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Abstract 
This dissertation investigates whether individual tweets related to the S&P500 Index can predict 

volatility in future returns. A sample of 3,329,267 tweets containing the keyword “SPX” was collected 

from the period 2012 to 2021. We applied Principal Component Analysis (PCA) to reduce the 

dimensionality of the word frequency data and then integrated it with the Heterogeneous Autoregressive 

(HAR) model. We evaluated the in-sample and out-of-sample forecasting performance of various HAR-

PCA models using different estimation window schemes and compared them with the original HAR 

model. We found that HAR-PCA models generally outperform the HAR model, especially during 

periods of particularly high and low volatility. Our findings demonstrate the economic relevance of 

HAR-PCA models for portfolio investment and contribute to the literature by linking investor sentiment 

to return volatility using a word-based method, which avoids the complications of applying advanced 

algorithms. 
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Chapter 1. Introduction 
Volatility modelling and forecasting are essential tasks in risk management, derivative pricing, portfolio 

selection, and central bank policymaking. Accurate volatility forecasts facilitate decision-making by 

market participants and market regulators. However, predicting volatility constitutes a demanding job. 

There are several variables that can be considered in predicting volatility but, in this dissertation, we 

concentrate on investor sentiment as expressed on the social media platform, Twitter. Historically, 

investors have relied on information intermediaries (e.g., professional financial news sources and 

financial adviser services) to obtain timely information and data about the prospects for financial 

markets. However, during the past decade, many new information resources have emerged that are 

readily available to anyone involved in the financial markets. With the proliferation of online financial 

information, especially on social media platforms, individual investors have increasingly turned to 

internet-based social media to capture and disseminate relevant information. The most revolutionary 

development in the distribution of information in this way has been the rise and growth of social 

networking websites such as Twitter, which enable market players to communicate their opinions on 

the financial markets in real time and which provide vast forums for discussion. 

As an intriguing and fast-growing new resource for information on financial markets, the primary 

benefit of Twitter is that it mitigates information asymmetry (Blankespoor, Miller and White, 2014). 

Institutional market participants and professional financial services companies used to have better and 

quicker access to financial information than individual investors. In contrast, because Twitter's user base 

is highly diverse, it offers non-professional participants seeking market information significant 

advantages over more homogeneous specialist social networking sites and conventional information 

gatekeepers such as financial analysts. Twitter provides a platform for investors to share and exchange 

messages and opinions about the market. As a result, individuals potentially have better prospects and 

the ability to make more informed decisions about future events. Extensive research, particularly in 

textual analysis, has been conducted to examine the flow of sentiment in the financial markets. However, 

most of these studies have concentrated on analysing news articles, annual reports, and 10-K filings 

(Antweiler and Frank (2004), Das and Chen (2007), Tetlock (2007), Loughran and McDonald (2011), 

Jegadeesh and Wu (2013), Purda and Skillicorn (2015), etc. There has been only limited coverage of 

social media text. The widely used dictionary, developed by Loughran and McDonald (2011) to classify 
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the tone of financial texts, is derived from 10-K filings. There is no evidence that it performs well in 

analysing short tweets written in informal language. This dissertation adds to the literature by 

investigating whether or not individual tweets about the stock market can be used to predict the volatility 

of stock returns. Specifically, we define the realized volatility of the S&P500 Index as the dependent 

variable and explore the following question: Do occurrences of certain words in individual tweets 

regarding the S&P500 Index predict the realized volatility of the S&P500 Index? 

To explore this research question, we collected a sample of 3,329,267 tweets posted over a period of 

nine years (1 January 2012 to 31 December 2021). All of these tweets are directly related to the S&P500 

Index because we only selected tweets that contained the keyword "SPX," which is the ticker of the 

S&P500 Index. Texts that use the more generic term "S&P500" contain a great deal of noise, and 

frequently include irrelevant and sometimes misleading information. Use of "SPX" as a substitute for 

“S&P500 Index” is a widely accepted convention to filter out messages that have a wider scope than 

purely investment-related aspects of the market (Jiang and Tian (2005), Buccioli and Kokholm (2021), 

and Guyon (2020). After pre-processing the data, we analysed both in-sample and out-of-sample 

forecasting performance by splitting the sample period into an in-sample period (1 January 2012 to 31 

December 2013) and an out-of-sample period (1 January 2014 to 31 December 2021). Firstly, we used 

a bag-of-words approach to represent the corpus based on the appearance of individual words. Then, 

we used Principal Component Analysis (henceforth PCA), to summarize the textual content with a 

smaller set of variables to augment Corsi’s (2009) Heterogeneous Autoregressive (HAR) model. PCA 

reduces dimensionality by converting a set of correlated variables into a smaller set of uncorrelated 

variables. These components capture most of the variability while reducing noise and redundancy. For 

instance, the first four components captured 68% of the total variability of the series in the original 

dataset. Our study evaluates eight HAR-PCA models, including the original HAR model’s independent 

variables (daily, weekly, and monthly lagged realized volatility) and a maximum of eight of the principal 

components that explain most of the variability in the daily word frequency data. 

We assessed the predictive accuracy of the various models both in-sample and out-of-sample (OOS). 

For the OOS analysis, we employed two estimation window schemes: rolling window and expanding 

window. The HAR model served as a benchmark to compare the forecasting performance of the 

sentiment-augmented predictive models. Using this methodology, we linked investor sentiment to 
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return volatility. This word-based method has an advantage over previous studies in avoiding the 

complications of applying advanced algorithms. We focus on the most basic unit—words—to capture 

fluctuations in investor sentiment. Also, unlike previous research that employed pre-specified and fixed 

word lists, our approach does not rely on a dictionary (Tetlock, Saar-Tsechansky and Macskassy (2008) 

and Loughran and McDonald (2011). Instead, our principal component variables change dynamically 

as the sample period rolls forward or expands.  

Our findings can be summarized in three key observations. First, the HAR-PCA models generally 

outperform the HAR model in terms of their capability to forecast future volatility. The most effective 

model for the full sample period was found to be the daily-updated log-HAR-PCA-5 model 

(incorporating the top five principal components), using a rolling window approach. Interestingly, while 

log-HAR-PCA-5 is the winning model, adding principal components does not dramatically alter the 

performance of the model. In fact, adding more than five components reduces the OOS performance of 

the model. Second, the performance discrepancy between the HAR-PCA and HAR models is more 

pronounced during periods of high and low volatility when compared to periods of moderate volatility. 

This suggests that word frequency data have greater significance and applicability for predicting 

volatility during periods marked by particularly high or low market uncertainty. It was also found that 

the statistical properties of our models remain robust when forecasting an alternative volatility measure: 

realized kernel. Third, the HAR-PCA models demonstrate economic relevance when utilized for 

portfolio investment, achieving higher utility gains in comparison with the original HAR model. This 

finding highlights the potential benefits of applying HAR-PCA models to forecast volatility when the 

goal is to build an investment strategy based on this input, as the HAR-PCA models can lead to better-

informed decision-making and improved financial outcomes. 

Our method allows for replicability, refinement by future researchers, and a more transparent analysis 

process, avoiding the "black box" issue that is a feature of complex machine learning algorithms. The 

approach also offers a baseline model for experts in various fields to apply their knowledge, potentially 

enhancing results and fostering a more comprehensive understanding of volatility. The dissertation is 

structured as follows. Section 2 is devoted to a discussion of the existing literature. In Section 3, we 

describe the data. Section 4 details the research methodology, while Section 5 provides the empirical 

and supplementary results. Section 6 describes the robustness checks carried out on our statistical results, 
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and Section 7 explores the economic significance of our models. Section 8 presents our conclusions. 
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Chapter 2. Literature review 
2.1  Investor’s sentiment and stock market 

Investors' sentiment plays a significant role in forecasting stock return volatility and liquidity. The 

media influence investors' decisions. Conversely, investors also express their opinions through social 

media to affect others. Many studies have summarized the prediction power of media coverage in the 

stock market. At the same time, there is yet to be a consensus about how explicitly the stock return 

volatility relates to investors' sentiment. As Keynes noted in 1937, because of investors' "animal spirits," 

market prices often fluctuate wildly and for no apparent reason. De Long et al. (1990) demonstrate that 

increased noise trading, more mispricing, and more volatility are all shown to result from changes in 

market sentiment if unaware noise traders execute their trading strategies relying on sentiment. Based 

on these works, many researchers seek to establish the connection between sentiment and stock market 

returns (Tumarkin and Whitelaw (2001), Baker and Wurgler (2006), Zhang, Fuehres and Gloor (2011), 

Chung, Hung and Yeh (2012), Boudoukh et al. (2013), Oliveira et al. (2013), Liew and Budavári (2016), 

Sun, Najand and Shen (2016)). For example, Chung, Hung and Yeh (2012) measure the sentiment using 

Baker and Wurgler's (2006) orthogonalized sentiment index. They document that sentiment has 

predictive power for return in the expansion state, but not in recession. Boudoukh et al. (2013) argue 

that the news's impact on the stock price changes more noticeably when the news's type and tone are 

appropriately detected. In a more recent study, Sun, Najand, and Shen (2016) examined the predictive 

power of the Thomson Reuters MarketPsych Index, a sentiment indicator that takes into account 

newswires, online news, and social media to forecast 30-minute returns. They found that changes in 

investor sentiment can forecast intraday stock returns. 

The following works are similar: the authors use various measures of investor sentiment, such as Google 

search data (Gao, Ren, and Zhang, 2019), a new sentiment index (Huang et al., 2015), social media 

messages (Kurov, 2010), and proxies such as implied volatility index (VIX) (McLean and Zhao, 2014). 

Studies on investor sentiment reveal a link between investor sentiment and stock returns, with higher 

levels of sentiment leading to greater profits from exploiting market anomalies (Zouaoui, Nouyrigat 

and Beer, 2011), increased investments (Arif and Lee, 2014) and increased sensitivity to earnings news 

(Mian and Sankaraguruswamy, 2012). Furthermore, Renault (2017) investigated how investment 
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decisions relating to proxies for stock market mispricing; findings suggested that firms with high R&D 

intensity or turnover were more likely affected by mispricing (Sun, Najand and Shen, 2016). This 

indicates that these companies are more sensitive to shifts in investor sentiment and could be more 

vulnerable to market volatility as a result of such changes. Previous research additionally examined 

how investors' sentiments might predict stock market crashes (Polk and Sapienza, 2004). Their results 

suggest that sentiment raises the probability of crises in countries with a tendency towards herd behavior 

and overreaction or countries with low institutional involvement (Smales, 2017). This highlights the 

importance of considering the broader societal context when evaluating the potential impact of investor 

sentiment on stock markets and underscores the need for careful analysis of market conditions in order 

to mitigate the risk of market instability. Another key finding of the studies is that investor sentiment 

plays a central role in the stock market (Firth, Wang and Wong, 2015). The research demonstrates that 

sentiment drives noise trading, which can significantly impact stock prices and market returns (Zhou, 

2018). The authors argue that sentiment is a key driver of market behavior and can profoundly impact 

investment decisions, particularly in the short term. 

Besides, in Stambaugh and Yuan (2017), a four-factor asset pricing model is proposed, which 

accommodates a wide range of anomalies than previous models and takes into account the influence of 

investor sentiment. In another study (Daniel, Hirshleifer and Sun, 2019), a factor model is presented 

that aims to explain the cross-section of US equity returns by incorporating investor psychology and 

the long and short-horizon mispricing caused by managers' decisions and investor inattention 

respectively. A deep learning-based stock market prediction model (Jin, Yang and Liu, 2020) is also 

proposed, which considers investor sentiment to improve the prediction accuracy and overcome the 

challenges of noise, volatility, and the complexity of stock price sequences by involving sentiment, 

decomposing the price sequence with Empirical Modal Decomposition (EMD), and using a revised 

Long short-term memory (LSTM) network with an attention mechanism. This has important 

implications for individual investors, highlighting the importance of being mindful of sentiment when 

making investment decisions. It also underscores the need for investors to be vigilant in monitoring 

market conditions and to be prepared to adjust their investments in response to shifts in investor 

sentiment. 
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Similar findings investigating the sentiment have been made by the following academics: Antweiler 

and Frank (2004); Ho, Shi, and Zhang (2013); Lee, Hutton and Shu (2015); Da, Engelberg and Gao 

(2015); See-To and Yang (2017); Siganos, Vagenas-Nanos and Verwijmeren (2017); Behrendt and 

Schmidt (2018); Rahimikia and Poon (2020). For instance, Antweiler and Frank (2004) found that stock 

market volatility may be predicted by analyzing the tone of comments made on Yahoo! Finance and 

Raging Bull. According to research by Ho, Shi and Zhang (2013), the intraday volatility of certain US 

equities is highly impacted by news sentiments. Lee, Hutton and Shu (2015) illustrate that sentiment 

can be priced as a systematic risk, and the changes in sentiment can lead to revisions in volatility and 

excess return. Da, Engelberg and Gao (2015) aggregated consumer Internet search activity to create the 

"FEARS" index, which measures investor sentiment. This measure can forecast sudden increases in 

volatility and short-term return reversals. In a more recent study, Rahimikia and Poon (2020) found that 

including a limit order book and news sentiment in the HAR model can improve volatility forecasting. 

Most studies support the idea that news or social media sentiment can or at least assist in predicting 

stock market return and volatility (e.g., Baker and Wurgler (2006), Chung, Hung and Yeh (2012), 

Boudoukh et al. (2013), while others are skeptical (e.g., Antweiler and Frank (2004), Oliveira et al. 

(2013)). Generally, consensus has yet to be reached on forecasting stock market returns or volatility 

using sentiment analysis. The most recent topic is not whether investor sentiment affects stock market 

pricing but how to assess and quantify the effects of investor sentiment.  

Overall, the studies shed light on the impact of investor sentiment on stock markets and stock returns. 

The authors argue that sentiment is a key driver of market behavior and can significantly impact 

investment decisions and market outcomes. However, most of the papers employing semantic analysis 

utilize Loughran-McDonald word lists that are unsuitable for Twitter. Our research addresses this gap 

in the literature by proposing a method for directly assessing sentiment from text. 

 

2.2 Measuring the investor sentiment using textual analysis 

2.2.1 Techniques 

To build a link between investor sentiment and capital markets, the first problem that needs to be tackled 

is sentiment. Textual analysis is an area of research utilizing computational and statistical methods to 

extract meaningful information from text data.  
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Manual classification 

Prior to the era of big data, researchers analyse the text of financial disclosure using the manual 

classification method. For example, Botosan (1997) manually identifies the disclosure quality using a 

score based on 35 financial and nonfinancial information items. Similarly, Bryan (1997) applied a 

scoring system to manually classify the MD&A (Management Discussion and Analysis) disclosures 

into numerical variables. He assigned a score of +1, 0, or -1 to each disclosure based on whether it 

indicated a positive, neutral, or negative effect on future performance. More recently, Li (2010) 

examined the tone of forward-looking statements (FLS) using a combination of manual classification, 

and Naive Bayesian supervised machine learning algorithm. He finds that the tone of FLS has 

explanatory power to key company variables, such as the current performance, accruals, firm size, and 

return volatility. However, manual analysis is also subject to some limitations. Firstly, it can be a time-

consuming and labor-intensive process, especially when dealing with a large volume of data. This can 

lead to inconsistencies in analysis, as different analysts may interpret the same information differently. 

Secondly, manual analysis is also susceptible to human biases and errors, such as misinterpretation of 

the text or data entry mistakes. This can affect the accuracy and reliability of the analysis, potentially 

leading to incorrect or incomplete conclusions. Increasing computer processing speed makes textual 

analysis more feasible, but the overwhelming amount of unstructured data made available by internet 

archives and social media sites is also crucial. With the development of natural language processing, 

text information can now be transformed into quantitative information more efficiently. Two general 

types of text analysis approaches dominate the accounting and finance literature. The first is the 

dictionary or bag-of-words approach, and the other is the machine learning approach.  

Bag-of-words 

Researchers employ bag-of-words methods to classify words based on predefined rules. In past studies, 

two lexicons were utilized almost exclusively to create sentiment assessments. The first is the Harvard 

Psychosociological Dictionary, which categorizes terms according to whether they are positive or 

negative to determine the tone of a document or news. Tetlock (2007) applies the General Inquirer text 

analysis tool to quantify the tone of the "Abreast of the Market" Wall Street Journal column according 

to the Harvard-IV dictionary. His result suggests that the media contains essential information about 

the stock market. Tetlock, Saar-Tsechansky and Macskassy (2008) then studied whether the tone of 
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words can predict stock return. The results support their hypothesis: negative words can predict low 

firm stock returns on the next trading day. Both of the above studies evaluate the tone of financial text 

using the Harvard-IV dictionary that developed within the domains of psychology and sociology. 

However, significant limitations exist on how the negative-sentiment Harvard-IV word list may be used 

in financial disclosures. An individual word in the English language may have multiple meanings 

depending on the context in which it is used. The Harvard Dictionary has a number of flaws, one of 

which is that it was not initially constructed with financial issues in mind. According to research by 

Loughran and McDonald (2011), the Harvard-IV-4 dictionary misclassifies about 75% of all negative 

words. In order to overcome the inapplicability of the Harvard dictionary, Loughran and McDonald 

(2011) developed a word list that is specifically applicable to the language of financial disclosures. They 

analyze the link between the words and 10-K filing returns, trading volume, and return volatility. 

According to their research, sentiment measures using the vocabulary classified by Loughran and 

McDonald (2011) are superior for capturing returns related to the 10-K. As a result, a significant number 

of following research in accounting and finance have adopted sentiment metrics based on the dictionary 

created by Loughran and McDonald (2011). (e.g., Law and Mills 2015). They made a key improvement 

by constructing a new dictionary that was more relevant to the economic context.  

Many other word lists have been developed in addition to these two standard dictionaries. In order to 

catch unethical behavior by managers during earnings conference calls, Larcker and Zakolyukina (2012) 

compiled lists of both negative and positive words to use as red flags. Bodnaruk, Loughran and 

McDonald (2015) came up with a set of 184 terms to measure the depth of public companies' financial 

constraints. The list is compiled by investigating the vocabulary of at least 5% of all annual reports and 

selecting "tokens" that represent terms readers typically find constraining. They conclude their metric 

is more accurate than other constraint indices at predicting financial consequences like dividend 

omissions. Hope and Wang (2018) replicate Larcker and Zakolyukina's (2012) methodology and find 

that CEOs' big baths write-offs result in a significant widening of the company's bid-ask spreads. This 

demonstrates the viability of monitoring earnings conference calls for signs of managerial deceit. The 

economic policy uncertainty (EPU) measure developed by Baker, Bloom, and Davis (2016) is likewise 

based on expert judgment. They count how often certain words appear in major newspapers. As a result, 

their EPU index is associated with lower investment levels and higher stock return volatility. Moreover, 
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Soo (2018) developed a housing market sentiment index for 34 U.S. cities from 2000 to 2013 based on 

news articles. Her housing market sentiment indicator is proven to forecast future home price rises. 

Furthermore, this study concludes that an increase in the number of newspaper housing articles, 

including terms such as "highs" and "frenzied," is related to an increase in future house prices. More 

recently, Loughran, McDonald and Pragidis (2019) created a collection of 130 words expected to impact 

oil prices in order to analyze traders' propensity reflected through the news. They discover that the 

public tends to overreact in the near run to stories about oil. Words like "recovery," "trouble," and 

"assault" are among their most often used terms. 

All the above literature applies the sentiment lexicon method, and these words lists are classified by 

expertise using their professional knowledge and experiences. While the subjectivity problem that the 

bag-of-words approach may face discourages researchers from defining a word list. Research has shown 

that new dictionaries, such as the García, Hu and Rohrer (2022), which incorporate bigrams models, 

can provide a more accurate representation of sentiment than traditional approaches. 

Machine learning 

Another strand of literature focuses on machine learning algorithms. Textual analysis in accounting has 

been gaining increasing attention as a research method due to its ability to process and analyze large 

amounts of data through natural language processing (NLP). NLP is a central component of textual 

analysis, and machine learning, especially deep learning, is emphasized as an important tool for NLP 

implementation. Accounting researchers are encouraged to increase their knowledge and use of 

machine learning in NLP (Bochkay et al., 2022). The use of NLP in financial analysis extends to the 

examination of social media activity and its impact on ETF premiums (Liu, 2023). Machine learning 

has been applied to extract and quantify firms' exposure to risk factors, which can be categorized into 

systematic and idiosyncratic risks and used to construct pricing factors (Lopez-Lira, 2023). The results 

suggest that production-based risks can be valuable in cross-sectional pricing and perform similarly to 

classic models in pricing a wide range of assets. However, it is important to note that commonly used 

platforms, such as Diction, may not be suitable for evaluating the tone of financial disclosures. A better 

tool for capturing the tone in the business text would be the Loughran-McDonald (2011) dictionary 

(Loughran and McDonald, 2015). Besides, the relationship between language used in corporate 

disclosures and increased AI readership has also been studied. Results indicate that firms adjust their 
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language to suit machine processing and avoid negative sentiment to be more favorable to algorithms 

(Loughran and McDonald, 2015). 

Do humans or machines have an advantage when it comes to picking out the general tone of an extensive 

collection of financial statements by looking for key phrases? Some argue that employing 

computational approaches to generate word lists based on sentiment eliminates the subjectivity of 

human selection. The majority of newly developed approaches are derived from the field of machine 

learning and usually come under the categories of supervised or unsupervised learning. Supervised 

learning is utilized when a set of determination rules is accessible. In unsupervised approaches, 

researchers allow the algorithms, such as topic analysis, to explore hidden patterns in the data. Several 

existing studies investigate the application of machine learning in textual analysis. In its early 

application stages, machine learning in the accounting and finance literature relies on human assistance 

in text classification. (Huang et al. 2015). As mentioned above, Li (2010) manually classifies the degree 

to which forward-looking statements in the MD&A section are positive. Next, he feeds these manually 

categorized statements into a Naive Bayes Classifier (NBC). To maximize the possibility that the 

aggregate values would provide categorizations that match the manually specified groups, the NBC 

assigns scores to word patterns. Once the scores of the word patterns are determined, the classifier may 

assign confidence levels to assertions that have not yet been labeled. Combining human labor with 

machine learning has a key benefit over traditional text categorization methods in that the researcher 

may fine-tune the content analysis for a specific context. While there is an advantage to manual machine 

learning over purely manual categorization, it still has some of the same drawbacks regarding manual 

categorization. 

In the more recent stage, newly developed algorithms require less human assistance. Frankel, Jennings 

and Lee (2016) apply support-vector regressions to analyze how words and bigrams from the MD&A 

section of 10-K reports explain firm-level accruals. The paper finds that these words and bigrams can 

predict accruals better than existing models and also help predict future cash flows. Also, Manela and 

Moreira (2017) use support vector regression (SVR) to derive an uncertainty measure called news 

implied volatility (NVIX) from Wall Street Journal lead stories (WSJ). They demonstrate a correlation 

between the occurrence of certain words in WSJ articles and the implied volatility of options (VIX) 

between 1996 and 2009. Specifically, they find that the greater the level of uncertainty expressed in the 
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WSJ stories (represented by a higher NVIX Index), the greater the following market stock returns. 

These findings also have economically significant implications since an increase of one standard 

deviation in NVIX is connected with a 3.3% rise in yearly returns the following year. The study 

conducted by Donovan et al. (2021) utilized three distinct machine learning techniques, namely support 

vector regressions, supervised Latent Dirichlet Allocation, and random forest regression trees, to 

develop a credit risk metric that draws on qualitative data obtained from conference calls and the 

MD&A section of 10-K reports. The study reveals that the measure enhances the accuracy of forecasting 

credit events and explains the fluctuations in credit risk both at the inter-firm and intra-firm levels. 

Other studies applying supervised learning to textual analysis include Taddy (2013), Rabinovich and 

Blei (2014), and Taddy (2015). As opposed to the supervised learning techniques, Bybee et al. (2020) 

extend the research in this area by employing an unsupervised modeling technique called Latent 

Dirichlet Allocation (LDA) to evaluate the topics covered by the Wall Street Journal. In contrast to 

Manela and Moreira (2017), that only look at the most prominent WSJ stories, Bybee et al. (2020) 

analyze the whole body of WSJ articles published between 1984 and 2017. They find that there is a 

correlation between media coverage and economic growth. These studies all confirm the usefulness of 

machine learning in text analysis. However, one of the critical limitations of employing machine 

learning is the black-box issue. The operations of specific algorithms are overly sophisticated to be 

understood by humans due to their size and complexity. These complex algorithms can hardly produce 

a transparent and tractable model. Besides, machine learning methods sacrifice intuition and 

understanding for predictive accuracy and efficiency (Bzdok, Altman and Krzywinski, 2018). It remains 

unclear whether machine learning is understanding texts' logic or just extracting signals (Frankel, 

Jennings and Lee, 2021). 

 

2.3 Textual analysis and social media 

Content mined from Yahoo stock forums was among the first examples of textual analysis' application 

to the financial sector (see Das and Chen, 2007). However, in recent years, Twitter has become one of 

the most cutting-edge sources of social media information. Twitter, which launched as a microblogging 

service in 2006, has become one of the most popular platforms for individuals to convey or disseminate 

new information. Whether these short tweets could have an impact on the firm's fundamentals and 
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capital market has also been discussed by many researchers. Bollen, Mao and Zeng (2011) analyzed the 

mood expressed through Twitter. Their findings show that incorporating public sentiment 

characteristics can enhance the accuracy of DJIA forecasts. Mao et al. (2012) examines whether the 

daily number of tweets mentioning the S&P500 stocks is associated with S&P500 stock indicators 

(share price and traded volume). They argue that the movement of the S&P500 Index closing prices can 

be predicted more accurately when including Twitter data in the model. With the help of Twitter to 

distribute links to press releases and other conventional disclosures, Blankespoor, Miller and White 

(2014) investigates whether companies may utilize Twitter as an additional communication channel to 

spread information better. After controlling for the news's content, the existence of information 

intermediaries, market circumstances, and firm-specific features, they show that Twitter distribution 

during news event windows is linked with reduced bid-ask spreads, bigger depths, and a higher liquidity 

ratio, especially for those companies with low exposure to the traditional financial press. Another 

similar research by Lee, Hutton and Shu (2015) argues that businesses utilize Twitter and other social 

media to communicate with investors in an effort to mitigate the market's unfavorable reaction to the 

news. Moreover, according to a study by Jung et.al (2017), most S&P1500 businesses have created 

either a corporate Twitter account or a Facebook profile. More importantly, Jung et.al (2017) shows 

that a company's tweets about news and followers' retweets could trigger more news coverage from 

traditional media. It indicates that the news press and Twitter can simultaneously interact and affect the 

capital market. Azar and Lo (2016) analyze the predictive ability of social media to forecast the returns 

of a value-weighted stock index by creating a database of tweets about the Federal Reserve's Federal 

Open Market Committee (FOMC). They assign each tweet a polarity score between -1 and +1. The 

weighting of the tweets is based on the number of followers each individual has, as individuals with 

more followers should have a more significant influence on index results. They discovered that the 

investor tweeted opinions regarding the Federal Reserve affect the performance of value-weighted 

indexes. Higher Fed-related sentiment on Twitter is associated with greater future index returns, and 

the results are exceptionally high on the eight FOMC dates. Bartov, Faurel and Mohanram (2018) 

investigated tweets posted nine trading days prior to the announcement of earnings. They apply two 

alternative methodologies to quantify the sentiment of tweets. The first method classifies tweets as 

either good, negative, or neutral based on the results of a naive Bayes algorithm. The second method 
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employs three lexicons to evaluate negative sentiment: the negative word list by Loughran and 

McDonald (2011), the Harvard IV-TagNeg word list, and the word list developed by Hu and Liu (2004). 

Both methods have demonstrated their ability to forecast forthcoming actual earnings surprises and 

prompt stock price reactions to earnings declarations. Elliott, Grant and Hodge. (2018) observes that in 

an experimental scenario, the impact of CEO Twitter accounts mitigates the effect of unfavorable news. 

Following negative corporate news, investors are more inclined to purchase the stock of a company 

whose Chief Executive Officer engages with market on Twitter. Similarly, Agrawal, Gans and Goldfarb 

(2018) take both Twitter and StockTwits messages into account. The authors suggest that there exists a 

correlation between social media posts and liquidity indicators, specifically turnover and the quantity 

of intraday trades that occur beyond the quotation spread. Besides, there exists a correlation between 

raised bullish or bearish sentiment and increased liquidity metrics. Moreover, the authors posit that the 

influence of negative effect on liquidity surpasses that of positive effect; therefore, the authors contend 

that moments of panic are anticipated to have a more pronounced effect on market turnover and trading 

volume compared to optimistic sentiment. Other similar literature includes Liew and Budavári (2016), 

Nofer and Hinz (2015), and Porshnev, Lakshina and Redkin (2016).  

More recently, Gu, Kelly and Xiu (2020) investigated the data content of firm-specific sentiment 

derived from Twitter, using Bloomberg's supervised machine learning algorithms for social media 

sentiment analysis. They argue that tweets contain information not reflected in stock prices. Gan et al. 

(2020) apply Thomson Reuters MarketPsych Indices (TRMI) to measure the sentiment, and they 

conclude that the social media, not news, dominated the causal association between media sentiment 

and market characteristics (return and volatility). Also, they have discovered that the correlation 

between implied volatility and sentiment exhibits more robustness in comparison to the correlation 

between returns and sentiment. Cookson and Niessner (2020) creatively measure investor disagreement 

by observing investors' investing model through Stocktwits message postings. By analyzing 

disagreement within and across investment strategies, they determine the extent to which different 

information sets versus different interpretations of information cause disagreement. Cao, Fang and Lei 

(2021) collect tweets from individual firms to measure Negative Peer Disclosure (NPD). Then the peer 

disclosure tweets are categorized according to the quantity of positive or negative lexicon as specified 

in the Loughran and McDonald dictionary. They find that the tendency to issue NPD rises with product 
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market competition and technology proximity. Except for the associations between Twitter information 

and essential market variables such as return, and volatility, it has also been observed that Twitter 

integrates financially essential information for bond and credit default swap investors who are assumed 

to possess specialist expertise in the field (Bartov, Faurel and Mohanram, 2022). By applying the 

dictionary-based text analysis, Bartov, Faurel and Mohanram (2022) construct their main variable 

aggregated Twitter opinion (OPI) from a factor analysis using three commonly used word lists: the 

Loughran and McDonald (2011) word list, the Harvard IV word list, and the Hu and Liu (2004) word 

list. 

As immediate and worldwide information sources, Twitter and other social media platforms appear to 

be treasure troves of timely, globally relevant market information. However, the usage of slang, 

vulgarity, symbolism, and sarcasm is one of the challenges in gauging mood from social media posts. 

Loughran and McDonald's (2011) lexical standards might be used as a starting point for this kind of 

sentiment analysis. However, they were not developed to analyze the sentimental content of Twitter 

posts.  Both Renault (2017) and Chen, Guo and Renault (2019) provide an example of how crucial it 

is to tailor sentiment-related vocabulary lists to the target corpus. Loughran and McDonald’s dictionary, 

for instance, was compiled with 10-K reports. Researchers should modify the underlying vocabulary 

lists cautiously and transparently before applying the dictionary to tweets, volatility, or any other source. 

 

2.4 Volatility modelling and forecasting 

Researchers have established several models aimed at capturing the dynamics of market volatility. 

Engle (1982) proposed the Autoregressive Conditional Heteroskedastic (ARCH) model, which analyses 

stylized characteristics of price volatility, such as persistence, mean reversion, and heavy tails, by 

formulating conditional variance as a linear function of past observables. Bollerslev (1986) extended 

the original ARCH model to create the Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) model, which has been extensively used and discussed by practitioners and researchers. 

Evolving from these theoretical cornerstones, several variations of the GARCH model have been 

proposed, focusing on different variables. For example, GARCH-M models (Engle, Lilien and Robins, 

1987), EGARCH models (Nelson, 1991), and modified GARCH-M models (Glosten, Jagannathan and 
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Runkle, 1993). Although GARCH models can be easily applied, they perform poorly in forecasting 

from the high-frequency intraday data available for many financial assets. As Anderson et al. (2003) 

proposed, realized volatility—calculated based on high-frequency asset return data—is an unbiased 

estimator of return volatility. It is evident that the conventional volatility models that are employed for 

daily-level prediction, such as ARCH and GARCH, are not equipped to process the mass of information 

contained in intraday data. These models tend to fall short when used in attempts to accurately represent 

longer interdaily volatility fluctuations. Corsi’s original (2009) HAR model, with simple parameters, 

significantly outperforms the GARCH and stochastic volatility models (Bollerslev, Patton and 

Quaedvlieg, 2016). Much of the literature is devoted to the construction of various modified versions 

of the HAR model, such as the HARQ model (Bollerslev, Patton and Quaedvlieg, 2016) and the vector 

HAR model (Busch, Christensen, and Nielsen, 2011). This dissertation focuses on the impact of words, 

so we consider HAR to be a satisfactory fundamental model to be integrated with word variables. We 

therefore developed PCA-augmented HAR models using daily Twitter text as data and performed 

forecasts to investigate whether words from the tweets predicted S&P500 Index return volatility. 

Audrino, Sigrist, and Ballinari (2020), also employed the HAR model, with the inclusion of sentiment 

and attention variables, to forecast future volatility. In their case, the sentiment and attention variables 

were obtained using a deep learning algorithm, utilizing a large volume of Stock Twits posts and Google 

searches as their basis.  

 

2.5 Contributions 

The present research fills a gap in the existing literature because there has hitherto been no investigation 

of how Twitter content can predict future asset return volatility. We link stock return volatility directly 

to individual words using the PCA method. For textual analysis, several techniques have been used to 

extract meaningful information from text data, with manual classification, bag-of-words, and machine 

learning being among the most common approaches. Each method has its own advantages and 

disadvantages. However, the practicality of the bag-of-words approach has made it a popular choice for 

many applications. Manual classification offers a high degree of accuracy and incorporates expert 

knowledge. However, manual classification is labor-intensive, time-consuming, and prone to human 

error or bias. Furthermore, it scales poorly with increasing data volumes, making it less suitable for 
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handling large datasets. Machine learning techniques, such as deep learning and natural language 

processing algorithms, are capable of handling more complex representations of text data. However, 

machine learning approaches have been criticized for picking up trends or signals without genuinely 

understanding the text content, which makes it impossible for researchers to confirm whether the 

algorithms are truly learning from the context or are simply identifying hidden features that are 

incomprehensible to human logic. The bag-of-words approach is a text data simplification technique 

that represents language as a collection of words, recording the occurrence frequency of individual 

words without considering grammar or word sequence. This approach offers several benefits, including 

ease of implementation, computational efficiency, and scalability to large datasets. However, in 

previous studies, the ‘bags-of-words’ were created by professionals, which raises a subjectivity issue. 

Besides, as the number of concepts increases, and are represented differently over time due to the 

evolution of language and economics, and as expertise on different topics or even the same topic 

increases and disseminates, a need arises for discipline and replicability in the construction of word 

bags. 

The aim of this dissertation is to refine the process of constructing bags of words for the study of 

volatility. Our strategy first replaces subjective human decision-making with a reproducible algorithm 

(PCA). Since this technique is well-defined and straightforward, it can be replicated. Second, it can be 

modified and enhanced by future researchers, making it easier to evolve and adapt. Third, it provides 

experts from different fields with a baseline model from which to apply their knowledge to enhance 

their findings. This collaborative approach can lead to more comprehensive and accurate results. Finally, 

as opposed to machine learning algorithms that analyse long sentences or even the whole text of reports, 

focusing on the occurrences of single words avoids the "black box" issue and makes the entire process 

of generating word predictors more transparent. 
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Chapter 3. Data 
Collecting Twitter text data related to the S&P500 Index involved using the Twitter Developer Platform. 

This platform provides access to the vast amount of real-time data generated by Twitter users. Our 

primary focus is on tweets directly connected to the S&P500 Index, necessitating a search for tweets 

containing a keyword closely related to the S&P500 Index. We could, of course, simply search for 

“S&P500,” but this harvests many irrelevant tweets, for example: 

S&P 500 is asserting a near-term trading range: Technical Indicator https://on.mktw.net/2MFVfcI 
The 25 Best S&P 500 Stocks of the Past 50 Years https://nytv.to/Peyk 
Did you know that more than half of the S&P 500 companies have agreed to be more transparent 
about their political spending and now share information that would otherwise be opaque and 
untraceable? Find out more in @rgrdlaw’s #CorporateGovernance Roundup: 
https://bit.ly/2MYWbch 
Weekly S&P500 ChartStorm WriteUp 
Charting the markets with @IGTV@IGBank Key levels in #cable #euro #brentcrude and #S&P500 
with @JeremyNaylor_IG Long term charts in Cable point to $1.36 key for medium term trend. 
Wishing you all and IGcredible team a happy and healthy 2022! #technicalanalysis #fx #charting 
When will people realize that the real chair of the #FederalReserve is the S&P500? 

These texts that mention "S&P500" contain a great deal of noise, and often include irrelevant or even 

misleading information. As an alternative, we chose to search for the keyword "SPX," which is the 

ticker symbol of the S&P500 Index. This more targeted approach sacrifices comprehensive coverage 

for relevance and reduced ambiguity. People who are knowledgeable about the stock market, such as 

traders and financial analysts, tend to use ticker symbols rather than full names when discussing stocks 

or indices. By searching for "SPX," we are more likely to find tweets from people with a deep 

understanding of the market, which improves the accuracy of our sentiment analysis. Moreover, unlike 

other potential keywords, "SPX" is less likely to be used in other contexts. For example, "S&P" could 

refer to the credit rating agency Standard & Poor's. Our approach enabled us to filter out irrelevant 

tweets and concentrate solely on data pertinent to our research. A similar approach was applied by Mao, 

Counts and Bollen (2011). Maintaining the integrity and relevance of collected data is also crucial. To 

ensure the quality and relevance of the data, we removed tweets created for promotional purposes, 

which could skew our data, impairing its accuracy for further analysis. 

Twitter, the popular microblogging service launched in 2006, has experienced remarkable growth since 

its inception, from just 5000 daily users in 2007 to over 200 million worldwide by 2011. Such incredible 
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growth speaks to Twitter's immense popularity and its capacity to connect people around the globe. Our 

research aims to collect as much information about context and variation in tweets related to the 

S&P500 Index as possible. In order to accomplish this goal, we collected samples over a time range 

from 1 January 2012 through 31 December 2021 to ensure that we captured a wide range of variations 

in opinion and sentiment over time. However, it should be acknowledged that the negation problem is 

a potential limitation of this dissertation. Although the negation of positive sentiment is more common 

in 10-K reports than in tweets, it may obscure true sentiment and impact the validity of our analysis 

results.  

Figure 1 details the pre-processing steps undertaken to prepare the data for analysis. Pre-processing 

passed the data through several essential stages, including punctuation removal, URL removal, stop-

word removal, and tokenization of text data. Punctuation marks and URLs do not contribute 

significantly to Twitter user sentiment, so removing them is crucial for producing accurate results. Stop-

word removal is essential for ensuring data quality. Stop-words are common words, for example ‘and’, 

‘the’, and ‘is’, that do not provide any meaningful insights into Twitter users' sentiments and opinions 

about the S&P500 Index. Eliminating these stop words allowed us to focus on more crucial terms that 

provide greater value. Tokenization involves breaking sentences into individual words to accurately 

record frequency data for each term used, which helps in determining which terms appear most often. 

By implementing the above steps, we were able to generate time series data for each individual word, 

reflecting their occurrence on specific trading days. We also used the data to identify the top 150 high-

frequency word series for further analysis. As Manning and Schütze (1999) posited, word counts tend 

to follow a power-law distribution. This implies that just a very few high-frequency words can 

substantially affect outcomes (Loughran and McDonald, 2016).  

[Figure 1] 

To collect realized variance data on the S&P500 Index, we utilized the Realized Library database 

developed by the Oxford-Man Institute of Quantitative Finance. This resource offers daily 

nonparametric measures of past index volatility and provided reliable and accurate measurements of 

realized variance for this vital component of our research. We were able to obtain intraday returns of 

the S&P500 Index at 5-minute frequency for the entire 2012-2021 sample period from which we 

generated daily realized variance figures with 5-minute frequency. As well as measuring realized 
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variance (5-minute), we also collected an alternative measure of realized volatility: realized kernel 

variance. This nonparametric estimator of integrated variance uses a smooth weighting kernel to reduce 

microstructure noise impact. This alternative measure of realized volatility was collected to provide a 

robust comparison to the realized variance, ensuring that our results were comprehensive and accurate.  

Figures 2 and 3 illustrate the logarithmic realized variance series and the level realized variance series 

using two different measures. Specifically, Figure 3 presents the five most frequently occurring words 

during three instances of exceedingly high market volatility: August 24, 2015, February 6, 2018, and 

March 12, 2020. These dates correspond to three notable market crashes. On August 24, 2015, the 

S&P500 Index experienced a significant drop of 103.88 points within minutes compared to the closing 

value on August 21. On February 6, 2018, the S&P500 Index declined by 4.1%, closing at 2,648.94. 

Lastly, on March 12, 2020, the S&P500 Index reached 2,741.38, following a 4.9% decrease. An 

examination of Figure 3 reveals that "low" and "down" were frequently mentioned during these periods, 

signifying a prevalence of negative sentiment among investors. There are also examples of tweets 

during these days of the crash, where people express their astonishment and feelings of panic regarding 

the behavior of the market: 

Date Text 

24/08/2015 
US equity futures are pointing to a bloody open: $DJIA -535, $SPX -56 with just under 2 
hours until the open 

24/08/2015 
Global meltdown continues, $SPX futs have accelerated lower from last night, now -60, 
or 3%, on par w/ Europe's losses, China finished -8.5% 

24/08/2015 
Futures crashed to new lows overnight http://t.co/wNG47HwQH9 $SPY $SPX $DJIA 
$DIA $VIX $COMPQ 

06/02/2018 
An Unprecedented Move To Financial Crisis Lows https://t.co/22TdzfWKPQ #stocks 
#amrkets $DJIA $SPX 

06/02/2018 
US #StockMarket Futures Slumping Overnight After Initial Plunge $NDX $SPX 
https://t.co/urEOA00RpI 

06/02/2018 
The Dow is heading for another nosedive this morning, falling more than 300 points 
premarket $DJI $SPX https://t.co/23uDy2rE1b 

12/03/2020 
Market halted right out of open. $SPX $SPY $TSLA #optionstrading #stockstotrade 
https://t.co/skczUxiTBA 

12/03/2020 Another #market wide 15min circuit breaker. $DJI $DJIA $SPX $COMP $IXIC 

12/03/2020 
hope you realize your witnessing history on legacy markets $SPX $DJI $SPY 
https://t.co/mvz5bT7AAG 

[Figure 2] 

[Figure 3] 
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Table 1 shows that the mean values for realized variance (5-minute) and realized kernel variance are 

very close, ranging from 12.39% to 12.93%. The minimum values are also similar, ranging from 1.50% 

to 1.75%. However, the maximum values show some variation, with the realized variance (5-minute) 

having a higher value of 101.90%. The most frequently occurring word is "es_f," which stands for E-

mini-S&P500 futures contracts, with a mean of 109 and a total of 274,297 occurrences. The least 

frequently occurring word is "sensex," which stands for Bombay Stock Exchange Sensitive Index, with 

a mean of 2 and 4,240 occurrences. The word with the highest standard deviation is "qqq," with a value 

of 98. "qqq" stands for the Invesco QQQ Trust Series 1, which is an ETF based on the Nasdaq-100 

Index. The word with the highest maximum occurrence is "good," with a value of 1,059. Almost all 

words have a minimum daily occurrence of 0. These statistics provide insight into the popularity and 

usage patterns of various ‘hot’ words in tweets related to the S&P500 Index over the sample period. 

Figure 4 displays a ‘word cloud’ in which the size of each word is determined by the frequency with 

which it occurs. Words that appear more frequently are represented by larger font sizes. 

[Table 1] 

[Figure 4] 
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Chapter 4. Methodology 

4.1 Realized variance. 

The log-price process P of a single asset during an active trading day as it develops in continuous time 

can be described by the following equation: 

 

 𝑑𝑃 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊  (1) 

 

Where 𝜇  and 𝜎  are the instantaneous drift and volatility processes, and 𝑊  represents standard 

Brownian motion. The 𝑖th ∆-period return within day 𝑡 is defined as 

 

 𝑟 , = 𝑃 ∆ − 𝑃 ( )∆, 𝑖 = 1, 2, … , 𝑀, (2) 

 

Where 𝑀 = 1/∆ is the sampling frequency. Hence the daily logarithmic return for the active part of 

the trading day 𝑡 is 𝑟 = ∑ 𝑟 , . 

We normally forecast the latent one-day integrated variance defined by  

 

 𝐼𝑉 = ∫ 𝜎 𝑑𝑠 (3) 

 

Although one-day integrated variance is not directly observable, it can be reliably inferred from the 

one-day realized variance (Anderson et al. (2003), Barndorff-Nielsen, Ole E and Shephard (2002) and 

Barndorff-Nielsen and Barndorff-Nielsen, Ole E and Shephard (2006)). It is defined as follows:  

 

 𝑅𝑉 = ∑ 𝑟 ,  (4) 

 

where  𝑟 ,  is the 𝑖  intraday return on day t. 

 

4.2 The HAR-PCA model  

The HAR model has the benefit of modeling the long-memory behavior of volatility in a straightforward 
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and parsimonious manner, resulting in excellent forecasting performance when applied to the 

measurement of realized volatility (Corsi, 2009). The original HAR model specifies realized variance 

as a linear function of daily, weekly, and monthly realized variance components: 

 

 𝑅𝑉 = 𝛽 + 𝛽 𝑅𝑉 + 𝛽 𝑅𝑉 , + 𝛽 𝑅𝑉 , + 𝜀  (5) 

 

Where 𝑅𝑉 = 𝑅𝑉  is the daily realized volatility at 𝑡 − 1 . 𝑅𝑉 ,   is the average realized 

volatility over the past week. 𝑅𝑉 ,  is the average realized volatility over the past month. The 

simplicity of the model also allows for augmentation with other statistically or economically significant 

regressors. The PCA-augmented model used in this study is defined as follows: 

 

 𝑅𝑉 = 𝛽 + 𝛽 𝑅𝑉 + 𝛽 𝑅𝑉 , + 𝛽 𝑅𝑉 , + ∑ 𝛾 ∗ 𝑃𝐶𝐴 + 𝜀  (6) 

 

Where 𝑃𝐶𝐴  is lagged one day PCA variable that derives from the number of occurrences of the 

specific word during the most recent day. This specification captures the lagged effect of words in 

addition to the lagged realized volatility by applying the same structure as the HAR model. 

 

4.3 Principal component analysis 

PCA is a technique used in statistics to reduce the dimensionality of a dataset while retaining as much 

of its variance as possible. Stock and Watson (2002) first applied this method in an economic context. 

Their results suggest that PCA produces consistent and asymptotically efficient forecasts even under 

general assumptions about cross-sectional and temporal dependence among the variables. Ehsani and 

Linnainmaa (2022) also utilized PCA to extract factors that explain more of the cross-section of returns. 

In essence, PCA is a widely used unsupervised learning technique in the field of data analysis and 

machine learning. It is a dimensionality reduction method that transforms a set of correlated variables 

into a smaller set of uncorrelated variables called principal components. These components capture the 

maximum variability in the original dataset while reducing noise and redundancy. PCA relies on a 

fundamental mathematical theorem called the singular value decomposition (SVD) theorem which 
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states that any symmetric matrix, including a variance-covariance matrix such as Σ, can be decomposed 

into its symmetric eigenvalues and eigenvectors (see discussion in Guidolin and Pedio, 2020). 

 

 Σ = 𝑈Λ𝑈  (7) 

 

where 𝑈 is a square 𝑛 × 𝑛 matrix, the 𝑖th column of which is the eigenvector 𝑢  of Σ and Λ is a 

diagonal matrix, whose diagonal elements are the corresponding eigenvalues, Λ = 𝜆 . 𝑈  is an 

orthogonal matrix, so that 𝑈𝑈 = 𝑈 𝑈 = 𝐼 . Using this decomposition, the principal components of 

the input data can be computed as linear combinations of the original variables. The vector of the 𝑖th 

principal component is given by  

 

 𝑃𝐶𝐴 = 𝑈 𝑥  (8) 

 

where 𝑥  represents the vector of the original variables. PCA involves several steps, which include 

pre-processing, covariance matrix calculation, eigenvalue and eigenvector calculations, dimension 

reduction, and transformation of data. 

Pre-processing: As part of pre-processing, data must first be standardized so that each feature has zero 

mean and one variance value to ensure that each feature contributes equally to covariance matrix 

calculations. 

Covariance matrix calculation: Once the data have been standardized, the next step is to calculate their 

covariance matrix to gain information regarding the relationships among features within it. This step 

provides insights into any patterns or correlations that may exist within the data. 

Eigenvalue and eigenvector calculation: The covariance matrix is decomposed into its eigenvalues 

and eigenvectors. The eigenvectors represent the directions along which the data have the largest 

variance, and the eigenvalues represent the amount of variance in each direction. 

Dimensionality reduction: The eigenvectors corresponding to the largest eigenvalues are used to 

project the data onto a lower-dimensional subspace. The number of dimensions in the subspace can be 

controlled by specifying the number of components to keep during projection. 
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Transformation of the data: Finally, the data is transformed by projecting it onto the lower-dimensional 

subspace defined by the eigenvectors. The transformed data has reduced dimensionality while retaining 

as much as possible of the information contained in the original data. 

We compiled the frequency of every word that appeared each day throughout the sampling period and 

generated time series for the top 150 words. We subsequently conducted PCA on these variables, 

following the steps described, to reduce the dimensionality of the words’ variables. The selected 

principal components—for example, PCA1, PCA2, ..., PCAN—are the first, second, and Nth principal 

components, respectively. These components represent the directions along which the data have the 

greatest variance. The first principal component, PCA1, is the direction in which the data has the 

maximum variance. In other words, PCA1 captures the most crucial underlying pattern in the data. The 

second principal component, PCA2, is orthogonal to PCA1 and captures the next most important pattern 

in the data. The third principal component, PCA3, is orthogonal to both PCA1 and PCA2 and captures 

the third most important pattern in the data, and so on. To interpret these principal components, we look 

at their loadings on the original variables (word frequency variables). The loadings are obtained by 

regressing each component on all the word variables. Loadings indicate the strength and direction of 

the relationships between variables and components. Word variables with high absolute values (close 

to 1 or -1) on each principal component are the most important for defining each component and 

distinguishing it from others. 

 

4.4 In-sample and out-of-sample forecasting framework 

We used a portion of our time series data (01/01/2012-31/12/2013) to estimate the model parameters 

and determine the best-fitting model. This is identified as the in-sample data. We first used PCA to 

construct a set of independent variables that summarize the textual content, which we used to augment 

the HAR model for forecasting realized volatility. We then applied three information criteria: the 

Akaike Information Criterion (AIC) (Akaike, 1974), the Bayesian Information Criterion (BIC) 

(Schwartz, 1997), and the Hannan-Quinn Information Criterion (HQIC) (Hannan and Quinn, 1979) to 

select the model that performs best. These criteria are defined as follows: 
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 AIC = −2 ∗ log(L) + 2 ∗ k  (9) 
 
 BIC = −2 ∗ log(L) + k ∗ log(n) (10) 
 
 𝐻𝑄𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔(𝐿) + 2𝑘 ∗ 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) (11) 
 

where log(L) is the logarithm of the likelihood function of the model, k is the number of parameters 

in the model, and 𝑛 is the sample size. These information criteria are used to compare and select the 

best model among the candidates. The lower the value of an information criterion the better the fit of 

the model. 

Once the model has been estimated using the in-sample data, it is important to assess its performance 

using previously unseen data. We therefore evaluated the forecasting model's performance using a 

separate observation from 01/01/2014 to 31/12/2021; the OOS period. The OOS period contains data 

not used during the model development stage. To make a one-day ahead prediction, we then use the 

available information up to the most recent time step and apply our forecasting methodology to predict 

next-day volatility. This process is repeated sequentially for each time step in the OOS set, updating the 

model's input with the newly observed data each time. The updating frequency is another 

hyperparameter that needs to be determined carefully. In this study, we applied three updating 

frequencies: daily, weekly, and monthly. With a one-day updating frequency, the forecasting model is 

updated, and new predictions are generated, on a daily basis. This means that, every day, the model 

incorporates the most recent available data to update its parameters and make forecasts for the next 

day's volatility. In the case of a one-week updating frequency, the forecasting model is updated once a 

week (five trading days) while new predictions are generated on a daily basis. The same logic applies 

to the monthly (22 trading days) updating frequency. We used three different updating frequencies, but 

always forecast one-day ahead volatility. In addition, we used both rolling- and expanding-window 

schemes, with the length of the rolling window being two years. 

 

4.5 Forecasting performance metrics 

Following Patton (2011), Patton and Sheppard (2009), and Greene (2003), the mean squared error 

(MSE), mean absolute percentage error (MAPE), and Theil’s U were used to evaluate the OOS 

forecasting performance. The OOS R-squared value was also considered, following Campbell and 
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Thompson (2008). The original HAR model was estimated as a benchmark for assessing forecasting 

accuracy when word variables were entered. The MSE, MAPE, Theil’s U ratio and OOS R-squared are 

defined as: 

 

 𝑀𝑆𝐸 = ∑ (𝑅𝑉 − 𝑅𝑉 )  (12) 

 

 𝑀𝐴𝑃𝐸 = ∑  (13) 

 

 𝑇ℎ𝑒𝑖𝑙 𝑠 𝑈 =
∑ ( )

∑ ( )
 (14) 

 

 𝑅 = 1 −  (15) 

 

where 𝑛 is the number of forecasts, 𝑅𝑉  is the actual 𝑖th value, and 𝑅𝑉  is the forecasted 𝑖th value. 

𝑀𝑆𝐸   is the mean squared error of model 𝑖 , and 𝑀𝑆𝐸   is the mean squared error of the 

benchmark model.  

When comparing OOS forecasting performance, lower values for MSE, MAPE, and Theil's U ratio indicate 

better performance, while for OOS R-squared, a higher value suggests better forecasting performance. 
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Chapter 5. Empirical results 

5.1 In-sample estimates 

As discussed in part 4.3, Table 2 can be used to understand the main themes or topics captured by each 

principal component (PC). For example, on PC1, the words "qqq," "es_f," "ndx," and "market" have 

high positive loadings, which means that they are positively correlated with PC1 and explain most of 

its variation. PC1 therefore seems to be related to market indices and volatility. On the other hand, for 

PC2, the words "qqq," "es_f," and "aapl" are still highly correlated loadings, but the correlations are 

negative. As a result, "qqq" and "es_f" may be seen as ways to get exposure to the S&P500 Index. PC1 

could be 'high attention to the index' while PC2 could be 'low attention to the index.' For PC3, the words 

"down," "sell," "close," and "low" have high positive loadings. This suggests that PC3 represents 

negative sentiment or bearish trends in the market. PC3 therefore seems to be related to market 

movements and support levels. PC4 and PC5 both seem to capture positive sentiment, with PC4 having 

a twist towards European markets. This is consistent with their negative loadings on volatility. 

[Table 2] 

As indicated in Table 3, by incorporating principal components as supplementary regressors, the log-

HAR model is able to harness more information from high-frequency data, thus enhancing its predictive 

capabilities. A notable trend observed in the table is the general improvement in the log-HAR model's 

fit as more PCAs are incorporated, as demonstrated by the progressively higher 𝑅  values. However, 

it is important to note that not all PCAs exhibit statistical significance at any confidence level. 

Specifically, PCA1, PCA2, PCA6, PCA7, and PCA8 do not contribute significantly to the model. In 

contrast, PCA3, PCA4, and PCA5 emerge as the most significant PCAs, with PCA4 and PCA5 

displaying negative signs. This suggests that these two PCAs are capturing negative correlation patterns 

in RV. Moreover, the table reveals that the coefficients of the monthly, weekly, and daily averages of 

logarithmic RV consistently remain positive and statistically significant across all models. This 

indicates their ability to capture long-term, medium-term, and short-term persistence in RV, thereby 

enhancing the model's overall predictive power. Lastly, the constant term is consistently negative and 

significant throughout all log-HAR models, highlighting the mean-reverting property of RV. 

 [Table 3] 

Table 4 shows that the model with the lowest AIC value is log-HAR-PCA6, which means that it is the 
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model most preferred by AIC. The model with the lowest BIC value is log-HAR, and the model with 

the lowest HQIC value is log-HAR-PCA5. AIC, BIC, and HQIC have different properties and 

assumptions and may not always agree on the best model. For example, BIC and HQIC penalize more 

complex models compared to AIC. Table 4 indicates that there is no clear consensus on which 

forecasting model among the candidates is the best. The fact that a model exhibits good performance 

on in-sample data does not guarantee its ability to generalize to OOS data. It is therefore necessary to 

conduct additional evaluations to assess the OOS performance of each model more accurately. 

[Table 4] 

 

5.2  Out-of-sample results 

5.2.1 Full sample period 

Prior to delving into the forecasting results, Table 5 shows the correlation matrix of all independent 

variables employed in the HAR-PCA models. This reveals that lagged realized variance variables 

exhibit high correlations amongst themselves. In contrast, the PCs demonstrate negligible or no 

correlations with each other, which is a fundamental feature of the PCA method. Each principal 

component represents a different aspect of the information contained in the original data. Because they 

are orthogonal, these components are completely unrelated to each other. The most significant 

correlation between the PCs and the lagged realized variances is observed between PC3 and the one-

day lagged realized variance, with a value of 0.3895. This indicates that these two components share 

some common information, but not enough to cause serious multicollinearity problems. It is also worth 

noting that the correlations between PC1 and the three lagged realized volatility variables are close to 

0.3000, and the correlation between PC3 and the three lagged realized volatility variables ranges from 

0.2172 to 0.3895.  

[Table 5] 

According to Table 6, HAR-PCA models generally demonstrate superior performance to the HAR 

model in terms of Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Theil's 

U, particularly when employing the Rolling Window (RW) estimation method. This implies that HAR-

PCA models can extract more valuable information from word frequency data compared to the HAR 

model alone, suggesting that Twitter sentiment has a substantial impact on the dynamics of volatility. 
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The MSE metric assesses the average squared difference between realized volatility's actual and forecast 

values. The results indicate that HAR-PCA models typically have lower MSE values than the HAR 

model, especially when applying the RW estimation method. Among all PCA models, log-HAR-PCA-

5 with the RW method achieves the lowest MSE (0.4121), improving the forecasting error of the original 

HAR model under RW (0.4225) by 2.46%. Moreover, log-HAR-PCA-5 with the RW method also boasts 

the lowest MAPE (0.0493), making it the most effective model for predicting future volatility according 

to the MAPE metric. The R-squared and Theil's U values corroborate the MSE and MAPE results, 

reinforcing the superior performance of log-HAR-PCA-5 under the RW method. In addition to 

outperforming the HAR model, the forecasts generated by log-HAR-PCA-5 using the RW method are, 

statistically, significantly different from those of the HAR model. This finding suggests that the 

principal components extracted from Twitter text data can enhance the volatility forecasting of the 

S&P500 Index when integrated with HAR model predictors, capturing more variation than the original 

HAR forecasting method. Notably, the table also reveals that incorporating more principal components 

does not consistently lead to improved forecasting performance. In some cases, PCA models with fewer 

components yield lower errors than models with a higher number of components. This suggests that the 

word frequency data may contain some redundancy or residual noise that the PCA models are unable 

to eliminate. 

[Table 6] 

Figure 5 plots the forecasting value of log-HAR-PCA-5 (RW) and log-HAR (RW) models compared 

with realized variances series. It is evident that both of our models are able to capture the trend of the 

realized variance effectively. The difference between the prediction values of the two models and the 

actual realized variance is minimal, indicating that the models have a high level of accuracy. However, 

it is not clear why the performance of the log-HAR-PCA-5 model is superior. Figure 6 shows that the 

log-HAR-PCA-5 model improves on the forecasting performance of the original log-HAR model by 

accurately capturing extreme changes in volatility. Specifically, the plot indicates that, when there are 

significant fluctuations in variance (either high or low), the log-HAR-PCA-5 model provides more 

accurate predictions than the log-HAR (RW) model, as evidenced by the higher or lower forecast values. 

This improvement can be attributed to the incorporation of Twitter word frequency data, which supplies 

additional information by reflecting social media sentiment. In addition to evaluating the predictive 
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performance of logarithmic realized variance, Figures 7 and 8 also depict performance in forecasting 

realized variance by computing the exponential of the logarithmic forecasted values. Notably, Figure 8 

demonstrates that the log-HAR-PCA-5 model is more accurate in predicting when the realized variance 

attains exceptionally high levels, a finding that aligns with the observations in Figure 6. 

[Figure 5] 

[Figure 6] 

[Figure 7] 

[Figure 8] 

The Social media sentiment, as gleaned from Twitter word frequencies, offers valuable insights into the 

public's perception and expectations regarding market conditions, which in turn influence market 

volatility. Integrating this additional information into the log-HAR-PCA-5 model endows it with higher 

explanatory power in forecasting extreme volatility in the S&P500 Index. 

Table 7 shows that the HAR-PCA models also outperforms the HAR model when utilizing less frequent 

estimation. However, the degree of improvement is less than that observed in Table 6. The primary 

reason for this is the difference in updating frequency for parameter estimation between the two tables. 

In Table 7, the updating frequency is set at five days, as opposed to the daily updating frequency used 

in Table 6. As a consequence, the responsiveness and adaptability of the models to fluctuations and 

evolving patterns in the data might be somewhat diminished. A closer look at the HAR-PCA models 

reveals that log-HAR-PCA-5, employing the rolling window method, exhibits the best overall 

performance. With the lowest MSE of 0.4160, MAPE of 0.0495, and Theil's U of 0.9078, along with 

the highest R-squared value of 0.6836, log-HAR-PCA-5 demonstrates superior forecasting ability. 

Furthermore, these models are statistically distinct from the HAR model at various significance levels, 

thus reinforcing the merits of the PCA approach. Similarly, the HAR-PCA models with a greater number 

of components show higher error rates than those with fewer components. 

[Table 7] 

Table 8 shows that HAR-PCA models do not perform better than the HAR model in forecasting realized 

volatility when the updating frequency for parameter estimation is 22 days: i.e., on a monthly basis 

rather than daily or weekly. This may make the models less accurate and reliable, as they cannot capture 

the latest information and trends in the data. In fact, on this frequency cycle, some HAR-PCA models 
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have higher errors than the HAR model in MSE, MAPE, Theil's U and lower R-squared values. None 

of the HAR-PCA models significantly differ from the HAR model at any level. This suggests that word 

frequency data only provide valuable additional information for forecasting volatility when the updating 

interval is short. Among the HAR-PCA models, log-HAR-PCA-2 with the RW method has the lowest 

MSE (0.4219), MAPE (0.0497), Theil's U (0.9155), and the highest R-squared (0.6792). However, these 

models are not significantly better than the HAR model on any performance measure. The longer 

updating interval may negatively affect the accuracy and reliability of the models, as they become less 

capable of capturing the most recent information and trends within the data. Consequently, some HAR-

PCA models exhibit higher error rates than the HAR model in terms of their MSE, MAPE, Theil's U, 

and lower R-squared values. In this scenario, none of the HAR-PCA models display statistically 

significant differences from the HAR model at any confidence level. 

These results suggest that, when the updating interval is long, word frequency data does not provide 

additional information that supports more accurate forecasting of volatility. As implied by our earlier 

analysis, another potential reason for the varying performance of PCA models in forecasting realized 

volatility is that all of the principal components are derived from lagged one-day word frequencies. 

When the principal components are exclusively based on lagged one-day word frequency data, the 

models are inherently limited in their ability to capture longer-term patterns and trends in the financial 

markets. As the updating interval for parameter estimation increases, this limitation is likely to become 

more pronounced, leading to reduced forecasting performance. In this scenario, the HAR-PCA models 

may not be able to obtain relevant information from longer-term word frequency patterns, thereby 

rendering them less accurate and reliable in forecasting realized volatility. 

[Table 8] 

Overall, based on the results from Tables 6, 7, and 8, the HAR-PCA models tend to surpass the HAR 

model in terms of their ability to forecast future volatility. The updating frequency for parameter 

estimation is clearly a crucial factor that impacts the forecasting performance of HAR-PCA models. 

With shorter updating intervals (daily or weekly), the HAR-PCA models’ forecasting performance is 

clearly better, with lower error rates (Mean Squared Error, Mean Absolute Percentage Error, and Theil's 

U) and higher R-squared values. In contrast, a monthly updating interval tends to impair the forecasting 

performance of HAR-PCA models, making them less accurate and reliable in capturing market trends 
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and patterns. It was also found that the number of principal components in HAR-PCA models does not 

consistently affect their forecasting performance. In some instances, HAR-PCA models with fewer 

components demonstrate superior performance, exhibiting lower error rates and higher R-squared 

values than models with more components. This finding highlights the importance of carefully selecting 

the optimal number of components for each specific application, as incorporating excessive number of 

components may introduce additional complexity and noise to the models without necessarily 

improving their forecasting capabilities. 

 

5.2.2 Sub-sample period 

In our analysis, we sorted the realized variance of each day in the OOS period in descending order. Then 

we divided the data into terciles based on their volatility levels: high, medium, and low volatility 

subsamples. We examined the forecasting performance of the models within each subsample to 

investigate each model’s effectiveness. The primary objective of categorizing the full sample period 

into subsamples according to volatility level is to explore whether the forecasting performance of HAR-

PCA models fluctuates with varying market conditions. Volatility levels indicate the degree of 

uncertainty, risk, and information asymmetry in the market. It is intriguing to analyze how HAR-PCA 

models perform under diverse volatility regimes.  

Table 9 shows that HAR-PCA models generally outperform the HAR model in forecasting realized 

volatility across different levels of volatility but that the extent of improvement is not uniform. In the 

high and low volatility subsamples, the HAR-PCA models display lower MSE, MAPE, and Theil's U 

values than the HAR model, suggesting that they can forecast future volatility with greater accuracy 

and precision. On the other hand, for the medium volatility subsample, HAR-PCA models exhibit higher 

MSE values than the HAR model, implying that they are less capable of accurately forecasting future 

volatility than the HAR model. This discrepancy in forecasting performance emphasizes the importance 

of taking market conditions into consideration when employing PCA models for predicting volatility. 

The results imply that PCA models are more suitable for forecasting under conditions of particularly 

high or low volatility but are not suitable for medium conditions. It is also crucial to recognize that the 

OOS R-squared values for all the models—the HAR model and all HAR-PCA models—underperform 



38 
 

under medium volatility conditions. This signifies that such models are ill-suited for forecasting future 

volatility under medium volatility conditions, with their performances falling short even compared to 

the naïve model, which predicts future variance simply based on historical averages. This phenomenon 

can be attributed to the excessive concentration of sample variances at the medium level, ranging from 

-10.9648 to -10.0405 (log), as opposed to the low-level subsample's range of -13.6161 to -10.9648 (log) 

and the high-level subsample's range of -10.0382 to -5.4839 (log). The variability range of the medium-

level subsample is therefore much smaller, so the average value forecasts generated by naïve models 

exhibit greater alignment with the realized variances. 

To provide a more comprehensive explanation and comparison of the results in Table 9, we can look 

more closely at some specific examples of HAR-PCA models and examine how they outperform the 

HAR model. Take, for instance, the high volatility subsample. In this case, log-HAR-PCA-1 combined 

with the RW method yields an MSE of 0.5724, 3.31% lower than the corresponding HAR model with 

the RW method (0.5920). This demonstrates that the log-HAR-PCA-1 with the RW method can predict 

future volatility more accurately than the HAR model with the RW method. Moreover, the difference 

between the two models is statistically significant at 1% level, suggesting that this improvement in 

accuracy is not random. Similarly, when we examine log-HAR-PCA-2 combined with the EW method, 

we find that it achieves an MSE of 0.5588, which is 6.7% lower than the HAR model with the EW 

method (0.5989). This indicates that log-HAR-PCA-2 with the EW method can also forecast future 

volatility with greater precision than the HAR model with the EW method. Again, the difference 

between the two models is statistically significant at 1% level. The superior performance of log-HAR-

PCA-1 and log-HAR-PCA-2 in high volatility environments can be attributed to their ability to capture 

the most important principal components, which account for most of the variations in word frequency 

data. The HAR-PCA models can effectively forecast volatility by focusing on these key components, 

outshining the HAR model in both the RW and EW. 

Expanding on the analysis for low volatility subsamples reveals further distinctions between the HAR-

PCA and HAR models in terms of their forecasting accuracy. For instance, log-HAR-PCA-8 with the 

RW method demonstrates an MSE of 0.3882, which is 5.69% lower than the HAR model with the RW 

method (0.4116). Similarly, log-HAR-PCA-7 with the EW method has an MSE of 0.3989, 8.76% lower 

than the HAR model with the EW method (0.4372). In both cases, the forecasts are statistically different 
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from those generated by the HAR model, at a significance level of 1%. This emphasises the PCA models’ 

superior performance compared to the HAR models in the low volatility subsample. Other performance 

measures, such as the Mean Absolute Percentage Error (MAPE), Thiel's U, and R-squared values, 

produce results that are consistent with the MSE findings, further substantiating the improvement in the 

accuracy of the PCA models. The reason why log-HAR-PCA-8 performs exceptionally well in low 

volatility regimes can be attributed to its inclusion of more principal components. By incorporating 

more of these components, log-HAR-PCA-8 captures a larger proportion of the variations in word 

frequency data, thereby enhancing its ability to forecast volatility in low volatility environments. This 

ultimately leads to more accurate and reliable predictions compared to the HAR model. 

These examples illustrate how varying numbers of principal components can yield differing results 

across distinct volatility regimes, depending on the extent to which they can extract information from 

word frequency data. In general, models with fewer principal components tend to perform more 

effectively in high volatility environments. Conversely, those with more principal components often 

excel in lower volatility settings (Tables 10 and 11). These characteristics mirror those found in Table 

6. 

[Table 9] 

[Table 10] 

[Table 11] 

In In summary, the tables confirm that HAR-PCA models outshine HAR models when forecasting 

realized volatility across various levels of volatility, particularly when employing the RW method. The 

differences are most evident for high and low volatility subsamples; less so for medium subsamples. 

This implies that word frequency data has more significance and relevance for predicting volatility 

during periods characterized by extreme market uncertainty and risk. Further, the contrast between the 

RW and EW methods is also more pronounced for high volatility subsamples than for medium or low 

volatility subsamples, which suggests that the RW method is more adaptable and resilient to market 

conditions shifts than the EW method. The ideal number of principal components may depend on the 

volatility level and the parameter estimation method employed. There might therefore be trade-offs 

between capturing a higher degree of information from word frequency data and avoiding issues such 

as overfitting and noise. It is clearly essential to strike the right balance when selecting the most 
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appropriate principal components and estimation methods to maximize the HAR-PCA models' 

predictive accuracy. 
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Chapter 6. Robustness check 
A robustness check is a statistical procedure that is used to assess the sensitivity of a research finding 

to changes in the data or analytical methods. In our case, we used an alternative measure of the 

dependent variable (realized kernel variance) that involved replacing the original dependent variable 

(realized variance (5-minute)) with a different measure that captured a related but distinct aspect. The 

check replicated the forecasting models, methodology, and explanatory variables used in the original 

analysis. If the two sets of results are consistent, the original process can be considered to be reliable. 

 

6.1 Full sample period 

The robustness check results in Table 12, Table 13 and Table 14 indicate that the HAR-PCA model's 

superior performance over the HAR model in forecasting accuracy remains consistent across both 

volatility measures. HAR-PCA models generally exhibit lower error rates (MSE and MAPE) and higher 

R-squared values than the HAR model, particularly when using the Rolling Window (RW) estimation 

method. The log-HAR-PCA-5 (RW) model again achieved the lowest MSE and Theils's U, and the 

highest OOS R-squared, while log-HAR-PCA-8 (EW) achieved the lowest MAPE. Moreover, the 

findings from the robustness check reveal that the choice of volatility measures used for forecasting 

does not significantly impact the sensitivity of the results to changes in the model specification and 

estimation methods. The statistical significance of the difference in forecasting performance between 

log-HAR-PCA-5 and the HAR model remains robust, suggesting that incorporating word frequency 

data as supplementary variables can enhance volatility forecasting for the S&P500 Index. Similar to the 

main analysis, the robustness check also demonstrates that incorporating more principal components 

does not consistently lead to improved forecasting performance, but that the choice of updating 

frequency for parameter estimation does significantly affect the forecasting performance of the HAR-

PCA models. When using a shorter updating interval (daily or weekly), the forecasting performance of 

the HAR-PCA models is improved, characterized by lower error rates (MSE, MAPE, and Theil's U) 

and higher R-squared values. In contrast, a longer updating frequency tends to result in a decline in the 

forecasting performance of HAR-PCA models, with results similar to those of the original HAR model. 

Overall, the robustness checks support the study's main findings and demonstrate the robustness of the 

results to changes in the volatility measure used for forecasting. HAR-PCA models with word frequency 
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data as supplementary variables continually outperformed the HAR model in volatility forecasting, 

particularly when using shorter updating intervals for parameter estimation. 

[Table 12] 

[Table 13] 

[Table 14] 

 

6.2 Sub-sample period for robustness check 

The results from the robustness check (Tables 15,16 and 17) indicate that the forecasting accuracy of 

the HAR-PCA models depends on the level of volatility, and on the updating frequency used. In general, 

HAR-PCA models outperform the HAR model in high and low volatility regimes but perform worse 

than the HAR model, and even than the naïve model, in medium volatility regimes. This can be 

attributed to the excessive concentration of sample variances at the medium level, which reduces the 

variation and information contained in the data. Furthermore, the results demonstrate that a shorter 

updating interval (daily or weekly) leads to better forecasting performance for HAR-PCA models, while 

a longer (monthly) updating interval leads to worse forecasting performance. The choice of the number 

of principal components included in the models may also depend on the level of volatility and the 

updating frequency used. The log-HAR-PCA-1 and log-HAR-PCA-8 models perform well in high and 

low volatility regimes, respectively. Overall, the robustness check confirms that HAR-PCA models have 

the potential to enhance the forecasting performance of HAR models when used under specific market 

conditions and when the appropriate level of volatility and updating frequency are selected.  

[Table 15] 

[Table 16] 

[Table 17] 
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Chapter 7. Economic significance 
Forecasting market volatility is a critical task for investors, as it helps them to anticipate potential risks 

and opportunities in their portfolios. Compared to the unconditional MV strategy, which assumes 

constant levels of risk and return, the conditional MV approach takes the dynamic nature of financial 

markets into account and adjusts investment allocations accordingly. The economic significance of this 

approach lies in its potential to improve portfolio performance by identifying and capitalizing on 

changes in market volatility. Investors can make informed decisions about asset allocation by employing 

statistical techniques to forecast volatility. Although some of our models’ statistical results are better 

than those of the HAR model at a statistically significant level, this alone does not necessarily imply 

that our model has practical economic value. Therefore, to fully assess the real-world implications of 

our findings, we conducted an economic significance test. Economic significance testing involves 

evaluating the magnitude of an effect and determining whether it is large enough to be considered 

meaningful and relevant in the investment context. By conducting an economic significance test, 

following the process described by Taylor (2022), we can determine whether our models’ results have 

practical implications and are worthy of consideration in decision-making processes.  

In the study by Taylor (2022), trading rules and strategies are examined under three core assumptions. 

The first assumption posits that the conditional variance of asset prices influences excess returns, which 

can be modelled using a modified version of Merton's Intertemporal Capital Asset Pricing Model 

(ICAPM). The second assumption suggests that realized benefits stem from consuming excess returns 

and rely on the proportion of invested wealth and the user's risk preference. These benefits are 

encapsulated by the first two moments of returns. The third assumption introduces an active trading 

rule, known as the volatility timing strategy, which aims to maximize the unconditional expectation of 

realized benefits. This particular strategy is grounded in the first two moments of returns. Within the 

context of these trading strategies, the utility gain of a conditional MV strategy over an unconditional 

MV strategy is given by: 

 

 𝒢 = ( )  (16) 
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In addition, the mean leverage can be calculated as: 

 

 Leverage = ( ( ) ) (17) 

 

where 𝜆   and 𝜃  are parameters that measure the market conditions and users’ risk preferences, 

respectively, and 𝐶   is a measure of the forecaster's skill level. 𝐶  represents the volatility of the 

expected logarithmic variance (vol-of-vol). 𝜇 denotes the excess return of the S&P500 Index over the 

yield of ten-year Treasury bonds, while 𝜎  denotes the variance in excess returns. The utility gain is 

positive when 𝜆 > 0 and exp[𝐶 ] > 1. The utility gain has three components: inverse risk preference 

(1/𝜃), market conditions (𝜆 /4𝜎 ), and the forecaster's skill level (exp[𝐶 ] − 1). The utility gain is 

independent of the level of noise in the stochastic variance measure. The result assumes a Gaussian 

distribution for the log of stochastic variance and its associated conditional expectation and error. 

However, the error term can have any distribution as long as it is independently distributed, and the 

unconditional expectation exists. 

 

7.1 Empirical results 

7.1.1 Full sample periods 

Table 18 indicates that HAR-PCA models for each updating frequency (1, 5, or 22 days) generally 

outperform the HAR model, which only employs three lags of realized variance. This finding implies 

that HAR-PCA models can generate higher returns for investors who utilize them for forecasting 

volatility and adjust their portfolios accordingly. Furthermore, the rolling window (RW) method's 

forecasting value generally surpasses that of the expanding window (EW) method due to the former's 

superior forecasting skill. A key observation from Table 18 is that the log-HAR-PCA-8 (RW) model 

consistently demonstrates the highest utility gain among all HAR-PCA models for every updating 

frequency and market condition, with the exception of the longest updating interval (22 days), where 

the log-HAR-PCA-1 (RW) model marginally outperforms it. This finding suggests that incorporating 

eight principal components to forecast volatility delivers optimal economic performance across all the 

models examined in this study. 
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It is also important to note that the utility gain of both HAR-PCA and HAR models increases as 𝜆  

rises, emphasising the fact that better market conditions lead to higher returns for volatility forecasters. 

However, the utility gain is also contingent upon forecasting skill, which fluctuates across different 

HAR-PCA models and updating frequencies. For instance, when  𝜆 = 𝜇 and the updating frequency = 

1 day, the log-HAR-PCA-8 (RW) model boasts a utility gain of 0.1444 per annum, while the log-HAR 

model exhibits a utility gain of only 0.1321. The superior performance of the log-HAR-PCA-8 (RW) 

model, evidenced by its annual gain of 14.44%, can be attributed to the highly favourable market 

conditions prevailing during the out-of-sample period from 2014 to 2021. This is further confirmed by 

comparison with the historical mean annual return of the S&P500 Index over the same period, which 

was 13.24%. Another intriguing insight gleaned from Table 18 is that the utility gain of both HAR-PCA 

and HAR models declines as the updating frequency decreases since forecasting skill deteriorates when 

parameters are estimated less frequently. 

[Table 18] 

Table 19 sets out the mean leverage values required to obtain the utility gains in Table 18. The leverage 

values exceed 2 for all the models in Table 19, signifying a relatively higher level of debt for investors 

who employ the conditional MV strategy based on the log-HAR and log-HAR-PCA models. This 

elevated leverage implies that investors need to take on a considerable amount of debt to maximize their 

utility gains when utilizing these forecasting models in their decision-making process. Such a high level 

of leverage may not always be desirable, especially for risk-averse investors, or in uncertain market 

conditions, as it can lead to magnified losses during market downturns. Besides, according to Table 19, 

under a given risk preference (𝜃 = 1), the leverage ratio increases as market conditions improve. This 

finding suggests that to achieve identical utility gains, investors must assume greater debt as market 

returns become less volatile. Furthermore, the table highlights that, for a fixed market condition, the 

leverage ratio fluctuates based on the forecasting model employed and the updating frequency. When 

all parameters in equation (17)—except for forecasting skill—remain constant, the sole variable 

influencing the change in mean leverage is forecasting skill itself. Consequently, mean leverage and 

forecasting skills follow a similar trend across forecasting models and updating frequencies. Superior 

forecasting skill necessitates a higher leverage ratio to reach a specific utility gain. 

The log-HAR-PCA-8 RW model exhibits the highest leverage ratio. For this model, with an updating 
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frequency of 1 and a market condition of 0.0063, the leverage ratio stands at 2.4966. This implies that 

the investor must borrow $2.50 for every $1 of their own capital to achieve an annual utility gain of 

0.9%. For the same model and updating frequency, but with a market condition of 0.1001, the leverage 

ratio rises to 4.4826, meaning that the investor must borrow $4.48 for every $1 of their own capital to 

achieve an annual utility gain of 14.44%. This further confirms that leverage ratios increase as market 

conditions improve. Intuitively, as market conditions become less volatile, investors seek additional 

leverage to boost their returns, which increases risk. Conversely, the log-HAR RW model with an 

updating frequency of 1 and a market condition of 0.0063 presents a mean leverage ratio of 2.4399, 

marginally lower than the log-HAR-PCA-8 RW model. This results in a lower annualized utility gain 

of 0.83%. When comparing the log-HAR RW model with the log-HAR-PCA-8 RW model, the latter 

improves the annualized utility gain by 8.43% per year while utilizing only an additional 2.32% leverage. 

In summary, the results suggest that investors need to adjust their leverage ratios based on market 

conditions to achieve the desired utility gains. As market conditions improve, investors must assume 

more debt to enhance their potential returns which, at the same time, increases their risk exposure. 

Notably, the results show that the log-HAR-PCA-8 RW model offers a higher annualized utility gain 

than the log-HAR RW model with only a marginal increase in leverage. 

[Table19] 

 

7.1.2 Subsample analysis 

To further investigate subsample performance, we conducted an analysis of S&P500 Index excess 

returns and divided them into three subsamples based on the realized variance of the S&P500 Index. As 

detailed in 5.2.2, these subsamples were categorized as high, medium, and low volatility regimes. 

Extreme leverage is needed for the medium and low volatility regimes due to their low sample variance. 

To make the utility gains across three subsamples comparable, we calculated the value of 𝜃 such that 

the mean level of leverage was limited to 1, using μ and σ as values for the low volatility regime. In 

order to calculate 𝜃, according to equation (13), we also incorporated the forecasting skill (exp[𝐶 ] −

1). Specifically, we computed the average forecasting skill for the HAR and eight HAR-PCA models 

in the low volatility regime and used this average value to calculate 𝜃. Then we applied the value of 𝜃 

thus obtained to calculate the utility gain for the high and medium volatility regimes. 
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Table 20 presents the economic performance of the eight HAR-PCA models and the HAR model in 

forecasting the realized variance of the S&P500 Index under the high volatility regime. The results 

suggest that investors can benefit from using HAR-PCA models to forecast volatility and adjust their 

leverage accordingly. The HAR-PCA models generally outperform the HAR model, consistent with the 

result during the all-sample period. The results also indicate that the log-HAR-PCA-8 (RW) model, 

which incorporates eight principal components to forecast volatility, consistently exhibits the highest 

utility gain among all HAR-PCA models for every updating frequency and market condition, except for 

the longest updating interval (22 days) under the high volatility regime. The log-HAR-PCA-5 (RW) 

model is the most favorable at a 22-day updating frequency. A comprehensive analysis can be conducted 

by comparing Table 20 with Tables 21 and 22. Table 21 demonstrates that, under the medium volatility 

regime, the log-HAR-PCA-1 (Rolling Window) model yields a higher annualized utility gain than either 

the log-HAR-PCA-8 (RW) or the HAR (RW) models when coefficients are re-estimated daily or 

monthly. Likewise, under the low volatility regime in Table 22, the log-HAR-PCA-1 (RW) model 

prevails across all updating frequencies. This finding suggests that incorporating solely the most critical 

feature extracted from word frequency can bolster the economic performance of HAR-PCA models 

under medium and low volatility regimes. For instance, when the updating frequency is set to 1, the 

log-HAR-PCA-1 (RW) model surpasses the HAR (RW) model by 2.52% during medium volatility 

periods and 3.22% during low volatility periods. 

Overall, the economic performance of the HAR-PCA and HAR models is superior in low volatility 

regimes compared to medium and high volatility regimes. This is evidenced by the higher utility gains 

exhibited by HAR-PCA models and the HAR model in low volatility regimes for most scenarios, as 

opposed to those observed in medium and high volatility regimes. This outcome suggests that volatility 

timing strategies prove more effective in environments characterized by low market volatility rather 

than high or moderate market volatility. 

[Table 20] 

[Table 21] 

[Table 22] 

Table 23 shows that there is a clear relationship between mean leverage and forecasting skills, with the 

two following a similar trend. This is true at all scales and holds for the overall sample and for the 
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various subsamples. Additionally, by applying 𝜃  with the mean leverage of the low volatility 

subsample scaled to 1, we produce a risk preference of 0.0122, suggesting that investors in this 

subsample are more risk-averse than those across the full sample period. In the high volatility subsample 

(Table 23), the mean leverages for all forecasting models have negative values. This can be attributed 

to the fact that risk-averse investors tend to avoid borrowing money and investing in assets during times 

of market volatility. Instead, these investors are more inclined to lend money and earn interest, 

minimizing their exposure to potential risk. In the medium volatility subsample (Table 24), there is 

minimal difference between the log-HAR and log-HAR-PCA models. Consequently, the leverage ratios 

derived from these models also exhibit only marginal variations. Lastly, for the low volatility subsample 

shown in Table 25, the mean leverage values are close to 1. This suggests that, in this subsample, 

investors are more comfortable leveraging their investments, as lower volatility provides a more stable 

market environment. 

In terms of the economic significance of volatility forecasting models, the findings reveal that HAR-

PCA models generally surpass the HAR model in predicting the S&P500 Index's variances. The log-

HAR-PCA-8 (Rolling Window) model demonstrates the greatest utility gain among all PCA models 

over the full sample period. The utility gain metric, which encompasses forecasting skill, risk preference, 

and market conditions, signifies that the utility gain of both HAR-PCA and HAR models escalates as 

market conditions ameliorate. 

The subsample analysis further corroborates the superior economic performance of HAR-PCA models 

in forecasting volatility, with the log-HAR-PCA-8 (RW) model consistently exhibiting the highest 

utility gain in most scenarios within the high volatility regime. During medium and low volatility 

regimes, the log-HAR-PCA-1 (RW) model yields a greater annualized utility gain than either the log-

HAR-PCA-8 (RW) or the HAR (RW) model when the coefficients are re-estimated daily or monthly. 

This observation suggests that incorporating only the most crucial feature extracted from word 

frequency data can enhance the economic performance of HAR-PCA models under medium and low 

volatility regimes. In summary, volatility timing strategies prove more effective under conditions of low 

market volatility as opposed to high or moderate volatility. Investors accordingly stand to gain from 

employing HAR-PCA models for forecasting volatility and adjusting their investment allocations, with 

the log-HAR-PCA-8 (RW) model consistently delivering optimal economic performance across most 
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scenarios. 

[Table 23] 

[Table 24] 

[Table 25] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

Chapter 8. Conclusions 
The aim of this dissertation is to investigate how Twitter text data can be used to predict future asset 

return volatility. We collected a large sample of tweets related to the S&P500 Index from 2012 to 2021 

and applied a PCA method to extract meaningful information from the text data. We then integrated the 

PCA-based word variables into a HAR model and performed volatility forecasts for the S&P500 Index. 

Our main findings are as follows: Firstly, Twitter text data contains valuable information that can 

improve volatility forecasting performance compared to the baseline HAR model. The PCA method is 

an effective and transparent way to construct word variables that capture the sentiment and opinions of 

Twitter users regarding the S&P500 Index. Moreover, the HAR-PCA models are more effective at 

forecasting under conditions of extremely high or low volatility. Secondly, our HAR-PCA model has 

higher economic value when applied to portfolio investment compared with the HAR model. 

This study fills a research gap in textual analysis and volatility modelling by investigating the predictive 

power of Twitter texts for future asset return volatility. The research employs PCA to link stock return 

volatility directly to individual words and refines the process of constructing bags of words for volatility 

topics by employing PCA to replace subjective human decisions with a reproducible algorithm. This 

technique offers several benefits: it is well-defined and replicable, it can be enhanced by future 

researchers, it provides a baseline model for interdisciplinary collaboration, and it avoids the "black 

box" issue of machine-learning algorithms by empirically and transparently focusing on the occurrence 

of single words. More importantly, by capturing a more relevant informative representation of textual 

information, PCA enhances the simple bag-of-words method. 

Our study has some limitations and provides some indications for the direction of future research. One 

limitation is that we searched for S&P500 Index related tweets using the keyword "SPX," which may 

have led to a less comprehensive collection of Twitter messages. Another limitation is that we focused 

on only one social media platform (Twitter) and one asset index (S&P500). Future research could extend 

our analysis method to other platforms and asset indices to test the robustness and generalizability of 

our results. The third limitation is that we use a 1-gram model to represent text data, which ignores 

grammar and word order. Future research could explore the application of more sophisticated natural 

language processing techniques that could capture more intricate text data features, for example, n-gram 
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models, Latent Dirichlet Allocation (LDA), and word embeddings.  

While our research has economic significance for portfolio investment, it should be noted that 

transaction costs are ignored in our investment strategy. In real-world trading, these costs, which may 

include brokerage fees, bid-ask spreads, and taxes, can significantly impact the profitability of a strategy. 

Particularly in a strategy that involves frequent trading, these costs can accumulate over time and 

potentially outweigh the predicted gains, leading to an overestimation of the economic significance of 

our forecasts. This is acknowledged as a limitation of the research. For future research, we recommend 

incorporating an estimate of transaction costs into the analysis to provide a more accurate representation 

of potential returns. 
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Tables and figures 
Table 1. Summary statistics 

Panel A 

  Mean Min Max Sample size 
Realized volatility(5-min) 12.93% 1.75% 101.90% 2505 
Realized kernel volatility 12.39% 1.50% 91.69% 2505 

 

Panel B 
Words Mean Std. Max Min Total  Sample size 
es_f 109 94 548 0 274,297 2505 
qqq 101 98 628 0 252,094 2505 
market 85 66 550 2 212,526 2505 
vix 76 60 468 0 189,649 2505 
iwm 55 51 441 0 137,594 2505 
aapl 49 54 503 0 123,345 2505 
down 46 51 510 0 115,785 2505 
djia 43 33 313 0 108,596 2505 
rut 37 40 347 0 93,540 2505 
close 35 32 272 0 88,798 2505 
futures 34 30 406 0 84,534 2505 
like 33 32 352 0 81,667 2505 
trade 32 35 552 0 80,787 2505 
dia 32 31 328 0 79,657 2505 
short 27 24 325 0 67,833 2505 
low 25 28 319 0 63,727 2505 
long 24 23 189 0 60,884 2505 
good 24 30 1059 0 60,375 2505 
support 24 26 491 0 59,278 2505 
stockmarket 21 29 448 0 53,035 2505 
highs 20 23 317 0 51,335 2505 
gld 20 17 339 0 50,734 2505 
dax 20 23 439 0 49,504 2505 
buy 20 24 202 0 49,201 2505 
top 19 25 438 0 48,067 2505 
sell 19 28 432 0 47,988 2505 
levels 18 18 174 0 45,738 2505 
rally 18 20 249 0 44,875 2505 
bullish 18 16 172 0 44,580 2505 
lower 18 17 168 0 44,050 2505 
resistance 17 18 206 0 43,816 2505 
gold 17 17 259 0 43,469 2505 
target 15 18 317 0 38,491 2505 
range 12 12 175 0 29,566 2505 
video 12 12 216 0 29,275 2505 
forex 11 13 125 0 28,058 2505 
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bulls 11 11 88 0 27,130 2505 
ftse 9 17 437 0 23,475 2505 
uvxy 9 17 440 0 23,206 2505 
eurusd 9 7 87 0 21,806 2505 
min 8 10 235 0 21,110 2505 
nyse 8 18 443 0 19,431 2505 
study 8 6 62 0 19,251 2505 
mkt 7 8 108 0 17,974 2505 
crash 6 17 428 0 15,871 2505 
euro 6 11 101 0 15,638 2505 
cac 6 31 871 0 14,645 2505 
cboe 5 16 534 0 11,534 2505 
ibex 2 15 433 0 5,792 2505 
sensex 2 15 435 0 4,240 2505 

Panel A displays the summary statistics for the S&P500 Index's daily realized volatility(annualized), as measured by two different methods: 
realized volatility (5-minute) and realized kernel volatility. The sample size for each measure is 2505, and the table reports the mean, minimum, 
maximum, and sample size for each measure. Panel B presents the summary statistics for the daily occurrences of some hot words in tweets related 
to the S&P500 Index. The table lists 50 hot words sorted by their total occurrence during the sample period from January 1, 2012, to December 
31, 2021. The sample size for each word is 2505, and the table reports each word's mean, standard deviation, maximum, minimum, and total 
occurrence. 
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Table 2. Loadings of principle components 
PC1 Loadings PC2 Loadings PC3 Loadings PC4 Loadings PC5 Loadings PC6 Loadings PC7 Loadings PC8 Loadings 

qqq 0.4354 market 0.2237 down 0.3922 cac 0.4322 options 0.6812 great 0.2880 great 0.4923 dia 0.3083 

es_f 0.3427 vix 0.2184 market 0.2371 stockmarket 0.2896 market 0.4232 good 0.2697 good 0.4466 qqq 0.3069 

ndx 0.3012 ndx 0.1774 sell 0.1951 ftse 0.2280 top 0.3043 down 0.2607 earnings 0.2129 earnings 0.2629 

market 0.2610 es 0.1223 close 0.1825 dax 0.2222 aapl 0.2801 support 0.2488 trade 0.2120 es 0.2251 

vix 0.2322 stockmarket 0.1198 low 0.1705 vix 0.2178 free 0.0748 vix 0.2113 strong 0.2102 djia 0.1639 

es 0.2200 options 0.1160 cac 0.1534 ibex 0.2166 marketwatch 0.0470 qqq 0.1989 support 0.1310 down 0.1561 

aapl 0.2069 cac 0.1133 es_f 0.1420 sensex 0.2061 fed 0.0355 options 0.1286 best 0.1207 move 0.1355 

iwm 0.2055 dax 0.0827 bounce 0.1273 nyse 0.2015 es_f 0.0298 correction 0.1178 sell 0.1203 market 0.1149 

down 0.1606 dia 0.0815 support 0.1193 uvxy 0.1931 move 0.0290 best 0.1110 buy 0.1173 great 0.0998 

rut 0.1560 earnings 0.0709 nyse 0.1130 ppprophet 0.1810 buy 0.0283 strong 0.1110 free 0.1159 aapl 0.0974 

ibex -0.0012 qqq -0.0355 top -0.0488 bear -0.0670 iwm -0.0425 buy -0.0999 top -0.0569 cboe -0.0624 

ppprophet -0.0017 levels -0.0358 update -0.0602 lower -0.0726 great -0.0503 cac -0.1085 bounce -0.0586 price -0.0685 

marketwatch -0.0019 zerohedge -0.0359 trade -0.0635 like -0.0859 dax -0.0522 djia -0.1102 vix -0.0784 money -0.0863 

ichimoku -0.0022 key -0.0402 earnings -0.0654 es -0.0913 cac -0.0559 sell -0.1326 rut -0.0803 volume -0.1013 

fxe -0.0023 intraday -0.0464 es -0.1161 close -0.1012 good -0.0602 earnings -0.1515 low -0.0822 highs -0.1079 

cboe -0.0024 aapl -0.0766 aapl -0.1700 low -0.1156 stockmarket -0.0727 fed -0.1528 ndx -0.0940 top -0.1209 

forex -0.0026 free -0.1422 ndx -0.1910 djia -0.1246 rut -0.1132 es -0.1812 djia -0.1177 options -0.1515 

stocktwits -0.0039 daytrading -0.1471 options -0.2132 iwm -0.1536 ndx -0.1686 ndx -0.2016 qqq -0.1646 vix -0.3585 

zerohedge -0.0054 dji -0.2268 rut -0.2308 ndx -0.1589 qqq -0.2078 dia -0.2359 aapl -0.2259 ndx -0.3632 

euro -0.0076 es_f -0.7766 qqq -0.4099 down -0.2104 vix -0.2177 iwm -0.4623 down -0.3272 trade -0.3882 
The table analyzes the loadings of each word on the principal components (PCs). Loadings are coefficients that connect each original variable to a specific principal component and indicate the extent of each variable's contribution to the 
principal component. A high loading signifies a strong influence of the variable on the principal component, whereas a low loading denotes a weaker influence. Loadings can be either positive or negative, which reveals whether there exists a 
positive or negative correlation between the variable and the principal component. For instance, a positive loading for the word "market" on PC1 implies that an increase in "market" is accompanied by an increase in principal component 1. 
Conversely, a negative loading for "forex" on PC2 suggests that an increase in "forex" results in a decrease in principal component 2. The table can be split into two sections, where the top half of the table displays the top 10 positive loadings 
and the bottom half displays the top 10 negative loadings for each principal component. 
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Table 3. In-sample results 
  log-HAR log-HAR-PCA1 log-HAR-PCA2 log-HAR-PCA3 log-HAR-PCA4 log-HAR-PCA5 log-HAR-PCA6 log-HAR-PCA7 log-HAR-PCA8 
𝑅𝑉 ,    0.2159**   0.2155**   0.2327**   0.1909**  0.1862*   0.2109**   0.2154**   0.2107**   0.2172** 

 (0.0943) (0.0944) (0.0963) (0.0968) (0.0967) (0.0961) (0.0960) (0.0982) (0.1004) 
𝑅𝑉 ,     0.2484***    0.2486***    0.2525***    0.2291***    0.2177***   0.2038**   0.1921**   0.1954**   0.1954** 

 (0.0808) (0.0809) (0.0810) (0.0809) (0.0810) (0.0804) (0.0806) (0.0820) (0.0820) 
𝑅𝑉     0.2902***    0.2905***    0.2789***    0.2611***    0.2615***    0.2456***    0.2297***    0.2293***    0.2292*** 

 (0.0512) (0.0513) (0.0529) (0.0529) (0.0528) (0.0525) (0.0535) (0.0536) (0.0536) 
PCA1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

  (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 
PCA2   0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 

   (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) 
PCA3       0.0030***    0.0031***    0.0032***    0.0034***    0.0034***    0.0034*** 

    (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) 
PCA4     -0.0020  -0.0020*    -0.0021***    -0.0021***    -0.0021*** 

     (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) 
PCA5         -0.0048***    -0.0049***    -0.0049***    -0.0049*** 

      (0.0015) (0.0015) (0.0015) (0.0015) 
PCA6       0.0026 0.0026 0.0026 

       (0.0017) (0.0017) (0.0017) 
PCA7        -0.0004 -0.0004 

        (0.0019) (0.0019) 
PCA8         0.0007 

         (0.0021) 
Constant    -2.6191***    -2.6177***    -2.5246***    -3.3614***    -3.5179***    -3.5752***    -3.8116***    -3.8295***    -3.7657*** 

 (0.7346) (0.7353) (0.7426) (0.7960) (0.8005) (0.7930) (0.8069) (0.8112) (0.8363) 
R  0.2597 0.2598 0.2610 0.2725 0.2763 0.2916 0.2949 0.2950 0.2952 

The table provides an analysis of in-sample estimates for eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized volatility) and 
the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components have been included as the 
independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. The table outlines the coefficient estimates, standard errors (displayed within parentheses), and  R  values for each log-HAR model. 
The dependent variable under examination is the logarithmic realized variance at time t, whereas the explanatory variables encompass the monthly, weekly, and daily averages of logarithmic realized variance, as well as the PCAs themselves. 
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Table 4. Model selection criteria (in-sample) 

Criterion log-HAR log-HAR-PCA1 log-HAR-PCA2 log-HAR-PCA3 log-HAR-PCA4 log-HAR-PCA5 log-HAR-PCA6 log-HAR-PCA7 log-HAR-PCA8 

AIC 1052.8879 1054.8644 1056.0370 1050.1704 1049.4969 1040.7998 1040.4185 1042.3623 1044.2582 
HQIC 1059.5083 1063.1398 1065.9675 1061.7561 1062.7377 1055.6956 1056.9694 1060.5682 1064.1192 
BIC -354.8519 -348.6569 -343.2657 -344.9136 -341.3685 -345.8471 -342.0098 -335.8474 -329.7329 

This table provides a comparison of the AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), and HQIC (Hannan-Quinn Information Criterion) values for all our forecasting models. The models are evaluated based on 
their goodness of fit and complexity, allowing for an informed selection of the most suitable model. 
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Table 5. Correlation matrix 
  𝑅𝑉 ,  𝑅𝑉 ,  𝑅𝑉  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

𝑅𝑉 ,  1.0000           
𝑅𝑉 ,  0.8271 1.0000          
𝑅𝑉  0.6947 0.8505 1.0000         
PC1 0.2822 0.2966 0.3241 1.0000        
PC2 0.0111 0.0137 0.0108 0.0003 1.0000       
PC3 0.2172 0.3271 0.3895 -0.0003 -0.0002 1.0000      
PC4 -0.0636 -0.0768 -0.1028 0.0003 0.0002 -0.0001 1.0000     
PC5 0.0361 0.0632 0.0141 0.0003 0.0002 -0.0002 0.0001 1.0000    
PC6 0.1132 0.2091 0.2316 0.0005 0.0003 -0.0003 0.0003 0.0003 1.0000   
PC7 -0.0667 -0.1012 -0.1451 0.0002 0.0001 -0.0001 0.0001 0.0001 0.0002 1.0000  
PC8 0.1914 0.1325 0.1317 -0.0004 -0.0002 0.0002 -0.0002 -0.0002 -0.0004 -0.0001 1.0000 

The table exhibits the correlation among every independent variable employed in the HAR-PCA models throughout the entirety of the sample period (01/01/2012-31/12/2021). The dependent variable is the realized variance of S&P 500 Index, 
and the independent variables include the lagged realized volatility at daily, weekly, and monthly frequencies, as well as the top eight principal components extracted from daily word frequency data. 

 
 
 
 



70 
 

Table 6. Out-of-sample performance for forecasting daily realized volatility (5-min) from 2014 to 2021. 
Updating 
frequency=1 

log-
HAR 

log-HAR-PCA-
1 

log-HAR-PCA-
2 

log-HAR-PCA-
3 

log-HAR-PCA-
4 

log-HAR-PCA-
5 

log-HAR-PCA-
6 

log-HAR-PCA-
7 

log-HAR-PCA-
8 

MSE RW 0.4225 0.4198   0.4166**    0.4143***   0.4146**    0.4121***   0.4152**   0.4147**    0.4132*** 

 EW 0.4239 0.4218 0.4222 0.4191  0.4158*   0.4144**  0.4143* 0.4160 0.4178 
MAPE RW 0.0508 0.0499 0.0494  0.0494* 0.0495   0.0493**  0.0494*  0.0495*  0.0494* 

 EW 0.0511 0.0503 0.0504 0.0501  0.0498*   0.0493**   0.0494**  0.0494* 0.0495 
Theil's U RW 0.9162 0.9122 0.9080 0.9055 0.9060 0.9034 0.9084 0.9084 0.9072 

 EW 0.9201 0.9154 0.9157 0.9132 0.9072 0.9046 0.9047 0.9074 0.9101 
R  RW 0.6787 0.6807 0.6832 0.6849 0.6847 0.6866 0.6843 0.6846 0.6858 

 EW 0.6689 0.6706 0.6702 0.6726 0.6752 0.6763 0.6764 0.6750 0.6737 
Sample size   2004  2004  2004  2004  2004  2004  2004  2004  2004  

The table reports the forecasting performance of eight principal component analyses (PCA) models and the HAR models. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components 
have been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively, and the 
rolling window is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss 
function. ***, ** and * indicate the significant level of 1%, 5%, and 10% respectively. The naïve forecasting model, which estimates future variance by relying on historical averages, was the benchmark model for computing out-of-sample 
R-squared values. Updating frequency=1 indicates the parameters of models are re-estimated on a daily basis 
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Table 7. Out-of-sample performance with weekly updating frequency. 
Updating 
frequency=5 

log-
HAR 

log-HAR-PCA-
1 

log-HAR-PCA-
2 

log-HAR-PCA-
3 

log-HAR-PCA-
4 

log-HAR-PCA-
5 

log-HAR-PCA-
6 

log-HAR-PCA-
7 

log-HAR-PCA-
8 

MSE RW 0.4235 0.4205  0.4183*   0.4174** 0.4181   0.4160** 0.4227 0.4231 0.4218 

 EW 0.4247 0.4226 0.4232 0.4220 0.4193 0.4200 0.4217 0.4244 0.4271 
MAPE RW 0.0509 0.0499  0.0495*  0.0495* 0.0496  0.0495* 0.0498 0.0498 0.0498 

 EW 0.0512 0.0504 0.0504 0.0502 0.0500 0.0497 0.0499 0.0499 0.0500 
Theil's U RW 0.9178 0.9130 0.9098 0.9087 0.9098 0.9078 0.9173 0.9180 0.9165 

 EW 0.9212 0.9165 0.9169 0.9164 0.9108 0.9128 0.9151 0.9189 0.9239 
R  RW 0.6779 0.6802 0.6819 0.6826 0.6820 0.6836 0.6786 0.6782 0.6792 

 EW 0.6683 0.6699 0.6694 0.6704 0.6725 0.6720 0.6706 0.6685 0.6664 
Sample size   2004  2004  2004  2004  2004  2004  2004  2004  2004  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components 
have been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively, and the 
rolling window is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss 
function. ***, ** and * indicate the significant level of 1%, 5%, and 10% respectively. The naïve forecasting model, which estimates future variance by relying on historical averages, is the benchmark model for computing out-of-sample R-
squared values. Updating frequency=5 indicates that the parameters of models are re-estimated on a weekly basis. 
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Table 8. Out-of-sample performance with monthly updating frequency. 
Updating 
frequency=22 

log-
HAR 

log-HAR-PCA-
1 

log-HAR-PCA-
2 

log-HAR-PCA-
3 

log-HAR-PCA-
4 

log-HAR-PCA-
5 

log-HAR-PCA-
6 

log-HAR-PCA-
7 

log-HAR-PCA-
8 

MSE RW 0.4263 0.4222 0.4219 0.4229 0.4233 0.4228 0.4280 0.4286 0.4284 

 EW 0.4261 0.4238 0.4244 0.4305 0.4284 0.4309 0.4367 0.4394 0.4418 
MAPE RW 0.0512 0.0500 0.0497 0.0498 0.0498 0.0499 0.0502 0.0502 0.0502 

 EW 0.0513 0.0504 0.0505 0.0506 0.0504 0.0503 0.0506 0.0506 0.0506 
Theil's U RW 0.9233 0.9158 0.9155 0.9165 0.9167 0.9165 0.9234 0.9243 0.9249 

 EW 0.9238 0.9183 0.9189 0.9251 0.9202 0.9255 0.9317 0.9354 0.9370 
R  RW 0.6758 0.6789 0.6792 0.6784 0.6781 0.6785 0.6745 0.6741 0.6742 

 EW 0.6672 0.6690 0.6685 0.6638 0.6654 0.6634 0.6589 0.6568 0.6549 
Sample size   2004  2004  2004  2004  2004  2004  2004  2004  2004  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components 
have been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively, and the 
rolling window is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss 
function. ***, ** and * indicate the significant level of 1%, 5%, and 10% respectively. The naïve forecasting model, which estimates future variance by relying on historical averages, is the benchmark model for computing out-of-sample R-
squared values. Updating frequency=22 indicates the parameters of models are re-estimated on a monthly basis. 
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Table 9. Sub-out-of-sample performance 

Updating frequency=1 
log-

HAR 
log-HAR-

PCA-1 
log-HAR-

PCA-2 
log-HAR-

PCA-3 
log-HAR-

PCA-4 
log-HAR-

PCA-5 
log-HAR-

PCA-6 
log-HAR-

PCA-7 
log-HAR-

PCA-8 
Subsample volatility level: 
High 

                  

MSE RW 0.5920    0.5724*** 0.5912 0.5881 0.5842 0.5842 0.5960 0.5917 0.5883 

 EW 0.5989    0.5605***    0.5588***    0.5699***    0.5672*** 0.5843 0.5809 0.5975 0.5999 
MAPE RW 0.0684    0.0670*** 0.0682 0.0682 0.0679 0.0680 0.0686 0.0683 0.0680 

 EW 0.0694    0.0665***    0.0664***    0.0670***    0.0667*** 0.0678 0.0676 0.0684 0.0683 
Theil's U RW 0.9682 0.9516 0.9645 0.9620 0.9597 0.9598 0.9714 0.9693 0.9681 

 EW 0.9808 0.9475 0.9462 0.9544 0.9490 0.9594 0.9573 0.9708 0.9743 
R  RW 0.7469 0.7554 0.7473 0.7486 0.7503 0.7503 0.7452 0.7471 0.7485 

 EW 0.7258 0.7434 0.7441 0.7391 0.7403 0.7325 0.7340 0.7264 0.7253 
Subsample volatility level: Medium                 
MSE RW 0.2631    0.2697***    0.2604***    0.2542***    0.2563***    0.2553***    0.2579***    0.2615***    0.2625*** 

 EW 0.2347    0.2477***    0.2492***    0.2514***  0.2404*    0.2439***    0.2498***    0.2511***    0.2514*** 
MAPE RW 0.0390   0.0395** 0.0389  0.0384* 0.0385  0.0383* 0.0386 0.0388 0.0390 

 EW 0.0370    0.0382***    0.0384***    0.0386***   0.0376** 0.0376    0.0381***   0.0382**    0.0383*** 
Theil's U RW 0.7691 0.7809 0.7625 0.7550 0.7585 0.7567 0.7599 0.7656 0.7659 

 EW 0.7275 0.7533 0.7555 0.7570 0.7384 0.7390 0.7489 0.7498 0.7506 
R  RW -0.4400 -0.4765 -0.4253 -0.3917 -0.4027 -0.3975 -0.4117 -0.4313 -0.4370 

 EW -1.4940 -1.6326 -1.6484 -1.6714 -1.5548 -1.5919 -1.6546 -1.6684 -1.6723 
Subsample volatility level: Low                 
MSE RW 0.4116  0.4165*    0.3973***   0.3998** 0.4026    0.3961***    0.3912***    0.3905***    0.3882*** 

 EW 0.4372    0.4562***    0.4575*** 0.4353 0.4390    0.4145***    0.4117***    0.3989***    0.4015*** 
MAPE RW 0.0450   0.0454**    0.0444*** 0.0446 0.0447  0.0443*    0.0440***   0.0441**    0.0439*** 

 EW 0.0468    0.0480***    0.0480*** 0.0468 0.0471    0.0455***    0.0453***    0.0447***    0.0447*** 
Theil's U RW 0.9635 0.9689 0.9453 0.9472 0.9500 0.9420 0.9359 0.9350 0.9324 

 EW 0.9894 1.0109 1.0123 0.9877 0.9908 0.9621 0.9583 0.9421 0.9452 
R  RW 0.7114 0.7080 0.7215 0.7197 0.7177 0.7223 0.7258 0.7262 0.7278 
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 EW 0.7208 0.7087 0.7079 0.7220 0.7197 0.7353 0.7371 0.7452 0.7436 
Sample size   668  668  668  668  668  668  668  668  668  

The table reports the forecasting performance of eight principal component analysis (PCA) and HAR models. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized volatility) and 
the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both top 2 principal components have been included 
as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively; the rolling window is two years 
long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss function. ***, ** and * 
indicate the significant level of 1%, 5%, and 10% respectively. Updating frequency=1 indicates that the parameters of models are re-estimated on a daily basis. The table divides the entire sample period into three distinct subsamples based on 
the level of volatility: high, medium, and low volatility. 
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Table 10. Out-of-sample performance with weekly updating frequency. 

Updating frequency=5 
log-

HAR 
log-HAR-

PCA-1 
log-HAR-

PCA-2 
log-HAR-

PCA-3 
log-HAR-

PCA-4 
log-HAR-

PCA-5 
log-HAR-

PCA-6 
log-HAR-

PCA-7 
log-HAR-

PCA-8 
Subsample volatility level: 
High 

                  

MSE RW 0.5950    0.5741*** 0.5942 0.5920 0.5880 0.5875 0.6011 0.6010 0.5963 

 EW 0.6006    0.5620***    0.5610***    0.5726***    0.5695*** 0.5916 0.5898 0.6090 0.6142 
MAPE RW 0.0687    0.0671*** 0.0683 0.0683 0.0680 0.0682 0.0687 0.0687 0.0686 

 EW 0.0696    0.0666***    0.0666***    0.0672***    0.0668*** 0.0685 0.0683 0.0693 0.0694 
Theil's U RW 0.9715 0.9532 0.9670 0.9650 0.9630 0.9633 0.9770 0.9778 0.9746 

 EW 0.9827 0.9492 0.9484 0.9571 0.9512 0.9702 0.9694 0.9852 0.9935 
R  RW 0.7457 0.7546 0.7460 0.7469 0.7486 0.7489 0.7430 0.7431 0.7451 

 EW 0.7250 0.7427 0.7431 0.7378 0.7392 0.7291 0.7300 0.7212 0.7188 
Subsample volatility level: Medium                 
MSE RW 0.2621   0.2690** 0.2595 0.2546 0.2574 0.2559 0.2636 0.2649 0.2670 

 EW 0.2342    0.2472***    0.2486***    0.2526***  0.2402*   0.2434**    0.2510***    0.2513***    0.2509*** 
MAPE RW 0.0389   0.0395** 0.0388 0.0383 0.0385 0.0383 0.0386 0.0387 0.0389 

 EW 0.0370    0.0382***    0.0383***    0.0386***   0.0377**  0.0376*    0.0382***   0.0381**   0.0383** 
Theil's U RW 0.7677 0.7798 0.7612 0.7567 0.7616 0.7590 0.7721 0.7739 0.7760 

 EW 0.7268 0.7526 0.7546 0.7595 0.7391 0.7393 0.7525 0.7518 0.7510 
R  RW -0.4349 -0.4722 -0.4204 -0.3935 -0.4089 -0.4010 -0.4426 -0.4500 -0.4615 

 EW -1.4888 -1.6276 -1.6420 -1.6842 -1.5534 -1.5872 -1.6672 -1.6714 -1.6669 
Subsample volatility level: Low                 
MSE RW 0.4125  0.4175*    0.4002***  0.4046* 0.4082  0.4040*  0.4027*  0.4029*  0.4015* 

 EW 0.4384    0.4577***    0.4589*** 0.4400   0.4474**    0.4242***   0.4239**    0.4124***    0.4156*** 
MAPE RW 0.0451  0.0455*   0.0445** 0.0448 0.0450 0.0448 0.0447 0.0448 0.0446 

 EW 0.0469    0.0481***    0.0481*** 0.0470   0.0475**    0.0460***    0.0459***    0.0453***    0.0454*** 
Theil's U RW 0.9644 0.9698 0.9483 0.9521 0.9555 0.9500 0.9482 0.9480 0.9466 

 EW 0.9905 1.0124 1.0137 0.9925 0.9994 0.9722 0.9713 0.9566 0.9603 
R  RW 0.7108 0.7073 0.7194 0.7163 0.7138 0.7168 0.7176 0.7175 0.7185 
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 EW 0.7200 0.7077 0.7069 0.7190 0.7143 0.7291 0.7293 0.7366 0.7346 
Sample size   668  668  668  668  668  668  668  668  668  

The table reports the forecasting performance of eight principal component analysis (PCA) and HAR models. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized volatility) and 
the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both top 2 principal components have been included 
as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively; the rolling window is two years 
long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss function. ***, ** and * 
indicate the significant level of 1%, 5%, and 10% respectively. Updating frequency=5 indicates the parameters of models are re-estimated on a weekly basis. The table divides the entire sample period into three distinct subsamples based on 
the level of volatility: high, medium, and low volatility. 
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Table 11. Out-of-sample performance with monthly updating frequency. 

Updating frequency=22 
log-

HAR 
log-HAR-

PCA-1 
log-HAR-

PCA-2 
log-HAR-

PCA-3 
log-HAR-

PCA-4 
log-HAR-

PCA-5 
log-HAR-

PCA-6 
log-HAR-

PCA-7 
log-HAR-

PCA-8 
Subsample volatility level: 
High 

                  

MSE RW 0.6024    0.5779*** 0.6012 0.6002 0.5974 0.5963 0.6021 0.5985 0.5971 

 EW 0.6037    0.5636***    0.5641***    0.5758***    0.5693*** 0.5957 0.5967 0.6169 0.6179 
MAPE RW 0.0696    0.0674*** 0.0689 0.0689 0.0687 0.0688 0.0691 0.0688 0.0687 

 EW 0.0699    0.0668***    0.0669***    0.0675***    0.0669*** 0.0688 0.0689 0.0701 0.0698 
Theil's U RW 0.9822 0.9580 0.9764 0.9755 0.9736 0.9737 0.9808 0.9791 0.9797 

 EW 0.9873 0.9517 0.9521 0.9612 0.9526 0.9778 0.9795 0.9957 0.9956 
R  RW 0.7425 0.7530 0.7430 0.7434 0.7446 0.7451 0.7426 0.7442 0.7448 

 EW 0.7236 0.7419 0.7417 0.7363 0.7393 0.7272 0.7268 0.7176 0.7171 
Subsample volatility level: Medium                 
MSE RW 0.2607    0.2688*** 0.2560 0.2522 0.2527 0.2534 0.2595 0.2640 0.2647 

 EW 0.2330    0.2464***    0.2466***    0.2506***   0.2427**    0.2458***    0.2545***    0.2545***    0.2539*** 
MAPE RW 0.0388    0.0395*** 0.0386  0.0382* 0.0381 0.0381 0.0385 0.0388 0.0388 

 EW 0.0369    0.0381***    0.0381***    0.0383***    0.0378***   0.0377**    0.0384***    0.0383***    0.0384*** 
Theil's U RW 0.7657 0.7796 0.7562 0.7532 0.7544 0.7550 0.7648 0.7718 0.7722 

 EW 0.7251 0.7516 0.7519 0.7572 0.7441 0.7439 0.7584 0.7571 0.7556 
R  RW -0.4271 -0.4711 -0.4014 -0.3803 -0.3834 -0.3871 -0.4206 -0.4453 -0.4487 

 EW -1.4761 -1.6187 -1.6212 -1.6635 -1.5796 -1.6126 -1.7045 -1.7049 -1.6981 
Subsample volatility level: Low                 
MSE RW 0.4149 0.4191 0.4074 0.4154 0.4189 0.4180 0.4217 0.4227 0.4229 

 EW 0.4407    0.4603***    0.4614***   0.4640**    0.4724*** 0.4505 0.4584 0.4464 0.4532 
MAPE RW 0.0452 0.0456 0.0449 0.0453 0.0455 0.0454 0.0457 0.0458 0.0457 

 EW 0.0470    0.0482***    0.0483***    0.0477***    0.0483*** 0.0469 0.0470  0.0464* 0.0465 
Theil's U RW 0.9668 0.9716 0.9567 0.9646 0.9679 0.9665 0.9706 0.9713 0.9719 

 EW 0.9930 1.0152 1.0164 1.0187 1.0264 1.0012 1.0090 0.9942 1.0014 
R  RW 0.7091 0.7062 0.7144 0.7088 0.7063 0.7069 0.7043 0.7037 0.7035 
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 EW 0.7185 0.7060 0.7053 0.7037 0.6983 0.7123 0.7073 0.7150 0.7106 
Sample size   668  668  668  668  668  668  668  668  668  

The table reports the forecasting performance of eight principal component analysis (PCA) and HAR models. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized volatility) and 
the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both top 2 principal components have been included 
as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively; the rolling window is two years 
long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss function. ***, ** and * 
indicate the significant level of 1%, 5%, and 10% respectively. Updating frequency=22 indicates the parameters of models are re-estimated on a monthly basis. The table divides the entire sample period into three distinct subsamples based 
on the level of volatility: high, medium, and low volatility. 
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Table 12. Robustness check: Out-of-sample performance for forecasting daily realized kernel from 2014 to 2021. 
Updating 
frequency=1 

log-
HAR 

log-HAR-PCA-
1 

log-HAR-PCA-
2 

log-HAR-PCA-
3 

log-HAR-PCA-
4 

log-HAR-PCA-
5 

log-HAR-PCA-
6 

log-HAR-PCA-
7 

log-HAR-PCA-
8 

MSE RW 0.5536 0.5502   0.5444**    0.5404***    0.5407***    0.5366***    0.5410***    0.5393***    0.5370*** 

 EW 0.5547 0.5523 0.5530 0.5482  0.5436*   0.5400**   0.5382**   0.5397** 0.5421 
MAPE RW 0.0576 0.0567   0.0559**   0.0559**   0.0559**    0.0557***   0.0558**    0.0557***    0.0556*** 

 EW 0.0578 0.0570 0.0570 0.0567  0.0562*   0.0556**   0.0557**   0.0555**   0.0555** 
Theil's U RW 0.8979 0.8927 0.8872 0.8833 0.8835 0.8803 0.8859 0.8849 0.8827 

 EW 0.9026 0.8970 0.8975 0.8947 0.8878 0.8829 0.8818 0.8845 0.8874 
R  RW 0.6092 0.6116 0.6157 0.6185 0.6183 0.6212 0.6181 0.6192 0.6209 

 EW 0.5946 0.5963 0.5958 0.5993 0.6027 0.6053 0.6066 0.6055 0.6037 
Sample size   2004  2004  2004  2004  2004  2004  2004  2004  2004  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components 
have been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively; the rolling 
window is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss 
function. ***, ** and * indicate the significant level of 1%, 5%, and 10% respectively. The naïve forecasting model, which estimates future variance by relying on historical averages, is the benchmark model for computing out-of-sample R-
squared values. Updating frequency=1 indicates that the parameters of models are re-estimated on a daily basis. This table examines the sensitivity of the results to changes in the volatility measure used for forecasting. Specifically, the main 
analysis used realized volatility (5-min) as the volatility measure, while the robustness check used realized kernel. 
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Table 13. Robustness check: Out-of-sample performance with weekly updating frequency. 
Updating 
frequency=5 

log-
HAR 

log-HAR-PCA-
1 

log-HAR-PCA-
2 

log-HAR-PCA-
3 

log-HAR-PCA-
4 

log-HAR-PCA-
5 

log-HAR-PCA-
6 

log-HAR-PCA-
7 

log-HAR-PCA-
8 

MSE RW 0.5552 0.5515   0.5472**    0.5436***   0.5451**    0.5427*** 0.5506 0.5509 0.5488 

 EW 0.5558 0.5536 0.5543 0.5514  0.5470*  0.5466*  0.5463* 0.5494 0.5533 
MAPE RW 0.0577 0.0568   0.0561**  0.0561* 0.0562   0.0561** 0.0563 0.0563 0.0563 

 EW 0.0579 0.0571 0.0571 0.0569  0.0564*   0.0561**  0.0562*  0.0561* 0.0561 
Theil's U RW 0.9003 0.8944 0.8900 0.8864 0.8880 0.8863 0.8954 0.8958 0.8941 

 EW 0.9039 0.8985 0.8990 0.8975 0.8905 0.8920 0.8920 0.8959 0.9024 
R  RW 0.6081 0.6107 0.6137 0.6163 0.6152 0.6169 0.6113 0.6111 0.6125 

 EW 0.5938 0.5954 0.5948 0.5970 0.6002 0.6005 0.6007 0.5985 0.5956 
Sample size   2004  2004  2004  2004  2004  2004  2004  2004  2004  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components 
have been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively; the rolling 
window is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss 
function. ***, ** and * indicate the significant level of 1%, 5%, and 10% respectively. The naïve forecasting model, which estimates future variance by relying on historical averages, is the benchmark model for computing out-of-sample R-
squared values. Updating frequency=5 indicates the parameters of models are re-estimated on a weekly basis. This table examines the sensitivity of the results to changes in the volatility measure used for forecasting. Specifically, the main 
analysis used realized volatility (5-min) as the volatility measure, while the robustness check used realized kernel. 
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Table 14. Robustness check: Out-of-sample performance with monthly updating frequency. 
Updating 
frequency=22 

log-
HAR 

log-HAR-PCA-
1 

log-HAR-PCA-
2 

log-HAR-PCA-
3 

log-HAR-PCA-
4 

log-HAR-PCA-
5 

log-HAR-PCA-
6 

log-HAR-PCA-
7 

log-HAR-PCA-
8 

MSE RW 0.5591 0.5547 0.5520 0.5512 0.5527 0.5522 0.5586 0.5584 0.5588 

 EW 0.5580 0.5556 0.5566 0.5587 0.5555 0.5572 0.5629 0.5662 0.5691 
MAPE RW 0.0581 0.0570 0.0565 0.0566 0.0567 0.0568 0.0570 0.0571 0.0570 

 EW 0.0580 0.0572 0.0573 0.0572 0.0569 0.0567 0.0570 0.0569 0.0570 
Theil's U RW 0.9061 0.8987 0.8968 0.8957 0.8966 0.8968 0.9034 0.9035 0.9052 

 EW 0.9069 0.9008 0.9017 0.9037 0.8973 0.9018 0.9062 0.9103 0.9118 
R  RW 0.6053 0.6084 0.6103 0.6109 0.6098 0.6102 0.6056 0.6058 0.6055 

 EW 0.5922 0.5939 0.5932 0.5916 0.5940 0.5927 0.5886 0.5862 0.5841 
Sample size   2004  2004  2004  2004  2004  2004  2004  2004  2004  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both of the top 2 principal components 
have been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc. RW and EW stand for rolling windows and expanding windows, respectively; the rolling 
window is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss 
function. ***, ** and * indicate the significant level of 1%, 5%, and 10% respectively. The naïve forecasting model, which estimates future variance by relying on historical averages, is the benchmark model for computing out-of-sample R-
squared values. Updating frequency=22 indicates the parameters of models are re-estimated on a monthly basis. This table examines the sensitivity of the results to changes in the volatility measure used for forecasting. Specifically, the main 
analysis used realized volatility (5-min) as the volatility measure, while the robustness check used realized kernel. 
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Table 15. Robustness check: Sub-out-of-sample performance with daily updating frequency 

Updating frequency=1 
log-

HAR 
log-HAR-

PCA-1 
log-HAR-

PCA-2 
log-HAR-

PCA-3 
log-HAR-

PCA-4 
log-HAR-

PCA-5 
log-HAR-

PCA-6 
log-HAR-

PCA-7 
log-HAR-

PCA-8 
Subsample volatility level: 
High 

                  

MSE RW 0.7171    0.6867*** 0.7162 0.7092 0.7008 0.6999 0.7173 0.7097 0.7039 

 EW 0.7272    0.6767***    0.6766***    0.6911***    0.6863*** 0.7114 0.7058 0.7322 0.7412 
MAPE RW 0.0758   0.0739** 0.0753 0.0751 0.0745 0.0745 0.0752 0.0747 0.0744 

 EW 0.0771    0.0739***    0.0738***    0.0746***    0.0737*** 0.0751 0.0749 0.0761 0.0761 
Theil's U RW 0.9843 0.9591 0.9768 0.9706 0.9658 0.9653 0.9805 0.9761 0.9723 

 EW 1.0027 0.9626 0.9628 0.9720 0.9635 0.9754 0.9718 0.9915 0.9988 
R  RW 0.7027 0.7153 0.7030 0.7059 0.7094 0.7098 0.7026 0.7057 0.7081 

 EW 0.6815 0.7036 0.7036 0.6973 0.6994 0.6884 0.6908 0.6793 0.6753 
Subsample volatility level: Medium                 
MSE RW 0.3421    0.3505***    0.3347***    0.3270***    0.3278***    0.3271***    0.3303***    0.3345***    0.3373*** 

 EW 0.3018    0.3219***    0.3239***    0.3295***  0.3157* 0.3174   0.3251**  0.3199*  0.3191* 
MAPE RW 0.0437  0.0441*   0.0431**    0.0428***    0.0428***    0.0428***  0.0430* 0.0433 0.0436 

 EW 0.0412    0.0423***    0.0425***    0.0429*** 0.0420 0.0421    0.0428***   0.0426**   0.0426** 
Theil's U RW 0.7352 0.7474 0.7247 0.7182 0.7200 0.7186 0.7219 0.7266 0.7290 

 EW 0.6973 0.7200 0.7219 0.7266 0.7088 0.7051 0.7153 0.7080 0.7079 
R  RW -0.8144 -0.8585 -0.7748 -0.7339 -0.7382 -0.7348 -0.7515 -0.7739 -0.7887 

 EW -2.1988 -2.4126 -2.4330 -2.4929 -2.3463 -2.3646 -2.4464 -2.3905 -2.3822 
Subsample volatility level: Low                 
MSE RW 0.6013    0.6132***    0.5820***    0.5849*** 0.5933    0.5827***    0.5754***    0.5737***    0.5696*** 

 EW 0.6292    0.6581***    0.6582*** 0.6237 0.6286    0.5911***    0.5837***    0.5672***    0.5662*** 
MAPE RW 0.0532    0.0541***    0.0525***  0.0527* 0.0530   0.0524**   0.0521**   0.0520**    0.0516*** 

 EW 0.0547    0.0563***    0.0563*** 0.0546 0.0551    0.0529***    0.0524***    0.0514***    0.0512*** 
Theil's U RW 0.9197 0.9286 0.9043 0.9054 0.9113 0.9030 0.8969 0.8961 0.8926 

 EW 0.9360 0.9576 0.9578 0.9330 0.9361 0.9072 0.9009 0.8867 0.8857 
R  RW 0.6365 0.6293 0.6481 0.6464 0.6413 0.6477 0.6521 0.6531 0.6556 
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 EW 0.6368 0.6202 0.6201 0.6400 0.6372 0.6588 0.6631 0.6726 0.6732 
Sample size   668  668  668  668  668  668  668  668  668  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both top 2 principal components have 
been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc.RW and EW stand for rolling windows and expanding windows, respectively; the rolling window 
is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss function. ***, 
** and * indicate the significant level of 1%, 5%, and 10% respectively. Updating frequency=1 indicates that the parameters of models are re-estimated on a daily basis. The table divides the entire sample period into three distinct subsamples 
based on the level of volatility: high, medium, and low volatility. This table examines the sensitivity of the results to changes in the volatility measure used for forecasting. Specifically, the main analysis used realized volatility (5-min) as the 
volatility measure, while the robustness check used realized kernel. 
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Table 16. Robustness check: Out-of-sample performance with weekly updating frequency. 

Updating frequency=5 
log-

HAR 
log-HAR-

PCA-1 
log-HAR-

PCA-2 
log-HAR-

PCA-3 
log-HAR-

PCA-4 
log-HAR-

PCA-5 
log-HAR-

PCA-6 
log-HAR-

PCA-7 
log-HAR-

PCA-8 
Subsample volatility level: 
High 

                  

MSE RW 0.7223    0.6904*** 0.7217 0.7159 0.7104 0.7083 0.7297 0.7311 0.7261 

 EW 0.7298    0.6794***    0.6796***    0.6947***    0.6899*** 0.7227 0.7174 0.7473 0.7607 
MAPE RW 0.0763   0.0742** 0.0758 0.0756 0.0753 0.0751 0.0761 0.0761 0.0759 

 EW 0.0774    0.0741***    0.0741***    0.0750***    0.0740*** 0.0762 0.0760 0.0774 0.0776 
Theil's U RW 0.9901 0.9633 0.9821 0.9768 0.9749 0.9740 0.9922 0.9944 0.9913 

 EW 1.0054 0.9656 0.9660 0.9758 0.9673 0.9923 0.9891 1.0111 1.0261 
R  RW 0.7005 0.7137 0.7007 0.7032 0.7054 0.7063 0.6974 0.6968 0.6989 

 EW 0.6803 0.7024 0.7023 0.6957 0.6978 0.6834 0.6857 0.6726 0.6668 
Subsample volatility level: Medium                 
MSE RW 0.3408   0.3494**   0.3327**    0.3239***    0.3258***   0.3284** 0.3334 0.3327 0.3353 

 EW 0.3065    0.3210***    0.3227***    0.3284*** 0.3123 0.3135   0.3205** 0.3139 0.3118 
MAPE RW 0.0436  0.0441*   0.0430**    0.0426***    0.0427***   0.0428** 0.0429 0.0430 0.0433 

 EW 0.0414    0.0423***    0.0425***    0.0428*** 0.0418 0.0418   0.0426** 0.0422 0.0422 
Theil's U RW 0.7340 0.7465 0.7227 0.7149 0.7180 0.7209 0.7283 0.7263 0.7286 

 EW 0.6970 0.7191 0.7207 0.7256 0.7049 0.7008 0.7105 0.7014 0.6994 
R  RW -0.8072 -0.8528 -0.7644 -0.7174 -0.7276 -0.7416 -0.7679 -0.7644 -0.7780 

 EW -2.2491 -2.4028 -2.4202 -2.4811 -2.3103 -2.3229 -2.3978 -2.3277 -2.3056 
Subsample volatility level: Low                 
MSE RW 0.6023    0.6145***    0.5868***   0.5907** 0.5989   0.5914**   0.5888** 0.5889*   0.5851** 

 EW 0.6308    0.6602***    0.6604*** 0.6308 0.6387    0.6036***   0.6009**    0.5869***    0.5874*** 
MAPE RW 0.0533    0.0541***   0.0527** 0.0530 0.0533 0.0530 0.0529 0.0529 0.0524 

 EW 0.0548    0.0564***    0.0564*** 0.0549    0.0555***    0.0534***    0.0531***    0.0522***    0.0521*** 
Theil's U RW 0.9203 0.9293 0.9072 0.9090 0.9146 0.9082 0.9056 0.9055 0.9024 

 EW 0.9370 0.9588 0.9591 0.9374 0.9424 0.9153 0.9127 0.9002 0.9003 
R  RW 0.6359 0.6285 0.6453 0.6429 0.6379 0.6425 0.6440 0.6440 0.6463 
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 EW 0.6359 0.6189 0.6188 0.6359 0.6313 0.6516 0.6531 0.6613 0.6610 
Sample size   668  668  668  668  668  668  668  668  668  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both top 2 principal components have 
been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc.RW and EW stand for rolling windows and expanding windows, respectively; the rolling window 
is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss function. ***, 
** and * indicate the significant level of 1%, 5%, and 10% respectively. Updating frequency=5 indicates the parameters of models are re-estimated on a weekly basis. The table divides the entire sample period into three distinct subsamples 
based on the level of volatility: high, medium, and low volatility. This table examines the sensitivity of the results to changes in the volatility measure used for forecasting. Specifically, the main analysis used realized volatility (5-min) as the 
volatility measure, while the robustness check used realized kernel. 
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Table 17. Robustness check: Out-of-sample performance with monthly updating frequency. 

Updating frequency=22 
log-

HAR 
log-HAR-

PCA-1 
log-HAR-

PCA-2 
log-HAR-

PCA-3 
log-HAR-

PCA-4 
log-HAR-

PCA-5 
log-HAR-

PCA-6 
log-HAR-

PCA-7 
log-HAR-

PCA-8 
Subsample volatility level: 
High 

                  

MSE RW 0.7320    0.6977*** 0.7330 0.7312 0.7295 0.7258 0.7389 0.7324 0.7348 

 EW 0.7344    0.6825***    0.6839***    0.6993***    0.6879*** 0.7263 0.7267 0.7582 0.7632 
MAPE RW 0.0772    0.0748*** 0.0768 0.0767 0.0767 0.0766 0.0773 0.0771 0.0773 

 EW 0.0778    0.0744***    0.0745***    0.0754***    0.0740*** 0.0767 0.0768 0.0784 0.0786 
Theil's U RW 1.0022 0.9717 0.9958 0.9941 0.9930 0.9923 1.0038 1.0008 1.0055 

 EW 1.0112 0.9695 0.9708 0.9810 0.9680 0.9997 1.0002 1.0233 1.0255 
R  RW 0.6965 0.7107 0.6960 0.6968 0.6975 0.6991 0.6936 0.6963 0.6953 

 EW 0.6783 0.7010 0.7004 0.6937 0.6987 0.6818 0.6817 0.6679 0.6657 
Subsample volatility level: Medium                 
MSE RW 0.3389   0.3483**    0.3247***    0.3168***    0.3173***   0.3217**   0.3238** 0.3268 0.3261 

 EW 0.3050    0.3194***    0.3199***    0.3254***   0.3162**  0.3164*    0.3264***  0.3201* 0.3192 
MAPE RW 0.0435   0.0441**    0.0426***    0.0422***    0.0423***    0.0425***   0.0425** 0.0427 0.0427 

 EW 0.0413    0.0422***    0.0423***    0.0426***   0.0422** 0.0421    0.0429***  0.0426*  0.0426* 
Theil's U RW 0.7320 0.7454 0.7143 0.7069 0.7085 0.7135 0.7163 0.7195 0.7181 

 EW 0.6955 0.7174 0.7177 0.7229 0.7107 0.7051 0.7180 0.7088 0.7075 
R  RW -0.7972 -0.8468 -0.7218 -0.6800 -0.6828 -0.7059 -0.7173 -0.7331 -0.7293 

 EW -2.2335 -2.3852 -2.3908 -2.4491 -2.3519 -2.3543 -2.4594 -2.3932 -2.3840 
Subsample volatility level: Low                 
MSE RW 0.6063    0.6180***  0.5981* 0.6054 0.6113 0.6091 0.6131 0.6159 0.6156 

 EW 0.6343    0.6647***    0.6658***    0.6512***    0.6621*** 0.6289 0.6356 0.6204 0.6248 
MAPE RW 0.0534    0.0543*** 0.0534 0.0538 0.0540 0.0538 0.0540 0.0542 0.0539 

 EW 0.0550    0.0567***    0.0567***    0.0557***    0.0563***  0.0543*  0.0542*    0.0532***    0.0532*** 
Theil's U RW 0.9231 0.9319 0.9157 0.9198 0.9233 0.9213 0.9238 0.9261 0.9258 

 EW 0.9394 0.9620 0.9629 0.9515 0.9581 0.9329 0.9365 0.9234 0.9258 
R  RW 0.6335 0.6264 0.6384 0.6340 0.6305 0.6318 0.6294 0.6277 0.6278 
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 EW 0.6339 0.6163 0.6157 0.6241 0.6178 0.6370 0.6332 0.6419 0.6393 
Sample size   668  668  668  668  668  668  668  668  668  

The table reports the forecasting performance of eight principal component analysis (PCA) models and the HAR model. Each PCA model includes the original HAR model independent variables (daily, weekly, monthly lagged realized 
volatility) and the top principal components extracted from daily word frequency data. PCA-1 indicates that the top 1 principal component has been included as an independent variable; PCA-2 indicates both top 2 principal components have 
been included as the independent variable; PCA-3 indicates all of the top 3 principal components have been included as independent variable etc.RW and EW stand for rolling windows and expanding windows, respectively; the rolling window 
is two years long. The significance of the forecasted value is indicated according to Diebold-Mariano statistics for the null of equal predictive accuracy of the word model and the HAR model under the absolute value (AV) loss function. ***, 
** and * indicate the significant level of 1%, 5%, and 10% respectively. Updating frequency=22 indicates the parameters of models are re-estimated on a monthly basis. The table divides the entire sample period into three distinct subsamples 
based on the level of volatility: high, medium, and low volatility. This table examines the sensitivity of the results to changes in the volatility measure used for forecasting. Specifically, the main analysis used realized volatility (5-min) as the 
volatility measure, while the robustness check used realized kernel. 
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Table 18. Economic performance 
Risk preference    1 
𝜆        0.0273(1/4𝜇)  0.0545(1/2𝜇)  0.0818(3/4𝜇) 0.1091(𝜇) 
Market conditions    0.0063  0.0250  0.0563 0.1001 
Panel A: Updating frequency=1 
 

 Forecasting skill  Utility gain 

log-HAR 
RW 1.3199   0.0083  0.0330  0.0743  0.1321  
EW 1.1249   0.0070  0.0281  0.0633  0.1126  

log-HAR-PCA-1 
RW 1.4043   0.0088  0.0351  0.0790  0.1405  
EW 1.2196   0.0076  0.0305  0.0686  0.1220  

log-HAR-PCA-2 
RW 1.3524   0.0085  0.0338  0.0761  0.1353  
EW 1.2241   0.0077  0.0306  0.0689  0.1225  

log-HAR-PCA-3 
RW 1.3542   0.0085  0.0339  0.0762  0.1355  
EW 1.2485   0.0078  0.0312  0.0703  0.1249  

log-HAR-PCA-4 
RW 1.3736   0.0086  0.0344  0.0773  0.1374  
EW 1.2469   0.0078  0.0312  0.0702  0.1248  

log-HAR-PCA-5 
RW 1.3952   0.0087  0.0349  0.0785  0.1396  
EW 1.2736   0.0080  0.0319  0.0717  0.1274  

log-HAR-PCA-6 
RW 1.3971   0.0087  0.0350  0.0786  0.1398  
EW 1.3235   0.0083  0.0331  0.0745  0.1324  

log-HAR-PCA-7 
RW 1.4119   0.0088  0.0353  0.0795  0.1413  
EW 1.3030   0.0081  0.0326  0.0733  0.1304  

log-HAR-PCA-8 
RW 1.4435   0.0090  0.0361  0.0812  0.1444  
EW 1.3356    0.0084  0.0334  0.0752  0.1336  

Panel B: Updating frequency=5 
 

 Forecasting skill  Advantage 
log-HAR RW 1.3025   0.0081  0.0326  0.0733  0.1303  

 EW 1.1173   0.0070  0.0280  0.0629  0.1118  
log-HAR-PCA-1 RW 1.3881   0.0087  0.0347  0.0781  0.1389  

 EW 1.2112   0.0076  0.0303  0.0682  0.1212  
log-HAR-PCA-2 RW 1.3360   0.0084  0.0334  0.0752  0.1337  

 EW 1.2148   0.0076  0.0304  0.0684  0.1216  
log-HAR-PCA-3 RW 1.3315   0.0083  0.0333  0.0749  0.1332  

 EW 1.2379   0.0077  0.0310  0.0697  0.1239  
log-HAR-PCA-4 RW 1.3455   0.0084  0.0337  0.0757  0.1346  

 EW 1.2328   0.0077  0.0308  0.0694  0.1234  
log-HAR-PCA-5 RW 1.3670   0.0085  0.0342  0.0769  0.1368  

 EW 1.2355   0.0077  0.0309  0.0695  0.1236  
log-HAR-PCA-6 RW 1.3656   0.0085  0.0342  0.0769  0.1366  

 EW 1.2786   0.0080  0.0320  0.0720  0.1279  
log-HAR-PCA-7 RW 1.3624   0.0085  0.0341  0.0767  0.1363  

 EW 1.2549   0.0078  0.0314  0.0706  0.1256  
log-HAR-PCA-8 RW 1.3838   0.0087  0.0346  0.0779  0.1385  
  EW 1.2779    0.0080  0.0320  0.0719  0.1279  
Panel C: Updating frequency=22 
 

 Forecasting skill  Advantage 
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log-HAR RW 1.2640   0.0079  0.0316  0.0711  0.1265  

 EW 1.1006   0.0069  0.0275  0.0619  0.1101  
log-HAR-PCA-1 RW 1.3429   0.0084  0.0336  0.0756  0.1344  

 EW 1.1906   0.0074  0.0298  0.0670  0.1191  
log-HAR-PCA-2 RW 1.2832   0.0080  0.0321  0.0722  0.1284  

 EW 1.1918   0.0075  0.0298  0.0671  0.1193  
log-HAR-PCA-3 RW 1.2700   0.0079  0.0318  0.0715  0.1271  

 EW 1.2160   0.0076  0.0304  0.0684  0.1217  
log-HAR-PCA-4 RW 1.2746   0.0080  0.0319  0.0717  0.1275  

 EW 1.2184   0.0076  0.0305  0.0686  0.1219  
log-HAR-PCA-5 RW 1.2995   0.0081  0.0325  0.0731  0.1300  

 EW 1.2122   0.0076  0.0303  0.0682  0.1213  
log-HAR-PCA-6 RW 1.2864   0.0080  0.0322  0.0724  0.1287  

 EW 1.2543   0.0078  0.0314  0.0706  0.1255  
log-HAR-PCA-7 RW 1.2762   0.0080  0.0319  0.0718  0.1277  

 EW 1.2249   0.0077  0.0306  0.0689  0.1226  
log-HAR-PCA-8 RW 1.2790   0.0080  0.0320  0.0720  0.1280  
  EW 1.2348    0.0077  0.0309  0.0695  0.1236  

The table presents the economic significance of the conditional MV strategy that employs forecasting models to predict the realized variance of the S&P500 Index 
from 2014 to 2021. The utility gain metric assesses the economic significance, which incorporates three key elements: forecasting skill, risk preference, and market 
conditions. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market conditions (𝜆 /4𝜎 ) are determined by a parameter 
𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year Treasury bond yield and 𝜎  is the variance of such excess 
returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling window is two years long. 
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Table 19. Leverages for the full sample period 
𝜃       1 
𝜆     0.0273  0.0545  0.0818 0.1091 
Market conditions    0.0063  0.0250  0.0563 0.1001 
Panel A: Updating frequency=1 
 

 Forecasting skill  Leverage(mean) 

log-HAR 
RW 1.3199   2.4399  3.0452  3.6506  4.2559  
EW 1.1249   2.3504  2.8664  3.3823  3.8982  

log-HAR-PCA-1 
RW 1.4043   2.4786  3.1227  3.7667  4.4108  
EW 1.2196   2.3939  2.9532  3.5126  4.0719  

log-HAR-PCA-2 
RW 1.3524   2.4548  3.0751  3.6953  4.3156  
EW 1.2241   2.3959  2.9573  3.5187  4.0801  

log-HAR-PCA-3 
RW 1.3542   2.4556  3.0767  3.6978  4.3188  
EW 1.2485   2.4071  2.9797  3.5523  4.1249  

log-HAR-PCA-4 
RW 1.3736   2.4645  3.0945  3.7245  4.3544  
EW 1.2469   2.4064  2.9783  3.5501  4.1220  

log-HAR-PCA-5 
RW 1.3952   2.4744  3.1143  3.7542  4.3941  
EW 1.2736   2.4186  3.0027  3.5869  4.1710  

log-HAR-PCA-6 
RW 1.3971   2.4753  3.1161  3.7568  4.3976  
EW 1.3235   2.4416  3.0486  3.6556  4.2626  

log-HAR-PCA-7 
RW 1.4119   2.4821  3.1296  3.7772  4.4247  
EW 1.3030   2.4321  3.0298  3.6274  4.2250  

log-HAR-PCA-8 
RW 1.4435   2.4966  3.1586  3.8206  4.4826  
EW 1.3356    2.4471  3.0596  3.6721  4.2847  

Panel B: Updating frequency=5 
 

 Forecasting skill  Leverage(mean) 
log-HAR RW 1.3025   2.4319  3.0292  3.6266  4.2239  

 EW 1.1173   2.3470  2.8594  3.3719  3.8843  
log-HAR-PCA-1 RW 1.3881   2.4712  3.1078  3.7445  4.3811  

 EW 1.2112   2.3900  2.9455  3.5011  4.0566  
log-HAR-PCA-2 RW 1.3360   2.4473  3.0600  3.6727  4.2854  

 EW 1.2148   2.3917  2.9488  3.5059  4.0631  
log-HAR-PCA-3 RW 1.3315   2.4452  3.0559  3.6666  4.2772  

 EW 1.2379   2.4023  2.9700  3.5378  4.1055  
log-HAR-PCA-4 RW 1.3455   2.4516  3.0687  3.6859  4.3030  

 EW 1.2328   2.4000  2.9654  3.5308  4.0962  
log-HAR-PCA-5 RW 1.3670   2.4615  3.0884  3.7154  4.3424  

 EW 1.2355   2.4012  2.9678  3.5344  4.1010  
log-HAR-PCA-6 RW 1.3656   2.4608  3.0872  3.7135  4.3398  

 EW 1.2786   2.4210  3.0074  3.5938  4.1802  
log-HAR-PCA-7 RW 1.3624   2.4594  3.0842  3.7090  4.3339  

 EW 1.2549   2.4101  2.9856  3.5611  4.1367  
log-HAR-PCA-8 RW 1.3838   2.4692  3.1039  3.7386  4.3732  
  EW 1.2779    2.4206  3.0067  3.5928  4.1789  
Panel C: Updating frequency=22 
 

 Forecasting skill  Leverage(mean) 
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log-HAR RW 1.2640   2.4143  2.9940  3.5737  4.1534  

 EW 1.1006   2.3393  2.8441  3.3488  3.8536  
log-HAR-PCA-1 RW 1.3429   2.4504  3.0663  3.6822  4.2981  

 EW 1.1906   2.3806  2.9266  3.4727  4.0188  
log-HAR-PCA-2 RW 1.2832   2.4231  3.0116  3.6001  4.1887  

 EW 1.1918   2.3811  2.9277  3.4743  4.0208  
log-HAR-PCA-3 RW 1.2700   2.4170  2.9995  3.5819  4.1644  

 EW 1.2160   2.3922  2.9499  3.5076  4.0653  
log-HAR-PCA-4 RW 1.2746   2.4191  3.0037  3.5883  4.1728  

 EW 1.2184   2.3934  2.9522  3.5110  4.0698  
log-HAR-PCA-5 RW 1.2995   2.4305  3.0265  3.6225  4.2185  

 EW 1.2122   2.3905  2.9464  3.5024  4.0583  
log-HAR-PCA-6 RW 1.2864   2.4245  3.0145  3.6045  4.1945  

 EW 1.2543   2.4098  2.9851  3.5604  4.1356  
log-HAR-PCA-7 RW 1.2762   2.4198  3.0051  3.5904  4.1757  

 EW 1.2249   2.3963  2.9581  3.5199  4.0817  
log-HAR-PCA-8 RW 1.2790   2.4211  3.0077  3.5943  4.1809  
  EW 1.2348    2.4009  2.9672  3.5335  4.0999  

The table presents the mean leverage required in achieving utility gains of Table 16 by implementing forecasting models to predict the realized variance of the 
S&P500 Index from 2014 to 2021. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market conditions (𝜆 /4𝜎 ) are 
determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year Treasury bond yield and 𝜎  
is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling window is two years long. 
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Table 20. Sub-sample economic performance-High volatility regime 
Risk preference       0.0122 
𝜆     -0.1100(1/4𝜇) -0.2200(1/2𝜇) -0.3300(3/4𝜇) -0.4400(𝜇) 
Market condition    0.0410  0.1639  0.3688 0.6557 
Panel A: Updating frequency=1 
 

 Forecasting skill  Utility gain 

log-HAR 
RW 1.0894   0.0005  0.0022  0.0049  0.0087  
EW 0.9322   0.0005  0.0019  0.0042  0.0075  

log-HAR-PCA-1 
RW 1.1746   0.0006  0.0023  0.0053  0.0094  
EW 1.0255   0.0005  0.0020  0.0046  0.0082  

log-HAR-PCA-2 
RW 1.1379   0.0006  0.0023  0.0051  0.0091  
EW 1.0252   0.0005  0.0020  0.0046  0.0082  

log-HAR-PCA-3 
RW 1.1897   0.0006  0.0024  0.0053  0.0095  
EW 1.0494   0.0005  0.0021  0.0047  0.0084  

log-HAR-PCA-4 
RW 1.2132   0.0006  0.0024  0.0055  0.0097  
EW 1.0863   0.0005  0.0022  0.0049  0.0087  

log-HAR-PCA-5 
RW 1.2431   0.0006  0.0025  0.0056  0.0099  
EW 1.1365   0.0006  0.0023  0.0051  0.0091  

log-HAR-PCA-6 
RW 1.2408   0.0006  0.0025  0.0056  0.0099  
EW 1.1797   0.0006  0.0024  0.0053  0.0094  

log-HAR-PCA-7 
RW 1.2425   0.0006  0.0025  0.0056  0.0099  
EW 1.1772   0.0006  0.0024  0.0053  0.0094  

log-HAR-PCA-8 
RW 1.2768   0.0006  0.0026  0.0057  0.0102  
EW 1.2266    0.0006  0.0025  0.0055  0.0098  

Panel B: Updating frequency=5 
 

 Forecasting skill  Advantage 
log-HAR RW 1.0705   0.0005  0.0021  0.0048  0.0086  

 EW 0.9250   0.0005  0.0018  0.0042  0.0074  
log-HAR-PCA-1 RW 1.1577   0.0006  0.0023  0.0052  0.0093  

 EW 1.0175   0.0005  0.0020  0.0046  0.0081  
log-HAR-PCA-2 RW 1.1190   0.0006  0.0022  0.0050  0.0089  

 EW 1.0185   0.0005  0.0020  0.0046  0.0081  
log-HAR-PCA-3 RW 1.1643   0.0006  0.0023  0.0052  0.0093  

 EW 1.0417   0.0005  0.0021  0.0047  0.0083  
log-HAR-PCA-4 RW 1.1791   0.0006  0.0024  0.0053  0.0094  

 EW 1.0766   0.0005  0.0022  0.0048  0.0086  
log-HAR-PCA-5 RW 1.2045   0.0006  0.0024  0.0054  0.0096  

 EW 1.0785   0.0005  0.0022  0.0048  0.0086  
log-HAR-PCA-6 RW 1.1955   0.0006  0.0024  0.0054  0.0096  

 EW 1.1213   0.0006  0.0022  0.0050  0.0090  
log-HAR-PCA-7 RW 1.1841   0.0006  0.0024  0.0053  0.0095  

 EW 1.1169   0.0006  0.0022  0.0050  0.0089  
log-HAR-PCA-8 RW 1.2086   0.0006  0.0024  0.0054  0.0097  
  EW 1.1542    0.0006  0.0023  0.0052  0.0092  
Panel C: Updating frequency=22 
 

 Forecasting skill  Advantage 
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log-HAR RW 1.0206   0.0005  0.0020  0.0046  0.0082  

 EW 0.9065   0.0005  0.0018  0.0041  0.0072  
log-HAR-PCA-1 RW 1.0837   0.0005  0.0022  0.0049  0.0087  

 EW 0.9919   0.0005  0.0020  0.0045  0.0079  
log-HAR-PCA-2 RW 1.0459   0.0005  0.0021  0.0047  0.0084  

 EW 0.9942   0.0005  0.0020  0.0045  0.0079  
log-HAR-PCA-3 RW 1.0772   0.0005  0.0022  0.0048  0.0086  

 EW 1.0154   0.0005  0.0020  0.0046  0.0081  
log-HAR-PCA-4 RW 1.0854   0.0005  0.0022  0.0049  0.0087  

 EW 1.0421   0.0005  0.0021  0.0047  0.0083  
log-HAR-PCA-5 RW 1.1086   0.0006  0.0022  0.0050  0.0089  

 EW 1.0210   0.0005  0.0020  0.0046  0.0082  
log-HAR-PCA-6 RW 1.0822   0.0005  0.0022  0.0049  0.0087  

 EW 1.0605   0.0005  0.0021  0.0048  0.0085  
log-HAR-PCA-7 RW 1.0470   0.0005  0.0021  0.0047  0.0084  

 EW 1.0483   0.0005  0.0021  0.0047  0.0084  
log-HAR-PCA-8 RW 1.0484   0.0005  0.0021  0.0047  0.0084  
  EW 1.0674    0.0005  0.0021  0.0048  0.0085  

The table presents the economic significance of the conditional MV strategy that employs forecasting models to predict the realized variance of high volatility 
subsamples of the S&P500 Index from 2014 to 2021. The utility gain metric assesses the economic significance, which incorporates three key elements: forecasting 
skill, risk preference, and market conditions. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market conditions 
(𝜆 /4𝜎 ) are determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year Treasury bond 
yield and 𝜎  is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling window is two 
years long. 
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Table 21. Sub-sample economic performance-Medium volatility regime 
Risk preference       0.0122 
𝜆     0.0866(1/4𝜇) 0.1731(1/2𝜇) 0.2597(3/4𝜇) 0.3463(𝜇) 
Market condition    0.1822  0.7286  1.6394 2.9145 
Panel A: Updating frequency=1 
 

 Forecasting skill  Advantage 

log-HAR 
RW 0.3337   0.0007  0.0030  0.0067  0.0119  
EW 0.2927   0.0007  0.0026  0.0059  0.0104  

log-HAR-PCA-1 
RW 0.3437   0.0008  0.0031  0.0069  0.0122  
EW 0.3100   0.0007  0.0028  0.0062  0.0110  

log-HAR-PCA-2 
RW 0.3286   0.0007  0.0029  0.0066  0.0117  
EW 0.3120   0.0007  0.0028  0.0062  0.0111  

log-HAR-PCA-3 
RW 0.3251   0.0007  0.0029  0.0065  0.0116  
EW 0.3169   0.0007  0.0028  0.0063  0.0113  

log-HAR-PCA-4 
RW 0.3278   0.0007  0.0029  0.0066  0.0116  
EW 0.3034   0.0007  0.0027  0.0061  0.0108  

log-HAR-PCA-5 
RW 0.3268   0.0007  0.0029  0.0065  0.0116  
EW 0.3107   0.0007  0.0028  0.0062  0.0110  

log-HAR-PCA-6 
RW 0.3296   0.0007  0.0029  0.0066  0.0117  
EW 0.3207   0.0007  0.0028  0.0064  0.0114  

log-HAR-PCA-7 
RW 0.3349   0.0007  0.0030  0.0067  0.0119  
EW 0.3228   0.0007  0.0029  0.0065  0.0115  

log-HAR-PCA-8 
RW 0.3365   0.0007  0.0030  0.0067  0.0120  
EW 0.3242    0.0007  0.0029  0.0065  0.0115  

Panel B: Updating frequency=5 
 

 Forecasting skill  Advantage 
log-HAR RW 0.3323   0.0007  0.0030  0.0066  0.0118  

 EW 0.2919   0.0006  0.0026  0.0058  0.0104  
log-HAR-PCA-1 RW 0.3424   0.0008  0.0030  0.0068  0.0122  

 EW 0.3092   0.0007  0.0027  0.0062  0.0110  
log-HAR-PCA-2 RW 0.3271   0.0007  0.0029  0.0065  0.0116  

 EW 0.3110   0.0007  0.0028  0.0062  0.0111  
log-HAR-PCA-3 RW 0.3254   0.0007  0.0029  0.0065  0.0116  

 EW 0.3187   0.0007  0.0028  0.0064  0.0113  
log-HAR-PCA-4 RW 0.3288   0.0007  0.0029  0.0066  0.0117  

 EW 0.3030   0.0007  0.0027  0.0061  0.0108  
log-HAR-PCA-5 RW 0.3274   0.0007  0.0029  0.0065  0.0116  

 EW 0.3097   0.0007  0.0028  0.0062  0.0110  
log-HAR-PCA-6 RW 0.3378   0.0008  0.0030  0.0068  0.0120  

 EW 0.3227   0.0007  0.0029  0.0064  0.0115  
log-HAR-PCA-7 RW 0.3406   0.0008  0.0030  0.0068  0.0121  

 EW 0.3241   0.0007  0.0029  0.0065  0.0115  
log-HAR-PCA-8 RW 0.3434   0.0008  0.0031  0.0069  0.0122  
  EW 0.3242    0.0007  0.0029  0.0065  0.0115  
Panel C: Updating frequency=22 
 

 Forecasting skill  Advantage 
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log-HAR RW 0.3293   0.0007  0.0029  0.0066  0.0117  

 EW 0.2899   0.0006  0.0026  0.0058  0.0103  
log-HAR-PCA-1 RW 0.3416   0.0008  0.0030  0.0068  0.0121  

 EW 0.3075   0.0007  0.0027  0.0061  0.0109  
log-HAR-PCA-2 RW 0.3229   0.0007  0.0029  0.0065  0.0115  

 EW 0.3077   0.0007  0.0027  0.0062  0.0109  
log-HAR-PCA-3 RW 0.3219   0.0007  0.0029  0.0064  0.0114  

 EW 0.3145   0.0007  0.0028  0.0063  0.0112  
log-HAR-PCA-4 RW 0.3222   0.0007  0.0029  0.0064  0.0114  

 EW 0.3031   0.0007  0.0027  0.0061  0.0108  
log-HAR-PCA-5 RW 0.3228   0.0007  0.0029  0.0065  0.0115  

 EW 0.3106   0.0007  0.0028  0.0062  0.0110  
log-HAR-PCA-6 RW 0.3293   0.0007  0.0029  0.0066  0.0117  

 EW 0.3244   0.0007  0.0029  0.0065  0.0115  
log-HAR-PCA-7 RW 0.3360   0.0007  0.0030  0.0067  0.0119  

 EW 0.3261   0.0007  0.0029  0.0065  0.0116  
log-HAR-PCA-8 RW 0.3373   0.0007  0.0030  0.0067  0.0120  
  EW 0.3258    0.0007  0.0029  0.0065  0.0116  

The table presents the economic significance of the conditional MV strategy that employs forecasting models to predict the realized variance of medium volatility 
subsamples of the S&P500 Index from 2014 to 2021. The utility gain metric assesses the economic significance, which incorporates three key elements: forecasting 
skill, risk preference, and market conditions. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market conditions 
(𝜆 /4𝜎 ) are determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year Treasury bond 
yield and 𝜎  is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling window is two 
years long. 
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Table 22. Sub-sample economic performance-Low volatility regime 
Risk preference       0.0122 
𝜆     0.1059(1/4𝜇) 0.2118(1/2𝜇) 0.3178(3/4𝜇) 0.4237(𝜇) 
Market condition    0.8365  3.3459  7.5282 13.3835 
Panel A: Updating frequency=1 
 

 Forecasting skill  Advantage 

log-HAR 
RW 0.3236   0.0033  0.0132  0.0297  0.0528  
EW 0.2788   0.0028  0.0114  0.0256  0.0455  

log-HAR-PCA-1 
RW 0.3342   0.0034  0.0136  0.0307  0.0545  
EW 0.2890   0.0029  0.0118  0.0265  0.0472  

log-HAR-PCA-2 
RW 0.3218   0.0033  0.0131  0.0295  0.0525  
EW 0.2904   0.0030  0.0118  0.0267  0.0474  

log-HAR-PCA-3 
RW 0.3018   0.0031  0.0123  0.0277  0.0492  
EW 0.2860   0.0029  0.0117  0.0263  0.0467  

log-HAR-PCA-4 
RW 0.3006   0.0031  0.0123  0.0276  0.0490  
EW 0.2790   0.0028  0.0114  0.0256  0.0455  

log-HAR-PCA-5 
RW 0.3001   0.0031  0.0122  0.0275  0.0490  
EW 0.2836   0.0029  0.0116  0.0260  0.0463  

log-HAR-PCA-6 
RW 0.3022   0.0031  0.0123  0.0277  0.0493  
EW 0.2835   0.0029  0.0116  0.0260  0.0463  

log-HAR-PCA-7 
RW 0.3066   0.0031  0.0125  0.0281  0.0500  
EW 0.2717   0.0028  0.0111  0.0249  0.0443  

log-HAR-PCA-8 
RW 0.3065   0.0031  0.0125  0.0281  0.0500  
EW 0.2722    0.0028  0.0111  0.0250  0.0444  

Panel B: Updating frequency=5 
 

 Forecasting skill  Advantage 
log-HAR RW 0.3215   0.0033  0.0131  0.0295  0.0525  

 EW 0.2776   0.0028  0.0113  0.0255  0.0453  
log-HAR-PCA-1 RW 0.3320   0.0034  0.0135  0.0305  0.0542  

 EW 0.2878   0.0029  0.0117  0.0264  0.0470  
log-HAR-PCA-2 RW 0.3204   0.0033  0.0131  0.0294  0.0523  

 EW 0.2891   0.0029  0.0118  0.0265  0.0472  
log-HAR-PCA-3 RW 0.2999   0.0031  0.0122  0.0275  0.0489  

 EW 0.2856   0.0029  0.0117  0.0262  0.0466  
log-HAR-PCA-4 RW 0.2978   0.0030  0.0121  0.0273  0.0486  

 EW 0.2798   0.0029  0.0114  0.0257  0.0457  
log-HAR-PCA-5 RW 0.2975   0.0030  0.0121  0.0273  0.0486  

 EW 0.2851   0.0029  0.0116  0.0262  0.0465  
log-HAR-PCA-6 RW 0.3015   0.0031  0.0123  0.0277  0.0492  

 EW 0.2837   0.0029  0.0116  0.0260  0.0463  
log-HAR-PCA-7 RW 0.3056   0.0031  0.0125  0.0281  0.0499  

 EW 0.2727   0.0028  0.0111  0.0250  0.0445  
log-HAR-PCA-8 RW 0.3049   0.0031  0.0124  0.0280  0.0497  
  EW 0.2726    0.0028  0.0111  0.0250  0.0445  
Panel C: Updating frequency=22 
 

 Forecasting skill  Advantage 
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log-HAR RW 0.3183   0.0032  0.0130  0.0292  0.0519  

 EW 0.2756   0.0028  0.0112  0.0253  0.0450  
log-HAR-PCA-1 RW 0.3303   0.0034  0.0135  0.0303  0.0539  

 EW 0.2860   0.0029  0.0117  0.0263  0.0467  
log-HAR-PCA-2 RW 0.3183   0.0032  0.0130  0.0292  0.0519  

 EW 0.2875   0.0029  0.0117  0.0264  0.0469  
log-HAR-PCA-3 RW 0.2988   0.0030  0.0122  0.0274  0.0488  

 EW 0.3015   0.0031  0.0123  0.0277  0.0492  
log-HAR-PCA-4 RW 0.2951   0.0030  0.0120  0.0271  0.0481  

 EW 0.2996   0.0031  0.0122  0.0275  0.0489  
log-HAR-PCA-5 RW 0.2977   0.0030  0.0121  0.0273  0.0486  

 EW 0.3066   0.0031  0.0125  0.0281  0.0500  
log-HAR-PCA-6 RW 0.3044   0.0031  0.0124  0.0279  0.0497  

 EW 0.3135   0.0032  0.0128  0.0288  0.0512  
log-HAR-PCA-7 RW 0.3072   0.0031  0.0125  0.0282  0.0501  

 EW 0.3025   0.0031  0.0123  0.0278  0.0494  
log-HAR-PCA-8 RW 0.3067   0.0031  0.0125  0.0281  0.0500  
  EW 0.3064    0.0031  0.0125  0.0281  0.0500  

The table presents the economic significance of the conditional MV strategy that employs forecasting models to predict the realized variance of low volatility 
subsamples of the S&P500 Index from 2014 to 2021. The utility gain metric assesses the economic significance, which incorporates three key elements: forecasting 
skill, risk preference, and market conditions. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market conditions 
(𝜆 /4𝜎 ) are determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year Treasury bond 
yield and 𝜎  is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling window is two 
years long. 
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Table 23. Leverages for the sub-sample period-High volatility regime 
𝜃       82.0175 
𝜆     -0.1100 -0.2200 -0.3300 -0.4400 
Market conditions   0.0410  0.1639  0.3688 0.6557 
Panel A: Updating frequency=1 
 

 Forecasting skill  Leverage(mean) 

log-HAR 
RW 1.0894   -0.0462 -0.0561 -0.0660 -0.0759 
EW 0.9322   -0.0448 -0.0533 -0.0617 -0.0702 

log-HAR-PCA-1 
RW 1.1746   -0.0470 -0.0577 -0.0684 -0.0790 
EW 1.0255   -0.0457 -0.0550 -0.0643 -0.0736 

log-HAR-PCA-2 
RW 1.1379   -0.0467 -0.0570 -0.0674 -0.0777 
EW 1.0252   -0.0457 -0.0550 -0.0643 -0.0736 

log-HAR-PCA-3 
RW 1.1897   -0.0471 -0.0580 -0.0688 -0.0796 
EW 1.0494   -0.0459 -0.0554 -0.0649 -0.0745 

log-HAR-PCA-4 
RW 1.2132   -0.0474 -0.0584 -0.0694 -0.0804 
EW 1.0863   -0.0462 -0.0561 -0.0659 -0.0758 

log-HAR-PCA-5 
RW 1.2431   -0.0476 -0.0589 -0.0702 -0.0815 
EW 1.1365   -0.0467 -0.0570 -0.0673 -0.0776 

log-HAR-PCA-6 
RW 1.2408   -0.0476 -0.0589 -0.0702 -0.0814 
EW 1.1797   -0.0471 -0.0578 -0.0685 -0.0792 

log-HAR-PCA-7 
RW 1.2425   -0.0476 -0.0589 -0.0702 -0.0815 
EW 1.1772   -0.0470 -0.0577 -0.0684 -0.0791 

log-HAR-PCA-8 
RW 1.2768   -0.0479 -0.0595 -0.0711 -0.0827 
EW 1.2266    -0.0475 -0.0586 -0.0698 -0.0809 

Panel B: Updating frequency=5 
 

 Forecasting skill  Leverage(mean) 
log-HAR RW 1.0705   -0.0461 -0.0558 -0.0655 -0.0752 

 EW 0.9250   -0.0447 -0.0531 -0.0616 -0.0700 
log-HAR-PCA-1 RW 1.1577   -0.0469 -0.0574 -0.0679 -0.0784 

 EW 1.0175   -0.0456 -0.0548 -0.0641 -0.0733 
log-HAR-PCA-2 RW 1.1190   -0.0465 -0.0567 -0.0668 -0.0770 

 EW 1.0185   -0.0456 -0.0548 -0.0641 -0.0734 
log-HAR-PCA-3 RW 1.1643   -0.0469 -0.0575 -0.0681 -0.0786 

 EW 1.0417   -0.0458 -0.0553 -0.0647 -0.0742 
log-HAR-PCA-4 RW 1.1791   -0.0471 -0.0578 -0.0685 -0.0792 

 EW 1.0766   -0.0461 -0.0559 -0.0657 -0.0755 
log-HAR-PCA-5 RW 1.2045   -0.0473 -0.0582 -0.0692 -0.0801 

 EW 1.0785   -0.0461 -0.0559 -0.0657 -0.0755 
log-HAR-PCA-6 RW 1.1955   -0.0472 -0.0581 -0.0689 -0.0798 

 EW 1.1213   -0.0465 -0.0567 -0.0669 -0.0771 
log-HAR-PCA-7 RW 1.1841   -0.0471 -0.0579 -0.0686 -0.0794 

 EW 1.1169   -0.0465 -0.0566 -0.0668 -0.0769 
log-HAR-PCA-8 RW 1.2086   -0.0473 -0.0583 -0.0693 -0.0803 
  EW 1.1542    -0.0468 -0.0573 -0.0678 -0.0783 
Panel C: Updating frequency=22 
 

 Forecasting skill  Leverage(mean) 
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log-HAR RW 1.0206   -0.0456 -0.0549 -0.0642 -0.0734 

 EW 0.9065   -0.0446 -0.0528 -0.0610 -0.0693 
log-HAR-PCA-1 RW 1.0837   -0.0462 -0.0560 -0.0659 -0.0757 

 EW 0.9919   -0.0454 -0.0544 -0.0634 -0.0724 
log-HAR-PCA-2 RW 1.0459   -0.0458 -0.0553 -0.0648 -0.0743 

 EW 0.9942   -0.0454 -0.0544 -0.0634 -0.0725 
log-HAR-PCA-3 RW 1.0772   -0.0461 -0.0559 -0.0657 -0.0755 

 EW 1.0154   -0.0456 -0.0548 -0.0640 -0.0732 
log-HAR-PCA-4 RW 1.0854   -0.0462 -0.0561 -0.0659 -0.0758 

 EW 1.0421   -0.0458 -0.0553 -0.0647 -0.0742 
log-HAR-PCA-5 RW 1.1086   -0.0464 -0.0565 -0.0666 -0.0766 

 EW 1.0210   -0.0456 -0.0549 -0.0642 -0.0734 
log-HAR-PCA-6 RW 1.0822   -0.0462 -0.0560 -0.0658 -0.0757 

 EW 1.0605   -0.0460 -0.0556 -0.0652 -0.0749 
log-HAR-PCA-7 RW 1.0470   -0.0459 -0.0554 -0.0649 -0.0744 

 EW 1.0483   -0.0459 -0.0554 -0.0649 -0.0744 
log-HAR-PCA-8 RW 1.0484   -0.0459 -0.0554 -0.0649 -0.0744 
  EW 1.0674    -0.0460 -0.0557 -0.0654 -0.0751 

The table presents the mean leverage required in achieving utility gains of Table 18 by implementing forecasting models to predict the realized variance of the high 
volatility subsample of the S&P500 Index from 2014 to 2021. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market 
conditions (𝜆 /4𝜎 ) are determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year 
Treasury bond yield and 𝜎  is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling 
window is two years long. 
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Table 24. Leverages for the sub-sample period-Medium volatility regime 
𝜃       82.0175 
𝜆     0.0866  0.1731  0.2597  0.3463  
Market conditions   0.1822  0.7286  1.6394 2.9145 
Panel A: Updating frequency=1 
 

 Forecasting skill  Leverage(mean) 

log-HAR 
RW 0.3337   0.2224  0.2395  0.2566  0.2737  
EW 0.2927   0.2203  0.2353  0.2503  0.2653  

log-HAR-PCA-1 
RW 0.3437   0.2229  0.2405  0.2581  0.2758  
EW 0.3100   0.2211  0.2370  0.2530  0.2689  

log-HAR-PCA-2 
RW 0.3286   0.2221  0.2390  0.2558  0.2727  
EW 0.3120   0.2212  0.2373  0.2533  0.2693  

log-HAR-PCA-3 
RW 0.3251   0.2219  0.2386  0.2553  0.2720  
EW 0.3169   0.2215  0.2378  0.2540  0.2703  

log-HAR-PCA-4 
RW 0.3278   0.2221  0.2389  0.2557  0.2725  
EW 0.3034   0.2208  0.2364  0.2519  0.2675  

log-HAR-PCA-5 
RW 0.3268   0.2220  0.2388  0.2555  0.2723  
EW 0.3107   0.2212  0.2371  0.2531  0.2690  

log-HAR-PCA-6 
RW 0.3296   0.2221  0.2391  0.2560  0.2729  
EW 0.3207   0.2217  0.2381  0.2546  0.2711  

log-HAR-PCA-7 
RW 0.3349   0.2224  0.2396  0.2568  0.2740  
EW 0.3228   0.2218  0.2384  0.2549  0.2715  

log-HAR-PCA-8 
RW 0.3365   0.2225  0.2398  0.2570  0.2743  
EW 0.3242    0.2219  0.2385  0.2551  0.2718  

Panel B: Updating frequency=5 
 

 Forecasting skill  Leverage(mean) 
log-HAR RW 0.3323   0.2223  0.2393  0.2564  0.2734  

 EW 0.2919   0.2202  0.2352  0.2502  0.2652  
log-HAR-PCA-1 RW 0.3424   0.2228  0.2404  0.2579  0.2755  

 EW 0.3092   0.2211  0.2370  0.2528  0.2687  
log-HAR-PCA-2 RW 0.3271   0.2220  0.2388  0.2556  0.2724  

 EW 0.3110   0.2212  0.2372  0.2531  0.2691  
log-HAR-PCA-3 RW 0.3254   0.2219  0.2386  0.2553  0.2720  

 EW 0.3187   0.2216  0.2379  0.2543  0.2706  
log-HAR-PCA-4 RW 0.3288   0.2221  0.2390  0.2558  0.2727  

 EW 0.3030   0.2208  0.2363  0.2519  0.2674  
log-HAR-PCA-5 RW 0.3274   0.2220  0.2388  0.2556  0.2724  

 EW 0.3097   0.2211  0.2370  0.2529  0.2688  
log-HAR-PCA-6 RW 0.3378   0.2226  0.2399  0.2572  0.2746  

 EW 0.3227   0.2218  0.2384  0.2549  0.2715  
log-HAR-PCA-7 RW 0.3406   0.2227  0.2402  0.2577  0.2751  

 EW 0.3241   0.2219  0.2385  0.2551  0.2718  
log-HAR-PCA-8 RW 0.3434   0.2229  0.2405  0.2581  0.2757  
  EW 0.3242    0.2219  0.2385  0.2551  0.2718  
Panel C: Updating frequency=22 
 

 Forecasting skill  Leverage(mean) 
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log-HAR RW 0.3293   0.2221  0.2390  0.2559  0.2728  

 EW 0.2899   0.2201  0.2350  0.2499  0.2647  
log-HAR-PCA-1 RW 0.3416   0.2228  0.2403  0.2578  0.2754  

 EW 0.3075   0.2210  0.2368  0.2526  0.2683  
log-HAR-PCA-2 RW 0.3229   0.2218  0.2384  0.2549  0.2715  

 EW 0.3077   0.2210  0.2368  0.2526  0.2684  
log-HAR-PCA-3 RW 0.3219   0.2218  0.2383  0.2548  0.2713  

 EW 0.3145   0.2214  0.2375  0.2536  0.2698  
log-HAR-PCA-4 RW 0.3222   0.2218  0.2383  0.2548  0.2714  

 EW 0.3031   0.2208  0.2363  0.2519  0.2674  
log-HAR-PCA-5 RW 0.3228   0.2218  0.2384  0.2549  0.2715  

 EW 0.3106   0.2212  0.2371  0.2531  0.2690  
log-HAR-PCA-6 RW 0.3293   0.2221  0.2390  0.2559  0.2728  

 EW 0.3244   0.2219  0.2385  0.2552  0.2718  
log-HAR-PCA-7 RW 0.3360   0.2225  0.2397  0.2570  0.2742  

 EW 0.3261   0.2220  0.2387  0.2554  0.2722  
log-HAR-PCA-8 RW 0.3373   0.2225  0.2398  0.2572  0.2745  
  EW 0.3258    0.2220  0.2387  0.2554  0.2721  

The table presents the mean leverage required in achieving utility gains of Table 19 by implementing forecasting models to predict the realized variance of the 
medium volatility subsample of the S&P500 Index from 2014 to 2021. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 
1. Market conditions (𝜆 /4𝜎 ) are determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-
year Treasury bond yield and 𝜎  is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling 
window is two years long. 
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Table 25. Leverages for the sub-sample period-Low volatility regime 
𝜃       82.0175 
𝜆     0.1059  0.2118  0.3178 0.4237 
Market conditions   0.8365  3.3459  7.5282 13.3835 
Panel A: Updating frequency=1 
 

 Forecasting skill  Leverage(mean) 

log-HAR 
RW 0.3236   0.8326  0.8949  0.9572  1.0196  
EW 0.2788   0.8240  0.8777  0.9314  0.9851  

log-HAR-PCA-1 
RW 0.3342   0.8347  0.8990  0.9634  1.0277  
EW 0.2890   0.8259  0.8816  0.9372  0.9929  

log-HAR-PCA-2 
RW 0.3218   0.8323  0.8943  0.9562  1.0182  
EW 0.2904   0.8262  0.8821  0.9381  0.9940  

log-HAR-PCA-3 
RW 0.3018   0.8284  0.8865  0.9446  1.0028  
EW 0.2860   0.8254  0.8805  0.9355  0.9906  

log-HAR-PCA-4 
RW 0.3006   0.8282  0.8861  0.9439  1.0018  
EW 0.2790   0.8240  0.8778  0.9315  0.9852  

log-HAR-PCA-5 
RW 0.3001   0.8281  0.8859  0.9437  1.0014  
EW 0.2836   0.8249  0.8795  0.9341  0.9888  

log-HAR-PCA-6 
RW 0.3022   0.8285  0.8867  0.9449  1.0031  
EW 0.2835   0.8249  0.8795  0.9341  0.9887  

log-HAR-PCA-7 
RW 0.3066   0.8293  0.8884  0.9474  1.0065  
EW 0.2717   0.8226  0.8749  0.9272  0.9796  

log-HAR-PCA-8 
RW 0.3065   0.8293  0.8884  0.9474  1.0064  
EW 0.2722    0.8227  0.8751  0.9276  0.9800  

Panel B: Updating frequency=5 
 

 Forecasting skill  Leverage(mean) 
log-HAR RW 0.3215   0.8322  0.8941  0.9560  1.0179  

 EW 0.2776   0.8238  0.8772  0.9307  0.9842  
log-HAR-PCA-1 RW 0.3320   0.8342  0.8982  0.9621  1.0261  

 EW 0.2878   0.8257  0.8812  0.9366  0.9920  
log-HAR-PCA-2 RW 0.3204   0.8320  0.8937  0.9554  1.0171  

 EW 0.2891   0.8260  0.8816  0.9373  0.9930  
log-HAR-PCA-3 RW 0.2999   0.8280  0.8858  0.9435  1.0013  

 EW 0.2856   0.8253  0.8803  0.9353  0.9903  
log-HAR-PCA-4 RW 0.2978   0.8276  0.8850  0.9423  0.9997  

 EW 0.2798   0.8242  0.8781  0.9320  0.9858  
log-HAR-PCA-5 RW 0.2975   0.8276  0.8849  0.9422  0.9995  

 EW 0.2851   0.8252  0.8801  0.9350  0.9899  
log-HAR-PCA-6 RW 0.3015   0.8284  0.8864  0.9445  1.0025  

 EW 0.2837   0.8249  0.8796  0.9342  0.9888  
log-HAR-PCA-7 RW 0.3056   0.8292  0.8880  0.9469  1.0057  

 EW 0.2727   0.8228  0.8753  0.9278  0.9803  
log-HAR-PCA-8 RW 0.3049   0.8290  0.8877  0.9464  1.0051  
  EW 0.2726    0.8228  0.8753  0.9278  0.9803  
Panel C: Updating frequency=22 
 

 Forecasting skill  Leverage(mean) 
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log-HAR RW 0.3183   0.8316  0.8929  0.9542  1.0155  

 EW 0.2756   0.8234  0.8764  0.9295  0.9826  
log-HAR-PCA-1 RW 0.3303   0.8339  0.8975  0.9611  1.0248  

 EW 0.2860   0.8254  0.8805  0.9356  0.9906  
log-HAR-PCA-2 RW 0.3183   0.8316  0.8929  0.9542  1.0155  

 EW 0.2875   0.8257  0.8810  0.9364  0.9918  
log-HAR-PCA-3 RW 0.2988   0.8278  0.8854  0.9429  1.0005  

 EW 0.3015   0.8284  0.8864  0.9445  1.0025  
log-HAR-PCA-4 RW 0.2951   0.8271  0.8839  0.9408  0.9976  

 EW 0.2996   0.8280  0.8857  0.9434  1.0011  
log-HAR-PCA-5 RW 0.2977   0.8276  0.8850  0.9423  0.9996  

 EW 0.3066   0.8293  0.8884  0.9474  1.0065  
log-HAR-PCA-6 RW 0.3044   0.8289  0.8875  0.9461  1.0048  

 EW 0.3135   0.8307  0.8911  0.9514  1.0118  
log-HAR-PCA-7 RW 0.3072   0.8295  0.8886  0.9478  1.0069  

 EW 0.3025   0.8285  0.8868  0.9450  1.0033  
log-HAR-PCA-8 RW 0.3067   0.8294  0.8884  0.9475  1.0065  
  EW 0.3064    0.8293  0.8883  0.9473  1.0063  

The table presents the mean leverage required in achieving utility gains of Table 20 by implementing forecasting models to predict the realized variance of the low 
volatility subsample of the S&P500 Index from 2014 to 2021. Forecasting skill is calculated as exp[𝐶 ] − 1, while risk preference (1/𝜃) is assumed to be 1. Market 
conditions (𝜆 /4𝜎 ) are determined by a parameter 𝜆  that ranges from 1/4𝜇 to 𝜇, where 𝜇 represents the excess return of the S&P500 Index over the 10-year 
Treasury bond yield and 𝜎  is the variance of such excess returns. RW and EW stand for rolling windows and expanding windows, respectively, and the rolling 
window is two years long. 
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Figure 1: Preprocess steps of Twitter texts 
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Figure 2. S&P500 Index realized variances series (log). 
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Figure 3. S&P500 Index realized variances series. 
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Figure 4. Hot words cloud of the sample period. 
 
 
 
 



108 
 

 

Figure 5. Out-of-sample forecasting (log) comparison of log-HAR-PCA-5 (RW) and log-HAR (RW) with 
realized variance (5-min) 
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Figure 6. Out-of-sample forecasting (log) comparison of log-HAR-PCA-5 (RW) and log-HAR (RW). 
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Figure 7. Out-of-sample forecasting comparison of log-HAR-PCA-5 (RW) and log-HAR (RW) with 
realized variance (5-min) 
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Figure 8. Out-of-sample forecasting comparison of log-HAR-PCA-5 (RW) and log-HAR (RW) 
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