indexed by Z/nZ

for some n ≥ 1. Thus, a belt w is a function w : Z/nZ→ Syll(A). The entry of cell k is w(k). The

(interior) width of w is defined as intwid(w) := n.
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2

1

1

2

2

1

1

2

2

1

1

2

2

γ α β δ γ

α

β δ γ

α

β δ

(a) Diagram of the band graph w4.

· · · · · ·

γ α β δ γαβ δ γαβ δ

αβ βγ γα δ es(β) δ es(β) δ

(b) Calculating (flattened) syzygies of band modules associated to w4.

· · · · · ·

· · · · · ·

· · · · · ·

γ α β δ γαβ δ γαβ δ

αβ βγ γα δ

es(β) δ

es(β) δ

(c) Calculating (branched) syzygies of band modules associated to w4.

2

1

1

2

1

1

2

2

2

2

2

2
β

α β

γ α

γ δ

δ δ

(d) Diagram of the string graphs associated to syzygies.

Figure 3.6: Branching. Handling syzygies of band modules with non-trivial direct sum
decompositions.
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3.1.7. Since the syllables in a belt alternately from peaks and valleys, they can be considered as a

union of peaks (or dually, a union of valleys). Thus intwid(w) ∈ 2Z+ for all belts, w.

3.1.8. Support of a belt. Since a belt w : Z/nZ→ Syll(A) has no blank syllables, to match the

notation for strips, we define its support as supp(w) := Z/nZ.

3.1.9. Neighbours. We define peak/valley neighbours similarly to strips. For any k ∈ supp(w),

one out of {w(k), w(k + 1)} and {w(k − 1), w(k)} is a peak and one is a valley. The peak neighbour

of k is the cell forming a peak with k; the valley neighbour is defined similarly.

3.1.10. Reflections and rotations. Similar to strips, we can define the reflection of w : Z/nZ→

Syll(A) by precomposing with the reflection k 7→ −k on Z/nZ and postcomposing with the

orientation involution ps 7→ p−s on Syll(A).

We can also define the rotation by l steps of a belt w : Z/nZ→ Syll(A) by precomposing with the

rotation k 7→ k + l on Z/nZ. This can be thought of as an analogue of “translating” a strip.

These are both clearly well-defined operations, since they carry peaks to peaks and valleys to

valleys.

3.1.11. Running example. Several examples of belts for our running example algebra were given

in Figures 3.1(b), 3.2(b), 3.3(b), 3.4(b) and 3.6(b).

3.1.12. Any belt represents a band graph in a similar way to strips representing string graphs.

However, unlike string graphs and string modules, there is not a one-to-one correspondence between

band graphs and band modules. This is due to the choice of indecomposable automorphism

ψ : km → k
m in the definition of band modules (Definition 2.2.56). The following proposition

formalises the identification between belts and band graphs, following a similar style of argument

to [All21, Prop 4.2.17].

3.1.13. Proposition. Any belt w : Z/nZ → Syll(A) represents a well-defined band graph,

and moreover w and its reflection both represent the same band graph. Furthermore, w and

its rotations represent the same band graph. Thus for any belt, there is at least one band

module represented by it.

Conversely, any band graph can be represented by a belt. Thus for any band module, there is

at least one belt to represent it.
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Proof. We first handle the forward implication. When p,q are syllables in w, we denote their

underlying paths (or equivalently their compressions) by p, q. Due to the definition of syllables

(Definition 2.3.29), these O-paths, p, q, belong to N −C (i.e. they are O-paths which correspond to

A-paths which non-zero and are not components). Since p,q are interior, p, q are non-stationary.

Thus p, q represent Q-paths whose A-residue is linearly independent of all other A-paths.

Each p, q can be viewed as a linear subgraph (◦ → ◦ → · · · → ◦) of O, where each arrow (resp.

vertex) canonically represents an arrow (resp. vertex) of Q, the ground quiver of A. This viewpoint

gives rise to quiver homomorphisms p → Q and q → Q. As belts do not contain blank syllables,

these homomorphisms always have non-empty domain. In particular, p, q are non-stationary

O-paths, so these linear subgraphs have at least one arrow and at least two vertices.

When p q is a peak, then the sources of p, q are distinct O-vertices but represent the same

Q-vertex. This means that these sources have the same image in the quiver homomorphism.

Thus, if we consider the disjoint union of the quiver homomorphisms p → Q and q → Q, we can

identify the sources of p, q to obtain another well-defined quiver homomorphism. If we continue to

assume that p q is a peak then the first arrows of p, q are distinct, thus the arrows of Q that

they represent must be distinct. Therefore, when we perform this identification of source vertices,

pairs of arrows in the domain with common sources are mapped to distinct arrows of Q by this

homomorphism.

The previous paragraph is still true if we perform the following replacements simultaneously:

“peak” by “valley”; “peak-neighbour(ing)” by “valley-neighbour(ing)”; “sources” by “targets” and;

“source vertex” by “sink vertex”.

By identifying all of these linear quivers at their source vertices or sink vertices, we obtain a quiver

G whose underlying graph is cyclic. This repeated identification preserves the property that pairs of

arrows in G whose common source (resp. target) is a source vertex (resp. sink vertex) are mapped

to distinct arrows of Q. Since we only identify source vertices with source vertices and sink vertices

with sink vertices, we also preserve the property that any maximal connected linear subquiver in

G represents an A-path that is non-zero and not a component (in the sense of Definition 2.3.5).

In other words, a maximal connected linear subquiver in G represents an A-path that is linearly

dependent of all other A-paths. Thus an arbitrary connected linear subquiver in G also represents

a non-zero non-component A-path too. In other words, any path in G represents a non-zero

non-component A-path, meaning condition (c) in Definition 2.2.49 holds. Hence all conditions in
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the definition of band graphs hold, so the first claim is proven.

The fact that reflections and rotations of belts preserve the band graph follows immediately, since

this construction is not affected by reflecting or rotating w.

We now turn our attention to the converse assertion. Let v : G→ Q be a band graph.

To each maximal connected linear subquiver Γ := (◦ x1−→ ◦ x2−→ · · · xl−→ ◦) of G, we associate an

A-path p := v(x1x2 . . . xl) which is linearly independent of all other A-paths. We now associate an

interior syllable syll(Γ) := ( ◦
p

◦
0
◦ ).

Choose one such maximal connected linear subquiver Γ0 of G. Let Γ1 be the maximal connected

linear subquiver of G sharing a sink vertex with Γ0 (by the definition of band graphs we know such

a Γ1 exists). Let Γ2 be the maximal connected linear subquiver of G sharing a source vertex with

Γ1 (by the definition of band graphs we know such a Γ2 exists). Let Γ3 be the maximal connected

linear subquiver of G sharing a sink vertex with Γ2. Continue this process iteratively until we

obtain a Γn−1 which shares a source vertex with Γ0 (we know this process will terminate since G is

a finite quiver).

For any k ∈ Z with 0 ≤ k ≤ n−1, define w(k+nZ) := syll(Γk)
(−1)k . (Note that the exponent (−1)k

is the orientation of the syllable.) This clearly gives a well-defined function w : Z/nZ → Syll(A).

We now show that w is also a well-defined belt. To do this, all that remains is to show the

peak/valley compatibility of adjacent syllables.

Potential peaks come from neighbouring subquivers Γk,Γk′ whose common vertex is a source vertex

of G. Because the two arrows incident to that source vertex have different images in v, we know

that syll(Γk) and syll(Γk′) are distinct and have their sources exchanged by † : O0 → O0. It follows

that each of these potential peaks is actually peak compatible.

A dual argument shows that all potential valleys are actually valley compatible.

We can now conclude that w is a well-defined belt, as claimed.

The fact that any band module has at least one belt representing it then follows immediately by

constructing the belt associated to its band graph.

Due to this identification between band graphs and belts, we will often use one in the place of

the other in various constructions. For example, we often use the notation Bnd(w,ψ) for a band

module associated to a belt, w, and a compatible indecomposable automorphism ψ : km → k
m.
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The next proposition follows immediately from the discussion in [WW85, Section 3].

3.1.14. Proposition. Let M ∈ mod-A be a band module represented by a belt of the form:

p1 p2 · · · · · · pn−1 pn

Then D(M) ∈ mod-Aop is a band module represented by a belt of the form:

pop
1 pop

2 · · · · · · pop
n−1 pop

n

where for pi = ( ◦
pi

◦
0
◦ )o ∈ Syll(A), we define pop

i := ( ◦
pop
i

◦
0
◦ )−o ∈

Syll(Aop).

Furthermore Tr(M) ≃ D(M) in modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-Aop, so can be represented by the same belt.

3.2 Syzygies of bandmodules

3.2.1 Patch covers of belts

In a similar way to the construction of [All21, Section 4.2.2], we relate belts and patches in a way

that mimics the projective covers of band modules.

Firstly, we refer back to Proposition 2.4.34, which tells us that there is a correspondence between

peaks and patches. As with strips (see Corollary 2.4.35), this gives us a way to associate an

arrangement of patches to belts.

3.2.1. Corollary. Any belt is the top row of a well-defined finite arrangement of patches.

Proof. We can partition a belt into a finite arrangement of peaks (possibly with one peak across

the wrapping). Each of these peaks is the top of some patch by the previous proposition, so we

obtain a finite set of patches.
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· · · · · ·

δ2 αβ βγ α βγ γα

δ γ α βγ α β

(a) Arrangement of patches from a belt.

e2

γ δ

γα δ2

γαβ

γ

α
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δ

e1

α β

αβ βγ

αβγ

α

β

γ

β

γ

α

e1

α β

αβ βγ

αβγ

α

β

γ

β

γ

α

(b) Corresponding projective module. Note that the first indecomposable projective corresponds to the
patch wrapping between the first and last columns.

Figure 3.7: An example of a patch cover of a belt. The top row of (a) is a belt representing the
band graph w. This determines the arrangement of patches in the rest of (a). This arrangement
then corresponds to the projective module in (b).

We can then use this association to construct a projective cover of a band module. This is analogous

to Proposition 2.4.36.

3.2.2. Proposition. If the belt w is the top row of a finite arrangement of patches, then

P(Bnd(w,ψ)) is the direct sum of the associated projectives, for any choice of indecomposable

automorphism ψ.

Proof. We know from Proposition 2.4.34 that to any peak of w we may associate a non-blank,

non-virtual patch. Since each such patch corresponds to an indecomposable projective Pi, each

peak corresponds to such a projective.

We know from the construction in Proposition 3.1.13 that the peaks of w correspond to

the source vertices in the corresponding band graph. These source vertices are a basis of

Bnd(w,ψ)/ rad(Bnd(w,ψ)), and each is fixed by exactly one primitive idempotent ej . Clearly i = j

for each peak of w and the result follows.
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3.2.3. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41, and let

w := 2 2 2 1 1 2 1 1 2 1 1 2
δ δ β α β γ α β γ α γ

be a band graph (with circled vertices identified as usual). Then P(Bnd(w,ψ)) is given in

Figure 3.7(b). This projective module is represented by the arrangement of patches in Figure 3.7(a),

where the top row is a belt which represents w.

3.2.4. Patch covers of belts. In analogue to the same construction for strips, we define the patch

cover P(w) of a belt w : Z/nZ→ Syll(A) to be the corresponding arrangement of patches given in

Corollary 3.2.1. Unlike with patch covers of strips, this arrangement is always finite (it consists of

n
2 patches), and never includes blank patches.

3.2.2 Syzygy algorithm for belts

We have now established that any belt w has a patch cover P(w). Unlike with patch covers of

strips, the bottom row of a patch cover of a belt will never contain virtual syllables (as w will never

contain boundary syllables, let alone pin-boundary syllables). However, with belts we also have the

complication of dealing with whether or not the syzygy of the corresponding band module is also

a band module, or is in fact a string module instead. A characterisation of when each case occurs

is given in the following proposition, which was originally stated in [HZ16, Prop 2.2], referencing a

(seemingly unpublished) Ph.D. thesis [Gal] for the proof. However, since this thesis can’t be found

in the literature, we refer to the first instance where the proofs can be found.

3.2.5. Proposition. [All21, Prop 5.1.15]

Let v be a primitive string graph and let v̂ be the corresponding bi-infinite power. Moreover,

let m ∈ Z+ and ψ and an indecomposable automorphism of km with companion matrix as in

Figure 2.4. Then the following statements are equivalent:

(a) The syzygy Ω1(Bnd(vm, ψ)) is a band module,

(b) The syzygy Ω1(Str(v̂)) is an indecomposable, infinite-dimensional string module,

(c) None of the indecomposable direct summands of P(Str(v)) is a string module; that is,

they are all pin.

If these conditions fail to be satisfied, then Ω1(Bnd(vm, ψ)) is a string module.
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We are now in a position to formalise the algorithm for calculating syzygies of band modules in

terms of belts, as previously discussed informally in Subsection 3.1.1. We need to split the handling

of this algorithm into two cases (based on whether or not the syzygy is a band module), and each

case has a simple example following it.

The proofs of these results follow the structure of [All21, Prop 4.2.24], which proves the analogous

result for strips.

3.2.6. Proposition. Suppose that M is a band module which is represented by a belt

w : Z/nZ → Syll(A) where all syllables p of w have bs(p) = 0 and p0 = w(0 + nZ) is

a negatively oriented syllable. Then Ω(M) is a band module represented by the belt

∇ ◦ w : Z/nZ→ Syll(A).

Proof. The fact that Ω(M) is a band module follows immediately from Proposition 3.2.5.

We split the remainder of the proof into two parts; first we show that ∇ ◦ w is indeed a belt, then

we show that it represents Ω(M).

Firstly, to show that ∇ ◦ w is a belt, it is sufficient to show that all its syllables are interior, and

that adjacent syllables are peak compatible or valley compatible as appropriate. The fact that all

the syllables of ∇ ◦ w are interior follows immediately from the condition that bs(p) = 0 for all

syllables p of w.

Consider a pair of adjacent syllables q q′ . To show that q,q′ are peak compatible (as required),

it suffices to show that s(q) = s(q′)†. This immediately follows from the fact that q = ∇p and

q′ = ∇p′ for some valley compatible p,p′.

Now consider a pair of adjacent syllables q q′ . To show that q,q′ are valley compatible (as

required), it suffices to show that q,q′ are interior, and that t(q) = t(q′)†. This immediately follows

from the fact that q = ∇p and q′ = ∇p′ for some peak compatible p,p′ where bs(p) = bs(p′) = 0.

Now, to show that ∇ ◦ w represents Ω(M), we show that there is a basis of the projective module

P(w) admitting a partition into a top and bottom part. The basis vectors of the bottom part

correspond to the basis of a band module represented by ∇ ◦ w, modulo which the basis vectors of

the top part give rise to a basis of M . The standard inclusion and projection maps of this basis of

P(w) therefore yield a short exact sequence

0→ Bnd(∇ ◦ w,ψ′)→ P(Bnd(w,ψ))→ Bnd(w,ψ)→ 0,
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p p′

q q′

Figure 3.8: Notation for syllables in the patch X.

so Ω(M) is a band module represented by a belt of the form ∇ ◦ w as required.

Before we begin constructing our basis, we let m ∈ Z+ be the largest divisor of n such that

w(i + n
m ) = w(i) for all i ∈ Z/nZ. Note that this corresponds naturally to the m that appears in

Lemma 2.2.54 when associating a positive integer to any band graph.

Now, as with the syzygy algorithm for strips, for an initial basis of P(Bnd(w,ψ)), we take the

disjoint union of the standard bases of its direct summands. We then alter this basis on a patch by

patch basis.

Let X be a patch in P(w). Write PX for the indecomposable projective A-module associated to

X. Let p,p′,q,q′ denote the syllables of X as in Figure 3.8. We denote the underlying paths (or

equivalently compressions) of p,p′ as p, p′. By the definition of interior syllables, both p and p′

are non-stationary paths in O. The paths comparable with p, p′ in the prefix order represent basis

vectors of PX . We divide these basis vectors into two parts: an upper part and a lower part.

In the upper part, we place all basis vectors represented by strict prefixes of p and p′. In the lower

part, we place all basis vectors represented by paths with p or p′ as a strict prefix. It just remains to

determine where to put the vectors represented by p and p′. How we handle these vectors depends

on where the patch under consideration fits into the patch cover of the belt.

We note that since all valleys of the belt are interior, p and p′ necessarily appear in valleys u p

and p′ u′ next to other interior syllables, u and u′, whose compressions we denote u and u′. Thus

we can consider how to handle the remaining basis vectors by considering them valley-by-valley.

The first case we handle is the valley consisting of pn−1 and p0, as we must treat it differently

to the others. Here we define x = pn−1 −
∑m

r=1 λrp n
m (r−1), replace {pn−1, p0} in the basis of

P(Bnd(w,ψ)) by {x, p0}, and then place p0 in the upper part and x in the lower part.

We now handle the remaining valleys, consisting of p2k−1 and p2k for k ∈ {1, . . . , n2 − 1}. In these

cases, we replace {p2k−1, p2k} in the basis of P(Bnd(w,ψ)) by {p2k−1 − p2k, p2k}, and then place

p2k in the upper part and p2k−1 − p2k in the lower part.
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Performing these changes for all valleys yields a well-defined, bi-partitioned basis for P(Bnd(w,ψ)).

The basis vectors of the lower part k-span an A-submodule of P(Bnd(w,ψ)). Note that the basis

vectors represented by x and the differences p2k−1− p2k together k-span the top of this submodule.

Also, each α ∈ Q1 annihilates at least one component of each of these differences and any vector

not so annihilated is mapped to a linear multiple of another vector in the lower part. The rest

of the lower basis vectors (those represented by paths with p, p′ as a strict prefix) are annihilated

by all A-arrows except (at most) one. It follows that the lower part is the standard basis for a

band module represented by the belt ∇ ◦ w (up to rescaling). Thus the lower basis vectors are the

basis for a submodule isomorphic to Bnd(∇◦w,ψ′), for some indecomposable automorphism ψ′, as

required.

Taking a quotient by all of the lower basis vectors except x, the underlying paths of neighbouring

interior syllables are identified. This gives us the standard basis for the string module in the

definition of Bnd(w,ψ). Adding x to the basis of the submodule we quotient by thus matches the

definition of Bnd(w,ψ) exactly. The result follows.

To aid in understanding, we now give a (relatively simple) example.

3.2.7. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Consider

the band module, M ∈ mod-A, associated to the primitive string graph

1

1

2

1

α β

γ

and the indecomposable automorphism 1 = ψ : k1 → k
1 (i.e. m = 1 and λ1 = 1). Then M is

represented by the belt

α βγ

Applying our algorithm from Proposition 3.2.6 shows that Ω(M) ∈ mod-A is a band module

represented by the belt

βγ α
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3.2.8. Proposition. Suppose that M is a band module which is represented by a belt

w : Z/nZ → Syll(A) where p0 = w(0 + nZ) is a positively oriented syllable with bs(p0) = 1.

Then Ω(M) is a string module, represented by a flattened family of strips s : Z→ Syll(A) of

the form:

s : Z −→ Syll(A)

k 7−→ s(k) =


∇
(
w(k + nZ)

)
if 0 ≤ k < n

( ) otherwise

where ( ) denotes the blank syllable.

Proof. By the peak compatibility condition in the definition of belts, we know that pn−1 = w((n−

1)+nZ) is a negatively oriented syllable with bs(pn−1) = 1. This means that the reflection of w also

meets the conditions required for this proposition. This symmetry will be helpful later in the proof.

The fact that Ω(M) is a string module follows immediately from Proposition 3.2.5.

We split the remainder of the proof into two parts; first we show that s : Z → Syll(A) is indeed a

flattened family of strips, then we show that it represents Ω(M).

Firstly, to show that s is a flattened family of strips, it is sufficient to show that adjacent syllables

are peak compatible or pseudo-valley compatible as appropriate.

Consider a pair of adjacent syllables q q′ . To show that q,q′ are peak compatible (as required),

it suffices to show that s(q) = s(q′)†. This immediately follows from the fact that q = ∇p and

q′ = ∇p′ for some valley compatible p,p′.

Now consider a pair of adjacent syllables q q′ . To show that q,q′ are pseudo-valley compatible

(as required), we must handle several cases differently.

If both q,q′ are blank, then they are valley compatible (not just pseudo-valley compatible).

We now handle the case where exactly one of the q,q′ is blank. This only occurs “at the edge” of

the row; i.e. when considering the potential valleys in cells −1 and 0 or in cells n − 1 and n. By

symmetry, we will only consider the “left edge”; the potential valley in cells −1 and 0 of s. Clearly,

s(−1) is a blank syllable, by definition of s. Since bs(p0) = 1, we know that s(0) = ∇(p0) is a

boundary syllable. Thus s(−1) and s(0) are valley compatible (not just pseudo-valley compatible).
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Next, we handle the case where q is interior and q′ is non-blank. For this case, we must show that

q′ is also interior, meaning the pair is valley compatible (not just pseudo-valley compatible). Since

neither is blank, q = ∇(p) and q′ = ∇(p′) for some peak compatible pair p and p′. Since q is an

interior syllable, it follows that bs(p) = 0. Now, as p and p′ are peak compatible, we know that

bs(p′) = 0, and thus q′ is also interior, as required.

Finally, we consider the case where q is a boundary syllable and q′ is non-blank. Here, we must

show that q′ is also a boundary syllable, as this is the only remaining option for the pair to be

pseudo-valley compatible (although not valley compatible). As in the previous case, since neither

is blank, q = ∇(p) and q′ = ∇(p′) for some peak compatible pair p and p′. Since q is a boundary

syllable, we know that bs(p) = 1. Now, as p and p′ are peak compatible, we know that bs(p′) = 1,

and thus q′ is also boundary, as required.

Now, to show that s represents Ω(M), we use the same method as Proposition 3.2.6. We split a

basis of P(w) into an upper and lower part, representing M and Ω(M) respectively.

As with the previous syzygy algorithms, we take an initial basis of P(Bnd(w,ψ)), as the disjoint

union of the standard bases of its direct summands. We then handle this basis working with each

patch separately, in exactly the same way as in Proposition 3.2.6.

The resulting lower part of the basis k-spans an A-submodule of P(Bnd(w,ψ)). Again, note that

the basis vectors represented by x and the differences p2k−1 − p2k together k-span the top of this

submodule. As before, each α ∈ Q1 annihilates at least one component of each of these differences

and any vector not so annihilated is mapped to a linear multiple of another vector in the lower

part. It follows that the lower part is a basis for the string module represented by the flattened

family of strips s.

It remains to show that the quotient by this submodule is isomorphic to Bnd(w,ψ). The logic for

this is identical to that in Proposition 3.2.6, but for completeness we include it here. Taking a

quotient by all of the lower basis vectors except x, the underlying paths of neighbouring interior

syllables are identified. This gives us the standard basis for the string module in the definition of

Bnd(w,ψ). Adding x to the basis of the submodule we quotient by thus matches the definition of

Bnd(w,ψ) exactly. The result follows.

93



CHAPTER 3. BELTS AND SYZYGIES OF BAND MODULES

To aid in understanding, we again give a (relatively simple) example.

3.2.9. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Consider

the band module, M ∈ mod-A, associated to the primitive string graph

2

2

1

1

2

δ γ

α

β

and the indecomposable automorphism 1 = ψ : k1 → k
1 (i.e. m = 1 and λ1 = 1). Then M is

represented by either of the following belts

δ γαβ δγαβ

Applying our algorithm from Proposition 3.2.8 to the right belt, shows that Ω(M) ∈ mod-A is a

string module represented by the flattened family of strips below (which is in fact an actual strip):

· · · · · ·
δes(γ)

3.2.10. Comparing the syzygy algorithm from Proposition 3.2.8 to the one for strips immediately

gives the following:

3.2.11. Corollary. Suppose that M is a band module, and M̂ the corresponding bi-infinite

string module. If Ω(M) is a direct sum of string modules then Ω(M̂) = ⊕i∈ZΩ(M).

Proposition 3.2.6 tells us about the belts that represent band modules which are syzygies. However,

it is not clear that all band modules represented by such a belt are themselves syzygies. To prove

this, we first note a useful lemma.

3.2.12. Lemma. Any valley q q′ where q,q′ ∈ im(∇) are interior syllables is the bottom

row of exactly one patch with interior syllables in both positions of the top row.

The projective associated to any such patch is a pin module.
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Proof. Since q ∈ im(∇), there exists p = ( s
l

◦
ε
◦ ) ∈ Syll(A) such that bs = 0

and q = ( s− (l + ε)
as − (l + ε)

◦
0
◦ ). By the definition of syllables and descent, p0 =

( s
l + ε

◦
0
◦ ) ∈ Syll(A) has ∇p0 = ∇p = q. Thus we assume without loss of generality that

p is an interior syllable.

Symmetrically, we know that there exists an interior syllable, p′ = ( s′
l′

◦
0
◦ ), such that

∇p′ = q′.

We now claim that

p p′

q q′

is a valid patch, and that it is the unique patch meeting the conditions of the lemma.

Firstly, to show that the patch is valid, all that remains is to show that p′ q′ is a valid peak,

since patches where both top syllables are interior are entirely determined by descent. This simply

requires showing that s† = s′. For the syllables p,q,p′,q′, let their compressions (or equivalently

underlying paths, since they are all interior) be denoted by p, q, p′, q′ respectively. By construction,

composing these O-paths gives pq = ( s
as

t(q) ) and p
′q′ = ( s′

as′

t(q′) ). Since q and q′

are valley compatible and interior, it follows that t(q)† = t(q′). Now, as bs = bs′ = 0, it follows that

pq and p′q′ are components that are swapped under the component exchange map † : C → C. It

follows that s† = s′, as required.

Now, to show that this is the unique patch meeting the conditions of the lemma, it is enough to

show that p is the unique interior syllable which maps to q under ∇ (showing the same for p′ and

q′ would then follow similarly). The reason that this is sufficient is a fact mentioned above; patches

where both top syllables are interior are entirely determined by descent.

So, suppose for contradiction that p0,p1 ∈ Syll(A) are interior syllables satisfying ∇p0 = q = ∇p1.

We denote the compressions of these syllables as p0, p1, q in the obvious way. Then (as previously

discussed above) both p0q and p1q are components ending at t(q). Thus p0q = p1q, as distinct

components can’t have the same target (or source). The result follows.
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3.2.13. Proposition. Suppose that M is a band module which is represented by a belt

w : Z/nZ→ Syll(A). Then the following conditions are equivalent:

(i) there exists Y ∈ mod-A such that Ω(Y ) ≃M in modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A,

(ii) there exists a band module Y ∈ mod-A such that Ω(Y ) ≃M in modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A,

(iii) w(k + nZ) ∈ im(∇) for all k ∈ Z.

Proof. Clearly (ii) =⇒ (i). The reverse implication follows from Theorem 2.2.58 and the fact that

syzygies of string modules are string modules by Proposition 2.2.48. The implication (ii) =⇒ (iii)

follows from the description of syzygies of band modules represented by belts in Proposition 3.2.6.

Thus it remains to show that (iii) =⇒ (ii).

We now assume that (iii) holds. By Lemma 3.2.12, for each valley of w, there exists a unique peak

formed of interior syllables where that peak is the top row of a patch with bottom row our valley.

The peak compatibility of the valleys of w immediately gives us the valley compatibility of the

peaks in the top row of these patches. Thus the top row of these patches give a well-defined belt

w′, where when we apply our syzygy algorithm to w′, we obtain w.

Consider the families of band modules represented by the belts w′ and w; call the former B′ and

the latter B. There are three key facts about B′ and B that we need to consider:

(a) The syzygy of any module in B′ is a module in B.

(b) The projective cover of any module in B′ is the direct sum of pin modules (and hence

injective).

Since D : mod-A → mod-Aop is exact, and the cosyzygy functor Ω−1 : mod-A → mod-A can be

written as DΩD = Ω−1, we have dual properties to the above

(c) The cosyzygy of any module in B is a module in B′.

(d) The injective hull of any module in B is the direct sum of pin modules (and hence projective).

Combining these properties, we see that for any module M ∈ B there exists a short exact sequence:

0→M → Q→ N → 0,

where Q is projective and injective, and where N ∈ B′. Hence Ω(N) ≃ M , as required to satisfy

(ii).
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This immediately gives the following:

3.2.14. Corollary. Suppose that a belt w represents a band module M ∈ mod-A where

M ≃ Ω(N) for some band module N ∈ mod-A. Then for any other band module M ′ ∈ mod-A

represented by the same belt, w, there exists a band module N ′ ∈ mod-A such that

M ′ ≃ Ω(N ′).

3.2.15. Remark. This corollary is very important when considering band modules which

are syzygies, particularly when calculating the delooping level of band modules, which we will

investigate further in Chapter 4. It allows us to consider these things entirely at the level of belts,

rather than handling the extra parameter involved in defining a band module.

We can also use the ideas of Proposition 3.2.13 to obtain a uniqueness result for band modules

which are syzygies.

3.2.16. Corollary. Suppose that M is a band module. If there is a band module N ∈ mod-A

such that Ω(N) ≃M in modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A, then this choice of N is unique up to isomorphism.

Proof. We keep the same notation from Proposition 3.2.13.

By applying properties (a)-(d), we see that for any module N ′ ∈ B′ there exists a short exact

sequence:

0→ N ′ → Q→M ′ → 0,

where Q is projective and injective, and where M ′ ∈ B. Hence N ′ ≃ Ω−1(Ω(N ′)). Since this did

not depend on N ′ ∈ B′, we know that the composition of maps Ω−1|B ◦ Ω|B′ is the identity map

on B′. This means that Ω|B′ : B′ → B must be injective.

Therefore any band module N ∈ mod-A with Ω(N) ≃M must be unique, as required.

3.2.17. Remark. Note that this result does not hold for string modules, as can be seen

immediately for our running example algebra (introduced in Paragraph 2.2.41). The simple module,

S2, corresponding to vertex 2 can be considered as a submodule of the projective P2 = e2A in

two obviously different ways; by mapping to the basis element corresponding to the path γαβ or

the basis element corresponding to δ2. Hence S2 can clearly be expressed as a syzygy of a string

module in (at least) two different ways.
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Chapter 4

Delooping level inspecialbiserial

algebras

In this chapter, we investigate delooping levels of string and band modules of special biserial

algebras. This involves using the constructions discussed so far for syzygies of string and

band modules in terms of their strips and belts (Propositions 2.4.38, 2.4.41, 3.2.6 and 3.2.8),

alongside the algorithms for calculating the transpose of these modules in terms of the same

(Propositions 2.4.30–2.4.32 and 3.1.14).

During discussions with Gélinas about delooping level, he mentioned that characterising the

functors ΩTr and Ωn for an algebra, A, and its opposite, Aop, is often enough to identify all the

A-modules with delooping level at most n (as Ωn+1Σn+1Ωn = Ωn(ΩTr)Ωn(ΩTr)Ωn is the main

functor in one of the equivalent definitions of delooping level, see Theorem 2.2.67). Gélinas has

already completed such a characterisation for radical-square-zero algebras in an unpublished set of

notes.

The first section of this chapter focuses on giving a characterisation of ΩTr for special biserial

algebras, within the formalism of strips and belts.

The second section then applies this understanding of ΩTr to obtain results about the delooping

levels of band and string modules. In particular, we give a new necessary condition for band

modules to have non-zero delooping level (Proposition 4.2.1), a sufficient condition for band modules

to have zero delooping level (Proposition 4.2.2), and a necessary and sufficient condition for simple

99



CHAPTER 4. DELOOPING LEVEL IN SPECIAL BISERIAL ALGEBRAS

non-projective modules to have non-zero delooping level (Lemma 4.2.4).

The original aim of this chapter was to build enough understanding of the combinatorial formalism

surrounding strips and belts to prove that SB algebras always have finite delooping level, as

conjectured by Huisgen-Zimmermann [HZ22, Section 4]. Unfortunately, we were not able to reach

this goal; however Chapter 5 uses the results of this chapter to prove that if an SB algebra, A,

satisfies rad3(A) = 0, then it must have finite delooping level.

4.1 Syzygy-transpose of string and bandmodules

4.1.1. Twisting. The following operation on syllables is denoted ▷◁A=▷◁ and called twisting. For

( s
l

◦
ε

t )
o ∈ Syll(A), we define

▷◁
(
( s

l

◦
ε

t )
o
)
:= ( sop

max(0, ct − (l + ε))

◦
1 − (ε − 1)(dt − 1)

◦ )o ∈ Syll(Aop).

4.1.2. Remark. Note that the twisting operation, ▷◁, preserves the orientation of syllables, and

that ▷◁ ( s
l

◦
ε

t )
o is a boundary syllable if and only if dt = 1 or ε = 1.

This twisting operation completely determines the behaviour of the functor ΩTr : modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A →

modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-Aop. We handle string modules (represented by strips) first.

4.1.3. Proposition. Let M be a non-projective string module of A represented by a strip of

the form:

· · · p1 p2 · · · · · · pn−1 pn · · ·

where p1,pn are boundary syllables, and p2, . . . ,pn−1 are interior syllables. (Note that p1,pn

may be stationary syllables.)

Then Ω(Tr(M)) is a string module of Aop represented by a flattened family of strips of the
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form:

· · · ▷◁ p1 ▷◁ p2 · · · · · · ▷◁ pn−1 ▷◁ pn · · ·

Proof. To handle all of the possible non-projective string modules of A, we will need to apply

Propositions 2.4.30–2.4.32. Thus we will split into the three cases that each of them handle:

(i) intwid(M) > 0 (i.e. n > 2),

(ii) intwid(M) = 0 (i.e. n = 2) and p1 ∈ supp(∇A),

(iii) intwid(M) = 0 (i.e. n = 2) and p1,p2 /∈ supp(∇A).

Case (i): intwid(M) > 0 (i.e. n > 2)

Let us denote the compression of each pi by pi, and the source and target of pi by si and ti

respectively. Let oi ∈ {1,−1} be the orientation of the syllable qi for each i ∈ {1, . . . , n}. By

Proposition 2.4.30, we know that Tr(M) is a string module represented by a strip of the form:

· · · q0 q1 q2 · · · · · · qn−1 qn qn+1 · · ·

where q3 = pop
3 , . . . ,qn−2 = pop

n−2, for i ∈ {0, 1, 2} the qi are defined as:

q0 :=


( (top1 )†

c
(t1)† + d

(t1)† − 1

◦
1

◦ ) if p1 ∈ supp(∇A)

( ) if p1 /∈ supp(∇A)

q1 :=


( top1

len(p1)

◦
0
◦ ) if p1 ∈ supp(∇A)

( ) if p1 /∈ supp(∇A)

q2 :=


pop
2 if p1 ∈ supp(∇A)

( top2

len(p2) − 1

◦
1
◦ ) if p1 /∈ supp(∇A)

and for i ∈ {n− 1, n, n+ 1}, the qi are defined symmetrically (see statement of Proposition 2.4.30

for explicit definitions).

We now note that when we are taking syzygies we compute “peak-by-peak”, that q2 and qn−1 are

never pin-boundary syllables, and that their compressions q2 and qn−1 are independent of which
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case their definitions fall into. Thus when computing the syzygy of Tr(M), columns 2 to n− 1 can

be computed by applying descent to the interior syllables pop
i . Now:

∇Aoppop
i = ∇Aop( topi

len(pi)

◦
0
◦ )−oi

= ( topi − len(pi)
cti − len(pi)

◦
dti

◦ )−oi

= ( si
cti − len(pi)

◦
dti

◦ )oi

=▷◁A pi

as required.

Thus it remains to verify that strip representing Ω(Tr(M)) agrees with the required form at both

ends of the strip. Since both ends are symmetrical, and the syzygy algorithm preserves this

symmetry, we will handle the left end and the right will follow by symmetry.

We now split into three subcases based on whether or not p1 belongs to supp(∇A) and the what

value of dt1 ∈ {0, 1} is.

First, suppose that p1 /∈ supp(∇A). Thus q0 and q1 are both blank syllables, so the patch

defined by them is the blank patch. In this case, the module defined by the strip is preserved

under adding the appropriate stationary syllable to the end (i.e., rounding off the strip). Since

p1 = ( s1
as1

+ bs1 − 1

◦
1

t1 ) we know that:

▷◁ p1 = ( sop1

max(0, ct1 − ((as1
+ bs1 − 1) + 1))

◦
1 − (1 − 1)(dt1 − 1)

◦ )

= ( sop1

max(0, ct1 − (as1
+ bs1 ))

◦
1

◦ )

= ( sop1
0

◦
1
◦ )

which is the stationary syllable required.

Now suppose instead that p1 ∈ supp(∇A) and dt1 = 0. Then q0 is a pin-boundary syllable, so the

syllable below it in the syzygy fabric is blank. This also implies that the syllable below q1 is given

by the perturbed syllable:

( sop1

ct1 − len(p1)

◦
1
◦ ) =▷◁ p1
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as required.

Now suppose instead that p1 ∈ supp(∇A) and dt1 = 1. Then q0 /∈ supp(∇A) so the syllable below

it in the syzygy fabric is blank. Since q0 is not pin-boundary, the syllable below q1 is given by:

∇Aopq1 = ( sop1

ct1 − len(p1)

◦
1
◦ ) =▷◁ p1

as required.

Thus we have shown that if M ∈ mod-A belongs to this case, then Ω(Tr(M)) is represented by a

strip of the required form.

Case (ii): intwid(M) = 0 (i.e. n = 2) and p1 ∈ supp(∇A)

Let us denote the compression of each pi by pi, and the source and target of pi by si and ti

respectively. By Proposition 2.4.31, we know that Tr(M) is a string module represented by a strip

of the form:

· · · q0 q1 q2 q3 · · ·

where qi are defined as follows:

q0 := ( (top1 )†
c
(t1)† + d

(t1)† − 1

◦
1

◦ )

q1 :=


( top1

len(p1)

◦
0
◦ ) if p2 ∈ supp(∇A)

( top1

len(p1) − 1

◦
1
◦ ) if p2 /∈ supp(∇A)

q2 :=


( top2

len(p2)

◦
0
◦ ) if p2 ∈ supp(∇A)

( ) if p2 /∈ supp(∇A)

q3 :=


( (top2 )†

c
(t2)† + d

(t2)† − 1

◦
1

◦ ) if p2 ∈ supp(∇A)

( ) if p2 /∈ supp(∇A)

We first note that the compression q1 of q1 is independent of which case their definition fall into.

Thus the lower row of the patch defined by q0,q1 is independent of which case the definition of q1
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falls into.

Therefore (as with the subcases for p1 ∈ supp(∇A) in case (i)), the syllable below q0 in the syzygy

fabric is always blank, and the syllable below q1 always takes the form:

( sop1

ct1 − len(p1)

◦
1
◦ ) =▷◁ p1

as required.

It now remains to show that the syllables below q2,q3 take the form required (possibly after

rounding off).

We first consider the case where p2 ∈ supp(∇A). This case can then be reflected and the same

logic applied as for p1 above. Hence the syllable below q3 is blank and the syllable below q2 always

takes the form:

( sop2

ct2 − len(p2)

◦
1
◦ ) =▷◁ p2

as required.

Now, instead consider the case where p2 /∈ supp(∇A). In this case, both q2 and q3 are blank

syllables, and thus the patch that they define is the blank patch. Then (as with the subcase for

p1 /∈ supp(∇A), we can round off the strip with the appropriate stationary syllable. As before, the

stationary syllable required is:

▷◁ p2 = ( sop2

max(0, ct2 − ((as2
+ bs2 − 1) + 1))

◦
1 − (1 − 1)(dt2

− 1)

◦ )

= ( sop2

max(0, ct2 − (as2 + bs2 ))

◦
1

◦ )

= ( sop2
0

◦
1
◦ ).

Thus we have shown that if M ∈ mod-A belongs to this case, then Ω(Tr(M)) is represented by a

strip of the required form.

Case (iii): intwid(M) = 0 (i.e. n = 2) and p1,p2 /∈ supp(∇A)

Since p1,p2 /∈ supp(∇)A, they can both be written in the form pi = ( si
asi

− 1

◦
1

ti ) (noting

that bsi = 0 for i = 1, 2 since M is non-projective). By Proposition 2.4.32, we know that Tr(M) is
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a string module represented by a strip of the form:

· · · q1 q2 · · ·

where q1 := ( top1

len(p1)

◦
1

(s1)
op ) and q2 := ( top2

len(p2)

◦
1

(s2)
op ).

Hence, by applying the syzygy algorithm for strips (and skipping the row with virtual syllables),

we observe that Ω(Tr(M)) ∈ mod-Aop is a string module represented by a strip of the form:

· · · e(s1)op e(s2)op · · ·

where as usual e(si)op := ( (si)
op

0

◦
1
◦ ) for i = 1, 2.

It now suffices to note that for i = 1, 2:

▷◁ pi = ( (si)
op

max(0, cti − ((asi
− 1) + 1))

◦
1 − (1 − 1)(0 − 1)

◦ )

= ( (si)
op

max(0, cti − asi
)

◦
1

◦ )

= ( (si)
op

0

◦
1
◦ ) as cti = asi when ti = si − asi and bsi = 0

= e(si)op

Thus we have shown that if M ∈ mod-A belongs to this case, then Ω(Tr(M)) is represented by a

strip of the required form.

4.1.4. Remark. We note at this point, that this characterisation of ΩTr for strips is considerably

nicer to work with than the characterisation of Tr for strips given in Propositions 2.4.30–2.4.32, as

we can work on a “syllable-by-syllable” basis. We also avoid having to split into cases based on the

interior width of the strip.

To describe Ω(Tr(M)) for band modules M ∈ mod-A is slightly more complicated, as the resulting

Aop-module could be a band module or a string module.
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4.1.5. Proposition. Let M be a band module of A represented by a belt, w, of the form:

p1 p2 · · · · · · pn−1 pn

where all syllables p of w have dt(p) = 0. Then Ω(Tr(M)) is a band module of Aop represented

by a band of the form:

▷◁ p1 ▷◁ p2 · · · · · · ▷◁ pn−1 ▷◁ pn

Proof. We first note that if p = ( s
l

◦
0

t )
o is an interior syllable, then:

∇Aop(pop) = ∇Aop(( top
l

◦
0

sop )−o)

= ( sop
ct − l

◦
dt

◦ )o =▷◁ p

Thus the result follows from the characterisation of the functors Tr and ΩAop on band modules

represented by belts, given in Propositions 3.1.14 and 3.2.6. (Note that we use the notation ct

instead of atop (resp. dt instead of btop) to avoid confusion with at (resp. bt).)

4.1.6. Proposition. Let M be a band module of A represented by a belt of the form:

p1 p2 · · · · · · pn−1 pn

where dt(p1) = 1. Then Ω(Tr(M)) is a string module of Aop represented by a flattened family

of strips of the form:

· · · ▷◁ p1 ▷◁ p2 · · · · · · ▷◁ pn−1 ▷◁ pn · · ·

Proof. As noted in the proof of Proposition 4.1.5, if p is an interior syllable, then ∇Aop(pop) =▷◁ p.
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Thus the result follows from the characterisation of the functors Tr and ΩAop on band modules

represented by belts, given in Propositions 3.1.14 and 3.2.8. (Again, note that we use the notation

ct instead of atop (resp. dt instead of btop) to avoid confusion with at (resp. bt).)

These characterisations of ΩTr(M) give the following:

4.1.7. Proposition. A non-projective string module M has M ≃ ΩΣ(M) if and only if

ΩTr(M) is not projective and all syllables p of a strip representingM have ▷◁Aop (▷◁A (p)) = p.

Similarly, a band module M has M ≃ ΩΣ(M) if and only if ΩTr(M) is not projective and all

syllables p of a belt representing M have ▷◁Aop (▷◁A (p)) = p.

Proof. This follows immediately from the fact that ΩΣ = (ΩTr)(ΩTr).

We now aim to understand the syllables p ∈ Syll(A) where ▷◁Aop (▷◁A (p)) = p.

4.1.8. Proposition. For a syllable p = ( s
l

◦
ε

t ) of A, ▷◁Aop (▷◁A (p)) = p if and

only if one of the following mutually exclusive conditions holds:

(a) ε = 0 and dt = 0,

(b) ε = 1 and l = 0,

(c) ε = 1, l > 0 and max(l + 1, ct) = at+1+max(l+1,ct).

Proof. Let p = ( s
l

◦
ε

t ). We say that (⋆) is satisfied if ▷◁Aop (▷◁A (p)) = p.

Case 1: p is interior, i.e. ε = 0

Since ( s
l

t ) is a non-zero path, we know that ct ≥ l and thus ▷◁A p = ( sop
ct − l

◦
dt

◦ ).

Suppose that dt = 1. Since ▷◁Aop sends boundary syllables to boundary syllables, this implies that

▷◁Aop (▷◁A (p)) ̸= p, so (⋆) is not satisfied.
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Now suppose that dt = 0. Thus:

▷◁Aop (▷◁A (p)) = ( s

a(sop−(ct−l))op − (ct − l)

◦
b(sop−(ct−l))op

◦ )

= ( s

as+(ct−l) − (ct − l)

◦
bs+(ct−l)

◦ )

= ( s

at+ct − ct + l

◦
bt+ct

◦ )

= ( s
l

◦
0
◦ )

where the last equality follows from the fact that when dt = 0, we have at+ct = ct and bt+ct = dt = 0.

Hence (⋆) is satisfied.

Thus we have proved both directions of the equivalence in this case.

Case 2: p is a stationary syllable, i.e. ε = 1 and l = 0

Then ▷◁A p = ( sop
max(0, ct − 1)

◦
1

sop −max(1, ct) ). Thus:

▷◁Aop (▷◁A (p)) = ( s

max(0, csop−max(1,ct)
− max(0, ct − 1) − 1)

◦
1

◦ )

= ( s

max(0, as+max(1,ct)
− max(1, ct))

◦
1

◦ )

Hence:

(⋆) ⇐⇒ 0 = max(0, as+max(1,ct) −max(1, ct))

⇐⇒ 0 ≥ as+max(1,ct) −max(1, ct)

⇐⇒ max(1, ct) ≥ as+max(1,ct)

⇐⇒ max(1, ct) ≥ at+1+max(1,ct)

⇐⇒ 1 + max(1, ct) > at+(1+max(1,ct))

Since 1 + max(1, ct) > ct, the final equivalent condition in this chain follows from Lemma 2.3.13.

Hence (⋆) is always satisfied in this case, as required.

108



4.1. SYZYGY-TRANSPOSE OF STRING AND BAND MODULES

Case 3: p is a non-stationary boundary syllable, i.e. ε = 1 and l > 0

Then:

▷◁A p = ( sop

max(0, ct − (l + 1))

◦
1

sop −max(0, ct − (l + 1))− 1 )

= ( sop

max(0, ct − (l + 1))

◦
1

sop −max(1, ct − l) )

Thus:

▷◁Aop (▷◁A (p)) = ( s

max(0, csop−max(1,ct−l) − max(0, ct − (l + 1)) − 1)

◦
1

◦ )

= ( s

max(0, csop−max(1,ct−l) − max(1, ct − l))

◦
1

◦ )

So (⋆) is satisfied if and only if l = max(0, csop−max(1,ct−l) −max(1, ct − l)). Hence, in this case:

(⋆) ⇐⇒ l = max(0, csop−max(1,ct−l) −max(1, ct − l))

⇐⇒ l = csop−max(1,ct−l) −max(1, ct − l) as l > 0

⇐⇒ l +max(1, ct − l) = as+max(1,ct−l)

⇐⇒ max(l + 1, ct) = as−l+max(l+1,ct)

⇐⇒ max(l + 1, ct) = at+1+max(l+1,ct)

Thus the required equivalence in this case has been shown.

4.1.9. Remark. Note that condition (c) of Proposition 4.1.8 can be split into:

(i) ε = 1, l > 0, l + 1 ≤ ct and ct = at+1+ct ,

(ii) ε = 1, l > 0, l + 1 > ct and l + 1 = at+l+2.

Further note that for a syllable p = ( s
l

◦
1

t ), if l + 1 > ct, then ( s
l + 1

t ) is not a

non-zero O-path. But we know that ( s
l
◦ ) is a non-zero O-path, which implies that l = as.

Thus l + 1 > ct implies that p /∈ supp(∇) and is of the form ( s
as

◦
1
◦ ) for some vertex s

of O with bs = 1.

Therefore, in most instances condition (c) in Proposition 4.1.8 reduces to (i) above.
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( ◦
α

◦
0
◦ ), ( ◦

γ

◦
0
◦ ), ( ◦

γα

◦
0
◦ ), ( ◦

βγ

◦
0
◦ ),

( ◦
es(α)

◦
1
◦ ), ( ◦

es(β)

◦
1
◦ ), ( ◦

es(γ)

◦
1
◦ ), ( ◦

es(δ)

◦
1
◦ ),

( ◦
α

◦
1
◦ ), ( ◦

β

◦
1
◦ ), ( ◦

γ

◦
1
◦ ), ( ◦

δ

◦
1
◦ ),

( ◦
αβ

◦
1
◦ ), ( ◦

βγ

◦
1
◦ ), ( ◦

γα

◦
1
◦ ).

Figure 4.1: List of syllables satisfying ▷◁Aop (▷◁A (p)) = p for our running example algebra.
As usual, we suppress mention of the orientations, since they don’t impact this property.
The first row consists of syllables that meet condition (a), the second row consists of syllables
that meet condition (b) (the stationary syllables), and the remainder are the syllables that meet
condition (c). Note that none of the syllables for the running example algebra meet condition (ii)
discussed in Remark 4.1.9.

4.1.10. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41, and

O its overquiver. The only vertices i of O with di = 0 are s(α) = t(γ) and s(β) = t(α). All

vertices i of O satisfy ai+ci+1 = ci. It follows that the complete list of syllables, p, satisfying

▷◁Aop (▷◁A (p)) = p is given in Figure 4.1.

Our running example then illustrates the following lemma as well.

4.1.11. Lemma. Suppose C is a connected component of O where ai+(ci+1) = ci for all i ∈ C.

Then ci is constant for i ∈ C, and ai = ci for all i ∈ C.

Proof. By Proposition 2.3.15, it is enough to prove that ci is constant for i ∈ C.

Suppose to the contrary that ci is not constant for i ∈ C. Then there exists i0 ∈ C such that

ci0 > ci0+1. Since ci0 ≤ ci0+1 + di0+1, we have di0+1 = 1 and ci0 = ci0+1 + 1.

Then

ci0 = ai0+(ci0+1) = ai0+(ci0+1+2) = a(i0+1)+(ci0+1+1) = ci0+1 ̸= ci0 ,

which is clearly a contradiction.

Since Proposition 4.1.7 allows us to characterise M ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A which satisfy M ≃ ΩΣ(M), we can

use this result to characterise M ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A where M ≃ ΣΩ(M).
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First, we prove a small lemma that allows us to simplify the statement of our upcoming

characterisation significantly.

4.1.12. Lemma. Let i be a vertex of the overquiver, O. Then

max(ci + di, ai+ci+di
) = ci+ci+di−1−max(ci+di,ai+ci+di

)

if and only if either di = 1 or ci = ci−1.

Proof. First, we handle the case where di = 1. In this case we need to show that:

max(ci + 1, ai+ci+1) = ci+ci−max(ci+1,ai+ci+1).

Since Lemma 2.3.13 gives us that ci + 1 < ai+ci+1, this condition simplifies to:

ai+ci+1 = ci+ci−ai+ci+1
.

Now, define j := i + ci + 1 ∈ O and k := ci − ai+ci+1 ∈ Z. Then Lemmas 2.3.12 and 2.3.13

respectively give:

ai+ci+1 = ci − k ≤ ci+k = ci+ci−ai+ci+1

ai+ci+1 + 1 = aj + 1 > cj−(aj+1) = ci+ci+1−ai+ci+1−1 = ci+ci−ai+ci+1

Which (since all values in these inequalities are integers), immediately implies ai+ci+1 =

ci+ci−ai+ci+1
, as required.

Now we handle the case where di ̸= 1 (i.e. di = 0) and ci = ci − 1. Since we have assumed that

di = 0, our original condition simplifies to:

max(ci, ai+ci) = ci+ci−1−max(ci,ai+ci
).

Now, Lemma 2.3.12 gives us that ci ≥ ai+ci , so this condition simplifies to:

ci = ci+ci−1−ci ,

which is clearly equivalent to ci = ci−1, as required.
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We are now in a position to prove our characterisation.

4.1.13. Proposition. We say that a vertex i of O satisfies condition ♣ if either di = 1 or

ci = ci−1. A non-projective string module M has M ≃ ΣΩ(M) if and only if it is represented

by a strip w where each peak p1 p2 of w meets one of the following mutually exclusive

conditions (possibly after the peak is reflected):

(i) p1,p2 are both interior, and bs(p1) = bs(p2) = 0;

(ii) p1 ∈ supp(∇A) is boundary, p2 is interior, bs(p1) = bs(p2) = 0, and t(p1)
† satisfies

condition ♣;

(iii) p1 /∈ supp(∇A) is boundary, p2 is interior, and as(p2) = cs(p2)−1−as(p2)
;

(iv) p1,p2 ∈ supp(∇A) are both boundary, bs(p1) = bs(p2) = 0 and t(p1)
†, t(p2)

† both satisfy

condition ♣;

(v) p1 ∈ supp(∇A),p2 /∈ supp(∇A) are both boundary, as(p1) = cs(p1)−1−as(p1)
and t(p1)

†

satisfies condition ♣;

(vi) p1,p2 /∈ supp(∇A) are both boundary, and as(pj) = cs(pj)−1−as(pj)
for j = 1, 2.

Proof. By Lemma 2.2.70, it is sufficient to characterise string modules M where Tr(M) satisfies the

conditions of Proposition 4.1.7.

Since the conditions of Proposition 4.1.7 are based entirely on the syllables present in a strip, it is

sufficient to characterise when the syllables of a strip representing Tr(M) meet these conditions.

Since the construction for Tr(M) given in Propositions 2.4.30–2.4.32 can be considered as a “peak-

by-peak” operation on M , it is sufficient to characterise which peaks of a strip, w, representing M

result in syllables of a strip w′ representing Tr(M) meeting the necessary conditions. Since this

operation is compatible with reflection, we can consider these peaks up to reflection, reducing the

number of cases we have to consider.

When considering these peaks, we split into cases based on the number of interior and boundary

syllables, and whether any of the boundary syllables belong to supp(∇A) or not. We will denote

the syllables in this peak by p1 and p2, and their compressions by p1 and p2 respectively. We then

denote the sources and targets of the compressions respectively by si and ti for i ∈ {1, 2}.

Case (i): p1,p2 are both interior.

In this case, we apply the construction of Proposition 2.4.30. By this construction, this peak
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of w results in a valley q1 q2 of w′, where q1 = pop
1 and q2 = pop

2 . It is clear that these

fit the conditions of Proposition 4.1.8 if and only if dt(q1) = dt(q2) = 0. This is equivalent to

bs(p1) = bs(p2) = 0.

Thus we have shown that the stated conditions are sufficient and necessary in this case.

Case (ii): p1 ∈ supp(∇A) is boundary and p2 is interior.

In this case, we apply the construction of Proposition 2.4.30. By this construction, this peak of w

results in an arrangement of syllables q0 q1 q2 in w′, where q0 = ( (top1 )†
c
(t1)† + d

(t1)† − 1

◦
1

◦ ),

q1 = ( top1

len(p1)

◦
0

sop1
) and q2 = pop

2 .

The interior syllables q1 and q2 meet the conditions of Proposition 4.1.8 if and only if

dt(q1) = dt(q2) = 0. This is equivalent to bs(p1) = bs(p2) = 0.

If c(t1)† = 0, then q0 is stationary, and thus always meets the conditions of Proposition 4.1.8.

On the other hand, if c(t1)† > 0, then q0 is not stationary, and meets the conditions of

Proposition 4.1.8 if and only if

max(c(t1)† + d(t1)† , c(top1 )†−c
(t1)†−d

(t1)†
) = a(top1 )†−c

(t1)†−d
(t1)†+1+max(c

(t1)†+d
(t1)† ,c(top1 )†−c

(t1)†−d
(t1)†

)

Converting from Aop encoding to A encoding gives the following equivalent condition:

max(c(t1)† + d(t1)† , a(t1)†+c
(t1)†+d

(t1)†
) = c(t1)†+c

(t1)†+d
(t1)†−1−max(c

(t1)†+d
(t1)† ,a(t1)†+c

(t1)†+d
(t1)†

)

By Lemma 4.1.12, this is equivalent to condition ♣ for (t1)
†.

Thus we have shown that the stated conditions are sufficient and necessary in this case.

Case (iii): p1 /∈ supp(∇A) is boundary and p2 is interior.

In this case, we apply the construction of Proposition 2.4.30. By this construction, this peak of w

results in the single syllable q2 in w′, where q2 = ( top2

len(p2) − 1

◦
1

sop2
).

The boundary syllable q2 meets the conditions of Proposition 4.1.8 if and only if

max(len(p2), csop2 ) = asop2 +1+max(len(p2),csop2
).
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Switching from the encoding for Aop to the encoding for A gives the equivalent condition

max(len(p2), as2) = cs2−1−max(len(p2),as2 )
.

Since p2 is interior, we know that p2 ∈ supp(∇A). It follows that len(p2) < as2 + bs2 , and thus that

len(p2) ≤ as2 . Therefore we can simplify the equivalent condition to

as2 = cs2−1−as2
.

Thus we have shown that the stated conditions are sufficient and necessary in this case.

Case (iv): p1,p2 ∈ supp(∇A) are both boundary.

In this case, we apply the construction of Proposition 2.4.31. By this construction, this peak of w

results in a pair of peaks q0 q1 q2 q3 in w′, where

q0 = ( (top1 )†
c
(t1)† + d

(t1)† − 1

◦
1

◦ )

q1 = ( top1

len(p1)

◦
0

sop1
)

q2 = ( top2

len(p2)

◦
0

sop2
)

q3 = ( (top2 )†
c
(t2)† + d

(t2)† − 1

◦
1

◦ ).

By the same logic as case (ii), q0 satisfies the conditions of Proposition 4.1.8 if and only if

max(c(t1)† + d(t1)† , a(t1)†+c
(t1)†+d

(t1)†
) = c(t1)†+c

(t1)†+d
(t1)†−1−max(c

(t1)†+d
(t1)† ,a(t1)†+c

(t1)†+d
(t1)†

),

which, by Lemma 4.1.12, is equivalent to condition ♣ for (t1)
†.

Similarly, q3 satisfies the conditions of Proposition 4.1.8 if and only if (t2)
† satisfies condition ♣.

Now, for the interior syllables q1 and q2, they satisfy the conditions of Proposition 4.1.8 if and only

if dt(q1) = dt(q2) = 0. This is equivalent to bs(p1) = bs(p2) = 0.

Thus we have shown that the stated conditions are sufficient and necessary in this case.
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Case (v): p1 ∈ supp(∇A),p2 /∈ supp(∇A) are both boundary.

In this case, we apply the construction of Proposition 2.4.31. By this construction, this

peak of w results in a peak q0 q1 in w′, where q0 = ( (top1 )†
c
(t1)† + d

(t1)† − 1

◦
1

◦ ) and

q1 = ( top1

len(p1) − 1

◦
1

sop1
).

By the same logic as case (ii), q0 satisfies the conditions of Proposition 4.1.8 if and only if

max(c(t1)† + d(t1)† , a(t1)†+c
(t1)†+d

(t1)†
) = c(t1)†+c

(t1)†+d
(t1)†−1−max(c

(t1)†+d
(t1)† ,a(t1)†+c

(t1)†+d
(t1)†

),

which, by Lemma 4.1.12, is equivalent to condition ♣ for (t1)
†.

The boundary syllable q1 meets the conditions of Proposition 4.1.8 if and only if

max(len(p1), csop1 ) = asop1 +1+max(len(p1),csop1
).

Switching from the encoding for Aop to the encoding for A gives the equivalent condition

max(len(p1), as1) = cs1−1−max(len(p1),as1
).

Since p1 ∈ supp(∇A), it follows that len(p1) < as1 + bs1 , and thus that len(p1) ≤ as1 . Therefore we

can simplify the equivalent condition to

as1 = cs1−1−as1
.

Thus we have shown that the stated conditions are sufficient and necessary in this case.

Case (vi): p1,p2 /∈ supp(∇A) are both boundary.

In this case, we apply the construction of Proposition 2.4.32. By this construction, this

peak of w results in a peak q1 q2 in w′, where q1 = ( top1

len(p1) − 1

◦
1

sop1
) and q2 =

( top2

len(p2) − 1

◦
1

sop1
).

As discussed in Proposition 2.4.32, since M is non-projective, it follows that bsi = dti = 0 for

i = 1, 2, and that asi = cti > 1. Since pi /∈ supp(∇A), len(pi) = asi > 1. Hence qi is not stationary

for i = 1, 2.
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Therefore, for i = 1, 2, qi meets the conditions of Proposition 4.1.8 if and only if:

max(len(pi), csopi ) = asopi +1+max(len(pi),csop
i

).

Switching from the encoding for Aop to the encoding for A gives the equivalent condition

max(len(pi), asi) = csi−1−max(len(pi),asi
).

Since (as discussed above) len(pi) = asi , we can simplify this condition to:

asi = csi−1−asi
.

Thus we have shown that the stated conditions are sufficient and necessary in this case.

4.1.14. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41, and O

its overquiver. The only vertices i of O with bi = 0 are s(α) = t(γ) and s(β) = t(α). Since ai = ci

for all vertices i of O, and they are constant on connected components, all vertices i of O satisfy

both ♣ and ai = ci−1−ai
. It follows that the complete list of peaks of A satisfying the conditions of

Proposition 4.1.13 is given in Figure 4.2.

4.1.15. Proposition. A band module M has M ≃ ΣΩ(M) if and only if it is represented by

a belt w where all syllables p of w have bs(p) = 0.

Proof. By Lemma 2.2.70, it is sufficient to characterise band modules M where Tr(M) satisfies the

conditions of Proposition 4.1.7. Now, by Proposition 3.1.14 and Proposition 4.1.8, the result follows

(noting that we use the notation bs(p) rather than ds(p)op to avoid confusion).

Combining Proposition 4.1.15 with our construction for syzygies of belts immediately gives:

4.1.16. Corollary. A band module M has M ≃ ΣΩ(M) if and only if Ω(M) is also a band

module.
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α β αβ β α βγ αβ βγ

es(α) β es(α) βγ es(β) α es(β) αβ

α β α βγ β α β αβ

αβ β αβ βγ βγ α βγ αβ

γαβ δ γαβ δ2 δ2 γ δ2 γα

δ2 γαβ

es(α) es(β) α es(β) es(α) β α β

es(β) αβ β αβ es(α) βγ α βγ

es(δ) γβα δ γβα es(γ) δ2 γ δ2

γα δ2 αβ βγ

Figure 4.2: List of peaks satisfying the conditions of Proposition 4.1.13 for our running example
algebra. We only list the peaks up to reflection. The first row consists of peaks that meet condition
(i). The second and third rows consist of peaks that meet condition (ii). The fourth, fifth and
sixth rows consist of peaks that meet condition (iii). The seventh row consists of peaks that meet
condition (iv). The eight and ninths rows, along with the left of the tenth row consists of peaks
that meet condition (v). The right of the tenth row is the only peak meeting condition (vi) (noting
that we have excluded strips representing projective string modules).
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This in itself gives a new characterisation of band modules M with M ≃ ΩΣ(M).

4.1.17. Corollary. A band module M has M ≃ ΩΣ(M) if and only if Σ(M) is also a band

module.

Proof. Suppose first that M ≃ ΩΣ(M). Then Tr(Tr(M)) ≃ ΩΣ(Tr(Tr(M))), and so Tr(M) ≃

ΣΩ(Tr(M)), by Lemma 2.2.70. Since M is a band module, so is Tr(M). Thus we can apply

Corollary 4.1.16, showing that Ω(Tr(M)) is a band module. Hence Σ(M) = TrΩTr(M) is a band

module, as required.

For the second implication, suppose that Σ(M) = TrΩTr(M) is a band module. Thus ΩTr(M) is a

band module too. Thus we can apply Corollary 4.1.16, showing that Tr(M) ≃ ΣΩ(Tr(M)). Hence,

by Lemma 2.2.70, we know that Tr(Tr(M)) ≃ ΩΣ(Tr(Tr(M))). ThusM ≃ ΩΣ(M), as required.

4.2 Delooping level of band and stringmodules

We first investigate the delooping level of band modules, as Corollary 3.2.16 makes it easier to

understand when they are syzygies, since there is at most one way of expressing a band module as

a syzygy.

4.2.1. Proposition. Suppose that M is a band module with dell(M) = n > 0. Then Ωn(M)

is a string module.

Proof. Suppose to the contrary that Ωn(M) is a band module. Then Ωk(M) is a band module for

all 0 ≤ k ≤ n. Thus

ΣnΩn(M) = Σn−1(ΣΩ(Ωn−1(M))) ≃ Σn−1(Ωn−1(M))

= Σn−2(ΣΩ(Ωn−2(M))) ≃ Σn−2(Ωn−2(M))

= · · ·

= ΣΩ(M) ≃M

by repeated application of Corollary 4.1.16.

We now handle two cases separately, based on whether Σ(M) is a band module or a string module.
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Case 1: Σ(M) is a band module

Then, by Corollary 4.1.17, M ≃ ΩΣ(M). Therefore dell(M) = 0, which is a contradiction.

Case 2: Σ(M) is a string module

Thus Ωn+1Σ(M) ≃ Ωn+1Σn+1Ωn(M) is a string module (where this stable isomorphism follows

from the above chain of equalities and stable isomorphisms). Since Ωn(M) is a stable retract of

Ωn+1Σn+1Ωn(M), it is also a string module. This contradicts our initial assumption.

4.2.2. Proposition. Let ΦA be the pin graph of A. Let l be the number of arrows in the

largest acyclic component of ΦA. Let M be a band module, represented by a belt w. Suppose

that Ω2l+2(M) also a band module. Then there exists k ∈ Z+ where Ωk(M) is represented by

w, and we have dell(M) = 0.

Proof. Let w be a belt representing M . Since Ω2l+2(M) is a band module, so is Ωk(M) for all

0 ≤ k ≤ 2l+2. Thus ∇k(p) is an interior syllable for all 0 ≤ k ≤ 2l+2, when p is any syllable of w.

Since ∇k(p) is an interior syllable for all 0 ≤ k ≤ 2l+ 2, the Q-vertices corresponding to the source

and target of p both lie on paths of length l + 1 on the pin graph ΦA. Thus these vertices must lie

on cyclic components of ΦA, and by Proposition 2.3.47, we know that the length of those cycles are

the same, l′, and that ∇2l′(p) = p. Note that this length, l′, is the same for all syllables of w, and

that for each syllable p of w, ∇k(p) is an interior syllable for all k ∈ N.

It follows that Ωk(M) is a band module for all k ∈ N, and that Ω2l′(M) is represented by w. By

Corollary 3.2.14, since w represents both M and Ω2l′(M), this means that M ∈ Ω(mod-A), and

thus dell(M) = 0.

4.2.3. Proving results that involve the delooping level of string modules is more difficult than for

band modules. This is due to the fact that, in general, a string module M may be expressed as a

summand of a syzygy in non-trivially different ways. To be more precise, for an indecomposable

string module M , there may be non-isomorphic indecomposable modules Y1, Y2 such that M is a

summand of both Ω(Y1) and Ω(Y2) (see Remark 3.2.17 for an example of this). This is not the case

for band modules, by Corollary 3.2.16.

4.2.4. Lemma. Let A be an SB algebra, and S a simple A-module which is not projective.

Then dell(S) ̸= 0 if and only if ΩTr(S) ≃ 0 ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-Aop.
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Proof. Let w be a strip representing S of the form:

· · · ei ei† · · ·

where ei, ei† are the stationary syllables corresponding to the two O-vertices associated to the

simple S.

Suppose that ΩTr(S) ≃ 0. Then ΩΣ(S) = (ΩTr)2(S) ≃ 0. Since S is not projective, it is not a

stable retract of 0, and thus dell(S) ̸= 0, as required.

Now instead suppose that ΩTr(S) ̸≃ 0. Then by Proposition 4.1.3, we know that (ΩTr)2(S) is a

string module represented by the strip:

· · · ▷◁2 (ei) ▷◁2 (ei†) · · ·

By Proposition 4.1.8(b), we know that all stationary syllables satisfy ▷◁2 ej = ej , so S ≃

(ΩTr)2(S) ≃ ΩΣ(S). Hence dell(S) = 0, as required.

4.2.5. Remark. We had originally hoped that characterising the behaviour of ΩTr on string and

band modules would immediately lead to a much better understanding of the delooping levels of

these modules when combined with the construction for computing syzygies. Unfortunately, this

has not turned out to be the case, but it turns out that this characterisation is useful when you

restrict to the radical-cube-zero case (as we will discuss in Chapter 5) and is also useful in better

understanding Gorenstein-projective modules for SB algebras (as we will discuss in Chapter 6).

If better understanding can be achieved of when pin-boundary syllables can appear in a syzygy

fabric (and thus when perturbation can occur), then we would expect this representation of Ω and

ΩTr in terms of descent and twisting would be useful in working towards a general bound on the

delooping level of SB algebras.
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Chapter 5

Radical-cube-zerospecialbiserial

algebras

For this chapter, we focus our attention on radical-cube-zero special biserial algebras. As you would

expect, these have a much simpler combinatorial structure than general special biserial algebras.

For example, when considering the source encoding of such an algebra, bi = 0 =⇒ ai = 2 for

i ∈ O. This is a dramatic simplification of the combinatorial structure compared to more general

special biserial algebras.

If we instead restricted to radical-square-zero algebras, then these algebras would necessarily

be string algebras (as they could have no pin modules), and would have much less interesting

properties. For example, the interior width of any summand of a syzygy would always be zero. Thus

radical-cube-zero algebras are the simplest case where we get interesting structures of syzygies.

The fact that these algebras have a simpler combinatorial structure than a general SB algebra

makes them easier to study, allowing the building of intuition when working on problems for the

more general case. For example, Huisgen-Zimmermann conjectures that the delooping levels of

SB algebras are always finite [HZ22, Section 4]. The following is a joint result of Goodearl and

Huisgen-Zimmermann that shows that this is true for radical-cube-zero algebras:
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Theorem. [HZ22, Thm 4] If A is an SB algebra with rad3(A) = 0, then dell(A) <∞.

(Note that only the statement of this theorem has been published by Goodearl and Huisgen-

Zimmermann; therefore we can’t compare the methods used in their proof to those we use in this

chapter.)

The first section of this chapter shows that in fact, such SB algebras are syzygy-finite or

self-injective, which immediately implies the above theorem. This is achieved by bounding the

interior width of syzygies of sufficiently high degree (over non-self-injective algebras).

The second section of this chapter builds on this by constructing explicit bounds for the delooping

level of a radical-cube-zero SB algebra, based on the number of indecomposable projective modules

and the number of pin modules (both up to isomorphism). We also conjecture a strict upper bound

for these delooping levels.

Throughout, we will often refer to the condition that the regular module AA is not a direct sum of

pin modules. Note that if an algebra fails to meet this condition then we know that AA is injective,

and thus that A is a self-injective algebra; however, the reverse implication does not hold, as some

SB algebras have uniserial projective injective modules, which are immediately not pin.

5.1 Syzygy-finiteness

We first prove a lemma that will be particularly useful when applied to radical-cube-zero special

biserial algebras.

5.1.1. Lemma. Suppose that A is a connected SB algebra where the regular module AA is

not a direct sum of pin modules. Let k be the number of indecomposable projective A-modules

that are pin. Let Q be the underlying sub-2-regular quiver of A, and v0 be any vertex of Q.

For i ∈ Q0, let npl(i) denote the length of the shortest oriented path from i to a vertex whose

corresponding indecomposable projective is not pin (the “non-pin length”). Then npl(v0) ≤ k

for all vertices v0 of Q.

In other words, for any vertex v0 of Q, there is a path starting at v0 of length at most k,

which ends at a vertex whose corresponding indecomposable projective is not pin.
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Proof. For all i ≥ 0, let

Vi := {v ∈ Q0 : there is an oriented path from v0 to v of length at most i}.

Then V0 = {v0} and Vi ⊆ Vi+1 ⊆ Q0 for all i ≥ 0. The claim is now equivalent to the statement

that:

Vk ∩ {v ∈ Q0 : the projective corresponding to v is not pin} ≠ ∅.

We now handle two cases separately; |Vk| > k or |Vk| ≤ k. If |Vk| > k then Vk must contain a vertex

whose corresponding projective is not pin (as there are only k indecomposable projectives that are

pin).

So we now suppose that |Vk| ≤ k. Since |V0| = 1, this means that the chain of inequalities:

|V0| ≤ |V1| ≤ · · · ≤ |Vk|,

must have at least one equality in it. Suppose that |Vi| = |Vi+1| for some 0 ≤ i < k. Then since

Vi ⊆ Vi+1, we know that Vi = Vi+1. Thus there are no arrows from vertices in Vi to vertices outside

Vi.

Consider the full subquiver Q′ of Q with vertices Vi. Note that Q′ can’t be the whole of Q, as it

has at most k vertices and Q has greater than k vertices. Since Q is sub-2-regular, so is Q′; but

Q′ can’t be 2-regular as then it would be a connected component of Q, which gives a contradiction.

Therefore Q′ has a vertex v′ with out-degree ≤ 1 in Q′. Thus v′ ∈ Vi has out-degree ≤ 1 in Q, as

there are no arrows from v′ to vertices outside Vi. Hence the projective corresponding to v′ is not

pin, as required.

5.1.2. Triangular arrangement of patches. A triangular arrangement of patches with height h

is the layout of patches (as defined in Subsection 2.4.1) shown in Figure 5.1, where all displayed

syllables are interior and there are no restrictions on syllables outside the triangle.

5.1.3. Lemma. Suppose that A is a connected SB algebra with rad3(A) = 0 such that the

regular module AA is not a direct sum of pin modules. Let k be the number of indecomposable

projective A-modules that are pin. Then there does not exist a triangular arrangement of

interior patches with height k + 2.
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. .
. ...

... . .
. . . .

...
...

. . .

· · · · · ·

· · · · · ·

h rows

2h columns

Figure 5.1: Triangular arrangement of patches.

Proof. Suppose that there does exist a triangular arrangement of interior patches with height k+2.

Since rad(A)3 = 0, if a patch consists only of interior syllables of A, then all of the underlying

paths of these syllables must have length exactly one. This means that for any given path of length

at most k + 2 starting at the top vertex, we can construct it as a composition of the underlying

paths in a zigzag in our triangular arrangement. Therefore, by applying Lemma 5.1.1, there must

be a vertex whose corresponding projective is not pin which appears as the target of a syllable, s,

somewhere in the top k rows of our arrangement. Thus there appears a boundary syllable two rows

directly beneath s. This proves the claim.

Note that this argument doesn’t require the 2 outermost syllables in the bottom row (or the

outermost syllables in the second bottom row) to be interior to reach a contradiction. However it

would simply complicate subsequent arguments for no benefit to remove them from consideration.

5.1.4. Lemma. Suppose that A is a connected SB algebra with rad3(A) = 0 such that the

regular module AA is not a direct sum of pin modules. Let k be the number of indecomposable

projective A-modules that are pin. Then

Ωk+1M ∈ add{Str(w) ∈ mod-A : intwid(w) ≤ 2k + 4},

for all M ∈ mod-A which are string modules.
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Proof. Fix M ∈ mod-A an indecomposable string module. Suppose that Ωk+1M /∈ add{N ∈

mod-A : intwidN ≤ 2k + 4}. Thus Ωk+1M has a summand M ′ with intwid(M ′) > 2k + 4.

Since intwid(M ′) is always even we have intwid(M ′) ≥ 2k + 6. Following the notation of [All21,

Paragraph 5.2.27], let w0, . . . , wk+1 be strips such that w0 represents M , wk+1 represents M ′, and

that wi+1 represents one of the syzygy strips of wi for all i = 0, . . . , k. Then, by the discussion in

[All21, Paragraph 5.2.27], since intwidwk+1 ≥ 2k + 6 > 2k + 4 we have

intwk−r ⊇ [min(intwk+1) + r,max(intwk+1)− r] ∀r = 0, . . . , k + 1.

Therefore, since the interior of a strip is a union of valleys, the collection of syllables corresponding

to:

[min(intwk+1) + r + 1,min(intwk+1) + 2k + 5− r] in strip wk−r,

(where r = 0, . . . , k + 1) forms a triangular arrangement of interior patches with height k + 2. This

is a contradiction to Lemma 5.1.3.

Note that this proof does not rely on the finiteness of the initial strip w0, and thus, in particular, it

holds for bi-infinite string modules.

This then gives a similar result for band modules.

5.1.5. Corollary. Suppose that A is a connected SB algebra with rad3(A) = 0 such that the

regular module AA is not a direct sum of pin modules. Let k be the number of indecomposable

projective A-modules that are pin. Then

Ωk+1M ∈ add{Str(w) ∈ mod-A : intwid(w) ≤ 2k + 4},

for all M ∈ mod-A which are band modules.

Proof. Fix a band module M ∈ mod-A and let M̂ ∈ Mod-A be the corresponding bi-infinite

string module. Since Ωk+1(M̂) ∈ Add{Str(w) ∈ mod-A}, it follows from Corollary 3.2.11 that

Add(Ωk+1(M)) = Add(Ωk+1(M̂)). Thus

Ωk+1(M) ∈ Add(Ωk+1(M̂)) ∩mod-A ⊆ Add{Str(w) ∈ mod-A : intwid(w) ≤ 2k + 4} ∩mod-A

= add{Str(w) ∈ mod-A : intwid(w) ≤ 2k + 4}

as required.
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Theorem 5.1.6. Suppose that A is a connected SB algebra with rad3(A) = 0. Then one of the

following mutually exclusive conditions must hold:

� A is syzygy-finite,

� the regular module AA is a direct sum of pin modules.

Proof. Lemma 5.1.4 and Corollary 5.1.5 imply that A must satisfy at least one of the conditions.

All that remains is to show that A can’t be syzygy-finite if its regular module AA is a direct sum of

pin modules.

Suppose that the regular module AA is a direct sum of pin modules. Further suppose that M is an

indecomposable string module represented by a strip of the form:

· · · p1 p2 · · · · · · pn−1 pn · · ·

where pi is interior for i ∈ {2, . . . , n − 1} and p1,pn are boundary syllables which belong to

supp(∇). Then Ω(M) is an indecomposable string module represented by a strip of the form:

· · · q0 q1 q2 · · · · · · qn−1 qn qn+1· · ·

where qi is interior for i ∈ {2, . . . , n − 1} and q1,qn are boundary syllables which belong to

supp(∇).

By iterating this logic, we see that Ωn(M) is indecomposable for all n ∈ N and that:

intwid(M) < intwid(Ω(M)) < . . . < intwid(Ωn(M)) < . . . .

This means that any such M is not syzygy-finite.

Since any simple A-module is of the required form, it is clear that A is not syzygy-finite.

Unfortunately, this result does not hold if we loosen the restriction from rad3(A) = 0 to rad4(A) = 0,

as shown in the following example.
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0
es(β) es(α)

−4 −3 −2 −1 0 1 2 3 4 5 6

1
es(δ) γα βγ es(α)

2
es(γ) δ2 β α βγ es(α)

3
es(β) α βγ α βγ es(α)

4
es(δ) γα βγ α βγ α βγ es(α)

5
es(γ) δ2 β α βγ α βγ α βγ es(α)

6
es(β) α βγ α βγ α βγ α βγ es(α)

Figure 5.2: The syzygy fabric associated to a simple module, S1, of our running example algebra.
The white cells in the k-th row depict a strip representing a summand of Ωk(S1). Other summands
of Ωk(S1) are formed in the shaded cells, and we ignore the behaviour of the further syzygies
of these summands. Also note that, as usual, the strips in question have infinitely many blank
syllables on either side; we don’t use the dotted cells on the edges for the purpose of conserving
space.
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5.1.7. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. It is

immediately obvious that the regular module AA is not a direct sum of pin modules. Thus it

suffices to show that A is not syzygy-finite.

If we consider the syzygy fabric associated to S1, the simple module corresponding to the vertex 1,

then we obtain the diagram in Figure 5.2. It is clear that by repeating this procedure sufficiently

many times we will obtain a strip of arbitrarily large interior width. This is particularly clear if

you consider the sequence of strips shown in the rows indexed by multiples of three. Hence S1 has

infinitely many different summands of syzygies. Therefore A is not syzygy-finite, as required.

Theorem 5.1.6 immediately gives the following by applying Lemmas 2.2.65 and 2.2.71.

5.1.8. Corollary. Suppose that A is an SB algebra with rad3(A) = 0. Then dell(A) <∞.

Note that despite not meeting neither of the mutually exclusive conditions from Theorem 5.1.6, our

running example algebra still has finite delooping level.

5.1.9. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Then

both simple modules, S1, S2, can be expressed as syzygies of string modules, as can be easily seen

by considering Figure 2.1. Thus dellA(S1) = dellA(S2) = 0, and hence dell(A) = 0.

5.2 Bounds for delooping level

While the previous section tells us that the delooping level of a radical-cube-zero special biserial

algebra is always finite, it does not give us an explicit bound.

We can apply Corollary 2.2.72 alongside Lemma 5.1.4 to obtain the following bound:

5.2.1. Proposition. Suppose that A is an SB algebra with rad3(A) = 0. Let n be the

number of indecomposable projective A-modules (up to isomorphism) and k be the number of

them that are pin. Then dell(A) ≤ 3n · (22k+4 − 1).

Proof. By Lemma 2.2.65, it is sufficient to prove the claim for connected SB algebras, A, with

rad3(A) = 0 where A is not self-injective (and thus the regular module AA is not a direct sum of

pin modules).

128



5.2. BOUNDS FOR DELOOPING LEVEL

To apply Corollary 2.2.72, we require a bound on |M0| where

M0 := {Str(w) ∈ mod-A : intwid(w) ≤ 2k + 4}.

Since rad3(A) = 0, it is clear that rad3(Str(w)) = 0 for any strip w as well. Thus we can apply

Corollary 2.4.21 to obtain the bound:

|M0| ≤ n · (2 + 1) · 2
2k+4 − 1

2− 1
= 3n · (22k+4 − 1).

Now suppose that S is a simple A-module. Then it follows from Lemma 5.1.4 that for l ≥ k + 1

any indecomposable summand Y of Ωl(S) belongs M0. We also know that for 0 ≤ l ≤ k any

indecomposable summand Y of Ωl(S) satisfies:

intwid(Y ) ≤ intwid(S) + 2l = 2l ≤ 2k,

and thus Y ∈M0 in this case too.

To summarise, Ωl(S) ∈ add(M0) for all l ≥ 0. Since S was an arbitrary simple A-module,

Corollary 2.2.72 then gives:

dell(A) ≤ 3n · (22k+4 − 1).

5.2.2. However, this is not a great bound. For example, Figure 5.3 shows a comparison between

the bounds given by Proposition 5.2.1 and the actual maximum values for these algebras, when

there are at most 4 simple modules for the algebra. The actual maximum values were calculated

using the SBAlgsFromNumVerticesAndRadLength function from SBStrips, which allows iteration

through all (connected) SB algebras with a given number of vertices and radical length. This

computation heavily relies on the idea of a minimally connected overquiver, as introduced in

Definition 2.3.24, to reduce the number of duplicate cases that we check. Unfortunately, even with

the optimisations from considering only minimally connected overquivers, we do not have access to

sufficient computing power and time to calculate the true maxima for cases with 5 or more simple

modules; though it is worth noting that none of the hundreds of examples we calculated in the case

with 5 simple modules have delooping level greater than 8.

The remainder of this section will focus on improving this bound. While a reader looking to apply
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n\k 0 1 2 3 4
1 0 0 - - -
2 2 2 0 - -
3 4 4 4 0 -
4 6 6 6 6 0

(a) True supremum of delooping level,
calculated using SBStrips.

n\k 0 1 2 3 4
1 45 189 - - -
2 90 378 1530 - -
3 145 567 2295 9207 -
4 180 756 3060 12276 49140

(b) Bounds on delooping levels based on Proposition 5.2.1.

Figure 5.3: Comparison of initial bound on delooping level to true upper bounds. Here n denotes
the number of (isomorphism classes of) indecomposable projective A-modules, and k denotes the
number of those projectives which are pin.

a particular bound could skip to the end for our best bound, we include several other bounds as an

illustration of the methods involved when working with syllables and strips.

The first thing to note is that we don’t need to consider all ofM0.

5.2.3. Proposition. Suppose that A is an SB algebra with rad3(A) = 0. Let n be the

number of indecomposable projective A-modules (up to isomorphism) and k be the number of

them that are pin. Then dell(A) ≤ 4n · (k + 3).

Proof. As before, it is sufficient to prove the claim for connected SB algebras, A, with rad3(A) = 0

where A is not self-injective (and thus the regular module AA is not a direct sum of pin modules).

Let

M1 := {Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) ≤ 2k + 4}.

Since all modules of the form Ω(Y ) ∈ mod-A have rad2(Ω(Y )) = 0, it follows that M1 ⊆ M0 ∩

add(Ω(mod-A)). Thus by the same logic as Proposition 5.2.1, it follows that Ωl(S) ∈ add(M1) for

all simple A-modules, S, and l > 0. Since rad2(S) = 0 for all simple S ∈ mod-A, it follows that

Ωl(S) ∈ add(M1) for all simple A-modules, S, and l ≥ 0.

To bound |M1|, we apply the r = 1 version of Corollary 2.4.21. This gives:

|M1| ≤ n · (1 + 1)2 · (k + 3) = 4n · (k + 3).

Applying Corollary 2.2.72 then gives the required bound.

Figure 5.4 shows a comparison between this improved bound and the true values. While this bound
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is a significant improvement compared to Proposition 5.2.1, it is still orders of magnitude larger

than the true values (at least in small cases).

n\k 0 1 2 3 4
1 0 0 - - -
2 2 2 0 - -
3 4 4 4 0 -
4 6 6 6 6 0

(a) True supremum of delooping level,
calculated using SBStrips.

n\k 0 1 2 3 4
1 12 16 - - -
2 24 32 40 - -
3 36 48 60 72 -
4 48 64 80 96 112

(b) Bounds on delooping levels based on Proposition 5.2.3.

Figure 5.4: Comparison of second bound on delooping level to true upper bounds. Here n denotes
the number of (isomorphism classes of) indecomposable projective A-modules, and k denotes the
number of those projectives which are pin.

To come up with an improved bound, we can again restrict our collection of modules under

consideration by looking at the triangular arrangements of patches induced by syzygies of

sufficiently high degree and large width.

5.2.4. Proposition. Suppose that A is an SB algebra with rad3(A) = 0. Let n be the

number of indecomposable projective A-modules (up to isomorphism) and k be the number of

them that are pin. Then dell(A) ≤ 12n+ 2k(k + 1).

Proof. As before, it is sufficient to prove the claim for connected SB algebras, A, with rad3(A) = 0

where A is not self-injective (and thus the regular module AA is not a direct sum of pin modules).

Let

M2 :={Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) ≤ 4}

∪
k⋃

l=1

({
Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) = 2l + 4

}
∩ add(Ωl(mod-A))

)
.

It is easy to check thatM2 ⊆M1. Also, due to the conditions on intwid in each part of this union,

none of the parts of the union intersect. Thus:

|M2| =|{Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) ≤ 4}|

+

k∑
l=1

∣∣∣∣{ Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) = 2l + 4
}
∩ add(Ωl(mod-A))

∣∣∣∣.
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Corollary 2.4.21 gives a bound on the size of the first term in this sum, but so far we don’t have

particular bounds for any of the other parts. To aid in calculating such bounds, for l ∈ {1, . . . , k},

let us define:

Ml
2 :=

{
Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) = 2l + 4

}
∩ add(Ωl(mod-A)).

Suppose that M ∈ Ml
2 for some l ∈ {1, . . . , k}. Let w denote a strip representing M . Then by

the same logic as Lemma 5.1.4, the central 2l + 2 interior syllables of w are the bottom row of a

triangular arrangement of patches of height l+1. This means that the vertex, v, of Q corresponding

to the top of the uppermost patch in this arrangement has npl(v) ≥ l > 0.

The first thing to note is that for vertices v′ whose corresponding indecomposable projective is not

pin, we know that npl(v′) = 0. The second thing to note is that for vertices v with npl(v) > 0,

there is an arrow v → v′ of Q where npl(v′) = npl(v)− 1 (to see this, consider the first arrow of the

shortest path from v to a “non-pin” vertex).

It follows from these two facts that |{v ∈ Q0 : npl(v) > 0}| ≤ k and that |{v ∈ Q0 : npl(v) > l′}| ≤

max(0, |{v ∈ Q0 : npl(v) > l′ − 1}| − 1) for all l′ ∈ {1, . . . , k}. Combining these facts means that

|{v ∈ Q0 : npl(v) > l′}| ≤ k − l′.

Since (for algebras A with rad3(A) = 0) the bottom row of a triangular arrangement of patches is

determined by the vertex at the top, there are at most k − l options for the central 2l + 2 interior

syllables of w (up to reflection). Since all the interior syllables of w have underlying paths of length

1, it follows that there are at most k− l choices for the ordered list of interior syllables of w (again,

up to reflection). Following the same logic as Proposition 2.4.20 (and Proposition 2.4.20), this

means that there are at most 4 · (k − l) modules inMl
2.

Hence:

|M2| =|{Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) ≤ 4}|

+

k∑
l=1

∣∣∣∣{ Str(w) ∈ mod-A : rad2(Str(w)) = 0, intwid(w) = 2l + 4
}
∩ add(Ωl(mod-A))

∣∣∣∣
≤(n · 22 · 3) +

k∑
l=1

4 · (k − l) = 12n+ 4 · 1
2
k(k + 1)

=12n+ 2k(k + 1).
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It follows immediately from the discussion in Proposition 5.2.3 that Ωl(S) ∈ add(M2) for all simple

S ∈ mod-A and l ≥ 0. Thus Corollary 2.2.72 gives dell(A) ≤ 12n+ 2k(k + 1), as required.

5.2.5. Looking at Figure 5.5, there is an obvious elephant in the room. Our bounds so far have

managed to show that dell(A) = O(n2) (after applying the bound k ≤ n). However, looking at the

true supremums (in any of Figures 5.3–5.5), there is an obvious candidate for a linear bound in

n for the delooping level. At least in these small cases the bound dell(A) ≤ 2n − 2 works and is

sharp. As discussed in Paragraph 5.2.2, this bound has also worked for several hundred examples

we have calculated for the n = 5 case. Unfortunately, applying Corollary 2.2.72 does not seem to

be sufficient to prove a linear bound for the delooping level (in n, the number of simple modules).

However, for any n ∈ Z+ we can construct an SB algebra, A, which has n simple modules, satisfies

rad3(A) = 0 and has dell(A) = 2n − 2. This means that if 2n − 2 is an upper bound for the

delooping level of radical-cube-zero algebras (where n is the number of simple modules), then this

upper bound is sharp. Since any SB algebra with a single simple module has zero delooping level,

it is sufficient to show this for n ≥ 2.

5.2.6. Example. Let n ≥ 2 and let Q be the sub-2-regular quiver on n vertices:

1 2 · · · n
α1

β1

α2

β2

αn−1

βn−1

γ

n\k 0 1 2 3 4
1 0 0 - - -
2 2 2 0 - -
3 4 4 4 0 -
4 6 6 6 6 0

(a) True supremum of delooping level,
calculated using SBStrips.

n\k 0 1 2 3 4
1 12 16 - - -
2 24 28 36 - -
3 36 40 48 60 -
4 48 52 60 72 88

(b) Bounds on delooping levels based on Proposition 5.2.4.

Figure 5.5: Comparison of third bound on delooping level to true upper bounds. Here n denotes
the number of (isomorphism classes of) indecomposable projective A-modules, and k denotes the
number of those projectives which are pin.
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and let Q̃ be its unique 2-regular augmentation:

1 2 · · · n
α1

β1

α2

β2

αn−1

βn−1

γδ

Let

A := kQ/⟨α1β1, β1α1 − α2β2, . . . , βn−2αn−2 − αn−1βn−1, βn−1αn−1 − γ2⟩.

Then the overquiver of A is as follows:

1+

1−

2+

2−

· · ·

· · ·

n+

n−

α1

β1

α2

β2

αn−1

βn−1

γ

δ

where, as usual, the dashed lines denote the vertex identification, †.

The source and target encoding of the permissible data for this algebra are given by:

ai = ci =


0 i = 1−

1 i = 1+

2 otherwise

bi = di =


1 i = 1− or i = 1+

0 otherwise

Clearly all of the simple modules, S, corresponding to Q-vertices other than 1 appear as the socles

of pin modules, and thus these simple modules have dell(S) = 0. We claim that the remaining

simple module, S1, (corresponding to the Q-vertex 1) has dell(S1) = 2n− 2.

To verify this, we first express S1 as a strip, and apply the syzygy algorithm to calculate its first

2n− 1 syzygies. The following strip represents S1:

· · · · · ·
e1− e1+

and the syzygy fabric corresponding to this strip is depicted in Figure 5.6.

Note from the syzygy fabric that row 2n− 2 is a reflection of row 2n− 1. Thus the string modules
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· · · · · ·0
e1− e1+

0 1 2 3 4 n n+ 1 2n− 3 2n− 2 2n− 1 2n

· · · · · ·1
e2− e2+

· · · · · ·2
e1− α1 β2 e3+

· · · · · ·3
e2− α2 β3 e4+

...
...

...
...

...
. . .

...
...

. . .
...

...
...

...

· · · · · ·n− 1
e1− α1 β2 α3 β4 en+

· · · · · ·n
e2− α2 β3 α4 γ en−

...
...

...
...

...
. . .

...
...

. . .
...

...
...

...

· · · · · ·2n− 4
e1− α1 β2 α3 β4 γ αn−1 e4−

· · · · · ·2n− 3
e2− α2 β3 α4 γ βn−1 α3 e3−

· · · · · ·2n− 2
e1− α1 β2 α3 β4 γ αn−1 β3 α2 e2−

· · · · · ·2n− 1
e2− α2 β3 α4 γ βn−1 α3 β2 α1 e1−

· · · · · ·2n
e1− α1 β2 α3 β4 γ αn−1 β3 α2 e2−

...
...

...
...

...
. . .

...
...

. . .
...

...
...

...

Figure 5.6: The syzygy fabric associated to a simple module, S1, in Example 5.2.6. The k-th row
is a strip representing Ωk(S1). Note that the diagram as depicted is only valid when n is odd, but
to obtain the even version, just switch the rows in the shaded cells only. Also note that, as usual,
the strips in question have infinitely many blank syllables on either side; we don’t use the dotted
cells on the edges for the purpose of conserving space.
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corresponding to these strips (Ω2n−2(S1) and Ω2n−1(S1) respectively) are isomorphic. This means

that dell(S1) ≤ 2n− 2. (This may also be noted more simply by the fact that rows 2n− 2 and 2n

are identical, and thus Ω2n−2(S1) ∼= Ω2n(S1).)

Now, to show that dell(S1) = 2n− 2, it is sufficient to show that the unit map

Ω2n−3(S1) −→ Ω2n−2Σ2n−2Ω2n−3(S1)

does not split. To simplify this, we note that all peaks in rows 0 to 2n − 4 meet the conditions

of Proposition 4.1.13. This means that, for k ∈ {0, 2n − 4}, we have Ωk(S1) ≃ ΣΩk+1(S1).

Hence Σ2n−3Ω2n−3(S1) ≃ S1. Thus it suffices to show that Ω2n−3(S1) is not a stable retract of

Ω2n−2Σ(S1) = Ω2n−2 TrΩTr(S1).

Applying the twisting function, ▷◁A, to the two syllables in our strip representing S1 yields:

▷◁A e1− = ( (1−)op
0

◦
1
◦ ) ▷◁A e1+ = ( (1+)op

1

◦
1
◦ ).

Thus, by Proposition 4.1.3, we know that ΩTr(S1) is a string module of Aop represented by the

strip:

· · · · · ·
e(1−)op βop

1

and hence is projective. (Note that this matches our expectations from Lemma 4.2.4.)

Thus ΩTr(S1) ≃ 0 ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-Aop, and so Ω2n−2Σ(S1) = Ω2n−2 TrΩTr(S1) ≃ 0 ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A. Since

Ω2n−3(S1) ̸≃ 0 ∈ modmodmodmodmodmodmodmodmodmodmodmodmodmodmodmodmod-A, this clearly means that the unit map in question does not split, as

required.

5.2.7. With the data for small algebras (see Figures 5.3–5.5) and the above example, we feel

comfortable stating the following conjecture.

5.2.8. Conjecture. Suppose that A is an SB algebra with rad3(A) = 0. Let n be the number

of (isomorphism classes of) indecomposable projective A-modules. Then dell(A) ≤ 2n− 2.
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Chapter 6

Gorenstein-projectivemodulesof

specialbiserialalgebras

In this final chapter, we investigate the structure of finitely generated Gorenstein-projective modules

of special biserial algebras (as defined in Definition 2.2.24). To do this we build upon results from

the previous chapters, in particular Chapters 3 and 4.

There are several key properties of Gorenstein-projective modules that this chapter relies on,

principally the following. As discussed in Subsection 2.2.3, if M ∈ mod-A is Gorenstein-projective,

then:

� we also know that Ω(M),Σ(M) ∈ mod-A are Gorenstein-projective;

� we have stable isomorphisms ΩΣ(M) ≃M ≃ ΣΩ(M);

� for all n ∈ N, we have Ext1A(Ω
n(M), A) = 0 = Ext1A(Σ

n(M), A);

The first section of the chapter focuses on characterising modules M with Ext1A(M,A) = 0. As

highlighted by Proposition 2.2.28, this is a necessary condition for M to be Gorenstein-projective.

We identify such modules by considering the structure of the strips and belts that represent them,

eventually showing that this condition can be checked almost entirely on a peak-by-peak basis.
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The second section of the chapter aims to identify which band modules belong to

Ω∞(mod-A) = {M | ∀n ∈ N ∃N ∈ mod-A s.t. M is a summand of Ωn(N)}

as a first step to fully characterising those that are Gorenstein-projective. It follows immediately

from considering the complete resolution of a Gorenstein-projective module that Gproj-A ⊆

Ω∞(mod-A); if P • is a complete resolution for M ∈ Gproj-A, then for any n ∈ N, we have

M ∼= Z0(P •) ∼= Ωn(Zn(P •)). As usual, we characterise the band modules in Ω∞(mod-A) by

considering the belts that represent them and identifying local properties of those belts which are

necessary and sufficient for the properties we are interested in. In particular, this heavily relies

on the syzygy procedure for belts from Propositions 3.2.6 and 3.2.8. In this case, we can entirely

characterise these belts in terms of the syllables present within them.

The third section of the chapter then builds on the results in earlier sections to understand when

a special biserial algebra satisfies various Gorenstein homological conditions. For example, in

Proposition 6.3.4 we give a necessary and sufficient condition for an SB algebra to be CM-finite

(i.e. to have only finitely many indecomposable Gorenstein-projectives). This makes repeated use

of the characterisation of Gorenstein-projective band modules from the second section.

6.1 Modules with Ext1A(M,A) = 0

Throughout this section, we will use the following characterisation of modules M ∈ mod-A with

Ext1A(M,A) = 0, as it is easier to perform combinatorial arguments with.

6.1.1. Lemma. Let A be an SB algebra and M ∈ mod-A. Then Ext1A(M,A) = 0 if

and only if for all indecomposable projective string modules, P , the map HomA(inc, P ) :

HomA(P(M), P )→ HomA(Ω(M), P ) is surjective.

Proof. We first note that Ext1A(M,−) is an additive functor that is zero on injective modules. We

also note that AA can be written as a direct sum of indecomposable projective, injective modules
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and indecomposable projective string modules. Since Ext1A(−, Q) = 0 for any injective module Q,

it follows that Ext1A(M,A) = 0 if and only if Ext1A(M,P ) = 0 for all indecomposable projective

string modules, P .

Fix an indecomposable projective string module, P . We now recall the long exact sequence

associated to the right-exact functor HomA(−, P ) and the short exact sequence 0 → Ω(M)
inc−−→

P(M)→M → 0:

0→ HomA(M,P )→ HomA(P(M), P )→ HomA(Ω(M), P )→ Ext1A(M,P )→ Ext1A(P(M), P )→ · · ·

By exactness, it follows that Ext1A(M,P ) = 0 if and only if the map HomA(inc, P ) :

HomA(P(M), P )→ HomA(Ω(M), P ) is surjective, as required.

In most previous cases, when we wanted to characterise some property of modules represented by

a strip or a belt, we could define some partition of the syllables/peaks/valleys into “good” and

“bad” cases, and then say our property is satisfied if all the syllables/peaks/valleys are “good” (or

equivalently, there are no “bad” syllables/peaks/valleys present in the strip/belt). However, when

trying to characterise when a module, M , represented by a strip or belt has Ext1A(M,A) = 0, we

need to consider the interaction between nearby peaks to distinguish cases.

To achieve this, we define a colouring of the peaks; green, yellow and red. The green peaks play

the role of the “good” peaks, while the red peaks play the role of the “bad” peaks. The remaining

yellow peaks then play an ambiguous role, where they will normally be “good”, but when near other

yellow peaks, they will be “bad”. Fortunately, the yellow peaks will always contain exactly one

interior syllable and one boundary syllable, so being adjacent to another yellow peak is equivalent

to the whole strip being formed of yellow peaks.

How we characterise these colours will depend on the whether or not the projective associated to

the vertex at the top of the peak is pin or not. To simplify future explanations, we thus define pin

and non-pin peaks as follows.
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6.1.2. Definition. We call a non-blank peak pin (resp. non-pin) if bs(p) = 0 (resp. bs(p) = 1) for

all non-blank syllables p in the peak.

It is clear that all non-blank peaks are either pin or non-pin based on the peak-compatibility

conditions.

6.1.3. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. The

following are all examples of pin peaks for A:

α βγ αβ β α es(β) es(α) es(β)

The following are all examples of non-pin peaks for A:

γ δ2 γαβ δ γ es(δ) es(γ) es(δ)

6.1.1 Characterisation using colouring of peaks

We now define our partition of the collection of all peaks into three groups. As explained above,

for simplicity of phrasing we will assign each of these groupings a colour; green, yellow or red.

To do so, we will often refer to the following three conditions for a syllable, p:

Condition (∗): for all i ∈ O, bi = 1 ∧ (ai > 0 ∨ ai = ai† = 0) implies t(p)† ̸= i− ai.

Condition (∗′): for all i ∈ O, bi = 1 implies t(p)† ̸= i− ai.

Condition (∗∗): as(p) − 1 ̸= as(p)−1.

Note that we always have an implication (∗′) =⇒ (∗) and if there are no vertices i ∈ O with bi = 0

and ai = 0 < ai† then we also have the reverse implication (∗) =⇒ (∗′). Also note the similarities

between condition (∗) and Lemma 2.3.16, which characterises standard basis elements of the socle

of a projective.
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Applying the standard source encoding inequality (Lemma 2.3.14) to the negation of condition (∗∗)

gives:

as(p) − 1 = as(p)−1 ≥ as(p) − bs(p)−1,

so we also have bs(p)−1 = 1 when (∗∗) does not hold.

6.1.4. Colouring of pin peaks. For pin peaks we assign colours based on the following rules:

Case 0: the peak contains two interior syllables, p and p′

The peak is assigned the colour green.

Case 1: the peak contains one boundary syllable, p and one interior syllable, p′

Subcase a: the boundary syllable, p, does not belong to supp(∇)

Subcase i: p′ satisfies condition (∗∗)

The peak is assigned the colour green.

Subcase ii: p′ does not satisfy condition (∗∗) but has len(p′) = 1

The peak is assigned the colour yellow.

Subcase iii: p′ does not satisfy condition (∗∗) and has len(p′) > 1

The peak is assigned the colour red.

Subcase b: the boundary syllable, p, belongs to supp(∇)

Subcase i: p satisfies condition (∗)

The peak is assigned the colour green.

Subcase ii: p does not satisfy condition (∗)

The peak is assigned the colour red.

Case 2: the peak contains two boundary syllables, p and p′

Subcase a: neither syllable belongs to supp(∇)

Subcase i: p and p′ both satisfy condition (∗∗)

The peak is assigned the colour green.

Subcase ii: at least one of p and p′ does not satisfy condition (∗∗)

The peak is assigned the colour red.

Subcase b: we have p /∈ supp(∇) and p′ ∈ supp(∇)
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Subcase i: p′ satisfies conditions (∗) and (∗∗)

The peak is assigned the colour green.

Subcase ii: p′ has len(p′) = 1, satisfies condition (∗′), but not (∗∗)

The peak is assigned the colour green.

Subcase iii: p′ does not satisfy condition (∗)

The peak is assigned the colour red.

Subcase iv: p′ has len(p′) > 1, satisfies condition (∗), but not (∗∗)

The peak is assigned the colour red.

Subcase v: p′ has len(p′) = 1, satisfies condition (∗), but not (∗′) or (∗∗)

The peak is assigned the colour red.

Subcase c: both of the syllables belong to supp(∇)

Subcase i: p and p′ both satisfy condition (∗)

The peak is assigned the colour green.

Subcase ii: at least one of p and p′ does not satisfy condition (∗)

The peak is assigned the colour red.

Since this partitioning based on colours is pretty complicated, we now show how this partitioning

works for our running example algebra.

6.1.5. Example. For our running example algebra, there are no vertices i ∈ O with bi = 0 ∧

(ai = 0 < ai†), and thus a syllable satisfies (∗) if and only if it satisfies (∗′). There are two

vertices i ∈ O with bi = 1, s(γ) and s(δ). If we consider the corresponding i − ai we obtain

s(γ) − as(γ) = s(γ) and s(δ) − as(δ) = s(δ). Therefore p satisfies condition (∗) if and only if

t(p)† ∈ {s(α), s(β)} = {t(γ), t(α)}.

Furthermore, since aj is constant for different vertices j of the same connected component C of O,

all vertices j of O satisfy aj − 1 ̸= aj−1. Therefore any syllable p of A will satisfy condition (∗∗).

It follows that the colourings of pin peaks for the running example algebra A are given in Figure 6.1.
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α β αβ β α βγ αβ βγ

αβ β αβ βγ βγ α βγ αβ

es(α) β es(α) βγ β α β αβ

αβ βγ αβ es(β) βγ α

es(α) β

(a) List of green pin peaks for our running example algebra. The first row consists of peaks in case 0. The
second row consists of peaks in case 1(ai). The third row consists of peaks in case 1(bi). The left of the
fourth row is the unique peak in case 2(ai). The right of the fourth row consists of the peaks in case 2(bi).
The fifth row has the unique peak in case 2(ci). Note that there are no peaks in case 2(bii), as all syllables
for A satisfy condition (∗∗).

es(β) α es(β) αβ α β α βγ

αβ β βγ es(α)

es(α) es(β) α es(β) α β

(b) List of red pin peaks for our running example algebra. The first row consists of peaks in case 1(bii).
The second row consists of peaks in case 2(biii). The third row consists of peaks in case 2(cii). Note that
there are no peaks in cases 1(aiii), 2(aii), 2b(iv) or 2b(v), as all syllables for A satisfy condition (∗∗).

Figure 6.1: Colouring of pin peaks for our running example algebra. In each case, we only list
peaks up to reflection. Since all syllables satisfy condition (∗∗), there are no yellow pin peaks for
our example.
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6.1.6. Colouring of non-pin peaks. For non-pin peaks we assign colours based on the following

rules:

Case 0: the peak contains two interior syllables, p and p′

The peak is assigned the colour red.

Case 1: the peak contains one boundary syllable, p and one interior syllable, p′

Subcase a: the boundary syllable, p, does not belong to supp(∇)

Subcase i: p′ satisfies condition (∗∗)

The peak is assigned the colour green.

Subcase ii: p′ does not satisfy condition (∗∗) but has len(p′) = 1

The peak is assigned the colour yellow.

Subcase iii: p′ does not satisfy condition (∗∗) and has len(p′) > 1

The peak is assigned the colour red.

Subcase b: the boundary syllable, p, belongs to supp(∇)

The peak is assigned the colour red.

Case 2: the peak contains two boundary syllables, p and p′

Subcase a: neither syllable belongs to supp(∇)

The peak is assigned the colour green.

Subcase b: we have p /∈ supp(∇) and p′ ∈ supp(∇)

Subcase i: p′ satisfies conditions (∗) and (∗∗)

The peak is assigned the colour green.

Subcase ii: p′ has len(p′) = 1, satisfies condition (∗′), but not (∗∗)

The peak is assigned the colour green.

Subcase iii: p′ does not satisfy condition (∗)

The peak is assigned the colour red.

Subcase iv: p′ has len(p′) > 1, satisfies condition (∗), but not (∗∗)

The peak is assigned the colour red.

Subcase v: p′ has len(p′) = 1, satisfies condition (∗), but not (∗′) or (∗∗)

The peak is assigned the colour red.

Subcase c: both of the syllables belong to supp(∇)

The peak is assigned the colour red.

6.1.7. Remark. Note that cases 1(a) and 2(b) are handled identically for both pin and non-pin

peaks.

Again this partitioning based on colours is pretty complicated, so we now show how this partitioning

works for our running example algebra.
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γαβ δ γαβ δ2 δ2 γ δ2 γα δ2 γαβ

γαβ δ2 δ2 es(γ) δ2 γ

(a) List of green non-pin peaks for our running example algebra. The first row consist of peaks in case
1a(i). The left of the second row has the unique peak in case 2(a). The right of the second row consists of
peaks in case 2b(i). Note that there are no peaks in case 2b(ii), as all syllables for A satisfy condition (∗∗).

γ δ γ δ2 γα δ γα δ2 γαβ δ

γαβ δ2 es(γ) δ es(γ) δ2

γ δ γ δ2 γα δ γα δ2 es(δ) γ

es(δ) γα es(δ) γαβ δ γ δ γα δ γαβ

γαβ es(δ) γαβ δ δ2 γα es(γ) es(δ)

es(γ) δ γ es(δ) γ δ γβ es(δ) γβ δ

(b) List of red non-pin peaks for our running example algebra. The first row, along with the left half of the
second row consists of peaks in case 0. The right half of the second row, along with the third and fourth
rows consist of peaks in case 1(b). The left half of the fifth row consists of peaks in case 2b(iii). The right
half of the fifth row, along with the sixth row consists of peaks in case 2(c). Note that there are no peaks
in cases 1a(iii), 2b(iv) or 2b(v), as all syllables for A satisfy condition (∗∗).

Figure 6.2: Colouring of non-pin peaks for our running example algebra. In each case, we only list
peaks up to reflection. Since all syllables satisfy condition (∗∗), there are no yellow non-pin peaks
for our example.
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6.1.8. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. As

explained in Example 6.1.5, if p ∈ Syll(A), then p always satisfies condition (∗∗), and will satisfy

condition (∗) if and only if t(p)† ∈ {s(α), s(β)} = {t(γ), t(α)}.

It follows that the colourings of pin peaks for the running example algebra A are given in Figure 6.2.

Since our running example algebra has no yellow peaks, we will use a different example algebra to

illustrate their properties when they become needed later in our argument (Example 6.1.16).

We now begin our examination of how the presence of different coloured peaks in a strip (or belt)

representing a module M affects Ext1A(M,A).

6.1.9. Lemma. If an indecomposable string module M is represented by a strip with a red

pin peak, then Ext1A(M,A) ̸= 0.

Proof. We assume that M is an indecomposable string module which is represented by a strip with

a red pin peak. We split into the 6 different cases for the form that this red pin peak takes:

Case 1a(iii): the peak contains one boundary syllable, p, which does not belong to supp(∇) and

one interior syllable p′ where p′ does not satisfy condition (∗∗) and has len(p′) > 1

Since p′ is interior, it is necessarily valley adjacent to another interior syllable u. The patch,

X, associated to this peak takes the following form:

p p′

q′

where q′ = ( t(p′)

as(p′) − len(p′)

◦
1
◦ ). We will denote the projective associated to X by PX .

Let us denote the compression of each of p,p′,u by p, p′, u respectively.

We now use the bipartite basis of P(M) constructed in [All21, Prop 4.2.24(b)], and recall that

the lower part gives a basis of Ω(M). We also recall that p′ − u is one of the lower basis

elements, that it does not belong to rad(Ω(M)), and that each α ∈ Q1 annihilates at least one

component of p′ − u and there exists unique α1 ∈ Q1 (resp. α2 ∈ Q1) such that it does not

annihilate p′ (resp. u).

We now define p′′ to be the strict suffix of p′ with len(p′′) = len(p′) − 1. Since len(p′) =
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len(p′) > 1, we know that len(p′′) > 0. Let P be the indecomposable projective corresponding

to the vertex s(p′′) = s(p′)− 1 ∈ O. Then p′′ represents a basis vector of P and it belongs to

radlen(p
′′)(P ) but not radlen(p

′′)+1(P ) = radlen(p
′)(P ). Also note that since p′′ is a strict suffix

of p′, and α1 does not annihilate p′, we know that α1 also doesn’t annihilate p′′.

We now define a homomorphism f : Ω(M)→ P by setting f(p′−u) = p′′, setting f(p′x) = p′′x

for all O-paths x with s(x) = t(p′) = t(p′′), and setting f(y) = 0 for all of our other basis

vectors, y, of Ω(M). It follows from the fact that as(p′) − 1 = as(p′)−1 (since condition (∗∗)

fails for p′) and the properties of the basis outlined above, that this gives a well-defined

A-homomorphism.

We claim that f does not factor through the inclusion inc : Ω(M) → P(M). Suppose to the

contrary that there exists g : P(M)→ P such that f = g ◦ inc. Since

g(p′ − u)α1 = g((p′ − u)α1) = g(p′α1) = g(p′)α1,

g(p′ − u)α2 = g((p′ − u)α2) = g(uα2) = f(uα2) = 0 = g(0) = g(p′α2) = g(p′)α2

we know that g(p′ − u) = g(p′) ∈ PX . Thus g(u) = g(p′) − g(p′ − u) = 0 ∈ PX , so we know

that g factors through the projection ϕ : P(M)→ PX , i.e. there exists h : PX → P such that

g = h ◦ ϕ. Thus f = h ◦ ϕ ◦ inc.

So h(p′) = g(p′) = g(p′ − u) = f(p′ − u) = p′′ /∈ radlen(p
′)(P ), however p′ ∈ radlen(p

′)(PX), so

h : PX → P should send p′ to an element of radlen(p
′)(P ). This is a contradiction, as required.

(Note that this argument does not rely on the fact that p′ is interior, as anywhere that p′ − u

appears, it can be replace with p′ to give a valid argument when p′ is boundary. Also note

that we did not use the fact that the peak is pin anywhere either.)

Case 1b(ii): the peak contains one boundary syllable, p, which belongs to supp(∇), and does not

satisfy condition (∗), and one interior syllable p′

The patch, X, associated to this peak takes the following form:

p p′

∇p ∇p′
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We will denote the projective associated to X by PX .

Let us denote the compression of p by p. Since p is a boundary syllable, we know (a summand

of) Ω(M) is represented by a strip with the following local picture:

· · · et(p)† ∇p ∇p′ · · ·

Since p does not satisfy condition (∗), we know that t(p)† = i− ai for some i ∈ O with bi = 1

and either ai > 0 or ai = ai† = 0. Fixing such an i, let P be the indecomposable projective

string module corresponding to i, and r be the basis element of P corresponding to the path

( i
ai

◦ ). Since ai > 0 or ai = ai† = 0, we know that r ∈ soc(P ).

We now use the bipartite basis of P(M) constructed in [All21, Prop 4.2.24(b)], and recall that

the lower part gives a basis of Ω(M). We also recall that p is one of the lower basis elements,

and that it does not belong to rad(Ω(M)).

We now define a homomorphism f : Ω(M)→ P by setting f(p) = r ∈ P and setting f(y) = 0

for all of our other basis vectors, y, of Ω(M). It follows from the fact that r ∈ soc(P ) and that

p /∈ rad(Ω(M)), that this gives a well-defined A-homomorphism.

We claim that f does not factor through the inclusion inc : Ω(M) → P(M). Suppose to the

contrary that there exists g : P(M) → P such that f = g ◦ inc. Then r = f(p) = g(p) =

g(es(p)p) = g(es(p))p. However t(r) = t(p)† ̸= t(p) = t(p), which gives a contradiction, as

required.

(Note that this argument does not rely on the fact that p′ is interior, or on the fact that the

peak is pin.)

Case 2a(ii): the peak contains two boundary syllables, p and p′, which don’t belong to supp(∇),

at least one of which does not satisfy condition (∗∗)

As this peak has two boundary syllables and M is indecomposable, we know that M is

represented by a strip of the form:

· · · p p′ · · ·
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Let us denote the compression of each of p,p′ by p, p′ respectively.

Since both syllables are pin-boundary, this means that M is a socle-quotient of a pin module,

which we will denote by PX . It also means that Ω(M) is a simple module represented by a

strip of the form:

· · · et(p) et(p′) · · ·

Without loss of generality, we assume that p does not satisfy condition (∗∗), in other words

as(p) − 1 = as(p)−1. As previously discussed, this necessarily means that bs(p)−1 = 1. Thus,

let P be the indecomposable projective string module corresponding to s(p)− 1.

Note that using the standard basis for PX , the paths p and p′ both represent the same basis

element of soc(PX) = Ω(M).

Let p′′ be the strict suffix of p with len(p′′) = len(p) − 1. Since len(p) = len(p) > 1 (as p

is pin-boundary), we know that len(p′′) > 0. Also, as s(p′′) = s(p) − 1, we know that p′′

represents a basis vector of P , and as as(p) − 1 = as(p)−1, we know that p′′ ∈ soc(P ). We also

define α ∈ Q1 to be the unique arrow such that p = αp′′.

We now define a homomorphism f : Ω(M)→ P by setting f(p) = p′′ ∈ P . It follows from the

fact that p′′ ∈ soc(P ) that this gives a well-defined A-homomorphism.

We claim that f does not factor through the inclusion inc : Ω(M) → P(M). Suppose to the

contrary that there exists g : P(M) → P such that f = g ◦ inc. Then p′′ = f(p) = g(p) =

g(es(p)p) = g(es(p))p. However, there is no element g(es(p)) ∈ P that can satisfy this, as

p′′ /∈ radlen(p)(P ) but p ∈ radlen(p)(A). This gives a contradiction, as required.

Case 2b(iii): the peak contains two boundary syllables, p and p′, where p /∈ supp(∇),

p′ ∈ supp(∇), and p′ does not satisfy condition (∗)

Since the above argument for case 1b(ii) only relies on the fact that there is a boundary

syllable which belongs to supp(∇), and does not satisfy condition (∗), the same logic applies

here. Thus any M that fits in this case must have Ext1A(M,A) ̸= 0.

Case 2b(iv): the peak contains two boundary syllables, p and p′, where p /∈ supp(∇),

p′ ∈ supp(∇), len(p′) > 1, and p′ satisfies condition (∗), but not (∗∗)

The core of the above argument for case 1a(iii) does not rely on the fact that p′ is interior,
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as anywhere that p′ − u is present in that argument, it can be replaced with p′ to make an

argument that works when p′ is boundary. Therefore the same logic applies here. Thus any

M that fits in this case must have Ext1A(M,A) ̸= 0.

Case 2b(v): the peak contains two boundary syllables, p and p′, where p /∈ supp(∇), p′ ∈ supp(∇),

len(p′) = 1, and p′ satisfies condition (∗), but not (∗′) or (∗∗)

The patch, X, associated to this peak takes the following form:

p p′

q′

where q′ = ( t(p′)

as(p′) − len(p′)

◦
1
◦ ). We will denote the projective associated to X by PX .

Thus Ω(M) is represented by a strip of the form:

· · · q′ et(p′)† · · ·

Let the compressions of p,p′,q′, et(p′)† be denoted by p, p′, q′, α respectively. Note in particular

that that len(α) = 1.

Since p′ does not satisfy condition (∗∗), we know that as(p′) − 1 = as(p′)−1 = at(p′). This

means that q′ = ( t(p′)

at(p′

◦
1
◦ ).

Since p′ satisfies condition (∗) but not (∗′), we know that at(p′)† = 0 and at(p′) > 0. Thus

Ω(M) is a projective string module (in this case it is also a uniserial module).

In particular, this means that there is a homomorphism f : Ω(M) → AA where im(f) ̸⊆

rad(AA). Since the inclusion ι : Ω(M) → P(M) of the syzygy into the projective

cover has im(ι) ⊆ rad(P(M)) and for all homomorphisms g : P(M) → AA, we have

g(rad(P(M))) ⊆ rad(AA), it is clear that f does not factor through ι. Thus it follows that

Ext1A(M,A) ̸= 0, as required.

(Note that this argument does not rely on the fact that the peak is pin.)

Case 2c(ii): the peak contains two boundary syllables, p and p′, both of which belong to supp(∇),
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and at least one of which does not satisfy condition (∗)

Since the above argument for case 1b(ii) only relies on the fact that there is a boundary

syllable which belongs to supp(∇), and does not satisfy condition (∗), the same logic applies

here. Thus any M that fits in this case must have Ext1A(M,A) ̸= 0.

We now give an example covering some of the key cases reviewed here. Since our running example

algebra doesn’t have any peaks in case 1a(iii), we use a different algebra.

6.1.10. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩.

The collection of all A′-paths gives a basis of the regular A′-module as depicted below.

e1

η κ

ηκ κµ

ηκµ κµη

ηκµη κµηκ

ηκµηκ

e2

µ

ν

µη

ννµηκ

µηκµ

ννν

µηκµη

µηκµηκ

η

κ

µ

η

κ

κ

µ

η

κ

µ

η

κ

µ

η

κ

ν

ν

ν

ν

The overquiver of A′ is isomorphic to the overquiver of the standard running example, A, with a

different labelling.

s(η)

s(κ) s(µ)

s(ν)

η

κ

µ

ν
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As before, the dashed lines denote the vertex identification, †.

The encoding of the permissible data is as follows:

i ai bi ci di

s(η) 5 1 4 1

s(κ) 4 1 5 1

s(µ) 6 0 6 0

s(ν) 4 0 4 0

Now consider the strip, w, of A′, representing an A′-module, M :

· · · · · ·
ν3 µηκ ν2 µη µ ν

Then the left peak of w falls into pin case 1a(iii), the middle peak of w falls into pin case 0, and

the right peak of w falls into pin case 1b(ii).

Applying our syzygy algorithm to this strip leaves a strip, w′, representing Ω(M) ∈ mod-A, of the

following form:

· · · · · ·
µηκ ν2 κµηκ ηκµηκ ν2 es(µ)

The argument for the peak in pin case 1a(iii) focuses on the obvious homomorphism f : Ω(M)→ e1A
′

with image im(f) = ⟨κ⟩A′ which is zero on all basis elements of Ω(M) not corresponding to the

leftmost syllable of w′. As explained in Lemma 6.1.9, this morphism does not factor through the

inclusion inc : Ω(M)→ P(M).

Since as(µ)−2 = as(µ)−1 − 1 = as(µ) − 2 and the length of the syllables above ( ◦
µηκ

◦
1
◦ )

has length greater than 2, there is actually another obvious morphism, f ′ : Ω(M) → e1A
′, which

does not factor through Ω(M)→ P(M). The image of f ′ is im(f) = ⟨ηκ⟩A′ , and f ′ is also zero on

all basis elements of Ω(M) not corresponding to the leftmost syllable of w′.

Clearly f ′ and f are linearly independent.

152



6.1. MODULES WITH Ext1A(M,A) = 0

Now, the argument for the peak in pin case 1b(ii) focuses on the obvious homomorphism

f : Ω(M) → e1A
′ with image ⟨κµηκ⟩A′ which is zero on all basis elements of Ω(M) not

corresponding to the rightmost syllable of w′. As explained in Lemma 6.1.9, this morphism does

not factor through the inclusion inc : Ω(M)→ P(M).

Since s(µ) = s(η) − as(η) as well as s(µ) = s(κ) − as(κ), there is actually another obvious

morphism, f ′ : Ω(M) → e1A
′, which does not factor through Ω(M) → P(M). The image of f ′ is

im(f) = ⟨ηκµηκ⟩A′ , and f ′ is also zero on all basis elements of Ω(M) not corresponding to the

rightmost syllable of w′.

It is clear that all four of the morphisms discussed here are linearly independent.

We now return to the setting of general SB algebras.

6.1.11. Lemma. Let A be an SB algebra. If an indecomposable string module M is

represented by a strip with a red non-pin peak, then Ext1A(M,A) ̸= 0.

Proof. We assume that M is an indecomposable string module which is represented by a strip with

a red non-pin peak. We split into the 6 different cases for the form that this red non-pin peak takes:

Case 0: the peak contains two interior syllables, p and p′

Since p,p′ are interior, they are necessarily valley adjacent to other interior syllables u and u′

respectively. The patch, X, associated to this peak takes the following form:

p p′

∇p ∇p′

We will denote the projective associated to X by PX . Since the peak we are considering is

non-pin, PX is an indecomposable projective string module.

Let us denote the compression of each of p,p′,u,u′ by p, p′, u, u′ respectively.
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Since the peak we are considering is non-pin, both ∇p and ∇p′ are boundary syllables.

Thus Ω(M) has at least two direct summands, which fit into the following local diagram of

branching:

· · · · · · ∇p · · ·

· · · u p p′ u′ · · ·

· · · ∇p′ · · · · · ·

We now use the bipartite basis of P(M) constructed in [All21, Prop 4.2.24(b)], and recall that

the lower part gives a basis of Ω(M). We also recall that p − u is one of the lower basis

elements, that it does not belong to rad(Ω(M)), and that each α ∈ Q1 annihilates at least one

component of p − u and there exists unique α1 ∈ Q1 (resp. α2 ∈ Q1) such that it does not

annihilate p (resp. u).

We now define a homomorphism f : Ω(M) → PX by setting f(p − u) = p ∈ PX , setting

f(px) = px for all O-paths x with s(x) = t(p) ∈ O, and setting f(y) = 0 for all of our other

basis vectors, y, of Ω(M). It is immediate that this gives a well-defined A-homomorphism.

(For clarity, we point out that f is only non-zero on the background strip in our above

diagram, and is zero on all other summands of Ω(M).)

We claim that f does not factor through the inclusion inc : Ω(M) → P(M). Suppose to the

contrary that there exists g : P(M)→ PX such that f = g ◦ inc. Since

g(p− u)α1 = g((p− u)α1) = g(pα1) = g(p)α1,

g(p− u)α2 = g((p− u)α2) = g(uα2) = f(uα2) = 0 = g(0) = g(pα2) = g(p)α2

we know that g(p− u) = g(p) ∈ PX . Thus g(u) = g(p)− g(p− u) = 0 ∈ PX , so we know that

g factors through the projection ϕ : P(M) → PX , i.e. there exists h : PX → PX such that

g = h ◦ ϕ. Thus f = h ◦ ϕ ◦ inc.
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So h(es(p))p = h(es(p)p) = h(p) = g(p) = f(p) = p ∈ PX . Therefore h(es(p)) = es(p) + r ∈ PX

for some r ∈ rad(PX). Thus

0 = f(p′ − u′) = g(p′ − u′) = h(ϕ(p′ − u′))

= h(p′) = h(es(p′)p
′) = h(es(p′))p

′

= h(es(p))p
′ as es(p′) and es(p) correspond to the same element of PX

= (es(p) + r)p′ = p′ + rp′

So p′ = −rp′ ∈ radlen(p
′)+1(PX), which gives a contradiction, as required.

(Note that the core ideas of this argument don’t rely on the fact that both p and p′ are

interior, only that they both belong to supp(∇). For example, if p was a boundary syllable

in supp(∇), then a valid argument could be reached by replacing all instances of p− u above

with just p.)

Case 1a(iii): the peak contains one boundary syllable, p, which does not belong to supp(∇) and

one interior syllable p′ where p′ does not satisfy condition (∗∗) and has len(p′) > 1

Since the argument in Lemma 6.1.9 for case 1a(iii) does not rely on the fact that the peak

is pin at all, the same logic applies here. Thus any M that fits in this case must have

Ext1A(M,A) ̸= 0.

Case 1(b): the peak contains one boundary syllable, p, which belongs to supp(∇), and one interior

syllable, p′

The core ideas of the argument for case 0 above only rely on the fact that the peak is non-pin,

and that its patch has no blank syllables. The same logic works in this case if you replace all

instances of p− u with just p. Thus any M that fits in this case must have Ext1A(M,A) ̸= 0.

Case 2b(iii): the peak contains two boundary syllables, p and p′, where p /∈ supp(∇),

p′ ∈ supp(∇), and p′ does not satisfy condition (∗)

Since the argument in Lemma 6.1.9 for case 1b(ii) does not rely on the fact that the peak is

pin at all, as with the pin version of case 2b(iii), the same logic applies. Thus any M that fits

in this case must have Ext1A(M,A) ̸= 0.
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Case 2b(iv): the peak contains two boundary syllables, p and p′, where p /∈ supp(∇),

p′ ∈ supp(∇), len(p′) > 1, and p′ satisfies condition (∗), but not (∗∗)

Since the argument in Lemma 6.1.9 for case 1a(iii) does not rely on the fact that the peak is

pin at all, as with the pin version of case 2b(iv), the same logic applies. Thus any M that fits

in this case must have Ext1A(M,A) ̸= 0.

Case 2b(v): the peak contains two boundary syllables, p and p′, where p /∈ supp(∇), p′ ∈ supp(∇),

len(p′) = 1, and p′ satisfies condition (∗), but not (∗′) or (∗∗)

Since the argument in Lemma 6.1.9 for case 2b(v) does not rely on the fact that the peak is pin

at all, the same logic applies. Thus any M that fits in this case must have Ext1A(M,A) ̸= 0.

Case 2(c): the peak contains two boundary syllables, p and p′, where both belong to supp(∇)

The core ideas of the argument for case 0 above only relies on the fact that the peak is non-pin,

and that its patch has no blank syllables. The same logic works in this case if you replace all

instances of p− u with just p, and all instances of p′ − u′ with just p′. Thus any M that fits in

this case must have Ext1A(M,A) ̸= 0.

As with the pin case above, our running example algebra doesn’t have any peaks in some of the

important cases here, so we will use a different algebra for our example.

6.1.12. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩

(note that this is the same algebra used in Example 6.1.10).

Now consider the strip, w, of A′:

· · · · · ·
κµηκ ηκµ κµη ηκµ κµη ηκ

Then the left peak of w falls into non-pin case 1a(iii), the middle peak of w falls into non-pin case

0, and the right peak of w falls into non-pin case 1b.

Applying our syzygy algorithm to this strip leaves a flattened family of strips, w′, representing
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Ω(M) ∈ mod-A, of the following form:

· · · · · ·
ηκ κ ηκ κ ηκ es(κ)

The argument for the peak in non-pin case 1a(iii) focuses on the obvious homomorphism

f : Ω(M) → e1A
′ with image im(f) = ⟨κµ⟩A′ which is zero on all basis elements of Ω(M) not

corresponding to the leftmost syllable of w′. As explained in Lemma 6.1.11, this morphism does

not factor through the inclusion inc : Ω(M)→ P(M).

Now, the argument for the peak in non-pin case 0 focuses on the obvious homomorphism

f : Ω(M)→ e1A
′ with image ⟨ηκµ⟩A′ which is zero on all basis elements of Ω(M) not corresponding

to the third syllable from the left of w′. As explained in Lemma 6.1.11, this morphism does not

factor through the inclusion inc : Ω(M)→ P(M).

Finally, the argument for the peak in non-pin case 0 focuses on the obvious homomorphism

f : Ω(M)→ e1A
′ with image ⟨ηκµ⟩A′ which is zero on all basis elements of Ω(M) not corresponding

to the second syllable from the right of w′. As explained in Lemma 6.1.11, this morphism does not

factor through the inclusion inc : Ω(M)→ P(M).

It is clear that all three of the morphisms discussed here are linearly independent.

Note that the logic applied for case 0 in Lemma 6.1.11 also gives the following result:

6.1.13. Corollary. If an indecomposable band module M has a non-zero projective string

module as a summand of its projective cover, then Ext1A(M,A) ̸= 0.

The following gives an example of such a band module:

6.1.14. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩

(note that this is the same algebra used in Examples 6.1.10 and 6.1.12).
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Now consider the belt, w, of A′:

ηκµ κµη

Then the unique peak of w (considered across the wrapping) falls into non-pin case 0.

Applying our syzygy algorithm to this belt leaves a strip, w′, representing Ω(M) ∈ mod-A, of the

following form:

· · · · · ·
ηκ κ

The argument for the peak in non-pin case 0 focuses on the obvious homomorphism f : Ω(M)→ e1A
′

with image im(f) = ⟨ηκµ⟩A′ which is zero on all basis elements of Ω(M) not corresponding to the

leftmost syllable of w′. As explained in Lemma 6.1.11, this morphism does not factor through the

inclusion inc : Ω(M)→ P(M).

We now return to the setting of general SB algebras.

6.1.15. Lemma. Let A be an SB algebra. If an indecomposable string module M ∈ mod-A

is represented by a strip without any green peaks, then Ext1A(M,A) ̸= 0.

Proof. Suppose that M is a string module represented by a strip without any green peaks, and

that Ext1A(M,A) = 0. By applying Lemmas 6.1.9 and 6.1.11, this necessarily means that M is

represented by a strip consisting entirely of yellow peaks. Since yellow peaks have one boundary

syllable and one interior syllable, this means that M is represented by a strip of the form:

· · · p1 p2 p3 p4 · · ·

where p1,p4 have the form:

( si
asi

+ bsi − 1

◦
1
◦ ),

for some choices of si ∈ O, and p2,p3 have the form:

( si
1

◦
0
◦ ),
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for some choices of si ∈ O satisfying asi − 1 = asi−1.

In particular this means that Ω(M) is represented by a strip of the form:

· · · q2 q3 · · ·

where qi = ( si − 1
asi

− 1

◦
1
◦ ) for i = 2, 3. Since asi − 1 = asi−1 for i = 2, 3, Ω(M) is a

non-zero projective string module.

In particular, this means that there is a homomorphism f : Ω(M) → AA where im(f) ̸⊆ rad(AA).

Since the inclusion ι : Ω(M)→ P(M) of the syzygy into the projective cover has im(ι) ⊆ rad(P(M))

and for all homomorphisms g : P(M) → AA, we have g(rad(P(M))) ⊆ rad(AA), it is clear that

f does not factor through ι. Thus it follows that Ext1A(M,A) ̸= 0, giving a contradiction as

required.

Since the running example algebra has no yellow peaks, we will again use a different algebra as an

example for this result.

6.1.16. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩

(note that this is the same algebra used in Examples 6.1.10, 6.1.12 and 6.1.14).

Now consider the strip, w, of A′:

· · · · · ·
κµηκ η µ ν3

Then the left peak of w falls into non-pin case 1a(ii), and the right peak of w falls into pin case

1a(ii). They are both examples of “yellow peaks”.

Applying our syzygy algorithm to this strip leaves a strip, w′, representing Ω(M) ∈ mod-A, of the
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following form:

· · · · · ·
κµηκ ηκµηκ

As explained in Lemma 6.1.15, this strip represents a projective string module. Thus the identity

morphism on this module is a morphism to a projective that does not factor through the projective

cover.

We now return to the setting of general SB algebras.

6.1.17. Lemma. Let A be an SB algebra. If an indecomposable string module M ∈ mod-A

is represented by a strip, w, where w consists of a single peak and that peak is green, then

Ext1A(M,A) = 0.

Proof. We assume that M is an indecomposable string module which is represented by a strip

consisting of a single peak, which is green. This necessarily means that the peak consists of two

boundary syllables.

We first consider the 4 different cases where the peak is pin:

Case 2a(i): the peak consists of two boundary syllables, p and p′, neither of which belong to

supp(∇) and both of which satisfy condition (∗∗)

Let us denote the compression of each of p,p′ by p, p′ respectively.

Since both syllables are pin-boundary, this means that M is a socle-quotient of a pin module,

and Ω(M) is a simple module represented by a strip of the form:

· · · et(p) et(p′) · · ·

Either {p} or {p′} can be used as a basis of Ω(M), and can be considered as a subset of the

standard basis of P(M), since both of these paths represent the same element of P(M).

Suppose for contradiction that Ext1A(M,A) ̸= 0. This means that there is an indecomposable

projective string module P , and a homomorphism f : Ω(M)→ P that does not factor through

the inclusion inc : Ω(M) → P(M). In particular, this means that f is non-zero. We will
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represent P by the following strip:

· · · r1 r2 · · ·

where ri = ( si
asi

◦
1
◦ ) for i = 1, 2 and s†1 = s2. Let yi be the underlying O-path of

ri for i = 1, 2. Thus {y1, y2} is a basis of soc(P ) which is a subset of the standard basis of P .

Since Ω(M) is a simple module, this means that f is an inclusion into soc(P ). Thus

f(p) = f(p′) = λ1y1 + λ2y2 for some λ1, λ2 ∈ k, not both zero. Without loss of generality,

let us assume that λ1 ̸= 0. Since f is an A-module homomorphism, this means that

t(y1) = s1 − as1 ∈ {t(p), t(p′)}.

Without loss of generality, let us assume that t(p) = s1 − as1 ∈ O. Since p is pin-boundary,

we have s(p)− as(p) = t(p) = s1 − as1 . As bs(p) = 0 and bs1 = 1, it is clear that s(p) ̸= s1 and

thus that as(p) ̸= as1 . We now consider the cases where as(p) > as1 and as(p) < as1 separately.

If as(p) > as1 , then l := as(p)−as1 > 0, and s(p)− l = s1. Thus as(p)− l = as(p)−l, so applying

the standard source encoding inequality gives us:

as(p) − l = as(p)−1 − (l − 1) = . . . = as(p)−(l−1) − 1 = as(p)−l.

Therefore as(p) − 1 = as(p)−1, contradicting condition (∗∗) for p.

On the other hand, if as(p) < as1 , then p is a strict suffix of y1, as t(y1) = t(p) = t(p) and

len(p) = as(p) < as1 = len(y1). This means that there is an O-path x1 such that y1 = x1p. We

now define an A-morphism g1 : P(M)→ P by setting g1(es(p)) = g1(es(p′)) = x1, and extending

A-linearly (noting that es(p) and es(p′) represent the same basis element of P(M)). Now we

note that g1(p) = g1(es(p)p) = g1(es(p))p = x1p = y1. Since f doesn’t factor through inc and

g1 ◦ inc clearly does, we have that f − λ1g1 ◦ inc doesn’t factor through inc either. We also

note that (f − λ1g1 ◦ inc)(p) = λ2y2. Applying the same logic to this new A-homomorphism,

results in the obvious contradiction that the zero homomorphism Ω(M) → P doesn’t factor

through inc.

Since we always arrive at a contradiction, we know that Ext1A(M,A) = 0 for any M that fits

in this case.
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Case 2b(i): the peak contains two boundary syllables, p and p′, where p ̸∈ supp(∇), p′ ∈ supp(∇),

and p′ satisfies conditions (∗) and (∗∗)

The patch, X, associated to this peak takes the following form:

p p′

q′

where q′ = ( t(p′)

as(p′) − len(p′)

◦
1
◦ ). We will denote the projective associated to X by PX .

Thus Ω(M) is represented by a strip of the form:

· · · q′ et(p′)† · · ·

Let the compressions of p,p′,q′, et(p′)† be denoted by p, p′, q′, α respectively. Note in particular

that len(α) = 1.

Suppose for contradiction that Ext1A(M,A) ̸= 0. This means that there is an indecomposable

projective string module P , and a homomorphism f : Ω(M)→ P that does not factor through

the inclusion inc : Ω(M) → P(M). In particular, this means that f is non-zero. We will

represent P by the following strip:

· · · r1 r2 · · ·

where ri = ( si
asi

◦
1
◦ ) for i = 1, 2 and s†1 = s2. Let ri be the compression of ri for

i = 1, 2.

We use the standard basis for P , and the standard bi-partitioned basis for P(M) from the

syzygy algorithm. We then use the lower part of the partition as our basis for Ω(M).
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Since f is non-zero, f(p′) =
∑

j∈J λjuj for some index set J where λj ∈ k (not all zero)

and uj is an O-path with s(uj) ∈ {s1, s2} (this follows from choice of basis on P ). Since

p′ = p′et(p′) ∈ Ω(M) and f is an A-homomorphism, we have

∑
j∈J

λjuj = f(p′) = f(p′)et(p′) =
∑
j∈J

λjujet(p′),

so we may assume that t(uj) ∈ {t(p′), t(p′)†} ⊆ O0 for all j ∈ J . Since p′q′ = 0 ∈ Ω(M), we

also have

0 = f(p′)q′ =
∑
j∈J

λjujq
′.

Since, for our choice of basis, multiplying a basis element of P by an A-path either gives zero

or another basis element, and the fact that bq′ = b′q′ ̸= 0 for two basis elements b, b′ implies

that b = b′, we can assume that ujq
′ = 0 for all j ∈ J .

To summarise, this means that f(p′) =
∑

j∈J λjuj for some index set J where λj ∈ k (not all

zero) and uj is an O-path with s(uj) ∈ {s1, s2}, t(uj) ∈ {t(p′), t(p′)†} and ujq′ = 0 ∈ P for all

j ∈ J .

We claim that all f : Ω(M) → P satisfying this must factor through inc : Ω(M) → P(M).

To show this, it is sufficient to show it for f satisfying f(p′) = u, where s(u) ∈ {s1, s2},

t(u) ∈ {t(p′), t(p′)†} and uq′ = 0 ∈ P , since any of the more general f can be obtained as a

linear combination of these.

We first suppose that t(u) = t(p′)†. Let α ∈ O1 denote the unique arrow of the

overquiver with s(α) = t(p′)†. By the construction of the overquiver, it is clear that

p′α = 0 ∈ Ω(M) ⊊ P(M) ⊆ A. Thus uα = f(p′)α = 0 ∈ P , since f is an A-module

homomorphism. Hence uα′ = 0 ∈ P for all α′ ∈ Q1. This means that u ∈ P is thus a basis

element of soc(P ). Thus t(u) = si − asi for one of i = 1, 2 with asi > 0 or asi = as†i
= 0. Since

t(u) = t(p′)† and bs1 = bs2 = 1, this contradicts the fact that p′ satisfies condition (∗).

Therefore we can now assume that t(u) = t(p′). We claim that this means that p′ is a (not

necessarily strict) suffix of u.
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Suppose to the contrary, that u is a strict suffix of p′. Let k := len(p′) − len(u) > 0.

Then s(u) = s(p′) − k, and so by applying Lemma 2.3.14 to s(p′) − 1, it follows that

as(p′)−1 ≤ as(u) + (k − 1). Combining this with the fact that as(p′) − 1 < as(p′)−1 (which

follows from condition (∗∗) being satisfied by p′), gives as(p′) − k < as(u). Unpacking our

definition of k then gives as(p′) − len(p′) + len(u) < as(u). By the definition of q′, this means

that (len(q′) − 1) + len(u) < as(u) and hence that len(uq′) ≤ as(u). This means that uq′ is

necessarily a non-zero A-path, and hence a non-zero element of P , contradicting our earlier

calculations.

We may now assume that p′ is a (not necessarily strict) suffix of u, i.e that len(p′) ≤ len(u) (as

we already know that t(p′) = t(u). Now let x be the unique O-path satisfying u = xp′; note

that s(x) = s(u), t(x) = s(p′) and that len(x) = len(u)− len(p′) ≥ 0.

We now define an A-morphism g : P(M)→ P by setting g(es(p)) = g(es(p′)) = x, and extending

A-linearly (noting that es(p) and es(p′) represent the same basis element of P(M)). Now we

note that g(p′) = g(es(p′)p
′) = g(es(p′))p

′ = xp = u. Since p′ is an A-generator for Ω(M), it

follows that f = g ◦ inc, as required.

(Note that this argument does not rely on the fact that the peak is pin.)

Case 2b(ii): the peak contains two boundary syllables, p and p′, where p ̸∈ supp(∇), p′ ∈ supp(∇),

len(p′) = 1 and p′ satisfies condition (∗′) but not (∗∗)

The patch, X, associated to this peak takes the following form:

p p′

q′

where q′ = ( t(p′)

as(p′) − len(p′)

◦
1
◦ ). We will denote the projective associated to X by PX .

Thus Ω(M) is represented by a strip of the form:

· · · q′ et(p′)† · · ·

Let the compressions of p,p′,q′, et(p′)† be denoted by p, p′, q′, α respectively.
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We use the standard basis for P , and the standard bi-partitioned basis for P(M) from the

syzygy algorithm. We then use the lower part of the partition as our basis for Ω(M).

Suppose for contradiction that Ext1A(M,A) ̸= 0. This means that there is an indecomposable

projective string module P , and a homomorphism f : Ω(M)→ P that does not factor through

the inclusion inc : Ω(M) → P(M). In particular, this means that f is non-zero. We will

represent P by the following strip:

· · · r1 r2 · · ·

where ri = ( si
asi

◦
1
◦ ) for i = 1, 2 and s†1 = s2.

As in case 2b(i), we can restrict our focus to f : Ω(M) → P satisfying f(p′) = u, where

s(u) ∈ {s1, s2}, t(u) ∈ {t(p′), t(p′)†} and uq′ = 0 ∈ P .

Since p′ satisfies condition (∗) like in case 2b(i), we can again assume that t(u) = t(p′). We

now claim that p′ is a (not necessarily strict) suffix of u.

Suppose to the contrary, that u is a strict suffix of p′. Since len(p′) = len(p′) = 1, this means

that u = et(p′) = es(p′)−1.

We now note that if at(p′)† = 0 we immediately reach a contradiction for p′ satisfying condition

(∗′). Hence it follows that at(p′)† > 0. By our definition above, α ∈ O1 denotes the unique

arrow of the overquiver with s(α) = t(p′). By the construction of the overquiver, it is clear

that p′α = 0 ∈ Ω(M) ⊊ P(M) ⊆ A. Thus uα = f(p′)α = 0 ∈ P , since f is an A-module

homomorphism. This gives a contradiction as u = et(p′) represents the same basis vector of P

as et(p′)† , and et(p′)†α = α ̸= 0 ∈ P (due to the fact that at(p′)† > 0).

We may now safely assume that p′ is a (not necessarily strict) suffix of u, i.e that

len(p′) ≤ len(u) (as we already know that t(p′) = t(u)). Following the same logic as case 2b(i),

it is possible to construct a factorisation of f through the inclusion inc : Ω(M) → P(M), as

required.

(Note that this argument does not rely on the fact that the peak is pin.)
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Case 2c(i): the peak contains two boundary syllables, p and p′, both of which belong to supp(∇),

and both of which satisfy condition (∗)

The patch, X, associated to this peak takes the following form:

p p′

∇p ∇p′

We will denote the projective associated to X by PX .

Since the peak is pin, both p∇,p′∇ are interior syllables. Thus Ω(M) is represented by a strip

of the form:

· · · et(p)† ∇p ∇p′ et(p′)† · · ·

For ease of notation later, we define q = ∇p and q′ = ∇p′. Let the compressions of p,p′,q,q′

be denoted by p, p′, q, q′ respectively.

We use the standard basis for P , and the standard bi-partitioned basis for P(M) from the

syzygy algorithm. We then use the lower part of the partition as our basis for Ω(M).

Note that the O-paths pq and p′q′ represent the same basis vector of Ω(M) ⊆ P(M).

Suppose for contradiction that Ext1A(M,A) ̸= 0. This means that there is an indecomposable

projective string module P , and a homomorphism f : Ω(M)→ P that does not factor through

the inclusion inc : Ω(M) → P(M). In particular, this means that f is non-zero. We will

represent P by the following strip:

· · · r1 r2 · · ·

where ri = ( si
asi

◦
1
◦ ) for i = 1, 2 and s†1 = s2.

We use the standard basis for P , and the standard bi-partitioned basis for P(M) from the

syzygy algorithm. We then use the lower part of the partition as our basis for Ω(M).

We first note that pq = p′q′ ∈ Ω(M), and thus f(pq) = f(p′q′) = 0 ∈ P , as x1α1 = x2α2 ∈ P

and α1 ̸= α2 imply that x1α1 = 0. Thus f : Ω(M) → P can be written as a sum of
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two morphisms f1, f2 : Ω(M) → P where f1 (resp. f2) is non-zero only on basis vectors

corresponding to the syllable q = ∇p (resp. the syllable q′ = ∇p′). Since the situation is

symmetric, we can thus assume without loss of generality that f is non-zero only on basis

vectors corresponding to the syllable q = ∇p. Thus f is entirely determined by its behaviour

on the basis vector p, by A-linearity.

By the same logic as in case 2b(i) for f(p′), we may assume that f(p) =
∑

j∈J λjuj for

some index set J where λj ∈ k (not all zero) and uj is an O-path with s(uj) ∈ {s1, s2},

t(uj) ∈ {t(p), t(p)†} and ujq = 0 ∈ P for all j ∈ J .

We claim that all f : Ω(M) → P satisfying this must factor through inc : Ω(M) → P(M).

To show this, it is sufficient to show it for f satisfying f(p) = u, where s(u) ∈ {s1, s2},

t(u) ∈ {t(p), t(p)†} and uq = 0 ∈ P , since any of the more general f can be obtained as a

linear combination of these.

Since condition (∗) is satisfied by p, by the same argument as case 2b(i), we may further

assume that t(u) = t(p). We now claim that p is a (not necessarily strict) suffix of u.

Suppose to the contrary, that u is a strict suffix of p. Let k := len(p) − len(u) > 0. Then

s(u) = s(p) − k, so applying Lemma 2.3.14, we obtain as(p) − k ≤ as(u). Unpacking our

definition of k then gives as(p) − len(p) + len(u) ≤ as(u). Then by the definition of q = ∇p, it

follows that len(q) + len(u) ≤ as(u). Hence uq ̸= 0 ∈ P , which gives the required contradiction.

We now know that p is a (not necessarily strict) suffix of u. In fact, since bs(p) = 0 and

bs(u) = 1, we know that p is a strict suffix of u. Following the same logic as case 2b(i), it is

thus possible to construct a factorisation of f through the inclusion inc : Ω(M) → P(M), as

required.

We now consider the 3 different cases where the peak is non-pin:

Case 2(a): the peak contains two boundary syllables, p and p′, neither of which belongs to

supp(∇)

Since neither p or p′ belong to supp(∇), they both take the following form:

( i
ai

◦
1
◦ ),

for some compatible choices of i ∈ O. Now, since this peak is non-pin, this necessarily means

that M is a non-zero projective string module. Thus Ext1A(M,A) = 0 as required.
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Case 2b(i): the peak contains two boundary syllables, p and p′, where p ̸∈ supp(∇), p′ ∈ supp(∇),

and p′ satisfies conditions (∗) and (∗∗)

Since the above argument for case 2b(i) with a pin peak does not rely on the fact that

the peak is pin, the same logic applies here. Thus any M that fits in this case must have

Ext1A(M,A) = 0.

Case 2b(ii): the peak contains two boundary syllables, p and p′, where p ̸∈ supp(∇), p′ ∈ supp(∇),

len(p′) = 1 and p′ satisfies condition (∗′) but not (∗∗)

Since the above argument for case 2b(ii) with a pin peak does not rely on the fact that

the peak is pin, the same logic applies here. Thus any M that fits in this case must have

Ext1A(M,A) = 0.

We have already illustrated all of the peaks with two boundary syllables that are green for our

running example algebra, A, (see Figures 6.1 and 6.2). Thus we use our other example algebra, A′,

to give more examples of strips with a single green peak.

6.1.18. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩

(note that this is the same algebra used in several examples in this section, and initially used in

Example 6.1.10).

The i ∈ O where ai − 1 ̸= ai−1 are s(κ) and s(ν). The j ∈ O where j† ̸= i− ai for any i ∈ O with

bi = 1 are s(η), s(κ) and s(µ). Therefore a syllable of A′ satisfies condition (∗) if and only if its

source is s(κ) or s(ν), and a syllable of A′ satisfies condition (∗∗) if and only if its underlying path

lies on the larger connected component of A′.

This means that there are no peaks in pin case 2a(i), as s(ν) is the unique vertex on its component

of the overquiver, and s(ν)† = s(η)− as(η) = s(κ)− as(κ). For a similar reason, there are no peaks

in pin case 2b(i), as s(ν) is the unique vertex, i, with bi = 0 and ai − 1 ̸= ai−1. Furthermore, there

are no peaks in pin case 2c(i), as there is only one vertex i ∈ O with bi = 0 and ai − 1 ̸= ai−1.

There are also no peaks in non-pin case 2b(ii), as i − ai = s(µ) = s(ν)† for all i ∈ O with bi = 1,

and s(ν) has no vertices j ∈ O with bj = 1 on its connected component of the overquiver.
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ν3 es(µ) ηκµηκ κµηκ

ηκµηκ κµη ηκµηκ κµ ηκµηκ κ ηκµηκ es(κ)

Figure 6.3: List of all green peaks with two boundary syllables for our secondary example algebra.
The example algebra used is specified in Example 6.1.18. All peaks are given up to reflection.
The left peak on the first row belongs to pin case 2b(ii). The right peak on the first row belongs to
non-pin case 2(a). The second row consists of peaks belonging to non-pin case 2b(i).

It follows that Figure 6.3 lists all strips of A′ with a single green peak. By Lemma 6.1.17 these are

exactly the string modules, M , with intwid(M) = 0 and Ext1A(M,A) = 0.

We now return to the setting of general SB algebras. Before we continue with our classification

of modules M ∈ mod-A with Ext1A(M,A) = 0, we prove a small lemma that will be useful in

subsequent arguments.

6.1.19. Lemma. Let A be an SB algebra. Suppose that an indecomposable string module

M ∈ mod-A is represented by a strip, w, where w consists of multiple peaks, none of which

are red, and at least one of which is green. Let f : Ω(M)→ P be a A-homomorphism where

P is an indecomposable projective string module. Then f is not surjective.

Proof. We will represent P by the following strip:

· · · r1 r2 · · ·

where ri = ( si
asi

◦
1
◦ ) for i = 1, 2 and s†1 = s2.

Since w contains no red peaks, it is easy to check that applying the syzygy algorithm results in

Ω(M) being indecomposable.

Suppose that f is surjective. Then since P is projective, f : Ω(M) → P splits. As Ω(M) is

indecomposable, this means that Ω(M) ∼= P , and thus can be represented by the same strip as P .
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Since w consists of multiple peaks, it must have exactly two peaks, where their associated patches

take the forms:

p0 p1

r1

p2 p3

r2

Since at least one of the peaks of w is green, it is sufficient to check that patches associated to

green peaks with one boundary syllable never take this form.

As the patches associated to peaks in pin case 1b(i) have two interior syllables in the bottom row,

it remains to show that peaks in case 1a(i) don’t have associated patches of this form either (for

either pin or non-pin peaks).

Suppose that (p0,p1) forms a peak in case 1a(i). Let us denote the compression of p1 and r1 by

p1 and r1 respectively. We know from the construction of patches that the O-path p1r1 is equal to

( s(p1)
as(p1) + 1

◦ ). Thus

as(p1) + 1 = len(p1) + len(r1) = len(p1) + (as1 + 1) = len(p1) + as(p1)−len(p1) + 1.

So as(p1) − len(p1) = as(p1)−len(p1). Repeatedly applying the standard source encoding inequality

thus gives:

as(p1) − len(p1) = as(p1)−len(p1)

≥ as(p1)−len(p1)+1 − 1

≥ as(p1)−len(p1)+2 − 2

≥ . . .

≥ as(p1)−1 − len(p1) + 1

≥ as(p1) − len(p1)

Hence all of the inequalities here, are actually equalities. It follows that as(p1) − 1 = as(p1)−1, but

this means that p1 does not satisfy condition (∗∗). This contradicts the fact that (p0,p1) forms a

pin peak in case 1a(i).
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6.1.20. Lemma. Let A be an SB algebra. If an indecomposable string module M ∈ mod-A

is represented by a strip, w, where w consists of multiple peaks, none of which are red, and at

least one of which is green, then Ext1A(M,A) = 0.

Proof. We assume that M is an indecomposable string module which is represented by a strip

consisting of multiple peaks, none of which are red, and at least one of which is green. This

necessarily means that all of the peaks have at most one boundary syllable.

We also note that Ω(M) is indecomposable. This follows immediately from the fact that the patches

associated to green and yellow peaks have at most one boundary syllable in their bottom row.

Suppose for contradiction that Ext1A(M,A) ̸= 0. This means that there is an indecomposable

projective string module P , and a homomorphism f : Ω(M)→ P that does not factor through the

inclusion inc : Ω(M)→ P(M). In particular, this means that f is non-zero.

We will represent P by the following strip:

· · · r1 r2 · · ·

where ri = ( si
asi

◦
1
◦ ) for i = 1, 2 and s†1 = s2.

We use the standard basis for P , and the standard bi-partitioned basis for P(M) from the syzygy

algorithm. We then use the lower part of the partition as our basis for Ω(M).

By applying Lemma 6.1.19, we see that f is also not surjective. Since f is not surjective, we have

an inclusion im(f) ⊆ rad(P ). As P is a projective string module, rad(P ) is a direct sum of two

uniserial modules, one corresponding to each of the O-paths ( si − 1
asi

− 1

◦ ) for i = 1, 2. Thus

f : Ω(M) → P is the sum of two morphisms, which each factor through one of the inclusions of

these uniserial modules. It is thus sufficient to show that any morphism f : Ω(M) → P mapping

into one of these uniserial submodules must factor through the inclusion inc : Ω(M) → P(M).

So we now assume that f : Ω(M) → P factors through the uniserial module corresponding to

( s1 − 1
as1 − 1

◦ ), which we will denote by U . We will denote the morphism in this factoring by

f ′ : Ω(M)→ U and the inclusion by ι : U → P . Since f is non-zero, so is f ′.

We now note that the only element u ∈ U where u = v1α1 = v2α2 for two distinct arrows α1 ̸= α2

of Q and elements v1, v2 ∈ U , is the zero element. Thus if b ∈ soc(Ω(M)) is a standard basis
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element corresponding to an interior valley, then f(b) = ι(f ′(b)) = ι(0) = 0 ∈ P . This means that

f ′ : Ω(M)→ U is the sum of a finite collection of morphisms, each of which is only non-zero on the

basis elements corresponding to a single peak of Ω(M). Since f = ι ◦ f ′, the same is true of f . So

we now assume that f ′ (and hence also f) is only non-zero on the basis elements corresponding to

a single peak of Ω(M).

Let us denote this peak by

q1 q2

Let y ∈ Ω(M) be the standard basis element corresponding to the top of the peak. Since f ′ is

non-zero, f ′(y) ̸= 0 ∈ U . Thus f ′(y) corresponds to a linear combination of O-paths, oi, indexed

by i ∈ I, where s(oi) = s1 − 1, and t(oi) a vertex of O corresponding to the same Q-vertex as y.

We can assume without loss of generality, that this linear combination has only one entry, and that

f ′(y) is a standard basis element corresponding to an O-path, o, satisfying these conditions. Thus

s(o) = s1 − 1 and t(o) ∈ {s(q1), s(q2)}.

Without loss of generality, we can assume that t(o) = s(q1). This means that all of our standard

basis elements of Ω(M) that don’t correspond to the syllable q1, must belong to ker(f ′) = ker(f).

Since each syllable of Ω(M) is determined by a single peak of M , we can handle each type of peak

in our classification separately.

To summarise, we need to check that for each of the green or yellow peaks of M with at most one

boundary syllable, if f ′ is non-zero only on the basis elements of Ω(M) corresponding to a syllable

of Ω(M) that results from their presence (those in the corresponding patch and, in pin case 1b(i),

the additional stationary syllable), our morphism f factors through inclusion into the projective

cover inc : Ω(M)→ P(M).

We first handle the pin peaks:

Case 0: the peak contains two interior syllables, p and p′

The patch, X, associated to this peak takes the following form:

p p′

∇p ∇p′
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We will denote the projective associated to X by PX .

Without loss of generality, we can assume that (using the notation of our above argument)

q1 = ∇p. Let us denote the compressions of p and q1 by p and q1 respectively (since both of

these syllables are interior, these are also the underlying paths of the syllables).

Let y ∈ Ω(M) be the standard basis element corresponding to the source of q1. Let

b ∈ soc(Ω(M)) be the standard basis element corresponding to the target of q1. Both of these

match our notation in the above general argument. Note that yq1 = b.

Since q1 is an interior syllable, as discussed in the above argument, we know that f ′(b) = 0.

We have also assumed that f ′(y) ∈ U is a basis element represented by an O-path, o, where

s(o) = s1 − 1 and t(o) = s(q1) = s(q1). Therefore 0 = f ′(b) = f ′(yq1) = f ′(y)q1 = oq1 ∈ U .

Let o′ be the unique O-path with len(o′) = len(o) + 1 and o as a suffix. Then this means that

o′q1 = 0 ∈ P , and thus that o′q1 is an O-path which is zero when considered as an A-path.

Since pq1 is an O-path which is non-zero when considered as an A-path, this means that pq1

is a strict suffix of o′q1, and thus that p is a strict suffix of o′. Now let x be the unique O-path

satisfying o′ = xp; note that s(x) = s(o′), t(x) = s(p) and that len(x) = len(o′)− len(p) > 0.

We now define an A-morphism g : P(M) → P by setting g(es(p)) = g(es(p′)) = x, setting

g(z) = 0 for all other generators z of P(M), and then extending A-linearly (noting

that es(p) and es(p′) represent the same basis element of P(M)). Now we note that

g(p) = g(es(p)p) = g(es(p))p = xp = o′. Since the morphisms agree on a set of generators for

Ω(M), it follows from A-linearity that f = g ◦ inc, as required.

Case 1a(i): the peak contains one boundary syllable, p, which does not belong to supp(∇) and

one interior syllable p′, where p′ satisfies condition (∗∗)

The patch, X, associated to this peak takes the following form:

p p′

q′

where q′ = ( t(p′)

as(p′) − len(p′)

◦
1
◦ ).

So (using the notation of our above argument) we have that q1 = q′. Let us denote the
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compressions of p′ and q1 by p′ and q1 respectively.

Let y ∈ Ω(M) be the standard basis element corresponding to the source of q1. This matches

our notation in the above argument. Note that yq1 = 0 ∈ Ω(M).

We have assumed that f ′(y) ∈ U is a basis element represented by an O-path, o, where

s(o) = s1 − 1 and t(o) = s(q1) = s(q1) = t(p′). Since yq1 = 0 ∈ Ω(M), it follows that

0 = f ′(yq1) = f ′(y)q1 = oq1. Let o′ be the unique O-path with len(o′) = len(o) + 1 and o as a

suffix. Then this means that o′q1 = 0 ∈ P , and thus that o′q1 is an O-path which is zero when

considered as an A-path. Also note that t(o′) = t(o) = t(p′).

We now claim that p′ is a (not necessarily strict) suffix of o′.

Suppose to the contrary, that o′ is a strict suffix of p′. Let k := len(p′) − len(o′) > 0.

Then s(o′) = s(p′) − k, and so by applying Lemma 2.3.14 to s(p′) − 1, it follows that

as(p′)−1 ≤ as(o′) + (k − 1). Combining this with the fact that as(p′) − 1 < as(p′)−1 (which

follows from condition (∗∗) being satisfied by p′), gives as(p′) − k < as(o′). Unpacking our

definition of k then gives as(p′) − len(p′) + len(o′) < as(o′). By the definition of q′, this means

that (len(q′) − 1) + len(o′) < as(o′), and hence that len(o′q′) ≤ as(o′). This means that o′q′

is necessarily an O-path which is non-zero when considered as an A-path, contradicting our

earlier calculations.

We may now assume that p′ is a (not necessarily strict) suffix of o′, i.e. that len(p′) ≤ len(o′)

(as we already know that t(p′) = t(o′)). Now let x be the unique O-path satisfying o′ = xp′;

note that s(x) = s(o′), t(x) = s(p′) and that len(x) = len(o′)− len(p′) ≥ 0.

We now define an A-morphism g : P(M) → P by setting g(es(p)) = g(es(p′)) = x, setting

g(z) = 0 for all other generators z of P(M), and then extending A-linearly (noting

that es(p) and es(p′) represent the same basis element of P(M)). Now we note that

g(p) = g(es(p)p) = g(es(p))p = xp = o′. Since the morphisms agree on a set of generators for

Ω(M), it follows from A-linearity that f = g ◦ inc, as required.

(Note that this argument does not rely on the fact that the peak is pin.)
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Case 1a(ii): the peak contains one boundary syllable, p, which does not belong to supp(∇) and

one interior syllable p′, where p′ does not satisfy condition (∗∗) and has len(p′) = 1

This is the yellow pin peak case.

The patch, X, associated to this peak takes the following form:

p p′

q′

where q′ = ( t(p′)

as(p′) − len(p′)

◦
1
◦ ).

So (using the notation of our above argument) we have that q1 = q′. Let us denote the

compressions of p′ and q1 by p′ and q1 respectively.

We have assumed that f ′(y) ∈ U is a basis element represented by an O-path, o, where

s(o) = s1 − 1 and t(o) = s(q1) = s(q1) = t(p′). Since yq1 = 0 ∈ Ω(M), it follows that

0 = f ′(yq1) = f ′(y)q1 = oq1. Let o′ be the unique O-path with len(o′) = len(o) + 1 and o as a

suffix. Then this means that o′q1 = 0 ∈ P , and thus that o′q1 is an O-path which is zero when

considered as an A-path. Also note that t(o′) = t(o) = t(p′).

We now split into two cases based on whichever of o′ and p′ is longer.

If len(p′) ≤ len(o′), then applying the same logic as in case 1a(i) above shows that f factors

through the inclusion inc : Ω(M)→ P(M).

It remains to handle the case where len(p′) > len(o′). Since len(p′) = len(p′), which is assumed

to be 1, it follows that len(o′) = 0. But we know that len(o′) = len(o) + 1 ≥ 0, which gives us

a contradiction. Hence this case can never occur.

Thus we know that f always factors through the inclusion inc : Ω(M)→ P(M), as required.

(Note that this argument does not rely on the fact that the peak is pin.)
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Case 1b(i): the peak contains one boundary syllable, p, which belongs to supp(∇), and satisfies

condition (∗), and one interior syllable p′

The patch, X, associated to this peak takes the following form:

p p′

∇p ∇p′

We will denote the projective associated to X by PX .

Since p is boundary, the syllables we have to consider are ∇p, ∇p′ and et(p)† . So (using the

notation of our above argument) we have that q1 ∈ {∇p,∇p′, et(p)†}.

Since all syllables in the image of ∇ are the image of an interior syllable under ∇, and Case 0

handles such syllables, we need only consider the case where q1 = et(p)† .

The following argument follows similar ideas to cases 2b(i), 2b(ii) and pin case 2c(i), but for

clarity, we repeat it here.

Let y ∈ Ω(M) be the standard basis element corresponding to the source of q1. This matches

our notation in the above argument.

We know that t(o) = s(q1) = t(p)†. Let α ∈ O1 denote the unique arrow of the overquiver

with s(α) = t(p′). By the construction of the overquiver, it is clear that yα = 0 ∈ Ω(M). Thus

o′α = f(y)α = 0 ∈ P , since f is an A-module homomorphism. Hence o′α′ = 0 ∈ P for all

arrows α′ ∈ Q1. This means that o′ ∈ P is thus a basis element of soc(P ). Thus t(o′) = si−asi

for one of i = 1, 2 where bs1 = bs1 = 1 and asi > 0 or asi = as†i
= 0. Since t(o′) = t(p)† this

contradicts the fact that p′ satisfies condition (∗).

Therefore we know that all f in pin case 1b(i) factor through inc : Ω(M)→ P(M), as required.

We now handle the non-pin peaks:

Case 1a(i): the peak contains one boundary syllable, p, which does not belong to supp(∇) and

one interior syllable p′ where p′ satisfies condition (∗∗)

Since the above argument for subcase 1a(i) with a pin peak does not rely on the fact that the

peak is pin, the same logic applies here.
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Case 1a(ii): the peak contains one boundary syllable, p, which does not belong to supp(∇) and

one interior syllable p′ where p′ does not satisfy condition (∗∗) and has len(p′) = 1

This is the yellow non-pin peak case.

Since the above argument for subcase 1a(ii) with a pin peak does not rely on the fact that the

peak is pin, the same logic applies here.

Thus we have shown that all such morphisms f : Ω(M)→ P factor through the inclusion into the

projective cover inc : Ω(M)→ P(M).

Hence all modules M of the given form have Ext1A(M,A) = 0, as required.

Note that the logic applied for the pin case 0 also gives the following result:

6.1.21. Corollary. If an indecomposable band module M has no non-zero projective string

modules as summands of its projective cover, then Ext1A(M,A) = 0.

We now combine our lemmas to obtain the following:

6.1.22. Proposition. Let A be an SB algebra.

An indecomposable string module M ∈ mod-A has Ext1A(M,A) = 0 if and only if it is

represented by a strip with at least one green peak, and without any red peaks.

An indecomposable band module M has Ext1A(M,A) = 0 if and only if it is represented by a

belt consisting entirely of green peaks.

Proof. The statement for string modules follows immediately from Lemmas 6.1.9, 6.1.11, 6.1.15,

6.1.17 and 6.1.20. The statement for band modules follows immediately from Corollaries 6.1.13

and 6.1.21.

This characterisation gives us the following property:

6.1.23. Corollary. Suppose that M is a non-projective indecomposable string module

represented by a strip w, and Ext1A(M,A) = 0. Then Ω(M) is an indecomposable string

module, and we have the following inequalities

intwid(M)− 2 ≤ intwid(Ω(M)) ≤ intwid(M) + 2.

In particular, if intwid(M) > 0, and x ∈ {0, 1, 2} is the number of pin peaks of w in Case 1b(i)
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then:

intwid(Ω(M)) = intwid(M) + 2x− 2

and

[min(int(M)) + 1,max(int(M))− 1] ⊆ int(Ω(M)) ⊆ [min(int(M))− 1,max(int(M)) + 1].

Whereas, if intwid(M) = 0, and y ∈ {0, 1} is the number of pin peaks of w in subcase 2c(i)

then:

intwid(Ω(M)) = 2y.

6.1.24. Remark. One immediate consequence of this result is that if M is a semi-Gorenstein-

projective string module, and we consider its syzygy fabric, the interior width of each row can differ

by at most 2 from that of the previous row and in particular that the ends of the row can differ

in position from those above it by at most 1. Thus if we considered only the non-blank syllables

present in the syzygy fabric associated to M , then we would have a sort of “double-edged zigzag”

shape; an example of this is illustrated below:

If we could show that, for a given semi-Gorenstein-projective string module there exists a finite
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upper bound on the interior width of its syzygies, then this would be sufficient to show that this

string module was in fact Gorenstein-projective. This follows (though not immediately) from the

fact that there are only finitely many string modules with interior width less than this bound, and

thus you must eventually obtain a repeat.

If we could show that, for any semi-Gorenstein-projective string module there exists such a bound,

then that would immediately show that all SB algebras are weakly Gorenstein. This is discussed

more in Lemma 6.3.13.

6.1.2 Consequences of characterisation by colours

Now, if we restrict our focus to Gorenstein-projective modules, M ∈ mod-A, in addition to knowing

that Ext1A(M,A) = 0, we also know that ΣΩ(M) ≃ M ≃ ΩΣ(M). Hence we can use results from

Chapter 4 characterising when we have such stable isomorphisms to further restrict the types of

peaks present in a strip or belt representing such M .

6.1.25. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Then

by combining the classifications in Propositions 4.1.7, 4.1.13 and 6.1.22, we know that a string

module (resp. band module), M ∈ mod-A, satisfies all of:

� Ext1A(M,A) = 0,

� M ≃ ΩΣ(M), and

� M ≃ ΣΩ(M);

if and only if it is represented by a strip (resp. belt) consisting only of peaks of the types in

Figure 6.4 (up to reflection).

If we additionally want Ext2A(M,A) = Ext1A(Ω(M), A) = 0, then we can remove the sixth, eighth

and ninth peaks from our list, as applying our syzygy algorithm would result in a red peak, causing

Ext1A(Ω(M), A) ̸= 0.

6.1.26. As previously mentioned, our running example algebra, A, has no yellow peaks. Thus it is

no surprise that there are no yellow peaks in Figure 6.4.

We now look at the corresponding list of peaks for our secondary running example algebra, since

this algebra does have yellow peaks.
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α βγ αβ βγ βγ α es(α) βγ β α

αβ βγ αβ es(β) βγ α es(α) β γαβ δ2

Figure 6.4: List of green peaks for our running example algebra satisfying conditions of
Proposition 4.1.7 and Proposition 4.1.13. Since no non-pin maximal syllables satisfy the double
twist condition, the only non-pin peak in this list corresponds to the projective string module.

µηκ ν µηκ ν2 µηκ ν3 es(µ) ν es(µ) ν2 es(µ) ν3

µηκ ν µηκ ν2 µηκ ν3 es(ν) µηκ ν µηκ ν2 µηκ

es(µ) es(ν) es(µ) ν es(µ) ν2 µηκ es(ν) µηκ ν µηκ ν2

ηκµηκ κ ηκµηκ κµηκ ηκµηκ κµηκ ηκµηκ κ

Figure 6.5: List of green and yellow peaks for our secondary example algebra satisfying conditions
of Proposition 4.1.7 and Proposition 4.1.13. The pin peaks are listed above the line, while the
non-pin peaks are listed below. Note that even though this algebra has yellow peaks, none of them
appear here.
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6.1.27. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩.

Then by combining the classifications in Propositions 4.1.7, 4.1.13 and 6.1.22, we know that a string

module (resp. band module), M ∈ mod-A′, satisfies all of:

� Ext1A′(M,A′) = 0,

� M ≃ ΩΣ(M), and

� M ≃ ΣΩ(M);

if and only if it is represented by a strip (resp. belt) consisting only of peaks of the types in

Figure 6.5 (up to reflection).

If we additionally want Ext2A′(M,A′) = Ext1A′(Ω(M), A′) = 0, then we can remove pin peaks 4-9

and 13-18 from our list, along with the final non-pin peak, as applying our syzygy algorithm would

result in red peaks, causing Ext1A′(Ω(M), A′) ̸= 0.

Note that there are no yellow peaks in Figure 6.5. We can verify that, no matter which algebra is

chosen, this is always the case. This follows immediately from the following result for general SB

algebras.

6.1.28. Proposition. Let A be an SB algebra. Then:

� no string module, M , represented by a strip with a yellow peak, satisfies M ≃ ΣΩ(M),

and

� any string (resp. band) module, M , represented by a strip (resp. belt) consisting

entirely of green peaks (except Case 2b(ii)) satisfies M ≃ ΣΩ(M).

It follows that a string (resp. band) module, M , satisfies both Ext1A(M,A) = 0 and

M ≃ ΣΩ(M) if and only if it is represented by a strip (resp. belt) consisting entirely of green

peaks.

Proof. We first handle the case where M is a projective string module. This means that it is

represented by a strip with a single green peak (Case 2(c)), and it is automatic that it satisfies

M ≃ ΣΩ(M).
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We now focus on the case where M is not projective. Due to the way that the cases are separated

in Subsection 6.1.1 and Proposition 4.1.13, it is sufficient to prove that:

(i) a syllable p satisfies condition (∗∗) from Subsection 6.1.1 if and only if as(p) = cs(p)−1−as(p)
,

and

(ii) if a syllable, p, satisfies condition (∗) from Subsection 6.1.1, then t(p)† satisfies condition ♣

from Proposition 4.1.13.

We first assume that p satisfies condition (∗∗), i.e. we assume that as(p) − 1 ̸= as(p)−1.

Then by Lemma 2.3.12, this implies as(p) < as(p)−1 + 1. Since all of the values in this

inequality are integers, this means that as(p) ≤ as(p)−1. By Lemma 2.3.12, this means that

as(p) ≤ cs(p)−1−as(p)
. For the other inequality, note that since as(p) + 1 > as(p), Lemma 2.3.13

implies that as(p) + 1 > cs(p)−(as(p)+1). It follows that as(p) = cs(p)−1−as(p)
, as required.

Now instead assume that p does not satisfy condition (∗∗), i.e. we assume that as(p) − 1 = as(p)−1.

Thus as(p) = as(p)−1 + 1 > as(p)−1, so we can apply Lemma 2.3.13 to obtain the inequality

as(p) > cs(p)−1−as(p)
. Hence as(p) ̸= cs(p)−1−as(p)

, as required.

Therefore, statement (i) holds.

We now prove statement (ii) by contrapositive. Suppose that j := t(p)† does not satisfy condition

♣. Then dj = 0 and cj ̸= cj−1. By Lemma 2.3.14, it follows that cj > cj−1. Since dj = 0, we

know that cj ≥ 2. Therefore Lemma 2.3.13 gives us that aj+cj−1 < cj . Since all of the values in

this inequality are integers, this means that aj+cj−1 ≤ cj − 1. Now, as cj − 1 ≤ cj , Lemma 2.3.12

implies the reverse inequality, that aj+cj−1 ≥ cj − 1. Hence aj+cj−1 = cj − 1 ≥ 1, and thus

(j + cj − 1)− aj+cj−1 = j.

It remains to show that bj+cj−1 = 1. Suppose otherwise that bj+cj−1 = 0. Then

cj = cj+(cj−1)−(cj−1) = cj+cj−1−(aj+cj−1) = aj+cj−1 = cj − 1,

which is clearly a contradiction. Hence bj+cj−1 = 1, and thus p does not satisfy condition (∗), as

required.
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Statements (i) and (ii) in the above proof also give the following:

6.1.29. Corollary. Let A be an SB algebra. Then any string (resp. band) module, M ,

represented by a strip (resp. belt) containing a peak in:

� pin Cases 1a(iii), 2a(ii), 2b(ii), 2b(iv), 2b(v), or

� non-pin Cases 1a(iii), 2b(ii), 2b(iv), 2b(v), 2(c)

does not satisfy M ≃ ΣΩ(M).

Note that neither of these results say anything about red peaks in pin Cases 1b(ii), 2b(iii), 2c(ii) or

in non-pin Case 2b(iii). This is because, in general, peaks in these cases can satisfy the conditions

of Proposition 4.1.13 in some algebras, and fail to satisfy them in others.

6.1.30. Using the colouring of peaks and the conditions of Propositions 4.1.7 and 4.1.13, along with

the syzygy algorithm, we can characterise the finitely-generated Gorenstein-projective modules by

hand for small examples.

We first do this for our running example algebra, as introduced in Paragraph 2.2.41.

6.1.31. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. As

discussed in Example 6.1.25, a non-pin module M ∈ Gproj-A must be represented by a strip or

band formed entirely of peaks of the following types:

α βγ αβ βγ βγ α β α

es(α) βγ αβ es(β) γαβ δ2

We first handle the peaks with two boundary syllables, as they completely define the strips they

belong to. The first of these peaks represents a uniserial module whose syzygy is isomorphic to

itself. Since we already know that this module, U , satisfies Ext1A(U,A) = 0, it therefore follows

that U is Gorenstein-projective. The second of these peaks represents the unique indecomposable

projective string module, and is thus automatically Gorenstein-projective.

We now focus our attention on the peaks with at least one interior syllable. The first thing to note
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is that there is only one peak in our list with two interior syllables. This means that if we have any

belts representing Gorenstein-projective band modules, they must be of the form:

· · · · · ·
α βγ α βγ α βγ

for some non-negative number of peaks.

Fortunately, it is easy to verify that applying the syzygy algorithm to such a belt results in a belt of

the same form. Hence all band modules represented by a belt of this form are Gorenstein-projective,

and there are no other Gorenstein-projective band modules for this algebra.

Now, since we have classified the Gorenstein-projective band modules and the Gorenstein-projective

string modules whose interior width is zero, we may focus on the Gorenstein-projective string

modules whose interior width is greater than zero.

We first note that the patch corresponding to the second peak in our list is:

αβ βγ

α

Since the boundary syllable ( ◦
α

◦
1
◦ ) is not present in any of the peaks in our list, it

follows that the second peak in our list can’t appear in a strip representing a Gorenstein-projective

string module.

Therefore a Gorenstein-projective string module of non-zero interior width must be represented by

a strip where all of its peaks are of one of the following forms:

α βγ βγ α β α es(α) βγ

Now suppose that M ∈ Gproj-A is a string module with intwid(M) > 0, and that it is represented
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by a strip containing the third peak in our shortened list. Applying our syzygy algorithm to this

peak results in a local diagram of the form:

· · · · · ·
es(β) α βγ

Now we note that the left peak in this diagram is not in our shortened list, and that

intwid(Ω(M)) > 0. Hence Ω(M) /∈ Gproj-A, giving us a contradiction.

Therefore a Gorenstein-projective string module of non-zero interior width must be represented by

a strip of the form:

· · · · · · · · · · · ·
es(α) βγ α βγ α βγ

for some non-negative number of peaks of the first type in the interior of our strip.

If we apply the syzygy algorithm to such a strip, it becomes clear that for modules M of this form,

we have M ≃ Ω(M). Therefore, it follows that all modules of this form are Gorenstein-projective.

We can also characterise such modules for the secondary example used in Subsection 6.1.1.

6.1.32. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩.

As discussed in Example 6.1.27, a non-pin module M ∈ Gproj-A′ must be represented by a strip or

band formed entirely of peaks of the following types:

µηκ ν µηκ ν2 µηκ ν3 es(ν) µηκ ν µηκ ν2 µηκ

ηκµηκ κ ηκµηκ κµηκ ηκµηκ κµηκ ηκµηκ κ
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We first handle the peaks with two boundary syllables, as they completely define the strips they

belong to. The first of these peaks represents the unique indecomposable projective string module,

and is thus automatically Gorenstein-projective.

The second of these peaks represents an indecomposable string module whose syzygy is represented

by a strip of the form:
ηκ es(κ)

which does not belong to our list. Hence the second of these peaks is not present in any strip

representing a Gorenstein-projective string module.

We now consider the two non-pin peaks with one interior syllable. The patches corresponding to

these peaks are:

ηκµηκ κ

µηκ

ηκµηκ κµηκ

es(µ)

Since the boundary syllables ( ◦
µηκ

◦
1
◦ ) and ( ◦

es(µ)

◦
1
◦ ) are not present in any

of the peaks in our list, the two non-pin peaks with one interior syllable can’t be present in any

strip representing a Gorenstein-projective string module.

We now consider the pin peaks with one interior syllable. Applying the syzygy algorithm to these

peaks results in a local picture of a strip of the form:

· · · · · ·
es(µ) νi µηκ

for some i ∈ {1, 2, 3}.

Since the stationary syllable ( ◦
es(µ)

◦
1
◦ ) does not appear in any of the peaks in our

list, the three pin peaks with one interior syllable can’t be present in any strip representing a

Gorenstein-projective string module.

This means that any non-pin module M ∈ Gproj-A′ must be represented by a strip or band formed
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entirely of peaks of the following types:

µηκ ν µηκ ν2 µηκ ν3 ηκµηκ κµηκ

Since there are no peaks in this list with one interior and one boundary syllable, there are no

Gorenstein-projective string modules with non-zero interior width. Therefore, as there is only

one peak in our list with two boundary syllables, the projective string module is the unique

indecomposable Gorenstein-projective string module.

It now remains to classify the Gorenstein-projective band modules for this algebra. Since we know

that it must be represented by a belt, all of whose peaks are of one of the first three forms in our

shortened list, they are represented by belts of the form:

· · · · · ·
µηκ νi1 µηκ νi2 µηκ νin

for some n ∈ Z+ and (ik)
n
k=1 ⊆ {1, 2, 3}.

Applying our syzygy algorithm to this belt tells us that its syzygy must also be of the same form,

with the same value of n, but possible different values for the ik. Since this process must eventually

repeat under repeated application of the syzygy algorithm, it follows that all such band modules

have a syzygy which is represented by the same belt as them. Hence all of these band modules are

Gorenstein-projective.

6.1.33. While this method works for algebras with small k-dimension, for larger algebras it quickly

becomes impractical to use these techniques to characterise finitely-generated Gorenstein-projective

string modules, due to the larger and larger collections of green peaks. This is due to the fact

that we are not aware of any robust way to implement this method in a computer, and thus all

calculations must be performed by hand.

However, it is possible to characterise the Gorenstein-projective band modules in general. This will

be the focus of the next section.
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6.2 Bandmodules inΩ∞(mod-A)

The aim of this section is to characterise the band modules belonging to Gproj-A for a special

biserial algebra, A. In general, we only have an inclusion Gproj-A ⊆ Ω∞(mod-A). However, we will

prove that if we restrict to band modules, we in fact have an equality:

{Bnd(vm, ψ) ∈ Gproj-A} = {Bnd(vm, ψ) ∈ Ω∞(mod-A)}.

We first characterise the modules belonging to the right side of our claimed equality, and then show

that they all belong to the left side as well.

6.2.1. Proposition. Let A be an SB algebra. Let k ∈ N and ΦA be the pin graph of A. A

band module, M , represented by a belt, w, belongs to Ωk(mod-A) if and only if both of the

following hold:

(i) the Q-vertex corresponding to the bottom of each valley of w is the target of a path of

length ⌈k/2⌉ in ΦA, and

(ii) the Q-vertex corresponding to the top of each peak of w is the target of a path of length

⌊k/2⌋ in ΦA.

Proof. We proceed with this proof by induction.

Firstly, we handle the base case, where k = 0. In this case,

Ωk(mod-A) = Ω0(mod-A) = mod-A

⌈k/2⌉ = ⌈0⌉ = 0 = ⌊0⌋ = ⌊k/2⌋.

Therefore neither of the conditions we claim to be equivalent place any restriction on the band

module in question. Hence the result holds in the base case.

Now for the inductive step we assume that the result holds for k = l ∈ N.

Suppose that M ∈ Ωl+1(mod-A) is a band module represented by a belt w. Then there exists

M ′ ∈ Ωl(mod-A) where Ω(M ′) ∼= M . Since the syzygy of a string module is a string module, it

follows that M ′ is a band module, represented by a belt w′. By the inductive hypothesis, this

means that:
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(i′) the Q-vertex corresponding to the bottom of each valley of w′ is the target of a path of length

⌈l/2⌉ in ΦA, and

(ii′) the Q-vertex corresponding to the top of each peak of w′ is the target of a path of length

⌊l/2⌋ in ΦA.

Since we know that Ω(M ′) ∼=M is a band module, we know from our syzygy algorithm that:

� there is an identification of valleys of w′ with peaks of w, where the Q-vertices corresponding

to their bottom and top respectively are the same,

� there is an identification of peaks of w′ with valleys of w, where for each peak of w′, the

Q-vertex associated to its top is the source of an arrow of ΦA whose target is the Q-vertex

associated to the bottom of the valley of w it is identified with.

Since ⌈l/2⌉ = ⌊(l+1)/2⌋ and ⌊l/2⌋+1 = ⌊(l+2)/2⌋ = ⌈(l+1)/2⌉, it follows that conditions (i) and

(ii) hold for M when k = l + 1, as required.

Now instead suppose that M is a band module represented by a belt w satisfying conditions (i) and

(ii) when k = l + 1. Since l ∈ N, we know that ⌈(l + 1)/2⌉ ∈ Z+. Hence the Q-vertex associated to

the bottom of each valley of w is the target of an arrow in ΦA. Therefore each syllable of w belongs

to im(∇), and thus by Proposition 3.2.13, there exists a band module M ′ represented by a belt w′,

such that Ω(M ′) ∼=M . Thus we know from our syzygy algorithm that:

� there is an identification of valleys of w′ with peaks of w, where the Q-vertices corresponding

to their bottom and top respectively are the same,

� there is an identification of peaks of w′ with valleys of w, where for each peak of w′, the

Q-vertex associated to its top is the source of an arrow of ΦA whose target is the Q-vertex

associated to the bottom of the valley of w it is identified with.

Since the pin graph ΦA is sub-1-regular, ⌈l/2⌉ = ⌊(l+1)/2⌋ and ⌊l/2⌋+1 = ⌊(l+2)/2⌋ = ⌈(l+1)/2⌉,

it follows that conditions (i) and (ii) hold for M ′ when k = l, so the inductive hypothesis tells us

that M ′ ∈ Ωl(mod-A). Hence M ∼= Ω(M ′) ∈ Ωl+1(mod-A), as required.
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We can rephrase this result in a way that does not require representing a band module as a

belt.

6.2.2. Corollary. Let k ∈ N and ΦA be the pin graph of A. A band module, M , belongs to

Ωk(mod-A) if and only if both of the following hold:

(i) the Q-vertex corresponding to each simple summand of soc(M) is the target of a path

of length ⌈k/2⌉ in ΦA, and

(ii) the Q-vertex corresponding to each simple summand of top(M) is the target of a path

of length ⌊k/2⌋ in ΦA.

By “taking the limit” of Proposition 6.2.1, we obtain the following.

6.2.3. Proposition. Let A be an SB algebra. Let ΦA be the pin graph of A. A band module,

M , represented by a belt, w, belongs to Ω∞(mod-A) if and only if the Q-vertex corresponding

to the bottom of each valley and the top of each peak of w lies on a cycle of ΦA.

Proof. Let M be a band module represented by a belt w.

Suppose that M ∈ Ω∞(mod-A). Therefore, for all k ∈ N, we have M ∈ Ωk(mod-A). Hence, for all

k ∈ N, Proposition 6.2.1 gives us:

(i) the Q-vertex corresponding to the bottom of each valley of w is the target of a path of length

⌈k/2⌉ in ΦA, and

(ii) the Q-vertex corresponding to the top of each peak of w is the target of a path of length

⌊k/2⌋ in ΦA.

Therefore the Q-vertex corresponding to the bottom of each valley and the top of each peak of w is

the target of paths in ΦA of arbitrarily large finite length. Since ΦA is finite, this means that the

Q-vertex corresponding to the bottom of each valley and the top of each peak of w lies on a cycle

of ΦA, as required.

Now, instead suppose that the Q-vertex corresponding to the bottom of each valley and the top of

each peak of w lies on a cycle of ΦA, as required. Hence, for all k ∈ N, we know that:

(i) the Q-vertex corresponding to the bottom of each valley of w is the target of a path of length

⌈k/2⌉ in ΦA, and

(ii) the Q-vertex corresponding to the top of each peak of w is the target of a path of length

⌊k/2⌋ in ΦA.
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Therefore, for all k ∈ N, Proposition 6.2.1 implies that M ∈ Ωk(mod-A). Thus M ∈ Ω∞(mod-A),

as required.

Like with Proposition 6.2.1, we can rephrase this result in a way that does not require representing

a band module as a belt.

6.2.4. Corollary. Let ΦA be the pin graph of A. A band module, M , represented by a belt,

w, belongs to Ω∞(mod-A) if and only if the Q-vertex corresponding to each simple summand

of soc(M)⊕ top(M) lies on a cycle of ΦA.

This also means that we can rule out the existence of Gorenstein-projective band modules when

there are no cycles in the pin graph.

6.2.5. Corollary. Let A be an SB algebra. If ΦA is acyclic, then there are no band modules

in Ω∞(mod-A).

Hence if ΦA is acyclic, then there are no band modules in Gproj-A.

We now note that band modules belonging to Ω∞(mod-A) are almost Ω-periodic.

6.2.6. Lemma. Let A be an SB algebra. LetM ∈ Ω∞(mod-A) be a band module represented

by a belt w. Then there exists k ∈ Z+ such that Ωk(M) is also represented by the belt w.

Proof. By Proposition 6.2.3, we know that the Q-vertices associated to the bottom of each valley

and the top of each peak of w lies on a cycle of ΦA. It thus follows from our syzygy algorithm that

Ωi(M) is a band module for all i ∈ N. Then the result follows from Proposition 4.2.2.

We can strengthen this lemma by specifying a particular value of k based on the structure of the

pin graph ΦA and how the band module in question relates to it.

6.2.7. Proposition. Let A be an SB algebra. Let M ∈ Ω∞(mod-A) be a band module

represented by a belt w : Z/nZ → Syll(A). Let v be the Q-vertex corresponding to

s(w(0 + nZ)) ∈ O0. Let l be the length of the cycle of ΦA that v belongs to. Then Ω2l(M) is

also represented by the belt w.

Proof. By our characterisation of band graphs belonging to Ω∞(mod-A) (Proposition 6.2.3), we

know that the Q-vertices associated to the source and target of each syllable of w lies on a cycle of

ΦA. Thus by Proposition 2.3.47 we know that the Q-vertices associated to the source and target of
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each syllable lie on cycles of the same length. Recall that the Q-vertices associated to the sources of

syllables forming a peak are the same, and that the Q-vertices associated to the target of syllables

forming a valley are the same. It follows that the Q-vertices corresponding to the source and target

of each syllable lie on a cycle of ΦA of length l.

Hence by Proposition 2.3.47, it follows that

∇2lp = ( s(p)
len(p)

◦
0

t(p) )

for each syllable p of w. Since each syllable of w is interior, it follows that ∇2lp = p for each

syllable p of w. Hence by our syzygy algorithm for belts, we know that Ω2l(M) is also represented

by w.

If you need a fixed value of k that works for all band modules, then you can use the following

result.

6.2.8. Corollary. Let A be an SB algebra. Let M ∈ Ω∞(mod-A) be a band module

represented by a belt w : Z/nZ→ Syll(A). Let

k0 := 2 · lcm
(
{l ∈ Z+ : where l is the length of a cycle in ΦA}

)
.

Then Ω2l(M) is also represented by the belt w.

We can now combine our characterisation of band modules belonging to Ω∞(mod-A) with

our previous characterisations of band modules M satisfying M ≃ ΩΣ(M), M ≃ ΣΩ(M) and

Ext1A(M,A) = 0.

6.2.9. Proposition. Let A be an SB algebra. Let M ∈ Ω∞(mod-A) be a band module.

Then M ≃ ΩΣ(M), M ≃ ΣΩ(M), Ext1A(M,A) = 0 and Ω(M),Σ(M) are both also band

modules belonging to Ω∞(mod-A).

Proof. Let w be a belt representing M .

The first condition follows from the fact that the Q-vertex corresponding to the bottom of a valley

of w is the target of an arrow in ΦA (by applying Proposition 4.1.7).

The second and third conditions follow from the fact that the Q-vertex corresponding to the top of
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a peak of w is the source of an arrow in ΦA (by applying Proposition 4.1.15 and Proposition 6.1.22

respectively).

The fact that Ω(M) is a band module belonging to Ω∞(mod-A) follows from the syzygy

algorithm for belts (Proposition 3.2.6) and our characterisation of band modules in Ω∞(mod-A)

(Proposition 6.2.3).

The fact that Σ(M) = TrΩTr(M) is a band module belonging to Ω∞(mod-A) follows from a

combination of the syzygy algorithm and the transpose algorithm for belts (Proposition 3.2.6 and

Proposition 3.1.14 respectively), along with our characterisation of band modules in Ω∞(mod-A)

(Proposition 6.2.3).

It then follows that all band modules in Ω∞(mod-A) are Gorenstein-projective.

6.2.10. Corollary. Let M ∈ Ω∞(mod-A) be a band module. Then M is Gorenstein-

projective.

Proof. By Proposition 6.2.9, we know that we have two short exact sequences:

0 Ω(M) P−1 M 0

0 M P 0 Σ(M) 0

where Ω(M),Σ(M) are both band modules belonging to Ω∞(mod-A).

We an repeat this process and splice together the short exact sequences to obtain a long exact

sequence of projectives

P • := · · · P−2 P−1 P 0 P 1 P 2 · · ·

where Z0(P •) =M and for all i ∈ Z Zi(P •) is a band module belonging to Ω∞(mod-A). Thus, by

Proposition 6.2.9, we have Ext1A(Z
i(P •), A) = 0 for all i ∈ Z. Therefore, ExtjA(Z

i(P •), A) = 0 for

all i ∈ Z, j ∈ Z+.

This means that P • is totally acyclic, and hence that M is Gorenstein-projective, as required.

While at this point we could restate Proposition 6.2.3, replacing Ω∞(mod-A) with Gproj-A, we will

soon have some other equivalent conditions; thus we will hold off for the moment and state them
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all together.

The way we have gone about characterising the Gorenstein-projective band modules so far can be

viewed as approaching the problem “working upwards” in the syzygy fabric; we considered the

band modules M ′ where Ω(M ′) ≃ M for a given band module M . While “working downwards”

in the syzygy fabric (considering the syzygies of a band module M directly) won’t give us a

different classification of Gorenstein-projective band modules, the analogous results give us a

slightly different viewpoint.

The following is analogous to Proposition 6.2.1, and the proof has a similar structure.

6.2.11. Proposition. Let A be an SB algebra. Let k ∈ N and ΦA be the pin graph of A. A

band module, M , represented by a belt, w, has ExtiA(M,A) = 0 for all i ∈ Z+ with i ≤ k if

and only if both of the following hold:

(i) the Q-vertex corresponding to the bottom of each valley of w is the source of a path of

length ⌊k/2⌋ in ΦA, and

(ii) the Q-vertex corresponding to the top of each peak of w is the source of a path of length

⌈k/2⌉ in ΦA.

Proof. We proceed with this proof by induction.

Firstly, we handle the base case, where k = 0. In this case,

⌈k/2⌉ = ⌈0⌉ = 0 = ⌊0⌋ = ⌊k/2⌋.

Therefore neither of the conditions we claim to be equivalent place any restriction on the band

module in question. Hence the result holds in the base case.

Now for the inductive step we assume that the result holds for k = l ∈ N.

Suppose that M ∈ mod-A is a band module represented by a belt w, and that ExtiA(M,A) = 0 for

all i ∈ Z+ with i ≤ l + 1. This means that Ω(M) ∈ mod-A is a band module represented by a belt

w′, and that ExtiA(Ω(M), A) = 0 for all i ∈ Z+ with i ≤ l. By the inductive hypothesis, this means

that:
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(i′) the Q-vertex corresponding to the bottom of each valley of w′ is the source of a path of length

⌊l/2⌋ in ΦA, and

(ii′) the Q-vertex corresponding to the top of each peak of w′ is the source of a path of length

⌈l/2⌉ in ΦA.

We know from our syzygy algorithm that:

� there is an identification of valleys of w with peaks of w, where the Q-vertices corresponding

to the bottom and top respectively are the same,

� there is an identification of peaks of w with valleys of w′, where for each peak of w, the

Q-vertex associated to its top is the source of an arrow of ΦA whose target is the Q-vertex

associated to the bottom of the valley of w′ it is identified with.

Since ⌈l/2⌉ = ⌊(l+1)/2⌋ and ⌊l/2⌋+1 = ⌊(l+2)/2⌋ = ⌈(l+1)/2⌉, it follows that conditions (i) and

(ii) hold for M when k = l + 1, as required.

Now instead suppose that M is a band module represented by a belt w satisfying conditions (i) and

(ii) when k = l + 1. Since l ∈ N, we know that ⌈(l + 1)/2⌉ ∈ Z+. Hence the Q-vertex associated to

the top of each peak of w is the source of an arrow in ΦA. Therefore the image of any syllable of w

under ∇ is an interior syllable. Thus Ext1A(M,A) = 0 and Ω(M) is a band module represented by

a belt w′. We know from our syzygy algorithm that:

� there is an identification of valleys of w with peaks of w′, where the Q-vertices corresponding

to their bottom and top respectively are the same,

� there is an identification of peaks of w with valleys of w′, where for each peak of w, the

Q-vertex associated to its top is the source of an arrow of ΦA whose target is the Q-vertex

associated to the bottom of the valley of w′ it is identified with.

Since the pin graph ΦA is sub-1-regular, ⌈l/2⌉ = ⌊(l+1)/2⌋ and ⌊l/2⌋+1 = ⌊(l+2)/2⌋ = ⌈(l+1)/2⌉,

it follows that conditions (i) and (ii) hold for M ′ when k = l, so the inductive hypothesis tells us

that ExtiA(Ω(M), A) = 0 for all i ∈ Z+ with i ≤ l. Hence ExtiA(M,A) = 0 for all i ∈ Z+ with

i ≤ l + 1, as required.
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The following is analogous to Proposition 6.2.3, and characterises semi-Gorenstein-projective band

modules in the sense of [RZ20] (as we defined earlier in Definition 2.2.35).

6.2.12. Proposition. Let A be an SB algebra. Let ΦA be the pin graph of A. A band

module, M , represented by a belt, w, satisfies ExtiA(M,A) = 0 for all i ∈ Z+ if and only if the

Q-vertex corresponding to the bottom of each valley and the top of each peak of w lies on a

cycle of ΦA.

Proof. Follow the same logic as the proof of Proposition 6.2.3, replacing discussion of the target of

paths with the source of paths in ΦA.

We can now state the main result of Chapter 6; a collection of equivalent conditions for when a

band module is Gorenstein-projective.

Theorem 6.2.13. Let M be a band module represented by a belt w. Then the following

conditions are equivalent:

(i) M is Gorenstein-projective,

(ii) M is semi-Gorenstein-projective (i.e. ExtiA(M,A) = 0 for all i ∈ Z+),

(iii) M belongs to Ω∞(mod-A),

(iv) the Q-vertex corresponding to the bottom of each valley and the top of each peak of w lies

on a cycle of ΦA,

(v) the Q-vertex corresponding to each simple summand of soc(M)⊕ top(M) lies on a cycle

of ΦA,

(vi) the Q-vertex corresponding to the source and target of each syllable of w lies on a cycle

of ΦA.

The following two examples show how this result can be used to characterise the Gorenstein-

projective band modules for our running and secondary example algebras. It also demonstrates that

if you only care about Gorenstein-projective band modules, this method is simpler and gives better

structural understanding. It avoids the colouring of peaks, and checking whether the presence

of a green peak in a belt leads to a red peak in a belt representing a syzygy. Compare with

Examples 6.1.31 and 6.1.32.
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6.2.14. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Then

the pin graph of A, ΦA, is given by
(

1 2
)
.

Thus the vertices of the overquiver O whose corresponding Q-vertices lie on cycles of ΦA are exactly

s(α) = t(γ) and s(β) = t(α). Therefore the interior syllables p where the Q-vertices corresponding

to s(p) and t(p) lie on cycles of ΦA are exactly:

( ◦
α

◦
0
◦ ) ( ◦

βγ

◦
0
◦ ).

This means that the Gorenstein-projective band modules are exactly those represented by belts of

the form:

· · · · · ·
α βγ α βγ α βγ

for some non-negative number of peaks.

6.2.15. Example. Let

A′ := k

 1 2η
κ

µ
ν

 /⟨η2, κν, µκ, νµ, (µηκ)2 − ν4, κµηκµ⟩.

Then the pin graph of A′, ΦA′ , is given by
(
1 2

)
.

Thus the vertices of the overquiver O whose corresponding Q-vertices lie on cycles of ΦA are exactly

s(µ) = t(κ) and s(ν) = t(ν). Therefore the interior syllables p where the Q-vertices corresponding

to s(p) and t(p) lie on cycles of ΦA′ are exactly:

( ◦
µηκ

◦
0
◦ ) ( ◦

ν

◦
0
◦ ) ( ◦

ν2

◦
0
◦ ) ( ◦

ν3

◦
0
◦ ).

This means that the Gorenstein-projective band modules are exactly those represented by belts of

the form:

· · · · · ·
µηκ νi1 µηκ νi2 µηκ νin

for some n ∈ Z+ and (ik)
n
k=1 ⊆ {1, 2, 3}.

197



CHAPTER 6. GORENSTEIN-PROJECTIVE MODULES OF SPECIAL BISERIAL ALGEBRAS

6.2.16. In Corollary 6.2.5, we gave a sufficient condition for there not being any Gorenstein-

projective band modules for a given SB algebra (the pin graph being acyclic). However, it is not a

necessary condition, as illustrated by the following example:

6.2.17. Example. Let

A := k

 1 2

α1

α2

β1

β2

 /⟨α1β2, α2β1, α1β1 − α2β2, β1α1, β2α2⟩.

Then the pin graph ΦA associated to A is
(

1 2
)
which is clearly not acyclic.

However, there are no interior A-syllables whose source and target are both O-vertices, i, satisfying

bi = 0. Thus there are no syllables satisfying the condition required by Theorem 6.2.13(vi), and

hence A has no Gorenstein-projective band modules.

The following result gives a sufficient and necessary condition for a general SB algebra to have no

Gorenstein-projective band modules.

6.2.18. Proposition. Let A be an SB algebra. Let m be the number of vertices on cycles of

ΦA. Then the following conditions are equivalent:

(i) there are no band modules in Gproj-A,

(ii) there are no band modules, M ∈ Gproj-A, with intwid(M) ≤ 4m.

Proof. Clearly (i) =⇒ (ii), so it remains to show that (ii) =⇒ (i).

We prove this via the contrapositive. Suppose that (i) does not hold. Then there exists a band

module M which belongs to Gproj-A.

If intwid(M) ≤ 4m, then (ii) does not hold, as required.

We now suppose that intwid(M) > 4m. Thus intwid(M) ≥ 4m+ 2.

Let w be a belt representing M . Since M is a Gorenstein-projective band module, by

Theorem 6.2.13, for each syllable p of w, the Q-vertices associated to s(p) and t(p) lie on cycles of

ΦA. As intwid(w) ≥ 4m+ 2 there are at least 2m+ 1 positively oriented syllables in w. Since there

are 2m O-vertices corresponding to Q-vertices which lie on cycles of ΦA, the pigeonhole principle

means that there are two positively oriented syllables in w with the same source, p1 and p2.
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· · · p1 q1 q2 · · · · · · qn p2 · · · · · ·

Since they have the same source, taking the syllables between them, including p1 but not p2, gives

rise to a smaller belt.

p1 q1 q2 · · · · · · qn

Since we characterised Gorenstein-projective belts in terms of their syllables, this smaller belt is

also Gorenstein-projective. If the smaller belt still has intwid greater than 4m, this process can be

repeated until it doesn’t.

Thus we know that if there is a Gorenstein-projective band module, there must be a Gorenstein-

projective band module whose interior width is at most 4m. This is exactly the contrapositive of

the implication (ii) =⇒ (i), as required.

6.2.19. Condition (ii) in Proposition 6.2.18 can then be deterministically checked; either by hand

or using a computer algebra system like SBStrips. Checking this by hand would be easiest using

condition (vi) of Theorem 6.2.13; calculate the syllables meeting the condition, and then check that

there are no possible combinations into belts of interior width at most 4n.

6.3 Gorenstein homological properties of

special biserial algebras

Due to the above classification of Gorenstein-projective band modules, and the association between

band modules and belts, we have the following result.

6.3.1. Lemma. Let A be an SB algebra. Suppose that A has a Gorenstein-projective band

module M . Then there is an infinite family (Xi)i∈Z+
of Gorenstein-projective band modules

of A, where dimk(Xi) = i · dimk(M). In particular, A is CM-infinite (i.e. there are infinitely

many indecomposable Gorenstein-projective A-modules).
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Proof. Let w1 : Z/nZ → Syll(A) be a belt representing the band module M . By Theorem 6.2.13,

the Q-vertices corresponding to the source and target of each syllable of w1 lie on cycles of ΦA.

For each i ∈ Z+, define

wi : Z/(ni)Z −→ Syll(A)

k + (ni)Z 7−→ wi(k + (ni)Z) = w1(k + nZ).

It is simple to verify that each of the wi are well-defined belts.

Note that every syllable of each belt wi is also present in w1. Therefore we know that, for

each i ∈ Z+, the Q-vertices corresponding to the source and target of each syllable of wi lie

on cycles of ΦA. Hence, by Theorem 6.2.13, any band module represented by any of the wi is

Gorenstein-projective.

By Proposition 3.1.13, we know there exists a band module associated to each belt. Thus, for

each i ∈ Z+, let Xi be a band module associated to wi. Then it is clear that each of the Xi is

Gorenstein-projective, and that dimk(Xi) = i · dimk(M) for each i ∈ Z+, as required.

Combining the classification of Gorenstein-projective band modules with the classification of string

modules M with ExtiA(M,A) = 0 for 1 ≤ i ≤ k gives:

6.3.2. Lemma. Let A be an SB algebra. Let l be the number of arrows in the largest acyclic

component of ΦA, and m be the number of vertices on cycles of ΦA. Suppose that M ∈ mod-A

is a string module with intwid(M) ≥ 4m + 4l + 2 and ExtiA(M,A) = 0 for 1 ≤ i ≤ 2l. Then

there is a band module Y ∈ mod-A which is Gorenstein-projective.

Proof. Let w0 be a strip representing M . For 1 ≤ i ≤ 2l, inductively define wi by applying the

syzygy algorithm for strips to wi−1 and “rounding off” as appropriate.

Since intwid(w0) = intwid(M) ≥ 4m+4l+2, we know from Corollary 6.1.23 that intwid(w2l) ≥ 4m+2

and there exists an interval I ⊊ Z with |I| ≥ 4m + 2 and I ⊆ int(wi) for all 0 ≤ i ≤ 2l. Thus,

for each k ∈ I and 0 ≤ i ≤ 2l + 2, the syllable ∇i(w0(k)) is interior. Hence, for each k ∈ I, the

Q-vertices corresponding to s(w0(k)) and t(w0(k)) lie on paths of length l + 1 on ΦA. Thus, for

each k ∈ I, the Q-vertices corresponding to s(w0(k)) and t(w0(k)) lie on cycles of ΦA.

As |I| ≥ 4m+ 2, we can apply the same logic as Proposition 6.2.18; there exists a belt, w′, whose
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syllables all belong to the set {w0(k) : k ∈ I}. By Theorem 6.2.13, any band module represented

by w′ is Gorenstein-projective.

By Proposition 3.1.13, we know there exists a band module associated to each belt. Thus there is a

band module Y ∈ mod-A which is Gorenstein-projective, as required.

The next result follows immediately from Lemma 6.3.2.

6.3.3. Corollary. Let A be an SB algebra. Let l be the number of arrows in the largest

acyclic component of ΦA, and m be the number of vertices on cycles of ΦA. Suppose that

M ∈ mod-A is a Gorenstein-projective string module with intwid(M) ≥ 4m + 4l + 2. Then

there is a band module M ∈ mod-A which is Gorenstein-projective.

Combining these results gives the following classification of when a special biserial algebra is

CM-finite.

6.3.4. Proposition. An SB algebra A is CM-finite if and only if it has no Gorenstein-

projective band modules.

Proof. The first implication follows immediately from an application of Lemma 6.3.1.

The second implication follows from the fact that if A has no Gorenstein-projective band modules,

then (by Corollary 6.3.3) all Gorenstein-projective string modules must have intwid(M) < 4m+4l+2,

where l is the number of arrows in the largest acyclic component of ΦA, and m is the number of

vertices on cycles of ΦA. There are only finitely many string modules with interior width less than

4m+ 4l + 2.

Combining this with Corollary 6.2.5 gives:

6.3.5. Corollary. Let A be an SB algebra. Suppose that the pin graph ΦA of A is acyclic.

Then A is CM-finite.

Unfortunately, we are not aware of any characterisation of when an SB algebra is CM-free. As

demonstrated by Example 6.1.32, there are SB algebras that have no non-projective Gorenstein-

projective string modules, but are not CM-free. The following shows that there are also SB algebras

that have no Gorenstein-projective band modules (and hence are CM-finite); but are not CM-free.
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6.3.6. Example. Let

A := k

 1 2

α1

α2
β

 /⟨α1β, βα2, (α1α2)
2, β2⟩.

Since this quiver is not 2-regular, we must choose which 2-regular extension to use. We will use

Q̃ := 1 2

α1

α2

βγ

This means that the overquiver implicit in future discussions (for example with A-syllables), will

be:

s(α1) s(α2)

s(γ) s(β)

α1

α2

γ β

where, as usual, the dashed lines denote the vertex identification, †.

The pin graph of A is
(
1 2

)
which is clearly acyclic, as it is discrete. Thus A has no

Gorenstein-projective band modules and is CM-finite.

We now classify the Gorenstein-projective string modules for A. If we consider the A-syllables

satisfying the conditions of Proposition 4.1.8, these are:

( ◦
es(α1)

◦
1
◦ ) ( ◦

es(α2)

◦
1
◦ ) ( ◦

es(β)

◦
1
◦ ) ( ◦

es(γ)

◦
1
◦ )

( ◦
α1

◦
1
◦ ) ( ◦

α1α2α1

◦
1
◦ ) ( ◦

α2α1

◦
1
◦ )

The only green peaks that can be formed from these syllables (avoiding Case 2b(ii)) are:

es(γ) α1α2α1 es(γ) α1
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Note that the peak corresponding to the second indecomposable projective string module is not in

this list, but still constitutes a strip for a valid Gorenstein-projective module (as Proposition 4.1.7

specifically excludes projective string modules from its characterisation).

The first of these peaks corresponds to the first indecomposable projective string module. The

second peak corresponds to a uniserial module:

U :=

1

2

α1

whose syzygy is isomorphic to itself.

A projective string module is automatically Gorenstein-projective, so we can ignore them for the

moment. Since we know that U ≃ Ω(U) ≃ ΣΩ(U) ≃ ΩΣ(U) and that Ext1A(U,A) = 0, it follows

that U is a Gorenstein-projective string module. Based on the exclusion of the rest of the peaks,

we know that U is the only Gorenstein-projective string module that is not projective.

Hence A is CM-finite but not CM-free.

6.3.7. The above example algebra is a string algebra; a subclass of SB algebras where the

Gorenstein-projective modules have been characterised in [CSZ18]. This characterisation shows

that there are string algebras which are CM-free and there are those that are not. This range of

behaviour is not restricted to string algebras. The following four examples show that there are

SB algebras with non-discrete pin graphs (SB algebras which are not string algebras) and that are

CM-finite satisfying all four combinations of:

� CM-free (or not), and

� having an acyclic pin graph (or not).

6.3.8. Example. Let

A := k

 1 2α1

α2

α3

α4

 /⟨α2
1, α2α4, α

2
3, α4α2, α1α2 − α2α3, α4α1⟩.

The pin graph of A is
(
1 2

)
which is clearly acyclic. Thus A has no Gorenstein-projective

band modules and is CM-finite.
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We now classify the Gorenstein-projective string modules for A. If we consider the A-syllables

satisfying the conditions of Proposition 4.1.8, these are:

( ◦
α2

◦
0
◦ ) ( ◦

α3

◦
0
◦ ) ( ◦

α1α2

◦
1
◦ )

( ◦
α2

◦
1
◦ ) ( ◦

α2α3

◦
1
◦ ) ( ◦

α3

◦
1
◦ ) ( ◦

α4

◦
1
◦ )

( ◦
es(α1)

◦
1
◦ ) ( ◦

es(α2)

◦
1
◦ ) ( ◦

es(α3)

◦
1
◦ ) ( ◦

es(α4)

◦
1
◦ )

The only green peaks that can be formed from these syllables (avoiding Case 2b(ii)) are:

α1α2 α2
α1α2 α2α3 α1α2 α2 α1α2 es(α2)

α4 α3

Note that the peak corresponding to the indecomposable projective string module is not in this

list, but still constitutes a strip for a valid Gorenstein-projective module (as Proposition 4.1.7

specifically excludes projective string modules from its characterisation).

Observe that applying our syzygy algorithm to any of the peaks in this list with two boundary

syllables results in a peak that is not in our list. Thus none of these peaks can be present in a strip

representing a Gorenstein-projective string module.

The only strip that can be constructed from the remaining two peaks in our list is:

· · · · · ·
α1α2 α2 α3

α4

Applying the syzygy algorithm to this strip gives a strip of the following form:

· · · · · ·
α3 α4
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which clearly contains peaks that are not on our shortened list.

It follows that the only indecomposable Gorenstein-projective string module is the projective one.

Thus A is CM-free (and has a pin graph which is acyclic).

6.3.9. Example. Let

A := k

 1 2

α1

α2

β1

β2

 /⟨α1β2, α2β1, α1β1 − α2β2, β1α1, β2α2⟩.

As discussed in Example 6.2.17, the pin graph of A is
(

1 2
)
(which is clearly not acyclic),

and this algebra has no Gorenstein-projective band modules (so is CM-finite).

We now classify the Gorenstein-projective string modules for A. If we consider the A-syllables

satisfying the conditions of Proposition 4.1.8, these are:

( ◦
β1

◦
0
◦ ) ( ◦

β2

◦
0
◦ ) ( ◦

β1

◦
1
◦ ) ( ◦

β2

◦
1
◦ )

( ◦
es(α1)

◦
1
◦ ) ( ◦

es(α2)

◦
1
◦ ) ( ◦

es(β1)

◦
1
◦ ) ( ◦

es(β2)

◦
1
◦ )

The only green peaks that can be formed from these syllables (avoiding Case 2b(ii)) are:

es(α1) es(α2) β1 β2 β2 β1 β1 β2

Applying the syzygy algorithm to the first of these peaks results in peaks that aren’t in our list, and

thus the first peak can’t be present in a strip representing a Gorenstein-projective string module.

The only peak in our list with an interior syllable that is valley compatible with the second peak

in our list is the third peak (and vice versa). Thus if either of these peaks were present in a strip

representing a Gorenstein-projective string module, the strip must be of the form:

· · · · · ·
β1 β2 β1 β2
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Applying the syzygy algorithm to this strip results in a strip containing a peak of the first form,

which we have already shown can’t be present in a strip representing a Gorenstein-projective

string module. Thus neither the second or third peak can be present in a strip representing a

Gorenstein-projective string module.

It follows that the only indecomposable Gorenstein-projective string module is the one represented

by our fourth peak; the indecomposable projective string module.

Thus A is CM-free (and has a pin graph which is not acyclic).

6.3.10. Example. Let

A := k

 1 2

3

4

α1

α2

β1

β2

γ1γ2

 /⟨α1β2, β1α2, β2γ2, γ2β1, (α1α2)
2, β1β2 − γ1γ2γ1⟩.

Since this quiver is not 2-regular, we must choose which 2-regular extension to use. We will use

Q̃ := 1 2

3

4

α1

α2

β1

β2

γ1γ2δ ε

This means that the overquiver implicit in future discussions (for example with A-syllables), will

be:

s(α1) s(α2)

s(δ) s(β1)s(β2) s(ε)

s(γ1) s(γ2)

α1

α2

δ

β1

β2

ε

γ1

γ2

where, as usual, the dashed lines denote the vertex identification, †.

The pin graph of A is
(
1 2 3 4

)
which is clearly acyclic. Thus A has no

Gorenstein-projective band modules and is CM-finite.
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We now classify the Gorenstein-projective string modules for A. If we consider the A-syllables

satisfying the conditions of Proposition 4.1.8, these are:

( ◦
β2

◦
0
◦ ) ( ◦

γ1

◦
0
◦ ) ( ◦

γ2γ1

◦
0
◦ )

( ◦
α1

◦
1
◦ ) ( ◦

α1α2α1

◦
1
◦ ) ( ◦

α2α1

◦
1
◦ )

( ◦
β1

◦
1
◦ ) ( ◦

β2

◦
1
◦ )

( ◦
γ1

◦
1
◦ ) ( ◦

γ1γ2

◦
1
◦ ) ( ◦

γ2

◦
1
◦ ) ( ◦

γ2γ1

◦
1
◦ )

( ◦
es(α1)

◦
1
◦ ) ( ◦

es(α2)

◦
1
◦ ) ( ◦

es(β1)

◦
1
◦ ) ( ◦

es(β2)

◦
1
◦ )

( ◦
es(γ1)

◦
1
◦ ) ( ◦

es(γ2)

◦
1
◦ ) ( ◦

es(δ)

◦
1
◦ ) ( ◦

es(ε)

◦
1
◦ )

The only green peaks that can be formed from these syllables (avoiding Case 2b(ii)) are:

es(δ) α1α2α1 es(δ) α1 es(δ) es(α1)

(α1α2)
2 β2

β1 γ1 es(β1) γ1 β1 es(γ1) es(β1) es(γ1)

es(ε) γ2γ1 es(ε) es(γ2)

Note that this list does not contain all peaks corresponding to the indecomposable projective string

modules, but they are still valid for Gorenstein-projective strips (as Proposition 4.1.7 specifically

excludes projective string modules from its characterisation).

Also note that all interior syllables p in our list have t(p) = t(γ1), and thus can not form interior

valleys with each other. Hence we can remove all peaks in our list containing an interior syllable.

If we also remove the peaks in our list that correspond to indecomposable projective string modules,
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the remaining peaks are:

es(δ) α1 es(δ) es(α1)

β1 es(γ1) es(β1) es(γ1) es(ε) es(γ2)

For all of these peaks apart from the first, applying the syzygy algorithm results in peaks that do

not belong to this list. For the first peak in the list, applying the syzygy algorithm gives a strip

consisting only of the first peak. This corresponds to the fact that the uniserial module:

U :=

1

2

α1

is isomorphic to its syzygy.

Since we know that U ≃ Ω(U) ≃ ΣΩ(U) ≃ ΩΣ(U) and that Ext1A(U,A) = 0, it follows that U is a

Gorenstein-projective string module. Based on the exclusion of the rest of the peaks, we know that

U is the only Gorenstein-projective string module that is not projective.

Thus A is CM-finite but not CM-free (and has a pin graph which is acyclic).

6.3.11. Example. Let

A := k

 1 2 3

α1

α2 β1

β2

 /⟨α1β2, β1α2, (α1α2)
2, (α2α1)

2 − β2β1, β1β2⟩.

Since this quiver is not 2-regular, we must choose which 2-regular extension to use. We will use

Q̃ := 1 2 3

α1

α2 β1

β2
γ δ

This means that the overquiver implicit in future discussions (for example with A-syllables), will
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be:

s(α1) s(α2)

s(γ) s(β1)s(β2)

s(δ)

α1

α2

γ

β1

β2

δ

where, as usual, the dashed lines denote the vertex identification, †.

The pin graph of A is
(
1 2 3

)
which is clearly not acyclic. Thus we can’t rely on

Corollary 6.3.5 to prove that A is CM-finite.

The Q-vertex 2 is the only one lying on a cycle of ΦA. Therefore an interior syllable p meets the

syllable condition of Theorem 6.2.13(vi) if and only if the Q-vertices corresponding to s(p) and

t(p) are both 2. The only interior syllable meeting this condition is ( ◦
α2α1

◦
0
◦ ). Since no

syllable is peak- or valley-compatible with itself, we can’t use this single syllable to form a belt.

Hence A has no Gorenstein-projective band modules, and thus A is CM-finite.

We now classify the Gorenstein-projective string modules for A. If we consider the A-syllables

satisfying the conditions of Proposition 4.1.8, these are:

( ◦
α1

◦
0
◦ ) ( ◦

α2α1

◦
0
◦ ) ( ◦

α1α2α1

◦
0
◦ ) ( ◦

β1

◦
0
◦ )

( ◦
α1

◦
1
◦ ) ( ◦

α2α1

◦
1
◦ ) ( ◦

α1α2α1

◦
1
◦ ) ( ◦

β1

◦
1
◦ )

( ◦
es(α1)

◦
1
◦ ) ( ◦

es(α2)

◦
1
◦ ) ( ◦

es(β1)

◦
1
◦ ) ( ◦

es(β2)

◦
1
◦ )

( ◦
es(γ)

◦
1
◦ ) ( ◦

es(δ)

◦
1
◦ )

The only green peaks that can be formed from these syllables (avoiding Case 2b(ii)) are:

es(γ) α1
es(γ) α1α2α1

es(γ) α1α2α1 es(γ) α1

es(δ) β1 es(δ) β1
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Applying the syzygy algorithm to any of the peaks in this list with an interior syllable results in a

boundary syllable which is not present in any of the other peaks in our list. Hence we can remove

all peaks in our list containing an interior syllable.

If we also remove the peaks in our list that correspond to indecomposable projective string modules,

there is a single remaining peak:

es(γ) α1

Since this peak has two boundary syllables, if it is present in a strip then it is the only non-blank

peak in the strip. If we apply the syzygy algorithm to a strip containing this peak, we obtain

another strip containing only this peak.

This corresponds to the fact that the uniserial module:

U :=

1

2

α1

is isomorphic to its syzygy.

Since we know that U ≃ Ω(U) ≃ ΣΩ(U) ≃ ΩΣ(U) and that Ext1A(U,A) = 0, it follows that U is a

Gorenstein-projective string module. Based on the exclusion of the rest of the peaks, we know that

U is the only Gorenstein-projective string module that is not projective.

Thus A is CM-finite but not CM-free (and has a pin graph which is not acyclic).

6.3.12. Recall from Definition 2.2.39 that a finite-dimensional algebra, A, is called weakly

Gorenstein if all semi-Gorenstein-projective A-modules are Gorenstein-projective. In other words, a

finite-dimensional algebra, A, is weakly Gorenstein if for any M ∈ mod-A, we have an implication:

ExtiA(M,A) = 0 for all i ∈ Z+ =⇒ M ∈ Gproj-A.

If we restrict our attention to special biserial algebras, we recall from Theorem 6.2.13 that if

M ∈ mod-A is a band module, this implication holds (i.e. all semi-Gorenstein-projective band
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modules are also Gorenstein-projective). Thus (due to Theorem 2.2.58), we have the following

result:

6.3.13. Lemma. Let A be an SB algebra. Then A is weakly Gorenstein if and only if for all

string modules M ∈ mod-A we have an implication:

ExtiA(M,A) = 0 for all i ∈ Z+ =⇒ M ∈ Gproj-A.

In other words, A is weakly Gorenstein if and only if all semi-Gorenstein-projective string

modules are also Gorenstein-projective.

We now use Lemma 6.3.2 again in the context of weakly Gorenstein SB algebras, to classify a case

of interest where there are finitely many semi-Gorenstein-projective modules.

6.3.14. Proposition. Let A be an SB algebra. Let l be the number of arrows in the largest

acyclic component of ΦA, and m be the number of vertices on cycles of ΦA. Suppose that A

has no semi-Gorenstein-projective band modules. Then all semi-Gorenstein-projective string

modules, M ∈ mod-A, satisfy intwid(M) ≤ 4m + 4l. In particular, there are finitely many

semi-Gorenstein-projective A-modules.

Proof. Suppose that M ∈ mod-A is a semi-Gorenstein-projective string module with intwid(M) >

4m+4l. Since intwid(M) ∈ 2N, this means that intwid(M) ≥ 4m+4l+2. Now, by Lemma 6.3.2, we

know that there exists a band module Y ∈ mod-A which is Gorenstein-projective. This contradicts

our assumption that A has no semi-Gorenstein-projective band modules.

Due to our classification of CM-finiteness in Proposition 6.3.4, we immediately have the

following:

6.3.15. Corollary. Let A be an SB algebra. If A is CM-finite, then A is also weakly

Gorenstein and any indecomposable non-projective semi-Gorenstein-projective module is

Ω-periodic.

Proof. Suppose that A is CM-finite. By Proposition 6.3.4, this means that there are no

Gorenstein-projective band modules. Since all semi-Gorenstein-projective band modules are

Gorenstein-projective (by Theorem 6.2.13), this means that there are no semi-Gorenstein-projective
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band modules. By Proposition 6.3.14, this means that there are finitely many indecomposable

semi-Gorenstein-projective A-modules.

By [RZ20, Thm 1.3], this means that A is weakly Gorenstein and any indecomposable non-projective

semi-Gorenstein-projective module is Ω-periodic, as required.

This answers [RZ20, Question 9.2] in the affirmative for special biserial algebras.

We now give a slight strengthening of part of [RZ20, Thm 1.2] in the case of special biserial algebras.

The proof makes extensive use of the arguments Ringel and Zhang, applying the characterisation

of weakly Gorenstein SB algebras (Lemma 6.3.13) where necessary. Note that [RZ20] uses the

notation ℧ whereas we use Σ.

6.3.16. Proposition. Let A be an SB algebra. The following statements are equivalent:

(1) A is weakly Gorenstein.

(2) Any semi-Gorenstein-projective string module is torsionfree.

(3) Any semi-Gorenstein-projective string module is reflexive.

(4) For any semi-Gorenstein-projective string module M , the map ϕM : M → M∗∗ is

surjective.

(5) For any semi-Gorenstein-projective string moduleM , the moduleM∗ is semi-Gorenstein-

projective.

(6) Any semi-Gorenstein-projective string module M satisfies Ext1A(M
∗, AA) = 0.

(7) Any semi-Gorenstein-projective string module M satisfies Ext1A(Tr(M), AA) = 0.

Proof. The fact that (1) implies (2) to (7) follows immediately from [RZ20, Thm 1.2].

To show that any one of (3) to (7) implies (2), apply the same argument as [RZ20, Thm

1.2], replacing any instance of the word “semi-Gorenstein-projective” with the phrase “a semi-

Gorenstein-projective string module”.

It remains to show that (2) implies (1). By Lemma 6.3.13, it is sufficient to show that (2) implies

that any semi-Gorenstein-projective string module is also Gorenstein-projective. Now apply the

same argument as [RZ20, Thm 1.2], replacing any instance of the word “semi-Gorenstein-projective”

with the phrase “a semi-Gorenstein-projective string module”.

Of particular interest is the equivalence between the first two conditions, which is based on a
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result initially published by Huang-Huang [HH12, Prop 4.2]. This is because we have already

characterised torsionfree string modules in terms of the syllables present in strips representing them

(see Proposition 2.2.69 and Proposition 4.1.7).

6.3.17. Corollary. Let A be an SB algebra. Then A is weakly Gorenstein if and only if

for any indecomposable non-projective semi-Gorenstein-projective string module, M , there is

a strip, w, representing M , all of whose syllables satisfy the conditions of Proposition 4.1.7.

We now use this characterisation to check if our running example algebra is weakly Gorenstein.

6.3.18. Example. Let A be our running example algebra, as defined in Paragraph 2.2.41. Using

our list of green peaks for A (see Figures 6.1 and 6.2), we will show that all semi-Gorenstein-

projective string modules are represented by a strip, all of whose syllables satisfy the conditions of

Proposition 4.1.7.

First we show that all semi-Gorenstein-projective string modules with interior width zero are

torsionfree. We do this by reviewing the green peaks with 2 boundary syllables, checking if any of

them contain syllables which fail to satisfy the conditions of Proposition 4.1.7, and then applying

the syzygy algorithm to the ones that do to find out if they are semi-Gorenstein-projective.

The green peaks with 2 boundary syllables where at least one of them fail to satisfy the syllable

conditions of Proposition 4.1.7 are:

γαβ δ2 γαβ es(δ) γαβ δ δ2 γα

We can immediately ignore the first peak, as it represents the unique indecomposable projective

string module for this algebra. For the remainder, applying the syzygy algorithm results in a strip

with a single red peak. Thus none of these peaks (except the first) correspond to modules with

Ext2A(M,A) = 0; thus they don’t correspond to semi-Gorenstein-projective modules. Hence we

know that all semi-Gorenstein-projective string modules with interior width zero are torsionfree.

Checking for non-torsionfree semi-Gorenstein-projective string modules with non-zero interior width

directly is harder, as the strips representing them are formed of multiple peaks. We instead

characterise all semi-Gorenstein-projective string modules with non-zero interior width, and then

show that they are all Gorenstein-projective (and hence torsionfree).
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The green peaks with at least one interior syllable where one of the syllables fails to satisfy the

conditions of Proposition 4.1.7 are:

α β αβ β αβ βγ αβ β βγ αβ

es(α) β β αβ

γαβ δ γαβ δ2 δ2 γ δ2 γα δ2 γαβ

Note that this list contains all instances of the following syllables in a green peak:

( ◦
β

◦
0
◦ ) ( ◦

αβ

◦
0
◦ ) ( ◦

δ

◦
0
◦ ) ( ◦

δ2

◦
0
◦ )

( ◦
γ

◦
0
◦ ) ( ◦

γα

◦
0
◦ ) ( ◦

γαβ

◦
0
◦ )

Thus no torsionfree string module M with Ext1A(M,A) = 0 can have any of these syllables in a strip

representing it. Thus if M is semi-Gorenstein-projective, Ω(M) can’t have any of these syllables

in a strip representing it. Applying the syzygy algorithm to any one of the following green peaks

results in interior non-pin syllables:

α β αβ β αβ βγ

es(α) β β αβ

γαβ δ γαβ δ2 δ2 γ δ2 γα δ2 γαβ

Thus none of these peaks can be present in a strip representing a semi-Gorenstein-projective string

module. If we take the full list of green peaks and remove those above, the remaining green peaks
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with at least one interior syllable are:

α βγ

αβ β αβ βγ βγ α βγ αβ

es(α) βγ β α

Note that none of the peaks in this list contain an interior syllable p with t(p) = t(δ) = t(β)†. Thus

none of the peaks in this list containing an interior syllable p′ with t(p′) = t(β) can be present in a

strip representing a semi-Gorenstein-projective string module. The remaining green peaks with at

least one interior peak are:

α βγ αβ βγ βγ α es(α) βγ β α

Thus any semi-Gorenstein-projective string module with non-zero interior width must be represented

by a strip formed entirely of these peaks.

Applying the syzygy algorithm to the second and fifth peaks in this shortened list gives rise to the

following local diagrams:

· · · · · ·

· · · · · ·

αβ βγ

α

· · · · · ·

· · · · · ·

β α

α βγes(β)

Note that the boundary syllables ( ◦
α

◦
1
◦ ) and ( ◦

es(β)

◦
1
◦ ) don’t appear

anywhere in our shortened list of peaks. Therefore, if M is a string module represented by a strip

containing either the second or fourth peak, we know that Ω(M) is not semi-Gorenstein-projective,

and thus that M is not semi-Gorenstein-projective.
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Hence any semi-Gorenstein-projective string module with non-zero interior width must be

represented by a strip of the form:

· · · · · · · · · · · ·
es(α) βγ α βγ α βγ

We showed in Example 6.1.31 that all such string modules are Gorenstein-projective. Hence we

have shown that our running example algebra A is weakly Gorenstein.
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A-path, 11

α− k, 10

i− k, 10

n-torsionfree module, 30

acyclic complexes, 16

additive closure, add(−), Add(−), 13

admissible ideal, 11

arrow ideal, J , 11

band graph, 24

from a powerable string graph, 25

band module, 26

belt, 81

patch cover of, 88

bi-infinite power, ŵ, 24

bi-infinite string module, 23

CM-finite, 19

CM-free, 19

complex of modules, 15

components, C, 36

delooping level, dell, 29

descent, ∇, 48

Ext functor, 17

finitistic dimension

big finitistic dimension, Fin.dim, 32

finitistic dimension conjectures, FDC, 32

little finitistic dimension, fin.dim, 32

flattened family of strips, 62

Gorenstein algebra, 18

Gorenstein-projective module, 17

complete resolution of, 17

graph, 7

green peak

non-pin, 144

pin, 141

homology, 16

injective dimension, inj.dim, 16

injective module, 15

injective resolution, 16

module category, 12

non-zero paths, N , 35

overquiver, O, 34
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patch cover of a strip, P(w), 68

path algebra, 11

peak, 59

peak compatible, 59

permissible data, (O, N,C, †), 36

pin and non-pin peaks, 139

pin graph, Φ, 49

pin module, 28

projective cover, P, 15

projective dimension, proj.dim, 16

projective module, 15

projective resolution, 16

pseudo-valley, 62

pseudo-valley compatible, 62

quiver, 8

quiver algebra, 11

quiver homomorphism, 8

radical length, 13

radical, rad, 13

red peak

non-pin, 144

pin, 141

regular quiver, 10

relation of a path algebra, 11

residue of a path, 12

rounding off, 60

semi-Gorenstein-projective, 19

sink vertex, 8

socle, soc, 13

source encoding, (ai, bi), 36

source vertex, 8

special biserial (SB) algebra, 20

stable module category, 28

string graph, 22

powerable, 24

primitive, 24

string module, 23

strip, 59

subregular quiver, 10

suspension, Σ, 29

syllable, 47

syzygy fabric for a strip, 70

syzygy, Ω, 15

target encoding, (ci, di), 37

top, top, 13

torsionfree module, 30

totally acyclic complex, 17

transpose, Tr, 17

triangular arrangement of patches, 123

twisting, ▷◁, 100

valley, 59

valley compatible, 59

vertex exchange map, †, 35

virtual syllable, 57

weakly Gorenstein algebra, 20

yellow peak

non-pin, 144

pin, 141
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[ASS06] I. Assem, D. Simson, and A. Skowroński. Elements of the Representation Theory of

Associative Algebras. London Mathematical Society Student Texts. Cambridge, UK ;

New York: Cambridge University Press, 2006.

[AB69] M. Auslander and M. Bridger. “Stable Module Theory”. Memoirs of the American

Mathematical Society 94 (1969).

[AR91a] M. Auslander and I. Reiten. “Applications of Contravariantly Finite Subcategories”.

Advances in Mathematics 86 (1991), 111–152.

[AR91b] M. Auslander and I. Reiten. “Cohen-Macaulay and Gorenstein Artin Algebras”.

Representation Theory of Finite Groups and Finite-Dimensional Algebras. Ed. by G. O.

Michler and C. M. Ringel. Birkhäuser Basel, 1991, 221–245.
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