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Abstract 

Bipedal gait is one of the most fundamental human behaviours, with the visual system guiding our 

movements through the environment that we are in.  Our visual system is thought to have evolved 

to detect signals necessary for survival, whilst reducing noise, in the environmental niche of our 

past. Yet, the visual information of the built environments we live in today diverges substantially 

from those in which we evolved, with visual information necessary for survival in nature often 

prevalent as decorative background patterns in modern design. This raises the principle question 

of this thesis, namely, how well our visual system is able to guide our movements through modern 

built environments. To answer this question, three assumptions were tested:  

First, if well-adapted to a modern environment, visual prediction errors about the state of this 

environment should be minimal. Therefore, gait should not be affected by task-irrelevant visual 

information, such as regular and repetitive decorative floor patterns, even when the visual input 

does not match that of the physical world. Three different experiments revealed  that high-contrast 

illusory depth patterns negatively impacted people’s subjective walking experience, and led to 

adjustments in stepping locations that adhere with the illusory information of the floors. This 

provided first evidence that the visual system is susceptible to prediction errors about the state of 

the environment, derived from design choices, to successfully guide gait.  

Second, there should be no gait adaptation or entrainment to task-irrelevant visuo-spatial 

information of decorative floor patterns of otherwise flat, hazard-free floors. The results here 

revealed small but reliable differences in gait measures when walking over such patterns, indicating 

again that the gait cycle is not completely immune to changes of visuospatial decorative 

information on the ground plane.   

Third,  gait should not be negatively affected by task-irrelevant pattern noise, even if such noise 

were to produce aversive reactions, such as visual discomfort. Converging evidence from five 

experiments, however, revealed that certain spatial frequencies, contrast, and luminance of floor 

patterns negatively impacted gait, in line with predictions of changes in signal-to-noise ratio 

between task-relevant signals for walking and task-irrelevant background noise.  

Collectively, these results indicate that decorative, task-irrelevant floor patterns have the capacity 

to introduce noise into the visual system when walking, resulting in more cautious gait behaviour.  
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This work is a first, yet fundamental, step toward understanding how low-level, task-irrelevant, 

visual patterns prevalent in our built environment, impacts gait in a way that might increase fall 

risk in vulnerable groups within our society. Findings emphasise that the way we design our 

environments needs to account for the way in which our visual system guides our movements, 

ultimately affecting  population health and wellbeing.   
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Chapter 1: Introduction 

1.1 Overview 

In their seminal paper entitled “The Objects of Perception and Action”, Goodale and Humphreys 

reminded us “[…] that vision evolved in animals, not to enable them to ‘see’ the world, but to guide their 

movements through it” (Goodale & Humphrey, 1998, p. 183). This also holds for people as embodied 

beings within a physical environment. Vision allows us to proactively adapt our bipedal gait to the 

environment we are in, to avoid hazards, select appropriate footholds when walking over uneven 

ground (Bucklin et al., 2023; Matthis et al., 2018), and to adapt and regulate the gait pattern itself 

(Warren, 2006). With walking being far more costly than eye, hand, or other partial body 

movements - be it in terms of energy expenditure (Selinger et al., 2015) or in terms of risk of injury 

(Newstead et al., 2007; Yamada et al., 2011) -, visual information about the state of the 

environment needs to be collected to optimize (i.e. reduce) the costs of walking (e.g., Hayhoe, 

2017). 

Due to processing limitations induced by the spatial and temporal resolution of the human visual 

system and limited attentional capacity (for review, see Zhaoping, 2014), our visual system is tuned 

to detect signals necessary for survival effectively, whilst reducing the weighting of task-irrelevant 

information, considered here as noise, for the environmental niche in which we have evolved 

(Endler, 1992), i.e. the savannah. Yet, the visual information of the built environments of our 

cities, in which most people live today (Mahtta et al., 2022), diverges substantially from that of the 

savannah (see figure 1.1). For example, as a result of modern building materials and methods, as 

well as modular design practices, the visual makeup of our cities often contains regular and 

repetitive high-contrast visual pattern information, for which our visual system is particularly 

sensitive, as task-irrelevant background information  (Wilkins et al., 2018). Although such pattern 

information is rare in nature, such as in animal colourations (Merilaita et al., 2017), detecting and 

attending to this information is importance for survival. In the built environment, these patterns 

can thus be understood as noise, negatively affecting the signal-to-noise ratio and increasing 

uncertainty about the state of the surrounding environment necessary to guide our actions (Atick, 

1992).   
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This raises the principle question of this thesis: how well has our visual system adapted to guide 

our movements (in particular, bipedal gait) through modern built environments, our self-made 

habitat?  

As the ground plane (floor) is the most important source of information for visually-guided 

proactive gait adaptation to the environment, this thesis focuses on decorative task-irrelevant floor 

patterns, less common in nature but ubiquitous in the built environment, and the impact such 

patterns have on gait kinematics, to explore the above question.  

In detail, the project has the following objectives: 

O1: To understand how people experience walking over floors with patterns that visually do 

not  match  the physical properties of the floor, i.e. visual illusions. 

O2: To explore whether the subjective experience of walking over floors with illusory patterns 

couples with quantitatively measurable changes of gait patterns, in particular foot 

placement choices. 

O3: To investigate whether the spatial structure of visual floor patterns, matched to and 

manipulated around preferred step length, can result in adjustments to gait (visuomotor 

entrainment). 

O4: To understand whether high contrast, medium spatial frequency, linear patterns on the 

ground, set to the maximum sensitivity of the human visual system, increase uncertainty 

 Figure 1.1 Example of a Savannah scene (left), the evolutionary niche where our visual systems evolved. 
Image taken from www.pixabay.com/photos/sunset-savannah-kenya-africa-4120824/. Example of a city 
scene (right), a built environment where we commonly navigate through now (right). Image taken from 
https://www.nomadicmatt.com/travel-blogs/tokyo-itinerary/. 
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about the floor surface, leading to more cautious walking behaviour and, if so, whether this 

correlates with an increase in the subjective experience of visual discomfort. 

O5: To understand the role of luminance and contrast in mediating the impact of high spatial 

frequency, linear patterns in increasing uncertainty about the floor surface, leading to more 

cautious walking behaviour and an increase in visual discomfort.     
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1.2 Background 

1.2.1 Locomotion: Biomechanics 

Locomotion, particularly human walking, is an integral series of action sequences required for 

survival, allowing for the traversing of uneven and otherwise inaccessible ground surfaces in aid 

of life-sustaining requirements, such as the sourcing of food and shelter, escape from danger, and 

mating (Patla, 1998).  

Human walking is best described by its gait cycle, which refers to the sequence of movements 

involved in ambulation: from heel strike (initial contact) through to the terminal swing and 

subsequent heel strike of the same foot on the walking surface  (Perry & Burnfield, 2010). This 

process is driven by a combination of coordinated muscle contractions and joint movements, with 

two primary phases – the stance phase and the swing phase, and eight functional periods (see e.g. 

Perry & Burnfield, 2010). The stance phase comprises around 60% of the gait cycle and refers to 

the entire time when the foot is on the ground and where the leg and foot bear the majority of 

bodyweight. This consists of initial contact (where the heel first comes into contact with the 

ground), loading response (where the foot is positioned flat on the ground), mid-stance, terminal 

stance (where the heel is off of the ground), and pre-swing (where the toe is then lifted from the 

ground in preparation for the swing phase). The swing phase describes the other 40% of the gait 

cycle, when the foot is not in contact with the walking surface. Here, the other leg and foot bear 

the majority of the bodyweight. This phase comprises of the initial swing, mid-swing, and late 

swing phases (see figure 1.2. Taken from Stöckel et al., 2015, p.5).  
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During a two-step (one stride) cycle, both feet are on the ground for approximately 24% of the 

cycle, 12% at the beginning and end of the stance phase, referred to as a period of double support 

(Chambers & Sutherland, 2002). The remainder of the gait cycle consists of only one foot being 

in contact with the ground, referred to as a period of single support. Despite being a complex and 

mechanically unstable process, this cyclical pattern enables successful movement over diverse 

terrain (Patla, 1997).    

The coordination and regulation of the complex sequence of muscle activations that underpin the 

human gait cycle can be enacted without sensory feedback or descending commands from higher 

cognitive areas, i.e., information about the surrounding environment, via central pattern generators 

(CPGs) located in the spinal cord (Guertin, 2009). These interconnected groups of neurons, which 

CPGs comprise of, function as circuits and produce rhythmic patterns of neural activity that drive 

the rhythmic motor movements that facilitate human walking (Guertin, ibis).  

The way in which the human body is designed, and how our sensory apparatus function to guide 

movement, minimises the need for input from higher cognitive areas during basic action sequences 

such as walking. Warren’s behavioural dynamics framework (Warren, 2006) suggests that the 

Figure 1.2 The two primary phases and eight functional periods of the human gait cycle. Figure taken from 
Stöckel et al., (2015, p.5), which is based on the model description by Perry and Burnfield (2010).   
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design, and therefore physical constraints, of the human body produce emergent properties. 

However, he considers the dynamics of human movement in relation to the environment as both 

being dynamic systems, where the structure of the environment, the mechanics of the human 

body, and the perceptual information available about the body relative to the environment all serve 

to produce adaptive behaviour. By considering the two systems in this collective structure, Warren 

(2006) demonstrates that stable, flexible and adaptive behaviour is not restricted to the human 

body as an isolated dynamic system, but that behaviour is modulated to meet the demands of the 

current task, given the state of the environment, through perception, i.e., perceptual control.    

Although the interaction between individual and environment enables stability and adaptability of 

movement, bipedal locomotion is slow and energetically costly, and is therefore, as with most 

physiological processes, energetically optimised (Selinger et al., 2015). In order for human 

locomotion to function as a metabolically optimised system, each individual adopts a preferred 

speed and rhythm of ambulation in order to minimise the metabolic cost in relation to the distance 

travelled (Bertram, 2005). See Table 1.1 for average measures of gait for young healthy adults 

walking over flat obstacle-free ground (average measures taken from Collins & Kuo, 2013). This 

is reflected not only in the pendulum-like motion of human gait, the transfer of passive energy 

through the musculoskeletal system, and the coordination of muscle activity, but also through an 

energetically optimised stride length and frequency, that are matched to the individual, and the 

dimensions, muscle mass, cardiovascular health, age etc., of their body (Bertram, ibis). Accordingly, 

this optimisation varies between individuals due to individual differences in their bodies, injuries 

and pathologies (Kuo & Donelan, 2010). 

 

Table 1.1. Average measures of gait for young healthy individuals walking over flat obstacle-free ground, with 
standard deviation (SD) and coefficients of variation (%), data taken from Collins and Kuo (2013). Step length and 
step width measurements recorded via motion tracking markers positioned on top of the first and second 
metatarsals (top of the foot, near the base of the big toe) 

Gait Measure Mean SD Coefficient of 
Variation (%) 

Walking Speed (m/s) 1.51 0.08 2.3 

Step Length (m) 0.792 0.036 2.0 

Step Width (m) 0.168 0.044 15.4 
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Despite the gait cycle being automated via CPGs (Guertin, 2009) and energetically optimised by 

an individual’s biomechanical apparatus, i.e. physical body (Selinger et al., 2015), the system must 

be able to adapt when navigating through different environments, not only to allow energetic 

optimisation, but also to protect itself from mechanical costs such as failing to avoid hazards, 

misplacing steps, or mismanaging the gait cycle (Newstead et al., 2007; Yamada et al., 2011). Thus, 

successful locomotion requires exteroceptive sensory information about the surrounding 

environment in order to minimise mechanical (and energetic) cost (errors), and to make adequate 

sensory-motor decisions that maintain upright stability (Patla, 1997).  

Reactive adaptation, in this context, involves making adjustments to the walking pattern and 

movement in direct response to immediate changes in the environment, such as quickly adjusting 

body posture or taking corrective steps to regain stability after a misstep or perturbation (McCrum 

et al., 2017, 2018). This relies on immediate feedback from the peripheral nervous system to make 

rapid corrective adjustments to gait and posture (Choi & Bastian, 2007; Roemmich & Bastian, 

2015).  

However, in order to anticipate changes in the environment that may lead to potential errors in 

gait, proactive adaptation must be employed (Bucklin et al., 2023; Marigold et al., 2011). This 

anticipatory form of adaptation involves pooling prior knowledge to make predictions in advance 

of an event in order to adjust the gait pattern and overall movement (Zhao & Warren, 2015). 

Accordingly, proactive adaptation requires advanced exteroceptive information about the 

environment, which is only possible through vision.  

1.2.2 Fundamentals of Vision 

The environments that we navigate through are rich and complex, presenting a vast array of 

sensory information. Given the visual system’s limited spatial and temporal processing capacity 

(for review see e.g., Zhaoping, 2014), natural selection pressures led to promoting receptors that 

amplify visual information relevant to survival (i.e. behavioural goal-relevant signals), whilst 

developing efficient processing through sparce-coding of information prevalent but irrelevant to 

survival (e.g., Endler, 1992). In order to successfully ambulate through these spaces to achieve 

intended goals and objectives, we have to identify the specific objects of interest and relevance, 

whilst avoiding hazards, selecting appropriate footholds, and filtering out irrelevant visual 

information (Yogev-Seligmann et al., 2008). Without this directed allocation of attention, we would 

be completely overwhelmed by the volume of competing information, putting more pressure on 

the attentional bottleneck, which mediates selective visual attention (Wolfe et al., 2006). However, 
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attention allocation is not simply a top-down process, as our visual systems have evolved to filter 

and amplify signals relevant for survival. This is a type of covert attention primarily based on low-

level feature detection sensitivity, referred to as transient attention (Carrasco et al., 2004).  As such, 

the fundamental role of visual perception is to efficiently and effectively separate signal from noise 

(see figure 1.3, taken from www.cambridgeincolour.com/tutorials/image-noise.htm) in order to 

facilitate successful movement (Hayhoe, 2017).  

 

Sparce-coding is a neural firing pattern where the least amount of neurons required to process 

sensory information are activated, with the vast majority of neurons remaining inactive. This type 

of firing pattern minimises redundancy and, in doing so, minimises the noise in the system whilst 

facilitating adequate signal detection (Olshausen & Field, 2004). This is reflected in the highly 

efficient way the visual system processes image statistics of nature scenes.  

Nature scenes are typically low in colour and in luminance contrast (Fernandez & Wilkins, 2008) 

as well as scale-invariant in their spatial frequency regularities (Penacchio & Wilkins, 2015), with 

frequency spectra for which the amplitude distributions of the signal vary at approximately 1/fα 

with an alpha range of 0.8 to 1.5 (Tolhurst et al., 1992). Indeed, visual information that adheres to 

a 1/f α amplitude spectrum with alphas between 1.2 and 1.4 has been shown to be processed more 

efficiently in the visual cortex than amplitude spectra with alphas outside this range (Field, 1987). 

At the same time, the responsiveness of the visual system to narrowband visual information, such 

as square-wave gratings, is maximised, particularly to frequencies at around 1-3 cycles per degree 

(CPD) of visual angle (Campbell & Robson, 1968; Robson, 1966). In nature, such regular and 

repetitive patterns are rare and primarily found as warning signals in animal coloration, effective 

as behavioural signals that lead to avoidance behaviours necessary for survival (e.g., Merilaita et al., 

2017).  

Figure 1.3. Figure showing an example of hard-to-detect signal in relation to background noise, i.e. a low 
signal-to-noise ratio (left) and easy to detect signal in relation to background noise, i.e. a high-signal-to-noise 

ratio (right). Images taken from www.cambridgeincolour.com/tutorials/image-noise.htm. 

http://www.cambridgeincolour.com/tutorials/image-noise.htm
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The contrast sensitivity function (CSF) (Campbell & Robson, 1968; Robson, 1966) demonstrates 

the sensitivity of the human visual system to detect contrast at given spatial frequencies. The 

human visual system is less sensitive to low contrast gratings of higher and lower frequencies, 

relative to medium spatial frequencies. The decrease in the visual system’s sensitivity to low spatial 

frequencies can be considered as an adaptation to visual information with a 1/f amplitude 

spectrum (O’Hare & Hibbard, 2011; Wilkins & Hibbard, 2014). As the contrast signal increases 

with a decreasing spatial frequency, signals can be effectively processed with a low gain, which 

minimises the cost of such processes with minimal information loss (O’Hare & Hibbard, 2011). 

The signal amplitude for medium spatial frequencies is typically low due to the visual system’s 

difficulty in separating the signal from noise, and so signals of this type are also processed with 

low gain (Atick, 1992). This is an  optimised gain response to signal processing and is considered 

to be the result of sparse coding (Penacchio & Wilkins, 2015; Wilkins & Hibbard, 2014). 

To summarise, our visual systems have evolved different levels of sensitivity to low-level visual 

information in order to direct attention towards features in the environment that are key to our 

survival, such as certain combinations of spatial frequencies and contrasts.; for example, high-

contrast regular repetitive patterns such as stripes found as warning signals in animal colourations. 

This optimised detection of signal in relation to noise is reflected in how different types of visual 

information are processed and attended to. However, our modern built environments are full of 

visual information that are not particularly prevalent in the natural world, and thus may result in 

suboptimal signal-to-noise processing and misallocation of attention (see Patterns in the built 

environment : a) pattern impact on locomotion, below). 

1.2.3 Vision-for-Action 

As already alluded to, without vision, only reactive adaptation to gait would be possible, e.g. 

adjustment after one has already tripped. Vision guides locomotion; thus it is predictive and allows 

for proactive adaptation of the action system (Drew & Marigold, 2015), and precedes other sensory 

inputs in guiding the motor action sequences that underpin human locomotion (Marigold et al., 

2011).  

Human perception is considered to be embodied, where the ways in which information is collected 

and how that information is acted upon is grounded and directly related to the human body 

(Proffitt, 2006). We sample the surrounding environment to inform subsequent actions, and to 

minimise ambiguity about the sensory information guiding our actions. This form of proactive 

adaptation can be considered as a form of online control of action, which incorporates prediction 
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based on prior experience (see figure 1.4, reproduced from Leonards, 2023); however, the degree 

to which prior experience is involved is still a question of scientific debate (Clark, 2013). . 

Statistical decision theory (Bayesian) proposes the integration of previous experience 

(expectations) with present information to identify errors in prediction and to update and inform 

sensory-motor decisions (Franklin & Wolpert, 2011; Maloney & Zhang, 2010; Wolpert & Landy, 

2012). From this perspective, it is important to understand how visual information is perceived 

and processed during locomotion, how it guides the motor action sequences that underpin 

locomotion, and what types of visual information can lead to visual processing that result in 

increased perceptual ambiguity, and subsequently, sensory-motor decision making errors.  

 

Warren (2006) was  an early proponent of alternatives to internal models of action control. He  

argued that the control of the action sequences that underpin locomotion are driven by online 

information rather than by an internal model of the external environment. From this perspective, 

visual information relevant to a particular task drives an individual’s relationship to the 

environment via small but precise changes to the action system (Bootsma & Laurent, 1996; 

Warren, 2006; Zhao & Warren, 2015). This online form of control brings the individual closer to 

a goal state that is emergent rather than planned (Warren, 2006), and is applicable when confronted 

with complex ground, as well as when traversing flat hazard-free ground (Barton et al., 2017).  

Figure 1.4 Reproduced from Leonards (2023, p56). Here, prediction of the world state (s) represents the most 
probable condition of the environment given the visual information available. This prediction is used to guide actions 
to achieve a particular goal. Prediction error is the difference between the visually informed prediction of the world 
state (s) and the sensory-motor feedback on the world state (s). Collectively, the difference between prediction and 
prediction error influences the cost of any action. Blue arrows = vision processes, purple arrows = additional 

sensory and motor processes, grey arrows = non-vision processed that may affect vision based prediction 
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Matthis et al., (2017) provide evidence that regardless of terrain, sampling information about the 

surface and stability of the next step location occurs during the latter half of the preceding step in 

order to allow adequate time for limb trajectory and foot placement planning. This is considered 

as the critical control phase, which is an energy efficient strategy where visual information is 

required to initialise the mechanics of the body into a state that is necessary to lead it into 

movement towards a target foot location, whilst maintaining forward momentum.  

According to Matthis et al (2018), walkers adopt a relatively constant temporal gaze behaviour 

across all terrain types, regardless of complexity of the terrain, and only subtly modify their gaze 

behaviour between two and three steps ahead of their current position to maintain a steady gait. 

Crucially, eye gaze is consistently sampling information at locations 1.5 seconds ahead of where 

the foot lands. The spatiotemporal dependence of visual sampling of the ground plane in order to 

successfully guide foot placement over both flat and hazard free ground, as well as more complex 

terrain, demonstrates that regular visual sampling of the ground plane is fundamental to successful 

locomotion (Patla, 1997; Patla & Vickers, 2003; Warren, 2006; Zhao & Warren, 2015). 

As well as regular visual sampling of the ground plane, egocentric information about the body in 

relation to the structural aspects of the environment, particularly the make-up of the ground 

surface ahead of where one is walking, is used as an online form of control to fine-tune limb 

trajectories and to plan future step holds (Patla, 1998). Much of the research in this area has relied 

on lower visual field occlusion, or step target occlusion, during walking whilst engaging in, for 

example, obstacle avoidance (Marigold et al., 2011), obstacle clearance (Jansen et al., 2011; 

Mohagheghi et al., 2004; Timmis & Buckley, 2012), step descent (Buckley et al., 2007, 2011; 

Timmis et al., 2009), stair descent and ascent (Miyasike-daSilva et al., 2019; Miyasike-daSilva & 

McIlroy, 2016) and step target accuracy (Matthis et al., 2015; Patla & Vickers, 2003; Rietdyk & 

Drifmeyer, 2009). Lower visual field occlusion in these contexts results in increased head pitch 

towards the ground in an attempt to collect egocentric information about the feet in relation to 

where the next steps will be placed (Buckley et al., 2007, 2011; Jansen et al., 2011; Marigold et al., 

2011; Matthis et al., 2015; Miyasike-daSilva et al., 2019; Miyasike-daSilva & McIlroy, 2016; 

Mohagheghi et al., 2004; Patla & Vickers, 2003; Rietdyk & Drifmeyer, 2009; Timmis et al., 2009; 

Timmis & Buckley, 2012). Additionally, the reduction in egocentric perceptual information results 

in more variable stepping patterns, increased step height, increased step width, and reduced 

walking speed, reflecting a less finely tuned and more cautious gait strategy (Marigold et al., 2011; 

Matthis et al., 2015; Miyasike-daSilva et al., 2019; Timmis et al., 2009).   

When pursuing forward motion through an environment, spatiotemporal information derived 
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from light reflecting off  objects and surfaces in the visual field are projected onto the retina. This 

pattern of light radially expands from the centre of global heading direction (focus of expansion) 

and provides information regarding the relative motion between an individual and the objects in 

the environment, referred to as optic flow (Gibson, 1958).  

Optic flow is altered by an individual’s movements through the environment (Gibson, 1958; 

Rogers, 2021) and thus contributes considerably to control of the body during locomotion (Britten, 

2008; Grigo & Lappe, 1999; Li & Cheng, 2011; Warren et al., 2001; Warren & Hannon, 1988). 

When moving through structured environments, we use a combination of optic flow (Britten, 

2008; Grigo & Lappe, 1999; Li & Cheng, 2011; Warren et al., 2001) and retinal flow (Calow & 

Lappe, 2007; Matthis et al., 2022), as well as flow parsing, egocentric and allocentric signals (Warren 

& Rushton, 2009; Warren et al., 2001) to make a continuous sequence of sensory-motor decisions 

that determine our spatial relationship to structural elements within our surrounding environment, 

and to inform, for example, our speed of motion. 

Treadmill walking-based optic flow and gait kinematic regulation research indicate that optic flow 

patterns are linked to regulatory and temporally narrow components of gait, resulting in temporally 

phase-locked step behaviour throughout the gait cycle. This has most prominently been 

demonstrated in response to expanding and contracting flow patterns  (Bardy et al., 1996, 1999; 

Warren et al., 1996). Optic flow has also been shown to function as a temporal cue that influences 

the correction of speed fluctuations during bipedal walking, where walkers have a tendency to walk 

more slowly and cautiously when walking under no optic flow conditions (Salinas et al., 2017). 

This highlights the corrective, stride-to-stride regulatory control that optic flow provides to walkers 

in order to maintain constant speed when walking.  

Ludwig et al., (2018) demonstrated that manipulating the frequency spacing of transverse lines on 

the ground affects the walking speed of participants. This has provided some preliminary evidence 

that manipulating pattern information on the ground plane can potentially interact with optic flow 

information, which can influence gait kinematics. In particular, the authors found that increasing 

and decreasing the spatial frequency of transverse lines on the ground, decreased and increased 

walking speed, respectively. This was consistent for both continuous spatial frequency 

manipulations and step changes halfway along the walkway. However, fixed spatial frequency 

manipulations did not result in any meaningful changes in walking speed, step length or step time. 

This is perhaps owing to manipulations spatially deviating too far from average step length (~ 

0.79m, Collins & Kuo, 2013) to elicit perceived interactions between the floor and optic flow 

patterns that would result in kinematic adjustments to control self-motion. However, altering these 
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spacings to spatial frequencies that more closely match step length might result more effectively 

in interactions between floor and optic flow patterns, owing to the spatiotemporal link between 

visual sampling and the gait cycle.  

Visuomotor entrainment is considered as the synchronization of fundamental motor movements 

to external visual information, where the frequency-dependent response of gait kinematics is 

adjusted relative to perturbations in the visual field (Franz et al., 2017). Through the presentation 

of a virtual corridor with optic flow information speed-matched to that of the treadmill, Franz and 

colleagues found that presenting a scaled visual driving frequency close to the frequency of 

mediolateral trunk sway during walking (sum frequencies equalling 0.05, 0.10, 0.20, 0.30, and 0.40 

Hz), predominantly influenced trunk sway, gait variability, and step-to-step correlations. This was 

achieved by manipulating white squares (“obstacles”) that mediolaterally perturbed the virtual 

corridor scene, where the frequency of perturbations closely related to stride frequency. The 

authors conclude that visuomotor entrainment encompasses modifications to trunk sway and foot 

placement that correspond to the frequency of the visual stimuli in order to maintain whole-body 

balance.  

Franz and colleague’s study thus provides mechanistic insights into the ways in which visuomotor 

maintenance of upright stability is altered by visual field perturbations and offers important 

implications for the occurrence of issues with balance control. In particular, it seems that 

adjustments of gait kinematics are made proportionally and relationally to optic flow information 

in order to maintain stability. In Franz and colleagues’ (Franz et al., 2017) results, adjustments were 

most prominent when perturbations occurred at a frequency most closely matched to stride 

frequency, suggesting that there is a temporally sensitive relationship between information in the 

visual field and subsequent adjustments in gait kinematics in order to maximise upright stability. 

In the context of ground pattern information, this brings into question whether perturbations or 

manipulations in floor patterns that interact with global optic flow information would result in 

similar levels of gait adjustments. Whether visuomotor entrainment occurs in such contexts is yet 

to be explored (see Objective 3).    

To review, it is clear that there is a strong, if complex, relationship between the spatiotemporal 

perception of the surrounding environment, and its relation to the body, and the impact that such 

visual information has on proactive adjustments to gait. This highlights the importance of visual 

sampling of the ground plane, and the quality of what is perceived during self-motion, in order to 

modulate step-to-step control strategies that maintain upright stability, and the sensitivity of 

adjustments to gait kinematics to changing information in the visual field.  
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1.2.4 Patterns in the built environment  

1.2.4.1 Pattern impact on locomotion 

As already alluded to above in “Fundamentals of Visual Perception” and “Vision-for-Action”, our 

visual systems evolved to guide movements through the environmental niche of the savannah, 

developing in such a way as to efficiently process information that has been most prevalent over 

time (Fernandez & Wilkins, 2008; Penacchio & Wilkins, 2015). The visual makeup of the savannah 

(and more generally of nature environments), however, is very different to the urban environments 

most of us live in today (Mahtta et al., 2022).  

In the savannah and other natural environments, what is perceived visually is not only typically 

processed efficiently, but with very few exceptions (e.g. black ice),  is congruent with the feedback 

provided by the other senses (Field, 1987; Olshausen & Field, 2004). In other words, visual 

predictions made about the environment and the feedback provided about the environment are 

very similar. As a consequence, prediction errors are small (see Figure 1.4). However, in the built 

environment, decorative, task-irrelevant, pattern information – one might think of a stripy carpet 

or other high-contrast patterns - can increase perceptual noise, therefore decreasing signal 

detection and increasing uncertainty (Wilkins et al., 2018). Even more, visual patterns can lead to 

situations where visual predictions about the state of an environment and the feedback about the 

environment substantially diverge, increasing prediction errors and thus the potential mechanical 

costs associated with erroneous sensory motor decision making (see Figure 1.4). Whether this 

holds for visual illusions that, due to their striking effects, are increasingly  found in modern design 

(see Figure 1.5 for examples), is as yet unknown and will be explored in this thesis (see Objective 

1).  
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Indeed, ambiguous visual information and incorrect predictions about the environment have been 

suggested to increase the chances of erroneous stepping decisions, which in turn might be at the 

origins of falls and injury - particularly as one ages (Black et al., 2008; Lamoreux et al., 2008; Lord, 

2006; Willis et al., 2013; Wood et al., 2011). Note, however, that much of the evidence supporting 

the above assumptions is indirect, i.e., correlational, linking visual acuity, contrast sensitivity, stereo 

acuity and visual motion perception decline with increased fall risk (Saftari & Kwon, 2018). 

However, there is increasing anecdotal evidence from public news outlets providing examples of 

elderly pedestrians falling due to misplaced steps as a result of prediction errors about the ground 

surface, particularly in relation to hidden steps (Robinson, 2014; Stone, 2023; Ward, 2013; Yin & 

Pei, 2018). The most recent example of these, which has received a lot of coverage in the national 

press, is a design change on the Keynsham High street, Somerset, where a newly “masked” kerb 

has resulted in at least 59 people being injured due to falls (see also Scott-Samuel, Leonards, & 

Rushton, 2023: https://medium.com/@scottsne/false-expectations-cause-falling-pedestrians-

c1d172195dc9). With one in three adults over the age of 65 falling annually, and falls being the 

second leading cause of accidental death worldwide (Saftari & Kwon, 2018), understanding even 

a degree of the causes of such injuries and unnecessary loss of life is extremely important.  

Whilst less common in nature, high contrast, medium spatial frequency linear patterns are 

prevalent in our built environments, and have been linked with sub-optimal signal-to-noise 

processing, cortical excitation, and visual discomfort (Wilkins et al., 2018), creating uncertainty 

about the surface these patterns are on. To avoid prediction errors about the surface, increased 

sampling would be required, thus slowing decision making and signal detection (see e.g. O’Hare et 

Figure 1.5 left: 3D illusory floor in public theatre foyer (https://twitter.com/Annagoge/status/1200331557111775232); 
centre: 3D illusory floor in a hallway (https://www.archdaily.com/881574/this-optical-illusion-floor-serves-a-practical-
purpose-at-britains-casa-ceramica); right: 3D illusory floor in hotel lobby (https://www.architonic.com/en/product/ivc-
commercial-studio-moods-triangles-361/20173085) 

https://medium.com/@scottsne/false-expectations-cause-falling-pedestrians-c1d172195dc9
https://medium.com/@scottsne/false-expectations-cause-falling-pedestrians-c1d172195dc9
https://twitter.com/Annagoge/status/1200331557111775232
https://www.archdaily.com/881574/this-optical-illusion-floor-serves-a-practical-purpose-at-britains-casa-ceramica
https://www.archdaily.com/881574/this-optical-illusion-floor-serves-a-practical-purpose-at-britains-casa-ceramica
https://www.architonic.com/en/product/ivc-commercial-studio-moods-triangles-361/20173085
https://www.architonic.com/en/product/ivc-commercial-studio-moods-triangles-361/20173085
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al., 2013, for evidence of such a claim). In cases where such patterns are on the floor, we would 

therefore predict that participants would slow their gait  (Objective 4). 

1.2.4.2 Pattern Impact on visual comfort 

Not only do high-contrast, medium spatial frequency patterns decrease signal-to-noise ratio and 

thus negatively affect our actions, but they have also been shown to negatively impact our 

experiences of these environments by leading to visual discomfort, i.e. the adverse effects that 

come from viewing such patterns (Wilkins et al., 1984). These adverse effects can include 

headaches, blurred vision, eye-strain and double vision (Sheedy et al., 2003), and can be 

experienced by the general population (Fernandez & Wilkins, 2008; Wilkins et al., 1984). Penacchio 

and Wilkins (2015) developed a simple algorithm, based on Fourier analysis, for accurately 

predicting the visual discomfort that would be experienced from viewing a wide array of image 

types. Their technique is based on evaluating an image by its spatially defined wavelengths, 

amplitudes, orientations and phases. In particular, the authors proposed that the relationship 

between spatial frequency and amplitude provided a robust determinant of whether an image is 

perceived as visually uncomfortable. As mentioned previously, frequency spectra for which the 

amplitude distributions of the signal vary at approximately 1/fα (Tolhurst et al., 1992) have been 

shown to be processed more efficiently in the visual cortex than amplitude spectra outside this 

range (Field, 1987). Images that deviated significantly from this 1/fα ratio have also been perceived 

as uncomfortable to look at. These findings have been further demonstrated with images 

consisting of filtered noise and randomly disposed and sized rectangles, and for white noise and 

blurred images (Juricevic et al., 2011). Such studies have established that the relationship between 

spatial frequency and amplitude fundamentally underpins subjective experiences of visual 

discomfort.  

Through the use of regular stripe and checkerboard patterns, Wilkins et al. (1984) identified high-

contrast square-wave gratings, with medium spatial frequency and equal duty cycle, as the 

fundamental spatial characteristics that underlie the perceptual experiences of visual discomfort. 

More specifically, Wilkins et al. (1984) identified spatial frequencies in the range of 2-8 cycles per 

degree of visual angle (CPD) as being most prominent in evoking visual discomfort. This was 

further supported by Fernandez and Wilkins (2008), who found spatial frequencies within a 

narrower range of 3 CPD ± 1 octave (1.5 – 6 CPD) to be most uncomfortable. In contrast, O’Hare 

and Hibbard (2011) linked visual discomfort to a spatial frequency range of 0.375 - 1.5 CPD, which 

was found to be consistent across manipulations in eccentricity and for stimuli that were paired 
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for perceived contrast across spatial frequencies. Despite the volume of research documenting the 

visual discomfort that such visual stimuli can evoke in individuals, and the pervasiveness of these 

patterns in the built environment (Wilkins et al., 2018), nothing is known about how visual 

discomfort might affect gait. However, high-contrast, medium-frequency, linear patterns have 

been shown to introduce increased noise to the visual system, affecting signal detection accuracy 

and increasing processing time (O’Hare et al., 2013). This would indicate that visually-guided 

actions such as walking should be negatively impacted by patterns of this description, where gait 

should slow in response to the reduction in signal detection (surface ambiguity) and the increase 

in time required to process such visual information.   

1.2.4.3 Patterns, gait and cognitive load 

Previous research has shown that walking towards images of the built environment leads to more 

cautious walking behaviour, i.e., reduced walking speed and step length, and increased step time 

and step variability, relative to walking towards images of nature scenes (Burtan et al., 2021). This 

research suggests that these changes in gait might be linked to increases in cognitive load (for a 

review of the relationship between cognitive load and gait, as well as the impact this has on fall 

risk, see Amboni et al., 2013). The predominant argument is that increases in cognitive load lead 

to an attention bottleneck as a result of attentional resources being finite and there being a tendency 

for participants to allocate more attention to a cognitive task or changing perceptual information 

about the surrounding environment, at the expense of maintaining a consistent gait (Amboni et 

al., 2013; Small et al., 2021). Indeed, if the demands in one domain require more attention, less 

attention is then available to manage demands in other domains (Beurskens et al., 2016). In the 

case of walking, this can increase the chances of making erroneous stepping decisions and 

adjustments to the gait pattern (Small et al., 2021) which may increase chances of fall risk (Amboni 

et al., 2013). 

1.3 Structure of Thesis 

This thesis explores whether decorative visual patterns presented on unambiguously flat and 

obstacle-free ground affect human gait in order to answer the question of how well our visual 

system is adapted to guide movements through the human-built environment. In particular, it is 

predicted that visual patterns that adhere to image statistics less common in nature will increase 

uncertainty and prediction errors, directly affecting gait kinematics.  

The remainder of this thesis is organised as follows: 
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Chapter 2:   In the first experimental chapter, the relationship between the subjective experience 

of viewing and walking over floor patterns containing visual illusions was examined to establish 

whether perceived illusions also affect the action system (see Objective 1). Here, we aimed to 

explore individuals’ initial perceptions of several floor patterns with visual illusions, and their 

subjective experience of walking over these floors. This exploratory chapter provided a first sense 

of the relationship between visual perception and subjective walking experience for situations in 

which visual input of illusions clearly diverged from the physical environment (and thus any 

proprioceptive feedback). A mixed methods approach was used to explore this question within 

the context of public engagement activities, bringing together both qualitative experience and 

quantitative ratings.  

Chapter 3: Chapter 2 revealed that a high proportion of people felt they were negatively affected 

when walking over visual illusion floor patterns. This observation led to Objective 2, namely to 

understand whether such subjective negative experiences are coupled with quantitatively 

measurable changes of gait patterns, in particular foot placement choices. This was investigated in 

Chapter 3  in two observational studies. This also allowed us to explore alternative methods with 

which changes in gait might be quantifiable, using CCTV footage. For consistency, the two 

experiments used the same floors that had featured in Experiment 1. 

Chapter 4: This chapter contained the first proper laboratory experiment of this thesis, in which 

floor patterns were parametrically varied around a person’s preferred step length to investigate 

whether the spatial structure of floor patterns leads to adjustments in gait kinematics, i.e. 

visuomotor entrainment (Objective 3) as one would predict from alterations of perception of self-

motion (Durgin et al., 2005; Proffitt et al., 2003; Rieser et al., 1995). In this chapter, a more 

traditional method was used to collect gait data, i.e. 3D motion capture.  

Chapter 5: This chapter explored whether high-contrast, medium-spatial frequency, square-wave 

grating patterns on the ground, set to the maximum sensitivity of the human visual system, would 

increase uncertainty about the floor surface (Objective 4). If so, we would expect this to lead to 

more cautious (i.e. slowed) walking behaviour to increase visual sampling time. Moreover, it was 

explored whether changes in gait correlated with the subjective experience of visual discomfort. 

For this, three experiments examined whether high-contrast, medium-spatial frequency linear 

patterns introduced more visual uncertainty and discomfort, negatively impacting gait kinematics 

as compared to floor patterns with lower spatial frequencies or uni-coloured control floors of the 

same overall luminance, and whether this depended on the orientation of the floor patterns used. 
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Chapter 6:  In the last experimental chapter of this thesis, it was then investigated whether 

luminance and contrast play a role in mediating the impact of medium-spatial frequency, linear 

patterns in increasing uncertainty about the floor surface (Objective 5). Again, it was checked 

whether possible changes in gait evoked by different visual patterns correlated with the subjective 

experience of visual discomfort.  

Chapter 7: In this final chapter, the contributions of the overall work presented in this thesis are 

discussed, and conclusions are drawn by considering the limitations of the nine experiments 

presented in this thesis. The chapter finishes with an exploration of  the wider implications of the 

collective findings presented for architectural design, and potential future research directions.       
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Chapter 2: Walking on visual illusions  

The content of this chapter has been published as a paper in i-Perception in 2021 (Dickson et al., 

2021). I was involved in data collection, took the principle role in the analysis of the data and wrote 

the first draft for the paper – this is the reason why the text is taken predominately from the paper 

itself. Though I was not involved in the initial conceptualization of this study, it formed a 

fundamental component of what drove the rest of my PhD. It is thus considered as the starting 

point from which the questions posed in my thesis stemmed.  

Paper Reference: Dickson, G., Burtan, D., James, S., Phillips, D., Stevanov, J., Heard, P., & 

Leonards, U. (2021). Walking on visual illusions. i-Perception, 12(1), 1–9. 

https://doi.org/10.1177/2041669520981101 

Human bipedal gait has evolved to allow us to travel long distances across the savannah and other 

landscapes, with our sensory systems predicting the physical characteristics of the environment 

through the sensory cues available (Gibson, 1979). In today’s built environments, with new 

building materials and fashion trends moving toward an increased use of high-contrast repetitive 

patterns and striking perceptual effects, much of the sensory (in particular, visual) information 

picked up by our sensory systems can produce perceptions that diverge substantially from an 

accurate depiction of an environment’s physical characteristics. One of the most compelling 

examples of this is the glass skywalk of China’s Tianmen mountain park that stretches over 100 

meters along the top of the Coiling Dragon Cliff. Whilst we might be rationally fully aware that 

the glass is physically stable and safe, the visual depth cues of the cliff drop below affect us more 

strongly than the visual cues of the glass surface, triggering vertigo in many people and automatic 

fear responses (see also the famous visual cliff experiments in babies by Gibson & Walk, 1960). 

Some less arresting whilst still eye-catching floor patterns (see Figure 2.1A to C for examples) in 

certain public squares and buildings contain illusory depth cues that might affect gait despite the 

floor being entirely flat (indeed, co-author Ute Leonards was alerted to such difficulties by 

comments from an older member of the public walking over the pattern shown in Figure 2.1B). 
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There is no doubt that visual illusions intrigue young and old alike (Shapiro & Todorovic, 2016) 

and the fashion industry draws from this (Elshafei, 2015). Moreover, the study of visual illusions 

has a long tradition in the visual sciences as it provides a powerful tool to gain insights into the 

mechanisms underlying visual perception (for reviews, see e.g. Carbon, 2014; Shapiro & 

Todorovic, 2016). Yet, little is known about how the mismatch between visual and proprioceptive 

characteristics of floor patterns on a larger scale impacts perceived walking experience and actual 

gait kinematics. For an ageing population, such understanding is particularly important to ensure 

the accessibility and inclusivity of our environments. 

Before investing in a complex, fully controlled research study, we therefore designed a Public 

Engagement activity to capture people’s experiences when walking on perfectly flat vinyl floors 

containing visual illusion patterns giving the impression of an undulating 3D floor (see Figure 

2.1D).   

Figure 2.1 Real-world examples of floor patterns that induce 3D optical illusions: (A) Concert Hall, 
Kyoto, Japan; (B) La Ramblas, Barcelona, Spain; (C) Rossio Square, Lisbon, Portugal. (D) Schematic 
examples of the four floor patterns used in our study; PR optical illusion (Kitaoka, 2005, p. 22), LS and 
LA mimicking the pattern in Rossio Square on a smaller scale (i.e., higher spatial frequency); and the 
kindergarten pattern (Pierce, 1898) as a variant of the CW illusion (Gregory & Heard, 1979). Each 
floor consisted of the same vinyl material and was 5.70 m long and 1.40 m wide. Floors were fixed to 
the ground with black 10-cm wide duct tape along all sides. 

PR = Primrose; LS = Lisbon Straight; LA = Lisbon Angled; CW = Cafe Wall. 

 



41 
 

2.1 Methods 

2.1.1 Participants 

Sample size was based on opportunity sampling, with an aim to collect as many participants as 

possible who were willing to take part in this aspect of the public engagement event. Ninety-four 

individuals who attended the Visual Science of Arts Conference (VSAC) and the European 

Conference on Visual Perception (ECVP) on August 28th, 2018, and forty-nine individuals who 

attended an engagement community event in a Bristol community centre (Fun Palaces: 

Community at the heart of culture) on October 7th, 2018, were invited to participate in the study. 

Participants at VSAC/ ECVP were between the ages of 20 to 86 (M = 43.16, SD = 16.72; 47 

Female, 47 Male), and those who attended the community event were between the ages of 8 to 78 

(M = 42.67, SD = 21.38, 30 Females, 19 Males). Sixty-eight participants at VSAC / ECVP reported 

having normal or corrected-to-normal vision, 48 reported wearing glasses, of which 16 were 

multifocal glasses wearers. In addition, nine participants reported regularly experiencing migraines. 

None of the participants used a walking aid. For those who attended the community event, 21 

participants reported having normal or corrected-to-normal vision, 21 reported wearing glasses, 

of which three were multifocal glasses wearers. In addition, 12 participants reported regularly 

experiencing migraines, and one participant used a walking aid.     

Handing back a filled-in questionnaire was counted as informed consent for these anonymous data 

to be used for scientific research purposes. The study had been approved by the Faculty of Science 

Ethics Committee of the University of Bristol (Ethics Code: 25101876001). 

Stimuli: Four vinyl floors (5.70m x 1.40m each; see Figure 2.1D) were taped with duct-tape to the 

underlying smooth floor surface in big, empty halls, with at least 80cm between two floors, so that 

each floor could be experienced on their own.  

Primrose Pattern: The Primrose vinyl floor pattern used in this study was designed by Professor 

Akiyoshi Kitaoka (see Kitaoka, 2005, p22) and is principally based on his “Primrose Field” optical 

illusion. The pattern consists of a chequered background of alternating dark green and light green 

squares, where magenta and white “primroses” occupy the corners of each square. The illusion 

present in this design is that of movement, which is a consequence of ocular drift, where objects 

near a point of fixation appear to move (Faubert & Herbert, 1999). This illusion is a result of the 

different contrast-dependent timing of varying luminance by visual neurons, where high-contrast 

elements are processed faster than low-contrast elements. The close proximity of these differing 
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contrast objects in peripheral vision results in involuntary fixational eye movements to maintain 

scene stability. This reflects the normal perceptual sequence of a moving object by visual neurons, 

where shifts between high-contrast and low-contrast elements denote movement (Naor-Raz & 

Sekuler, 2000). As the colours of the primroses in the pattern are presented in lines following an 

angle of - 45 degrees, with either alternating lines of magenta and white, or with intervals of two 

lines of the same colour, the illusion of movement follows the form of waves adhering to the 

above linear orientation.     

Lisbon Straight and Lisbon Angled: The two “Lisbon” patterns (Fig. 2.1D) were inspired by 

the Portuguese mosaic tiling pattern found in Rossio Square (Pedro IV Square), in Lisbon (see 

Figure 2.1C). The pattern consists of alternating black and white “waves” that increase in width at 

the peaks and troughs, and narrow in the transitions (for exact parameters, see Chapter 3, Methods 

section for Experiment 2). The resulting effect, when viewed straight on, is the illusory impression 

that the ground is undulating in height, where it appears that there are long channels leading away 

from (Lisbon Straight) or 80 degrees off across (Lisbon Angled) the viewing position. The vinyl 

patterns used in this study differ from the original tile pattern in that the frequency spacing of the 

waves is reduced and the contrast between the black and white (grey and off-white stone in the 

original) is increased to heighten the effect of the illusion. When walking, this decreased frequency 

spacing and increased luminance contrast results in an augmented perception of movement and 

fluctuating floor surface stability.  

Café Wall: The Café Wall pattern used in this study adopts the same configuration as that of the 

Café Wall Illusion first reported by Richard Gregory and Pricilla Heard (Gregory & Heard, 1979). 

The pattern, first noticed on the exterior of a café at the bottom of St Michael’s Hill, in Bristol, 

comprises of alternating rows of offset dark and light rectangles. These rectangles are separated 

by lines (mortar between tiles on the original wall) that are tonally equidistant between those of 

the adjacent rectangles. The illusion created is the perception that the horizontal lines between the 

rectangles slant relative to each other (diverge). Mammalian visual perception of bright and dark 

stimuli is mediated by ‘ON’ and ‘OFF’ selective cells, which, although converging to single neurons 

when entering the cortex, result in preferential luminance polarity processing (Smith et al., 2015). 

This is fundamental for edge and orientation detection, as well as stimulus direction detection. In 

this pattern, this manifests itself through altering the appearance of the lines separating the 

rectangles, either by dimming or brightening their appearance depending on the contrast levels of 

the adjacent rectangles, referred to as border locking (Gregory & Heard, 1979), i.e. grey lines 

between tiles of the same colour appear bright, whereas grey lines between tiles of contrasting 
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colours appear dim. Where there is a strong contrast across the separating lines, a form of 

asymmetry occurs where half of the dark and light squares appear to converge, forming the 

appearance of wedges. These then integrate into longer, horizontal wedges that create the 

appearance that the separating lines deviate from parallel alignment. It is important to note that 

the pattern used here was orientated at an 80 degree angle (i.e., the same orientation as the Lisbon 

Angled pattern).        

2.1.2 Procedure 

A convergent parallel mixed methods design (Creswell, Klassen, Plano Clark, & Smith, 2013) was 

employed to investigate participants’ experience whilst walking over illusory floor patterns.  

The study consisted of presenting participants (N= 145) with the four different floor patterns 

described above (Primrose, Lisbon Straight, Lisbon Angled, and Café Wall). The participants 

walked across each pattern, in the order and direction they preferred, then rated and recorded their 

perception of depth and movement, i.e., perceived illusion strength, before providing comments 

with regard to their personal experience of walking on each pattern, in addition to some 

information about their age, gender and other personal information. Perception of illusion strength 

was measured using a 4-point Likert scale (from weakest to strongest), and perception of walking 

discomfort was measured using a 7-point Likert scale (from very comfortable to very 

uncomfortable), respectively. Subjective experience was also recorded via comments made by the 

participants, where the visual illusions perceived in each pattern were described in detail. Both 

quantitative and qualitative data were recorded and analysed for each of the floor patterns.    

2.1.3 Data Analysis 

A mixed methods design was employed to investigate participants’ experience of walking on the 

four different illusory floor patterns. Quantitative data were collected in order to investigate the 

relationship between participants’ perception of illusion strength and perceived walking 

discomfort for each of the floors. In addition, qualitative data collected from the same 

questionnaire were utilised to further investigate participants’ experience of walking on the illusory 

floor patterns.    

For quantitative analysis, the mean differences for participants’ perceived strength of illusion and 

perceived walking discomfort from walking across all four floor patterns were compared by 

employing a one-way within-subjects analysis of variance (ANOVA). 
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For qualitative analysis, the responses provided by participants in the questionnaires were analysed 

by employing Braun and Clarke’s (2006) flexible theoretical approach to thematic analysis. 

Following familiarisation with participants’ descriptions of their experiences walking over the four 

floor patterns, responses were coded and categorised into specific themes. These themes were 

then coded and categorised into sub-themes. This analysis was carried out in collaboration with 

Yu Lim (final year undergraduate, School of Psychology, UWE, supervisor: Dr Priscilla Heard), 

where the initial analysis took place independently. The independent analyses (mine and that of 

Yu Lim) were then combined at a meeting on March 27, 2019.   

2.2 Results 

Figures 2.2A and 2.2B show group averages for (A) perceived relative illusion strength when 

comparing the four floors with each other (if participants saw no illusion on a given floor, they 

rated this pattern as 0) and (B) walking discomfort ratings for each floor, respectively. The Lisbon 

Straight pattern evoked the strongest illusion, followed by the Lisbon Angled pattern, the Primrose 

pattern, and then the Café Wall pattern. The latter did not evoke any illusion in about 15% of 

participants (ranking of 0). Differences in perceived relative illusion strength were significant as 

confirmed by a one-way repeated measures analysis of variance, F(3, 536) = 75.44, p < .001, partial 

n2 = .360; all post-hoc Tukey comparisons were significant at the p < .01 level or more. 

Figure 2.2 (A) Group average rankings for relative perceived illusion strength (rankings between 1 and 4; note that 
for CW, 15% of answers were 0 as participants did not perceive these patterns as illusions) and (B) group average 
ratings for perceived walking discomfort (ratings from 0 to 7) for each of the four floor patterns. Error bars represent 
±1 SEM.    PR=Primrose; LS=Lisbon Straight; LA=Lisbon Angled; CW=Café Wall. 
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Similarly, the highest walking discomfort was reported for the Lisbon Straight pattern, followed 

by the Lisbon Angled pattern, whilst both the Primrose and the Café Wall patterns were perceived 

as similarly (un)comfortable to walk on. A second one-way repeated measures analysis of variance 

confirmed that perceived walking discomfort differed significantly between all pattern types, F(3, 

552) = 21.89, p < .001, partial n2 = .137. Post-hoc Tukey tests revealed that apart from the 

comparison between the Café Wall and the Primrose pattern, and between the two Lisbon patterns 

respectively, all other comparisons were significant (p < .05).  

Walking discomfort thus seems to at least partially mirror perceived (ranked) illusion strength 

results. Moreover, relative illusion strength and perceived walking discomfort correlated for each 

of the four floor patterns - Primrose r (138) = .42,  p < .001; Lisbon Straight r (138) = .26, p < 

.005; Lisbon Angled r (138) = .23, p < .01; Café Wall r (133) = .31, p < .001. Note, however, that 

our questionnaire design prevents us from excluding the possibility that some of the participants 

realised that we were expecting a relationship between illusion strength and walking discomfort.  

 

A closer look at the distribution of walking discomfort ratings, however, revealed substantial 

individual differences (see Figure 2.3): A large proportion of participants reported no discomfort 

Figure 2.3 Individual differences for perceived walking discomfort. The figure shows the proportion of participants 
(in %) per discomfort point for each of the four floors. Green: PR; light grey: LS; dark grey: LA; and black: CW. 

PR = Primrose; LS = Lisbon Straight; LA = Lisbon Angled; CW = Cafe Wall. 
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at all when walking over the floors (almost half of all participants for the Primrose pattern, about 

40% for the Café Wall, and almost 30% for the two Lisbon patterns). For the remaining 

participants, walking discomfort ratings varied widely across patterns, from slight discomfort to 

strong aversive reactions as confirmed by qualitative comments.  

Qualitative comments fell into three subthemes: perception, walking experience, and emotional 

response (see Figure 2.4). 

Perception 

Participants reported to have perceived depth not only whilst looking at but also whilst walking 

over the Primrose, Lisbon Straight, and Lisbon Angled patterned floors. For both Lisbon patterns, 

floors were perceived as three-dimensional, rising up and down in “ridges” or “bumps” as one would 

expect for geometrical illusions. The Primrose pattern was described as appearing to “ripple” and 

“shimmer”, in line with earlier descriptions of combining geometrical and motion illusion effects. 

Walking over the floors evoked additional sensations of movement; the Primrose pattern was 

referred to as dynamically “wavy,” providing a gentle sense of movement like walking over a 

meadow. For example, one participant said it was like “walking on pond / water”; another that “you 

can see life - a bit wavy; almost as though you could sniff your tea"”; and yet another that it was the “easiest, 

colour relaxing, still felt as if pattern was moving but was far less disorienting”.  

The “ridges” and “furrows” of the Lisbon patterns were described as dynamically moving up and 

down in the direction of their respective orientations, sometimes seemingly reversing height for 

the Lisbon Angled pattern during the walk. For example, one participant said for the Lisbon 

Straight pattern that it was “most 3D leading, led like steps on channels in pattern, little weird” and another 

Figure 2.4 Most commonly occurring words in participants’ statements referring to their experience of walking on 
each of the patterns. Word size is determined by the amount of times it occurred. Word colour is determined by 
the subthemes. Perceptual illusions: perception of depth (dark grey), perception of movement (black). Walking 
experience: disorientation (dark purple), perceived instability (light purple). Emotional response: negative feelings 
(red), positive feelings (green).  

PR = Primrose; LS =  Lisbon Straight; LA = Lisbon Angled; CW = Cafe Wall. 
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"follow carefully the troughs, choose path along it”. Even the Café Wall pattern was perceived as “weaving” 

with its parallel lines dynamically converging and diverging as participants walked. 

Walking Experience 

Lisbon Angled, Café Wall, and Primrose patterns further affected participants’ perceived ability to 

walk in a straight line, evoking a sense of being “pulled”/veering to the left in the main direction of 

the patterns. This perceived veering mirrors the objectively measured veering when people walk 

over a floor with oblique lines (Leonards et al., 2015). Perceived veer is thus most probably related 

to the high-contrast oblique patterns rather than the presence of illusions. More interesting was 

the description of the two Lisbon patterns as “disorientating”: particularly older participants - 

irrespective of whether participating at the community event or at activities in the context of the 

Science Conferences - said they felt uncertain of the height of the floor surface and where to place 

their feet in relation to the patterns. For the Lisbon Straight pattern, a quarter of participants felt 

uncomfortable and uncertain whether to place their feet “within a furrow” or “on top of a ridge”, with 

16 participants stating that they intentionally walked on the “ridges” of the two Lisbon patterns to 

account for the ambiguity of the perceived surface level. In addition to walking discomfort, 

participants reported feelings of increased instability, expressed in words such as “unsteady”, 

“unstable”, “uncertainty”, “need to walk more slowly”, “walk more carefully”, “walking instability”, and “feeling 

dizzy”.  

Emotional Response 

Most participants described negative feelings when walking over the high-contrast Lisbon and 

Café Wall patterns, even though participants generally agreed that the patterns per se were 

intriguing. Some participants even felt compelled to start dancing on the floors (see Figure 2.5) 
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Several participants commented on the Lisbon patterns that, in the real world, they “would avoid 

looking at” / ”walking on such patterns” or that they found the walking experience “horrible” or 

“uncomfortable”. Participants were far more likely to describe walking on the Primrose pattern as a 

walking experience they enjoyed, with statements such as “pleasant movement, relaxing and comfortable”, 

“like walking on water”, “like gliding over the floor”, or wanting “to dance and play on it”. Several 

participants even wondered whether the Primrose patterns were printed on a softer, more padded 

material than the other floors. 

2.3 Discussion  

Overall, this exploration and the differences in experiences it provoked for different patterns 

suggest that walking over floors containing high-contrast patterns such as the visual illusions used 

here might affect people’s walking experience – often, but by no means always, in a negative way. 

The lack of adequate control floors without illusions does not allow us to disentangle how much 

of the effects described here were due to the presence of illusions per se, the specific type of illusion 

or how much was simply the effect of high-contrast patterns. Nor can we draw conclusions about 

how reported effects were impacted by the exact environment, the speed with which people 

walked, where participants looked relative to the patterns, how quickly they adapted to the floors, 

or whether they would have felt similar effects without a perceptual scientist asking questions. 

Figure 2.5 Dancing couple on 
Lisbon Straight pattern at ECVP 
2018 (photograph taken by Ute 
Leonards). 
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Despite the study’s obvious limitations, it precipitated further research into the parameters that 

underpin the link between floor pattern characteristics and human gait, and perception of 

instability of the walking surface. As a first step, the impact of the degree of perception of depth 

and movement of patterns in designed walkways was to be investigated further to understand 

whether subjective experiences were related to quantifiable adaptations of gait kinematics.  

Recent evidence supports the notion of a direct impact of floor pattern on gait kinematics. Certain 

aspects of floor patterns (such as the orientation of tiling or the spatial frequency of stripes) have 

been shown to influence locomotion characteristics, such as lateral veer (Leonards et al., 2015) and 

walking speed (Ludwig et al., 2018). In addition, perceived scene motion has been shown to 

modulate horizontal trunk displacement (Logan et al., 2010), suggesting a decline in stability during 

bipedal locomotion. This is considered as potentially affecting the responses in leg kinematics, 

which, in turn, would disrupt the gait cycle and lead to walking instability (ibis). 

We decided to take an approach less common to the perception sciences by collecting data of 

people walking over patterned floors in the real world—both with and without visual illusions—

using CCTV footage to measure changes in gait. Chapter 3 will take the first move in this direction 

to investigate whether a) subjective experiences are indeed reflected in gait changes, and b) whether 

such gait changes can be measured with CCTV footage.  

Whilst it would be interesting to investigate whether problems have been reported to authorities 

about particularly striking floor patterns in public spaces, this was felt to be out of the scope of 

this particular thesis. 

But why should vision scientists care? As a result of the evolution of architectural design and 

increases in modular design, high-contrast and repetitive patterns are much more pervasive in 

urban environments (Wilkins et al., 2018), where increasingly more of the global population live 

(Mahtta et al., 2022). Architectural design choices, as well as solutions to practical problems, (such 

as barrier matting: Harle et al., 2006) have also increased the amount of visual illusions that are 

present in urban environments (Wilkins et al., 2018). To date, vision research has paid little 

attention to how such patterns impact the way we move and, consequently, feel in everyday life 

contexts. Given the increasingly aging population which is much more reliant on visual 

information for postural control (Du Pasquier et al., 2003), it seems crucial to understand how 

visual aspects of the built environment impact  our walking behaviour.  
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Chapter 3: Exploring  the impact of high-

contrast visual illusion floor patterns on 

human gait kinematics, using CCTV 

 

In the study reported in Chapter 2, there were anecdotal reports of people feeling that the illusory 

depth of floor patterns such as the Lisbon Straight pattern (LSP) and the Lisbon Angled pattern 

(LAP) affected where they put their feet. For example, when walking over the Lisbon Straight 

Pattern (LSP), some people said they felt they had walked within a(n illusory) channel or on top 

of a(n illusory) ridge. In other words, they seemed to choose step locations that adhered to a similar 

illusory height. 

If perceived depth affected foot placement behaviours with people trying to maintain a “similar 

height”, participants would be expected to diverge from their preferred walking pattern - where 

walking speed and step length (Bertram, 2005), as well as step width (Donelan et al., 2004) are 

energetically optimised to the individual’s body (Selinger et al., 2015) - to one as if walking over 

uneven terrain; i.e. wider or narrower steps, shorter steps and slower gait (Matthis et al., 2018). If 

this is the case, we should see gait measures deviate from average measures and natural variability 

(see Table 1.1). In particular, step width should be affected, where making consecutive steps within 

the centre area of one of the channels (~0.12m in width) would require substantially narrowing 

gait from ~0.17m (Collins & Kuo, 2013) to a gait pattern where one foot is placed in front of the 

other, as if walking over a narrow plank (see figure 3.1). This would indeed affect stability, where 

participants would have to walk faster to counterbalance.  
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If so, any change away from preferred gait kinematics and respective foot placement might be 

interpreted as an attempt to reduce potential mechanical costs of falling as a result of walking on 

uneven / tilted surfaces generally considered to increase walking instability (McAndrew et al., 2011; 

Santuz et al., 2018).  

Theoretical considerations of the dissociation between ventral stream processing for perception 

and dorsal stream processing for visual control of actions (Goodale & Milner, 1992; but see e.g. 

Van Essen et al., 1992, for cross-talk and interconnections between the two streams) would query 

a direct impact of perceived illusory depth in floor patterns on gait kinematics. Indeed, according 

to Goodale and Milner’s two major visual processing streams idea, vision for action might remain 

unaffected by illusory depth of the floor and thus gait should be identical to that for the flat control 

floor. Evidence for this comes from a study by Kroliczak and colleagues (2006) that visual depth 

illusions do not affect ballistic hand movements such as flicking off targets posed on these 

illusions. 

The goal of this chapter was, therefore, to explore first whether changes in foot placement 

locations could indeed be observed in people walking over the Lisbon Straight pattern that seems 

to undulate in depth, using CCTV footage from a single GoProTM camera (Experiment 2).  Second, 

if so, was to investigate whether CCTV footage was also sensitive enough to measure changes in 

gait kinematics (such as step width, step length and velocity) that would be the consequence of any 

change in foot placement locations (Experiment 3).  

If we were able to measure gait changes relative to floor patterns using CCTV, this would provide 

us with a method to investigate gait changes in real-world settings and substantially facilitate any 

examination of the influence of decorative floor patterns on gait in ecologically valid settings.  

Figure 3.1 Diagram showing normal walking pattern on the Lisbon Straight floor pattern, where feet land either 
side of the central space, not adhering to the illusory information (left), and diagram showing predicted walking 
pattern on the LSP pattern, where feet are placed one in front of the other, thus adhering to the illusory information 
(right)   
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Data from Experiment 2 have been published in abstract form and presented as a talk at the 42nd 

European Conference on Visual Perception (ECVP), 2019, Leuven (Dickson & Leonards, 2019). 

3.1 Experiment 2  

In Experiment 1 (Chapter 2), participants made reference to the Lisbon patterns looking “3D”, 

having “depth”, and “undulating”. In order to examine whether qualitative comments correlate 

with step location selection, we first had to determine for each participant whether they perceived 

illusory depth from the Lisbon patterned floors.  

Vision is primarily used to predict the structural make-up of the environment in order to 

adequately guide action (Hayhoe, 2017). As such, we would expect that pattern information that 

spatially deviates from what is physically there would influence any predictions made, and in this 

case increase floor surface prediction errors. To examine whether this was the case for this 

particular floor pattern, a sphere alignment task was employed, where participants had to visually 

align one spheres relative to the other, with the experimenter physically moving the sphere, on 

both the plain white control floor and the illusory depth patterned floor. It was expected that 

sphere alignment error would be greater on the patterned floor owing to the illusory depth 

information relative to a plain white control floor.  

Secondly, as walking on uneven terrain is considered to be more mechanically unstable, and 

therefore mechanically more costly, compared to walking on flat and / or smooth surfaces 

(McAndrew et al., 2011; Santuz et al., 2018), it was expected that participants would be more likely 

to choose step locations that adhered to the illusory depth of the floor pattern, i.e., walk within a 

single channel, relative to more evenly distributed step locations throughout the centre of the plain 

white control floor.  

3.1.1 Methods 

3.1.1.1 Participants  

Sample size was based on opportunity sampling, with an aim to collect as many participants as 

possible who were willing to take part in the study during the month in which data was being 

collected. A total of one hundred participants were recruited to take part in this experiment 

conducted in the corridor outside the Bristol Vision Institute (BVI) movement laboratory at the 

University of Bristol (68 female; aged 18-65 years, M = 25.02 years). All participants reported 

normal or corrected-to-normal vision, no previous or current injuries that would impair their 
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vision or their walking, and all gave written informed consent prior to and following completion 

of the experiment. The experiment was approved by the Faculty of Science Ethics Committee at 

the University of Bristol (ref: 1110185102). Participants were recruited through the School of 

Psychological Science’s studies webpage and were reimbursed £3 for the 15 minute experiment. 

3.1.1.2 Stimuli 

Two vinyl floors were taped to the floor in the corridor for the purposes of this study. One of the 

floors was plain white, functioning as a control condition, and measured 570cm x 140cm. The 

second (experimental) floor was the Lisbon Straight pattern  (LSP; see Chapter 2: Materials), 

measuring 570cm x 140cm. The two floors were of different lengths due to the spatial restrictions 

of the corridor length used in this study, but both filled the entire width of the corridor.  

The Lisbon pattern consisted of alternating black and white waves that increased in width at the 

peaks / troughs and narrowed in the transitions (maximum stripe thickness: 50mm; minimum 

stripe thickness: 13mm; cycle width:  466mm; cycle height: 150mm). When viewed straight on, it 

seems as if the ground is undulating in depth, producing long channels like “furrows and ridges” 

leading away from the viewing position.  

Walking task: Participants were asked to walk over the two floors whilst their walks were 

recorded on one of two GoProTM Hero 6 cameras positioned on the ceiling at a height of 240cm, 

recorded in HD resolution at 60 frames per second, with one camera positioned at the end of each 

of the two floors. 

Sphere alignment task: In addition to the walking task, participants were asked to horizontally 

align two spheres on both the control and patterned floor. The purpose of this task was to establish 

whether the illusory depth of the patterned floor resulted in an increase in alignment error relative 

to the plain white control floor: the stronger the illusion, the larger the expected alignment error. 

The expectation here was that participants would align the spheres on the Lisbon floor with less 

accuracy than on the control floor. In particular, we expected that for the Lisbon pattern that the 

moveable sphere would be positioned closer to the participant than the reference sphere (i.e., + 

sign), in a way that adhered to the illusory depth elicited by the spatial information present in the 

pattern. To facilitate accurate placement of the spheres and to measure the distance from true 

horizontal alignment, two custom 3D printed spheres (diameter = 100mm) with a custom 3D 

printed positioning guide were used to conduct the sphere alignment task. Faint linear markings 

were made on both floors to facilitate the spatial aligning of the spheres. The linear markings were 
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made 117mm from the centre of each floor, parallel with the length of the floors, to sit within the 

centre of each of the central channels of the patterned floor, with the same markings made on the 

white control floor (see Figure 3.3).  

3.1.1.3 Procedure 

The study was split into two main sections: the sphere alignment task, and the walking task. The 

order of these tasks was counterbalanced between participants.  

For the walking task, the order in which participants walked over the Lisbon pattern floor and the 

control floor were pseudo-randomised. Participants were asked to stand in the centre of the 

corridor between the two floors and to walk to the end of the corridor (beyond the length of the 

floor), turn around, and walk back to where the examiner was standing, two metres beyond the 

end of the floor (see Figure 3.2 for infographic). Participants repeated this twice for each floor. 

Each walk was recorded via the two GoPro cameras.  

 

 

For the sphere alignment task, the order of which floor participants aligned the spheres first was 

pseudo-randomised. Participants were asked to turn and face away from the experimenter as the 

spheres were put into position. One sphere was placed in a fixed position 2000mm from the end 

of the floor where participants were standing. The second sphere was then placed 200mm from 

the true horizontal alignment position - once closer to participants (+200mm from the true 

horizontal position) and once further away from participants (-200mm from the true horizontal 

position), for the two separate measurements taken per participant per floor. The participants were 

then asked to turn around to face the experimenter and instructed to inform them when they 

thought the spheres were aligned. The experimenter then moved the sphere towards the central 

position (either towards or away from the participants depending on the condition) until the 

participants signalled that the spheres were aligned. Participants were then given the opportunity 

to instruct the experimenter to make any further adjustments to the position of the sphere until 

Figure 3.2 Experiment schematic (top view) showing floor pattern positions, floor pattern configurations, camera 
positions, and directions of travel (green arrows) of participants. Lisbon Straight Pattern floor (left), control floor 

(right). 
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they were satisfied that the spheres were aligned (see Figure 3.3 for infographic). The participants 

were then asked once again to turn and face away from the experimenter, whilst the distance of 

the centre of the adjusted sphere to its true horizontal alignment position was measured and 

recorded by the experimenter. As alluded to previously, the sphere alignment was repeated twice 

on each floor, starting once from each side of the true horizontal alignment position (i.e., +200mm 

/ -200mm). The floor and start position of the sphere being aligned were-pseudo randomised 

between participants.   

3.1.1.4 Data Analysis 

3.1.1.4.1 Sphere alignment task 

Average horizontal sphere alignment accuracy was calculated for each participant for each of the 

two floors. Positive values reflect errors in the direction toward the participant, whereas negative 

values reflect errors in the direction away from participants. Due to the spatial configuration of 

the patterned floor and its inherent illusory depth, positive values are considered to be in the 

direction which adheres with the illusory depth of the floor. A paired samples t-test was used to 

determine whether sphere alignment on the Lisbon patterned floor resulted in lower alignment 

accuracy than alignment on the white control floor, and if this error was in the anticipated direction 

adhering with the illusory depth of the patterned floor.  

3.1.1.4.2 Walking task 

To measure foot placement of participants walking across the two floors, each video frame in 

which the lead foot was on the floor was extracted from each video file and labelled with step 

number and foot identification (left or right foot). A numerical categorization system was 

employed to classify participants’ leading foot placement relative to the floor pattern for each step. 

Figure 3.3 Infographic of experimental setup of sphere alignment task, with sphere positions and participant and 
experimenter positions. 
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For this purpose, the patterned floor was separated into six “channels” labelled -2.5 – +2.5. The 

lines that appear to separate these channels were labelled -2 – +2, where the middle of the floor 

was centred at 0. A grid system of identical dimensions was superimposed onto the control floor 

images to label foot placements in a spatially comparable way (see Figure 3.4). Steps made during 

the return trials (walking back to the middle of the two floors where initial trials began) were 

reversed to be combined with each initial trial for both floors, respectively. Five undergraduate 

students categorized each foot position, via randomized image presentations using Gorilla. Two 

categorizations were provided by each of the five undergraduates, resulting in 10 categorizations 

per step. The mode of these 10 categorizations was then calculated. 

If a step was considered to cross over a line by any margin, raters were instructed to categorise it 

within the “line category” (-2, -1, 0, 1, 2). Steps had to be fully within a channel category to be 

categorised this way. As such, though it appears from the red lines in Figure 3.4 that there is an 

uneven spatial distribution of foot placement categorisation, this is not necessarily the case: if even 

a small proportion of the foot was on the red line, the step would be categorised as falling into the 

line category.1.   

Changes in lead foot position classification were then calculated on a step-by-step basis for each 

participant for each floor to determine changes in step position (i.e., two consecutive steps in 

channel -0.5 would be a category step change of 0, whereas a step categorization in channel -0.5 

 
1 The task description could have been visually represented more clearly than simply using dividing lines, such as with 
overlays representing the even distribution of space for the centre of the channels and the spaces in between. Although 
this is somewhat of a design oversight, the instructions to raters reflected this even distribution of space, so should 
not have impacted foot placement classifications. 

Figure 3.4 Infographic of numerical categorisation system employed to categorised participants’ foot placement 
in relation to patterned and control floor. Red lines on the right hand side show the grid system (spatial matched 
to the channels of the patterned floor), which were applied to the control floor for foot categorisation. The grid 
system is superimposed on the pattern on the left hand side to show that both floors had matched channels and 
separating lines for foot categorisation.   
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followed by a step categorization in channel 0.5 would be a category step change of +1, and a step 

categorisation in channel -0.5 followed by a step categorisation in channel 0 would be a category 

step change of +0.5). These values were used to produce heat maps of foot placements by category 

and to calculate the percentage of absolute step categorization changes for each participant for 

each floor for statistical analysis to determine differences in foot placement locations between 

floors.  

3.1.2 Results and Discussion 

3.1.2.1 Sphere Alignment 

In Figure 3.5, group average horizontal sphere alignment error from true alignment (0) is plotted 

with 95% confidence intervals for each of the two floors.  

 

Sphere alignment errors were far greater on the Lisbon floor than on the uniform white control 

floor, and in the direction anticipated by the spatial layout and illusory depth of the pattern. This 

was confirmed with a paired-samples t-test, t(99)=6.90, p = 5.00-10, with a mean difference of 

7.91mm between alignments for the two floors.  

Figure 3.5 Group average of individual horizontal sphere alignment errors (plotted in mm) by floor condition. Error 
bars represent 95% confidence intervals. 
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Please note that the average alignment error of +6.34mm for the Lisbon floor is less than a tenth 

of the wave function amplitude of 150mm present in the pattern. If participants had simply been 

using the pattern markings as alignment queues, alignment error on this floor would have been 

much closer to 150mm. As vision is used to make predictions about the environment (Hayhoe, 

2017), we would expect pattern information, whether it be misleading or not, to be source of 

information used to influence predictions. Though it appears that participants did not simply use 

the pattern markings to align the spheres, it does seem that the lines of the curve function that the 

Lisbon pattern comprises of did have some impact on sphere alignment accuracy.  

3.1.2.2 Foot Placement Categorisation 

To understand differences in stepping behaviour across the two floors, the distribution of steps 

within each category was calculated per participant for each floor separately. The overall 

distribution of foot placement categorisation of participants’ steps across the two floors can be 

seen via the heatmaps in Figure 3.6.  

 

 

Figure 3.6 Results for participants’ leading foot placement positioning in relation to the Lisbon Pattern (A) and the 
Control Floor (B) mapped via density graphs, where the distribution of foot placement in each category were 
compared as a measure of step width. 
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Group average distributions and 95% confidence intervals for each floor are plotted in Figure 3.7.  

 

From both heat maps (Figure 3.6) and distributions of steps (Figure 3 7), is seems that people were 

more likely to step within the left channel closest to the centre, i.e. a “peak”, whilst walking on the 

Lisbon pattern floor. In contrast, stepping locations were more evenly distributed around the 

actual floor centre for the pattern-less control floor. From this, it appears that participants were, 

at least to some extent, adhering to the depth cues of the Lisbon pattern by walking on top of the 

peak of the central wave cycle, whilst making fewer steps on the illusory gradient (see red separating 

line) between the peak and the trough of the wave cycle. This provides some tentative evidence 

that participants’ foot placements on the Lisbon floor differed from those taken on the control 

floor, and that this difference was caused by illusory depth present in the pattern.   

3.1.2.3 Absolute Foot Placement Categorisation  

To understand foot placement consistency across the two floors on a step-by-step basis, the 

absolute difference in step location categorisation for consecutive steps was calculated per 

participant, per floor. The group average of individuals’ percentage distributions of steps, with 

95% confidence intervals, can be seen in Figure 3.8.   

Figure 3.7 Group average of individuals’ percentage of step-per-step location for the two floor conditions. Lisbon 
floor: triangles and dotted lines. Control floor: circles and solid lines. Error bars represent 95% confidence intervals.   
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A 2(floor) x 4(absolute difference in step category) ANOVA was conducted to compare absolute 

step change sizes across both floors2. Crucially, analysis with Greenhouse-Geisser correction 

revealed a significant interaction between the effects of floor and absolute difference in step 

category on step distributions (%), F(1.99, 197.11) = 40.52, p < 2.03-15,  ηp2 = 0.29. Post-hoc 

Welch’s t-tests with Bonferroni corrections indicated that significantly more steps fell into the 0 

step change category for the Lisbon pattern (M = 35.44, SEM = 2.14) as compared to the control 

floor (M = 18.25, SEM = 1.85), with a mean difference of 17.19%. Significantly more steps when 

walking over the control floor fell into the 0.5 category (Mcontrol = 46.15, SEM = 1.92; MLisbon = 

30.84, SEM = 1.31), with a mean difference of 15.31%.  

This again seems to support the suggestion that participants chose step locations that reflected the 

illusory depth information of the Lisbon floor by stepping more consistently on top of the peak 

of the illusory wave left to the floor’s centre line, whilst step locations for the plain white control 

floor were evenly distributed across the actual centre. In other words, participants seemed to have 

put one foot in front of the other, affecting step width. This should have made them either far less 

 
2 Main effect of floor is not reported as 50% steps in each group. Main effect of step location categorization not 
included as it is of no interest for the purposes of this analysis  

Figure 3.8 Group average of step changes (in %) by absolute difference in foot placement categorisation for the 
two floors (Lisbon: triangles and dotted lines; Control: circles and full lines). Error bars represent 95% confidence 
intervals.   
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stable or they would have had to increase their gait speed. 

Walking on uneven terrain is more energetically costly (Voloshina et al., 2013), and is mechanically 

less stable (McAndrew et al., 2011; Santuz et al., 2018), relative to walking on flat and / or smooth 

surfaces. As a fundamental principle of human locomotion, and all human movement for that 

matter, is to reduce cost and maximise efficiency (Selinger et al., 2015), one would speculate that 

individuals select paths with an even surface relative to an uneven surface. Despite the fact that 

the vinyl floor used in this experiment was unambiguously flat, it may be that participants were 

adhering to the illusory information of the pattern as if the floor was physically undulating in depth. 

Making predictions based on the energetic cost of movement is beyond the scope of the 

experimental design of this experiment. However, the results do seem to suggest that visual 

information that seems incongruent with the physical floor surface due to a visual illusion has the 

capacity to influence step location selection.        

3.2 Experiment 3  

As a consequence of changes in foot placement choice explored in Experiment 2, general gait 

kinematics such as step length, step width, velocity and step time would also be expected to  be 

impacted by the Lisbon Straight floor pattern:  

In particular, step width would have to be narrowed from an average step width of ~0.17m (see 

Table 1.1, Collins & Kuo, 2013) for participants to consistently step on the same illusory height 

level within an illusory channel width of 0.24m, where the centre of the channel is a maximum of 

0.12m, i.e., participants would have to put one foot in front of the other rather than walking with 

their normal step width. Alternatively, participants could choose to step into adjacent channels. 

However, this would require increasing step width to ~0.472m, far beyond normal average step 

width. As increasing step width is energetically far more costly relative to a person’s preferred step 

width (Shorter et al., 2017), such a strategy seems quite unlikely. 

As step length is typically negatively correlated with step width (Stimpson et al., 2018), a decrease 

in step width would be expected to  be accompanied by an increase in step length for the illusory 

depth floor relative to its control. Velocity is typically positively correlated with step length (Kirtley 

et al., 1985); so we would also expect an increase in velocity for this floor relative to its control. In 

addition, step time is typically negatively correlated with velocity (Kirtley et al., 1985); accordingly, 

we would anticipate a reduction in step time for this floor relative to its control. Here, the control 

floors were linearly matched to the spacing, orientation, and contrast of their respective Lisbon 
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pattern, where the spatial frequency was set to the widest part of the wave function of the patterns. 

Note, however, that if we follow the comments of participants in Experiment 1 (Chapter 2), the 

reported instability / discomfort might mean that any reduction in step width is not compensated 

for by increased step length, making gait far more unstable (Sivakumaran et al., 2018). 

If our expectation that participants’ step locations adhere to the illusory depth information of the 

patterned floors were also the case for the Lisbon Angled Pattern (LAP) floor, we would expect 

participants to walk with a step length equalling that of the centre of the peaks of the wave function 

on the pattern – 0.472m, which is significantly shorter than an average step length of ~ .79m 

(Collins & Kuo, 2013). As such, we expected there to be a reduction in step length for the LAP 

floor relative to a control floor, consisting of spatial and contrast matched square wave gratings 

(i.e., the same pattern configuration minus the illusory depth, Lisbon Angled Control (LAC). As 

outlined above, if one gait measure is affected, we would therefore expect similar adjustments to 

the other measures of gait, but in the opposite direction from walking on the Lisbon Straight 

Patterned floor (LSP):  a decrease in velocity and increase in step width, and an increase in step 

time when walking on this floor relative to its control. 

Using CCTV for data capture, we employed a pixel detection technique to extract the above 

measures of gait from the video files.   

In addition to changes in gait kinematics and foot placement, we also wanted to test whether 

CCTV would allow us to identify whether floor pattern orientation affected participants’ Centre 

of Mass (COM) displacement: based on earlier reports of people veering off centre when walking 

over floors with line orientations slightly off walking direction (Leonards et al., 2015), we expected 

that walking on both the LAP and its respective control floor LAC, would result in an increased 

COM displacement, owing to both patterns deviating from a trajectory in the direction of walking.  

3.2.1 Methods 

3.2.1.1 Participants  

Sample size was based on opportunity sampling, with an aim to collect as many participants as 

possible who were willing to take part in the study. Note here that data collection was stopped 

prematurely as a result of the first COVID-19 National Lockdown. A total of 20 participants were 

recruited to take part in this experiment, which was conducted in the Bristol Vision Institute (BVI) 

movement lab at the University of Bristol. Due to video recording errors, three participants’ data 

had to be removed, leaving 17 participants’ data for analysis (15 female; aged 18-36, M = 24.5 
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years)3. All participants reported normal or corrected-to-normal vision, with no previous or current 

injuries that would their vision or walking for the purposes of the study. Participants were recruited 

through the School of Psychological Sciences’ studies webpage, where participants were accredited 

with 0.5 experimental hours in accordance with the School’s experimental hours scheme. Ethics 

was granted by the University of Bristol’s ethics committee (ref: 1110185102). Participants gave 

their written informed consent, having received all the relevant information required.  

3.2.1.2 Stimuli 

Four vinyl floors were taped to the floor within the 12 x 5 metre BVI movement lab. Two of the 

floors consisted of alternating black and white waves that increased in width at the peaks / troughs 

and narrowed in the transitions (maximum stripe thickness: 50mm; minimum stripe thickness: 

13mm; cycle width:  466mm; cycle height: 150mm); i.e. the Lisbon Straight Pattern (LSP) and the 

Lisbon Angled Pattern (LAP). Both of these floors were identical to the ones used in Experiment 

1 (and Experiment 2 for LSP).  

To control for any spatial frequency impact on gait other than the 3D- illusions, each of the two 

wavy floors had their own control floor matched in orientation, line spacing and luminance 

contrast, but with straight lines (square wave patterns) rather than waves. These control floors are 

referred to accordingly as Lisbon Straight Control (LSC) and Lisbon Angled Control (LAC). Each 

illusion pattern floor and its respective control floor were aligned in the lab as one continuous 

walkway (see figure 3.9).   

Participants’ walks were recorded in HD resolution at 60 frames per second on four GoProTM 

Hero 6 cameras, with one camera each placed on a tripod at a height of 140cm at the end of one 

of the four floors (see figure 3.9 for experiment schematic). 

 

3 Recruitment for the study had to be ended prematurely as a result of the national lockdown in response to the 

COVID-19 global pandemic. The subsequent analysis is therefore based on the 20 participants recruited at the point 
of University closure only, with only 17 being used in the analysis due to data removal.           
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3.2.1.3 Procedure   

Having completed the ethics forms and the demographics questionnaire, each participant 

completed two repeat walks over each of the four floor patterns with floor order pseudo-randomly 

assigned between participants. Each participant was directed to walk along, and to return back 

along, the length of the ground sheet for each single walk; thus walking over both illusion floor 

and its respective control pattern without stopping. During each walking trial, the two floors that 

were not included in this particular trial were covered with a large black sheet to remove any 

peripheral visual interference. Participants were not told the purpose of the experiment or where 

to look whilst walking across the floors.  

3.2.1.4 Data Analysis 

3.2.1.4.1 Step Detection and Gait Kinematics Extraction Methodology4  

Before being able to extract gait parameters from the video data, the video geometry had to be 

transformed as to reflect the true dimensions of the floors, and to be able to assess resolution and 

accuracy of the recorded video data. This was done using MATLAB R2020a (MathWorks: 

MATLAB).  

3.2.1.4.2 Image Geometry and Calibration  

To transform recorded floor dimensions to reflect the true dimensions of each of the floors, the 

first frame of the video was uploaded, the corner coordinates from the trapezoid (floor) shape 

were selected (by manually clicking on each corner), they were then extracted, where the 

 
4 Original methodology and code developed and written by Dr Jeremy Burn, and refined in collaboration with Geoff 
Gallagher 

Figure 3.9 Experiment schematic: floor pattern positions, floor pattern configurations, camera positions, and 
directions of travel of participants. Lisbon Straight Pattern (LSP) (upper left), Lisbon Straight Control (LSC) (upper 
right), Lisbon Angled Control (LAC) (lower left), Lisbon Angled Pattern (LAP) (lower right). Note that patterns people 

were not supposed to walk on in a particular walk were covered with black cloth to not affect peripheral vision. 
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coordinates were saved to a configuration file with the true dimensions of the floor (570 x 140cm). 

Accounting for the fixed camera position and resolution, this led to a resolution of 3.71 pixels/cm 

for the closest end of the floor, and 0.89 pixels/cm for its far end. This corresponds to a maximum 

accuracy of recorded foot positions of ~1cm. This comparably low resolution will be considered 

during the analysis.  

Next, the video was transformed from the trapezoid (floor) shape in the original video to that of 

a rectangle, representing the true length and width of the floor. Additionally, the video was 

trimmed to the transformed shape of the floor, and each frame differenced against the first video 

frame to strengthen any detected signal changes per frame of the video. The output of this process 

was an .avi file that could then be used for step detection and gait kinematics extraction (see Figure 

3.10). 

 

3.2.1.4.3 Automatically detecting steps using luminance on differenced video  

A function was written to utilise the differenced re-projected video pixel values to identify foot 

positions. As can be seen in Figure 3.10, the reprojected videos show bright pixel values for the 

participant’s moving body shape and dark pixel values for the floor, frame by frame. Locating the 

leading foot position (step) required finding the brightest pixel spot closest to the end of the floor 

(bottom of the video).  

Locating each step coordinate was achieved by first scanning each frame of the video from the 

end of the floor back to the start of the floor (y-axis) for the row with the brightest pixel value. 

This was followed by searching the identified row (x-axis) for the brightest pixel, identifying the 

anterior extremity of the foot (toe of the leading foot). Note that this identified pixel had to hold 

its value as the brightest pixel, closest to the end of the floor per frame, for multiple consecutive 

Figure 3.10 Example frame from .avi output of perspective transformed and cropped video file. The dark 
pixels show the floor area. The light pixels show the participant walking 
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frames for it to be recorded as the leading step.  

In Figure 3.11, the values of rate of change of foot position (y-axis) against frame number (x-axis) 

is plotted, with the output smoothed to produce defined peaks (representing heel/toe strike on 

the floor and thus the stance phase of an individual step). This allowed us to verify that the 

identified steps were at phase-accurate times in the gait cycle.           

 

Frames identified to contain steps were then manually reviewed one at a time on the unprojected 

and projected video (see Figure 3.12).  

Figure 3.11 Plot of identified stance positions by frame number (x-axis) against rate of 
change of foot positions (y-axis). Rate of change of foot position is consistently negative 
due to participants always being recorded walking towards the camera, where the camera 
is at position 0 pixels and the participant start at position 570 pixels (i.e., the length of the  
transformed floor). Red crosses represent identified steps.   
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The function also generated a set of xy-coordinates for all step positions relative to the floor, which 

could then be replotted on a projection of the first frame of the video (floor pattern; see Figure 

3.13). This was repeated for the first and second walk on each floor, where steps for each walk 

were plotted onto the same frame for visual comparison of steps. 

 

The step coordinates and their frame numbers (along with the frame rate) were then used to 

calculate: step length (distance in y-axis between consecutive step locations), step time (time 

Figure 3.12 Output showing identified step frame from raw video file (top) and 
identified step frame from .avi file (bottom). 

Figure 3.13 Example plot of identified steps from walk one (red dots) and walk two (yellow 
dots). The floor length is represented in cm (x-axis) and the floor width in cm (y-axis).  It can 
be seen that at least in this example, the participant did not adhere to the pattern but walked 

straight in the middle of the pattern where visually there is a steep slope. 
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between consecutive steps) and step speed (step length divided by step time). Average and 

maximum mediolateral COM displacement was calculated by establishing the central coordinate 

between two consecutive step coordinates, and then by finding the difference in x-axis between 

consecutive COMs, per step. 

For each participant, mean and standard deviations for each of the following gait variables (step 

length, step width, step speed, mediolateral COM displacement and maximum mediolateral COM 

displacement) were calculated for each floor, leading to a total amount of steps of (M = 34.68, 

SEM = 0.33) per floor per participant. Data were removed if fewer than 80% of steps relative to 

the average step number were recorded per trial (N = 3). Following this, a two-by-two repeated 

measures analysis of variance (ANOVA) was run for each gait variable for each floor condition to 

examine the main effects of orientation (straight / angled) and pattern (Lisbon / Control).      

3.2.2 Results and Discussion 

To visualise the overall effect of illusory depth and orientation of floor patterns on gait kinematics, 

overall means and 95% confidence intervals were plotted for each floor for the respective gait 

measures (Figure 3.14). Two (Lisbon/Control) x 2(orientation) repeated measures ANOVAs (N 

= 17) with Greenhouse-Geisser corrections revealed a significant interaction between floor type 

and orientation for step time (F(1, 21) = 9.95, p = .005, ηp2 = .322). Bonferroni adjusted post-hocs 

found that for the Lisbon Straight condition, step time was significantly faster for the respective 

Control floor (LSC) (M = 0.542, SEM = 0.012) than for the Illusory Pattern itself (LSP) (M = 

0.535, SEM = 0.010), with a mean difference of 0.007 seconds. For COM displacement, there was 

a significant main effect of orientation, F(1, 21) = 4.84, p = .039, ηp2 = .187, where COM 

displacement was higher on the angled floors (M = 0.023, SEM = 0.001) than on the straight floors 

(M = 0.020,  SEM = 0.001), with a mean difference of .003 metres. None of the other gait measures 

showed significant results. 
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Figure 3.14 Group average of gait changes for the 4 different floor patterns, with floor type on the x-axis, and gait 
measure on the y-axis: A) velocity, B) step length, C) step time, D) step width, E) COM displacement,  F) maximum 
COM displacement. Floor orientation is represented by colour and shape: blue circles for Angled, orange triangles 
for Straight. Error bars represent 95% confidence intervals. Significant main effects and interactions (p < 0.05) are 

marked with an *. 
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In other words, the main expected outcome that we had been looking for, namely a substantial 

reduction in step width from the average ~17 cm for walking over flat, obstacle-free ground 

(Collins & Kuo, 2013) to ~0 cm (participants putting one foot directly in front of the other as if 

walking over a ridge) when walking over the LSP floor was not found. Might we have missed such 

an outcome due to the low spatial resolution of our measurements (~1cm)? Indeed, for something 

like step width, one would pick up on gait changes well over 10%. This seems very unlikely as a 

shift from a step width of 17 cm to a gait in which one foot is set in front of the other as predicted 

for walking over a “ridge” would have been far more than such a 10% change. It thus seems from 

this experiment that participants did not adhere to the 3D visual floor pattern. The same reasoning 

holds for the expected changes in step length for the LAP floor, where we would have expected a 

step length reduction from the average ~0.79m (Collins & Kuo, 2013) to a step length matching 

the wavelength of the pattern 0.47m. Again, this is a measure that could easily have been picked 

up by our methodology, even with the limited resolution.   

There are a range of reasons for these null results. First of all, due to the spatial constraints of the 

room, the illusory patterns had to be fixed to the ground, end-to-end with their respective control 

floor, and side-by-side with the other two floor manipulations. As participants were only recorded 

when walking towards the camera, and on the floor closest to the camera for that specific floor / 

trial, they first had to walk over the control floor, when being recorded on the illusory floor, or 

the illusory floor when being recorded on the control floor. As such, the visual information on the 

floor that the participant walked over, prior to the floor of interest for that trial, may have 

influenced their gait. In addition, as the two different patterned floors (and their respective 

controls) were positioned side-by-side, again due to the spatial constraints of the room, each walk 

on either of the patterned floors and their respective control floor were off-centre relative to the 

room. Both the influence of the floor walked over prior to the floor of interest per trial, and the 

off-centre positioning of the floors in the room may have factored as confounds to the visual 

influence that the floors had on gait.  

For other gait measures for which we didn’t expect such extreme changes in gait, the limited spatial 

resolution of the analysis might indeed have prevented us from detecting such changes.  

Yet, there was a significant reduction in step time for the LSP floor relative to its control (LSC) 

and an increase in average COM displacement when walking over both angled floors (LAP and 

LAC) as compared to the straight floors (LSP and LSC).  Here, the reduction in step time would 

indicate faster steps, and therefore reduced single support time, on the LSP floor, which adheres 

with what we were anticipating if participants narrowed their gait to adhere with the illusory 
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information on the floor surface. Note that our analysis did not reveal any significant differences 

in walking speed. Slowing of gait, and reduction of single support time, is typically an indication 

of increased uncertainty about the surrounding environment (Keller et al., 2020), in this case the 

floor surface, where decision making is slower for uncertain events and in uncertain environments 

(Busemeyer & Townsend, 1993). This would have been in line with subjective reports (Experiment 

1, Chapter 2) of unease when walking over LSP floor. However, as we did not record any other 

changes in gait between these conditions, we are limited in any claims that we can make regarding 

decision making and increased uncertainty in relation to the floors. For example, could it be that 

the control floor evoked more environmental uncertainty than the LSP floor, as step time was 

longer? It may very well be that some aspect of the spatial arrangement of the linear control floor 

results in increase uncertainty about the floor surface. See Chapter 5 for experiments exploring 

this question. In addition, the increased COM displacement recorded for the angled floors relative 

to the straight floors adheres with what we had anticipated in line with Leonards et al (2015), where 

tiling patterns orientations deviating from walking direction led to increased veering in the same 

direction from the central trajectory. Thus, at least for these two results, the technique used here 

appears sensitive enough to pick up on certain changes in gait.  

How do these findings relate to the existing literature? Much of the existing research on changes 

in gait kinematics in relation to a variety of visual cues have employed scaling and adjusting of 

stimuli to measurements of gait per individual (Franz et al., 2017; O’Connor & Kuo, 2009; Rhea 

et al., 2014; Salinas et al., 2017; Thompson & Franz, 2017). Due to the sensitive nature of 

adjustment of gait to visual stimuli in the environment, and the stability of gait as a physiological 

measure, and as a result of our failure to eliminate demand characteristics such as our participants 

knowing the floor was flat and obstacle-free and therefore having no need to look down at the 

floor, to some extent our inadequate spatial resolution, and not being able to parametrically vary 

the different visual components of the floor patterns on a trial-by-trial basis, we cannot exclude 

the possibility that we have missed subtle effects of visual pattern manipulations on fundamental 

measures of gait with our experimental design and data extraction technique.  

3.3 General Discussion 

Across two experiments, this Chapter provide first insights into the impact that visual floor 

patterns, in particular illusory depth and pattern orientation, might have on foot placement 

selection, and subsequently, fundamental measures of gait, using two exploratory analysis methods 

of CCTV footage.  
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The results from Experiment 2 indicate that floor patterns which result in perceived illusory depth 

impact on foot location selection: participants walked primarily on top of the illusory ridge, in line 

with findings of people walking on uneven terrain selecting flat, even surfaces over uneven surfaces 

to avoid mechanically less stable and therefore more mechanically costly step locations (McAndrew 

et al., 2011; Santuz et al., 2018). Whilst Experiment 2 thus seems to support our hypothesis that 

the perceived pattern undulation in depth of the LSP floor impacted gait by affecting foot 

placement, no indications for such a change in gait kinematics were observed in Experiment 3.  

One reason for this discrepancy might be that participants perceived the illusion clearly in 

Experiment 2 where the illusion floor covered the entirety of the corridor floor the patterns were 

laid out in, whilst they did not in the constraints of the laboratory in Experiment 3. Indeed, for 

Experiment 2, the perceived depth of the patterned floor was validated by way of the sphere 

alignment task, where sphere alignment error was greater for the patterned floor than for the plain 

white control floor. Although the error of sphere alignment did not match that of the pattern 

“depth”, it does still appear that the illusory depth did in fact negatively impact sphere alignment 

accuracy, relative to the plain white control floor. We interpret this as participants perceiving, at 

least to some extent, illusory depth from the patterned floor. In Experiment 3, in contrast, we have 

no indications of what participants really experienced. 

In addition, a lack of a secondary task throughout these two experiments may have contributed to 

participants thinking too explicitly about the primary task of ‘walking normally’ over the floors, 

and may have introduced unaccounted-for demand characteristics. Therefore, the remainder of 

the experiments that follow employ the use of a secondary task to reduce participants’ focus on 

how they walk and the influence of demand characteristics. 

Despite a comparably poor spatial resolution of the analysis in Experiment 3 (~1 cm) relative to 

alternative gait analysis methodologies, we found evidence for Centre of Mass displacement for 

the LAP floor and its control, relative to the LSP floor and its control, in line with predictions 

from earlier findings (Leonards et al., 2015), where we anticipated the angled patterns to result in 

an increase in veering from a central trajectory, and for an overall reduction in step time for the 

LSP floor compared to its control, reflecting faster steps and reduced single support time. 

However, without other gait measures, making claims about decision making and uncertainty 

regarding these floors is difficult.  

Despite major limitations with the studies presented in this chapter, taking the outcomes of the 

two experiments together, it nevertheless seems that optical illusions inducing depth perception 
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of floor patterns may affect gait, speaking against ideas of a clear dissociation between conscious 

perception and the visual control of action as argued in the two-streams hypothesis of vision 

(Goodale & Milner, 1992). However, this must be considered as a tentative claim given the 

magnitude of the differences between the control conditions. Whilst this thesis does not really 

focus on this topic, it is worth noting that walking, though highly automated, is a relatively slow 

process with about 1 step per 0.5s, i.e., 1.98Hz (Danion et al., 2003); moreover, visual control of 

human walking and in particular  the visual sampling of upcoming footholds, appears to occur 

consistently at around 1.5 seconds prior to a foot’s contact with a selected foothold, regardless of 

ground surface complexity (Matthis et al., 2018). Such a long processing time would allow for 

ample cross-talk (Goodale & Milner, 1992) between dorsal and ventral pathways, with feedback 

from higher visual areas in the ventral stream affecting the perceived state of the world (see Figure 

1.4 in Introduction) and thus walking. 

Although CCTV footage and analysis used in Experiment 3 thus seemed to be a promising 

technique to study the impact of floor patterns on people’s gait, this PhD was not concerned with 

the development of technology but rather with furthering understanding of the link between vision 

and action.  Therefore, we decided to move toward teasing apart the different factors within floor 

patterns that might contribute to changes in gait kinematics. For this, we transitioned to using an 

established method of measuring gait (i.e., a 3D motion capture system) to considerably improve 

the spatial resolution of the gait detection. Furthermore, moving from vinyl floors to a projection 

system in the laboratory allowed us to present floor pattern stimuli that were parametrically varied 

for  the pattern characteristics of interest on a trial-by-trail basis, therefore eliminating the issues 

we had with the spatial constraints of the lab space as well as many of the demand characteristics 

that might have affected outcomes in the experiments presented here. The combination of 3D 

motion capture with parametric changes of floor patterns has been used in previous studies that 

took place in the BVI movement lab (i.e., Fennell et al., 2015; Leonards et al., 2015; Ludwig et al., 

2018). 
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Chapter 4: The impact of linear floor pattern 

spacings on gait kinematics and visuomotor 

entrainment during overground locomotion 

 

Whilst Experiment 3 did not find any direct evidence that visual illusions affected step length, we 

nevertheless decided to investigate whether floor patterns can lead to visuomotor entrainment (see 

Chapter 1: Vision-for-Action). This chapter therefore focusses on how projections of line 

spacings, parametrically varied around individuals’ step length when walking at their preferred 

walking speed, influences step location selection and the estimation and control of self-driven 

speed during overground locomotion.  

As with the majority of physiological processes, the human gait cycle is energetically optimised 

(Selinger et al., 2015), where each individual has a preferred speed and rhythm of gait cycle so as 

to reduce the metabolic cost of ambulation (Bertram, 2005). This is reflected via optimised stride 

length and frequency (ibis), as well as step width (Donelan et al., 2004), that are matched to the 

individual and their body (Selinger et al., 2015). Consequently, this optimisation in gait differs 

between individuals (Kuo & Donelan, 2010), but is relatively stable within the individual, when 

walking over flat obstacle free ground, where walking speed and step length variability is around 

2.3% and 2.0% respectively (see Chapter 1: Table 1.1, Collins & Kuo, 2013). 

Perceptual cues such as optical edge rate and global rate of optic flow supply necessary information 

for walking speed and direction; thus, operating as effective signals to control biomechanical 

movement (Durgin et al., 2005; Larish & Flach, 1990; Warren et al., 2001). In other words, visual 

cues serve the regulation and balance of perceptual-motor organisation during human locomotion, 

both for perceived and anticipated speed of self-motion, and to establish stable reference frames 

for speed estimation (Durgin et al., 2005; Proffitt et al., 2003; Rieser et al., 1995). Fine-tuned 

adjustments proportional and relational to visual flow information are made to gait kinematics in 

order to form a congruent relationship between biomechanical activity and the rate of perceived 

motion in the surrounding visual environment. However, this form of synchronisation of motor 

responses to visual stimuli across the visual field. i.e., visuomotor entrainment (Franz et al., 2017), 

does somewhat differ from the form of entrainment being examined here where we expect 
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participants to synchronize subconsciously their steps with the patterns of the floor.  

The idea behind this stems from earlier observations that factors such as visual grouping can affect 

participants’ stepping behaviour, moving away from the regularity of gait kinematics usually 

observed: indeed, as shown by Fennel et al. (2015), when walking, participants demonstrated a 

preference for stepping on perceptually groupable targets, even when such targets lead to foothold 

selections that required markedly longer or wider steps relative to their preferred gait.  

Here, it is argued that preference for footholds that are perceptually similar to previous foothold 

locations reflects a visually guided action selection that minimises ambiguity/uncertainty about 

ground surface consistency, therefore reducing prediction errors / costs associated with stepping 

on unknown ground (as previously discussed in Chapter 1: Vision-for-Action). This bias for 

perceptually groupable stepping locations, in the context of this study, would predict that 

participants should either consistently step on, or actively avoid stepping on, lines projected onto 

the ground to facilitate reduction of a potential cost stepping on unknown ground.    

Whilst entrainment to perceptually groupable visual cues on the ground plane has been 

demonstrated (see Fennel et al., 2015), there is very little information available whether simple 

ground patterns such as stripes rather than targets (or objects) can evoke entrainment in a similar 

way. This was tested within the context of this experiment (Experiment 4), anticipating that (at 

least as long as not too far from participant’s preferred gait parameters) individuals would 

systematically adjust their gait and foothold locations (entrain) to the spatial manipulations of the 

linear pattern information on the ground as a result of perceptual grouping bias and the influence 

of the differing optical edge rates of line patterns projected on the ground.   

Ludwig et al. (Ludwig et al., 2018) has provided some preliminary evidence that manipulating the 

spatial frequency of transverse lines on the ground surface does in fact influence individuals 

perception of speed of self-motion, where participants increased / decreased their walking speed 

in relation to altered line spacings (see Chapter 1: Vision-for-Action). However, it must be noted 

that this effect was only apparent for lines that progressively increased or decreased in spacing, 

where no effect was found for trials where line spacings were at a fixed distance.  

In the experiment presented here, line spacings were matched to, and manipulated around, a 

participant’s step length (recorded beforehand whilst walking at their preferred walking speed over 

a uniform, medium-luminance grey control floor). By parametrically varying line spacings within 

and beyond the range of natural variability of a person’s preferred and thus energetically optimised 
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step length, this experiment will thus more closely examine the synchronisation of motor responses 

to visual stimuli in relation to the perception-action coupling account of locomotion (Matthis et 

al., 2017).  

Walking speed is considered to spontaneously vary by ~ 2.3%, and step length, unattributed to 

adjustments in walking speed, by ~ 1.5% (Collins & Kuo, 2013). We therefore decided to 

parametrically vary the line spacings in this study from 0% deviance from preferred walking speed 

to +-3% and +-6% to examine whether participants would in fact increase / decrease their walking 

speed and step length beyond natural variation simply through visual input. Any changes in gait 

driven by visual cues in the context of this experiment would be particularly interesting regarding 

how visual information on the ground plane can influence gait kinematics.  

Note that in case of positive outcome, the setup of our experiment would not allow us to 

distinguish between 2 possible mechanisms underlying such an entrainment:  increased/decreased 

step length could be a result of maintaining consistent footholds that perceptually match that of 

previous steps (by either stepping on, or actively avoiding stepping on, the lines); or could be the 

result of the lines interacting with global optic flow via changes in the perceived optical edge rate 

of the lines, i.e. affecting perceived walking speed. In any case, we would expect an individual to 

make necessary adjustments to their gait to resolve any cue conflict, by increasing/decreasing 

velocity and step length at the same time as decreasing/increasing step time relative to baseline 

measurements, and whilst walking over lines spatially matched to the individuals’ step length.  

Note that participants were not given any instructions where to step during this study, but were 

simply requested to walk down the lab at their natural walking speed. In an attempt to avoid 

potential demand characteristics (i.e., participants thinking that we expected them to step on 

projected lines), we tried to distract them  by incorporating a cognitive load task into the study as 

a dual task paradigm. This cognitive task which participants were asked to perform whilst walking 

up and down the lab, consisted of a high and low cognitive load verbal recall task, adapted from 

the oral trail making tests used by Ho et al. (2019) and Burtan et al. (2021).  

4.1 Methods 

4.1.1 Participants 

Sample size was based on comparable studies conducted within the lab (i.e., Burtan et al., 2021; 

Leonards et al., 2015). A total of 20 participants were recruited to take part in the experiment in 



77 
 

the Bristol Vision Institute (BVI) movement laboratory at the University of Bristol (15 female, 5 

males; aged 18-27 years, M = 21.3 years), All participants reported normal or corrected-to-normal 

vision, no previous or current injuries that would impair their vision or their walking, and all gave 

written informed consent prior to and following completion of the experiment. The experiment 

was approved by the Faculty of Science Ethics Committee at the University of Bristol (ref: 

10621040422). Participants were recruited from the undergraduate and postgraduate community 

from the School of Psychological Science and were reimbursed for their time with course credits. 

4.1.2 Stimuli 

White lines (4.74 cd/m-2) measuring 200mm in thickness were projected against a dark background 

(0.01 cd/m-2) on the floor via six Optoma projectors (Optoma EW536, resolution 1280 × 800mm, 

frequency 60 Hz) in an otherwise dark laboratory. This created a  12 x 1.5m illuminated walkway 

within a lab floorspace measuring 15 x 5m (see Figure 4.1 for an example). The lines were 

presented orthogonal to walking direction. Line spacings were scaled to participants’ step length, 

as measured from their preferred walking speed recorded during the initial baseline measurements 

when walking on the uniform medium-luminance grey control floor prior to commencing the 

experimental section of the study. Line spacings were parametrically varied (94%, 97%, 100%, 

103%, 106% of preferred step length) on a walk-by-walk basis.  

Per participant, there were three repetitions for each of the five line spacings, in addition to three 

repetitions of a uniform medium-luminance grey control floor, for two cognitive load conditions, 

respectively. In other words, there were 12 different walking/cognitive load conditions, totalling 

experimental 36 walks. Conditions were presented in random order. 

In order to reduce potential demand characteristics, such as participants consciously stepping on 

the lines, a cognitive load task (arithmetic) with two levels of difficulty was implemented in the 

study design. To avoid interfering with the visual domain of attention, the high cognitive load task 

consisted of ‘serial number subtraction by 7’ (Howell et al., 2016; Wrightson et al., 2016), and the 

low cognitive load task consisted of ‘serial number addition by 1’. For this, a number starting 

between 100 and 150 was randomly allocated to the participant at the start of each trial. 

Collectively, these tasks mimicked the dual task paradigms  (walking whilst performing a cognitive 

task) used by Ho et al. (2019) and Burtan et al. (2021) in their respective walking studies.   

It was expected that the high cognitive load condition would result in attention allocation being 

focussed on the cognitive task, therefore both slowing participants’ baseline speed and amplifying 
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the reliance on low-level visual information, in this case line spacings, respectively, to regulate 

walking speed (see e.g. Ho et al, 2019 and Burtan et al., 2021). The low cognitive load condition, 

on the other hand should not affect overall baseline walking speed. As such, it was expected that 

the line spacing should have less influence on measures of gait in this context.   

 

 

4.1.3 Procedure 

To measure gait, infrared reflective markers for 3D motion capture were attached to the outside 

of participants’ ankles (lateral malleolus), feet (first metatarsophalangeal joint), the sternum. In 

addition, participants were provided with a purpose-fitted hat with another three markers attached 

to the front to wear. Marker position was sampled at 100 Hz  for each trial via a passive 12-camera 

Qualisys 3D-optical motion capture system (AB, Gotenborg, Sweden; Opus 300 cameras). The 12 

cameras used were calibrated prior to testing of each participant, which provided a spatial accuracy 

of ~ 1mm3 throughout the capture space (12 x 2 x 2.4m) (see Figure 4.2). 

  

 

Figure 4.1 An example of the 12 x 1.5m meter floor projection in the lab, with 
spacings set to preferred step length of participant. 
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The lab itself was darkened, with the light emitted from the projectors providing the only lighting 

in the room. For the purposes of data analysis, x-direction denotes lateral movement, y-direction 

denotes direction of travel down the lab space, and z-direction denotes vertical movement. 

Before the actual experiment, participants were asked to perform six practice walks at their “natural 

walking speed”, completing both of the two cognitive load tasks (x3), in order to familiarise 

themselves with the room and the dual task. For this, participants walked down the lab from a 

designated starting position over the uniform medium-luminance grey control floor until they 

reached the back wall, and then returned to the starting position.  

Participants were then asked to complete a further six walks on the same uniform medium-

luminance grey control floor, having been informed that these walks would be recorded via the 

3D motion capture camera system to calculate some baseline gait measurements. Note that this 

was done without cognitive load task. Following these six trials, data for each walk were extracted 

and the average step length of the participant was calculated.  

For the actual experiment, participants were presented with the bar-spacing stimulus patterns, and 

asked to walk over them in the same way as they had done before during the baseline walk. There 

were a total of three trials per condition during the experiment, totalling 36 walks. For each walk, 

they had to perform simultaneously one of the two cognitive tasks aloud. Participants were 

requested to focus on accuracy rather than speed for the cognitive tasks. Cognitive task 

performance was monitored (>80%) to ensure accuracy was maintained throughout individual 

trials. However, no trials were repeated or excluded on this basis. After participants reached the 

back wall, they returned to the starting position for the next walk. Note here, that the cognitive 

load task functioned as a secondary task, which was to reduce demand characteristics. The task 

Figure 4.2 Left: Image showing the x-axis (red arrow), y-axis (green arrow), and z-axis (blue arrow) of the 3D 
recording space, as well as a visual representation of the walking model. Right: Image showing the spatial 
layout of the 12 3D motion capture cameras, and their respective spatial coverage of the recording area.   
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took approximately 45 minutes, including breaks. 

4.1.4 Data Analysis 

4.1.4.1 Motion Capture Data Extraction 

Raw motion capture data were pre-processed for statistical analysis via the Qualisys motion 

tracking system proprietary software (QTM, Qualisys AB) to automate the identification of marker 

trajectories. All trials were manually checked for marker labelling errors and recording drop-outs. 

No trials had to be removed as a result of these checks. This resulted in 20 participants’ datasets 

for analysis. A low-pass, second-order Butterworth filter was then applied to the data, with 5Hz 

frequency cut-off, in order to remove high-frequency noise. The projection and recording area 

covered -7m to +5m, totalling 12m (along the y-axis). Data for each trial were truncated to between 

-5m and +2m (along the y-axis) from the centre of the room to eliminate any data that reflected 

acceleration up to the preferred walking speed at the beginning of each walk as well as movement 

data where it was deemed that there was not a sufficient portion of floor patterns visible anymore 

toward the end of the walk.  

4.1.4.2 Step Detection and Measures of Gait 

Velocity and position data were extracted for both ankle markers to identify and label individual 

steps, and from the sternum marker to calculate continuous measures of velocity. These kinematic 

data were extracted for each individual trial. Velocity and step length were calculated using the 

same method as described in Burtan et al (2021). To summarise, velocity and position data were 

extracted for both of the ankle (lateral malleolus) markers in order to identify and label individual 

steps, and from the sternum marker in order to calculate continuous measures of velocity. This 

kinematic data was extracted for each individual trial. The position of a step was determined as the 

stationary period for each foot. This was calculated as the average position between the point at 

which the foot met the ground and the point at which the foot left the ground, calculated by way 

of averaging between the first point and last point of zero velocity of the ankle marker (by way of 

velocity thresholding) on the y-axis (length of recording space). This marker (for the left ankle and 

right ankle, respectively) was used due to its stability on this particular joint. The average point 

between each identified ankle marker location, when the foot was stationary, was determined for 

both the left and right foot. The distance between each stationary foot position was then calculated 

to produce a series of measures of step length. These points were then indexed in order to calculate 

step time, by measuring the time difference between these indexed points. Similarly, average 
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velocity of the sternum marker (along the y-axis) between these indexed stationary foot positions 

was also calculated as a continuous measure of walking speed. Again, the sternum marker was 

selected for these purposes owing to its stability on the body throughout the gait cycle. 

Accordingly, multiple measures of step length, step time, and velocity were calculated per trial. 

4.1.4.3 Exclusion Criteria 

An additional stage of data exclusion was conducted once the motion capture data were processed 

and arranged in terms of step lengths, step times and velocity per trial. Based on assumptions about 

the metabolic cost associated with increasing step length over 114% from an energetically 

optimised average step length (Kim & Bertram, 2018) for walking over the uniform medium-

luminance grey control floor, we set our upper threshold limit of step length at 120% of baseline 

(note that our experimental design would potentially lead to an increase of step length to 106% 

max relative to baseline). This was mirrored in the opposite direction, where the lower threshold 

limit for step length was set to 80% of baseline. This left us with a total of 7579 individual steps 

for the experiment (i.e. three steps were removed in total across all 20 participants). Steps were 

checked to ensure that > 80% of steps remained for each participant for each condition across 

both experiments.  

4.2 Results 

To visualise the overall effect of line spacing manipulations and cognitive load on all three 

measures of gait (velocity, step length and step time), means and 95% confidence intervals were 

plotted by cognitive load (colour) in Figure 4.3, with line spacing on the x-axis and the respective 

gait measure on the y-axis. All data had first been normalised relative to the mean measures of gait 

calculated per participant for the baseline condition (i.e., 100% is the mean gait measure calculated 

during the initial five trials used to calculate preferred gait measures and line spacings) in each 

respective experiment.  

As can be seen in Figures 4.3, velocity was slower and step length shorter when walking over floors 

whilst completing the high cognitive load task relative to walking under the low cognitive load 

condition, whereas step time was longer. Line spacing manipulations seemed to have a comparably 

small effect on gait measures, with the 0 condition (uniform floor) and the 103% condition leading 

to faster walks as and longer steps as compared to the other spacing conditions. Yet, these changes 

were comparably small (about 1-2%) and seemed to be only in one direction; i.e. toward smaller 
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steps with slower gait.. 

 

4.2.1 Velocity  

A 2(cognitive load) x 6(line spacing) repeated measures ANOVA (N = 20) was conducted to 

compare the effect of cognitive load and line spacing on velocity. Analysis with Greenhouse-

Geisser correction revealed a significant main effect of line spacing on velocity, F(5, 95) = 3.44, p 

< 0.038, ηp2 = .115. However, pairwise comparisons with Bonferroni p-adjusted corrections 

established no significant differences in velocity between the different line spacing conditions, in 

line with the comparably small effect size of the main effect.  

A significant main effect of cognitive load was also found, F(1, 19) = 70.58, p <= 0.0001, ηp2 = 

.788, with participants walking slower whilst completing the high cognitive load task (M = 95.37, 

SEM = 0.81) relative to the low cognitive load task (M = 99.65, SEM = 0.69), with a mean 

difference of 4.28%. No significant interaction between cognitive load and line spacing was found. 

Taken together, this demonstrates that walking whilst engaging in the high cognitive load task, 

regardless of line spacing, led participants to walk slower relative to walking when engaging in the 

low cognitive load task, in line with expectations from the literature (e.g. Ho et al., 2019). Whilst 

parametric line manipulation also had an overall effect on velocity, this effect seemed to be small.  

4.2.2 Step Length 

A 2(cognitive load) x 6(line spacing) repeated measures ANOVA (N = 20) was conducted to 

compare the effect of cognitive load and line spacing on step length. Analysis with Greenhouse-

A B C 

Figure 4.3 Group averages (N = 20) of individuals’ mean gait changes on the y-axis (in % relative to baseline measures 
collected during ahead of the actual experiment) plotted against different line spacings (in % relative to baseline 
measures) on the x-axis; separately for the different cognitive load conditions (low load = blue, high load = red). Note 
that “0” line spacing stands for a medium grey floor without patterns. Plots are as follows: A) velocity, B) step length, and 
C) step time. Error bars represent 95% confidence intervals. 
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Geisser correction revealed a significant main effect of line spacing on step length, F(5, 95) = 2.98, 

p = .015, ηp2 = .136. However, as for speed, pairwise comparisons with Bonferroni p-adjusted 

corrections established no significant differences in step length between the different line spacing 

conditions.  

A significant main effect of cognitive load was also found, F(1, 19) = 63.28, p = 1.82-7, ηp2 = .769, 

with participants taking shorter steps whilst completing the high cognitive load task (M = 97.40, 

SEM = 0.60) relative to the low cognitive load condition (M = 99.80, SEM = 0.52), with a mean 

difference of 2.40%.  

Again, no significant interactions between cognitive load and line spacing were found. 

As for velocity, this demonstrates once more that walking whilst engaging in the high cognitive 

load task was affected, regardless of line spacing, leading participants to take shorter steps relative 

to walking when engaging in the low cognitive load task. Parametric line manipulation affected 

step length, but this effect was small compared to the effect of cognitive load.. 

4.2.3 Step Time 

A 2(cognitive load) x 6(line spacing) repeated measures ANOVA (N= 20) was conducted to 

compare the effect of cognitive load and line spacing on step time. Analysis with Greenhouse-

Geisser correction did not reveal a significant main effect of line spacing on step time.  

Yet again, a significant main effect of cognitive load was found, F(1, 19) = 29.06, p = 3.35-5, ηp2 = 

.605, with participants’ step time being longer whilst completing the high cognitive load task (M = 

102.07, SEM = 0.56) relative to the low cognitive load condition (M = 100.22, SEM = 0.35), with 

a mean difference of 1.84%.  No significant interaction between cognitive load and line spacing 

was found. 

As for velocity and step length, this further confirms that walking whilst engaging in the high 

cognitive load task, regardless of line spacing, results in longer step times compared with walking 

whilst completing the low cognitive load task. Line spacing, in contrast, did not affect step times. 

4.2.4 Linear Mixed Effects Model - Velocity 

To further examine the possible impact of cognitive load and, particularly, line spacing 

manipulations on participants’ walking speed (velocity), cross-classified Markov Chain Monte 

Carlo general linear mixed-effects modelling was applied to the velocity data (N= 7579), in % 
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relative to baseline measurements (Burn-in = 500, Chain Length = 10,000, Thinning Interval = 1). 

This allowed for any effects introduced by intra- and inter-individual variability unrelated to 

stimulus modulation to be controlled for by classifying them as random effects when examining 

the influence that each condition had on measures of velocity. Accordingly, participant and trial 

order were included as random effects, where trial order reflects the order of the 3 presentations 

of each unique line spacing and cognitive load condition combination within the study. In addition, 

this technique facilitates resampling from the probability distribution of the data to further validate 

any variance associated with the fixed effects and their interactions.  

The line spacing variable was coded  with the numerical values of the 5 spacing categories (94%, 

97%, 100%, 103%, 106%); and the cognitive load variable was coded as discrete numerical data 

(low cognitive load = 0; high cognitive load = 1). Velocity was computed as continuous numerical 

data. Therefore, parameter estimates for velocity in relation to cognitive load reflect a change of 1 

from low load (0) to high load (1), i.e., the difference between the two levels of the variable. The 

parameter estimate for line spacing reflects an increase of 3% in line spacing. As such, the change 

from a 100% spacing to a 103% spacing would be three times the parameter estimate for line 

spacing, i.e., the difference between two levels within the variable.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that velocity data were normally distributed across the 

different levels’ fixed and random effects.  

Only the modelling for velocity is presented in the main body of this chapter, owing to velocity 

being a composite measure of both step length and step time, and previous research demonstrating 

it as being the most sensitive measure of gait when examining the role of perceptual load derived 

from changes in the immediate visual environment (e.g. Amboni et al., 2013; Burtan et al., 2021). 

However, cross-classified Markov Chain Monte Carlo general linear mixed-effects modelling for 

step length and step time can be found in the appendices (see Appendix A: Linear Mixed Effects 

Models).  

All models were confirmed to have converged by running each model through the Heidelberger 

and Welch’s convergence diagnostic (Heidelberger & Welch, 1983). Each model passed both the 

stationarity and halfwidth test, which indicates that the sampled values come from a stationary 

distribution and that the number of iterations is sufficient to ensure that the post-mean values 

come from a chain that has converged.  
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The actual models were constructed from simple (single fixed effects), through to two-way 

interactions between the fixed effects. At each stage, fixed effects found to be non-significant were 

dropped from the proceeding model, labelled ‘a’, and ‘b’ if required. The pMCMC value for each 

fixed effect within each model was used to detect non-significant values; i.e., with an alpha of 0.05. 

The model of best fit was then selected from the ‘a’ labelled models, unless there were no fixed 

effects dropped from the original model. The null model (N) only includes random effects, and 

consequently does not include any of the fixed effects. These models therefore present the 

combination of predictors that best describe the variance at each stage. See Table 4.1 for model 

outputs. Models with lower Deviance Information Criterion (DIC) scores are considered to reflect 

a better fit of the data (Spiegelhalter et al., 2002).  

 

Table 4.1 Model fit comparisons for models estimating velocity based on the cognitive load and line spacing 
manipulations between experimental conditions. CL = cognitive load, SP = line spacing, PT = participant, TO = trial 

order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 43702.85  PT, TO 

1 * 41603.85 CL, SP PT, TO 

2 41604.43 CL, SP, CL x SP PT, TO 

2a 41603.85 Model 1a PT, TO 

 

Based on the DIC values for each model in Table 4.1, the best fitting model was model 1, which 

included cognitive load and line spacing as fixed effects. The parameter estimates, upper and lower 

95% confidence, effective sample size, and pMCMC values for this model are displayed in Table 

4.2. 
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Table 4.2. Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors 
of the model for velocity variability. Effective samples and pMCMC values for the model are also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.49 99.03 101.99 9814 <.0001 *** 

Cognitive Load -4.25 -4.43 -4.09 9206 <.0001 *** 

Line Spacing -0.010 -0.013 0.008 9500 <.0001 *** 

Random      

Participant  10.97 4.68 18.65 8572  

Trial 0.56 0.29 0.88 5833  

Deviance Information Criterion (DIC)                                                                     41603.85 

 

As can be seen in Table 4.2. and as expected from Figure 4 and the ANOVAs, cognitive load 

provided most of the explanatory power for variance in velocity data recorded in Experiment 4 

(~4%) with an increase in cognitive load resulting in a decrease in velocity.  Also line spacing had 

a statistically significant even though small explanatory reduction on velocity. Here, we had 

anticipated a linear effect, where speed would be the same for the no pattern and 100% spacing 

conditions, with slower walking for the -6% and -3% conditions, and faster walking for the +3% 

and +6% conditions.  

4.3 Discussion 

In this experiment, manipulations of line spacings on the ground, scaled to individuals’ preferred 

step length whilst walking at their preferred walking speed systematically altered velocity, step 

length, or step time, albeit to a very small amount (around 0.01%) and also only toward slower gait 

with shorter steps, whilst there was no indication of any “pulling” effects toward longer steps and 

faster gait.  In comparison, cognitive load effects were around 4%, confirming that our participants 
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performed the task in the way that we intended them to, i.e., without demand characteristics. 

Indeed, the different cognitive load tasks impacted gait measures in the expected way: walking 

whilst completing a cognitively demanding task resulted in a reduction in velocity and step length, 

and an increase in step time, relative to walking whilst completing a less cognitively demanding 

task. This aligns with previous literature examining the impact of increased cognitive load on 

similar measures of gait (i.e., Amboni et al., 2013; Burtan et al., 2021; Ho et al., 2019), where 

increased cognitive load resulted in more cautious walking behaviour and thus increased visual 

sampling time of the surrounding environment in order to maintain upright stability. 

There are several reasons why the effect of changes in line spacing seemed negligible: 

First, the main thing one notices when looking at the data is that the baseline measurement is out: 

if participants had walked with the same preferred speed as predetermined, then the 0 spacing 

condition should have been reliably at 100% (at least for the low cognitive load condition and the 

100% condition). Instead, participants are walking faster - on average +3% faster (see 103% being 

the closest to the 0%). So, the shift that can be seen here, and the noise introduced with having an 

inaccurate baseline measure might have been enough to lose the effect that we were looking for. 

Keeping this variability in mind and then considering that the spacing of the lines was manipulated 

just outside the natural variability of step length (~2%: Collins & Kuo, 2013) in 3% changes, this 

inaccuracy in baseline estimation might have just washed out the small effect we would have 

expected around +/- 3%.  

Second, it could be that any visual environment manipulations within a range of +- 6% were not 

big enough to be detected as sufficiently relevant to determine speed of self-motion by participants 

based on optic flow Such an interpretation seems unlikely as Ludwig et al., (2018) presented 

orthogonal stripes on the ground with spacings set further from average step length (0.5m, 1m, 

and 1.5m), also finding no effect of fixed spacings on either velocity or step length. This means 

that optic flow is a very unlikely candidate to have induced the (very subtle) changes in gait 

kinematics observed. 

Could the visibility of objects within the room have reduced the influence of the patterns on gait? 

The experiment was conducted with no overhead lights, where black-out curtains were used to 

cover the majority of additional objects within the room. However, due to the ambient lighting 

produced by the projectors, there was adequate visibility of other objects, such as the overhead 

motion capture camera rigging structure, which could have been used as a visual cue to determine 

a stable perception of speed of self-motion, potentially superseding any perceptual influence from 
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the spatial manipulations of pattern information on the ground plane.  

Instead, it is more likely that  it was indeed a very weak perception-action coupling process (Matthis 

et al., 2017) that led to the observed effects but that was dwarfed by the robustness and stability 

of gait in young healthy participants.  

Third, could it be that participants actively avoided synchronisation of their steps with the floor 

patterns? There is no evidence to support such an assumption. Indeed, the reliable effect of 

cognitive load on gait kinematics would rather suggest that participants were not aware of the 

pattern manipulations performed here.  This suggestion is confirmed by subjective reports: none 

of the participants reported any changes in the line spacings throughout the experiment when 

asked to describe what they thought the experiment was about at the end of the session.  

Fourth, could the limited area of the field of view, i.e., the floor, examined here have reduced the 

impact that the visual manipulations had on gait? Many of the experiments that have examined the 

impact of changes in visual flow information on measures of gait, and entrainment of gait to the 

frequency of visual stimuli have used expanding and contracting visual field information, or have 

been conducted in relation to objects or goals, presented on a large screen, or via virtual reality 

headsets (Campos et al., 2014; Chou et al., 2009; De Smet et al., 2009; François et al., 2011; Franz 

et al., 2017; Thompson & Franz, 2017; Warren et al., 2001). In such instances, visual cue 

manipulations, such as altering the rate and direction of flow patterns, occur on wrap-round 

screens or virtual / augmented reality headsets, i.e., across the whole field of view. The experiment 

here involved spatial manipulation of a limited section of the field of view (the ground plane). 

Consequently, this may have reduced any possible impact of the visual pattern manipulations on 

gait.  

Fifth, could the use of task-irrelevant patterns rather than task-relevant foothold targets have 

reduced the influence of perceptual entrainment? The gait adjustment results by Fennel et al. 

(2015) which we had used as motivation for this study reflected a preference to choose perceptually 

groupable targets as footholds over spatially regular but perceptually different targets  and occurred 

in relation to choosing between two predefined potential footholds. This is a fundamentally 

different task from the free-walking task over patterns with subtle changes in spatial characteristics 

we have used here. Indeed, in Fennel and colleagues study, participants were instructed to use the 

targets, i.e., stepping stones, which functioned as form of forced choice in foothold selection; thus, 

they had to attend at least to some degree to the targets to step on them. In the present study, 

participants could step freely when walking over the patterns; thus it is more likely that participants 
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simply ignored any visual information of the floor. Here, the discrepancy between the findings of 

the two studies, and their contribution to further understanding visuomotor entrainment in 

relation to visual components of ground patterns and gait, may be mediated by whether the 

information on the floor surface is task-relevant or task-irrelevant. Indeed, eye-tracking data would 

be required here to confirm whether participants looked at the floor during experimental trials.  

Finally, could the limited exposure time of each individual trial reduced the impact of the floor 

patterns? Trials were limited to walking the length of the 12m walkway and participants were 

allowed to freely look where they desired through each trial. The purpose of this was to allow for 

a more ecologically valid exploration of visual guided walking; yet, as already discussed for 

Experiment 3, participants could just have ignored any input from the floor as they were aware of 

there being no obstacles and the floor being flat and hazard free.  

Lack of sensitivity of our methods to observe change of gait kinematics can be excluded as our 

data showed a clear cognitive load effect in line with the literature (Amboni et al., 2013; Burtan et 

al., 2021; Ho et al., 2019). Despite showing statistically significant effects of line spacing 

manipulations on the floor impacting on gait, they are miniscule and so are unlikely to be of any 

ecological importance.  
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Chapter 5: The impact of high-contrast linear 

floor patterns on human gait kinematics 

 

To get further insight into how well the human visual system has adapted to guide movements 

through the modern built environment that differs fundamentally from the environmental niche 

of our evolutionary past, this Chapter examined how high-contrast spatial frequency patterns, less 

common in nature but frequent in the built environment (Wilkins et al., 2018), affect gait 

kinematics when presented as task-irrelevant decorative patterns on the floor.  

In line with theoretical predictions of an increase in uncertainty about the environment’s state with 

increased task-irrelevant pattern noise (see Chapter 1: Fundamental of Vision), we expected that 

gait velocity would slow, step length shorten and step time increase for walks over patterns at 

higher spatial frequencies compared to walks over patterns at lower spatial frequencies or a 

unicoloured pattern-free control floor.  

To control for the role of pattern orientation, and any interactive effects between spatial frequency 

and orientation on changes in gait, pattern orientation was altered across three experiments 

(Experiments 5, 6 and 7). In Experiment 5, the square wave grating patterns were presented 

orthogonal to walking direction (‘horizontal’). In Experiment 6, the square wave grating patterns 

were presented in line with walking direction (‘vertical’). Finally, in Experiment 7, checkerboard 

patterns were presented to account for any orientation biases in Experiments 5 and 6.  

As high-contrast higher spatial frequency patterns over larger areas of the visual field are known 

to affect participants’ visual discomfort (e.g. Wilkins et al., 2018, see Chapter 1: Patterns in the 

built environment) and visual discomfort had been shown before to affect gait kinematics (Burtan 

et al., 2021) we captured participants’ subjective ratings of visual discomfort for each walking trial 

across all three experiments to see whether adjustments in gait as a result of spatial frequency 

manipulations correlate with participants’ subjective ratings of visual discomfort. 

Data in this chapter have been presented at ECVP 2022 (Dickson et al., 2022), and ICPS 2023 

(abstract booklet not yet published).  
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5.1 Methods 

5.1.1 Participants 

Sample size was based on comparable studies conducted within the lab (i.e., Burtan et al., 2021; 

Leonards et al., 2015). A total of 60 participants were recruited to take part in three separate 

experiments (20 participants per experiment) in the Bristol Vision Institute (BVI) movement 

laboratory at the University of Bristol: Experiment 5 (11 female; aged 18-32 years, M = 21.6 years), 

Experiment 6 (15 female; aged 18-36 years, M = 23.8 years, Experiment 7 (11 female; aged 20-36, 

M = 26.4). All participants reported normal or corrected-to-normal vision, no previous or current 

injuries that would impair their vision or their walking, and all gave written informed consent prior 

to and following completion of the experiment. Experiments were approved by the Faculty of 

Science Ethics Committee at the University of Bristol (ref: 10621040422). Participants were 

recruited from the undergraduate and postgraduate community from the School of Psychological 

Science and were reimbursed for their time with course credits or a £10 voucher. 

5.1.2 Stimuli 

High-contrast black and white square-wave (Experiment 5 & 6) and checkerboard (Experiment 7) 

gratings were projected onto the floor of the laboratory via six Optoma projectors (Optoma 

EW536, resolution 1280 × 800mm, frequency 60 Hz). This created a 12 x 1.5m illuminated 

walkway within a lab floorspace measuring 15 x 5m. Square-wave grating orientations were 

orthogonal to the walking direction for Experiment 5 and parallel to the walking direction for 

Experiment 6 (see figure 5.1 for examples of floors).  

Spatial frequency patterns were scaled to account for a participant’s height, calculating cycles per 

degree (CPD) of visual angle on the basis of the distance between a participant’s eye height and 

the floor. Spatial frequencies were parametrically varied (1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125 CPD) 

on a walk-by-walk basis. All patterns were presented at maximum contrast (black = 0.01 cd/m2; 

white = 4.74 cd/m2), with an equal duty cycle (1:1).   
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Per participant, there were five presentations of each spatial frequency grating, in addition to five 

presentations of a uniform medium-luminance grey control floor, totalling 35 walks. Conditions 

were presented in random order. 

 

 

5.1.3 Procedure 

After establishing participants’ height for floor pattern scaling, attaching infrared reflective markers 

for motion capture to the outside of participants’ ankles (lateral malleolus), feet (first 

metatarsophalangeal joint), the sternum, and asking participants to wear a purpose-fitted hat with 

another 3 markers attached to the front, participants were asked to perform five practice walks at 

their natural walking speed: starting at a designated starting position, participants walked down the 

lab over a uniform medium grey control floor ( 4.425 cd/m2) until they reached the back wall, and 

then returned to the starting position.  

For the actual experiment, participants were presented with the spatial frequency stimulus patterns 

described above. After participants reached the back wall, they were asked to rate the floor pattern 

that they had just walked over for visual discomfort on a 7-point Likert Scale, from ‘1 – not at all 

uncomfortable’ to ‘7 – very uncomfortable’, before returning to the starting position for the next 

walk. Note here, that visual discomfort rating per trial functioned as a secondary task to reduce 

demand characteristics. The experiment took approximately 30 minutes, including breaks. 

Gait was recorded for each trial via the passive, 3D-optical motion capture system, where x-

A B C 

Figure 5.1 (A) Example of the ‘horizontal’ square-wave grating pattern in Experiment 5;  (B) Example of the 
‘vertical’ square-wave grating pattern  in Experiment 6;  (C) Example of the checkerboard pattern used in 
Experiment 7, showing the entire 12 m x 1.5 m floor projection taken from the starting position.   
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direction denotes lateral movement, y-direction denotes direction of travel down the lab space, 

and z-direction denotes vertical movement (see Chapter 4 for more detail on methodology). 

5.1.4 Data Analysis 

5.1.4.1 Motion Capture Data Extraction 

Raw motion capture data were pre-processed for statistical analysis via the Qualisys motion 

tracking system proprietary software (QTM, Qualisys AB) to automate the identification of marker 

trajectories. All trials were manually checked for marker labelling errors and recording drop-outs. 

No trials had to be removed as a result of these checks. This resulted in 60 participants’ datasets 

(i.e. 20 per experiment) for analysis. 

A low-pass, second-order Butterworth filter was then applied to the data, with 5Hz frequency cut-

off, in order to remove high-frequency noise. The projection and recording area covered -7m to 

+5m, totalling 12m (along the y-axis). Data for each trial were truncated to between -5m and +2m 

(along the y-axis) from the centre of the room to eliminate any data that reflected acceleration up 

to the preferred walking speed at the beginning of each walk as well as movement data where it 

was deemed that there was not a sufficient portion of floor patterns visible anymore toward the 

end of the walk.  

5.1.4.2 Step Detection and Measures of Gait 

Velocity and position data were extracted for both ankle markers to identify and label individual 

steps, and from the sternum marker to calculate continuous measures of velocity. These kinematic 

data were extracted for each individual trial. Velocity and step length were calculated using the 

same method as described in Burtan et al (2021; see also Chapter 4: Methods for detail). 

5.1.4.3 Exclusion Criteria 

An additional stage of data exclusion was conducted once the motion capture data were processed 

and arranged in terms of step lengths, step times and velocity per trial. Based on assumptions about 

the metabolic cost associated with increasing step length over 114% from an energetically 

optimised average step length (Kim & Bertram, 2018) for walking over the uniform grey control 

floor, we set our upper threshold limit of step length at 120% of baseline. This was mirrored in 

the opposite direction, where the lower threshold limit for step length was set to 80% of baseline. 

This left us with a total of 6123 individual steps for Experiment 5 (2 steps removed), 6261 
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individual steps for Experiment 6 (6 steps removed), and 6320 individual steps for Experiment 7 

(4 steps removed). 

5.2 Results 

In order to assess the influence of floor pattern orientation on people’s gait kinematics and to 

determine whether there was an interaction between pattern orientation and spatial frequency 

manipulations, Experiments 5, 6 and 7 were combined into one dataset for analysis, with floor 

orientation as between-participants variable.  

To visualise the overall effect of spatial frequency manipulations on all three measures of gait 

(velocity, step length and step time), group means with 95% confidence intervals were plotted (see 

Figure 5.2). All data had first been normalised relative to the mean measures of gait calculated per 

participant for the control condition  (i.e., the uniform medium grey floor; defined as 100%) in 

each respective experiment. A similar plot was also produced for subjective ratings of visual 

discomfort (Figure 5.2 D). 

As can be seen in Figure 5.2, velocity (Figure 5.2A) and step length (Figure 5.2B) generally 

decreased when walking over floor patterns with increasing spatial frequency relative to baseline 

gait measures on pattern-free floors (0 CPD), whereas step time (Figure 5.2C) and subjective 

ratings of visual discomfort (Figure 5.2D) increased. This seemed most pronounced for 

Experiment 6 (Figure 5 middle column); i.e. for patterns that were orientated parallel to the 

direction of walking (or “vertically”).  
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The impact of spatial frequency and orientation on gait kinematics was further confirmed with 3 

(orientation) x 7 (spatial frequency) repeated measures ANOVAs, revealing significant main effects 

of spatial frequency and significant interactions between spatial frequency and orientation in line 

with expectations from Figure 5.2 and Table 5.1, but no significant main effects of orientation for 

Figure 5.2 Group average of individuals’ gait changes (plotted in % relative to pattern-less control floor)) for different 
spatial frequency patterns in cycles per degree (CPD) for (A) velocity, (B) step length, and (C) step time. In (D) 
Subjective visual discomfort ratings are plotted against spatial frequency patterns. Columns from left to right show 
results for Experiment 5 (patterns oriented orthogonally to walking direction), Experiment 6 (patterns oriented in 
walking direction) and Experiment 7 (checkerboard), respectively. Error bars represent 95% confidence intervals. 
Blue lines represent exponential function fits. 
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all parameters measured (see Appendix B for detail).  

5.2.1 Linear Mixed Effects Model - Velocity 

To better understand whether spatial frequencies (and orientation) directly impacted participants’ 

walking speed (velocity) or whether they impacted visual discomfort that then affected velocity, 

cross-classified Markov Chain Monte Carlo general linear mixed-effects modelling was applied to 

the velocity data, in % relative to pattern-less control floor (Burn-in = 500, Chain Length = 10,000, 

Thinning Interval = 1). This allowed for any effects introduced by intra- and inter-individual 

variability unrelated to stimulus modulation to be controlled for by classifying them as random 

effects when examining the influence that each condition had on measures of velocity. 

Accordingly, participant and trial order were included as random effects, where trial order reflects 

the order of the 5 presentations of each unique spatial frequency and orientation condition 

combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with the fixed effects 

(spatial frequency, orientation, and most crucially visual discomfort) and their interactions.  

The spatial frequency variable was computed as continuous numerical data, and orientation and 

visual discomfort as discrete numerical data, with velocity being computed as continuous 

numerical data. Spatial frequency was coded with the numerical values of the 7 spatial frequencies, 

therefore, the parameter estimate for velocity reflects the difference between 0 and 1 CPD, i.e., 

the minimum and maximum CPD conditions. In order for orientation to be included in the model, 

the values of each orientation had to be dummy coded numerically, where the ‘horizontal’ 

orientation (Experiment 5) was coded as -1, the ‘vertical’ orientation (Experiment 6) as +1, and 

the checkerboard condition (Experiment 7) as 0. This numerical arrangement reflected the 

checkerboard pattern orientation sitting between both the ‘horizontal’ and vertical’ orientations. 

The parameter estimate for velocity in this context reflects a change in orientation presentation. 

Visual discomfort was coded with the numerical values of the 1 – 7 scale, and so parameter 

estimates here reflect an increase of 1 in visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that velocity data was normally distributed across the 

different levels of fixed and random effects.  

Only the modelling for velocity is presented in the main body of this chapter, owing to velocity 

being a composite measure of both step length and step time, and previous research demonstrating 
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it as being the most sensitive measure of gait when examining the role of perceptual load derived 

from changes in the immediate visual environment (Amboni et al., 2013; Burtan et al., 2021). 

However, cross-classified Markov Chain Monte Carlo general linear mixed-effects modelling for 

step length, step time and subjective ratings of visual discomfort can be found in the appendices 

(see appendix B).  

Prior to building the models, all three independent variables that would function as fixed effects 

(i.e., spatial frequency, orientation and visual discomfort) were checked for multicollinearity. This 

was done by constructing a linear regression model, which included all three variables, and then 

calculating the variance inflation factor (VIF) for each variable. The VIF values for each variable 

were close to 1 and <5, suggesting that there was a very weak to no correlation. This indicates that 

the data met the assumptions of collinearity required to construct the models as multicollinearity 

was of no concern (spatial frequency, VIF = 1.58; orientation, VIF = 1.00; visual discomfort, VIF 

= 1.58). Moreover, all models were confirmed to have converged by running each model through 

the Heidelberger and Welch’s convergence diagnostic (Heidelberger & Welch, 1983). Each model 

passed both the stationarity and halfwidth test, which indicates that the sampled values come from 

a stationary distribution and that the number of iterations were sufficient to ensure that the post-

mean values come from a chain had converged.  

The actual models were constructed from simple (single fixed effects), through to two and then 

three-way interactions between fixed effects. At each stage, fixed effects found to be non-

significant were dropped from the proceeding model, labelled ‘a’, and ‘b’ if required. . The pMCMC 

value for each fixed effect within each model was used to detect non-significant values, i.e., with 

an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, unless there 

were no fixed effects dropped from the original model. The null model (N) only includes random 

effects, and consequently does not include any of the fixed effects.  These models therefore present 

the combination of predictors that best describe the variance at each stage. See Table 5.1 for the 

model outputs. Models with lower DIC scores are considered to reflect a better fit of the data 

(Spiegelhalter et al., 2002).  
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Table 5.1 Model fit comparisons for models estimating velocity based on the frequency spacing and orientation 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Ori = orientation, 
VD = visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N=Null model 

Model DIC Fixed Effects Random Effects 

N 106197.8  PT, TO 

1 105139.7 SF, Ori, VD PT, TO 

1a 105140.1 SF, VD PT, TO 

2 105050.8 SF, VD, SF x VD, SF x Ori, VD x Ori PT, TO 

2a 105049.1 SF, VD, SF x VD, SF x Ori PT, TO 

3 105030.4 SF, VD, SF x VD, SF x Ori, SF x VD x Ori PT, TO 

3a* 105028.2 SF, VD, SF x VD, SF x VD x Ori PT, TO 

 

Based on the DIC values for each model in Table 5.1, the best fitting model was model 3a, which 

included spatial frequency and visual discomfort as fixed effects, the interaction between spatial 

frequency and visual discomfort, and the three-way interaction between spatial frequency, visual 

discomfort and orientation. The parameter estimates, upper and lower 95% confidence, effective 

sample size, and pMCMC values for this model are displayed in Table 5.2. 
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Table 5.2 Parameter estimates and 95% confidence intervals for the fixed effects and the interactions between the 
fixed effect, which make up the predictors of the model for velocity variability. Number of observations and marginal 
/ conditional R2 values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.05 99.48 100.62 9500 <.0001 *** 

Spatial Frequency -1.64 -2.00 -1.27 9500 <.0001 *** 

Visual Discomfort -0.83 -0.91 -0.75 10441 <.0001 *** 

Spatial Frequency  
x Visual Discomfort 

 0.48 0.35 0.60 9500 <.0001 *** 

Spatial Frequency 
x Visual Discomfort x 
Orientation 

-0.26 -0.31 -0.21 9500 <.0001 *** 

Random      

Participant  3.84 2.56 5.38 8620  

Trial 0.07 0.00 0.21 5899  

Deviance Information Criterion (DIC)                                                                    105027.6 

 

As can be seen in Table 5.2., changes in spatial frequency and subjective ratings of visual 

discomfort provide a large degree of the explanatory power of the variance in velocity recorded 

across the three experiments, with additional explanatory power coming from  the interaction 

between spatial frequency and visual discomfort, and the three-way interaction between spatial 

frequency, visual discomfort and orientation. In other words, whilst the direct impact of spatial 

frequencies and visual discomfort on gait kinematics seem to be the dominant factors affecting 

gait, more complex interactions between spatial frequencies, visual discomfort and orientation also 

mediate effects observed.  
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5.3 Discussion 

Across three different experiments (each with a different stimulus orientation), walking over floors 

with patterns parametrically varied in their spatial frequencies generally led to a decrease of gait 

velocity and step length with increasing spatial frequencies, whilst step time and subjective ratings 

of visual discomfort increased, relative to walking over a medium grey control background. These 

results are thus in line with expectations based on the human contrast sensitivity function 

(Campbell & Robson, 1968), previous studies examining the relationship between spatial 

frequency and visual discomfort (O’Hare & Hibbard, 2011; Penacchio & Wilkins, 2015; Wilkins 

et al., 1984), and studies examining the impact of cognitive load and subjective ratings of visual 

discomfort on fundamental measures of gait (Amboni et al., 2013b; Burtan et al., 2021). These 

results seem thus to confirm our hypothesis that an increase in high-contrast spatial frequencies 

of task-irrelevant decorative floor patterns would lead to an increase in task-irrelevant visual noise 

relative to walking-relevant signals, introducing more uncertainty about the floor surface itself and 

thus requiring longer sampling time and slower decisions on individual steps. 

Before being able to conclude that it is indeed a decrease in signal-to-noise ratio for higher spatial 

frequencies that drives the effects observed here, we need to consider a range of alternative 

interpretations. First, one might want to question  whether our calculations and manipulations of 

spatial frequency reliably capture the maximum sensitivity range of the human visual system given 

that the highest spatial frequency tested here was 1 cycle per degree of visual angle (and the 

maximum sensitivity is expected at 3 cycles per degree, Campbell & Robson, 1968). We would 

argue that our measurement from eye height to floor to calculate spatial frequency substantially 

underestimates the distance between eye and where people look whilst walking. Indeed, when 

walking along flat, hazard-free ground, people do not look directly to the ground in front of their 

feet but will typically fixate on the floor approximately two steps ahead of their current position, 

making other fixations along the future path (Matthis et al., 2017; Patla, 1997). In other words, the 

range of spatial frequencies available when walking for each of our conditions varies depending 

on the actual fixation distance on the floor (i.e. from the point of fixation, spatial frequencies 

would further increase toward the periphery in the upper visual field and decrease toward the 

periphery in the lower visual field). As such, the spatial frequencies referred to in this study 

function as proxy measures. Accordingly, for our “1.0 CPD” condition (Condition 1), we would 

expect an actual range of ~1.0 CPD (if people were to look straight onto the floor in front of their 

feet) to about 7.5 CPD (if people looked from the starting position of the walk to the floor at the 

very end of the walkway), a range of ~0.5 CPD to  3.25 CPD for our “0.5 CPD” condition 



101 
 

(Condition 2), and so forth. Our 1.0 CPD condition thus captures the maximum sensitivity of ~3 

CPD (Campbell & Robson, 1968), if the participant was to make fixations on the ground at 

approximately two steps ahead of their current position.  

It is important to note here that participant gaze location was not controlled for and no mobile 

eye tracking was conducted. As such, it is impossible for any conclusions to be drawn on where 

participants were looking during each of the walks, and when. Matthis et al (2017) found that 

people would fixate on the ground approximately 50% of the time when walking over flat terrain. 

However, Marigold (2011) estimated floor fixations to be made closer to 10% of the time in young 

healthy adults when walking over flat, hazard-free ground. With such a wide range in potential 

visual sampling time of the ground, it is difficult to speculate what individual participants in our 

experiments might have been doing. Yet, the relatively consistent results across the three separate 

experiments provide sufficient weight to our argument that decorative task-irrelevant stimuli have 

the capacity to influence gait guidance, most likely by increasing uncertainty about the state of the 

floor surface, requiring an increase in visual sampling time of the ground surface ahead of where 

one intends to walk. This is reflected in the recorded changes in gait velocity and step length.  

Second, rather than a direct impact of changes in low-level image statistics and signal-to-noise 

ratio, could it be the increased visual discomfort that drove the slowing of gait? Indeed, it has been 

argued that medium spatial frequency stimuli result in sub-optimal visual processing and cortical 

over-excitation (Field, 1987), which subsequently leads to the subjective experience of visual 

discomfort (O’Hare et al., 2013). Also, Burtan et al (2021) found that visual discomfort better 

accounted for slowing of gait than low-level image statistics themselves when walking toward 

naturalistic scenes projected onto the back end of the laboratory. At first glance, this seems 

somewhat inconsistent with our findings here where spatial frequency changes and subjective 

ratings of visual discomfort explained most of the variance in gait . However, one needs to keep 

in mind that in Burtan et al.’s study, low level image statistics changed during each walk with the 

decreasing distance between the person and the images projected onto the wall in front of them. 

In the experiments presented here, image statistics  remain consistent, which might explain why 

their impact is far stronger here. Indeed, the results from our multi-level modelling demonstrate 

that both visual discomfort and the manipulations in spatial frequency that are, independent from 

one another, the main drivers in slowing gait, with the interaction between spatial frequency and 

visual discomfort providing some explanatory power for the slowing of gait. Thus, the modelling 

results suggest that increased perceptual noise and visual discomfort, though derived from the 

same source, i.e. changes in spatial frequency, are indeed two separate mechanisms that 
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independently and interactively influence gait.  

Third, if it were just changes in signal-to-noise ratio for higher spatial frequency patterns that 

underlie the gait slowing observed here, why did we observe a pattern orientation effect, with gait 

being most strongly affected when floor patterns had an orientation parallel to walking direction 

(i.e., Experiment 6 ‘vertical’ presentation)?  The most likely explanation is that in addition to higher 

spatial frequency patterns reducing the signal-to-noise ratio relevant for walking, a second effect 

might play a key role here: i.e. that of the so-called ‘wallpaper’ illusion. Indeed, the wallpaper 

illusion describes an illusion of depth, first denoted by Helmholtz (1924), that occurs as an error 

in convergence between the two eyes: whilst the perceiver believes both eyes are fixed on the same 

edge of a (repetitive) pattern, the eyes are in fact fixated on neighbouring edges. This results in an 

erroneous perception of depth of the surface and has been linked to disorientation and falls on 

escalators (Cohn & Lasley, 1990). As convergence for the two eyes is unidirectional, this illusion 

would only be applicable to the ‘vertical’ pattern orientation. The ‘wallpaper’ illusion is most 

commonly associated with patterns with a strong periodic structure, such as escalator treads, and 

so the higher spatial frequency displays at this orientation may have evoked this depth illusion, 

creating a disparity in perceived distance from the floor relative to the actual distance confirmed 

by proprioceptive feedback. However, even if such an additional effect might underlie the stronger 

impact of “vertically” oriented high-contrast frequency stripes on gait, our argument of increased 

uncertainty about the floor for such patterns would still hold: uncertainty not only regarding 

possible lack of information about obstacles or the physical consistency of the floor surface, but 

also uncertainty about perception of depth would be increased and  could explain a further 

reduction in walking speed in order to increase visual sampling time. 

Last but not least, the effects recorded, even though highly consistent, were relatively small (i.e., 

~2-3% of changes in velocity and step length). We did not anticipate large effect sizes for changes 

in gait relative to spatial manipulations of purely decorative, task-irrelevant visual information on 

the ground plane, owing to gait being typically very stable, ~2 - 2.3% variability for step length and 

walking speed for young adults walking on flat obstacle-free ground (see Chapter 1: Table 1.1, 

Collins & Kuo, 2013). Within this context, and in relation to pattern information barely impacting 

on gait in Experiment 4 (Chapter 4), the systematic changes in gait presented here are relatively 

large, particularly when you  consider that the participants were aware that the ground in the 

laboratory was flat and obstacle free. Moreover, the participants in this study were young, healthy 

adults who reported normal or corrected-to-normal vision, and had no visual, cognitive or physical 

issues that might have negatively impacted their capacity to see or walk. Also, none of them 
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reported increased sensitivity to pattern glare often found in people with migraine (e.g. Shepherd, 

2020; Shepherd et al., 2012, 2013), for whom one would expect bigger effects Finding such a 

reliable effect of 2-3% is thus surprising and provides meaningful insight into how visual 

information in our built environments may impact how we move.  

From our results, it thus seems that the human visual system is not optimally adapted to process 

the high-contrast linear spatial frequency patterns commonplace in the urban environment, such 

as for example barrier matting in the entrances to many public buildings (see Figure 5.3). We 

propose that the sub-optimal signal-to-noise ratio induced by the higher spatial frequencies 

requires increased sampling time to gather sufficient signal to guide walking (e.g. to determine the 

floor surface’s stability or the presence of potential hazards) due to the spatial and temporal 

processing capacity limitations of the visual system (for review see e.g. Zhaoping, 2014).  

 

We interpret this increased sampling requirement as equating to increased perceptual load. As 

increased perceptual load has been linked to reduced walking speed (Amboni et al., 2013; Burtan 

et al., 2021), it is then tempting to speculate that the link between changes in gait and subjective 

ratings of visual discomfort recorded in this study is driven by the perceptual load induced by the 

spatial frequency of the floor patterns rather than being directly linked to the spatial frequencies 

themselves.  

Figure 5.3 Example of barrier matting at the 
exit of Senate House, University of Bristol 
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Also, one can reasonably assume that the effects described here may be far more pronounced in 

people with higher visual sensitivity (Juricevic et al., 2011), or in those who rely more heavily on 

visual cues over vestibular cues for postural control (e.g. Powell et al., 2022). These groups include 

people living with migraine (Shepherd, 2020; Shepherd et al., 2012, 2013), epilepsy (Radhakrishnan 

et al., 2005), people with neurodiverse conditions such as autism or ADHD (Grandin, 2009), 

people with Persistent Postural Perceptual Dizziness (PPPD) (Powell et al., 2020),  and most 

crucially older people and those with neurodegenerative diseases, such as Parkinson’s and 

Dementia (Buckley et al., 2011).  

This suggests that there may be a sizable cohort in the general population who may be more 

sensitive to patterns similar to those presented in this study, which may be seen both in subjective 

ratings of visual discomfort and changes in gait kinematics. This will have to be confirmed in future 

work.   

In conclusion, we here provide clear evidence across three experiments that spatial frequency 

manipulations of ground patterns approaching the maximum sensitivity of the human visual 

system lead to a reduction in walking speed and step length, most likely induced by increased 

uncertainty about the state of the environment. Whilst this reduction might appear small (2-3%), 

it is highly consistent. Furthermore, we have confirmed that spatial frequencies in this range also 

lead to an increase in the subjective experience of visual discomfort.  
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Chapter 6: The impact of spatial frequency, 

contrast, and overall luminance of linear floor 

patterns on human gait kinematics 

 

Building on the results of the experiments presented in chapter 5, this chapter examined how 

changes in contrast and overall luminance would affect the spatial frequency pattern effects on gait 

kinematics described in Chapter 5.  

In line with predictions of an increase in uncertainty about the environment’s state with increased 

task-irrelevant pattern noise (see Chapter 1: Fundamentals of Vision & Chapter 5: Discussion) and 

with findings in Chapter 5, gait velocity should slow, step length shorten and step time increase 

for walks over patterns with higher spatial frequency at high contrast compared to walks over high-

contrast patterns with a low spatial frequency or a unicoloured pattern-free control floor.   

Keeping overall luminance constant, a decrease in contrast for the same spatial frequency patterns 

should then reduce any effect the same spatial frequency patterns had on gait kinematics at high 

contrast . See discussion regarding the contrast sensitivity function (Campbell & Robson, 1968, 

Chapter 1: Fundamentals of Vision).  

Signal detection sensitivity and reaction time has been demonstrated to be negatively affected by 

luminance, when presented within the mesopic light range, i.e., out with the photopic light range, 

where low luminance  reduces the detectability of stimuli (Smith & Ratcliff, 2009). The literature 

on the impact of light levels on gait has been mostly confined to research examining pedestrian 

behaviour in different street lighting conditions (for a review, see Ingi et al., 2022), where low 

illuminance in laboratory settings have been shown to reduce walking speed (Choi et al., 2014; 

Pedersen & Johansson, 2018), step length, stride time and increase double support time, and the 

variability of these measures (Huang et al., 2017), with the gait of older participants being more 

severely affected (Choi et al., 2014). Furthermore, pedestrians appear to make fixations on the 

ground more often and for longer durations, approximately 40-50%, under dim lighting conditions 

(Davoudian & Raynham, 2012). The interpretation here would be that low level lighting reduces 

signal detection, i.e., increasing ambiguity about the surrounding environment, which results in 

more cautious gait behaviour. Note that in our experiments here, we are examining luminance on 
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the ground surface, and not illuminance levels of the space itself, which the aforementioned studies 

have examined. In contrast to Experiment 8, reducing overall luminance at the same time as 

reducing contrast, whilst keeping the spatial frequency of the pattern unchanged, i.e., Experiment 

9, should increase uncertainty again and thus affect related gait kinematics over and above those 

observed for walking over a uniform control floor at very low lighting levels.  

In other words, this chapter aimed to determine whether the impact that spatial frequency 

manipulations have on gait  (see Chapter 5), hold at lower contrast levels, and at which level of 

lighting these effects fall away.   

Over the course of two experiments, the contrast of square-wave grating floor patterns were 

manipulated across two spatial frequencies (0.5 CPD and 0.03125 CPD, respectively), as 

determined from the results in Chapter 5). In both experiments, square-wave grating patterns were 

presented orthogonal to walking direction. For Experiment 8, the role of contrast was examined, 

by keeping overall luminance constant whilst parametrically increasing luminance contrast from a 

central, medium point - Michelson contrast of 0.0 (grey/ grey gratings) to a maximum Michelson 

contrast of 0.8. For Experiment 9, the impact of increasing contrast at the same time as overall 

luminance was examined by increasing contrast from a Michelson contrast of 0.0 at very low 

luminance (black/ black gratings at 0.01 cd/m2), to a Michelson contrast of 0.9972 (black/ white 

gratings).  

Furthermore, we expected the adjustments in gait as a result of spatial frequency, contrast and 

luminance interactions to correlate with participants’ subjective ratings of visual discomfort. For 

this, visual discomfort was recorded for each trial; thus capturing ratings for each pattern 

configuration across both experiments. 

6.1 Methods 

6.1.1 Participants 

Sample size was based on comparable studies conducted within the lab (i.e., Burtan et al., 2021; 

Leonards et al., 2015). A total of 40 participants was recruited to take part in two separate 

experiments (20 participants per experiment) in the Bristol Vision Institute (BVI) movement 

laboratory at the University of Bristol: Experiment 8 (15 female, 4 males, 1 non-binary; aged 18-

31 years, M = 20.8 years, Experiment 9 (15 female, 5 males; aged 18-27 years, M = 21.3 years). All 

participants reported normal or corrected-to-normal vision, no previous or current injuries that 
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would impair their vision or their walking, and all gave written informed consent prior to and 

following completion of the experiment. Experiments were approved by the Faculty of Science 

Ethics Committee at the University of Bristol (ref: 10621040422). Participants were recruited from 

the undergraduate and postgraduate community from the School of Psychological Science and 

were reimbursed for their time with course credits. 

6.1.2 Stimuli 

Square-wave gratings (Experiments 8 & 9) were projected onto the floor of the laboratory via six 

Optoma projectors (Optoma EW536, resolution 1280 × 800mm, frequency 60 Hz). This created 

a 12 x 1.5m illuminated walkway within a lab floorspace measuring 15 x 5m (see Chapter 5, Figure 

5.1 for example) in an otherwise completely dark room. Square-wave grating orientations were 

orthogonal to the walking direction for both experiments. Spatial frequency patterns for two spatial 

frequencies (0.5 CPD and 0.03125 CPD) were scaled to account for a participant’s height, 

calculating cycles per degree (CPD) of visual angle on the basis of the distance between a 

participant’s eye height and the floor. Spatial frequencies were varied on a walk-by-walk basis.  

In Experiment 8, gratings were presented at various contrast levels, parametrically increasing from 

a central uniform grey floor control condition (Condition 0: i.e., grey  4.425 cd/m2), to 4.514 vs 

4.337 cd/m2 (Condition 1) 4.779 vs 4.071 cd/m2 (Condition 2); 5.576 vs 3.275 cd/m2 (Condition 

3); and 7.965 vs 0.885 cd/m2 (Condition 4), keeping the overall luminance constant across 

conditions. Gratings were consistently presented with an equal duty cycle (1:1). The presentation 

of the four contrast levels over the two spatial frequency presentations, and the uniform grey 

control condition, resulted in nine conditions. Per participant, there were five presentations of 

each condition, totalling 45 walks. Conditions were presented in random order. 

In Experiment 9, gratings were again presented at various contrast levels, but this time black 

background bars remained consistent at 0.01 cd/m2, whilst contrasting foreground bars were 

parametrically varied from black 0.01 cd/m2 (i.e. uniform control floor) to 0.089 cd/m2 (Condition 

1), 0.266 cd/m2 (Condition 2), 0.797 cd/m2 (Condition 3), 2.390 cd/m2 (Condition 4) and 7.169 

cd/m2 (Condition 5), thus increasing contrast and, more importantly for the purpose of this 

experiment, overall luminance levels from scotopic/mesopic lighting (below 1.25cd/m2), where 

vison relies more on rod cells, and therefore peripheral vision (Stockman & Sharpe, 2006)) to 

mesopic/photopic lighting (above 1.25cd/m2, ibid). Again, the importance here in the difference 

in contrast rather than the overall luminance per se. Gratings were consistently presented with an 

equal duty cycle (1:1). The presentation of the 5 luminance/contrast levels over the 2 spatial 
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frequency presentations, and the black/ black control condition, resulted in 11 conditions. Per 

participant, there were five presentations of each condition, totalling 55 walks. Conditions were 

presented in random order. 

6.1.3 Procedure 

After establishing participants’ height for floor pattern scaling, attaching infrared reflective markers 

for motion capture to the outside of participants’ ankles (lateral malleolus), feet (first 

metatarsophalangeal joint), the sternum, asking participants to wear a purpose-fitted hat with 

another 3 markers attached to the front, participants were asked to perform five practice walks at 

their natural walking speed. Starting at a designated starting position, participants walked down the 

lab over the uniform grey control floor (4.425 cd/m2) until they reached the back wall, and then 

returned to the starting position. (Note that conditions for practice trials were identical for both 

Experiments 8 and 9). Overhead lights were switched off for the practice trials to allow participants 

adequate time to dark adapt and to familiarise themselves with the room as it would look for the 

remainder of the experimental session. Dark adaptation here is considered as the participants 

sufficiently adjusting to the overall luminance of the room within the context of the lab, with 

overhead lights turned off, and only light from the projected walkways illuminating the room.  

For the actual experiments, participants were presented with the respective spatial frequency 

stimulus patterns and contrast levels described above. After participants reached the back wall, 

they were asked to rate the floor pattern that they had just walked over for visual discomfort on a 

7-point Likert Scale, from ‘1 – not at all uncomfortable’ to ‘7 – very uncomfortable’, before 

returning to the starting position for the next walk. Note here, that visual discomfort rating per 

trial functioned as a secondary task, which was to reduce demand characteristics. The task took 

approximately 35 minutes for Experiment 8 and 45 minutes for Experiment 9, including breaks. 

Gait was recorded for each trial via the passive, 3D-optical motion capture system, where x-

direction denotes lateral movement, y-direction denotes direction of travel down the lab space, 

and z-direction denotes vertical movement (see Chapter 4 for more detail on methodology). 

6.1.4 Data Analysis 

6.1.4.1 Calculating Michelson Contrast Values  

For the purposes of data analysis, the differences in luminance (in cd/m2) between foreground 

and background stripes for each grating was calculated and reported as Michelson contrast. For 
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Experiment 8 (i.e. contrast manipulation only, constant overall luminance across conditions), the 

control condition with 4.425 cd/m2; thus had a Michelson Contrast of 0; Condition 1 (4.514 vs 

4.337 cd/m2) of 0.02; Condition 2 (4.779 vs 4.071 cd/m2) of 0.08; Condition 3 (5.576 vs 3.275 

cd/m2) of 0.26; and Condition 4 (7.965 vs 0.885 cd/m2) of 0.8.   

For Experiment 9, in which the background luminance (i.e. the darker of the two stripes within 

the grating) was kept constant at 0.01 cd/m2 across conditions whilst the foreground was 

parametrically increased in luminance, we also calculated Michelson Contrasts for the general 

analysis for completion, but plotted the log-scaled luminance values of the foreground stripes in 

figures for representation. The control condition (0.01cd/m2) thus had a Michelson contrast of 0; 

Condition 1 (0.089 vs 0.01 cd/m2) of 0.797; Condition 2 (0.266 vs 0.01cd/m2) of 0.927; Condition 

3 (0.797 vs 0.01 cd/m2) of 0.975; Condition 4 (2.390 vs 0.01 cd/m2) of 0.992; and Condition 5 

(7.169 vs 0.01cd/m2) of 0.997. 

6.1.4.2 Motion Capture Data Extraction 

Raw motion capture data were pre-processed for statistical analysis via the Qualisys motion 

tracking system proprietary software (QTM, Qualisys AB) to automate the identification of marker 

trajectories. All trials were manually checked for marker labelling errors and recording drop-outs. 

No trials had to be removed as a result of these checks. This resulted in 40 participants’ datasets 

(i.e. 20 per experiment) for analysis. A low-pass, second-order Butterworth filter was then applied 

to the data, with 5Hz frequency cut-off, in order to remove high-frequency noise. The projection 

and recording area covered -7m to +5m, totalling 12m (along the y-axis). Data for each trial were 

truncated to between -5m and +2m (along the y-axis) from the centre of the room to eliminate 

any data that reflected acceleration up to the preferred walking speed at the beginning of each walk 

as well as movement data where it was deemed that there was not a sufficient portion of floor 

patterns visible anymore toward the end of the walk.  

6.1.4.3 Step Detection and Measures of Gait 

Velocity and position data were extracted for both ankle markers to identify and label individual 

steps, and from the sternum marker to calculate continuous measures of velocity. These kinematic 

data were extracted for each individual trial. Velocity and step length were calculated using the 

same method as described in Burtan et al (2021). 
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6.1.4.4 Exclusion Criteria 

An additional stage of data exclusion was conducted once the motion capture data were processed 

and arranged in terms of step lengths, step times and velocity per trial. Based on assumptions about 

the metabolic cost associated with increasing step length over 114% from an energetically 

optimised average step length (Kim & Bertram, 2018) for walking over the uniform grey control 

floor, we set our upper threshold limit of step length at 120% of baseline. This was mirrored in 

the opposite direction, where the lower threshold limit for step length was set to 80% of baseline. 

This left us with a total of 9206 individual steps for Experiment 8 (15 steps removed), 7585 

individual steps for Experiment 9 (11 steps removed). Steps were checked to ensure that > 80% 

of steps remained for each participant for each condition across both experiments.  



111 
 

6.2 Experiment 8: Results and Discussion 

To visualise the overall effect of spatial frequency and contrast manipulations on all three measures 

of gait (velocity, step length and step time), group means and 95% confidence intervals across 

individual data points for the respective gait measure were plotted against log-scaled Michelson 

contrast, for the two spatial frequency conditions separately (see Figure 6.1). All data had first been 

normalised relative to the average measures of gait calculated per participant for the control 

condition (i.e., medium grey floor) . The same plots were also produced for subjective ratings of 

visual discomfort.  

In line with the hypothesis that the reduction of contrast of square-wave grating floor patterns 

should decrease the amount of pattern-induced, task-irrelevant, visual noise and with it any impact 

of floor patterns on gait kinematics, , velocity and step length decreased with increasing contrast 

when walking over floor patterns in the higher spatial frequency condition (see Figure 6.1A,B). At 

A B 

C D 

Figure 6.1 Group average of individual gait changes (in % relative to medium luminance grey control floor), plotted against 
log-scaled Michelson Contrast Levels  for the two spatial frequency patterns (0.5 CPD = red symbols; 0.03125 CPD = green 
symbols) and the medium luminance uniform grey control floor (black symbol). Plots are as follows: (A) velocity, (B) step length, 
and (C) step time. In (D) subjective Visual Discomfort ratings are plotted against log-scaled Michelson Contrast, with spatial 
frequency patterns denoted by colour. Error bars represent 95% confidence intervals. 
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the same time, subjective ratings of visual discomfort increased (Figure 6.1D), as expected. Step 

time remained relatively stable across spatial frequency manipulations. These findings are thus in 

line with findings in Chapter 5.  

Looking at the key factor of this experiment, namely the parametric contrast manipulation, it 

indeed appears that reducing contrast decreases the impact of medium-spatial frequency patterns 

on gait in line with predictions from the contrast sensitivity function of the human visual system, 

where a decrease in contrast equals lower activation due to decreased sensitivity (Campbell & 

Robson, 1968). This is also reflected in the visual discomfort data, where ratings of visual 

discomfort for the medium spatial frequency presentations is lower for reduced contrast 

conditions, where pattern-induced discomfort is reduced.   

6.2.1.1 Linear Mixed Effects Model - Velocity 

To examine the impact of spatial frequency and contrast manipulations on participants’ walking 

speed (velocity), as well as any explanatory impact that visual discomfort might have had on 

velocity, cross-classified Markov Chain Monte Carlo general linear mixed-effects modelling was 

applied to the velocity data, in % relative to the control floor (Burn-in = 500, Chain Length = 

10,000, Thinning Interval = 1). This allowed for any effects introduced by intra- and inter-

individual variability unrelated to stimulus modulation to be controlled for by classifying them as 

random effects when examining the influence that each condition had on measures of velocity. 

Accordingly, participant and trial order were included as random effects, where trial order reflects 

the order of the 5 presentations of each unique spatial frequency and contrast condition 

combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with fixed effects 

and their interactions.  

The spatial frequency, contrast and visual discomfort variables were computed as discrete 

numerical data, with velocity being computed as continuous numerical data. Spatial frequency was 

coded with the numerical values of the 2 spatial frequencies, therefore, the parameter estimate for 

velocity reflects an increase of 1 CPD (note that the spatial frequencies here range from 0.03125 

– 0.5 CPD). Contrast was also coded with the numerical values of the 5 Michelson contrasts, and 

so the parameter estimate reflects an increase of 1 in contrast (note that Michelson contrast ranges 

from 0.01 - 0.8 across the 5 conditions in this study). Visual discomfort was coded with the 

numerical values of the 1 – 7 scale, and so parameter estimates here reflect an increase of 1 in 

visual discomfort.  
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The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that velocity data was normally distributed across the 

different levels fixed and random effects. 

As in previous chapters, only the modelling for velocity is presented. Cross-classified Markov 

Chain Monte Carlo general linear mixed-effects modelling for step length, step time and subjective 

ratings of visual discomfort can be found in the appendices (see appendix C).  

Prior to building the models, all three independent variables that would function as fixed effects 

(i.e., spatial frequency, contrast and visual discomfort) were checked for multicollinearity. For this, 

a linear regression model was constructed, which included all three variables, and then the variance 

inflation factor (VIF) was calculated for each variable. The VIF values for each variable were close 

to 1 and <5, suggesting that there was a very weak to no correlation. This indicates that the data 

meet the assumptions of collinearity required to construct the models as multicollinearity was of 

no concern (spatial frequency, VIF = 1.28; contrast, VIF = 1.50; visual discomfort, VIF = 1.84). 

Moreover, all models were confirmed to have converged by running each model through the 

Heidelberger and Welch’s convergence diagnostic (Heidelberger & Welch, 1983). Each model 

passed both the stationarity and halfwidth test, which indicates that the sampled values come from 

a stationary distribution and that the number of iterations is sufficient to ensure that the post-

mean values come from a chain that has converged.  

The actual models were constructed from simple (single fixed effects), through to two- and then 

three-way interactions between these fixed effects. At each stage, fixed effects found to be non-

significant were dropped from the proceeding model, labelled ‘a’, and ‘b’ if required. . The pMCMC 

value for each fixed effect within each model was used to detect non-significant values, i.e., with 

an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, unless there 

were no fixed effects dropped from the original model. The null model (N) only includes random 

effects, and consequently does not include any of the fixed effects.  These models therefore present 

the combination of predictors that best describe the variance at each stage. See Table 6.1 for the 

model outputs. Models with lower DIC scores are considered to reflect a better fit of the data 

(Spiegelhalter et al., 2002).  
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Table 6.1 Model fit comparisons for models estimating velocity based on the frequency spacing and contrast 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Con = contrast, VD 
= visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N= null model 

Model DIC Fixed Effects Random Effects 

N 43944.52  PT, TO 

1  43515.11 SF, Con, VD PT, TO 

2 43509.03 SF, Con, VD, SF x Con, SF x VD, Con x VD PT, TO 

2a * 43508.62 SF, Con, VD, SF x Con, Con x VD PT, TO 

3 43586.54 SF, Con, SF x Con, Con x VD, SF x Con x VD PT, TO 

3a 43508.62 Model 2aa PT, TO 

 

Based on the DIC values for each model in Table 6.3, the best fitting model was model 2a, which 

included spatial frequency, contrast, and visual discomfort as fixed effects, in addition to the 

interactions between spatial frequency and contrast and between contrast and visual discomfort. 

The parameter estimates, upper and lower 95% confidence, effective sample size, and pMCMC 

values for this model are displayed in Table 6.2. 
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Table 6.2 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for velocity variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 101.06 99.94 102.09 9500 <.0001 *** 

Spatial Frequency -1.19 -1.76 -0.63 9780 <.0001 *** 

Michelson Contrast -1.34 -2.01 -0.73 9500 <.0001 *** 

Visual Discomfort  -0.96 -1.26 -0.69 9500 <.0001 *** 

Spatial Frequency x 
Michelson Contrast 

-2.19 -3.81 -0.41 9806 0.0103 * 

Michelson Contrast x 
Visual Discomfort 

0.59 0.20 0.98 9500 0.0036 ** 

Random      

Participant  2.99 1.27 5.18 7565  

Trial 0.57 0.05 1.66 5116  

Deviance Information Criterion (DIC)                                                                    43508.62 

 

As can be seen in Table 6.2., changes in spatial frequency, contrast, and the interaction between 

the two provide much of the explanatory power of the variance in velocity recorded in Experiment 

8, with additional explanatory power coming from the variance in visual discomfort, and the 

interaction between contrast and subjective ratings of visual discomfort. This provides evidence 

for our hypothesis that reduction of the contrast of square-wave grating floor patterns reduced the 

amount of pattern-induced, task-irrelevant, visual noise, and with it any impact of floor pattern 

spatial frequency on gait kinematics. Moreover, it once more confirms findings in Chapter 5 that 

high-contrast, medium spatial frequency floor patterns impact gait, again slowing gait and reducing 

step size relative to participants’ preferred gait speed / step length on even, hazard free ground. 
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6.3 Experiment 9: Results and Discussion 

As confirmed in Experiment 8, the reduction of contrast minimised the impact of medium spatial 

frequency gratings on fundamental measures of gait, and at the same time reduced subjective 

ratings of visual discomfort experienced from seeing these gratings.  

Experiment 9 focused next on establishing the impact of spatial frequency patterns when the 

overall luminance of the space people were walking in was parametrically reduced from mesopic 

/ photopic to scotopic/mesopic lighting conditions, i.e., below ~ 1.25cd/m2 (Stockman & Sharpe, 

2006). We reasoned that walking under scotopic/mesopic lighting conditions should lead to slower 

gait with shorter steps, in particular when walking over medium spatial frequency square-wave 

grating floors just above threshold of pattern detectability, due to the interaction between lower 

light levels and the medium spatial frequency patterns, both introducing more uncertainty about 

the consistency of the floor surface.  

To visualise the overall effect of spatial frequency and luminance changes / contrast manipulations 

of floor patterns on all three measures of gait (velocity, step length and step time), group means 

and 95% confidence intervals across individual data for the respective gait measure were plotted 

against log-scaled absolute foreground luminance values (in cd/m2), for the two spatial frequency 

conditions separately (see Figure 6.2). All data had first been normalised relative to the average 

measures of gait calculated per participant for the control condition (i.e., dark, low luminance 

floor). The same plots were also produced for subjective ratings of visual discomfort..  
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As can be seen in Figures 6.2, velocity was slower and step length shorter when walking over floor 

patterns with a higher spatial frequency relative to baseline gait measures on pattern-free floors 

and to floors with lower spatial frequency patterns. At the same time, subjective ratings of visual 

discomfort were higher, in line with the findings in Chapter 5, and with Experiment 8. More 

importantly, low overall luminance and contrast, irrespective of spatial frequency, resulted in even 

slower walking (and to a lesser extent smaller steps) than walking over a high-luminance contrast, 

medium-spatial frequency floor or a uniform floor at very low luminance levels. . When the 

luminance level returned to a point where the pattern information was more visible, i.e. to photopic 

lighting above 2cd/m2, the impact of spatial frequency on measures of gait appeared again, 

similarly to that shown in Chapter 5 and the previous experiment. A similar pattern could be seen 

in the visual discomfort data, where ratings were generally higher for medium spatial frequency 

gratings, with ratings increasing with overall luminance and contrast.  

 

A B 

C D 

Figure 6.2 Group average of individual gait changes (in % relative to walking over black control floor) plotted 
against log-scaled absolute luminance values (in cd/m2) for foreground stripes of individual patterns for the two 
different spatial frequency patterns (0.5 CPD = red symbols; 0.03125 CPD = green symbols) and the background 
luminance uniform black control floor (black symbol). Plots are as follows: (A) velocity, (B) step length, and (C) 
step time. In (D), subjective visual discomfort ratings are similarly plotted against log-scaled absolute luminance 
values for foreground stripes, with spatial frequency denoted by colour. Error bars represent 95% confidence 
intervals. 
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6.3.1.1 Linear Mixed Effects Model - Velocity 

To examine the impact of spatial frequency and luminance / contrast manipulations on 

participants’ walking speed (velocity), as well as any explanatory impact that visual discomfort 

might have had on velocity, cross-classified Markov Chain Monte Carlo general linear mixed-

effects modelling was applied to the velocity data, in % relative to the control floor (Burn-in = 

500, Chain Length = 10,000, Thinning Interval = 1). This allowed for any effects introduced by 

intra- and inter-individual variability unrelated to stimulus modulation to be controlled for by 

classifying them as random effects when examining the influence that each condition had on 

measures of velocity. Accordingly, participant and trial order were included as random effects, 

where trial order reflects the order of the 5 presentations of each unique spatial frequency and 

contrast / luminance condition combination within the study. In addition, this technique facilitates 

resampling from the probability distribution of the data to further validate any variance associated 

with the fixed effects and their interactions. 

The spatial frequency, contrast and visual discomfort variables were computed as discrete 

numerical data, with velocity being computed as continuous numerical data. Spatial frequency was 

coded with the numerical values of the 2 spatial frequencies, therefore, the parameter estimate for 

velocity reflects an increase of 1 CPD (note that the spatial frequencies here range from 0.03125 

– 0.5 CPD). Contrast was also coded with the numerical values of the 6 Michelson contrasts, and 

so the parameter estimate reflects an increase of 1 in contrast (i.e., ~ minimum 0.01 to maximum 

0.997 contrast values). Visual discomfort was coded with the numerical values of the 1 – 7 scale, 

and so parameter estimates here reflect an increase of 1 in visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that velocity data was normally distributed across the 

different levels fixed and random effects. 

As for Experiment 8, only the modelling for velocity is presented in the main body of this chapter. 

The remaining models can be found in the appendices (see Appendix C). After performing similar 

checks for multicollinearity (spatial frequency, VIF = 1.49; contrast, VIF = 1.12; visual discomfort, 

VIF = 1.41) and convergence as in Experiment 8,  the actual models were constructed from simple 

(single fixed effects), through to two and then three-way interactions between these fixed effects. 

At each stage, fixed effects found to be non-significant were dropped from the proceeding model, 

labelled ‘a’, and ‘b’ if required. . The pMCMC value for each fixed effect within each model was 

used to detect non-significant values, i.e., with an alpha of 0.05. The model of best fit was then 
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selected from the ‘a’ or ‘b’ labelled models, unless there were no fixed effects dropped from the 

original model. The null model (N) only includes random effects, and consequently does not 

include any of the fixed effects. These models therefore present the combination of predictors 

that best describe the variance at each stage. See Table 6.3 for the model outputs. Models with 

lower DIC scores are considered to reflect a better fit of the data (Spiegelhalter et al., 2002).   

 

Table 6.3 Model fit comparisons for models estimating velocity based on the frequency spacing and contrast 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Con = contrast, VD 
= visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. 

Model DIC Fixed Effects Random Effects 

N 54621.67  PT, TO 

1 * 54211.21 SF, Con, VD PT, TO 

2 54298.15 SF, Con, VD, SF x Con, SF x VD, Con x VD PT, TO 

2a 54294.01 SF, Con, SF x Con PT, TO 

2b 54294.20 SF, Con PT, TO 

3 54250.80 SF, Con, SF x Con x VD PT, TO 

 

Based on the DIC values for each model in Table 6.3, the best fitting model was model 1, which 

included spatial frequency, contrast, and visual discomfort as fixed effects. The parameter 

estimates, upper and lower 95% confidence, effective sample size, and pMCMC values for this 

model are displayed in Table 6.4. 
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Table 6.4 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for velocity variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 99.72 98.7 100.63 9500 <.0001 *** 

Spatial Frequency -1.93 -2.63 -1.26 9801 <.0001 *** 

Luminance/ Contrast  0.54 0.18 0.90 9500   .0027 ** 

Visual Discomfort  -0.81 -1.04 -0.58 9500 <.0001 *** 

Random      

Participant  2.37 1.05 4.17 8282  

Trial 0.55 0.05 1.57 6299  

Deviance Information Criterion (DIC)                                                                    54211.21 

 

As can be seen in Table 6.4., changes in spatial frequency, luminance / contrast, and subjective 

ratings of visual discomfort provide most of the explanatory power of the variance in velocity 

recorded in experiment 9. Thus, the modelling further confirms the pattern of behaviour described 

for Figure 6.2. 

6.4 General Discussion 

Across the two experiments, we have again demonstrated that walking over floors with medium 

spatial frequency patterns led to a decrease of gait velocity and step length, in parallel to an increase 

of subjective ratings of visual discomfort, compared to walking over low spatial frequency floor 

patterns or uniform control floors. These results are in line with findings described in Chapter 5 

and further support our hypothesis that high-contrast, medium-spatial frequency, task-irrelevant 

decorative floor patterns lead to an increase in task-irrelevant visual noise relative to walking-

relevant signals, thereby introducing more uncertainty about the floor surface and thus requiring 
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longer sampling time to gather sufficient information for decision-making on a step-by-step basis. 

Experiment 8 demonstrates that the strong effect which high-contrast, medium-spatial frequency 

patterns have on gait diminishes when the contrast of the square-wave gratings is reduced; in 

parallel with the reduction of subjective ratings of visual discomfort. This reflects the reduction in 

visual detection of pattern information as contrast is reduced, whilst luminance is kept consistently 

high. See discussion regarding the contrast sensitivity function (Campbell & Robson, 1968), 

Chapter 1: Fundamentals of Vision.   

Experiment 9 demonstrates the combined effect of overall luminance and contrast reduction. At 

low luminance and no contrast (control floor), people walked more slowly than at high 

luminance/high contrast for low spatial frequency patterns, indicating increased uncertainty about 

floor consistency at low luminance. This uncertainty seems further increased, if a “just discernible” 

pattern is presented at low overall luminance - irrespective of spatial frequency -, reducing velocity 

and step length even further. It is tempting to speculate that participants are uncertain whether the 

change in pattern that is just detectable at low luminance / low contrast is related to physical 

changes on the floor, such as different floor heights, or belongs just to a pattern. From this 

perspective, it is thus most likely the general ambiguity about the floor surface, due to low 

luminance, that drives the changes in gait. Increasing overall luminance sufficiently for the patterns 

to be detected more clearly (i.e. from scotopic / mesopic to mesopic / photopic lighting conditions 

greater than ~ 2cd/m2) (Stockman & Sharpe, 2006), where the “spatial frequency effect” described 

above can be observed again;  i.e. participants return to their preferred gait speed and step length 

for the low spatial frequency patterned floor whilst slowing gait speed and decreasing step length 

for the medium spatial frequency patterned floors.  

A clear limitation in this study was that we could not examine the effect of overall luminance on 

gait kinematics on its own  (without spatial frequency patterns), due to calibration restrictions of 

the projection system that did not allow us sufficiently small luminance increments. Our projectors 

system set-up restricted the range, and more importantly, the resolution of possible contrast and 

luminance increments we could include in our parametric testing. This restricted the possibility of 

running an experiment that investigated when exactly low-level lighting conditions start to impact 

gait on floors that are otherwise pattern free. Despite this, the fact that we repeatedly demonstrated 

systematic variations in key measures of gait to changes in the contrast and luminance of linear 

square-wave gratings would suggest that these are reliable effects. Indeed, comparably little is 

known about the impact of overall luminance on measures of gait. However, our findings do 

appear to align with the findings of the current literature (i.e., Choi et al., 2014; Huang et al., 2017; 
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Ingi et al., 2022; Pedersen & Johansson, 2018), where reduced luminance appeared to reduce 

walking speed and step length. However, given the limitations of our experiment to isolate 

luminance, future research is required to further investigate the impact that low floor lighting 

conditions have on gait in isolation.   

The effects recorded here are, again, relatively small (~1-3 %), yet reliable (see Chapter 5: 

Discussion for an explanation of why this may be the case).  

Again, the participants in these experiments knew in advance that the floor space that they were 

walking over was flat and free from obstacles and hazards. Due to the short length of walk, 

participants could have quite comfortably walked across the space without looking down at all, as 

they would often do in everyday environments or even with their eyes closed. As such, the 

individuals in this experiment may have been walking in a way that differed from how they 

approach such visual pattern, contrast and luminance information on the ground outside of 

laboratory-based experimental settings, i.e., with less caution, therefore potentially reducing the 

impact on the effects we recorded throughout these experiments. 

Another of the key limitations of these experiments is that patterns were presented as projections 

over a relatively short patterned walkways (12m) in our movement lab. Again, we examined the 

overall walking speed data for each experiment to ensure that we extracted data from a point where 

the participants had reached their maximum speed, and prior to them slowing down. This was the 

reason why our ROI was noticeably shorter than the recording and projection space. However, 

the limited space, and therefore recording time, may have impacted on the size of effects we 

recorded; if so, effects in the real world might be far more pronounced.  

Might the result recorded here be due to demand characteristics; i.e. participants established what 

the experiment was about and thus changed their behaviour? Such an interpretation of the results 

seems very unlikely as all participants were asked at the end of the experiment what they thought 

the experiment was about, and not one indicated an understanding of the purpose of the study, or 

referred to changes in their gait. Although they were aware of the different floor projections for 

each trial, most statements made reference to the visual discomfort ratings for the floors. As such, 

the visual discomfort ratings are the only quantifiable subjective measure that we have for each 

individual and their walking experience throughout the experiments.   

Similar to Chapter 5, our modelling results further support the notion that low-level image statistics 

and sub-optimal signal-to-noise ratio inherent in visual information derived from floor patterns 
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have a direct impact on changes in gait, and that this is effect is exacerbated by increasing visual 

discomfort. However, whilst visual discomfort and signal-to-noise ratio seem to be based on the 

same source of visual information in the immediate environment, they appear to be two 

independent and partially interacting mechanisms affecting gait as indicated by the results from 

our multi-level modelling: indeed, overall luminance, contrast, spatial frequency, visual discomfort 

all explained some of the variability in gait velocity.  

Overall, the results of the two studies align with our argument regarding signal-to-noise, based on 

the contrast sensitivity function (Campbell & Robson, 1968), where there is an increased sensitivity 

to spatial frequencies around 3 CPD. As previously mentioned in the Chapter 5 Discussion, when 

walking along flat, hazard-free ground, people do not look directly to the ground in front of their 

feet but will typically fixate on the floor approximately two steps ahead of their current position, 

making other fixations along the future path (Matthis et al., 2015; Patla, 1997). In other words, the 

range of spatial frequencies available when walking for each of our two spatial frequency 

conditions in these two experiments varies depending on the actual fixation distance on the floor 

(i.e. from the point of fixation, spatial frequencies would further increase toward the periphery in 

the upper visual field and decrease toward the periphery in the lower visual field). As such, the 

spatial frequencies referred to in this study function as proxy measures. Accordingly, we would 

expect an actual a range of ~0.5 CPD to  3.25 CPD for our “0.5 CPD” condition, if people looked 

from the starting position of the walk to the floor at the very end of the walkway. Our 0.5 CPD 

condition thus captures the maximum sensitivity of ~3 CPD (Campbell & Robson, 1968).  

Furthermore, we interpret the lower levels of luminance of the floor as getting too close to contrast 

threshold detection at such low luminance, therefore impacting on signal detection (Smith & 

Ratcliff, 2009). Due to the spatial and temporal processing capacity limitations of the visual system 

(Zhaoping, 2014), this then introduces more task-irrelevant noise relative to walking-relevant 

information, creating more ambiguity about the floor surface, i.e., whether the floor surface is 

stable and obstacle-free. In both cases, this noise-induced ambiguity leads to more uncertainty 

about the stability of the floor, increasing perceptual load, and therefore slowing walking speed 

and reducing step length in order to increase visual sampling time (Amboni et al., 2013; Burtan et 

al., 2021). As luminance increases, the ambiguity about the floor surface is then driven by the 

medium spatial frequency information. The consistency in increased visual discomfort ratings for 

high-contrast, medium-spatial frequency patterns, though somewhat lower in Experiment 9 

compared with Experiment 8, indicate that both visual discomfort and uncertainty about the floor 

seem tightly linked. However, the effects of overall luminance also show that uncertainty about 
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visual information relevant for walking can come from more than one source, i.e., spatial frequency 

and contrast, as well as overall luminance.  

In conclusion, experiments presented in this chapter once more provide evidence that repetitive 

medium-spatial frequency decorative background patterns on the floor that approach the 

maximum sensitivity within the contrast sensitivity function of the human visual system (Campbell 

& Robson, 1968), negatively impact gait by slowing it down. Moving away from this maximum 

sensitivity – either by reducing spatial frequency or by reducing contrast – allows participants to 

return to their preferred gait, both in terms of speed as well as step length. Moreover, low 

luminance appears to have reduced walking speed and step length, where the presence of the 

patterns were close to the detectability threshold. However, as the luminance increased, the 

patterns became more visible, where gait return to that seen in the control condition for the low 

spatial frequency pattern, and walking speed and step length reduced again for the medium spatial 

frequency pattern, demonstrating an interaction between the luminance and spatial frequency of 

the floors. 

Taken together, it thus seems reasonable to conclude that overall luminance, luminance contrast 

of patterns, the patterns’ spatial frequency composition, and the interactions of these factors lead 

to increased uncertainty about the state of the environment, and as a consequence, to slowing of 

gait and increased visual discomfort .  
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Chapter 7: Conclusions  

The environments that human beings build for themselves, in particular modern environments, 

differ substantially from the environmental niche our visual system has evolved for to guide our 

movements through (in particular, bipedal gait; Wilkins et al., 2018). Across nine experiments, this 

thesis aimed to better understand how well our visual system would be able to guide our 

movements, specifically walking, through such modern built environments, by addressing the 

following questions: 

a)  How do people experience walking over floors with visual patterns that do not match the 

physical properties of the floor (i.e. visual illusions which create systematic prediction errors)? (see 

Objective 1) 

b) Does the subjective experience of walking over floors with illusory patterns couple with 

quantitatively measurable changes in gait patterns, in particular foot placement choices as predicted 

on the basis of the type of visual illusion presented? (see Objective 2) 

c) Does the spatial structure of task-irrelevant floor patterns, matched to and manipulated around 

preferred step length, result in spatiotemporal adjustments to gait, i.e., visuomotor entrainment? 

(see Objective 3) 

d) Do low-level visual features of task-irrelevant decorative floor patterns, such as spatial 

frequency, orientation, contrast, and luminance, functioning as increased task-irrelevant visual 

noise, impact gait kinematics in line with expectations derived from the human contrast sensitivity 

function? If so, how do these changes relate to the subjective experience of visual discomfort? (see 

Objectives 4 & 5) 

As experiments have already been discussed in depth in their individual chapters, these final 

conclusions will not include an extensive review. Instead, they might be better understood as a 

general summary in which only the most relevant findings will be listed and evaluated, before 

reflecting on experimental approaches with their strengths and limitations and an outlook into 

future research directions. This will be followed with some more general thoughts about the 

potential impact the work presented here might have for (inclusive) architectural design.   
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7.1 Summary of findings 

7.1.1 Subjective experience of, and gait adjustments to, systematic prediction 

error via visual illusions on the floor 

To effectively guide walking, vision is required to provide accurate information about the 

upcoming environment in order to facilitate proactive adaptation, such as avoiding obstacles, 

selecting appropriate footholds (Bucklin et al., 2023), and adapting and regulating the gait pattern 

itself (Warren, 2006). 

The idea behind the first set of experiments (Experiments 1-3) was therefore to try to create a 

visual prediction error that, if successfully created, would be expected to change gait in a 

predictable way. For this, geometric illusions seemed ideal as the visually perceived environment 

does not match that of the physical properties of the floor (Objectives 1 & 2), but can be clearly 

described in how the perceived illusion diverges from the “real world”.  

For example, the Lisbon Straight pattern used in experiments 1 to 3 generally had a negative effect 

on people’s walking experience, even though the same people found the floors to be perceptually 

striking. Here, illusory depth and increased perceived movement, induced by the high-contrast, 

illusory depth patterns elicited feelings of disorientation and instability when walking (Experiment 

1). This provided some initial understanding of how systematic prediction error from the ground 

surface impacts on the subjective experience of walking.  

We then examined whether these subjective experiences relating to the systematic prediction 

errors, induced by the floors, mapped on to quantifiable changes in gait kinematics. Whilst 

Experiment 2 seemed to provide evidence that foot locations were indeed affected, i.e. that people 

seemed to walk on top of a ridge, more detailed analysis (Experiment 3) did not reveal any evidence 

for a change in step width that should have accompanied such a change of foot placements. 

Instead, we found an overall reduction in step time for the LSP floor relative to its control floor, 

indicating an increase in step speed and a reduction in single support time. As there were no other 

differences in gait recorded between these conditions, determining whether the reduction in step 

time reflected an increase in uncertainty (Keller et al., 2020) or a change in decision making criteria 

(Busemeyer & Townsend, 1993) for the illusion floor relative to its control floor was not possible. 

The results also indicated that both, the Lisbon Angled Pattern (LAP) as well as its “angled” 

control floor resulted in an increase in COM displacement relative to the straight floors, which 

adheres with previous research for walking over angled floor patterns (Leonards et al., 2015). Thus, 
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overall, these two experiments provide tentative evidence that decorative floor patterns that create 

a systematic prediction error not only increase participants’ subjective negative experiences of 

uncertainty to walk over such patterns but have the capacity to alter foot placement selection and 

gait kinematics.  

7.1.2 Visual entrainment of gait 

Perceptual cues, such as optical edge rate and global rate of optic flow, supply necessary 

information for walking speed and direction; thus, operating as effective signals to control 

biomechanical movement (Durgin et al., 2005; Larish & Flach, 1990; Warren et al., 2001). In other 

words, visual cues serve the regulation and balance of perceptual-motor organisation during 

human locomotion, both for perceived and anticipated speed of self-motion, and to establish 

stable reference frames for speed estimation (Durgin et al., 2005; Proffitt et al., 2003; Rieser et al., 

1995). 

Accordingly, in Experiment 4, we examined whether spatial manipulations of task-irrelevant 

decorative lines on the ground, manipulated around preferred step length, resulted in visuomotor 

entrainment, i.e., adjustment of gait to the pattern information provided. Here, the manipulations 

altered velocity, step length, and step time, albeit to a very small amount (around 0.01%) and only 

toward slower gait with shorter steps. There was no indication of any “pulling” effects toward 

longer steps and faster gait. Despite showing statistically significant effects of line spacing 

manipulations on the floor impacting on gait, effects were very small and so are unlikely to be of 

any ecological importance. However, they still suggest that gait is not stable enough to completely 

ignore task-irrelevant information from visual ground patterns.   

7.1.3 The impact of low-level visual features, that increase task-irrelevant 

perceptual noise, on gait  

Whilst less common in nature, high-contrast, medium spatial frequency linear patterns are 

prevalent in our built environments, and have been linked with sub-optimal signal-to-noise 

processing, cortical excitation, and visual discomfort (Wilkins et al., 2018), creating uncertainty 

about the surface these patterns are on. To avoid prediction errors about the surface, particularly 

the ground, increased sampling would be required, thus slowing decision making and signal 

detection (see e.g. O’Hare et al., 2013, for evidence of such a claim). In cases where such patterns 

are on the floor, we would therefore predict that participants would slow their gait  (Objective 4). 

Across the final five experiments, we examined the role of spatial frequency, contrast, and 
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luminance of ground patterns, predicting that in line with the human contrast sensitivity function, 

spatial frequencies around the highest sensitivity should increase task-irrelevant visual noise and 

thus impact gait kinematics. In addition, we explored whether there was a tightly coupled 

relationship between these low-level features and the subjective experience of visual discomfort 

(Wilkins et al., 1984), and, if so, how this related to gait. Converging evidence from all five 

experiments (Experiments 5 to 9) provided strong evidence that high-contrast, higher spatial 

frequency patterns slowed gait, and that this effect closely correlated with the contrast sensitivity 

function (Campbell & Robson, 1968). This was further supported by the findings that reducing 

contrast reduced the impact of spatial frequency on gait; in parallel with the reduction of subjective 

ratings of visual discomfort. Finally, Experiment 9 demonstrated the combined effect of overall 

luminance and contrast reduction, where low luminance and low luminance contrast spatial 

frequency patterns slowed gait even more than walking in an almost completely dark room and as 

much as walking over a high luminance high contrast floor at spatial frequencies close to the 

highest sensitivity of the visual system, indicating increased uncertainty about floor consistency 

close to visual processing thresholds affecting guidance of gait. 

Collectively, these results indicate that decorative, task-irrelevant floor patterns have the capacity 

to produce prediction error, and introduce additional task-irrelevant noise into the visual system 

when walking, resulting in more cautious gait behaviour. The evidence from across the three 

different lines of enquiry explored throughout this thesis indicate that both visual information that 

diverges from what is there physically, and low level visual features such as spatial frequency, 

contrast and luminance interactively introducing noise to the system, all result in changes to the 

gait cycle, which reflects uncertainty regarding the surrounding environment.      

7.2 Novelty and strength of the current approach 

As a consequence of modular design, the use of new materials, and to create urban environments 

that are more visually stimulating, architectural design has seen a notable increase in complex and 

repetitive visual patterns over the past century (Wilkins et al., 2018). Subsequently, repetitive 

narrow-band patterns are prevalent on many surfaces in the built environment, such as carpets, 

barrier matting in entrances to buildings, acoustic panelling or window blinds to name but a few.  

Overwhelming evidence supports the notion that these, often high-contrast, medium-frequency 

and linear patterns have the potential to produce aversive perceptual experiences, which can result 

in visual discomfort (Wilkins et al., 1984), and may introduce increased task-irrelevant noise to the 

visual system, affecting signal detection accuracy and increasing processing time (O’Hare et al., 
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2013). The focus of the  work presented here was to examine if such task-irrelevant and purely 

decorative pattern information increases visual prediction error and noise (i.e., increased 

uncertainty), and thus negatively affects the visual system’s ability to guide gait in the most effective 

way.  

Existing research examining how visual information of the above nature is perceived and 

processed has been predominantly conducted with participants in a seated position, completing 

computer-based tasks (Fernandez & Wilkins, 2008; Juricevic et al., 2011; O’Hare et al., 2013; 

O’Hare & Hibbard, 2011; Penacchio & Wilkins, 2015; Wilkins & Hibbard, 2014) and focused on 

visual discomfort only. At present, very little is known about how such patterns impact 

energetically and mechanically costly processes such as visually-guided locomotion, for which any 

increase in uncertainty of the environment a person is in could lead to significant increases of 

locomotor risk and, in extreme cases lead to falls and injuries (Warren, 2006).  

Building on existing vision research examining the image statistics and pattern characteristics that 

underpin the perceptual experience of visual discomfort (Fernandez & Wilkins, 2008; Juricevic et 

al., 2011; O’Hare & Hibbard, 2011; Penacchio & Wilkins, 2015; Wilkins & Hibbard, 2014), sub-

optimal visual processing (Field, 1987; O’Hare et al., 2013; O’Hare & Hibbard, 2011), as well as 

research examining the role of perceptual load on gait (Amboni et al., 2013; Burtan et al., 2021), 

this work provides strong evidence that the visual system’s ability to effectively guide gait is 

negatively affected by decorative floor patterns. Indeed, for, spatial frequencies and contrasts for 

which the visual system is most sensitive (Campbell & Robson, 1968), as well as under very low 

overall lighting conditions decorative floor patterns slowed gait. Moreover, step length was 

shortened, foot placements were affected and people felt more unstable, supporting hypotheses 

of increased task-irrelevant visual noise and therefore increased uncertainty about the floor’s 

surface conditions.  

These findings are, to the best of my knowledge, the first to show that bipedal gait is affected by 

completely task-irrelevant pattern information on the ground. This is particularly noteworthy as 

gait in young participants as those tested in experiments 2 to 9 is assumed to be highly automated 

(Warren, 2006) and robust (Collins & Kuo, 2013). If even the gait of young, healthy participants 

is affected in such a way, it is then safe to assume that decorative patterns should have a far larger 

impact on gait of a more vulnerable and / or more visually dependent demographics in our society 

such as older people (Saftari & Kwon, 2018) or people with Persistent Postural Perceptual 

Dizziness (PPPD) (Powell et al., 2020). 
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In the wider context of our current built environments, the findings reported in this thesis 

therefore suggest that the most fundamental of human actions is hampered by the way we create 

our urban spaces. If so, this would have serious implications for how we should approach inclusive 

and sustainable design in the future.   

7.3 Limitations, Challenges and Directions for future work 

7.3.1 Limitations and Challenges 

Before being able to conclude that, indeed, certain types of decorative floor patterns impact gait, 

several caveats need to be considered.  

Indeed, one of the key limitations of the work presented here, is that patterns were presented as 

either relatively short vinyl floors (5.7m), or projected as relatively short patterned walkways (12m) 

in our movement lab. We examined the overall walking speed data for each experiment to ensure 

that we extracted data from a point where the participants had reached their maximum speed, and 

prior to them slowing down. This was the reason why our ROI was noticeably shorter than the 

recording and projection space. However, the limited space, and therefore recording time, may 

have impacted on the size of effects we recorded; if so, effects in the real world might be far more 

pronounced.  

More importantly than a potential underestimation of effect size, could the effects found here be 

due to demand characteristics and to people being tested in laboratory conditions? Indeed, gait 

speed can be affected by expectations as can be seen in Experiment 4, for which participants 

walked slower in the pre-trials during which preferred walking speed was calculated  than during 

control trials within the actual experiment. This has most likely been the result of hesitancy from 

being at the beginning of the experiment, and being in a different environment. The resulting 

between-participant inaccuracy in setting comparable spatial frequency parameters for the line 

spacings explored in this experiment, might have been enough to mask any potential results that 

we could have recorded for this experiment. So, as well as the length of the recording space, and 

the relative time of exposure to different visual environments, future studies that require gait 

measurements prior to the experiment itself to fix parameters may benefit from longer or more 

numerous practice and / or recording trials, prior to the experimental aspect of the session.     

Additionally, the participants in all nine studies knew in advance that the floor space that they were 

walking over, whether covered with a vinyl floor or with a pattern projected on it, was flat and free 
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from obstacles and hazards. Due to the short length of walk, participants could have quite 

comfortably walked across the space without looking down at all, as they would often do in 

everyday environments (in particular in experiment 3)  or even with their eyes closed. As such, the 

individuals in our experiments may have been walking in a way that differed from how they 

approach such visual pattern information on the ground outside of laboratory-based experimental 

settings, i.e., with less caution, therefore potentially reducing the impact on the effects we recorded 

throughout our experiments. 

Yet, and in particular in the first two studies using illusion floor patterns in a public engagement 

activity or outside the laboratory, participants’ gaze was intentionally drawn to the floor, therefore 

potentially over emphasizing the impact of the presence of these patterns.  If so, findings might 

be the result of demand characteristics; i.e. people figured out what the experiment was about and 

thus changed their behaviour. Such an interpretation of the results seems very unlikely as for later 

experiments (3 to 9) all participants were asked at the end of each experiment what they thought 

the experiment was about, and not one indicated an understanding of the purpose of the study, or 

referred to changes in their gait. Moreover, there was a very similar pattern of changes to gait in 

response to the floor pattern manipulation in Experiment 4 for both high and low cognitive load 

conditions, suggesting that gait was impacted, regardless of attentional resource availability.  

Despite the above caveats, the findings presented here seem robust, yet it is difficult to estimate 

how well these results will generalise to real world scenarios. However, instances in the built 

environment where visual pattern information does not visually match what is there physically 

would suggest they should. In particular, the comments made by a member of the Public regarding 

their issues with walking over the illusory depth of the tiling pattern of La Rambla, Barcelona, 

Spain (see introduction of Chapter 2), provides an observational indication that this may very well 

be the case. However, further research is, of course, required to validate such claims.      

A further limitation of the studies reported here that needs to be considered is that in order to 

make experiments more ecologically valid, it wasn’t controlled for or limited where participants 

were looking. This free-viewing approach to the experiments was an attempt to have participants 

walk and visually sample the surrounding environment in a similar way to how they would outside 

of the experimental setting. However, this decision came at a cost, namely that without recording 

or analysing eye-tracking data, it could not be confirmed where participants were looking during 

trials. As mentioned before under demand characteristics, as the participants knew the floors were 

flat and obstacle free, they could quite easily have walked during each trial without looking at the 

floor at all.  
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Due to the technological limitations of our projector system, we could not project spatial frequency 

patterns higher than the 1 CPD without aliasing. Our projectors system set-up also restricted the 

range, and more importantly, the resolution of possible contrast and luminance increments we 

could include in our parametric testing. This did not allow me to run an experiment that 

investigated when exactly low-level lighting conditions start to impact gait on floors that are 

otherwise pattern free.  Despite this, the fact that we repeatedly demonstrated systematic variations 

in key measures of gait to changes in the spatial frequency, contrast and luminance of linear square-

wave gratings would suggest that these, at least in this particular context, are reliable effects. 

However future work might want to use  projectors with a wider luminance range and higher 

spatial resolution  to examine how well the findings presented here generalise to other spatial 

pattern configurations, contrasts and other manipulations.   

Across the final five experiments, the recorded changes in gait and the subjective measures of 

visual discomfort were highly correlated. Whilst their exact relationship will need to be explored 

further in future experiments, the modelling performed in all of these experiments indicated that 

it is not visual discomfort that drives the changes in gait, but that changes in gait and visual 

discomfort are two separate, though interacting, processes. 

The gait changes induced throughout the last five experiments of the thesis were relatively small 

(i.e., ~2-3% of the respective measures of gait), and one might thus wonder about whether these 

adjustments in gait are physiologically significant or of ecological value. Note that although effects 

were small, they were highly systematic and consistent. If one considers that average walking speed 

and step length variability for young healthy adults whilst walking over flat, obstacle-free 

overground walking, is typically very stable with variability of 2.3 % for walking speed and 2.0% 

for step length (Collins & Kuo, 2013), a systematic shift of 2 to 3% induced by spatial, contrast or 

luminance manipulations of purely decorative, task-irrelevant visual information on the ground 

plane is remarkable, in particular as none of the participants reported increased sensitivity to 

pattern glare, often found in people with migraine (e.g. Shepherd, 2020; Shepherd et al., 2012, 

2013). Thus, these findings support  my claims that task-irrelevant floor patterns increase visual 

noise and thus lead to sub-optimal signal-to-noise ratios (Field, 1987) for visual information 

relevant to guide gait.  

7.3.2 Directions for future work 

With the exception of the first study, the demographics of participants tested in this thesis were 

limited to young, healthy, undergraduate psychology students. From the first study, however, it 
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seems that older participants reported stronger effects of illusory patterns on their gait, with some 

even refusing to walk over the floor patterns all together.  This observation is in line with the 

literature that would also suggest a far bigger impact of the environmental factors manipulated 

throughout these experiments on older people (for review, see Saftari & Kwon, 2018), who rely 

far more on visual input during walking (Franz et al., 2015), and those prone to sensory overload 

(Harle et al., 2006; Radhakrishnan et al., 2005; Shepherd et al., 2012).  

In particular, we would anticipate that the effects described throughout the experiments and 

chapters of this thesis should be far more pronounced in people with higher visual sensitivity 

(Juricevic et al., 2011), or in those who rely more heavily on visual cues over vestibular cues for 

postural control (e.g. Powell et al., 2022). These groups include people living with migraine 

(Shepherd, 2020; Shepherd et al., 2012, 2013), with epilepsy (Radhakrishnan et al., 2005), with 

neurodiverse conditions such as autism or ADHD (Grandin, 2009), with Persistent Postural 

Perceptual Dizziness (PPPD) (Powell et al., 2020), and most crucially older people and those with 

neurodegenerative diseases, such as Parkinson’s and Dementia (Buckley et al., 2011). Indeed, gait 

variability, and fall risk, increases with age, in parallel with an increased reliance on visual and 

vestibular cues for postural control (Brach et al., 2005, 2007; Hausdorff et al., 2001; Maki, 1997). 

However, as the body ages, the efficacy and speed of visual and vestibular signals required to 

accurately predict the upcoming environment, and to maintain upright stability when walking, also 

decline (Holtzer et al., 2012). In the context of the experiments presented here, an increased 

reliance on visual information and a decline in the efficacy of such signals, as well as a reduced 

ability and speed to recover from misplaced steps or changes in gait that increase fall risk, and an 

increased mechanical cost of falling, would predict that the reductions in walking speed and step 

length recorded throughout our experiments would be much greater for older demographics.  

7.4 Potential wider implications of this research 

There is increasing anecdotal evidence of elderly pedestrians’ falls being related to misplaced steps 

as a result of prediction errors about the ground surface, particularly in relation to hidden steps 

(e.g. Robinson, 2014; Stone, 2023; Ward, 2013; Yin & Pei, 2018) Ambiguous visual information 

and incorrect predictions about the environment are considered to increase the chances of 

erroneous stepping decisions, which in turn may function as catalysts for falls and injury - 

particularly as one ages (Black et al., 2008; Lamoreux et al., 2008; Lord, 2006; Willis et al., 2013; 

Wood et al., 2011). Much of the research supporting these claims is indirect, linking an individual’s 

visual acuity, contrast sensitivity, stereo acuity and visual motion perception decline to their 
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increased fall risk (Saftari & Kwon, 2018). With very few exceptions such as edging on stair cases 

to increase accessibility for people with low vision, sensory environmental factors are usually not 

considered to estimate fall risks. The key contribution of the work presented here is therefore that 

it provides clear evidence that the design of the sensory environment is an important component 

that should also be considered  when it comes to tackling major health challenges, such as the 

number of falls in an ageing population. 

With one in three adults over the age of 65 falling annually, and falls being the second leading 

cause of accidental death worldwide (Saftari & Kwon, 2018), understanding even one aspect of 

the potential causes of such injuries and unnecessary loss of life is extremely important. The work 

presented here strongly suggests that gait measurements might provide an objective, quantifiable 

measure about how inclusive an environment is with regard to walking, and thus provides the first 

objectively quantifiable performance measure for inclusive sensory design.  

As such, this body of work can be considered as a first, yet fundamental, step in recognising that 

the impact of low-level visual information, prevalent in our built environment, may fundamentally 

impact gait in a way that increases fall risk in vulnerable groups within our society. It thus 

emphasises that sensory aspects of environments we design need to be considered. In the long-

term, it is hoped that furthering understanding of the ways in which particular visual aspects of 

our urban environments impact on how individuals move and feel within these environments will 

help to inform future design of public spaces to be better optimised to promote population health 

and wellbeing.   
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Appendix A  (Chapter 4) 

Linear Mixed Effects Modelling 

Step Length 

To examine the impact of cognitive load and line spacings on participants’ step length, cross-

classified Markov Chain Monte Carlo general linear mixed-effects modelling was applied to the 

step length data, in % relative to the baseline measurements (Burn-in = 500, Chain Length = 

10,000, Thinning Interval = 1). This allowed for any effects introduced by intra- and inter-

individual variability unrelated to stimulus modulation to be controlled for by classifying them as 

random effects when examining the influence that each condition had on measures of step length. 

Accordingly, participant and trial order were included as random effects, where trial order reflects 

the order of the 3 presentations of each unique line spacing and cognitive load condition 

combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with the fixed effects 

and their interactions.  

The line spacing variable was computed as continuous numerical data, and the cognitive load 

variable was coded as discrete numerical data, with step length being computed as continuous 

numerical data. Low cognitive load was coded as 0 and high cognitive load was coded as 1. The 

line spacing variable was coded with the numerical values of the 5 spacing categories. Therefore, 

parameter estimate for step length in relation to cognitive load reflect a change of 1 from low load 

(0) to high load (1), i.e., the difference between the two levels of the variable. The parameter 

estimate for line spacing reflects an increase of 1% in line spacing. As such, the change from 100% 

spacing to 103% spacing would be three times the parameter estimate for line spacing, i.e., the 

difference between two levels within the variable.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step length data was normally distributed across the 

different levels fixed and random effects.  

All models were confirmed to have converged by running each model through the Heidelberger 

and Welch’s convergence diagnostic (Heidelberger & Welch, 1983). Each model passed both the 

stationarity and halfwidth test, which indicates that the sampled values come from a stationary 
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distribution and that the number of iterations is sufficient to ensure that the post-mean values 

come from a chain that has converged.  

The actual models were constructed from simple (single fixed effects), through to two-way 

interactions between the fixed effects. At each stage, fixed effects found to be non-significant were 

dropped from the proceeding model, labelled ‘a’, and ‘b’ if required. The pMCMC value for each 

fixed effect within each model was used to detect non-significant values, i.e., with an alpha of 0.05. 

The model of best fit was then selected from the ‘a’ labelled models, unless there were no fixed 

effects dropped from the original model. The null model (N) only includes random effects, and 

consequently does not include any of the fixed effects. These models therefore present the 

combination of predictors that best describe the variance at each stage. See Table A1 for the model 

outputs. Models with lower Deviance Information Criterion (DIC) scores are considered to reflect 

a better fit of the data (Spiegelhalter et al., 2002).   

Table A1 Model fit comparisons for models estimating step length based on the cognitive load and line spacing 
manipulations between experimental conditions. CL = cognitive load, SP = line spacing, PT = participant, TO = trial 
order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 40839.7  PT, TO 

1 * 39944.21 CL, SP PT, TO 

2 39945.45 CL, SP, CL x SP PT, TO 

2a 39944.21 Model 1a PT, TO 

  

Based on the DIC values for each model in Table A1, the best fitting model was model 1, which 

included cognitive load and line spacing as fixed effects. The parameter estimates, upper and lower 

95% confidence, effective sample size, and pMCMC values for this model are displayed in Table 

A2. 
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Table A2 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for step length variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.32 99.19 101.47 9500 <.0001 *** 

Cognitive Load -2.38 -2.53 -2.23 9500 <.0001 *** 

Line Spacing -0.01 -0.01 0.00 9500 <.0001 *** 

Random      

Participant  6.36 2.78 10.77 8284  

Trial 0.17 0.07 0.28 3397  

Deviance Information Criterion (DIC)                                                                  39944.21       

 

The parameter estimates and confidence intervals displayed for model 1, which can be seen in 

Table A2, indicate that cognitive load provide most of the explanatory power of the variance in 

step length recorded across the experiment, with very little additional explanatory power coming 

from variance in line spacings.  

Step Time 

To examine the impact of cognitive load and line spacings on participants’ step time, cross-

classified Markov Chain Monte Carlo general linear mixed-effects modelling was applied to the 

step time data, in % relative to the baseline measurements (Burn-in = 500, Chain Length = 10,000, 

Thinning Interval = 1). This allowed for any effects introduced by intra- and inter-individual 

variability unrelated to stimulus modulation to be controlled for by classifying them as random 

effects when examining the influence that each condition had on measures of step time. 

Accordingly, participant and trial order were included as random effects, where trial order reflects 

the order of the 3 presentations of each unique line spacing and cognitive load condition 
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combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with the fixed effects 

and their interactions.  

The line spacing variable was computed as continuous numerical data, and the cognitive load 

variable was coded as discrete numerical data, with step time being computed as continuous 

numerical data. Low cognitive load was coded as 0 and high cognitive load was coded as 1. The 

line spacing variable was coded with the numerical values of the 5 spacing categories. Therefore, 

parameter estimate for step time in relation to cognitive load reflect a change of 1 from low load 

(0) to high load (1), i.e., the difference between the two levels of the variable. The parameter 

estimate for line spacing reflects an increase of 1% in line spacing. As such, the change from 100% 

spacing to 103% spacing would be three times the parameter estimate for line spacing, i.e., the 

difference between two levels within the variable.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step time data was normally distributed across the 

different levels fixed and random effects.  

All models were confirmed to have converged by running each model through the Heidelberger 

and Welch’s convergence diagnostic (Heidelberger & Welch, 1983). Each model passed both the 

stationarity and halfwidth test, which indicates that the sampled values come from a stationary 

distribution and that the number of iterations is sufficient to ensure that the post-mean values 

come from a chain that has converged.  

The actual models were constructed from simple (single fixed effects), through to two-way 

interactions between the fixed effects. At each stage, fixed effects found to be non-significant were 

dropped from the proceeding model, labelled ‘a’, and ‘b’ if required. The pMCMC value for each 

fixed effect within each model was used to detect non-significant values, i.e., with an alpha of 0.05. 

The model of best fit was then selected from the ‘a’ labelled models, unless there were no fixed 

effects dropped from the original model. The null model (N) only includes random effects, and 

consequently does not include any of the fixed effects. These models therefore present the 

combination of predictors that best describe the variance at each stage. See Table A3 for the model 

outputs. Models with lower Deviance Information Criterion (DIC) scores are considered to reflect 

a better fit of the data (Spiegelhalter et al., 2002).   
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Table A3 Model fit comparisons for models estimating step time based on the cognitive load and line spacing 
manipulations between experimental conditions. CL = cognitive load, SP = line spacing, PT = participant, TO = trial 
order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 48787.9  PT, TO 

1  48614.65 CL, SP PT, TO 

1a * 48614.4 CL  

2 48615.26 CL, CL x SP PT, TO 

2a  48614.4 Model 1aa PT, TO 

  

Based on the DIC values for each model in Table A3, the best fitting model was model 1a, which 

included cognitive load as a main effect. The parameter estimates, upper and lower 95% 

confidence, effective sample size, and pMCMC values for this model are displayed in Table A4. 

 

Table A4 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for step time variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.24 99.31 101.13 9834 <.0001 ** 

Cognitive Load 1.83 1.56 2.10 9500 <.0001 ** 

Random      

Participant  4.20 1.88 7.33 8052  

Trial 0.00 1.17-16 0.00 1617  

Deviance Information Criterion (DIC)                                                                  48614.4 
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The parameter estimates and confidence intervals displayed for model 1a, which can be seen in 

Table A4, indicate that cognitive load alone provides most of the explanatory power of the variance 

in step time recorded across the experiment.  
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Appendix B  (Chapter 5) 

ANOVAs 

Velocity  

A 3(orientation) x 7(spatial frequency) repeated measures ANOVA N = 60) was conducted to 

compare the effects of spatial frequency and orientation on velocity. Analysis with Greenhouse-

Geisser correction revealed a significant main effect of spatial frequency on velocity, F(4.66, 

265.81) = 21.2, p = 5.82-17, ηp2 = .271. Pairwise comparisons with Bonferroni p-adjusted 

corrections revealed significant reduction in velocity from the control condition (M = 100, SEM 

= 4.5-10) to the 0.06126 (M = 98.36, SEM = 0.34), 0.125 (M = 97.53, SEM = 0.33), 0.25 (M = 

98.12, SEM = 0.39), 0.5 (M = 97.27, SEM = 0.37), and 1 (M = 97.15, SEM = 0.42) CPD spatial 

frequency conditions, with mean differences of 1.64, 1.03, 1.88, 2.73, and 2.85, respectively. There 

was also a significant reduction in velocity from the 0.03125 condition (M = 99.17, SEM = 0.35) 

to the 0.125 (M = 97.53, SEM = 0.33), 0.25 (M = 98.12, SEM = 0.39), 0.5 (M = 97.27, SEM = 

0.37), and 1 (M = 97.15, SEM = 0.42) CPD spatial frequency conditions, with mean differences 

of 1.64, 1.05, 1.9, and 2.02. In addition, there was also a significant reduction in velocity from the 

0.06125 condition (M = 98.36, SEM = 0.34) and the 0.5 (M = 97.27, SEM = 0.37) condition, with 

a mean difference of 1.09.  

There was no significant main effect of orientation on velocity.  

Analysis with Greenhouse-Geisser correction showed a significant interaction between spatial 

frequency and orientation on velocity, F(9.33, 265.81) = 4.42, p = 1.61-5, ηp2 = .134. Pairwise 

comparisons with Bonferroni p-adjusted corrections revealed a reduction in velocity between the 

checkerboard control (M = 100, SEM = 7.23-10) and checkerboard 0.125 condition (M = 96.57, 

SEM = 0.71), with a mean difference of 3.03. There was also a reduction in velocity from the 

vertical control (M = 100, SEM = 9.38-10) and the vertical 0.125 (M = 98.13, SEM = 0.38), 0.5 (M 

= 95.76, SEM = 0.57), and 1 (M = 95.41, SEM = 0.77) conditions, with mean differences of 1.87, 

4.24, and 4.59. There was a significant reduction in velocity from the horizontal 0.03125 condition 

(M = 100.21, SEM = 0.58) and the horizontal 0.125 (M = 97.88, SEM = 0.53) and 0.5 (M = 98.55, 

SEM = 0.53) conditions, with mean differences of 2.33 and 1.66. There was also a reduction in 

velocity from the vertical 0.03125 (M = 98.71 SEM = 0.57), 0.0625 (M = 98.51, SEM = 0.48), 

0.125 (M = 98.13, SEM = 0.4), and 0.25 (M = 97.9 SEM = 0.57) conditions to the vertical 0.5 
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condition (M = 95.76, SEM = 0.57), with mean differences of 2.95, 2.75, 2.37, and 2.14. Finally, 

there was a reduction in velocity from the vertical 0.25 condition (M = 97.9, SEM = 0.57) to the 

vertical 1 condition (M = 95.41, SEM = 0.77), with a mean difference of 2.49.    

Step Length 

A 3(orientation) x 7(spatial frequency) repeated measures ANOVA N= 60) was conducted to 

compare the effect of spatial frequency and orientation on step length. Analysis with Greenhouse-

Geisser correction revealed a significant main effect of spatial frequency, F(4.44, 253.05) = 18.66, 

p = 1.71-14, ηp2 = .247. Pairwise comparisons with Bonferroni p-adjusted corrections revealed a 

reduction in step length from the control condition (M = 100, SEM = 3.9-10) to the 0.0625 (M = 

99.14, SEM = 0.23), 0.125 (M = 98.54, SEM = 0.21), 0.25 (M = 98.8, SEM = 0.26), 0.5 (M = 

98.17, SEM = 0.25), and 1 (M = 98.08, SEM = 3.03) conditions, with mean differences of .86, 

1.46, 1.2, 1.83, and 1.92. There were also significant reduction in step length from the 0.03125 

condition (M = 99.62, SEM = 0.25) to the 0.125 (M = 98.54, SEM = 0.21), 0.25 (M = 98.8, SEM 

= 0.26), 0.5 (M = 98.17, SEM = 0.25), and 1 (M = 98.08, SEM = 3.03) conditions, with mean 

differences of 1.08, 0.82, 1.45, and 1.54. Additionally, there were significant reductions in step 

length from the 0.0625 condition (M = 99.14, SEM = 0.23) to the 0.5 (M = 98.17, SEM = 0.25) 

and 1 (M = 98.08, SEM = 3.03) conditions, with mean differences of 0.97 and 1.06.  

 

There was no significant main effect of orientation on step length.  

 

Analysis with Greenhouse-Geisser correction also revealed a significant interaction between spatial 

frequency and orientation, F(8.88, 253.05) = 2.71, p = 5.00-3, ηp2 = .087. Pairwise comparisons 

with Bonferroni p-adjusted corrections demonstrated a reduction in step length from the 

checkerboard control (M = 100, SEM = 6.89-10) and the checkerboard 0.125 condition (M = 97.94, 

SEM = 0.45), with a mean difference of 2.06. There was also a significant reduction in step length 

from the vertical control (M = 100, SEM = 6.41-10) and the vertical  0.125 (M = 98.77, SEM = 

0.26), 0.5 (M = 97.41, SEM = 0.46), and 1 (M = 97.24, SEM = 0.59) conditions, with a mean 

difference of 1.23, 2.59, and 2.76. There was also a reduction in step length from the horizontal 

0.03125 (M = 100.64, SEM = 0.5) condition and the horizontal 0.125 (M = 98.92, SEM = 0.36) 

condition, with a mean difference of 1.72. In addition, there was a reduction in step length from 

the horizontal 0.0625 (M = 99.71, SEM = 0.39) condition and the horizontal 0.5 (M = 98.89 SEM 

= 0.37) condition, with a mean difference of 0.82.     
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Step Time 

A 3(orientation) x 7(spatial frequency) repeated measures ANOVA N= 60) was conducted to 

compare the effect of spatial frequency and orientation on step time. Analysis with Greenhouse-

Geisser correction revealed a significant main effect of spatial frequency, F(3.89, 221.85) = 6.39, p 

= 8.34-5, ηp2 = .101. Pairwise comparisons with Bonferroni p adjusted corrections revealed a 

significant increases in step time from the control condition (M = 100, SEM = 9.26-10) to the 

0.0625 (M = 100.73, SEM = 0.15), 0.125 (M = 101, SEM = 0.18), 0.25 (M = 100.66, SEM = 0.16), 

0.5 (M = 100.87, SEM = 0.19), and 1 (M = 100.89, SEM = 0.25) conditions, with mean differences 

of .73, 1, .66, .87, and .89. There was no significant main effect of orientation on step time.   

There was also a significant interaction between spatial frequency and orientation, F(7.78, 221.85) 

= 3.16, p = 2.00-3, ηp2 = .100. However, pairwise comparisons with Bonferroni p adjusted 

corrections did not established any relevant differences in step time between the spatial frequency 

manipulations of each condition.  

Visual Discomfort 

A 3(orientation) x 7(spatial frequency) repeated measures ANOVA N = 60) was conducted to 

compare the effect of spatial frequency and orientation on subjective ratings of visual discomfort. 

Analysis with Greenhouse-Geisser correction revealed a significant main effect of spatial 

frequency, F(2.31, 131.49) = 90.03, p = 1.67-27, ηp2 = .612. Pairwise comparisons with Bonferroni 

p-adjusted corrections revealed significant differences in visual discomfort between all spatial 

frequency conditions with the exception of the 0.5 and 1 conditions.  

There was no significant main effect of orientation.   

There was also a significant interaction between spatial frequency and orientation, F(4.61, 131.49) 

= 8.24, p = 1.76-6, ηp2 = .224. Pairwise comparisons with Bonferroni p-adjusted corrections 

demonstrated an increase in visual discomfort from the horizontal control condition (M = 1.01, 

SEM = 0.01) to the 0.25 (M = 2.46, SEM = 0.26), 0.5 (M = 2.93, SEM = 0.24), and 1 (M = 2.38, 

SEM = 0.34) horizontal conditions, with a mean difference of 1.45, 1.92, and 1.37. There was a 

significant increase in visual discomfort from the checkerboard control condition (M = 1, SEM = 

0.00) to the 0.125 (M = 2.25, SEM = 0.19), 0.25 (M = 2.92, SEM = 0.2), and 0.5 (M = 2.82, SEM 

= 0.34) checkerboard conditions, with a mean difference of 1.25, 1.92, and 1.82. There was also a 

significant increase in visual discomfort from the vertical control condition (M = 1.00, SEM = 

0.00) to the 0.25 (M = 2.46, SEM = 0.32), 0.5 (M = 3.55, SEM = 0.38) and 1 (M = 4.67, SEM = 
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0.41) vertical conditions, with a mean difference of 1.46, 2.55, and 3.67.  

Visual discomfort also increased from the 0.03125 horizontal condition (M = 1.25, SEM = 0.14) 

to the 0.25 (M = 2.46, SEM = 0.26), 0.5 (M = 2.93, SEM = 0.24) and 1 (M = 3.09, SEM = 0.31) 

horizontal conditions, with mean differences of 1.21, 1.68, and 1.84. It also increased from the 

0.03125 checkerboard condition (M = 1.30, SEM = 0.1) to the 0.125 (M = 2.25, SEM = 0.19), 

0.25 (M = 2.92, SEM = 0.2), and 0.5 (M = 2.81, SEM = 0.34) checkerboard conditions, with a 

mean difference of 0.95, 1.62, and 1.51. In addition, it increased from the 0.03125 vertical 

condition (M = 1.06, SEM = 0.05) to the 0.5 (M = 3.55, SEM = 0.38) and the 1 (M = 4.66 , SEM 

= 0.41), with mean differences of 2.49 and 3.6.  

Visual discomfort increased from the horizontal 0.0625 condition (M = 1.37, SEM = 0.16) to the 

horizontal 0.5 (M = 2.93, SEM = 0.24) and 1 (M = 3.09, SEM = 0.31) conditions, with mean 

differences of  1.56 and 1.72. It also increased from the checkerboard 0.0625 condition (M = 1.49, 

SEM = 0.14) to the 0.125 (M = 2.25, SEM = 0.19) and 0.25 (M = 2.91, SEM = 0.2) checkerboard 

conditions, with mean differences of 0.76 and 1.42. Furthermore, it increased from the 0.0625 

vertical condition (M = 1.51, SEM = 0.16) to the 0.25 (M = 2.46, SEM = 0.32), 0.5 (M = 3.55, 

SEM = 0.38), and 1 (M = 4.67, SEM = 0.41) vertical conditions, with a mean difference of 0.95, 

2.04, and 3.16.  

In addition, visual discomfort increased from the horizontal 0.125 (M = 1.84, SEM = 0.26) 

condition to the 0.25 (M = 2.46, SEM = 0.26), and 0.5 (M = 2.93, SEM = 0.24) horizontal 

conditions, with a mean difference of  0.62 and 1.09. It also increased from the checkerboard 0.125 

condition (M = 2.25, SEM = 0.19) to the 0.25 (M = 2.92, SEM = 0.2) checkerboard condition, 

with a mean difference of .67. Also, visual discomfort increased from the vertical 0.125 condition 

(M = 1.86, SEM = 0.23) to the 0.25 (M = 2.46, SEM = 0.32), 0.5 (M = 3.55, SEM = 0.38), and 1 

(M = 4.67, SEM = 0.41) vertical conditions, with mean differences of 0.6, 1.69, and 2.81.  

Finally, visual discomfort increased from the vertical 0.25 condition (M = 2.46, SEM = 0.32), to 

the 0.5 (M = 3.55, SEM = 0.38) and 1 (M = 4.66, SEM = 0.41) vertical conditions, with a mean 

difference of 1.09 and 2.2, and from the vertical 0.5 condition (M = 3.55, SEM = 0.38)  to the 1 

(M = 4.66, SEM = 0.41)  vertical condition, with a mean difference of 1.11. 
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Linear Mixed Effects Modelling 

Step Length 

To examine the impact of spatial frequency and orientation (i.e. experiment) manipulations on 

participants’ step length as well as any explanatory impact that visual discomfort may have had on 

step length, cross-classified Markov Chain Monte Carlo general linear mixed-effects modelling was 

applied to the step length data, in % relative to pattern-less control floor (Burn-in = 500, Chain 

Length = 10,000, Thinning Interval = 1). This allowed for any effects introduced by intra- and 

inter-individual variability unrelated to stimulus modulation to be controlled for by classifying 

them as random effects when examining the influence that each condition had on measures of 

step length. Accordingly, participant and trial order were included as random effects, where trial 

order reflects the order of the 5 presentations of each unique spatial frequency and orientation 

condition combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with the fixed effects 

and their interactions.  

The spatial frequency variable was computed as continuous numerical data, and orientation and 

visual discomfort as discrete numerical data, with step length being computed as continuous 

numerical data. Spatial frequency was coded with the numerical values of the 7 spatial frequencies, 

therefore, the parameter estimate for step length reflects the difference between 0 and 1 CPD, i.e., 

the minimum and maximum CPD conditions. In order for orientation to be included in the model, 

the values of each orientation had to be dummy coded numerically, where the ‘horizontal’ 

orientation (Experiment 5) was coded as -1, the ‘vertical’ orientation (Experiment 6) was coded as 

+1, and the checkerboard condition (Experiment 7) was coded as 0. This numerical arrangement 

reflected the checkerboard pattern orientation sitting between both the ‘horizontal’ and vertical’ 

orientations. The parameter estimate for step length in this context reflects a change in orientation 

presentation. Visual discomfort was coded with the numerical values of the 1 – 7 scale, and so 

parameter estimates here reflect an increase of 1 in visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step length data was normally distributed across the 

different levels fixed and random effects. 

The VIF values for each variable (spatial frequency, orientation and visual discomfort) were close 

to 1, suggesting that there is very weak to no correlation. This indicates that the data meets the 
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assumptions of collinearity required to construct the models, where multicollinearity was of no 

concern (spatial frequency, VIF = 1.58; orientation, VIF = 1.00; visual discomfort, VIF = 1.58).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and three-way 

interactions between these fixed effects. At each stage, fixed effects found to be non-significant 

were dropped from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. . The 

pMCMC value for each fixed effect within each model was used to detect non-significant values, 

i.e., with an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, 

unless there were no fixed effects dropped from the original model. The null model (N) only 

includes random effects, and consequently does not include any of the fixed effects.  These models 

therefore present the combination of predictors that best describe the variance at each stage. See 

Table B1 for the model outputs. Models with lower DIC scores are considered to reflect a better 

fit of the data (Spiegelhalter et al., 2002).    

 

Table B1 Model fit comparisons for models estimating step length based on the frequency spacing and orientation 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Ori = orientation, 
VD = visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 101138.3  PT, TO 

1 100427 SF, Ori, VD PT, TO 

1a 100430.3 SF, VD PT, TO 

2 100403.1 SF, VD, SF x VD, SF x Ori, VD x Ori PT, TO 

3 100400.7 SF, VD, SF x VD, SF x Ori, VD x Ori, 

SF x VD x Ori 

PT, TO 

3a* 100395.3 SF, VD, SF x VD, VD x Ori, SF x VD x Ori PT, TO 

  

Based on the DIC values for each model in Table B1, the best fitting model was model 3a, which 
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included spatial frequency and visual discomfort as fixed effects, the interaction between spatial 

frequency and visual discomfort, the interaction between visual discomfort and orientation, and 

the three-way interaction between spatial frequency, visual discomfort and orientation. The 

parameter estimates, upper and lower 95% confidence, effective sample size, and pMCMC values 

for this model are displayed in Table B2. 

 

Table B2 Parameter estimates and 95% confidence intervals for the fixed effects and the interactions between the 
fixed effect, which make up the predictors of the model for step length variability. Number of observations and 
marginal / conditional R2 values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.19 99.83 100.57 9500 <.0001 *** 

Spatial Frequency -1.18 -1.49 -0.84 9500 <.0001 *** 

Visual Discomfort -0.57 -0.64 -0.50 9500 <.0001 *** 

Spatial Frequency  
x Visual Discomfort 

 0.28 0.17 0.38 9500 <.0001 *** 

Visual Discomfort  
X Orientation 

 0.15 0.07 0.23 9500 0.0002 *** 

Spatial Frequency 
x Visual Discomfort x 
Orientation 

-0.19 -0.27 -0.11 9500 <.0001 *** 

Random      

Participant  1.74 1.12 2.40 8070  

Trial 0.02 0.00 0.08 1535  

Deviance Information Criterion (DIC)                                                                    100395.3 

 

The parameter estimates and confidence intervals displayed for model 3a, which can be seen in 

Table B2, indicate that changes in spatial frequency and subjective ratings of visual discomfort 

provide most of the explanatory power of the variance in step length recorded across the three 
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experiments, with some additional explanatory power coming from the interaction between spatial 

frequency and visual discomfort, and the three-way interaction between spatial frequency, visual 

discomfort and orientation.  

Step Time 

To examine the impact of spatial frequency and orientation (i.e. experiment) manipulations on 

participants’ step time as well as any explanatory impact that visual discomfort may have had on 

step time, cross-classified Markov Chain Monte Carlo general linear mixed-effects modelling was 

applied to the step time data, in % relative to pattern-less control floor (Burn-in = 500, Chain 

Length = 10,000, Thinning Interval = 10). This allowed for any effects introduced by intra- and 

inter-individual variability unrelated to stimulus modulation to be controlled for by classifying 

them as random effects when examining the influence that each condition had on measures of 

step time. Accordingly, participant and trial order were included as random effects, where trial 

order reflects the order of the 5 presentations of each unique spatial frequency and orientation 

condition combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with the fixed effects 

and their interactions.  

The spatial frequency variable was computed as continuous numerical data, and orientation and 

visual discomfort as discrete numerical data, with step time being computed as continuous 

numerical data. Spatial frequency was coded with the numerical values of the 7 spatial frequencies, 

therefore, the parameter estimate for velocity reflects the difference between 0 and 1 CPD, i.e., 

the minimum and maximum CPD conditions. In order for orientation to be included in the model, 

the values of each orientation had to be dummy coded numerically, where the ‘horizontal’ 

orientation (Experiment 5) was coded as -1, the ‘vertical’ orientation (Experiment 6) was coded as 

+1, and the checkerboard condition (Experiment 7) was coded as 0. This numerical arrangement 

reflected the checkerboard pattern orientation sitting between both the ‘horizontal’ and vertical’ 

orientations. The parameter estimate for step time in this context reflects a change in orientation 

presentation. Visual discomfort was coded with the numerical values of the 1 – 7 scale, and so 

parameter estimates here reflect an increase of 1 in visual discomfort. 

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step time data was normally distributed across the 

different levels fixed and random effects. 
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The VIF values for each variable (spatial frequency, orientation and visual discomfort) were close 

to 1, suggesting that there is very weak to no correlation. This indicates that the data meets the 

assumptions of collinearity required to construct the models, where multicollinearity was of no 

concern (spatial frequency, VIF = 1.58; orientation, VIF = 1.00; visual discomfort, VIF = 1.58).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and three-way 

interactions between these fixed effects. At each stage, fixed effects found to be non-significant 

were dropped from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. The 

pMCMC value for each fixed effect within each model was used to detect non-significant values, 

i.e., with an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, 

unless there were no fixed effects dropped from the original model. The null model (N) only 

includes random effects, and consequently does not include any of the fixed effects.  These models 

therefore present the combination of predictors that best describe the variance at each stage.. See 

Table B3 for the model outputs. Models with lower DIC scores are considered to reflect a better 

fit of the data (Spiegelhalter et al., 2002). 

 

Table B3 Model fit comparisons for models estimating step time based on the frequency spacing and orientation 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Ori = orientation, 

VD = visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 113994.3  PT, TO 

1 113950 SF, Ori, VD PT, TO 

1a 113948.6 VD PT, TO 

2 113931.3 VD, SF x VD, SF x Ori, VD x Ori PT, TO 

2a* 113930.4 VD, SF x Ori PT, TO 

3 113931.7 VD, SF x Ori, SF x VD x Ori PT, TO 

3a 113948.6 Model 1aa  PT, TO 
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Based on the DIC values for each model in Table B3, the best fitting model was model 2a, which 

included visual discomfort as a fixed effect, and the interaction between spatial frequency and 

orientation. The parameter estimates, upper and lower 95% confidence, effective sample size, and 

pMCMC values for this model are displayed in Table B4. 

 

Table B4 Parameter estimates and 95% confidence intervals for the fixed effects and the interactions between the 
fixed effect, which make up the predictors of the model for step time variability. Number of observations and 
marginal / conditional R2 values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.30 100.03 100.56 9500 <.0001 ** 

Visual Discomfort 0.17 0.12 0.23 9500 <.0001 ** 

Spatial Frequency  

x Orientation 

0.62 0.36 0.88 9500 <.0001 ** 

Random      

Participant  0.77 0.49 1.11 6267  

Trial 0.00 0.00 0.00 603.6  

Deviance Information Criterion (DIC)                                                                  113930.4 

 

The parameter estimates and confidence intervals displayed for model 2a, which can be seen in 

Table B4, indicate that the interaction between spatial frequency and orientation provide most of 

the explanatory power of the variance in step time recorded across the three experiments, with 

some additional explanatory power coming from variance in subjective ratings of visual 

discomfort.  

Visual Discomfort 

To examine the impact of spatial frequency and orientation (i.e. experiment) manipulations on 

participants’ subjective ratings of visual discomfort, cross-classified Markov Chain Monte Carlo 
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general linear mixed-effects modelling was applied to the visual discomfort data, in % relative to 

pattern-less control floor (Burn-in = 500, Chain Length = 10,000, Thinning Interval = 1). This 

allowed for any effects introduced by intra- and inter-individual variability unrelated to stimulus 

modulation to be controlled for by classifying them as random effects when examining the 

influence that each condition had on measures of visual discomfort. Accordingly, participant and 

trial order were included as random effects, where trial order reflects the order of the 5 

presentations of each unique spatial frequency and orientation condition combination within the 

study. In addition, this technique facilitates resampling from the probability distribution of the data 

to further validate any variance associated with the fixed effects and their interactions.  

The spatial frequency variable was computed as continuous numerical data, and orientation as 

discrete numerical data, with visual discomfort being computed as continuous numerical data. 

Spatial frequency was coded with the numerical values of the 7 spatial frequencies, therefore, the 

parameter estimate for velocity reflects the difference between 0 and 1 CPD, i.e., the minimum 

and maximum CPD conditions. In order for orientation to be included in the model, the values of 

each orientation had to be dummy coded numerically, where the ‘horizontal’ orientation 

(Experiment 5) was coded as -1, the ‘vertical’ orientation (Experiment 6) was coded as +1, and the 

checkerboard condition (Experiment 7) was coded as 0. This numerical arrangement reflected the 

checkerboard pattern orientation sitting between both the ‘horizontal’ and vertical’ orientations. 

The parameter estimate for visual discomfort in this context reflects a change in orientation 

presentation.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that visual discomfort data was normally distributed 

across the different levels fixed and random effects. 

The VIF values for each variable (spatial frequency and orientation) were equal to 1, suggesting 

that there is no correlation. This indicates that the data meets the assumptions of collinearity 

required to construct the models, where multicollinearity was of no concern (spatial frequency, 

VIF = 1.00; orientation, VIF = 1.00).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  
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The models were constructed from simple (single fixed effects), through to two and interactions 

between these fixed effects. At each stage, fixed effects found to be non-significant were dropped 

from the proceeding model. These models are labelled ‘a, and ‘b’ if required. . The pMCMC value 

for each fixed effect within each model was used to detect non-significant values, i.e., with an alpha 

of 0.05. The model of best fit was then selected from the ‘a’ labelled models, unless there were no 

fixed effects dropped from the original model. The null model (N) only includes random effects, 

and consequently does not include any of the fixed effects.  These models therefore present the 

combination of predictors that best describe the variance at each stage.’. See Table B5 for the 

model outputs. Models with lower DIC scores are considered to reflect a better fit of the data 

(Spiegelhalter et al., 2002). 

Table B5 Model fit comparisons for models estimating visual discomfort based on the frequency spacing and 
orientation manipulations between experimental conditions. SF = spatial frequency, Ori = orientation, PT = 
participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 62529.61  PT, TO 

1 53948.61 SF, Ori PT, TO 

1a 53947.98 SF PT, TO 

2 * 52949.72 SF, SF x Ori PT, TO 

 

Based on the DIC values for each model in Table B5, the best fitting model was model 2, which 

included spatial frequency as a fixed effects, and the interaction between spatial frequency and 

orientation. The parameter estimates, upper and lower 95% confidence, effective sample size, and 

pMCMC values for this model are displayed in Table B6. 
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Table B6 Parameter estimates and 95% confidence intervals for the fixed effects and the interactions between the 
fixed effect, which make up the predictors of the model for subjective ratings of visual discomfort variability. Number 
of observations and marginal / conditional R2 values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 1.45 1.25 1.68 9500 <.0001 ** 

Spatial Frequency 2.33 2.29 2.38 9500 <.0001 ** 

Spatial Frequency x 

Orientation 

0.86 0.80 0.91 9500 <.0001 ** 

Random      

Participant  0.61 0.40 0.85 8984  

Trial 0.01 0.00 0.03 5696  

Deviance Information Criterion (DIC)                                                                   52949.72 

 

The parameter estimates and confidence intervals displayed for model 2, which can be seen in 

Table B6, indicate that spatial frequency provides most of the explanatory power of the variance 

in subjective ratings of visual discomfort recorded across the three experiments, with some 

additional explanatory power coming from variance owing to the interaction between spatial 

frequency and orientation.  

Correlations Between Measures of Gait and Visual Discomfort 

A Pearson correlation coefficient was calculated to assess the linear relationship between subjective 

rating of visual discomfort and velocity. There was a negative correlation between the two 

variables, r(418) = -0.36, p = 1.13-14. Similarly, a Pearson correlation coefficient was calculated to 

assess the linear relationship between subjective rating of visual discomfort and step length. There 

was a negative correlation between the two variables, r(418) = -0.39, p = 2.2-16. Furthermore, A 

Pearson correlation coefficient was calculated to assess the linear relationship between subjective 

rating of visual discomfort and step time. There was a positive correlation between the two 
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variables, r(418) = 0.18, p = 1.49-4. Results for these correlations can be seen in the plot matrix 

below (Figure B1). 

 

 

 

 

 

 

 

 

Figure B1: Points represent the average visual discomfort (by percentage of control condition) per spatial frequency 
condition per participant. Line represents line of best fit. Shaded area shows 95% confidence interval.   
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Appendix C  (Chapter 6) 

Experiment 8  

ANOVAs 

Velocity  

A 2(spatial frequency) x 5(Michelson contrast) repeated measures ANOVA (N= 20) was 

conducted to compare the effect of spatial frequency and contrast on velocity. The control 

condition (0 contrast) was categorised within each spatial frequency condition for this analysis to 

maintain balance across the two independent variables. As expected, analysis with Greenhouse-

Geisser correction revealed a significant main effect of spatial frequency, F(1, 19) = 7.34, p = .014, 

ηp2 = .279,  with walking over higher spatial frequency patterns leading to lower gait velocity (M = 

98.75, SEM = .44) relative to walking over lower spatial frequencies (M = 99.77, SEM = .38), with 

a mean difference of 1.01%. 

More importantly, a significant main effect of contrast was found, F(2.67, 50.73) = 5.28, p = .004, 

ηp2 = .217. Bonferroni p-adjusted post-hoc analysis for contrast revealed a significant reduction (p 

< .05) in velocity from both the control 0 contrast condition (M = 100.00, SEM = .00), and the 

lowest 0.02 contrast condition (M = 99.69, SEM = .42), to the highest contrast 0.8 condition (M 

= 98.17, SEM = .56), with a mean difference of 1.83% and 1.52%, respectively. None of the other 

contrast conditions were significantly different to each other. Also, there was no significant 

interaction between spatial frequency and contrast.   

Taken together, this demonstrates that medium spatial frequency gratings at high contrast slow 

overall velocity, and that reducing contrast decreases the impact of medium-spatial frequency 

patterns on velocity.   

Step Length 

A 2(spatial frequency) x 5(Michelson contrast) repeated measures ANOVA (N= 20) was 

conducted to compare the effect of spatial frequency and contrast on step length. The control 

condition was categorised within each spatial frequency condition for this analysis to maintain 

balance across the two independent variables. Analysis with Greenhouse-Geisser correction 

revealed a significant main effect of spatial frequency, F(1, 19) = 13.37, p = .002, ηp2 = .413, with 
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walking over higher spatial frequency patterns leading to a shorter step length (M = 99.22, SEM 

= .31) relative to walking over low spatial frequency (M = 100.12, SEM = .28) manipulations, with 

a mean difference of 0.90%.  

 

Furthermore, a significant main effect of contrast was found, F(2.88, 54.68) = 4.47, p = .008, ηp2 

= .190. Bonferroni p-adjusted post-hoc analysis for contrast revealed a significant reduction (p < 

.05) in step length from the lowest 0.02 contrast condition (M = 100.07, SEM = .34) to the highest 

0.8 contrast condition (M = 98.85, SEM = .43), with a mean difference of 1.22%. None of the 

other contrast conditions were significantly different from each other. 

 

Most importantly, a significant interaction between spatial frequency and contrast was found, 

F(2.25, 42.77) = 4.97, p = .009, ηp2 = .207. Bonferroni p-adjusted post-hoc analysis for the 

interactions between spatial frequency and contrast revealed that there was a significant reduction 

in step length from the lowest 0.02 contrast (M = 99.70, SEM = 0.48) medium spatial frequency 

condition to the high 0.8 contrast (M = 97.76, SEM = 0.51) medium spatial frequency condition, 

with a mean difference of 1.94%. 

 

Collectively, this demonstrates that medium spatial frequency gratings at high contrast reduce step 

length, when compared with low spatial frequency gratings at similarly high contrasts, as well as 

medium spatial frequency gratings at lower contrasts, and when compared with walking over a 

medium luminance, uniform grey floor.   

Step Time 

A 2(spatial frequency) x 5(Michelson contrast) repeated measures ANOVA (N= 20) was 

conducted to compare the effect of spatial frequency and contrast on step time. The control 

condition was categorised within each spatial frequency condition for this analysis to maintain 

balance across the two independent variables. Analysis with Greenhouse-Geisser correction 

revealed a significant main effect of contrast, F(2.10, 39.93) = 4.41, p = .017, ηp2 = .051. Bonferroni 

p-adjusted post-hoc analysis for contrast revealed a significant increase (p < .05) in step time from 

the control 0 contrast (M = 100.00, SEM = 0.00) condition to the high 0.8 contrast (M = 100.72, 

SEM = 0.23) condition, with  mean difference of .72%. No main effect for spatial frequency was 

found, and there was no significant interaction between spatial frequency and contrast. 

 

Overall, this shows that high contrast gratings, regardless of spatial frequency, increase step time 
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relative to walking over a medium luminance, uniform grey floor.    

Visual Discomfort 

A 2(spatial frequency) x 5(Michelson contrast) repeated measures ANOVA (N = 20) was 

conducted to compare the effect of spatial frequency and contrast on subjective ratings of visual 

discomfort. As for gait kinematics data, the control condition was categorised within each spatial 

frequency condition for this analysis to maintain balance across the two independent variables. As 

expected, analysis with Greenhouse-Geisser correction revealed a significant main effect of spatial 

frequency, F(1, 19) = 48.22, p = 1.28-6, ηp2 = .717, with walking over medium spatial frequency 

patterns leadings to higher ratings subjective ratings of visual discomfort (M = 1.77, SEM = 0.12) 

relative to walking over low spatial frequency (M = 1.18, SEM = 0.06) manipulations, with a mean 

difference of 0.59. 

A significant main effect of contrast was found, F(1.36, 25.92) = 41.99, p = 1.01-7, ηp2 = .688. 

Bonferroni p-adjusted post-hoc analysis for contrast revealed a significant increase (p < .05) in 

subjective ratings of visual discomfort for the 0.8 (M = 2.39, SEM = 0.20) contrast condition 

relative to all other contrast levels: control (M = 1.07, SEM = 0.04), 0.02 (M = 1.12, SEM = 0.06), 

0.08 (M = 1.26, SD = 0.08), and 0.26 (M = 1.55, SEM = 0.12), with mean differences of 1.32, 1.27, 

1.13, and 0.85, respectively. In addition, there was a significant increase in subjective ratings of 

visual discomfort for 0.26 (M = 1.55, SEM = 0.12) from the control (M = 1.07, SEM = 0.04), 0.02 

(M = 1.12, SEM = 0.06), and 0.08 (M = 1.26, SEM = 0.08) contrast manipulations, with mean 

differences of 0.48, 0.43, and 0.29, respectively. 

Most importantly, a significant interaction between spatial frequency and contrast was found, 

F(1.71, 32.53) = 40.65, p = 5.27-9, ηp2 = .681. Bonferroni p-adjusted post-hoc analysis for the 

interactions between spatial frequency and contrast revealed significant increases in visual 

discomfort for the 0.8 (M = 3.45, SEM = 0.30) contrast medium spatial frequency condition, and 

all other medium spatial frequency contrast conditions, including 0.02 (M = 1.18, SEM = 0.09), 

0.08 (M = 1.40, SEM = 0.13), and 0.26 (M = 1.87, SEM = 0.17), with mean differences of 2.16, 

1.95, and 1.47, respectively. Furthermore, significant increases for visual discomfort were found 

for the 0.26 (M = 1.87, SEM = 0.17) medium spatial frequency condition, compared with the 0.02 

(M = 1.18, SEM = 0.09) medium spatial frequency condition, with a mean difference of 0.69.  

Taken together, this demonstrates that with increasing contrast, medium spatial frequency gratings 

increase subjective ratings of visual discomfort, when compared with low spatial frequency gratings 
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or medium luminance, uniform grey floor.   

Linear Mixed Effects Modelling 

Step Length 

To examine the impact of spatial frequency and contrast manipulations on participants’ step length 

as well as any explanatory impact that visual discomfort may have had on step length, cross-

classified Markov Chain Monte Carlo general linear mixed-effects modelling was applied to the 

step length data, in % relative to the control floor (Burn-in = 500, Chain Length = 10,000, 

Thinning Interval = 1). This allowed for any effects introduced by intra- and inter-individual 

variability unrelated to stimulus modulation to be controlled for by classifying them as random 

effects when examining the influence that each condition had on measures of step length. 

Accordingly, participant and trial order were included as random effects, where trial order reflects 

the order of the 5 presentations of each unique spatial frequency and contrast condition 

combination within the study. In addition, this technique facilitates resampling from the 

probability distribution of the data to further validate any variance associated with the fixed effects 

and their interactions.  

The spatial frequency, contrast and visual discomfort variables were computed as discrete 

numerical data, with velocity being computed as continuous numerical data. Spatial frequency was 

coded with the numerical values of the 2 spatial frequencies, therefore, the parameter estimate for 

step length reflects an increase of 1 CPD (note that the spatial frequencies here range from 0.03125 

– 0.5 CPD). Contrast was also coded with the numerical values of the 5 Michelson contrasts, and 

so the parameter estimate reflects an increase of 1 in contrast (note that Michelson contrast ranges 

from 0.01-0.8 across the 5 conditions in this study). Visual discomfort was coded with the 

numerical values of the 1 – 7 scale, and so parameter estimates here reflect an increase of 1 in 

visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step length data was normally distributed across the 

different levels fixed and random effects. 

The VIF values for each variable (spatial frequency, contrast, and visual discomfort) were close to 

1, suggesting that there is very weak to no correlation. This indicates that the data meets the 

assumptions of collinearity required to construct the models, where multicollinearity was of no 

concern (spatial frequency, VIF = 1.28; contrast, VIF = 1.50; visual discomfort, VIF = 1.83).  
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Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and three-way 

interactions between these fixed effects. At each stage, fixed effects found to be non-significant 

were dropped from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. The 

pMCMC value for each fixed effect within each model was used to detect non-significant values, 

i.e., with an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, 

unless there were no fixed effects dropped from the original model. The null model (N) only 

includes random effects, and consequently does not include any of the fixed effects.  These models 

therefore present the combination of predictors that best describe the variance at each stage. The 

model of best fit was then selected from the ‘a’ labelled models, unless there were no fixed effects 

dropped from the original model. These models therefore present the combination of predictors 

that best describe the variance at each stage. See Table C1 for the model outputs. Models with 

lower DIC scores are considered to reflect a better fit of the data (Spiegelhalter et al., 2002). 

 

Table C1 Model fit comparisons for models estimating step length based on the frequency spacing and contrast 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Con = contrast, VD 
= visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 40828.11  PT, TO 

1  40441.66 SF, Con, VD PT, TO 

2 40423.69 SF, Con, VD, SF x Con, SF x VD, Con x VD PT, TO 

2a * 40419.86 SF, VD, SF x Con  PT, TO 

3 40422.23 SF, VD, SF x Con, SF x Con x VD PT, TO 

3a  40419.86 Model 2aa PT, TO 

  

Based on the DIC values for each model in Table C1, the best fitting model was model 2a, which 

included spatial frequency and visual discomfort as fixed effects, and the interaction between 

spatial frequency and Michelson contrast. The parameter estimates, upper and lower 95% 
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confidence, effective sample size, and pMCMC values for this model are displayed in Table C2. 

 

Table C2 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for step length variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.61 99.97 101.25 9009 <.0001 *** 

Spatial Frequency -0.92 -1.32 -0.51 9500 <.0001 *** 

Visual Discomfort -0.38 -0.51 -0.24 9500 <.0001 *** 

Spatial Frequency x 
Michelson Contrast 

-3.06 -4.09 -1.92 9500 <.0001 *** 

Random      

Participant  1.71 0.73 2.97 7662  

Trial 0.05 0.00 0.15 3476  

Deviance Information Criterion (DIC)                                                        40419.86 

 

The parameter estimates and confidence intervals displayed for model 2a, which can be seen in 

Table C2, indicate that the interaction between spatial frequency and Michelson contrast provide 

most of the explanatory power of the variance in step length recorded in Experiment 8, with some 

additional explanatory power coming from variance in spatial frequency and subjective ratings of 

visual discomfort.  

Step Time 

To examine the impact of spatial frequency and contrast manipulations on participants’ step time 

as well as any explanatory impact that visual discomfort may have had on step time, cross-classified 

Markov Chain Monte Carlo general linear mixed-effects modelling was applied to the step time 

data, in % relative to the control floor (Burn-in = 500, Chain Length = 10,000, Thinning Interval 
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= 10). This allowed for any effects introduced by intra- and inter-individual variability unrelated 

to stimulus modulation to be controlled for by classifying them as random effects when examining 

the influence that each condition had on measures of step time. Accordingly, participant and trial 

order were included as random effects, where trial order reflects the order of the 5 presentations 

of each unique spatial frequency and contrast condition combination within the study. In addition, 

this technique facilitates resampling from the probability distribution of the data to further validate 

any variance associated with the fixed effects and their interactions. 

The spatial frequency, contrast and visual discomfort variables were computed as discrete 

numerical data, with step time being computed as continuous numerical data. Spatial frequency 

was coded with the numerical values of the 2 spatial frequencies, therefore, the parameter estimate 

for velocity reflects an increase of 1 CPD (note that the spatial frequencies here range from 0.03125 

– 0.5 CPD). Contrast was also coded with the numerical values of the 5 Michelson contrasts, and 

so the parameter estimate reflects an increase of 1 in contrast (note that Michelson contrast ranges 

from 0.01-0.8 across the 5 conditions in this study). Visual discomfort was coded with the 

numerical values of the 1 – 7 scale, and so parameter estimates here reflect an increase of 1 in 

visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step time data was normally distributed across the 

different levels fixed and random effects.  

The VIF values for each variable (spatial frequency, contrast, and visual discomfort) were close to 

1, suggesting that there is very weak to no correlation. This indicates that the data meets the 

assumptions of collinearity required to construct the models, where multicollinearity was of no 

concern (spatial frequency, VIF = 1.27; contrast, VIF = 1.50; visual discomfort, VIF = 1.83).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and three-way 

interactions between these fixed effects. At each stage, fixed effects found to be non-significant 

were dropped from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. See 

Table C3 for the model outputs. 



183 
 

 

Table C3 Model fit comparisons for models estimating step time based on the frequency spacing and contrast 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Con = contrast, VD 
= visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 39504.79  PT, TO 

1 39466.11 SF, Con, VD PT, TO 

1a 39466.28 VD PT, TO 

2 39472.01 VD, SF x Con, SF x VD, Con x VD PT, TO 

2a  39466.28 Model 1aa PT, TO 

3 * 39459.41 VD, SF x Con x VD PT, TO 

  

Based on the DIC values for each model in Table C3, the best fitting model was model 3, which 

included visual discomfort, and the interaction between spatial frequency, contrast and visual 

discomfort. The parameter estimates, upper and lower 95% confidence, effective sample size, and 

pMCMC values for this model are displayed in Table C4. 
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Table C4 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for step time variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 99.79 99.21 100.39 9166 <.0001 *** 

Visual Discomfort  0.53 0.35 0.70 8637 <.0001 *** 

Spatial Frequency x 
Contrast x Visual 
Discomfort 

-0.59 -0.94 -0.25 9500    .0011 ** 

Random      

Participant  0.55 0.22 0.96 6492  

Trial 0.25 0.02 0.74 5838  

Deviance Information Criterion (DIC)                                                                    39459.41 

 

The parameter estimates and confidence intervals displayed for model 3, which can be seen in 

Table C4, indicate that the visual discomfort, and the interaction between spatial frequency, 

Michelson contrast, and visual discomfort provide most of the explanatory power of the variance 

in step time recorded across Experiment 8.  

Visual Discomfort 

To examine the impact of spatial frequency and contrast manipulations on participants’ subjective 

ratings of visual discomfort, cross-classified Markov Chain Monte Carlo general linear mixed-

effects modelling was applied to the visual discomfort data, in % relative to the control floor (Burn-

in = 500, Chain Length = 10,000, Thinning Interval = 1). This allowed for any effects introduced 

by intra- and inter-individual variability unrelated to stimulus modulation to be controlled for by 

classifying them as random effects when examining the influence that each condition had on 

measures of visual discomfort. Accordingly, participant and trial order were included as random 

effects, where trial order reflects the order of the 5 presentations of each unique spatial frequency 

and contrast condition combination within the study. In addition, this technique facilitates 
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resampling from the probability distribution of the data to further validate any variance associated 

with the fixed effects and their interactions.  

The spatial frequency and contrast variables were computed as discrete numerical data, with visual 

discomfort being computed as continuous numerical data. Spatial frequency was coded with the 

numerical values of the 2 spatial frequencies, therefore, the parameter estimate for velocity reflects 

an increase of 1 CPD (note that the spatial frequencies here range from 0.03125 – 0.5 CPD). 

Contrast was also coded with the numerical values of the 5 Michelson contrasts, and so the 

parameter estimate reflects an increase of 1 in contrast (note that Michelson contrast ranges from 

0.01-0.8 across the 5 conditions in this study).  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that visual discomfort data was normally distributed 

across the different levels fixed and random effects. 

The VIF values for each variable (spatial frequency and contrast) were equal to 1, suggesting that 

there is no correlation. This indicates that the data meets the assumptions of collinearity required 

to construct the models, where multicollinearity was of no concern (spatial frequency, VIF = 1.01; 

contrast, VIF = 1.01).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and interactions 

between these fixed effects. At each stage, fixed effects found to be non-significant were dropped 

from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. The pMCMC value 

for each fixed effect within each model was used to detect non-significant values, i.e., with an alpha 

of 0.05. The model of best fit was then selected from the ‘a’ labelled models, unless there were no 

fixed effects dropped from the original model. The null model (N) only includes random effects, 

and consequently does not include any of the fixed effects.  These models therefore present the 

combination of predictors that best describe the variance at each stage. The model of best fit was 

then selected from the ‘a’ labelled models, unless there were no fixed effects dropped from the 

original model. These models therefore present the combination of predictors that best describe 

the variance at each stage. See Table C5 for the model outputs. Models with lower DIC scores are 
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considered to reflect a better fit of the data (Spiegelhalter et al., 2002). 

 

Table C5 Model fit comparisons for models estimating visual discomfort based on the frequency spacing and 
orientation manipulations between experimental conditions. SF = spatial frequency, Con = contrast, PT = 
participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 20418.28  PT, TO 

1 15763.02 SF, Con PT, TO 

2 * 13348.59 SF, Con, SF x Con PT, TO 

 

Based on the DIC values for each model in Table C5, the best fitting model was model 2, which 

included spatial frequency and contrast as fixed effects, and the interaction between spatial 

frequency and contrast. The parameter estimates, upper and lower 95% confidence, effective 

sample size, and pMCMC values for this model are displayed in Table C6. 
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Table C6 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for subjective ratings of visual discomfort variability. Effective samples and pMCMC values for the model 
also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 1.04 0.84 1.26 9500 <.0001 *** 

Spatial Frequency 0.20 0.13 0.27 9500 <.0001 *** 

Michelson Contrast 0.34 0.28 0.40 9500 <.0001 *** 

Spatial Frequency x 

Michelson Contrast 

4.99 4.82 5.19 9500 <.0001 *** 

Random      

Participant  0.19 0.08 0.31 8362  

Trial 0.01 0.00 0.03 5903  

Deviance Information Criterion (DIC)                                                                   13348.59 

 

The parameter estimates and confidence intervals displayed for model 2, which can be seen in 

Table C6, indicate that spatial frequency, Michelson contrast, and the interaction between spatial 

frequency and contrast provides most of the explanatory power of the variance in subjective 

ratings of visual discomfort. 

Correlations Between Measures of Gait and Visual Discomfort 

A Pearson correlation coefficient was calculated to assess the linear relationship between subjective 

rating of visual discomfort and velocity. There was a negative correlation between the two 

variables, r(178) = -0.44, p = 4.84-10. Similarly, a Pearson correlation coefficient was calculated to 

assess the linear relationship between subjective rating of visual discomfort and step length. There 

was a negative correlation between the two variables, r(178) = -0.43, p = 1.26-9. Furthermore, a 

Pearson correlation coefficient was calculated to assess the linear relationship between subjective 
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rating of visual discomfort and step time. There was a positive correlation between the two 

variables, r(178) = 0.32, p = 1.60-5. Results for these correlations can be seen in the plot matrix 

below (Figure C1).  

 

 

Experiment 9  

ANOVAs 

Velocity  

A 2(spatial frequency) x 6(luminance / contrast) repeated measures ANOVA (N = 20) was 

conducted to compare the effect of spatial frequency and luminance / contrast on velocity. The 

control condition (0 contrast) was categorised within each spatial frequency condition for this 

analysis to maintain balance across the two independent variables. As expected, analysis with 

Greenhouse-Geisser correction revealed a significant main effect of spatial frequency, F(1, 19) = 

12.27, p = .002, ηp2 = .392,  with walking over higher spatial frequency patterns leading overall to 

lower gait velocity (M = 98.65, SEM = .38) relative to walking over lower spatial frequencies (M 

= 100.07, SEM = .36), with a mean difference of 1.42%. 

A significant main effect of luminance / contrast was found, F(3.25, 61.7) = 3.61, p = .016, ηp2 = 

.160. However, Bonferroni p-adjusted post-hoc analysis for luminance / contrast revealed no 

significant differences (p < .05) between the conditions.  

Figure C1 Points represent the average visual discomfort (by percentage of control condition) per spatial frequency 
and contrast condition per participant. Line represents line of best fit. Shaded area shows 95% confidence interval.   
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Most importantly, a significant interaction between spatial frequency and luminance / contrast was 

found, F(3.35, 63.7) = 3.41, p = .019, ηp2 = .152. Bonferroni p-adjusted post-hoc analysis for the 

interactions between spatial frequency and luminance / contrast revealed a significant reduction 

(p < .05) in velocity from the control (M = 100.00, SEM = 0.00) condition to the medium spatial 

frequency low contrast 0.797 ((M = 98.14, SEM = 0.44) condition, with a mean difference of 

1.84%.  

Taken together, this demonstrates that there is a u-shaped function for each spatial frequency with 

increasing luminance / contrast, and that there are different behaviours for the same luminance / 

contrast for the two different spatial frequencies. From this we can conclude that luminance has 

an overall effect (i.e. u-shaped effect) which is superimposed on the spatial frequency effect. 

Step Length 

A 2(spatial frequency) x 6(luminance / contrast) repeated measures ANOVA (N = 20) was 

conducted to compare the effect of spatial frequency and luminance / contrast on step length. 

The control condition was categorised within each spatial frequency condition for this analysis to 

maintain balance across the two independent variables. Analysis with Greenhouse-Geisser 

correction revealed a significant main effect of spatial frequency, F(1, 19) = 13.86, p = .001, ηp2 = 

.422, with walking over higher spatial frequency patterns leading to a shorter step length (M = 

99.22, SEM = .26) relative to walking over low spatial frequency (M = 100.12, SEM = .53) 

manipulations, with a mean difference of 0.90%. No significant main effect was found for 

luminance / contrast.  

Importantly, a significant interaction between spatial frequency and luminance / contrast was 

found, F(3.51, 66.77) = 3.46, p = .016, ηp2 = .154. However, Bonferroni p-adjusted post-hoc 

analysis for the interactions between spatial frequency and contrast did not reveal significant 

differences between luminance / contrast levels within the spatial frequency conditions, or 

differences between spatial frequency conditions within the same luminance / contrast condition.   

Collectively, this demonstrates that medium spatial frequency gratings at low contrast lead to a 

reduced step length, when compared with low spatial frequency gratings at a range of low to high 

luminance and contrasts.  
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Step Time 

A 2(spatial frequency) x 6(luminance / contrast) repeated measures ANOVA (N = 20) was 

conducted to compare the effect of spatial frequency and luminance / contrast on step time. The 

control condition was categorised within each spatial frequency condition for this analysis to 

maintain balance across the two independent variables. Analysis with Greenhouse-Geisser 

correction revealed a significant main effect of luminance / contrast  on step time, F(2.99, 56.81) 

= 5.50, p = .002, ηp2 = .224. Bonferroni p-adjusted post-hoc analysis revealed a significant increase 

(p < .05) in step time from the high luminance / contrast .997 (M = 100.20, SEM = 0.24) condition 

to the low luminance .797 (M = 101.10, SEM = 0.33) and .927 (M = 100.85, SEM = 0.29) 

conditions, with mean differences of .90% and .65%, respectively. No significant main effect for 

spatial frequency or interaction between spatial frequency and luminance / contrast was found.  

Together this demonstrates that low luminance / contrast of square wave gratings, regardless of 

spatial frequency, results in an increase in step time relative to high luminance / contrast gratings.  

Visual Discomfort 

A 2(spatial frequency) x 6(luminance / contrast) repeated measures ANOVA (N = 20) was 

conducted to compare the effect of spatial frequency and luminance / contrast on subjective 

ratings of visual discomfort. As for gait kinematics data, the control condition was categorised 

within each spatial frequency condition for this analysis to maintain balance across the two 

independent variables. As expected, analysis with Greenhouse-Geisser correction revealed a 

significant main effect of spatial frequency, F(1, 19) = 27.82, p = 4.32-5, ηp2 = .594, with walking 

over medium spatial frequency patterns leadings to an increase in subjective ratings of visual 

discomfort (M = 2.28, SEM = 0.20) relative to walking over low spatial frequency (M = 1.34, SEM 

= 0.10) manipulations, with a mean difference of 0.94. 

More importantly, a significant main effect of luminance / contrast was found, F(2.11, 40.11) = 

12.04, p = 6.18-5, ηp2 = .388. Bonferroni p-adjusted post-hoc analysis for contrast revealed a 

significant increase (p < .05) in subjective ratings of visual discomfort from the control (M = 1.30, 

SEM = 0.11) condition and low contrast .797 (M = 1.59, SEM = 0.14) condition to the high 

contrast .992 (M = 2.12, SEM = 0.19) and .997 (M = 2.31, SEM = 0.21) conditions, with mean 

differences of .88, 0.53, and .53 and 1.01, respectively. There was also a significant increase in 

visual discomfort from medium .927 (M = 1.70, SEM = 0.15) and .975 (M = 1.84, SEM = 0.15) 

contrast conditions to the high .997 (M = 2.31, SEM = 0.21) contrast condition, with mean 

differences of .51 and .47, respectively.   
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Additionally, a significant interaction between spatial frequency and luminance / contrast was 

found, F(2.34, 44.44) = 14.21, p = 6.56-6, ηp2 = .428. Bonferroni p-adjusted post-hoc analysis for 

the interactions between spatial frequency and contrast revealed a significant increase (p < .05) in 

subjective ratings of visual discomfort from the low to medium spatial frequency conditions within 

the high contrast conditions, including from the low spatial frequency .992 (M = 1.46, SEM = 

0.16) contrast condition to the medium spatial frequency .992 (M = 2.78, SEM = 0.28) contrast 

condition, with a mean difference of 1.32, and from the low spatial frequency .997 (M = 1.57, 

SEM = 0.20) contrast conditions to the medium spatial frequency .997 (M = 3.04, SEM = 0.31) 

contrast condition, with a mean difference of 1.47. 

Taken together, this demonstrates that medium spatial frequency gratings at high luminance and 

contrast increase subjective ratings of visual discomfort, when compared with low spatial 

frequency gratings at a range of high luminance and contrasts, as well when compared with walking 

over a low luminance, uniform dark floor.   

Linear Mixed Effects Modelling  

Step Length 

To examine the impact of spatial frequency and contrast manipulations on participants’ step length 

as well as any explanatory impact that visual discomfort may have had on step length, cross-

classified Markov Chain Monte Carlo general linear mixed-effects modelling was applied to the 

step length data, in % relative to the control floor (Burn-in = 500, Chain Length = 10,000, 

Thinning Interval = 1). This allowed for any effects introduced by intra- and inter-individual 

variability unrelated to stimulus modulation to be controlled for by classifying them as random 

effects when examining the influence that each condition had on measures of step length. . 

Accordingly, participant and trial order were included as random effects, where trial order reflects 

the order of the 5 presentations of each unique spatial frequency and contrast / luminance 

condition combination within the study.  In addition, this technique facilitates resampling from 

the probability distribution of the data to further validate any variance associated with the fixed 

effects and their interactions.  

The spatial frequency, contrast and visual discomfort variables were computed as discrete 

numerical data, with step length being computed as continuous numerical data. Spatial frequency 

was coded with the numerical values of the 2 spatial frequencies, therefore, the parameter estimate 

for step length reflects an increase of 1 CPD (note that the spatial frequencies here range from 



192 
 

0.03125 – 0.5 CPD). Contrast was also coded with the numerical values of the 6 Michelson 

contrasts, and so the parameter estimate reflects an increase of 1 in contrast (i.e., ~ minimum 0.01 

to maximum 0.997 contrast values). Visual discomfort was coded with the numerical values of the 

1 – 7 scale, and so parameter estimates here reflect an increase of 1 in visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that step length data was normally distributed across the 

different levels fixed and random effects. 

The VIF values for each variable (spatial frequency, contrast, and visual discomfort) were close to 

1, suggesting that there is very weak to no correlation. This indicates that the data meets the 

assumptions of collinearity required to construct the models, where multicollinearity was of no 

concern (spatial frequency, VIF = 1.49; contrast, VIF = 1.12; visual discomfort, VIF = 1.41).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and three-way 

interactions between these fixed effects. At each stage, fixed effects found to be non-significant 

were dropped from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. The 

pMCMC value for each fixed effect within each model was used to detect non-significant values, 

i.e., with an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, 

unless there were no fixed effects dropped from the original model. The null model (N) only 

includes random effects, and consequently does not include any of the fixed effects. These models 

therefore present the combination of predictors that best describe the variance at each stage. See 

Table C7 for the model outputs. Models with lower DIC scores are considered to reflect a better 

fit of the data (Spiegelhalter et al., 2002).   
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Table C7 Model fit comparisons for models estimating step length based on the frequency spacing and contrast 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Con = contrast, VD 
= visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 52330.76  PT, TO 

1 * 51977.13 SF, Con, VD PT, TO 

2 51979.41 SF, Con, VD, SF x Con, SF x VD, Con x VD PT, TO 

2a 52037.99 VD, SF x VD, Con x VD PT, TO 

3 52038.66 VD, SF x VD, Con x VD, SF x Con x VD PT, TO 

3a 52108.45 VD, Con x VD PT, TO 

  

Based on the DIC values for each model in Table C7, the best fitting model was model 1, which 

included spatial frequency, contrast, and visual discomfort as fixed effects. The parameter 

estimates, upper and lower 95% confidence, effective sample size, and pMCMC values for this 

model are displayed in Table C8. 
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Table C8 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors of 
the model for step length variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.33 99.56 101.07 9500 <.0001 *** 

Spatial Frequency -2.58 -3.01 -2.15 9500 <.0001 *** 

Contrast  0.85 0.53 1.15 8474 <.0001 *** 

Visual Discomfort -0.33 -0.42 -0.24 9824 <.0001 *** 

Random      

Participant  1.97 0.85 3.40 7298  

Trial 0.13 0.00 0.40 5292  

Deviance Information Criterion (DIC)                                                                   51977.13 

 

The parameter estimates and confidence intervals displayed for model 1, which can be seen in 

Table C8, indicate that changes in spatial frequency provide most of the explanatory power of the 

variance in step length recorded across the three experiments, with some additional explanatory 

power coming from variance in contrast, and subjective ratings of visual discomfort.  

Step Time 

To examine the impact of spatial frequency and contrast manipulations on participants’ step time 

as well as any explanatory impact that visual discomfort may have had on step time, cross-classified 

Markov Chain Monte Carlo general linear mixed-effects modelling was applied to the step time 

data, in % relative to the control floor (Burn-in = 500, Chain Length = 10,000, Thinning Interval 

= 10). This allowed for any effects introduced by intra- and inter-individual variability unrelated 

to stimulus modulation to be controlled for by classifying them as random effects when examining 

the influence that each condition had on measures of step time. Accordingly, participant and trial 

order were included as random effects, where trial order reflects the order of the 5 presentations 
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of each unique spatial frequency and contrast / luminance condition combination within the study. 

In addition, this technique facilitates resampling from the probability distribution of the data to 

further validate any variance associated with the fixed effects and their interactions.  

The spatial frequency, contrast and visual discomfort variables were computed as discrete 

numerical data, with step time being computed as continuous numerical data. Spatial frequency 

was coded with the numerical values of the 2 spatial frequencies, therefore, the parameter estimate 

for step time reflects an increase of 1 CPD (note that the spatial frequencies here range from 

0.03125 – 0.5 CPD). Contrast was also coded with the numerical values of the 6 Michelson 

contrasts, and so the parameter estimate reflects an increase of 1 in contrast (i.e., ~ minimum 0.01 

to maximum 0.997 contrast values). Visual discomfort was coded with the numerical values of the 

1 – 7 scale, and so parameter estimates here reflect an increase of 1 in visual discomfort.  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that velocity data was normally distributed across the 

different levels fixed and random effects. 

The VIF values for each variable (spatial frequency, contrast, and visual discomfort) were close to 

1, suggesting that there is very weak to no correlation. This indicates that the data meets the 

assumptions of collinearity required to construct the models, where multicollinearity was of no 

concern (spatial frequency, VIF = 1.49; contrast, VIF = 1.12; visual discomfort, VIF = 1.40).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and three-way 

interactions between these fixed effects. At each stage, fixed effects found to be non-significant 

were dropped from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. The 

pMCMC value for each fixed effect within each model was used to detect non-significant values, 

i.e., with an alpha of 0.05. The model of best fit was then selected from the ‘a’ labelled models, 

unless there were no fixed effects dropped from the original model. The null model (N) only 

includes random effects, and consequently does not include any of the fixed effects. These models 

therefore present the combination of predictors that best describe the variance at each stage. See 

Table C9 for the model outputs. Models with lower DIC scores are considered to reflect a better 
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fit of the data (Spiegelhalter et al., 2002).   

 

Table C9 Model fit comparisons for models estimating step time based on the frequency spacing and contrast 
manipulations between experimental conditions, and visual discomfort. SF = spatial frequency, Con = contrast, VD 
= visual discomfort, PT = participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 51072.77  PT, TO 

1 51040.82 SF, Con, VD PT, TO 

1a  51038.93 Con, VD PT, TO 

2 51036.43 Con, VD, SF x Con, SF x VD, Con x VD PT, TO 

2a * 51033.66 Con x VD PT, TO 

3 51035.86 Con x VD, SF x Con x VD PT, TO 

3a 51033.66 Model 2aa PT, TO 

  

Based on the DIC values for each model in Table C9, the best fitting model was model 2a, which 

included the interaction between contrast and visual discomfort. The parameter estimates, upper 

and lower 95% confidence, effective sample size, and pMCMC values for this model are displayed 

in Table C10. 
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Table C10 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors 
of the model for step time variability. Effective samples and pMCMC values for the model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept) 100.23 99.63 100.75 9899 <.0001 ** 

Contrast x  

Visual Discomfort 

0.22 0.15 0.29 8893 <.0001 ** 

Random      

Participant  0.98 0.40 1.68 7786  

Trial 0.12 0.01 0.36 5153  

Deviance Information Criterion (DIC)                                                                  51033.66 

 

The parameter estimates and confidence intervals displayed for model 2a, which can be seen in 

Table C10, indicate that the interaction between contrast and visual discomfort provide most of 

the explanatory power of the variance in step time recorded across the three experiments.  

Visual Discomfort 

To examine the impact of spatial frequency and contrast manipulations on participants’ subjective 

ratings of visual discomfort, cross-classified Markov Chain Monte Carlo general linear mixed-

effects modelling was applied to the visual discomfort data, in % relative to the control floor (Burn-

in = 500, Chain Length = 10,000, Thinning Interval = 1). This allowed for any effects introduced 

by intra- and inter-individual variability unrelated to stimulus modulation to be controlled for by 

classifying them as random effects when examining the influence that each condition had on 

measures of visual discomfort. Accordingly, participant and trial order were included as random 

effects, where trial order reflects the order of the 5 presentations of each unique spatial frequency 

and contrast / luminance condition combination within the study. In addition, this technique 

facilitates resampling from the probability distribution of the data to further validate any variance 

associated with the fixed effects and their interactions.  
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The spatial frequency and contrast variables were computed as discrete numerical data, with visual 

discomfort being computed as continuous numerical data. Spatial frequency was coded with the 

numerical values of the 2 spatial frequencies, therefore, the parameter estimate for visual 

discomfort reflects an increase of 1 CPD (note that the spatial frequencies here range from 0.03125 

– 0.5 CPD). Contrast was also coded with the numerical values of the 6 Michelson contrasts, and 

so the parameter estimate reflects an increase of 1 in contrast (i.e., ~ minimum 0.01 to maximum 

0.997 contrast values).  

The models were fit in a Bayesian framework using the MCMCglmm package in R. QQ-plots and 

density plots were assessed, and indicated that velocity data was normally distributed across the 

different levels fixed and random effects. 

The VIF values for each variable (spatial frequency and contrast) were equal to 1, suggesting that 

there is no correlation. This indicates that the data meets the assumptions of collinearity required 

to construct the models, where multicollinearity was of no concern (spatial frequency, VIF = 1.11; 

contrast, VIF = 1.11).  

Each model passed both the stationarity and halfwidth test of Heidelberger and Welch’s 

convergence diagnostic (Heidelberger & Welch, 1983), which indicates that the sampled values 

come from a stationary distribution, and that the number of iterations is sufficient to ensure that 

the post-mean values come from a chain that has converged.  

The models were constructed from simple (single fixed effects), through to two and interactions 

between these fixed effects. At each stage, fixed effects found to be non-significant were dropped 

from the proceeding model. These models are labelled ‘a’, and ‘b’ if required. The pMCMC value 

for each fixed effect within each model was used to detect non-significant values, i.e., with an alpha 

of 0.05. The model of best fit was then selected from the ‘a’ labelled models, unless there were no 

fixed effects dropped from the original model. The null model (N) only includes random effects, 

and consequently does not include any of the fixed effects. These models therefore present the 

combination of predictors that best describe the variance at each stage. See Table C11 for the 

model outputs. Models with lower DIC scores are considered to reflect a better fit of the data 

(Spiegelhalter et al., 2002).   
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Table C11 Model fit comparisons for models estimating visual discomfort based on the frequency spacing and 
orientation manipulations between experimental conditions. SF = spatial frequency, Con = contrast, PT = 
participant, TO = trial order. Asterisk indicates best performing model. N = null model 

Model DIC Fixed Effects Random Effects 

N 27469.73  PT, TO 

1 24256.01 SF, Con PT, TO 

2 23644.86 SF, Con, SF x Con PT, TO 

2a * 23643.31 SF, SF x Con PT, TO 

 

Based on the DIC values for each model in Table C11, the best fitting model was model 2a, which 

included spatial frequency as a fixed effects, and the interaction between spatial frequency and 

contrast. The parameter estimates, upper and lower 95% confidence, effective sample size, and 

pMCMC values for this model are displayed in Table C12. 

 

Table C12 Parameter estimates and 95% confidence intervals for the fixed effects, which make up the predictors 
of the model for subjective ratings of visual discomfort variability. Effective samples and pMCMC  values for the 
model also shown. 

                                                               95% CI 

Parameter Estimate Lower Upper Eff. Samp. pMCMC 

Fixed      

(Intercept)  1.27 0.94 1.60 10004 <.0001 ** 

Spatial Frequency -6.20 -6.87 -5.53 9500 <.0001 ** 

Spatial Frequency x 

Contrast 

 9.23 8.52 9.93 9500 <.0001 ** 

Random      

Participant  0.43 0.20 0.74 8476  

Trial 0.04 0.00 0.11 3974  

Deviance Information Criterion (DIC)                                                        23643.31 
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The parameter estimates and confidence intervals displayed for model 2a, which can be seen in 

Table C12, indicate that spatial frequency and the interaction between spatial frequency and 

contrast provides most of the explanatory power of the variance in subjective ratings of visual 

discomfort. 

Correlations Between Measures of Gait and Visual Discomfort 

A Pearson correlation coefficient was calculated to assess the linear relationship between subjective 

rating of visual discomfort and velocity. There was a negative correlation between the two 

variables, r(218) = -0.33, p = 6.00-7. Similarly, a Pearson correlation coefficient was calculated to 

assess the linear relationship between subjective rating of visual discomfort and step length. There 

was a negative correlation between the two variables, r(218) = -0.31, p = 3.97-6. Furthermore, a 

Pearson correlation coefficient was calculated to assess the linear relationship between subjective 

rating of visual discomfort and step time. There was a positive correlation between the two 

variables, r(218) = 0.13, p = .044. Results for these correlations can be seen in the plot matrix 

below (Figure C2). 

Figure C2 Points represent the average visual discomfort (by percentage of control condition) per spatial frequency and 
contrast condition per participant. Line represents line of best fit. Shaded area shows 95% confidence interval.   

 




