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ABSTRACT

Animal survival depends on behavioural adaptation to the environment. This is thought
to be enabled by plasticity in the neural circuit. However, the laws which govern neural
plasticity are unclear. From a functional aspect, it is desirable to correctly identify, or

assign “credit” for, the neurons or synapses responsible for the task decision and subsequent
performance. In the biological circuit, the intricate, non-linear interactions involved in neural
networks makes appropriately assigning credit to neurons highly challenging. In the temporal
domain, this is known as the temporal credit assignment (TCA) problem.

This Thesis considers the role the cerebellum – a powerful subcortical structure with strong
error-guided plasticity rules – as a solution to TCA in the brain. In particular, I use artificial
neural networks as a means to model and understand the mechanisms by which the cerebellum
can support learning in the neocortex via the cortico-cerebellar loop. I introduce two distinct but
compatible computational models of cortico-cerebellar interaction.

The first model asserts that the cerebellum provides the neocortex predictive feedback,
modeled in the form of error gradients, with respect to its current activity. This predictive
feedback enables better credit assignment in the neocortex and effectively removes the lock
between feedforward and feedback processing in cortical networks. This model captures observed
long-term deficits associated with cerebellar dysfunction, namely cerebellar dysmetria, in both
the motor and non-motor domain. Predictions are also made with respect to alignment of cortico-
cerebellar activity during learning and the optimal task conditions for cerebellar contribution.

The second model also looks at the role of the cerebellum in learning, but now considers its
ability to instantaneously drive the cortex towards desired task dynamics. Unlike the first model,
this model does not assume any local cortical plasticity need take place at all and task-directed
learning can effectively be outsourced to the cerebellum. This model captures recent optogenetic
studies in mice which show the cerebellum as a necessary component for the maintenance
of desired cortical dynamics and ensuing behaviour. I also show that this driving input can
eventually be used as a teaching signal for the cortical circuit, thereby conceptually unifying the
two models.

Overall, this Thesis explores the computational role of the cerebellum and cortico-cerebellar
loops for task acquisition and maintenance in the brain.
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1
INTRODUCTION

Animal survival depends on behavioural adaptation to the environment. When a monkey

sees a rotting branch for the first time, it may initially attempt to traverse it before

the branch snaps and the monkey falls. The prevalent theory in neuroscience says that

there will subsequently be a wave of changes – plasticity – in the monkey’s neural circuit so that

the rotting branch is labeled as something to be avoided. These changes should occur almost

instantaneously so that the monkey does not immediately make the same mistake, but also be

robustly stored and consolidated so that it is faithfully recollected during the rest of its life.

What are the laws which govern neural plasticity? From a functional aspect it is desirable

to correctly identify the neurons or synapses which were responsible for the initial decision and

later “error” with respect to the task at hand. A slight change to the strength of a particularly

important synapse, for example, might result in a more advantageous decision being made and

the final task error reduced. The relationship between small changes this synaptic strength and

the resulting error is formally defined by the error gradient with respect to the synapse. Updates

to neural circuitry could then be made according to these error gradients. Indeed, this approach –

gradient descent – is at the heart of learning for models in machine learning and artificial neural

networks (ANNs) in particular [26, 156].

However, relevant computations during neural processing can be hard to identify. Neural

networks often have many layers which depend on each other sequentially (hierarchical) or

contain bilateral connections which result in a temporal evolution of the circuit activity (recurrent).

This circuitry, coupled with the intrinsic non-linearity of neurons, makes it difficult for neural

activity to be assigned appropriate “credit” for its role in the task outcome. This is known as the

credit assignment problem, and makes deriving error gradients highly challenging for the circuit

or modeler [193, 223]. The challenge is further increased when neural activity must be correctly
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CHAPTER 1. INTRODUCTION

associated to error signals which come later in time: the temporal credit assignment problem

(TCA).

Today, experimental and computational neuroscientists often have a “cortical-centric” view, in

which a local region in the neocortex is examined in isolation during the acquisition of a task. In

this Thesis, however, I consider the role of a particular subcortical structure – the cerebellum – as

a solution to TCA in cortical circuits. In particular, I use ANNs to better understand mechanisms

by which the cerebellum can support learning in the neocortex via the cortico-cerebellar loop. At

the same time, I hope to elucidate prior observations with respect to cortico-cerebellar interaction

and guide future experiments. Towards this end I develop two distinct but mutually compatible

computational models.

The first model asserts that cerebellum provides the neocortex predictive feedback, modeled

in the form of error gradients, with respect to its current activity. This predictive feedback enables

better credit assignment in the neocortex and effectively removes the lock between feedforward

and feedback processing in cortical networks. This model is presented in Chapter 3, with a more

technically focused study on how to better predict error gradients in Chapter 4.

The second model also considers the role of the cerebellum in learning, but is developed to

capture the instantaneous cortical dependency on cerebellar-cortico input. In particular, this

model examines the driving effect of the cerebellum on cortical task-dynamics. I will show that

this driving input can eventually be used as a teaching signal for the cortical circuit, thereby

conceptually unifying the two models. I will present this model in Chapter 5.

I will first provide background material to artificial neural networks and the cortico-cerebellar

loop in Chapter 2.
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BACKGROUND: BIOLOGICALLY PLAUSIBLE LEARNING AND THE

CEREBELLUM

In this Section I provide background material to the following Chapters. In particular, in Sec-

tion 2.1 I formally outline the problem of learning in neural networks before looking at proposed

artificial and biologically motivated solutions. In Section 2.2 I then review the literature with

respect to the cerebellum and, in particular, cortico-cerebellar loops.

2.1 Credit assignment in biological and artificial networks

More than a century ago Santiago Ramón y Cajal and others demonstrated the neuron doctrine1;

that is, the nervous system can be described as a collection of discrete, connected nerve cells, or

neurons. These neurons were identified to communicate with each other via action potentials

(spikes). The increase in voltage instantiated by a spike produces current which is transferred

along the neuron’s outgoing branch, the axon. The axon extends to a spatially distant location

and connects with the incoming branch, the dendrite, of another neuron where the current

is transferred2. The site at which the axon connects with the dendrite is called the synapse.

Importantly, various features of the synapse can be modified to increase, or decrease, the extent

of current transmission; that is, there is plasticity in the synaptic strength.

Together, networks of neurons and synaptic plasticity are the basis of artificial neural networks

(ANNs), the predominant computational model of biological neural circuits. ANNs typically make

drastic simplifications regarding the chemical and electrophysiological interactions during neural

processing (see Section 2.1.7), and comprise of relatively basic units (neurons) with weighted

1This is as opposed to reticular theory – that the nervous system is a single continuous network – as purported by
Joseph von Gerlach amongst others.

2This is mediated by an array of ion challenges and neurotransmitters [133].
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connections or “weights” (synapses). The neural representations in ANNs can then be expressed

by a population vector which denotes, for instance, the rate of spiking for each neuron, whilst

neural learning can be expressed by the modification of its associated weight matrix.

Due to their inherent resemblance to biological neural circuits and practical application,

ANNs have become an predominant tool in computational neuroscience. In particular, ANNs

are widely used as a means to understand the computational principles of neural dynamics and

specifically, as is the focus of this Thesis, neural learning and credit assignment [49, 177, 224].

2.1.1 Approximation of neural dynamics with artificial neural networks

This Thesis is concerned with temporal credit assignment (TCA), and for that reason I primarily

consider time-dependent ANNs with bilateral, recurrent connectivity: recurrent neural networks

(RNNs; Figure 2.1). Given that cortical circuits display a high degree of lateral connectivity, RNNs

are commonly used to model cortical computation [150, 176, 219, 248]. The temporal dynamics of

an RNN can be generally described by

ht = f (xt,ht−1;W), (2.1)

Where ht is the RNN activation vector at time t, xt is the external input to the RNN, f is the

function of the RNN which is parameterised by the weight matrix W . The function f is a choice

of the modeler and typically depends on its desired expressivity (i.e. ability to solve problems) or

biological plausibility (i.e. faithfulness to biological dynamics). For example, a relatively simple

but biologically reasonable RNN incorporates the dynamics

ht =φ(Wihxt +Whhht−1), (2.2)

Where φ is the neuron non-linearity (e.g. the ReLU function or tanh) and Wih, Whh are the input,

recurrent weights of the RNN respectively. The parameters of the RNN can then be written as

W = {Wih,Whh}. In this Thesis I consider a variety of functions f in Equation 2.1. This includes

Equation 2.2 but also more biologically minded and computationally expressive RNNs (see details

in following Chapters).

Typically, the model output (prediction) at time t is not the hidden state h itself, but some

function of h. This prediction is denoted z and is often taken simply as a linear combination of

the units in h with a readout matrix Wrdt:

zt =Wrdtht. (2.3)

2.1.1.1 Feedforward ANNs

As stated, this Thesis is primarily concerned with temporal tasks which are performed by RNNs.

However, it is important to also describe network dynamics for a hierarchical network of neurons
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RNN

time

...

BPTT gradient
a b

Figure 2.1: Schematic of a recurrent neural network (RNN). a, Temporal input xt is fed
into an RNN which has hidden state ht. The self-projecting arrow in the RNN illustrates the
recurrency in the network, such that the state at the current timestep ht depends on the state at
the previous timestep ht−1. Typically this state is associated with some error signal E, which
may occur at the same or a later timestep. b, Example of an unrolled RNN. Here after some
initial input the RNN state ht evolves depending on its previous state up until the last timestep
T (black lines). At this point the network receives an error signal ET . Conventionally this error
signal backpropagated through the network dynamics (BPTT) to update the RNN parameters
(red lines).

with multiple spatial layers: feedforward ANNs. From a neuroscientific point of view, feedforward

ANNs are useful models of brain areas which contain relatively few lateral projections and are

instead driven by the sequential processing between distinct network regions. As we will see in

Section 2.2.1, this makes ANNs suitable for modeling neural processing in the cerebellum.

In this paradigm the network does not depend on time but is provided a static input x at the

first (bottom) layer of the network. The feedforward ANN then processes this input sequentially

through its layers and the final (top) layer produces the network output. Specifically, the activity

at layer k of the network is typically described by

hk =φ(Wkhk−1), (2.4)

Where Wk is the synaptic weight matrix from layer k−1 to layer k. h0 is defined as the input,

h0 := x.

Note the similarity between the RNN dynamics in Equation 2.2 and the feedforward dynamics

in Equation 2.4. In particular, it can be useful to consider RNN dynamics as an instance of

feedforward dynamics but where layer indices k are replaced with temporal indices t and the

same weight matrix W is applied between each computation, i.e. Wk =W for all k. This produces

an “unrolled” version of the RNN (Figure 2.1b).

2.1.2 Local, biologically plausible learning rules

How should the synaptic weights W be determined? At the beginning W is typically initiated

as a vector of random values, W =W0. From a neuroscience point of view, W0 might reflect the

intrinsic connectivity of the network determined, for example, by genetic code and is agnostic
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to environmental experience. Once exposed to external input or stimuli, however, W is typically

updated to produce a more optimal neural response given some environmental feedback.

I briefly review two relatively basic, but biologically feasible, learning rules proposed to take

place in the nervous system.

2.1.2.1 Hebbian plasticity

The earliest but still widely used update rule for synaptic weights was proposed by Donald

Hebb towards the mid-20th century and is known as Hebb’s Rule [104]. According to Hebb’s

rule, neurons which are active at the same time should have strong connectivity. Intuitively, this

should encourage an association of temporally overlapping events or representations. Specifically,

the weight update of the synapse Wji from neuron i to neuro j is proportional to the correlation

between their activities across a set of input patterns P. This can be expressed as

∆Wji ∝ 1
|P|

∑
p∈P

hp
i hp

j = Ep∈P [hih j], (2.5)

Where hp
i , hp

j are the activations given pattern p for neurons i, j respectively, |P| is the number

of patterns, and Ep∈P denotes the expectation3 over the patterns.

Notably, the weight update defined in Equation 2.5 uses pre- and post-synaptic activity

which is locally available to the synapse. Hebb’s rule is thus local and biologically feasible in

a real neural circuit. Indeed, there has since been a wide range of empirical evidence which

demonstrates Hebb’s rule in biological synapses via spike time dependent plasticity mechanisms

(STDP) [38, 160, 178]. There are two primary observations with respect to STDP: pre-synaptic

spiking followed by post-synaptic spiking in long-term potentiation (LTP) of the synapse, whilst

post-synaptic spiking followed by pre-synaptic spiking results in long-term depression (LTD) of

the synapse. Importantly, STDP then incorporates a causal aspect in Equation 2.5: hi spiking

must lead h j spiking for LTP, otherwise LTD will occur.

2.1.2.2 Node and weight perturbation

Whilst Hebb’s rule does not require any external feedback such as an error signal and is therefore

unsupervised, typically there is some desired response y at the network output. y is considered

to be provided by some external teacher and means that learning is supervised. Typically y is

compared to the network prediction z to generate an error E = E (y,z) for some error function

E . For example, this can be the mean-squared error between the two vectors: E (y,z)= ||y−z||22,

where ||.||2 is the Euclidean norm. Almost all of this Thesis assumes a supervised learning

paradigm.

3Note that in Equation 2.5 a uniform distribution over the patterns is assumed, but it is easy to generalise to a
non-uniform distribution.
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One relatively simple but important learning algorithm for neural circuits is based on

perturbation of the neural circuit with some noise term ζ. The key idea is that ζ leads to a

different network output and therefore a distinct error Eζ compared to the control (noiseless) error

E. The difference between the two errors, G := Eζ−E, then provides a first-order approximation

of the error gradient with the respect change brought about by ζ. In order to minimise E, it is

then possible to update W towards the opposite direction to this error gradient – gradient descent.

Importantly, G is available to the entire network, and is in that sense can be considered a global

learning signal.

The most simple version of this is by adding noise ζ to the network weights W themselves; that

is, ζ is the same (two-dimensional) shape as W . This is weight perturbation [41, 128]. According

to weight perturbation, the update to the weights is

∆W =− η

σ2 Gζ, (2.6)

Where σ2 is the variance of the Gaussian distribution from which each noise element ζi is

sampled, ζi ∼N (0,σ2), and η is the specified learning rate.

Another more subtle method is to instead add noise to the inputs mathbf h to W, where

ζ is now of the same shape as h. This is node perturbation [76, 282, 283]. According to node

perturbation, the update to the weights is

∆W =− η

σ2 Gζh⊤, (2.7)

Where .⊤ denotes the transpose operation.

2.1.3 Motivation for more precise gradient computation

The previous learning algorithms, Hebb’s rule and noise perturbation, are appealing to the

neuroscientist since they only make relatively modest assumptions with respect to the circuit.

Hebb’s rule, as mentioned, only requires the synapse to have access to its pre and post-synaptic

neuron activity. That the synapse has access to pre-synaptic firing is true by the very nature of

the synapse. It is also known that a certain type of receptor of the synapse, the NDMA receptor, is

only activated when there is also post-synaptic firing. In this way the NDMA receptor is regarded

as a “coincidence” detector and the resulting calcium influx could through various means4 lead to

LTP. Similarly, there is support that a global signal which represents G in Equations 2.6 and 2.7

can be encoded in the brain. For example, it has been widely considered that the neuromodulatory

system could provide the diffuse feedback needed to engage learning and relevant plasticity

across the neural population [68, 73, 100].

However, these learning algorithms are limited in their performance. Hebbian plasticity,

whilst it can derive useful input statistics (see e.g. [166]), inherently does not take into account

4See for example [54] for how this could be achieved.
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the presence of some objective or external error function. Noise perturbation methods can be

used to minimise this error, but the derived error gradients incorporate a great deal of variance

and may therefore require very small learning rates [280].

An ideal solution would be to not descend a loose approximation of the error gradient as in

Equations 2.6 and 2.7, but to actually derive its true value for a given trial.

2.1.4 Backpropagation

Machine learning theory points to the backpropagation algorithm as an optimal strategy for

deriving error gradients in ANNs. Loosely speaking, once the network has completed its forward

pass across each timestep or layer (cf. Equations 2.2 or 2.4), the final error E is propagated

backwards through the preceding chain of computation. For this reason it is not unreasonable to

consider backpropagation as a somewhat glorified application of the chain rule.

Once the error gradient with respect to the weights ∂E
∂W is derived, W is updated by gradient

descent:

∆W =−η ∂E
∂W

. (2.8)

Note the resemblance between Equation 2.8 and the noise perturbation methods in Equations 2.6

and 2.7. The important difference is that, with backpropagation, the true error gradient for the

input example is obtained, not an inaccurate linear approximation as provided by the perturbation

methods. This should result in a more precise, direct update trajectory for W which results in

faster learning and better overall performance.

2.1.4.1 Backpropagation through space

I first outline the computation of backpropagation for feedforward networks, since it is easier to

describe. Suppose a feedforward network has K layers excluding the input layer which is defined

as h0 = x, where x is the external input. The forward pass is first made (cf. Equation 2.4) so that

the model prediction z :=hK is computed. An error E based on the desired output y is computed,

E = E (z,y), as well as the error gradient with respect to the prediction ∂E
∂z = ∂E

∂hK
.

The chain rule can then be applied to obtain the gradient of arbitrary weight Wk as follows:

∂E
∂hk

= ∂E
∂hk+1

∂hk+1

∂hk
, (2.9)

∂E
∂Wk

= ∂E
∂hk

∂hk

∂Wk
. (2.10)

In practice, for the dynamics in Equation 2.4 this is explicitly computed as follows. First let us

define the helper variable ik :=Whk−1 which is the input to the neuron before the non-linearity

is applied. The error gradient with respect to the weights of each layer k can then be derived

recursively according to

8
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∂E
∂ik

=φ′(ik)⊙ ∂E
∂hk

, (2.11)

∂E
∂Wk

= ∂E
∂ik

h⊤
k−1, (2.12)

∂E
∂hk−1

=W⊤
k
∂E
∂ik

, (2.13)

Where φ′ is the derivative of the function φ and ⊙ denotes element-wise multiplication. It is

straightforward to generalise Equations 2.11-2.13 where there is a bias term in Equation 2.4 or

the network computes multiple input examples, a batch, concurrently [30].

2.1.4.2 Backpropagation through time

It is also possible to apply backpropagation for temporal problems with RNNs as, for instance, in

the dynamics in Equation 2.2. A similar recursive process as in Equations 2.9 and 2.10 takes

place except that in this case, errors defined at later points are propagated backwards in time

instead of space. This is known as backpropagation through time (BPTT).

Specifically, suppose that at each timestep t there is an error E t = E (zt,yt), where zt and yt

are the predicted and desired output at timestep t, respectively. Let E =∑
1≤t≤T E t be the total

error, where T is the number of timesteps in the task sequence. The error gradients with respect

to neural activities and weights can then be expressed as

∂E
∂ht

= ∂E t

∂ht
+ ∂E
∂ht+1

∂ht+1

∂ht
, (2.14)

∂E
∂W

= ∑
1≤t≤T

∂E
∂ht

∂ht

∂W(t)
. (2.15)

Point of clarity: It is worth appreciating that Equation 2.14 is not a trivial instance of the

classical chain rule and applies specifically for ordered systems of variables such as RNN state

transitions (i.e. ht only effects future states hτ for τ> t). This was derived by Paul Werbos in the

1970s and its subtleties are discussed can be found [278, 279]. In particular, note that there is

some abuse of notation in Equations 2.14 and 2.15 (which is common in the machine learning

literature) with respect to the types of derivatives involved: whilst ∂ht
∂W(t)

is the partial derivative

and only considers the direct influence of θ on the state ht (as highlighted by the subindex), ∂E
∂ht

is the ordered derivative which represents the “total” effect of ht on E (e.g. via indirect, recurrent

connections over time) [278, 279].

To better understand the underlying computations in BPTT as defined in Equations 2.14 and

2.15, it is useful to provide an explicit example. For instance, suppose that the RNN dynamics and

prediction follow Equations 2.2 and 2.3 and that the error E t is the MSE between the prediction

and target at time t, E t = 1
2 ||zt −yt||22. Further, let it :=Wht−1 be a helper variable which is the

input to the neuron before the non-linearity is applied. Then the error gradients are computed as

9
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∂E
∂ht

=W⊤
rdt(zt −yt)+W⊤ ∂E

∂it+1
, (2.16)

∂E
∂it

=φ′(it)⊙ ∂E
∂ht

, (2.17)

∂E
∂W

= ∑
1≤t≤T

∂E
∂it

h⊤
t−1. (2.18)

Like backpropagation through space, it is straightforward to generalise Equations 2.16-2.18

where there is a bias term in Equation 2.2 or the network computes multiple input examples (a

batch) concurrently.

2.1.5 Problems with backpropagation in the nervous system

Though backpropagation offers an analytically optimal strategy for deriving error gradients,

that it might be employed by the brain is controversial to say the least [218]. Indeed, BPTT, in

particular, incorporates various computational and memory assumptions which may be difficult

or arguably impossible to achieve within the constraint of biological circuits. For reviews on the

subject of backpropagation and the brain see e.g. [164, 165, 177, 224].

We outline some of the primary computational issues with backpropagation and BPTT in

particular which the models presented in this Thesis aim to tackle. Note that each model may

only confront some of these issues, and there remain other issues which are not confronted by

either model (e.g. existence of teacher/error signal, see Section 2.1.7 on Limitations).

1. Two-phase forward and feedback processing: backpropagation requires the error E

to be defined. However, E is only available once all computations over layers/timesteps

are made, i.e. the completion of the network forward pass. Similarly, the network cannot

update itself (using error gradients) until the competition of the backward “feedback” pass

in backpropagation. This alternative forward, feedback phase imposes locking constraints

as to when the network can learn [129]. This is further discussed in Chapters 3 and 4,

in which we explicitly develop a model to remove this constraint, and this issue is also

effectively dealt with by the model presented in Chapter 5.

2. Memory and computational requirements: whilst the network waits for the completion

of the forward and backward phase as highlighted in issue (1), the neurons/synapses in the

network need to store the information required for the error gradient such as its activations.

This is particularly problematic for BPTT, where neuron activations (and their derivatives

with respect to the non-linearity) must be stored across the T timesteps of the sequence

(cf. Equations 2.16-2.18). Not only this, but these terms must be readily accessible to the

synapse being updated and meticulously combined in a counter-intuitive future to past

order. It is considered unlikely that these precise storage and computation requirements
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over arbitrarily long timescales are achieved in a biological neuron/synapse. This problem

is addressed to some extent by each of the proposed models in this Thesis.

3. Network generalisation and continual learning: a core assumption of backpropagation

is that error gradients derived over input examples should be used to guide synaptic weight

updates (cf. Equation 2.8). However, it remains to be seen whether this “naive” update

specific to the current task error enables network dynamics which generalise well to other

problems; i.e. there is a risk of overfitting to the particular examples the network has seen

[3]. Moreover, overwriting weights according to the current error may result in a network

which is unable to perform some originally learned function; that is, there is catastrophic

forgetting [79]. This problem is one of the motivations for the model presented in Chapter 5.

2.1.6 Motivation for biologically plausible alternatives to backpropagation

The problems with backpropagation in the brain as described above have led computational

neuroscientists to develop alternative models of learning, and is a primary motivation for this

thesis. Like the models within this Thesis, many of these alternative models make the core

assumption that the brain learns to optimise some error function via some form of gradient

descent (cf. Equation 2.8). The problem, then, is reduced to the question of how these gradients

are obtained. The challenge for the modeler is to derive faithful approximations of this gradient,

whilst remaining within reasonable constraints of the biological circuit.

For an overview of different biologically-motivated learning algorithms instead of BPTT, see

[180]. It is worth noting that many proposed algorithms are related to the real-time recurrent

learning (RTRL) algorithm [284]. Like BPTT, RTRL produces a closed form derivation of the

error gradient using the chain rule, except now with a different ordering.

∂ht

∂W
= ∂ht

∂W(t)
+ ∂ht

∂ht−1

∂ht−1

∂W
, (2.19)

∂E
∂W

= ∑
1≤t≤T

∂E t

∂ht

∂ht

∂W
. (2.20)

A key distinction between RTRL and BPTT is the direction in which gradient accumulation

takes place; that is, whether computations are made with values with respect to the past or

future [50, 180]. In particular, one can consider RTRL as past-facing in the sense that the

computations required to compute the error gradient at time t depend only on past errors . This is

desirable in that the algorithm is online. Specifically, gradients can be computed at each timestep

and there is no memory or computational complexity with respect to the sequence length T.

However, a significant caveat of RTRL is the memory and computational complexity with respect

to the “influence” matrix ∂ht
∂W [180, 181]; if there are n units in the RNN, then ∂ht

∂W term demands

memory and computational complexity of O (n3) and O (n4), respectively. Various algorithms have

attempted to reduce the cost of this matrix [28, 50, 180, 181, 185, 196, 197, 226, 262].
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BPTT, on the other hand, uses errors which come later on with respect to the current time

point, and is in that sense future-facing. Future-facing algorithms inherently avoid the costly

influence matrix involved in backward-facing algorithms, and appeal to the notion of prospective

teaching signals where in cases where the task error is not yet available. This is a central theme

in the studies presented in Chapters 3 and 4. In particular, one of the two main models of

learning presented in this Thesis is built upon a recent forward-facing learning algorithms in

which prospective teaching signals are predicted in real time [129].

2.1.7 General limitations and assumptions of a deep learning framework for
neuroscience

In order to better understand the process of learning in biological circuits, this Thesis employs

many of the concepts presented above; in particular, I adhere to the notion that a deep learning

framework is in general a useful approach for understanding the brain [224]. It should be

highlighted that along with this there are a number of associated limitations and assumptions

which should be clearly outlined, both from a broad conceptual point of view (e.g. what constitutes

learning) as well as a more technical point of view (e.g. how neurons are modeled).

From a more conceptual point of view, the main assumptions can be listed as

1. Synaptic plasticity is the principal component of learning: learning, i.e. changing

behaviour to increase the chance of a desired outcome, is primarily driven by changes in

synaptic weights. This is in contrast to, for example, changes to the internal mechanisms or

structure of the neuron itself [35], or by random mutations as in evolutionary algorithms

[270].

2. Brain can generate/use error/objective functions: biological circuits have access to

either internally or externally generated error signals, based on some “objective function”,

which should be minimised. There is good reason to believe that this objective function

is encoded in the biological circuit; dopamenergic neurons, for example, have classically

been thought to predict reward [237]. It should be noted however that the extent of error

functions in the brain, and their diversity, is still relatively unclear [177, 224].

From a technical point of view, the main assumptions can be listed as

1. ANNs approximate dynamics of biological neural circuits: the integration of input

currents and firing of units in ANNs are considered to loosely mimic a real neuron in

the biological circuit. Similarly, a biological synapse can be approximated by a (scalar)

weighting term from pre- to post-synaptic activity. This Thesis therefore ignores the finer

details of neural processing such as the various ion channels as incorporated, for example,

in more detailed (but computationally expensive) models such as the Hodgin-Huxley model

[112]. Short-term adaptation of neural response is also not considered [297].

12
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2. Brain can derive (spatially/temporally local) error gradients: it is possible to com-

pute, at least “locally”, gradients in the brain. Local has no formal definition in this Thesis,

but refers to the relatively small distance, either spatial or temporal, between activity and

subsequent activity or error. Various studies have explored how exactly the brain might

encode these locally available gradients; see e.g. [25, 92, 186, 197, 209, 229] (and many

others).

2.2 The cerebellum and cortico-cerebellar loop

The primary subject of this Thesis is how might the cerebellum, a subcortical structure which

communicates with the neocortex, enable better TCA in cortical RNNs in the brain. In particular,

I will develop two distinct but compatible models of how the cerebellum can enable better task

acquisition in the neocortex via the cortico-cerebellar loop. For brevity, I will often refer to the

neocortex as simply the cortex.

In this Section, I will present a brief summary of the anatomy of the cerebellum and cortico-

cerebellar loops. I will then run through the main hypotheses of cerebellar computation and

function, including the internal model hypotheses. I will then look at more recent experimental

and conceptual advances with respect to the cortico-cerebellar loop, whilst providing context as

to where this Thesis fits in.

2.2.1 The cerebellum

The cerebellum is a subcortical structure which can be traced far back in vertebrate evolution.

It is thought to have emerged around 420 million years ago, some 170 million years before the

neocortex [138]. Traditionally associated with motor control, the cerebellum sits at the back of

the vertebrate brain and projects directly to the spinal cord and other subcortical structures,

and indirectly to the neocortex. Quite remarkably, though habitat and survival needs vary

significantly across different species, cerebellar circuitry has remained stable [208]. Indeed, the

architecture of the neural circuit within the cerebellum is highly uniform compared to that in

the neocortex [244, 266, 267, 296]. Also remarkable is the scale of the cerebellum: whilst it only

makes up ∼ 10% of the total brain mass in the human adult, it incorporates – due to its vast

number of granule cells (∼ 50 billion) – ∼ 80% of the total number of neurons in the brain [106].

At a coarse level, cerebellar processing can be described as follows. The cerebellar granular

layer receives information via divergent mossy fibres, which in the mammal mainly stem from

the pontine nuclei, which themselves contain compressed representations of direct sensory and

cortical activity. The cerebellar granule cells (GCs) then project to Purkinje cells (PCs) via the

parallel fibres. The PCs are the output of the cerebellar cortex which project to the cerebellar

nuclei, which themselves project directly the spinal cord, thalamus, and other subcortical struc-
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Figure 2.2: The cerebellum. a, Illustration of the cerebellar circuit; extracted from [119]. b,
Approximation of the cerebellar circuit as a two-layer feedforward network C . Mossy Fibres
(MFs) project onto a hidden layer of granule cells (GCs), which in turn project via parallel fibres
(PFs) onto the Purkinje cells (PCs). The cerebellar circuit can learn via error signals from the
inferior olive (IO; red line). c, The cortico-cerebellar loop. Cortical areas (e.g. motor cortex in
blue, prefrontal cortex in green) project onto the cerebellum via the pontine nuclei, which then
projects back onto the same cortical areas via the thalamus. Extracted from [220]. d, Functional
parcellation of the cerebellum; extracted from [141].

tures. This trio of cerebellar input, granule cells and Purkinje cells, connected by mossy fibres

and parallel fibres, thus form a feedforward network of one hidden layer (Figure 2.2a,b).
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2.2.2 Cerebellar plasticity and intrinsic cerebellar modules

The output PCs of the cerebellar network also receive a secondary major input via the climbing

fibres. Climbing fibres originate from the inferior olive, a structure which sits underneath the

cerebellar cortex. The inferior olive receives excitatory input from other brain areas as well

as inhibitory input from the cerebellar output nuclei, lending itself as a possible site at which

the prediction error for the cerebellum is encoded. Following this, during the second half of the

20th century a significant amount of research analysed the interaction between climbing fibres,

Purkinje cells, and parallel fibres as a means for cerebellar learning (red arrow in Figure 2.2b).

In particular, the first computational models of the cerebellum as proposed by Marr and Albus

proposed that error-encoding climbing fibres modified the parallel fibre Purkinje cell connection

to enable pattern separation [1, 179]. That this climbing fibre induced plasticity takes place in

vivo has since been validated across a range of studies. Specifically, it has been identified that

Purkinje cell spiking can be categorised into one of two forms based on their waveform: simple

spikes and complex spikes. Whilst simple spikes are unitary evens and are primarily driven

by parallel fibre activity, complex spikes evoke burst responses and are primarily driven by

climbing fibre activity. Interestingly, if parallel fibre activity is paired with subsequent complex

spiking in the post-synaptic cell, plasticity is evoked in the parallel fibre via long-term depression

(LTD) [99, 125, 227, 242, 260, 275]. The timescale at which these synaptic changes take place are

notably fast, with parallel fibre LTD observed in the order of seconds and after a single error-

based trial [108, 167, 183, 292, 293]. For this reason the inferior olive is generally considered as

a crucial component to learning in the cerebellar network, and a key assumption throughout this

Thesis is that the cerebellum is a fast, powerful error-based learner.

Interestingly, climbing fibres which originate from the same area of the inferior olive tend

to project to Purkinje cells in the zones of the cerebellar cortex. Similarly, nearby Purkinje cells

tend to project to the same regions of the cerebellar nuclei. The cerebellum can thus be divided

into microzones, or cerebellar modules, in a similar manner to the discrete cell columns in the

cortex [206, 272]. The significance of these different modules remains unclear, but it has been

shown that each may engage in a particular function (e.g. one module may be associated with

balance, another module may be associated with limb control) [44]. From a computational point

of view, a natural question is to ask is whether functional specialisation can be acquired by

self-contained loops which are optimised for particular error signals. Specifically, it would be

computationally desirable if the same Purkinje-cell driven predictions conveyed by regions of

the cerebellar nuclei to the inferior olive were then used to generate associated error signals

to the same original Purkinje cells. Unfortunately, due to inherent difficulties in examining

microcircuitry at this level of detail, whether cerebellum-inferior olive interaction does indeed

display this fine topographical organisation is unclear [268]. In this Thesis, however, it is assumed

that the error signals produced by a given region of the cerebellum also drive learning for those

same regions (see Section 2.2.5).
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2.2.3 Cortico-cerebellar loops and cerebellum beyond motor control

Traditionally, the cerebellum has been associated exclusively to the motor domain. This is natu-

rally suggested by its close proximity and projections to the spinal cord, as well the most prevalent

symptoms of cerebellar damage. In particular, a notable deficit associated with cerebellar dysfunc-

tion in early studies is cerebellar ataxia, which induces poorly controlled, “overshot” involuntary

movements and difficulties in gait and balance [114, 115, 232, 234, 241]. However, a striking

property of the cerebellum during evolution in the mammal, and primate in particular, is its

similar growth rate to the neocortex [19, 107, 157, 281]. This suggests some coordinated func-

tional role in cortical and cerebellar processing which applies to the higher cognitive processes

associated to evolved mammals.

Anatomically, the cortex and cerebellum communicate with each other via indirect pathways.

The cerebellum receives cortical representations via the pontine nucleus, whilst the cortex

receives cerebellar representations via the thalamus and other subcortical structures. Crucially,

in a similar manner to the intrinsic modularity within the cerebellum itself as described above,

the same regions of the cerebellar cortex which receive cortical input tend to project back to

the original cortical areas from which that input arose [140, 190, 191, 220]. Cortico-cerebellar

circuitry is not a diffuse “all-to-all” interaction, therefore, but can be considered as the collection

of closed, anatomically distinct cortico-cerebellar loops (Figure 2.2c). In principle, each of these

loops may have a designated function or corresponding behaviour.

Beyond these anatomical projections, the role of the cerebellum in higher order processes has

been supported by a range of behavioural and neural data [34]. Clinically, cerebellar patients

can exhibit difficulties in tasks requiring planning, working memory, and language [2, 14, 75,

85, 90, 93, 134]; it has been argued that these deficits fall under “dysmetria of thought”, a

generalisation of cerebellar dysmetria (ataxia) in the cognitive domain [234]. Functional imaging

studies exhibit a correlation between cerebellar activity and the execution of cognitive tasks, and

diverse functional compartmentalisations of the primate [155] and more recently human [141]

cerebellar cortex have been revealed (Figure 2.2d). Finally, recent impressive experiments directly

reveal the importance of the cortico-cerebellar loop during cognitive processes via optogenetic

manipulation [46, 59, 65, 84]. Two of these studies serve as inspiration for the computational

model presented in Chapter 5.

2.2.4 Conceptual theories of the cortico-cerebellar loop and context of this
Thesis

What are the principles of cortico-cerebellar interaction which give rise to these various functions?

Using Marr’s 3 levels of analysis, the uniform circuitry implemented by the cerebellum has led

some to speculate that the cerebellum equally applies a common, “universal” transform at an

algorithmic level [66, 94, 233].
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Does such a universal transform exist, and what could it be? I emphasise that up until now,

to the best of my knowledge, proposed theories have only been conceptual. That is, they provide

broad ideas about the role of the cerebellum across tasks without necessarily implying a concrete,

normative and most importantly, testable model. These conceptual theories implicate a role of

the cerebellum in timing [126, 127] and automisation [18, 221] of responses. The arguably most

notorious hypothesis, which is perhaps the most relevant to the models presented in this Thesis, is

that the cerebellum serves as an internal model for the nervous system [285]. The internal model

hypothesis assumes two possibly coexisting theories: that the cerebellum is an inverse model,

and/or forward model, for the nervous system. Under the traditional paradigm of motor control,

the inverse model proposes that the cerebellum directly produces motor commands (for example

via its projections to the spinal cord), whilst the forward model suggests that the cerebellum

aids a distinct “controller” network by making predictions of future states (for example via its

projections to the motor cortex). The internal model hypothesis has been generalised to cognition,

whereby the cerebellum is proposed to be part of intuitive (forward model) or entirely implicit

(inverse model) thought processes [124].

In Chapters 3 and 5 I introduce computational models in which the cerebellum provides

estimations to the neocortex of future events with respect to the task, and in this sense the

models appeal to the forward model hypothesis [263]. In particular, these models conform to the

specific conceptual hypothesis that the cerebellum facilitate transitions in cortical states during

error (or “goal”) directed behaviour [163]. Importantly, these models are motivated by a cerebellar

role in motor and non-motor tasks, and assume a universal transform of the cerebellum during

cortico-cerebellar interaction (see next Section).

2.2.5 Limitations and assumptions of modeling in this Thesis

The computational models introduced in this Thesis aim to provide a general, systems level

framework of cortico-cerebellar interaction, and for practical reasons makes a number of modeling

assumptions which I will now outline. Note that these are on top of the more general limitations

and assumptions entailed by using a deep learning framework for neuroscience (cf. Section 2.1.7).

1. Simplification of cerebellar computation and learning: Regarding cerebellar circuitry,

each model approximates the cerebellum as a feedforward network of one hidden layer

(Figure 2.2b). I take this as a reasonable approximation given that the granule cell-Purkinje

cell connection is considered the principal component of cerebellar processing and learning,

though this ignores the possible role of, for example, the role of cerebellar interneurons (e.g.

Golgi cells in regulating cerebellar input [69]) or effective “skip” connections which directs

mossy fibres immediately to the cerebellar output nuclei without any hidden processing

[268]. Moreover, though cerebellar plasticity and learning is a crucial element of my models,

and this is implicitly assumed to be enabled by the inferior olive, I do not model the

structure itself nor precise, biophysically detailed plasticity rules (e.g. complex spiking
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at the parallel fibres). Instead, I simply assume that the cerebellum receives some error

signal, and this engages cerebellar plasticity rules to minimise the error.

2. Modularity: The computational models also assume functional modularity within the

cortico-cerebellar loop. This includes the requirement that specific cortical regions asso-

ciated with the task only communicate with associated task regions in the cerebellum,

and also that the cerebellar circuit itself can be locally optimised according to that task.

Therefore, in each experiment cortico-cerebellar interaction is modeled by a particular

(closed) cortico-cerebellar loop which is purposed for that task or task domain. However, I

highlight that though the functions may vary across experiments, the underlying algorithm

remains the same, and therefore the models conform to the universal transform hypothesis.

3. Inconsideration of intermediate pathways: The proposed computational models do

not consider the role of intermediate structures within the cortico-cerebellar loop, but

instead apply a direct connection from the cortical region and cerebellum, and vice versa.

Specifically, this study therefore does not take into account the role of the pontine nuclei

within cortico-cerebellar communication, nor the roles of the cerebellar nuclei and thalamus

within cerebellar-cortico communication. Each of these structures may provide important

bottlenecks to gate or condense incoming representations (as proposed in e.g. [198]), but

are left for future work.

4. Sparsity in the cerebellum: A prevalent feature often associated to the cerebellum is

sparsity at the granule cell layer. It is important to distinguish the two types of sparsity

involved, though they may be related.

The first is the sparsity in connectivity. Each granule cell receives only 2-7 synaptic inputs

from the mossy fibres [71]. This sparsity in connectivity is notably also present in other

feedforward networks in the brain5 and theoretical work has demonstrated its potential

benefit for pattern separation [43, 168]. Though I have explored sparse connectivity in

my work (namely in the model presented in Chapter 3) and some promising results were

obtained, the effect was overall inconsistent. Moreover, I found that this cerebellar feature

was not necessary for the main results presented in this Thesis. Incorporation of sparse

connectivity is therefore left for future work; in particular, I speculate that faithfully

modeling mossy fibre activity in a topological manner (whereby nearby mossy fibres have

similar activations) may more clearly demonstrate its benefit as in [43].

The second is sparsity in activity (i.e. sparse coding). In the classical literature Marr and

others posited that the cerebellar granular layer forms highly sparse representations to

facilitate pattern separation, with only 5% of granule cells active at any one time [179].

5There is, for example, notable sparse connectivity in the dorsal cochlear nucleus [195] and the fly olfactory system
[39].
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2.3. SUMMARY OF KEY TERMS AND NOTATION

Term/acronym Description

cortex cerebral cortex; neocortex
RNN recurrent neural network
TCA temporal credit assignment

a,b, . . . (arbitrary) scalars
a,b, . . . (arbitrary) vectors
A,B, . . . (arbitrary) matrices

h hidden state (typically of RNN)
z model readout

W ,θ model weights/parameters (e.g. of cortical, cerebellar network)
y task target/desired outcome
C cerebellar computation/network
||.||2 Euclidean norm
MSE mean-squared error; MSE between a, b is ||a−b||2

E task error; e.g. E =MSE(z,y)
η learning rate

gradient descent updating along the error gradient, e.g. W ← η ∂E
∂W

Table 2.1: Notation, keywords and acronyms used in Thesis.

Today, however, the question of whether the cerebellum employs sparse coding is contentious.

In particular, recent experimental evidence points towards much denser representations

in the granular layer, with reports of up to 70% of granule cells active at once [88]. There

have been suggestions that the benefit of sparse coding may depend on the type of task at

hand; for example, representations in a motor task should be relatively dense compared

to a discrimination task [42, 286]. Though it may be a fruitful avenue for the future, the

question and possible role of sparse/dense granule cell representations is outside the scope

of this Thesis.

2.3 Summary of key terms and notation

Throughout the Thesis I will use the same keywords and acronyms. I also try to use the same

notation – any inconsistencies should be obvious and relatively minor.

Table 2.1 provides a summary.
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CORTICO-CEREBELLAR NETWORKS FACILITATE LEARNING

THROUGH FEEDBACK DECOUPLING

In this Chapter I present a computational model of the cortico-cerebellar loop in which the

cerebellum enables better cortical learning by predicting future error gradients (feedback). The

cerebellar predictions alleviate the need for waiting explicitly for future errors to become available

and be backpropagated, enabling the forward pass of cortical processing to be effectively decoupled

from the backward (feedback) pass. The model thereby proposes cortico-cerebellar loops as a

solution to the credit assignment problem, and in particular temporal credit assignment, in the

brain.

This Chapter is organised as follows. First, in Section 3.1, I will provide motivation, and place

context for, the model with respect to solving the credit assignment problem in the brain and

the role of cortico-cerebellar loops. Next, in Section 3.2, I will provide a technical description of

the model, which builds upon a pre-existing framework introduced in deep learning [129], with

implementation details provided in Section 3.3. In Section 3.4, I will then demonstrate that the

cerebellar-enabled model shows faster learning and reduced dysmetria-like behaviours across a

range of motor and non-motor tasks, in line with the widely observed functional impact of the

cerebellum. I present a discussion of the results in Section 3.5, in which I highlight the several

experimentally testable predictions regarding cortico-cerebellar task-specific representations

over learning. Finally I address the limitations of the model, and point towards possible future

directions, in Section 3.6.

Related papers

The content and text of this Chapter is strongly centred upon my own publications Cortico-

cerebellar networks as decoupling neural interfaces [210] and Cerebro-cerebellar networks facilitate

21



CHAPTER 3. CORTICO-CEREBELLAR NETWORKS FACILITATE LEARNING THROUGH
FEEDBACK DECOUPLING

learning through feedback decoupling [31]. Each of these works were performed with my colleague

and joint first-author Ellen Boven under the supervision of Rui Ponte Costa, with additional

insight provided by Paul Chadderton and Richard Apps.

In these papers, we both were involved in background research, conceptual progress and the

writing of the text. I was principally responsible for the codebase. For the simulations, Boven

conducted analyses on the simple line drawing visuomotor task (see Chapter 3.4.2), whilst I

conducted analyses on all other tasks.

To make clear to the reader which parts of this study I performed myself, and which parts I

performed with (or supported by) Boven, I will use the first person singular (I) for the former

whilst using the first person plural (we) for the latter.

3.1 Motivation and introduction

During learning, animals ultimately rely on feedback provided by their environment. This

feedback can be used to update the brain’s representations of the world and ultimately enable

behavioural changes. However, absolute dependence on an “environmental teacher” may be

undesirable. Feedback may be spare, only available at irregular intervals or at the very end of

some task. This can enforce an undesirable waiting time between action and feedback which may

present difficulties for capturing their relationship. More fundamentally, any updates to decision

making processes depend upon, or are locked, to environmental feedback which may not yet be

available.

One strong candidate for the disentanglement of action and feedback in the brain is the

cerebellum. In particular, due to its powerful predictive abilities, the cerebellum has been

proposed as an internal model of the nervous system (see Section 2.2.4). Under the forward

model hypothesis, the cerebellum is used to predict the consequences given the current action,

breaking the environmental “lock” and enabling pre-emptive updates for the controller network,

which itself is generally considered to be located in the neocortex. Significantly, though the

classical forward model hypothesis is restricted to the motor domain (e.g. sensory consequences of

movement), it has been proposed that the cerebellum performs an analogous role in the cognitive

domain (e.g. predicting consequences to thought processes to the brain’s “mental model”) [124].

This conforms to the idea that the cerebellum performs a universal transform across domains,

and provides a conceptual theory which supports the cerebellum’s observed role during both

motor and cognitive behaviours [66, 94, 233]..

However, whilst experimental and conceptual advances have been made, there remains an

absence of explicit, implementable computational frameworks of a universal cerebellar transform,

and in particular of cortico-cerebellar interaction. Such a framework is critical for uniting our

conceptual and experimental understanding, since computational models, by their nature, reveal

an actualisation of conceptual function. In particular, unlike purely conceptual theories, explicit
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computational models can be used to directly test experimental findings and predictions.

In this Chapter I employ a recently proposed deep learning framework to elucidate the

computational principles of cortico-cerebellar interaction. In particular, I apply artificial neural

networks (ANNs) with a brain-inspired architecture which resembles the cortico-cerebellar loop.

The model incorporates two distinct networks: a cortical network which is used to perform a

task, and a cerebellar network which is used to predict future cortical feedback signals – which

are modeled as error gradients – given the current cortical activity. This can be considered as

an implementation of the forward model hypothesis, in which cerebellar predictions are used

to break the lock between the forward and backward pass in (cortical) ANN computation. In

practice I consider temporal tasks in which the cortical model is modeled as an RNN, but I

also outline how the framework can be applied to static (non-temporal) tasks with feedforward

cortical networks in which several cortical regions/layers are involved. In each case the cerebellar

network is modeled as a feedforward network.

Overall, this work offers a theoretical framework of cortico-cerebellar networks as feed-

back decoupling machines. To the best of my knowledge, this provides the first computational,

generalisable model of cortico-cerebellar interaction.

3.2 Model description

The cortico-cerebellar model is inspired by a recently introduced deep learning framework

based on predicted error gradients [129]. Here I describe this framework in detail. The specific

implementation used in my experiments is then described in Section 3.3.

3.2.1 RNN architecture and task setup

The model architecture is built upon decoupled neural interfaces [129], in which a distinct

neural network – which I analogise to the cerebellum – is responsible for estimating upcoming

error gradients for the “main” network which performs the task – the neocortex. This Thesis is

primarily concerned with temporal credit assignment, and to that end I model the main cortical

network as a recurrent neural network (RNN) which can process time-dependent information.

Alternate mappings are however possible, for example cerebellar feedback onto feedforward

cortical pathways; this is briefly reflected upon as a possible direction for future work in Section

3.6.

Recall from Section 2.1 that RNNs have an evolving state ht which depends on the RNN

forward pass with parameters W (Equation 2.1). Recall also that W is updated, or learnt, in order

to minimise the task loss E using gradient descent:

∆W =−η ∂E
∂W

, (3.1)

Where E =∑
t E t is the sum of losses over the duration of the task and η is the learning rate.
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Now, as described in Section 2.1, ∂E
∂W can be acquired with a backward, or feedback phase, with

backpropagation through time (BPTT; Equations 2.14 and 2.15). However, as described in Section

2.1.5, BPTT, particularly in the context of biological circuits, bears undesirable qualities. In par-

ticular, BPTT imposes costly (biologically implausible) computational and memory requirements,

with the complexity of each scaling intractably with the task sequence T. More fundamentally,

these error gradients are only available once the entire forward pass and its associated feedback

pass is complete, making network parameters backward locked [129].

To ease the computational requirements and overcome the locking problem the most typical

approach in machine learning is to apply truncated BPTT. In truncated BPTT the task sequence

is uniformly divided into truncations of some fixed length. During the feedback phase only errors

within the current truncation window are considered. For example, if t is the timestep at the

start of the truncation, k the timestep at the end of the truncation with k > t, and T is the total

length of the task, then the error gradient is approximated as

∂E
∂W

=
T∑

t′=t

(
k∑

t′=t

∂E t′

∂ht

)
∂ht

∂W
(3.2)

≈
(

k∑
t′=t

∂E t′

∂ht

)
∂ht

∂W
(3.3)

= fbt
∂ht

∂W
,

Where the helper variable fbt :=∑k
t′=t

∂E t′
∂ht

denotes the backpropagated error gradient (i.e. feed-

back) at time t within the truncation (that is, only errors within the truncation window are taken

into account). Note that fbt is available once the feedback pass is complete at time k. Therefore,

in contrast to full BPTT (Equation 2.15), the feedback pass is not locked to the (entire) completion

of the forward pass. Truncated BPTT is also cheaper to run: the computational and memory

complexity of the feedback pass is now of order O (n2k) and O (nk) respectively, where n is the

number of units in the cortical RNN, as opposed to O (n2T) and O (nT) for the feedback pass in

full BPTT.

Truncated BPTT therefore alleviates the first two problems of BPTT in the nervous system –

two-phase processing and complexity – outlined in Section 2.1.5. Indeed, a core assumption in

this Chapter is that while full BPTT is not realistically achieved in the brain, the neocortex is

able to internally process feedback to some extent, if only at short timescales (i.e. small truncation

sizes k), and update itself accordingly.

3.2.2 Cerebellar predicted gradients

The approximate error gradient in truncated BPTT (Equation 3.3) poses the obvious question:

what if future errors beyond the truncation horizon are important? That is, what if longer

temporal dependencies must be captured to successfully learn the task? Truncated BPTT makes
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the rather crude assumption that only nearby errors need to be taken into account; or from a

biological perspective, the assumption that the cortical RNN is only able to process feedback

signals within a locally temporal window.

To mitigate this issue, Jaderberg et al. propose that the approximation in Equation 3.3 can

be improved by incorporating predicted gradients beyond the truncation. Specifically, the error

gradient at time t with respect to RNN weights is now modeled as

T∑
t′=t

∂E t′

∂W
=

(
k∑

t′=t

∂E t′

∂ht

)
∂ht

∂W
+

(
T∑

t′=k+1

∂E t′

∂hk

)
∂hk

∂W
, (3.4)

T∑
t′=t

∂E t′

∂W
≈

(
fbt′ + ˆfbt′>k

∂hk

∂ht

)
∂ht

∂W
, (3.5)

Where ˆfbt>k is the predicted error gradient beyond the current truncation, which for brevity I will

use the abuse of notation ˆfbk = ˆfbt>k (that is, the hat symbol implies that it is an approximation of

the error gradient, and only strictly future errors are considered). Note that in standard truncated

BPTT, this predicted gradient is simply zero, ˆfbk = 0. However, if the predicted gradient is a

reasonable approximation of the true future error gradient, ˆfbk ≈
∑T

t′=k+1
∂E t′
∂hk

, then Equation 3.5

provides, in principle, a reasonable estimate of the gradient which considers all errors during the

task.

How is the predicted feedback computed? Crucially, ˆfbk is generated according to a function

of the RNN activity, ˆfbk = g(hk for a “synthesiser” function g. In the original deep learning

framework, Jaderberg et al. define g as the computation performed by a feedforward network

with free parameters θ. In this Chapter we also consider g as the computation of a parameter-

isable feedforward network, and specifically postulate that this computation takes place in the

cerebellum; that is, we take g = C , where C denotes cerebellar computation. In this way the

cerebellum acts upon a copy of the current cortical RNN state to produce predicted feedback

according to

ˆfbk =C (hk;θ). (3.6)

Incorporating Equation 3.6 into Equation 3.5, the error gradient can then be interpreted as

the accumulation of locally derived cortical feedback and cerebellar predicted feedback.

∂E
∂W

≈
 fbt︸︷︷︸

cortical feedback

+ C (hk)︸ ︷︷ ︸
cerebellar feedback

∂hk

∂ht

 ∂ht

∂W
. (3.7)

By using Equation 3.7 for gradient descent on the cortical parameters W (Equation 3.1), we

arrive at learning rule for cortico-cerebellar RNNs – ccRNN. This cerebellar-dependent learning

rule encompasses two principle benefits. The first is that future errors can be captured at long

timescales (i.e. task lengths T >> 0), for which cortical RNNs may not be able to capture by
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themselves. The second is that, significantly, this learning rule does not impose locking constraints

between forward and feedback processing. In particular, since the predicted feedback is a function

of the current RNN activity, forward and feedback processing are decoupled. An illustration of

ccRNN is shown in Figure 3.1.

Later we will contrast learning in these networks to “cortical only” RNNs – cRNN – which do

not employ cerebellar feedback and instead apply standard truncated BPTT.

Figure 3.1: Cortico-cerebellar networks as feedback prediction machines. a, A recurrent
cortical network H learns through external sensory feedback given by a task-specific prediction
error module ETask computed at the end of a task fbT (top red arrow). The cerebellum aims
to continuously predict the feedback expected by the cortical network f̂bt (blue) given current
cortical activity ht (black). The cerebellar network (i.e. granule cells; GC and Purkinje cells; PC)
learns through prediction errors (bottom red arrow) computed at the inferior olive (diamond) by
comparing predicted cortical feedback f̂bt with actual cortical feedback fbt (light blue). Shaded
boxes represent multiple cortical areas and cerebellar modules that may be interacting in parallel
(see Figure 3.10 for the same framework applied to decoupling across multiple brain areas).
b, Example of cortico-cerebellar model unfolded in time in which the cortical network learns
to associate a cue given at t1 (x1, green) with feedback received at the end of the task, tT (cf.
Figure 3.2). At the end of the task the cortical network A receives external sensory feedback fbT
(red), which is transmitted to the cerebellar network as cortical feedback fbT (light blue). Here a
case of the BPTT truncation size (cortical feedback horizon) stopping at the end of the task T
is illustrated, but feedback may also be available earlier in the task (dashed red arrows). The
cerebellum generates cortical feedback predictions f̂bT (blue) given cortical activity hT (black),
and learns using inferior olive (diamond) error signals (red arrow). Before tT cortical feedback
may not be readily available, thus the cerebellum learns through self-predictions. In this case the
inferior olive (diamond) compares old cerebellar predictions (e.g. f̂bi) with the new one (e.g. f̂bT )
to generate cerebellar learning signals (red arrow; see text for details).
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3.2.3 Cerebellar learning

Naturally, the quality of the ccRNN learning rule in Equation 3.7 depends on the quality of

the predicted feedback signals. In particular, as we will see later on (Figure 3.7), poor feedback

estimates can not only be unhelpful but actively harmful for learning. For this reason it is

necessary to optimise the free parameters θ of the cerebellar computation C . Specifically, at a

given timepoint k the cerebellar network is trained to predict a target feedback signal ¯fbk. In line

with the hypothesis that inferior olive (IO) encodes cerebellar-related errors (see Background),

we denote the difference between the cerebellar prediction and this target signal as the cerebellar

error EIO
k

EIO
k = || ˆfbk − ¯fbk||2 = ||C (hk;θ)− ¯fbk||2, (3.8)

Where ||.||2 denotes the Euclidean norm. Cerebellar learning can then take place by updating θ

using gradient descent1 on the cerebellar error, i.e. ∆θ = ∂EIO

∂θ
. In principle cerebellar learning

could take place at a distinct time to cortical learning (Equation 3.7); for example, task learning

could be divided into alternating windows2 of cortical and cerebellar updates, respectively. This

could be beneficial for cerebellar learning in particular, since the RNN parameters, and therefore

the cortical error gradients that the cerebellar network aims to capture, should remain relatively

stable. I leave this, however, as a possible direction for future work. In this study I instead follow

the same strategy as Jaderberg et al. and assume cortico-cerebellar updates occur simultaneously;

that is, W and θ are both updated with each task example. Note that this enforces a highly

dynamic learning regime for the cerebellar network, since it must learn to mimic feedback signals

which themselves change with cortical updates.

What is the cerebellar target ¯fbk? Ideally, ¯fbk is the true future error gradient derived by

BPTT, ¯fbk =
∑T

t′=k+1
∂E t′
∂hk

. However, this would require applying BPTT to the full task sequence

(up to time T) and learning could not take place until the entire feedback phase is complete. This

violates exactly what the model aims to avoid: arbitrarily long waiting times before learning and

BPTT over (biologically implausible) long timescales in the cortex.

To circumvent this, Jaderberg et al. proposed a cerebellar learning rule which ensures that

BPTT remains within the enforced truncation windows. The key idea to this rule is that the target

gradient ¯fbk is itself a mixture of temporally nearby BPTT-derived error gradients in the (cortical)

RNN and a bootstrapped cerebellar prediction for errors beyond. Specifically, suppose that 2k is

the end of the truncation window which starts at time k, then the target ¯fbk is formulated as

¯fbk =
2k∑

t′=k+1

∂E t′

∂hk
+C (h2k)

∂h2k

∂hk
, (3.9)

1Note that since the cerebellar network is a feedforward network, backpropagation through space is used to
acquire this gradient (cf. Section 2.1.4.1.

2For instance, I speculate that cerebellar and cortical learning could take place in awake and sleep states,
respectively. This is briefly discussed later on in Chapter 5.
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Where the first and second terms in Equation 3.9 are the nearby BPTT-derived and bootstrapped

error gradients, respectively. The bootstrapped term incorporates, in principle, errors at arbitrar-

ily long timescales in the target gradient, whilst ensuring that the application of BPTT does not

extend past the current truncation window.

It is useful to note the resemblance learning future error gradients in this manner and

algorithms for learning the value function in Reinforcement Learning (RL). In particular, by

substituting future error gradients for future RL rewards, the bootstrapped target gradient in

Equation 3.9 is analogous to the target value function in temporal-difference learning [258]. In

Chapter 4 we will see how RL theory can be exploited to produce other learning algorithms for

predicting future gradients.

3.2.4 Biological interpretation

3.2.4.1 Functionally and anatomically distinct cortico-cerebellar loops

This framework of cortico-cerebellar learning can apply to any scenario in which supervised

error signals are provided, and therefore generalises to many different types of tasks and

domains. Consistent with the discrete, functional organisation of cortico-cerebellar loops (see

Section 2.2.3) [220], for a given task the cortico-cerebellar network (Equation 3.7) is considered

as one instantiation of these loops. For example, for visuomotor tasks which we will consider

the cortical network might resemble a cortical circuit in the motor cortex; for more cognitive

functions, such as the discrimination task and language tasks which we will consider, the cortical

network might resemble a working memory region such as the prefrontal cortex (cf. Figure 2.2b).

At the same time, the cerebellar network is considered as a specific sub-region, or module,

of the cerebellum (see Section 2.2.1). As with the neocortex, the type of cerebellar module

employed depends on the type of task; i.e. the visuomotor tasks will incorporate a motor-encoding

module, whilst the language-based tasks will incorporate a language-encoding module. It is also

assumed that that these cortical and cerebellar networks communicate via a closed, functionally

specific cortico-cerebellar loop [220]. However, it is important to note that this model does not

incorporate intermediaries in cortico-cerebellar interaction; namely the pontine nuclei, thalamus

and cerebellar nuclei are not explicitly modeled (cf. Section 2.2.5).

3.2.4.2 Cerebellar computation and learning

Processing in the cerebellar network approximates the principal feedforward computations

observed in the cerebellum (see Section 2.2.1). In particular, as described in the next Section, for

each considered task there is at least one large hidden layer which constitutes the granular layer,

whilst the cerebellar output is interpreted as the Purkinje cell activity.

The ccRNN dynamics above assume two distinct pathways between the cortical and cerebellar

network. The first pathway enables the cerebellar network to receive a copy of the cortical activity
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which is used for the cerebellar prediction (hk in Equation 3.6); this pathway is interpreted

as being “primary” cortico-cerebellar pathway, i.e. via the pontine nuclei (cf. Figure 2.2c). The

second pathway enables the cerebellar network to receive information about cortical feedback

which is used as a target for cerebellar learning (
∑2k

t′=k+1
∂E t′
∂hk

in Equation 3.9); this pathway is

interpreted as the “secondary” cortico-cerebellar pathway which proceeds via the inferior olive

(IO). Pathways between the neocortex and inferior olive are known to exist in the brain, example

via the mesodiencephalic junction [61, 276].

In addition to this, the cerebellar learning rule in Equation 3.8 requires projections from the

cerebellar network onto the IO. Firstly, excitatory projections are required to incorporate the

cerebellar bootstrap term (C (h2k) in Equation 3.9. Interestingly, direct excitatory projections

from the cerebellar output nuclei onto the IO have for the first time recently been shown to exist

[277], and it is also possible that other excitatory pathways exist which are mediated by the

mesodiencephalic junction [61, 276]. Moreover, there is also evidence of cerebellar bootstrapping

in recent experimental work in which the cerebellum was shown to provide its own prospective

teaching signals [138, 203].

Finally, to compute the cerebellar error, it is necessary to subtract the original cerebellar

prediction (− ˆfbk in Equation 3.8). This can be accomplished via the well-established direct

inhibitory pathway between the cerebellar nuclei and inferior olive [268].

3.2.4.3 Relationship between ccRNN and forward model hypothesis

There is notable resemblance between the explicit computations assumed in ccRNN and the

conceptual hypothesis that the cerebellum serves as forward internal model to the neocortex (see

Section 2.2.4. In particular, it can be considered that the cortical hidden activity h conveys some

information about the model response or command (these could be motor-related commands, or

commands related to more abstract controlled mental objects [124]). As per the forward model

hypothesis, an efferent copy of this activity is provided to the cerebellar network as input and the

cerebellum must return some respective feedback prediction ˆfb (Equation 3.6).

Whilst this feedback prediction is inherently abstract in the forward model hypothesis –

it is conceptually assumed to simply reflect the “future state” [285] – ccRNN imposes explicit

predictions as to its representation and function. In particular, ccRNN makes the assumption that

feedback in the brain – what the cerebellum is tasked to predict – is encoded via error gradients.

It is worth noting that this choice of modeling is not uncontroversial: it is certainly an actively

open question whether and how biological circuits encode error gradients [218]. As discussed

in Chapter 2, however, this Thesis makes the assumption that error and their gradients are, in

some form, encoded in the brain; the reader is referred to Section 2.1.7 for possible biological

implementations.
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3.3 Implementation details

The cortico-cerebellar model – ccRNN – described in the previous Section is trained and tested on

a variety of tasks. As we will see, this will demonstrate a functional benefit of ccRNNs whilst also

providing a computational framework to support and make predictions to experimental data.

During these experiments we implement hyperparameter choices for the models, training

regime and task dataset. In general, these hyperparameters were selected based on observed

performance based on multiple trial runs and biological feasibility (e.g. short truncation windows

during BPTT).

This Section describes implementation details for the results presented in the rest of this

Chapter.

3.3.1 Model details

The framework described in the previous Chapter can apply to any RNN architecture. This

includes RNNs with powerful gating mechanisms.

In all of the experiments presented in this Chapter the cortical RNN is modeled as a long short-

term memory recurrent neural network (LSTM) [111] with parameters W . LSTMs employ several

gating mechanisms which enhance the ability of the network to selectively store information

over (see equations below), and for this reason possess a strong ability to perform temporally

challenging tasks. Relevant to this work, LSTMs have recently been mapped onto cortical

microcircuits [53]. A (trained) linear readout is then attached to the LSTM output states which

provides the final model prediction for the task.

zt =Wrdt f (ht). (3.10)

The model prediction zt is optimised to minimise the supervised error module for a given task

Etask, which for brevity I often simply refer to as E.

In ccRNN we attach a feedforward cerebellar module C with independent parameters θ to

the RNN with reciprocal connections (Figure 3.1). The cerebellar module is equivalent to the

“synthesiser” as used by Jaderberg et al. [129] in the backward case. That is, the cerebellar

module receives a copy of the RNN activity ht (both cell and output LSTM states) and sends back

a prediction of the future feedback (or error gradients) with respect to that activity, ˆfbt =C (ht)

(see Section 3.2).

3.3.1.1 Model initialisation

In each experiment all initial RNN parameters are drawn from a uniform distribution

U(− 1p
nRNN

, 1p
nRNN

), where nRNN is the number of RNN units. The weights of the readout network

and the feedforward weights of the cerebellar network (other than the final layer) are initialised

according to U (−bk,bk) where bk denotes the “Kaiming bound” [101] (slope s =p
5 ), and the
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biases are drawn from U(− 1p
nin

, 1p
nin

), where nin denotes the input size of the layer. The last

layer (both weights and bias) of the cerebellar network is zero-initialised in most tasks, so that

the estimated feedback at the start are zero [129]. We found that this initialisation often makes

learning overall more stable, but typically does not change the results qualitatively. For example,

it was not necessary to zero-initialise the cerebellar output in the most simple task considered

(simple visuomotor task).

3.3.1.2 Cerebellar computation

The cerebellar computation C (Equation 3.6) is a feedforward computation on the current

population vector ht. Mapping onto the cerebellar architecture as described in Section 2.2.1, in

particular the mossy fibres (MF) and parallel fibres (PF) in the cerebellar cortex, the cerebellar

computation that is implemented as

C ( f (ht))=WPF f C (WMF f (ht)) , (3.11)

Where WMF and WPF denote the mossy fibre and parallel fibre weights, respectively. Together,

these constitute the cerebellar parameters to be learned, θ = {WMF,WPF}. The f C is the cerebellar

non-linearity and is set as the ReLU function, f C (x) = ReLU(x)(x). This is selected to improve

the expressivity of cerebellar learning and is in line with the threshold-restricted, but relatively

linear above threshold, granule cell responses observed experimentally [47, 225]. Equation 3.11

defines the cerebellar computation for each task except the language-based task for which I find

two hidden layers beneficial3. To capture the dimensionality expansion observed between cortical

and cerebellar networks I constrain the model with M ≫ N, where M corresponds to the number

of GCs, N the number of cortical neurons and use the same ratio found experimentally M
N ∼ 4

[66, 106].

3.3.1.3 Continuous and discrete time versions of RNN

To infer approximate timescales of the RNN I followed the approach of [249] in considering

its continuous-time dynamics. In particular, it is possible to express a general continuous time

version of LSTM dynamics as

3At a relatively superficial level, this could be interpreted biologically as modeling Purkinje cells as a cerebellar
hidden layer and modeling the cerebellar nuclei as the output layer.
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f=σ
(
W in

f x+Wrec
f a+b f

)
, (3.12)

i=σ
(
W in

i x+Wrec
i a+bi

)
, (3.13)

o=σ
(
W in

o x+Wrec
o a+bo

)
, (3.14)

c̃= tanh
(
W in

c xt +Wrec
c a+bc

)
, (3.15)

τċ=−(1− f)◦c+ i◦ c̃, (3.16)

a= o◦c, (3.17)

Where f, i, o denote the LSTM forget, input, output gates respectively, c̃, c, a denote the candidate

cell state, cell state, observable state respectively. σ denotes the logistic function σ(x)= 1
1+exp(−x) .

We use ċ= ∂c
∂t to denote the derivative of the cell state with respect to time which is scaled by the

neuronal time constant τ. We set τ= 100ms in line with previous RNN-based models [249, 291]

for all tasks except the more cognitive image captioning task for which we assume a slower time

constant τ= 200ms. The weight and bias vectors W in, Wrec, b are to be learned during training.

Applying a first order Euler approximation on the continuous dynamics above with a time-

discretisation step ∆t then yields

ft =σ
(
W in

f xt +Wrec
f ht−1 +b f

)
, (3.18)

it =σ
(
W in

i xt +Wrec
i ht−1 +bi

)
, (3.19)

ot =σ
(
W in

o xt +Wrec
o ht−1 +bo

)
, (3.20)

c̃t = tanh
(
W in

c xt +Wrec
c ht−1 +bc

)
, (3.21)

τct = (1−α)ct−1 +αf◦ct−1 +αi◦ c̃t, (3.22)

ht = ot ◦ct, (3.23)

Where α = ∆t
τ

. In our experiments we use α = 1 which recovers the standard dynamics of the

discrete LSTM [111]. In this case the length of each timestep is the same as the neuronal time

constant, i.e. ∆t = τ.

3.3.2 Training regime

To reduce learning instability the cerebellar predicted feedback (Equation 3.7) is scaled by 0.1

as in [129]. Both cortical and cerebellar parameters are optimised using the feedback described

above together with the ADAM optimiser [142]. By taking a running average of previous gradient

sizes, ADAM selectively scales learning rates for individual units and increases overall learning

efficiency.
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Training the model involves iterating over training sessions for a given dataset. A training

session is analogous to an epoch of the dataset which comprises multiple batches of training

examples.

3.3.2.1 Cortical feedback horizon

During learning, truncated BPTT is employed as follows. Given an input sequence of T timesteps

x1,x2, . . . ,xT and a fixed temporal horizon k, we divide the sequence into k sized truncations. That

is, the sequence is now made up truncations of (x1, . . . ,xk), . . . , (x(m−1)k+1, . . . ,xmk), (xT−r, . . . ,xT ),

where T = mk+ r for positive integers m, r with 0≤ r < k. Note that, along with the value k, how

well the sequence is divided into truncations (i.e. values m, r) can itself influence learning (see

e.g. Figure 3.3d). The size of the truncation is referred to as the cortical feedback horizon, i.e. the

ability of the cortical RNN to backpropagate feedback independent, which is generally reported

as a percentage of the total task length. For example, in the online visuomotor tasks the task

length is 28 timesteps and k is 3 timesteps, giving a cortical feedback horizon of 3
28 ≈ 10%.

During training, model parameter gradients are accumulated over the truncations within the

batch (as defined by the cortical feedback horizon) and the parameters are updated according to

gradient descent at the end of the batch. Note that for ccRNN these updates could in principle

take place after each individual truncation, since the error gradient will always at least contain

the cerebellar prediction. However, because the ADAM optimiser increases the learning rate in

the presence of small gradients, as is the case of the (scaled down) cerebellar-predicted gradients,

we judged that updating at every truncation would make the ccRNN-cRNN comparison unfair. We

conducted tests in which parameters are updated at every truncation and qualitatively similar

results are obtained.

3.3.2.2 External feedback interval

As we will see, the effectiveness of ccRNN depends on the availability of task feedback signals.

That is, suppose that y1,y2, . . . ,yT are the targets for a given task sequence and z1,z2, . . . ,zT the

respective model predictions. The rate at which {yt}1≤t≤T is available to the model may be an

important factor for the need and quality of predicted feedback. This can be considered analogous,

for example, to the rate at which one receives sensory information whilst performing a task (e.g.

drawing freehand).

To test the effect of predicted feedback against the availability of task feedback signals which

occur at any timestep where an external teaching signal is provided, the external feedback interval

is varied in all of the visuomotor tasks. Concretely, given feedback interval n with 1≤ n ≤ T, the

task target is only available every n timesteps.

The error with respect to these (potentially sparse) available targets is reported as the

training error, or simply error. Explicitly, let s be the division of T +1 by n (without remainder),

T = ⌊T+1
n ⌋, where ⌊.⌋ is the floor function. Then the training error is
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E =
s∑

i=1
E (yis+1,zis), (3.24)

Where E is the task error function (for example, the mean-squared error).

For the drawing tasks, We also consider the total error with targets at every timestep, whether

available during training or not. This quantifies the “smoothness’ of the model output (e.g. the

straightness of the line between two available targets). This metric, which is applied at the end

of training, is referred to as the dysmetria score.

dysmetria score=
T∑

t=1
E (yt,zt). (3.25)

For the visuomotor discrimination task the dysmetria score is defined as as 1 minus the

probability of model’s most likely choice at the end of the task.

dysmetria score= 1−P(most likely)= 1−max
j∈J

p̂ j
T , (3.26)

Where J is the set of possible choices (e.g. the digits 0-9 in the MNIST-based tasks) and p̂ j
T

denotes the model probability for choice j at the final timestep T, where p̂= z. This quantifies

the uncertainty of the model choice. For example, if the model is not sure of its choice and each

possible outcome is deemed equally likely, then the dsymetria score is high (near 1). If the model

is certain, i.e. P(mostlikely)= 1, then the dsymetria score is 0.

3.3.2.3 Delta and normalised error

To help illustrate the impact of ccRNN a delta or normalised error is often presented. To calculate

the delta and normalised error with respect to a given model the difference or ratio of total

errors during learning (all training sessions) is computed. For example, the normalised error of

ccRNN with respect to cRNN is error(ccRNN)
error(cRNN) . Note that in the ablation case we compare against a

"healthy" ccRNN and only consider the respective errors post-ablation. e.g. the normalised error

for a model with cerebellar ablation at session 50 is error(ablated)>50
error(ccRNN)>50

.

3.3.3 Task datasets

3.3.3.1 Simple line drawing visuomotor task

The first task considered is a simple line drawing visuomotor task. In this task the LSTM network

receives a discrete input cue which signals the network to either (i) stay at zero or (ii) draw a line

in 2D space over a period of 10 timesteps. Here 6 distinct non-zero input-target pairs {(xi,yi)}6i=1

are defined, where each input xi is a (one dimensional) integer ∈ {±1,±2,±3}; the respective

targets {yi}6i=1 are lines whose end points lie equidistantly on a circle centred on the origin with

radius 10. As mentioned, one possibility is that the network must stay at zero. This is represented
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by a 7th input-target pair (x7,y7) in which the network receives no stimulus must remain quiet

at the centre of the drawing screen, i.e. x7 = y7 = 0, which models periods in which the animal is

not actively performing the task.

Once an input cue is received at the first timestep, the model receives no new information

(i.e. all future input is set to zero). The model is trained to minimise the mean squared error

(MSE) between its output and the cue-based target. In this task, unless otherwise stated, the

external feedback is 2 timesteps, which is 2
10 = 20% of the task length; specifically, external

sensory feedback is presented as the target line sampled every other time step starting from the

first time step.

In this task the cortical network is modeled by one hidden layer of 50 LSTM units and

the cerebellar network by one hidden layer of 400 neurons. The learning rate is set to 0.001.

Each epoch comprises of 16 batches with 50 randomised examples. Unless explicitly stated the

truncation size is set as k = 1 timestep which covers 1
10 = 10% of the total task duration.

3.3.3.2 Online visuomotor tasks

Each online visuomotor task (Figure 3.3) uses a standard dataset of handwritten digits (MNIST

dataset). Unlike the simple line drawing task, the model now receives a temporal stream of input,

making the task “online”. In particular, given a 28×28 handwritten (MNIST) digit, the input at

timestep t is vector of pixel values at row t model of the image (cf. Figure 3.3a, right). The input

is thus of dimension 28 and is presented over a total of 28 timesteps.

In each case the cortical network is modeled by one hidden layer of 30 LSTM units and one

hidden layer of 300 hidden units in the feedforward cerebellar network. Data was presented in

batches of 50 with a learning rate of 0.0001.

As per the MNIST dataset structure, training and validation data was assigned a 4 : 1 split,

containing 48000 and 12000 distinct image/number pairs respectively. Unless explicitly stated,

the truncation value was k = 3 which is ∼ 10% of the task duration.

Online line drawing visuomotor task In this variant each number 0-9 MNIST image

is allocated an associated xy position on the edge of a circle centred at 0 with radius 10, and

during the presentation of the input must draw a line of equally spaced points towards that

position (Figure 3.3a, left). The training loss is defined at the end by the mean squared error

(MSE) between the output of the model and the points forming the target line.

Online digit drawing visuomotor task Like the online line drawing task, in this variant

the model outputs a sequence of 2D coordinates during input presentation. The target sequence

however is now of a highly non-linear form, and in this case is a template of the number

represented by the MNIST image (Figure 3.3a, middle). The model is then trained to minimise

the MSE between the model output and that target shape.

For each digit, the corresponding target drawing lies in [0,1]×[0,1], such that the gap between

each successive point is equivalent. All model drawings begin in the top left corner (except for
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digit 1 which begins below-right). MSE scores are reported as 100 times their raw values to ease

comparison with the line drawing case.

Online visual discrimination This case differs to the others as it is a classification (or

decision making) task, where at the end of the presentation of the MNIST image the model must

decide which number the digit belongs to (between 0 and 9). Since the decision is only made

at the end of the sequence and targets are unavailable at intermediate points, this is a task

with particularly hard temporal credit assignment. The output of the model is a vector with

probabilities of size 10 (one entry for each number), and the model is trained to maximise the

likelihood of the target number using the cross-entropy error function.

3.3.3.3 Visual-language task

In the visual-language task the model must be able to provide descriptions – captions – of given

images. The model architecture for this task consists of a pretrained convolutional neural network

(CNN) coupled with an RNN (LSTM). The cerebellar network only communicates with the LSTM.

The LSTM network has one layer of 256 LSTM units and the cerebellar network has two hidden

layers of 1024 neurons.

The process from image to model-generated caption follows previous work [271] and is now

described. As part of image preprocessing and data augmentation, which helps prevent model

overfitting, a given image is randomly cropped to size 224×224, flipped horizontally with even

chance, and appropriately normalised to be given to a pretrained Resnet model [102]. A feature

vector X of size 256 is then obtained and passed to the LSTM at the first timestep. The LSTM

is subsequently presented the “gold standard” caption {wi}n
i=1 one word per timestep, each time

learning to predict the next word; i.e., at timestep t the model learns P(wt|X, {wi}t−1
i=1), optimised

according to the cross-entropy function. The network simultaneously learns a word embedding so

that each word wi is first transformed to a feature vector of size 256 before being given as input

to the LSTM (as illustrated in Figure 3.8a). With a preset vocabulary of 9956 distinct words, the

final output of the model P(wi) is a probability vector of size 9956.

I found that the models were generally prone to overfitting the training data (not shown). For

this reason, dropout is applied on the input to the LSTM during training, where a given input

element is set to zero with p = 0.5 probability [251]. Once training is complete the models can

generate their own captions to previously unseen images (Figure 3.8 and Appendix Figure A.9).

Given an image at the first timestep, the model output at timestep i is the word with the highest

probability, and the same word is then provided as input to the model at timestep i+1. In this

way the model can autonomously output an entire sequence of words which forms a predicted

caption. In the highly rare case where the model generates a sequence of > 20 words, only the

first 20 words are considered as its caption.

In this task the COCO training data set ILSVRC-2012-CLS is used [228]. This dataset

holds 414113 image-caption pairs with 82783 unique images while the held-out validation set
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(used for Figure 3.8 and Appendix Figure A.9) holds 202654 image-caption pairs with 40504

unique images; note that each image therefore has ∼ 5 distinct gold standard captions. Training

takes place in batches of 100 image-caption pairs, with an initial learning rate of 0.001. Model

performance is averaged over 10 random seeds. The performance is quantified in bits per word,

which measures how good the model is at predicting the validation set. That is, if a model assigns

high probability to unseen data (low BPW), one can surmise that the model predicted that data

well.

In order to judge the models beyond their learning curves in BPW, I quantify their ability to

generate captions using a language modelling metric popular in the field of language evaluation.

In particular, I compare model-generated captions against the gold standard captions using stan-

dard metrics in language modelling. I use the Semantic Propositional Image Caption Evaluation

(SPICE) metric, referred to as caption score; this metric has been shown to be more accurate as it

better captures the semantic structure of the generated captions [5]. SPICE metric scores are

compared across different groups of model-generated caption lengths (Figure 3.8e), which are

categorised as either short (9 timesteps or less, ≤ 1.8s), medium (between 10 and 13 timesteps

inclusively, 2.3s), and long (14 timesteps or more, > 2.8s). For both cRNN and cRNN, these

caption lengths roughly comprise of 39%, 59% and 2% of the total generated captions respectively.

Despite the dataset used being freely available for research purposes under a Creative

Commons license, to ensure that identities remain protected the photos shown in Figures 3.8 and

Appendix Figure A.9 which contain people are modified slightly.

3.3.4 Demixed principal component analysis

To study the response dynamics specific to task variables we perform demixed principal compo-

nent analysis (dPCA) [147]. dPCA extracts low-dimensional components that explain maximum

population variance constrained by task-specific variables, such as the input stimulus. As a

result we obtain principal components that are specific to task variables. The simulated neural

data we provide as input to dPCA is a three-dimensional array (n, s, t) with neuronal activity

(concatenated across seeds), stimulus identity and time, respectively. In order to compare the

cue-specific variance explained for each principal component across models we normalise against

the variance explained for each principal component.

3.3.5 Cosine similarity

To determine the similarity between the cerebellar predictions and the true backpropagated

error gradients the cosine similarity metric is used. The cosine similarity between two arbitrary

vectors x,y is calculated as

cossimilarity(x,y)= x ·y
||x||2||y||2

(3.27)
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3.3.6 Correlation analysis

To understand how the relationship between cortical and cerebellar activity evolves over learning,

I compute the pair-wise correlation between cortical and cerebellar units. Specifically, given a

cortical and cerebellar unit I compute the Pearson correlation score between their respective

activities over time and different task inputs. Recall that for two arbitrary vectors x,y the Pearson

correlation coefficient ρ is calculated as

ρ = cov(x,y)
σxσy

(3.28)

Where cov is the covariance function and σx,σy are the standard deviations of x,y, respectively.

Equation 3.28 is only applied to “active” pairs of cortical and cerebellar units which were

non-zero throughout training. Specifically, I found that towards the end of learning, several

units in the cerebellar hidden layer became silent (due to sub-threshold inputs prior to the

ReLU non-linearity). This led to undefined pairwise correlations for those units (due to the zero

standard deviation in the denominator). For this reason, only units which were active (non-zero)

throughout training sampled pairs. For the simple LD visuomotor task, 600 pairs are sampled

for each initial condition (6000 pairs in total); for the online tasks, 1000 pairs are sampled for

each initial condition (10000 pairs in total).

3.3.7 Statistical analysis

Because the initial conditions of neural networks influence the subsequent learning trajectory

each model is run across 10 different randomly chosen seeds. For all relevant figures in this

Chapter, significance was tested using a two-sided paired t-test across the different seeds on the

relative changes; significance levels are represented as * (p < 0.05), ** (p < 0.01), *** (p < 0.001)

and **** (p < 0.0001).

3.3.8 Code and computing resources

The PyTorch library is used for all neural network models. The deep learning implementation

is based on that of github.com/koz4k/dni-pytorch. The code and respective simulated data

used for the experiments are available at https://github.com/neuralml/ccDNI. For dPCA the

following codebase is used: https://github.com/machenslab/dPCA. For the image captioning

task the code is built upon https://github.com/yunjey/pytorch-tutorial/tree/master/

tutorials/03-advanced/image_captioning.

All experiments were conducted on the BluePebble super computer at the University of

Bristol; mostly on GPUs (GeForce RTX 2080 Ti) and some on CPUs. I estimate the total compute

time (including unreported results) to be in the order of ∼ 2000 hours.
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3.4 Experimental results

3.4.1 A systems-level computational model of cortico-cerebellar interactions

In order to understand how cerebellar computations may shape cortical processing, I apply the

computational framework as described in Section 3.2 on a variety of tasks. That is, I consider

the learning ability of a model in which a given cortical area, modeled as a recurrent neural

network (RNN), is coupled with a cerebellar module, modeled as a feedforward network which

provides feedback in the form of error gradients. This model is referred to as cortico-cerebellar

RNN (ccRNN), and is contrasted to a cortical-only RNN (cRNN) which does not incorporate

cerebellar predictive feedback. Implementation details regarding the model, dataset and training

regime are described in the previous Section 3.3).

As described in Sections 3.2 and 3.3, the model is trained using a prediction error function

Etask which compares the model output with task-specific external feedback. Using standard

gradient descent methods feedback signals of a specific temporal horizon (truncation size) –

cortical feedback horizon – are generated. An illustration of ccRNN unrolled in time with a

cortical feedback horizon of 1 timestep is shown in Figure 3.1b. ccRNN learns via a mixture

of temporally local BPTT-derived error gradients and a cerebellar prediction which considers

errors in the more distant future (see Equation 3.7). For computational efficiency and in line

with previous models we use a time-discrete approximation of time-continuous RNN models (see

Section 3.3.1.3.

3.4.2 Cortico-cerebellar model facilitates learning in a simple sensorimotor
task

Inspired by classical sensorimotor studies in the cerebellum [36, 199, 232, 255, 265], we first

consider a simple visuomotor task. In this task the model must draw a straight line in a two-

dimensional space towards one of seven target locations given a target-specific cue at the start

of the task (Figure 3.2a, top). Both cortico-cerebellar RNNs (ccRNN) and cortical-only RNNs

(cRNN) are trained to perform this task (see full details in Section 3.3.3). To train the models,

teaching (external) feedback is provided by comparing the cortical network output with the

optimal trajectory (i.e. a straight line between starting and end points; Figure 3.2a), where both

feedback and model output are expressed in 2D coordinates.

In addition, this external feedback is delayed with respect to the initial cue and is incomplete

(i.e. only available every few time steps). The incompleteness of target output is an important

detail that aims to capture the more realistic setting in which external feedback is not always

readily available during the task. When this feedback is available at time t the prediction error

is computed as Etask = ||yt −zt||2, where yt is the desired two-dimensional trajectory (i.e. set

of feedback points; cf. schematic in Figure 3.2a) and zt is the current model output given by a

linear readout on the network activity ht. In particular, here we consider that external feedback
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interval is available at every other time step for both cRNN and ccRNN (see Section 3.4.4 for

more general cases).

During learning the ccRNN model achieves near-zero error after a relatively small number of

training sessions, while the cRNN, which lacks the cerebellar component, also learns but more

slowly and with higher variability (Figure 3.2b). These observations are in line with a large

body of cerebellar experiments [36, 199, 232]. In addition, there are notable difference between

the models at the level of output trajectories. While the ccRNN produces smooth and straight

trajectories, the cRNN displays a more variable trajectory towards all targets (Figure 3.2b). Due

to the sparse task feedback in the absence of a cerebellar network, the cRNN is not able to learn

a correct trajectory in points for which there is no direct feedback thus overshooting the target

trajectory. In cerebellar patients, this effect is referred to as dysmetria (or ataxia in the motor

domain; see Section 2.2.3) [117, 232, 234]. To evaluate the degree of dysmetria-like output in
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Figure 3.2: Cortico-cerebellar model improves learning in a simple line drawing senso-
rimotor task. a, Schematic of a macaque monkey performing a simple line drawing task (top
left). A cortico-cerebellar RNN (ccRNN) in the macaques brain receives cue-specific input and
learns to produce the desired trajectory. The temporal profile of input, output (dashed grey line
represents target trajectory) and feedback are also shown (bottom right). There are 6 possible
non-zero targets (coloured dashed circles) and feedback (dashed black line) is provided at a
regular interval (bottom). In the example shown the model must draw a straight line towards the
green target. b, Error between model output and desired target trajectories for cortical-only RNN
(cRNN; grey) and ccRNN (orange). Insets: Model trajectory produced for all cues after learning.
c, Dysmetria score for cRNN and ccRNN, which quantifies how smooth the movement is after
learning. d, Mean squared error (MSE) of ccRNN during learning for different cortical feedback
horizons, normalised to cRNN. Arrow indicates feedback horizon used by the cortical network in
other panels. e, Euclidean distance between the cue-specific cortical RNN activity represented
by its two leading cue-specific principal components; results for both cRNN (grey) and ccRNN
(orange) models. Arrows highlight training sessions of cue-specific demixed principal components
(dPCs) plotted on the right for early (i), early-mid (ii), mid (iii) and late (iv) learning, for both
cRNN (top) and ccRNN (bottom). Dashed lines represent the trajectory of the 2D neural dynamics
throughout the task (circle represents last timestep). f, Cue-specific explained variance of the
RNN for both models cRNN (grey) and ccRNN (orange). Circular plot shows the total explained
for cue (medium-dark colours), time (light colours) and cue-time interaction (dark colours) task
variables. g, Same as e but for cerebellar activity. In contrast to the cortical network g here
there is no task trajectory encoded – multiple circles represent the temporal points during the
task. h, Explained variance for cue-specific dPCs of the cerebellar network. ***: p < 0.001, ****:
p < 0.0001. Error bars represent mean ± SEM across 10 different initial conditions.

our models we measure the error between the model output and the optimal trajectory (i.e. a

straight line in this case; see Section 3.3.2). When applying this measure, the ccRNN shows a

clear reduction in ataxia-like behaviour compared to cRNN (Figure 3.2c). Finally, we demonstrate

the benefits of our model compared to classical models in solving tasks of a temporal nature.

We trained both a feedforward model, consistent with classical Marr-Albus models whereby the

cerebellum directly provides the desired task outcome [1, 179], and a model with a fixed RNN on

drawing tasks. Due to their inability to perform temporal credit assignment both models fail to

learn, thus do not exhibit the same properties as the ccRNN (see Appendix Figure A.2).

To highlight the conditions for which the cerebellum may facilitate learning in cortical net-

works different lengths of cortical feedback horizon are tested. We observe that the ccRNN

only facilitates learning for short to medium feedback horizons (< 50% for the total task length,

Figure 3.2d and Appendix Figure A.1). These results suggest that the cerebellum is particularly

important for cortical learning in conditions in which cortical networks do not have internal effec-

tive feedback available for learning. This is consistent with experimental observations showing

that the cerebellum becomes more important in the presence of challenging task conditions for

which cortical feedback might be short [57]. In stark contrast, for long cortical feedback horizons,

the inclusion of the cerebellar module actively harms learning. In this case we speculate that
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since the cortical network already has the level of feedback required to learn effectively, the

principal effect of cerebellar feedback is the noise that it inherently induces into the modeled error

gradient which subsequently impairs learning. This observation suggests that the brain may

use intermediate brain structures, such as the thalamus and the pons to gate cortico-cerebellar

interactions depending on task properties (see Discussion in Section 3.5).

Next, to gain insight into how cortical and cerebellar neuronal representations evolve jointly

during learning, we apply a dimensionality reduction method – demixed principal component

analysis (dPCA) – on their activities (see Section 3.3.4). dPCA provides low-dimensional repre-

sentations of the neural populations that capture maximum variance across task variables. We

focused on the two most informative cue-specific principal components using the neural activities

of the recurrent neural network for both cRNN and ccRNN. For these leading components, we

calculated their two-dimensional Euclidean distance across the 7 different possible cues at each

timestep. Our results show that the ccRNN cortical network is characterised by a stronger

increase in separation of stimulus components over learning when compared to the cRNN cortical

network (Figure 3.2e). To contrast task-specific components with general temporal information,

we compare the level of cue-specific and time-specific explained variance in both models. In order

to directly compare the cue-specific explained variance of each component we normalise by the

variance of each component for the respective model. Overall, ccRNN captures more cue-specific

explained variance when compared with cRNN (Figure 3.2f), which demonstrates that ccRNN

encodes more task-relevant information in a task that requires the model to associate the cue

information with specific output trajectories. Next, we applied dPCA to the activity of cerebellar

neurons. Since the cerebellar module facilitates cue-to-target learning we expected cerebellar

representations to be mostly dominated by task-specific information. This is indeed what we

find: the distance between cue-related components is stronger during periods of high learning

(Figure 3.2g; compare with learning curves in Figure 3.2b), and that most of the variance is

explained by cue-specific dPCs (95.4%; Figure 3.2h).

Overall,these results suggest that in the context of a simple sensorimotor task, cerebellar-

mediated decoupling of cortical feedback enables faster learning and smoother motor trajectories.

In addition, it makes a number of experimentally testable predictions about the evolution of

task-specific cortico-cerebellar representations throughout learning.

3.4.3 Cortico-cerebellar model improves learning in complex sensorimotor
and discrimination tasks

Under naturalistic conditions both animals and humans have to learn complex sensorimotor

transformations [64, 217]. To test whether the results from the simple visuomotor task generalise

to more realistic settings I explore a range of more advanced sensorimotor tasks. In contrast

to the previous task in which sensory input (i.e. the stimulus) was only provided at the start of

the task, in these tasks the model receives a constant stream of external input. In particular,
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Figure 3.3: Cortico-cerebellar model improves learning in online complex sensorimotor
and sensory discrimination tasks. a, Model behaviour across online tasks using a dataset of
handwritten digits, each presented sequentially to the network. Given temporally varying visual
input the model is trained to draw a line (LD), digit (DD) or classify the digit (discrimination).
For drawing tasks model input/output is coloured by digit; target trajectories are shown in dotted
grey, whilst the red dots denote (sparse) points of external feedback. A representation of the
structure of the input (green), output (green; target in grey) and feedback (red) for each task is
also given (bottom of each task). b, Learning curves for the three tasks for both cortical RNN
(grey, cRNN), cortico-cerebellar RNN (orange, ccRNN). The cortical network in all tasks uses
approximately 10% of the cortical feedback horizon (cf. d). c, The dysmetria score quantifies the
irregularity in movement during the testing phase of the model (online LD and DD visuomotor
tasks) or the uncertainty in the sensory discrimination (online visual discrimination task). d,
ccRNN model performance relative to cRNN across different degrees of cortical feedback horizon
(ns denotes not significant: p=0.921 in the online LD visuomotor and p=0.567 in the online DD
visuomotor). Arrow indicates the feedback horizon used in b,c. **: p < 0.001 ***: p < 0.0001, ****:
p < 0.0001 (two-sided paired t-test between cRNN and ccRNN). Error bars represent mean ±
SEM across 10 different initial conditions.
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ordered segments (i.e. a row of 28 pixels) of a handwritten digit from the MNIST dataset are

provided as input and the model has to simultaneously draw a shape associated with the digit (see

Section 3.3.3.2 for details). This task setting in which input is provided over time is henceforth

referred to as online. Given this input I consider two task variants (Figure 3.3a) in which the

model has to either draw a corresponding (i) straight line (online line drawing (LD) visuomotor

task) or (ii) non-linear trajectory – online digit drawing (DD) visuomotor task. Both tasks provide

an arguably more realistic version of drawing tasks (cf. Figure 3.2) in which lines must be drawn

given complex continuous sensory input. As in the previous task we consider cases of sparse task

feedback.

As in the simple visuomotor task, here the ccRNN learns faster (Figure 3.3b; across different

stimulus noise levels, Figure A.3) than cRNN while and is also less prone to dysmetria-like

trajectories (Figure 3.3c). The ccRNN also facilitates learning when in the presence of short to

medium feedback horizon in the cortical network (Figure 3.3d). Relatedly, the model predicts that

if the sensory input is compressed in time – that is, the model is presented with larger segments

of the input over fewer timesteps – then the need for temporal credit assignment and therefore a

cerebellar module is reduced (Figure A.4).

As previously discussed, there is growing evidence suggesting that the cerebellum is also

involved in non-motor tasks (see Section 2.2.3) [17, 32, 65, 75, 93, 96, 236]. To test whether these

observations in the sensorimotor tasks generalise to non-motor domains, while using similar

input statistics as the previous tasks I trained the model in a visual discrimination task. In this

task the model receives the same handwritten digits presented sequentially over time but now

must discriminate between the 10 classes of digits (online visual discrimination task; Figure 3.3a,

right) and only receives external feedback at the end of the input presentation. In line with the

results in the visuomotor tasks, I find that ccRNN also facilitates learning in this task, achieving

higher accuracy after only 10 training sessions (Figure 3.3b). Here I use the certainty the model

has about the current class as a measure of dysmetria of thought [235]. Consistent with the tasks

above, I find that dysmetria-like behaviours are reduced in the ccRNN model, which in this case

shows that model produces more confident (and indeed accurate) decisions (Figure 3.3c). In line

with the previous tasks a cerebellar module facilitates learning in the presence of weak cortical

feedback (Figure 3.3d and Appendix Figure A.5). Finally, I also use this task to highlight the

importance of cerebellar learning by self-prediction (i.e. bootstrapping; Appendix Figure A.6).

Overall, these results are in line with the growing number of studies implicating the cerebel-

lum in complex sensory discrimination and decision making tasks [65, 84, 141].

3.4.4 Cerebellar-mediated learning facilitation depends on task feedback
interval

In the sensorimotor tasks above I have assumed that only a sparse rate of external feedback is

available to the task; for example, for the main results in the simple line-drawing task (Figure 3.2)
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Figure 3.4: Cerebellar-mediated facilitation of learning depends on task feedback in-
terval. a, Dysmetria score during learning for short (light red), medium (red) and long (dark
red) levels of feedback interval for both the simple and online LD visuomotor tasks and both
models cRNN (grey) and ccRNN (orange). b, Difference in dysmetria score between ccRNN and
cRNN for varying degrees of task feedback intervals (ns denotes not significant: p=0.122 (30%),
p=0.268 (40%), p=0.142 (50%) for simple LD and p=0.444 (36%), p=0.209 (46%) for online LD).
Degrees of red in arrows indicate the respective interval in a while the white arrow indicates the
feedback interval used in Figure 3.2 and Figure 3.3, respectively. Task feedback interval given as
a percentage of the total task time. c, Difference in training error between cRNN and ccRNN for
varying degrees of task feedback interval (ns for simple LD: p=0.099). d, Normalised training
error integrated over learning (left) and dysmetria score at end of learning (right) of ccRNN with
respect to cRNN for varying degrees of cortical feedback horizons and task feedback intervals for
simple LD and online LD tasks. **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 (two-sided paired
t-test between cRNN and ccRNN). Error bars represent mean ± SEM across 10 different initial
conditions.

the desired target was only available every other timestep. This is inspired by the physiological

constraints inherent to animals and humans which impose limits on the rate at which external

sensory feedback is available [122, 144, 159].

Next, we directly examine the relationship between the sparsity of external feedback and the

utility of cerebellar-generated feedback. Specifically, to determine the rate of external feedback for

which cerebellar predictions are most valuable we now train the models in two sensorimotor tasks

(simple LD and online LD visuomotor tasks) with a range of external feedback intervals. This
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feedback interval defines the rate at which external feedback is available for learning, resembling

sensorimotor feedback which is typically sporadic rather than continuous (see Section 3.3.2)

[20, 232, 261].

We find that when external feedback is given at short intervals there is little advantage of

the feedback predictions from the cerebellar component for both the simple LD and online LD

visuomotor tasks, evident in both dysmetria score (Figure 3.4a,b) and training error (Figure 3.4c).

When the interval between external sensory feedback is moderately increased, however, the

benefits of the cerebellar-to-cortical feedback predictions in the ccRNN model become clear.

Nonetheless, for long feedback intervals the feedback is too infrequent for either cRNN and

ccRNN to be able to successfully learn the task. This suggests there exists a moderate “sweet-

spot” condition for external task feedback for which the cerebellum is most helpful.

Next, we performed a detail analysis of the co-dependency of the task (external) feedback

interval and the cortical feedback horizon (Figure 3.4d). We observe that ccRNN benefits learning

and reduces dysmetria-like behaviours for intermediate feedback intervals provided that the

cortical feedback horizon is not longer the task (external) feedback interval. This is a consequence

of the cerebellum in the ccRNN model being well placed to help the cortex learn when both

internal and external feedback are not readily available.

3.4.5 Similarity between cerebellar and cortical feedback is task and learning
dependent

The cortico-cerebellar facilitation of learning shown above depends on the ability of the cerebellum

to provide the cortical network with effective feedback predictions. To study the level of similarity

between the predicted cortical feedback and the theoretically optimal cortical feedback as provided

by full BPTT, I calculated the cosine similarity between cerebellar predictions and the optimal

cortical feedback in a range of tasks. Specifically, at a given point in training I obtain the error

gradient vectors predicted by the cerebellum across different training examples (and also positions

in the task sequence), and those respectively derived by full BPTT. The average cosine similarity

is calculated between these vectors (cf. Section 3.3.5).

First, I measure the cosine similarity for tasks in which external sensory feedback is only

provided at the end of the task – a variant of the simple LD task with feedback only at the end and

the online visual discrimination task. The setup for these tasks allows for an easier interpretation

of the similarity between cerebellar and cortical feedback which should decay gradually from the

end to the beginning of the task sequence. Indeed, I observe that the cerebellar-cortical feedback

similarity is higher closer to the point in which external sensory feedback is available (i.e. end of

the task; Figure 3.5a) and remains high over learning in particular for later points in the task

(Figure 3.5b).

Next, I analyse the cosine similarity for conditions in which external feedback is available

throughout the task. For this I consider the same visuomotor tasks as above (simple LD visuo-
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Figure 3.5: Similarity between cerebellar and cortical feedback is task and learning
dependent. a, Cortico-cerebellar cosine similarity throughout tasks sequences which do not
require intermediate external feedback: simple line drawing with feedback only at the end of
the task (LD end-only) and online visual discrimination (ns denotes not significant: simple LD
visuomotor p=0.212 (0%), p=0.520 (25%); online LD visuomotor p=0.312 (0%), p=0.06 (25%),
p=0.067(50%), p=0.386(60%). Here and in subsequent panels red arrows indicate points in which
external feedback is available. Cosine similarity throughout the tasks is calculated across all
training sessions. b, cortico-cerebellar cosine similarity over learning for three time points in the
task: early (turquoise), mid (blue) and late (purple) in the task (cf. a). c, cortico-cerebellar cosine
similarity throughout the sequence for tasks with intermediate external feedback: simple line
drawing (LD), online LD, online digitdrawing (DD). d, cortico-cerebellar cosine similarity over
learning for three different time points in the task (early, mid and late as in b). Dashed black
line represents zero similarity. **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 (two-sided paired
t-test between cosine similarity and zero). Error bars represent mean ± SEM across 10 different
initial conditions (20 for simple LD visuomotor end-only task due to its relative instability during
learning).

motor, online LD visuomotor and online LD visuomotor). In these tasks I observe more complex

dependencies of the cortico-cerebellar feedback similarity on task properties (Figure 3.5c,d).

For the simple LD task I observe that the predictions made during earlier points in the task

become more similar than those at later points throughout learning (Figure 3.5c,d). These results

suggest that the model first attempts to learn to align later points in the task and then gradually

attempts to learn to adjust earlier points. However, this is only possible in tasks such as the

simple LD, which have regular feedback and can be fully learnt (i.e. achieve zero error). For the

two remaining tasks, online LD and DD visuomotor tasks, and in contrast with the simple LD,

the similarity remains high throughout learning for later time points (Figure 3.5d). This reflects

the more challenging nature of these tasks and the need to continuously predict feedback as
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these tasks are never fully learnt (i.e. error remains higher than zero; cf. Figure 3.3).

These results make predictions as to whether the cerebellum is able to better align with

the cortical feedback, which depend on task complexity, the properties of the task feedback,

the exact task position and the learning stage. In particular, (i) for tasks with feedback only

at the end (Figure 3.5a), the model predicts that cortico-cerebellar feedback alignment should

decay rapidly, and (ii) for tasks with regular external feedback (Figure 3.5c) the model predicts

that cortico-cerebellar feedback alignment should be stronger when more external feedback is

provided.

3.4.6 Learning shapes cortico-cerebellar activity coupling
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Figure 3.6: Cortico-cerebellar neuronal activity coupling over learning. a, Distribution of
pair-wise cortico-cerebellar absolute correlation coefficients over learning for four tasks: simple
LD, online LD, online DD and online visual discrimination. Orange line shows mean correlation
coefficient. Boxplot shows median (horizontal dark orange line), interquartile range (IQR; box
with centre at mean); whiskers show respective quartiles extended by 1.5× IQR, where circles
denote individual outliers beyond this range. Fully fixed ccRNN (i.e. without any form of plasticity
in both networks) is given for reference (dashed line). b, Change in first two principal components
of cortico-cerebellar pair-wise correlation coefficients over learning (more components available
in Appendix Figure A.7). c, Cumulative plot of cortico-cerebellar pairs with positive and negative
changes in absolute correlation coefficients in early (session 1), mid (session 25) and late (session
80) learning. Data grouped across 10 different initial conditions, where for each condition 600
active pairs for the simple LD visuomotor task and 1000 active pairs for the online tasks are
sampled.
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The cosine similarity results presented above demonstrate that the cerebellar module learns

to predict cortical feedback. Because the cerebellum maps cortical activity onto (predicted)

cortical feedback, this suggests changes in the coupling between cerebellar and cortical neural

representations throughout learning. To study the degree of cortico-cerebellar coupling I calculate

the pairwise correlations between neurons in the cortical recurrent neural network and the

neurons of the cerebellar network. Specifically, at a given point in training I obtain the activation

vectors for each active (non-zero) unit in the cortical RNN and cerebellar hidden layer across

different training examples and timesteps. The Pearson correlation coefficient is then computed

between the activations pairs of cortical and cerebellar units (see Section 3.3.6 for details).

Perhaps surprisingly, although I observe a relatively small rise in the average cortico-

cerebellar coupling during the first few training sessions, as training progresses, there is a

consistent decrease of the correlations (Figure 3.6a).

To study more subtle changes in the correlation structure I use standard principal component

analysis on the obtained pairwise correlations (Figure 3.6b). The first principal component

reflects the changes in the average cortico-cerebellar coupling (Figure 3.6b). The second principal

component shows a delayed increase with respect to the first, followed by a sustained decrease

in the cortico-cerebellar coupling (see Appendix Figure A.7 for remaining components). These

results are consistent with the need for the cerebellum to provide more effective feedback and

thus be more coupled in the earlier learning phases. To study learning periods of consistent

increases or decreases in coupling as training progresses I tracked the changes in correlations

of cortico-cerebellar pairs in early, mid and late learning (Figures 3.6c). I observe that early in

learning – when most learning occurs (cf. Figures 3.2, 3.3 and 3.5) – a large part of the population

shows a consistent increase in correlations, but this rapidly changes as learning progresses with

only a very small number of pairs showing increases in correlations later in learning.

To better assess the contribution of a plastic cerebellum to the cortico-cerebellar coupling, I

next analysed a ccRNN in which the cerebellum does not learn. In this case there are still observed

changes in cortico-cerebellar coupling over learning for some tasks, which reflect changes in the

RNN itself, but these are weaker when compared to the normal ccRNN (Appendix Figure A.8a).

In this case cortico-cerebellar correlations remain high throughout learning compared to a ccRNN

with a plastic cerebellum. This is supported by their low-dimensional representations: whereas a

plastic cerebellum leads to principal components that approach near-zero values after the initial

learning phase (Figure 3.6b and Appendix Figure A.7), in the case of a fixed cerebellum the

principal components continue to fluctuate throughout learning (Appendix Figure A.8).

Although ccRNN suggests a long-term decrease decrease in the cortico-cerebellar activity

coupling, it highlights sub-populations which increase their coupling during specific periods of

learning. This observation follows from our proposal in that the cerebellum is trained to map

cortical neural activity on cortical feedback which depends on learning.
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3.4.7 Differential impact of cerebellar output and inferior olive on learning
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Figure 3.7: Inactivating cerebellar output and inferior olive have a differential impact
on learning. a, Complete cerebellar lesion at different points during learning. Vertical lines
represent at which point during training the cerebellar was inactivated in the ccRNN model. In
grey and orange show the baseline performances of the cortical RNN and ccRNN, respectively. b,
Normalised error after cerebellar lesion throughout learning with respect to ccRNN (ns denotes
not significant: simple LD visuomotor p=0.062 (session 150), p=0.162 (session 475)). grey denotes
normalised error for cRNN. c, Complete inferior-olive lesion at different points during learning.
Vertical lines represent point of lesion of the ccRNN model. In grey and orange are shown the
baseline performances of the cortical RNN and ccRNN, respectively. d, Normalised error after
inferior-olive lesion throughout learning with respect to ccRNN. grey denotes normalised error for
cRNN. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 (two-sided paired t-test between
ccRNN (ablation) and ccRNN (control)). Error bars represent mean ± SEM across 10 different
initial conditions.

In experimental neuroscience specific brain areas can be inactivated in order to assess its
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contribution to learning and behaviour. Here we next perform in silico lesion experiments to the

cerebellar network to reveal the impact of the modelled cerebellar feedback predictions during

learning. First, we test cerebellar output lesions – ablation – at different points in learning; that

is, the cerebellar feedback term in Equation 3.7 is set as zero.

In all tasks we observe that inactivating the output of the cerebellar module in early learning

impairs further learning and performance (Figure 3.7a,b). This is expected as the cerebellar

network provides feedback predictions that facilitate cortical learning. Interestingly, we observe

that when the cerebellum is suddenly removed learning becomes worse than the baseline model.

This is likely due to the additional time taken to adapt to a new learning trajectory which no

longer relies on cerebellar prediction. However, cerebellar lesions performed later in learning do

not have an impact in the simple LD visuomotor task, which is explained by the fact that for this

task the model can achieve near-zero error, thus learning signals provided by the cerebellum are

no longer needed. However, for all the online tasks we observe that inactivating the cerebellum

even at later stages damages learning. In these more realistic tasks the cortical network still

relies on the feedback provided by cerebellum as it does not fully learn the task. These results

indicate that lesion studies should reveal a task-dependent nonlinear role of the cerebellum on

cortical learning.

Next, we assess the impact of disrupting cerebellar learning by modelling a complete lesion of

our inferior olive-like error module (for schematic see Figure 3.1). In particular, the cerebellum is

no longer optimised according to the cerebellar error EC (cf. Equation 3.8) and its weights are

fixed. This manipulation effectively stops cerebellar learning, thereby impacting the ability of

the cerebellum to provide informative feedback learning signals to the cortical network. In turn

this may prevent the cortical network from learning, since poor feedback predictions are likely to

perturb its learning trajectory.

For all of the tasks, inactivating cerebellar learning has a strong impact throughout training,

making the model return to baseline performance (Figure 3.7c,d). Thus, these simulated inferior

olive lesions imply that if the cerebellum cannot learn it would result in a stronger negative

impact in task learning than ablating the cerebellum itself, in line with recent experimental

observations [245]. This further suggests that it is critical for the cerebellum to learn rapidly to

be able to provide informative predictions.

3.4.8 Cortico-cerebellar model facilitates learning in a visual-language task

It is important to highlight that the ccRNN framework does not only apply to sensorimotor tasks

but should generalise to virtually any task within the grasp of current neural networks models.

This is consistent with the universal transform hypothesis of the cerebellum, which posits that

the functional role of the cerebellum and cortico-cerebellar loops generalises from the motor

domain to the cognitive domain (see Section 2.2.4).

To explicitly demonstrate the generalisability of the model for higher cognitive tasks, and
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inspired by language tasks in which cerebellar patients have shown deficits [85, 93, 95, 246, 254],

I test ccRNN in a caption generation task which models the recreating sentence task studied

by Guell et al. [93]. In this task the network needs to generate a textual description for a given

image, similar to the task conducted by [93]. All models have two components: a pretrained

convolutional neural network (CNN) to extract a lower dimensional representation of the image,

and a cRNN or ccRNN on top which is trained to map the low dimensional visual input to captions

that describe the image (Figure 3.8a).

A standard machine learning dataset [228] is used which contain image-caption pairs. Given

an image and preceding words in the caption, the networks are trained to predict the next word

(see Section 3.3.3 for details).

Consistent with the previous tasks, I find that the cerebellar-enhanced ccRNN models can

exhibit faster learning than the cortical-only cRNN models when in the presence of short cortical

feedback horizons (Figure 3.8b-d). All models produce reasonable captions for images unseen

during training, but ccRNN models tend to produce captions that better capture the context

and semantics of the task (Figure 3.8c and Appendix Figure A.9), consistent with the poorer

descriptions of images generated by cerebellar patients [93]. This ability to generate more

accurate textual descriptions of images is likely due to the ability of the ccRNN model to perform

better temporal credit assignment by providing feedback estimates beyond the cortical feedback

horizon.

To quantify the language capabilities of the trained models, I next use the language metric

SPICE [5] to measure the quality of the generated captions. These results show that the ccRNN

generates richer captions (Figure 3.8e) and, interestingly, that cerebellar feedback is particularly

beneficial for longer captions. Overall, this task demonstrates that ccRNN is able to learn richer

visuo-language contextual information.

3.5 Discussion

Inspired by recent deep learning developments, here we have introduced a systems-level computa-

tional model in which cerebellar networks predict cortical feedback (Figure 3.1). To the best of our

knowledge, this is the first systems-level computational model of cortico-cerebellar interaction.

In this scheme cortico-cerebellar loops decouple cortical cortical networks from future feedback

signals. We show that the ccRNN model accelerates learning and improves task behaviour in a

range of sensorimotor and cognitive tasks (Figures 3.2, 3.3 and 3.8). Our results are consistent

with observed motor and cognitive deficits in cerebellar patients. This model makes a number of

predictions in terms of (i) task properties (Figures 3.4 and 3.5), (ii) cortico-cerebellar representa-

tions and coupling (Figures 3.2 and 3.6), and (iii) the differential role of the cerebellum and the

inferior olive throughout learning (Figure 3.7).
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Figure 3.8: Cortico-cerebellar model facilitates learning in a visual-language task.
a, Schematic of the model used in a visual-language task. The image is first processed by a
(pretrained) convolutional neural network modelling the visual cortex. The resulting feature
vector is then provided to the cortical RNN which is trained to predict the next word given the
previous words of a provided “gold standard” caption to the image. The cerebellum module C is
only applied to the cRNN. Top left: task structure with example input image and words (green),
ccRNN output words (orange) and target caption (red). b, Learning curves in bits per word (BPW),
lower values indicate better understanding of the language, on validation set for cortical feedback
horizon of four timesteps (inset shows complete learning curve). c, Two example images from the
validation set with corresponding model captions and gold standard captions (black). The images
shown here were generated on deepAI.org for illustration purposes only. d, Normalised model
performance across different degrees of feedback horizon in the cortical network (ns denotes not
significant: p=0.891 (40%), p=0.116 (45%)). e, Normalised caption score as a function of caption
length (ns: p=0.075 (short), p=0.189 (medium)). *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****:
p < 0.0001 (two-sided paired t-test between cRNN and ccRNN). Error bars represent mean ±
SEM across 10 different initial conditions.

3.5.1 Universal cortico-cerebellar transform during learning

Conceptually, the model shares common features with classical internal models of the cerebellum

([1, 179]; Table 3.1). In the forward model of sensorimotor control, the cerebellum receives an
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efferent copy of the motor commands and the respective external sensory feedback [123, 189].

With these two input streams the forward model learns to predict the sensory consequences

of motor commands. We and others have argued that a similar “universal” model of cerebellar

function can be applied to higher order brain regions such as the prefrontal cortex and the

temporo-parietal cortex which are involved in planning of cognitive behaviour and decision

making [32, 124, 236, 273] (Figure 3.1a). In line with forward models the cerebellar module of

ccRNN receives an efferent copy of the cortical neural activity and cortical feedback. Given these

signals the cerebellum learns to predict future cortical feedback.

In this study, we have modeled cortical feedback using error gradients which are used to guide

cortical learning. Interestingly, experimental studies suggest that the cerebellum can indeed

influence cortical learning processes via its projections to the thalamus [4, 118, 143, 212, 264].

This is perhaps mediated specifically by the cerebellar-thalamic-cortical projections onto target

distal dendrites of pyramidal cells [4, 97], which have been proposed to encode feedback error

signals by a number of bio-plausible models with deep learning frameworks [92, 209, 229]. These

dendritic-encoded error signals are akin to the gradient descent errors that we use to model

cortical feedback signals. In future work it would be of interest to combine our work with these

biologically plausible gradient descent models.

3.5.2 Benefit of cerebellum when external feedback is sparse and cortical
feedback mechanisms are weak

Experimental studies have shown that incomplete or delayed external sensory feedback is

important for learning [116, 122, 207]. Our model proposes that the cerebellum plays an important

role in facilitating motor learning when in the presence of incomplete or delayed feedback.

Furthermore, this study suggests that cortico-cerebellar networks are ideally placed to facilitate

learning when task feedback is presented intermittently, at medium frequencies with respect to

task sequence. Similarly, our results suggest that cerebellum-dependent dysmetria should be

more prevalent for tasks with intermediate to long inter-feedback intervals. Although there is a

wide range of studies investigating the role of external sensory feedback in learning [78, 116] and

the precise timing of feedback is known to be important for cerebellar function [29, 45], it remains

to be tested what are the optimal properties of task feedback for learning. Taken together, we

suggest cerebellar-mediated feedback predictions to be particularly important for temporally

challenging tasks with sparse feedback.

Relatedly, we also find that as the internal mechanisms of credit assignment (as modeled

by BPTT here) in the cortex become stronger and can learn the task well independently, the

cerebellum does not improve learning and may even be disruptive. This suggests that the utilisa-

tion of cerebellar feedback is only helpful when the cortex is only to perform credit assignment

within short temporal windows. Biologically, there may be two reasons why these short credit

assignment windows are imposed in the cortex. Firstly, it may simply be that the computational
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and memory assumptions enforced by BPTT (or perhaps some type of equivalent algorithm)

over longer timescales are simply not plausible in the biological circuit [165], and this biological

constraint is alleviated by cerebellar feedback. Secondly, it may be that the substantial waiting

time imposed by longer windows of BPTT is undesirable to the nervous system. For instance, for

long tasks intermediate synaptic updates (driven by cerebellar feedback) may be helpful. Perhaps

more considerably, if feedback signals were to be directly used to update activities of cortical

neurons as supported experimentally [87, 152] and also recently modeled [186, 188], then the

cerebellum may be able to directly correct for task errors which are yet to come.

3.5.3 Coordination of cortical and cerebellar representations

The representational analyses demonstrate that the cerebellum develops task-specific repre-

sentations. Recent fMRI studies have observed that different regions of the cerebellum encodes

task-specific representations for different domains [7, 141]. Similarly, ccRNN predicts the need

for different cerebellar modules to provide feedback estimations to the cortical cortex for specific

task domains. We have also studied the level of coupling between cerebellar and cortical neu-

ral activity. Our results demonstrate an initial rise in correlations which coincides with steep

periods of learning followed by a general decay in the coupling during the remaining periods

of learning. This general decay in coupling is also reflected in our simulated cerebellar lesions

which echo the existing literature in that after a task is consolidated4 in the cortex it becomes

less cerebellar-dependent [82].

3.5.4 Role of inferior olive and cerebellar bootstrapping

In line with previous theoretical accounts [1, 179, 222] we suggest that the cerebellar error

function is computed by the inferior olive, which drives learning in the cerebellum via the

climbing fibres (cf. Figure 2.2a). This cerebellar error function is a combination of true sensory

feedback and self-predicted (bootstrapped) error signals (Figure 3.1b), which is analogous to

the bootstrapping principles commonly used in reinforcement learning [258]. The use of self-

predictions in the cerebellum suggests the existence of different forms of feedback to the inferior

olive from potentially multiple cerebellar modules [138], consistent with cerebellar-inferior

olive connectivity [27]. Moreover, when ablating the inferior olive lesions we show that task

performance become severely impaired. This is due to the cerebellum being unable to learn,

thereby providing outdated feedback signals back to the cortical cortex. These results suggest

non-trivial consequences of lesions for cortico-cerebellar interactions.

Throughout this Chapter we have assumed the existence of cortical prediction error modules,

which compare the output of a given cortical area with a desired task output to generate a

feedback teaching signal for the cortical cortex. There is evidence of prediction errors across

4The notion of cortico-cerebellar consolidation is further explored later in Sections 5.6 and 5.8.
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different brain areas, for example sensorimotor prediction errors in the neocortex [8, 132] or

reward prediction errors in the VTA [139, 237]. For simplicity, here we have focused on supervised

(Figures 3.2 and 3.3) and unsupervised (Figure 3.8) prediction errors, but these can in principle be

readily replaced by reward-based prediction errors [194, 237]. This would predict reward-specific

encodings in the cerebellum as observed recently [40, 238, 274]. Indeed, our model is of particular

relevance to reinforcement learning due to prevalence of sparse and delayed rewards (Figure 3.4).

Overall, this Chapter offers a theoretical framework with which to study cortico-cerebellar

interactions – specifically during cortical learning – being consistent with experimental observa-

tions while making a large number of testable predictions across multiple levels of interrogation.

3.6 Limitations and Future Directions

In addition to the general modeling assumptions made in this Thesis with respect to error-based

learning and the cortico-cerebellar loop (see Sections 2.1.7 and 2.2.5), ccRNN faces specific

biological hurdles which should be addressed. I outline what, in my view, are the most significant

modeling assumptions and failures of the framework introduced in this Chapter. I will discuss

possible solutions and future work to address these problems; indeed, this serves as motivation

for the upcoming studies presented in Chapters 4 and 5.

3.6.1 Other biological sources of synthetic gradients

In this Chapter I have argued that the cerebellum is the structure which provides predicted

(synthetic) gradients to the cortex, which is supported by cortico-cerebellar architecture, the

classical forward model hypothesis and observed cerebellar-related deficits. However, other

possible sources for synthetic gradients, or more generally predicted error-related feedback

signals, should not be ruled out.

For example, dopaminergic neurons are known to encode expectation of future reward or error

signals [113], and have also been observed to play an important role in mediating plasticity to the

dendrites they target [86, 288]. Moreover, consistent with the computational model proposed in

this Chapter, there is increasing evidence for significant heterogeneity – as required for synthetic

gradient vectors – in the dopamine population in areas such as the basal ganglia, both in its

variety of encoded signals and the targeted downstream circuits [11, 22, 158]. Each signal may

then reflect a predicted gradient with respect to the target cortical cell or cell ensemble.

3.6.2 Modeling assumptions

Significant assumptions are made by ccRNN which relate to the nature of cerebellar learning

and prediction. These can be split as:
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3.6.2.1 Encoding and access to cortical error gradients

This Thesis assumes that neurons can encode the gradient of some error function with respect

to their activity. However, the models presented in this Chapter go further and assume that

this gradient can also be relayed to other neurons; in particular, ccRNN assumes that cortical

error gradients can be conveyed even so far as to provide a teaching signal for the cerebellum,

i.e. via the inferior olive (IO; Equation 3.9). The model therefore depends on two distinct cortico-

cerebellar pathways: one, as described, projects cortical error gradients used for cerebellar

learning; the other projects cortical activity used for predictions (Equation 3.11). The model

does not incorporate a biological solution as to how these pathways function individually and

simultaneously.

However, recent studies propose that biological circuits may be able to transmit feedforward

activity and error gradients at the same time. In particular, it has been suggested that neurons

implement a “multiplex” code in which neural events (feedforward activity) activate distinct

pathways to neural bursts via short-term plasticity mechanisms [92, 200, 209]. Under the

framework of ccRNN, this could be implemented, for example, by assuming that cortico-pons-

cerebellar pathway transmits cortical events, whilst the cortico-IO-cerebellar pathway transmits

cortical bursts. This could be interesting future work to explore.

3.6.2.2 Dimensionality of cerebellar prediction

The cerebellar prediction is optimised to reproduce the error gradient with respect to cortical

activity (Equation 3.6). The model therefore assumes that both the cerebellar learning structures

– inferior olive – and the cerebellar output structures – cerebellar nuclei (and arguably thalamus)

– are able to encode this cortical error gradient. In particular, since the cortical error gradient is

the same size as the cortical population, these structures mirror the dimensionality of the cortical

circuit.

However, simply due to the notable imbalance in neuronal numbers, it is unclear whether

this dimensionality matching is feasible. For example, it is well known that the thalamus (and

therefore cerebellum) projects to a plethora of cortical areas [243], but in the adult human brain

there are over 16 billion neurons in the neocortex [12] and only ∼ 20 million total (including

non cortical-projecting) neurons (ratio 1:800 onto cortex) in the thalamus [214], and fewer still

(∼ 1 million; ratio 1:160000 onto cortex) in the cerebellar output nuclei [289]. The inferior olive

contains approximately half a million neurons (ratio 1:320000 onto cortex) [153]. Simply due to

lack of required dimensionality, it is therefore unlikely these subcortical structures can encode

for each feedback-dependent cortical circuit on a one-to-one basis.

One possible solution is to incorporate some low dimensional representation of error gradients

instead. This is discussed in Section 3.6.4.
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3.6.2.3 Dependence on BPTT

As discussed in Section 2.1.5, backpropagation through time (BPTT) is generally considered

implausible in the brain [165]. An advantage of ccRNN is that strong BPTT (i.e. BPTT over long

time horizons) is no longer required as the cerebellar predicted feedback effectively models more

distant error signals (Equation 3.7). Nonetheless, many of the results presented in this Chapter

do still rely on BPTT to some degree, if only over a small number of timesteps. Though I argue

this weaker version of BPTT is more biologically feasible in the brain, the model does not itself

address how any form of BPTT takes place.

This, in part, inspired the alternative learning algorithm presented in Chapter 4, which does

not require BPTT at all. The cortico-cerebellar model presented in Chapter 5 also avoids BPTT.

See the next Chapters for details.

3.6.3 ccRNN does not capture instantaneous cortico-cerebellar dependency

The computational framework of ccRNN proposes that cerebellar predictions are used to update

local circuitry in the cortex (Equation 3.7). That is, cerebellar-cortical feedback mediates long-

term plasticity in the cortical RNN, rather than affecting the neural activations directly (e.g. by

manipulating the neural dynamics in Section 3.3.1.3). Indeed, even during the training process

in which the cerebellum is active, cerebellar ablation is observed to have no significant impact

once the task is sufficiently learned (see Figure 3.7). This is in notable contrast with recent

experimental studies, in which optogenetic inhibition of cerebellar output is observed induces

instantaneous changes in behaviour and cortical activity [59, 65, 84]. By the very nature of the

model ccRNN cannot capture this cortico-cerebellar dependency at such short timescales.

This limitation motivates the computational model of cortico-cerebellar interaction presented

in Chapter 5. In this model activations in cortical neurons are directly driven by cerebellar

feedback, and therefore replicates the instantaneous cortico-cerebellar dependency observed in

vivo. Details of this model can be found in Chapter 5.

3.6.4 Low rank error gradients: preliminary work

As described above, due to the mismatch in sizes between cerebellar learning/output structures

compared to cortical populations, the assumption that the cerebellum encode high dimensional

cortical error gradients directly may not be biologically feasible.

I propose that one possible means of addressing this issue is that the cerebellum does not

directly predict the cortical error gradient, but instead a low dimensional representation of it.

That is, using the notation in Equation 3.6, C (hk;Ψ) ≈ fbld
k , where fbld

k is a low dimensional

representation of the feedback gradient fbk with dim(fbld
k ) < dim(fbk). If fbld

k is informative

enough, it could then be possible to extract fbk via, for example, some (potentially learnable)

decoding matrix, e.g. fbk =Wdecfbld
k .
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Figure 3.9: Learning with low-rank error gradients. A feedforward network with 5 hidden
layers is trained on the MNIST classification task using error gradients obtained using an
autoencoder. The hidden layer dimension of the autoencoder is less than the hidden layer
dimension of the feedforward network; the error gradients used by the feedforward network are
therefore of low rank. a, Classification accuracy on the test set over training sessions (epochs) of
the dataset for different models. The control model is trained with standard backpropagation
through space (cf. Section 2.1.4.1); the autoencoder models apply error gradients at the final
hidden layer which are predicted by an autoencoder network with a relatively small hidden layer;
an autoencoder with zero output is also shown as a control (in this case only the output layer
of the feedforward network is learned). b, Alignment between true backpropagated gradient at
the last hidden layer and the gradient predicted by the autoencoder; alignment is defined by the
cosine similarity metric (Equation 3.27). c, Test accuracy after 5 training sessions across different
autoencoder sizes. d, Alignment between true backpropagated gradient at the last hidden layer
and the gradient predicted by the autoencoder. Average alignment across training sessions when
the feedforward network is being updated at the same time is shown at top; average alignment
over 5th training session when the feedforward network is fixed is shown at bottom. Error bars
represent mean ± SEM across 10 different initial conditions.

To demonstrate that low dimensional representations of error gradients can be useful for

learning I performed some preliminary work in a relatively simple paradigm. In this paradigm

a feedforward network of 5 hidden layers is trained to perform classification of images from

the MNIST dataset [63]. Implementation details for these experiments are largely the same as

described in Section 3.3, except that the initial learning rate is 0.001 and each training batch
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consists of 64 examples. The network is trained via backpropagation through space, expect that,

crucially, I incorporate low dimensional representations of error gradients at the final hidden

layer. Specifically, let h be the population activity in the final hidden layer and fb= E
h its error

gradient. During the backwards pass the network is not updated according to fb but instead by

some gradient prediction provided by an autoencoder5 A ; that is,

A (fb)= ˆfb=Wdec(Wencfb)=Wdecfbld, (3.29)

Where Wenc, Wdec are the encoding, decoding weights of the autoencoder, respectively; the encoding

matrix Wenc is convergent (i.e. projects to a lower dimensional space) so that fbld =Wencfb is a

low dimensional representation of the error gradient. Being an autoencoder, the weights Wenc,

Wdec are optimised to minimise the distance between the input and output || ˆfb− fb||2. It is

worth pointing out that the autoencoder prediction is necessarily of low rank, since rank( ˆfb)≤
dim(fbld)< fb.

Preliminary experiments reveal that successful learning can take place when applying these

low rank error gradients during learning (Figure 3.9a), and that the autoencoder learns to

reproduce the true error gradients to some extent (Figure 3.9b). Perhaps surprisingly, I find

that even very low dimensional gradient representations (e.g. 10 units, 5% of the hidden size in

the feedforward network) is enough for competitive performance (Figure 3.9c). It is also worth

highlighting that when the feedforward network weights are fixed so that its hidden activities

have more reliable gradients, the constrained autoencoders themselves can produce near-perfect

predictions (Figure 3.9d; cf. top vs bottom).

From a biological point of view, I speculate that one natural locus of low dimensional error

gradients to consider is the thalamus, being a relatively low dimensional structure which receives

cerebellar output and projects to cortical circuits. This strongly relates to a recent study in

which low-dimensional thalamic activity, which expands onto an RNN, is regulated by task error

gradients [120].

From a computational point of view, low dimensional representations may also be cheaper to

compute and store in the brain. This is elaborated upon in the next Chapter in Section 4.7.

3.6.5 Other biological mappings of framework

The work in this Chapter focuses on a specific correspondence between cortical and cerebellar

networks which is temporal. Specifically, that the cerebellum interacts with a cortical RNN

and provides estimations of future feedback. However, the general proposed framework in this

Chapter – that the cerebellum acts as a decoupling machine – can also apply in other contexts.

5It is important to note the computational difference between this autoencoder operation and the cerebellar
operation in Equation 3.6. Specifically, whilst the cerebellum has been proposed to predict (possibly future) error
gradients given the current activity of the network, the autoencoder predicts (low-rank versions of) error gradients
given the error gradient itself.
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Here I briefly describe other possible mappings between the proposed framework and general

forward and feedback processing in the cortex. It may be fruitful to explore these mappings in

the future with explicit simulations.

Forward Model Feedback Decoupling Inverse Model Forward Decoupling

controller
cortical

(motor) cortex
main model (MM) cerebellum synthesiser

input
motor

state/command
area state

sensory/desired
state

(temp.) area state
(spat.) upstream state

output
prediction

future state
(temp.) future gradient

(spat.) downstream gradient
motor command

(temp.) future state
(spat.) downstream state

output
destination

cortical
(motor) cortex

MM: same area
controlled

object
(temp.) MM: same area

(spat.) MM: downstream area

Table 3.1: Relationship between the internal models of the cerebellum with decoupling
machines [129]. The properties of the forward model of the cerebellum can be set against those
of feedback decoupling (blue); similarly, the properties of the inverse model of the cerebellum can
be set against those of forward decoupling (red). The internal models here focus on the classical
motor control setting but can be extended to cognition, where for example a “mental model”
replaces the “controlled object” [124]. Abbreviations: MM, main model; temp., temporal; spat.
spatial.

3.6.5.1 Cerebellum as a spatial feedback decoupler

This Chapter focuses on temporal problems being solved by a cortical area modelled as a re-

current neural network (RNN) to which a cerebellar network provides predictions of the future

errors/feedback with respect to that area. An analogous biologically relevant system also arises,

however, when one considers cortical processing in space using feedforward computations involv-

ing several distinct regions (Figure 3.10).

This setup - where the “main” (cortical) network is a feedforward composition of multiple

brain regions - was also considered in Jaderberg et al.. Now, as opposed to predicting errors

which occur strictly at later points in time, the role of the cerebellar network is to predict errors

which occur in later brain regions. The result is that an earlier region has access to its feedback

(predicted by the cerebellum) without the need to wait for the later forward/back propagation of

spatial activity. Formally, if (with abuse of notation) we assume cortical processing as a sequence

{hi}N
i=1 of feedforward computations: A(x) = (hN ◦hN−1 ◦ · · · ◦h1)(x) which defines a final error

function E
(
A(x)

)
, then the cerebellar network can provide predicted feedback at a given brain

area as soon as its activities are computed: C (hi) := ˆfbi = ∂̂E
∂hi

≈ ∂E
∂hi

.

This perspective would effectively feedback processing across the brain. This interpretation

of the model is consistent with cerebellar-thalamo-cortical projections targeting distal dendrites,

which have been proposed as the site of error or feedback encoding which underlie efficient

learning [209, 229].
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Figure 3.10: Cerebellum as decoupling machine in feedforward multi-area networks. a,
Illustration of decoupling feedback processing. The cerebellum makes predictions of the feedback
expected by brain area 2, decoupling the main network from downstream brain areas (dashed red
arrow). b, Case of decoupling feedforward processing. The cerebellum predicts the forward activity
expected by brain area 3, thereby approximating (and decoupling) the forward computations
between brain area 1 and 3 (dashed black arrow). Note that the cerebellum could, in principle,
approximate feedback and feedforward processing across many more brain areas (e.g. brain area
2 could itself be expanded into multiple brain areas).

3.6.5.2 Cerebellum as a forward decoupler

In classical cerebellar theory, the complement to the forward model hypothesis is the inverse

model, in which the cerebellum predicts motor commands [285], or even implicit mental predic-

tions to solve a problem [124], directly. Again it is possible to consider this under the proposed

framework, but now using its forward prediction version.

In this case the role of the cerebellum is not to predict future feedback activity, but the

feedforward activity itself, i.e., C (hi)= ĥ j for some later region j > i. ĥ j is fed as a replacement

to region j, making it forward decoupled from a potentially slower intermediate processing

h j ◦h j−1 ◦ · · · ◦hi+1.

Functionally this would provide the organism with fast inputs (e.g. motor commands or

potential mental solutions) without the need for potentially slower cortical processing (Figure S1b).

We also point out the relevance of direct predictions of later activity in the temporal case, where

the cerebellum strictly predicts motor activity at later timesteps, as suggested in [263]. A broad

comparison between this framework and the cerebellar internal model hypothesis is shown in

Table 3.1.
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ACCUMULATE BP(λ): ONLINE LEARNING VIA SYNTHETIC

GRADIENTS

In this Chapter I build upon the framework introduced in the last Chapter. In particular, I

introduce a novel algorithm for learning to predict error gradients. This algorithm – which I

refer to as accumulate BP(λ) – can be considered analogous to the accumulate TD(λ) algorithm

applied in the Reinforcement Learning (RL) paradigm. In this Chapter I will demonstrate the

benefits of this algorithm, both by analytical and experimental means.

This Chapter is organised as follows. First, in Section 4.1, I will provide motivation for accu-

mulate BP(λ) by revisiting the limitations of the original learning algorithm. Next, in Section 4.2,

I will run through the necessary preliminaries; in particular, building upon Jaderberg et al. [129],

I will formalise a mapping between error gradients in supervised learning and value functions in

RL. Next, in Section 4.3, I will present the accumulate BP(λ) algorithm and demonstrate analyti-

cally that it learns to approximate error gradients derived by full backpropagation through time

(BPTT). Here I will describe the biological implications of accumulate BP(λ), and briefly relate

it explicitly to the ccRNN architecture proposed in the last Chapter. I will then experimentally

validate accumulate BP(λ) on several tasks, providing implementation details in Section 4.4 and

demonstrating its performance benefits in Section 4.5. I will then present a short discussion of

the results in Section 4.6, before finally addressing limitations in Section 4.7.

Overall, this Chapter extends the framework in Chapter 3 by proposing an analytically and

experimentally justified algorithm for learning error gradients.

4.0.1 Perspective on Chapter material

Since the material of this Chapter builds upon the biologically motivated framework in Chapter

3, it is inherently relevant (according to my proposal) to neuroscience; this is briefly discussed in

63



CHAPTER 4. ACCUMULATE BP(λ): ONLINE LEARNING VIA SYNTHETIC GRADIENTS

Section 4.3.6. However, it should be highlighted that much of the progress made in this Chapter

is strictly analytical, and experimental validation is determined solely by performance metrics.

For this reason the reader should consider this Chapter principally as a development in

machine learning (ML), or in particular an ML solution to the temporal credit assignment (TCA)

problem, rather than being directly orientated around the brain itself. Indeed, the proposed

algorithm in this Chapter can be considered as a follow up on the original “decoupled” deep

learning framework [129].

For generality, therefore, I will avoid the use of neuroscientific terms in the description of

accumulate BP(λ). For example, recurrent neural networks (RNNs) will simply be called “RNNs”

and not “cortical RNNs”. In line with Jaderberg et al. [129], the cerebellar network of the last

Chapter will be called the “synthesiser” (with short-hand notation g instead of C ), and the

predicted error feedback as “synthetic gradients” (with notation G instead of fb). The reader

is also advised that in this Chapter I use n to denote truncation size (so at to highlight its

relationship to n-step methods in RL), whilst T remains as the total task length.

4.1 Motivation and Introduction

As discussed in the preceding Chapters, a common approach for solving temporal tasks is

to use recurrent neural networks (RNNs), which with the right parameters can effectively

integrate and maintain information over time. The temporal distance between RNN activity and

subsequent task error, however, can make optimising these parameters challenging – temporal

credit assignment (TCA) problem. The backpropagation through time (BPTT) algorithm is the

classical solution to this problem that is applied once the task is complete and all task errors are

propagated backwards in time through the preceding chain of computation. Exact error gradients

are thereby derived and are used to guide updates to the network parameters (see Section 2.1).

However, as highlighted in Section 2.1.5, BPTT can be undesirably expensive to perform, with

its memory and computational requirements scaling intractably with the task duration. Moreover,

the gradients can only be obtained until after the RNN has completed the remaining forward

and corresponding backward passes. This makes the network parameters effectively locked until

those computations are carried out. One common solution to alleviate these issues is to apply

truncated BPTT, where error gradients are only backpropagated within fixed truncation windows,

but this approach by its very nature fails to capture longer-range temporal dependencies.

One proposed method – outlined in Chapter 3 – which avoids the need for many-step BPTT

whilst still capturing long-range dependencies it to apply predicted, or “synthetic”, gradients

[58, 129]. In this method gradients from future errors are predicted by a separate network, a

synthesiser, which is given the current RNN activity as input (Figure 4.1a). Synthetic gradients

enable the network to model long-range dependencies on future errors whilst avoiding the waiting

time imposed by BPTT. The independence of memory and computational complexity with respect
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RNN

time

...

...

synthesiser

unavailable BPTT gradient

Figure 4.1: Schematic of a recurrent neural network (RNN) which learns with synthetic gradients
[129]. a, External input xt is provided to the RNN which has hidden state ht. Due to recurrency
this state will affect the task error at the current timestep E t and also for future timesteps E>t
not yet seen. A distinct synthesiser network receives ht as input and estimates its future error
gradient Ĝ t ≈ ∂E>t

∂ht
. The RNN then has immediate access to its error gradient. The synthesiser

learns to mimic a target gradient vt; how to best learn vt is the subject of this current study. b,
An illustration of the accumulate BP(λ) algorithm for learning synthetic gradients in an unrolled
version of the network. Current activity ht must be correctly associated to the later task error ET .
Here the parameters θ of the synthesiser are updated via a mixture of temporal difference errors
δ (red) and eligibility traces e (green). As in accumulate TD(λ) in RL, δ is computed online using
bootstrapping whilst e propagates forwards with a decay component λ with 0≤λ≤ 1. Together,
they approximate the true error gradient. In contrast to the methods in Jaderberg et al. [129] (cf.
Equation 4.9) this model does not require BPTT.

to the total task length also makes synthetic gradients an attractive alternative compared to

BPTT [181]. Indeed, how the brain might efficiently learn using synthetic gradients was the

subject of Chapter 3.

However, despite their promise, the full potential of approximating BPTT with synthetic

gradients has not yet been realised. In particular, it is not yet clear what are the optimal

conditions for learning synthetic gradients. In its original formulation (and as implemented in

Chapter 3), Jaderberg et al. use synthetic gradients alongside truncated BPTT, and define the

synthesiser target as a mixture of backpropagated gradients with its own predicted (future)

gradient. That is, the synthesiser uses its own estimations – bootstrapping – for learning. As the

original authors note, this is highly reminiscent of temporal difference (TD) algorithms used in

Reinforcement Learning (RL) which use bootstrapping for estimating the future return [258].

Indeed in their supplementary material Jaderberg et al. extend this analogy and introduce the

notion of the λ-weighted synthetic gradient, which is analogous to the λ-return in RL. However,

λ-weighted synthetic gradients were only presented conceptually and it remains unclear whether

they would be of practical benefits as they still require BPTT.

In this Chapter, inspired by established RL theory, I make conceptual and experimental
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advancements on λ-weighted synthetic gradients. In particular, I propose an algorithm for

learning synthetic gradients – accumulate BP(λ) – which mirrors the accumulate TD(λ) algorithm

in RL [269]. Just as how accumulate TD(λ) provides an online solution to learning the λ-return in

RL, I show that accumulate BP(λ) provides an online solution to learning λ-weighted synthetic

gradients. The algorithm uses forward-propagating eligibility traces and has the advantage of

not requiring (even truncated) BPTT at all. Moreover, I demonstrate that accumulate BP(λ)

can alleviate the bias involved in directly learning bootstrapped estimations as suffered in the

original implementation.

4.2 Preliminaries: correspondence between synthetic gradients
and RL methods

In this Section I go through the necessary preliminaries for the proposed model of learning

synthetic gradients. Naturally, with this model extending the framework of synthetic gradients

introduced in [129], this Section repeats material from Chapter 3, though now in a manner

designed to facilitate correspondence to RL methods.

4.2.1 Synthetic gradients for supervised learning

Consider an RNN with free parameters W performing a task of sequence length T (which may be

arbitrarily long). At time t RNN dynamics follow ht = f (xt,ht−1;W), where h is the RNN hidden

state, x is the input, and f is the RNN computation. Let E t = E (zt, yt) denote the error at time t,

where zt is the RNN-dependent prediction and yt is the desired target. Let E>t =∑
t<τ≤T Eτ be a

shorthand form to denote the total error strictly after timestep t.

During training W is updated to minimise all errors from timestep t onwards. Using gradient

descent this is achieved with W =W −η∂
∑

t≤τ≤T Eτ

∂W for some RNN learning rate η (see Background

Section 2.1.4). This gradient can be written as

∂
∑

t≤τ≤T Eτ

∂W
= ∂(E t +E>t)

∂W
(4.1)

= ∂E t

∂W
+ ∂E>t

∂W
(4.2)

=
(
∂E t

∂ht
+ ∂E>t

∂ht

)
∂ht

∂W
. (4.3)

Whilst the terms ∂E t
∂ht

and ∂ht
∂W above are relatively easy to compute and available at timestep t,

∂E>t
∂ht

can present challenges. Without BPTT, this term is simply taken as zero, ∂E>t
∂ht

= 0, and future

errors are effectively ignored. With BPTT, this term is only computed after the forward pass

and the corresponding backward pass so that all future errors are observed and appropriately

backpropagated. This has memory and computational complexity which scales with T, and

thereby relies on arbitrarily long waits before the error gradient is available.
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The aim of synthetic gradients is to provide an immediate prediction Ĝ t of the future error

gradient, Ĝ t ≈ G t := ∂E>t
∂ht

[129]. Notation G t is used both to represent “gradient” but also to

highlight its resemblance to the return in RL (note that this was denoted by fbt in Chapter 3).

Note that this gradient is a vector of the same size as h. As in Jaderberg et al. [129] and as

presented in Chapter 3, Ĝ t is considered to be a computation of the current RNN state with

a separate “synthesiser” network: Ĝ t = g(ht;θ), where g denotes the synthesiser computation

which depends on its free parameters θ. An approximation for the error gradient with respect to

the RNN parameters can then be written as

∂
∑

t≤τ≤T Eτ

∂W
≈

(
∂E t

∂ht
+ Ĝ t

)
∂ht

∂W
. (4.4)

This is available at timestep t and removes the dependence of the memory and computational

complexity on T as in Equation 4.3.

4.2.2 Learning synthetic gradients

How the synthesiser parameters θ should be learned remains relatively unexplored and is the

focus of this Chapter. The problem can be stated as trying to minimise the synthesiser error

function Eg(θ) defined as

Eg(θ) := Eht∼P

[
1
2

∥∥vt − Ĝ t
∥∥2

2

]
(4.5)

= 1
2

∑
t

P (ht)∥vt − g(ht;θ)∥2
2 , (4.6)

Where P is the probability distribution over RNN hidden states, vt is the target synthetic gradient

for state ht, and ∥.∥2 denotes the Euclidean norm. By taking samples of hidden states ht and

applying the chain rule, the stochastic updates for θ can be written as

θt+1 = θt +α (vt − g(ht;θt))⊤∇θt g(ht;θt) (4.7)

Where α is the synthesiser learning rate. Note the transpose operation ·⊤ since all terms in

Equation 4.7 are vectors.

Ideally vt is the true error gradient, vt = G t, but this requires full BPTT which is exactly

what synthetic gradients are used to avoid. In its original formulation, Jaderberg et al. instead

propose a target which is based on mixture of backpropagated error gradients within a fixed

window and a bootstrapped synthetic gradient to incorporate errors beyond. The simplest version

of this, which only uses one-step BPTT, only incorporates the error at the next timestep and relies

on a bootstrap prediction for all timesteps onwards. This target is denoted as G(1)
t .

G(1)
t = ∂E t+1

∂ht
+γĜ t+1

∂ht+1

∂ht
(4.8)
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where, inspired by RL, γ ∈ [0,1] is the gradient discount factor which if γ< 1 scales down later

error gradients. Note that in its original implementation γ= 1, but in my simulations I find it

important to set γ< 1 (see Section 4.4).

Notably, Equation 4.8 resembles the bootstrapped target involved in the TD algorithm in

RL [258]. In particular, G(1)
t can be considered analogous to the one-step return at state St

defined as Rt+1 +γV (St+1), where Rt+1 is the reward, St+1 is the subsequent state, and V is the

(bootstrapped) value function.

Table 4.1: Summary of terms used in value estimation in Reinforcement Learning (RL)
and synthetic gradient (SG) estimation in supervised learning. G t; the return (RL) or
true BPTT error gradient (SG). Ĝ t; estimation of G t by a parameterised value function V (RL)
or synthesiser function g (SG). G(n)

t ; the n-step return (RL) or n-step synthetic gradient (SG).
Gλ

t ; the λ-return (RL) or λ-weighted synthetic gradient (SG). Gλ|H
k ; the interim λ-return (RL) or

interim λ-weighted synthetic gradient (SG). For RL Rt denotes the reward at timestep t and φt
denotes the feature-based representation of the state St.

Reinforcement Learning Synthetic Gradients

G t
∑
τ≥1γ

τ−1Rt+τ
∑
τ≥1γ

τ−1 ∂E t+τ
∂ht

Ĝ t V (φt;θ) g(ht;θ)

G(n)
t

∑n
τ=1γ

τ−1Rt+τ+γnĜ t+n
∑n
τ=1γ

τ−1 ∂E t+τ
∂ht

+γnĜ⊤
t+n

∂ht+n
∂ht

Gλ
t (1−λ)

∑T−t−1
n=1 λn−1G(n)

t +λT−t−1G t

Gλ|H
k (1−λ)

∑H−k−1
n=1 λn−1G(n)

k +λH−k−1G(H−k)
t

4.2.3 n-step synthetic gradients

In practice, in its original implementation1 Jaderberg et al. primarily consider applying synthetic

gradients alongside truncated BPTT for truncation size n > 1.

In this case, the left side term in Equation 4.8 can be extended to incorporate error gradients

backpropagated within the n timesteps of the truncation. Jaderberg et al. then set the synthesiser

target as vt =G(n)
t where G(n)

t is the n-step synthetic gradient defined2 as

G(n)
t = ∑

t<τ≤t+n
γτ−t−1 ∂Eτ

∂ht
+γnĜ t+n

∂ht+n

∂ht
, (4.9)

Which is analogous to the n-step return in RL. Importantly, in practice this scheme uses truncated

BPTT to both define the synthesiser target and the error gradient used to update the RNN.

Specifically, Jaderberg et al. (and the simulations in Chapter 3) apply the n backpropagated

gradients to directly learn W as well as θ, with the synthetic gradients themselves only applied

at the end of each truncation window (see original paper or Chapter 3 for details).
1This is also true for many of the results presented in Chapter 3.
2Note the correspondence to Equation 3.9 in Chapter 3.
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Just as in RL, increasing the truncation size n provides a target which assigns more weight

to the observations than the bootstrapped term, thus reducing its bias and potentially leading to

better synthesiser learning. On the other hand, Equation 4.9 requires n-step BPTT and thereby

enforces undesirable waiting time and complexity for large n.

4.3 BP(λ)

I now formulate a learning algorithm – accumulate BP(λ) – which has the advantage of reduced

bias compared to the original n-step implementation. Moreover, the algorithm can be implemented

at each timestep and does not require BPTT at all.

I first define λ-weighted synthetic gradients. I highlight that this definition is similar, but not

the same, as that first introduced in Jaderberg et al. [129]. Specifically, this definition incorporates

error gradients for errors strictly after the current timestep and can therefore naturally be used

in the context of learning the synthesiser.

4.3.1 λ-weighted synthetic gradient

Let λ be such that 0≤λ≤ 1. The λ-weighted synthetic gradient is defined as

Gλ
t := (1−λ)

∞∑
n=1

λn−1G(n)
t (4.10)

= (1−λ)
T−t−1∑

n=1
λn−1G(n)

t +λT−t−1G t, (4.11)

Which is analogous to the λ-return in RL.

Note the distinction in notation between the λ-weighted synthetic gradient Gλ
t and the n-

step synthetic gradient G(n)
t . Moreover, note that Equation 4.11 is similar but distinct to the

recursive definition as proposed in Jaderberg et al. [129] (see Appendix Section B.2 for details). In

particular, whilst Jaderberg et al. also incorporate the error gradient at the current timestep in

their definition, Equation 4.11 only considers strictly future errors. Since the synthesiser itself is

optimised to produce future error gradients (Equation 4.4), this enables the λ-weighted synthetic

gradient to be directly used as a synthesiser target.

As in RL, a higher choice of λ results in stronger weighting of observed gradients compared

to the bootstrapped terms. For example, whilst G0
t =G(1)

t is just the one-step synthetic gradient

which relies strongly on the bootstrapped prediction (cf. Equation 4.8), G1
t = G t is the true

(unbiased) gradient as obtained via full BPTT.

The interim λ-weighted synthetic gradient Gλ|H
k is also defined as

Gλ|H
k := (1−λ)

H−k−1∑
n=1

λn−1G(n)
k +λH−k−1G(H−k)

k . (4.12)

Unlike Equation 4.11, this is available at time (“horizon”) H with k < H < T.
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Table 4.1 provides an overview of the terms defined along with their respective counterparts

in RL.

4.3.2 Offline λ-SG algorithm

The offline λ-SG algorithm to learn θ is defined, which is analogous to the offline λ-return

algorithm in RL but for synthetic gradients (SG), by taking vt =Gλ
t in Equation 4.7. It is offline

in the sense that it requires the completion of the sequence at timestep T before updates are

possible.

4.3.3 Online λ-SG algorithm

The online λ-SG algorithm to learn θ is defined, which is analogous to the online λ-return

algorithm in RL but for synthetic gradients. At the current timestep t, the algorithm updates θ

based on its prediction over all prior RNN hidden states hk from k = 0 up to k = t. Explicitly, the

update at timestep t for state k is

θt
k = θt

k−1 +α
(
Gλ|t

k − g(hk;θt
k−1)

)⊤∇θt
k−1

g(hk;θt
k−1), (4.13)

Where θ0
0 = θinit is the initialisation weight and θt

0 = θt−1
t−1 for t > 0. The information used for

the weight updates in Equation 4.13 is available at the current timestep and the algorithm is

therefore online. Moreover, as in RL, the online λ-SG algorithm produces weight updates similar

to the offline λ-SG algorithm. In particular, at the end of the sequence with the horizon H = T

note that Gλ|H
t and Gλ

t are the same.

However, to store the previous hidden states and iteratively apply the online λ-SG algorithm

requires undesirable computational cost. In particular, the 1+2+·· ·+T operations in Equation 4.13

result in computational complexity which scales intractably with T2.

4.3.4 Accumulate BP(λ)

In this Chapter I propose the accumulate BP(λ) algorithm which is directly inspired by the

accumulate TD(λ) algorithm in RL [269]. Like accumulate TD(λ), the motivation for accumulate

BP(λ) is to enable time independent, online computations whilst alleviating the problem of bias

which comes from bootstrapping using eligibility traces (Figure 4.1b).

In accumulate BP(λ), the weight update at timestep t is defined by

θt+1 = θt +αδ⊤t et, (4.14)

Where δt is the temporal difference error at timestep t

δt = ∂E t+1

∂ht
+γg(ht+1;θt)⊤

∂ht+1

∂ht
− g(ht;θt), (4.15)
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Algorithm 1 RNN learning with accumulate BP(λ). Updates RNN parameters using estimated
gradients provided by synthesiser function g.
Require: W0, θ0, {(xt, yt)}1≤t≤T , η, α, γ, λ

W ←W0 {init. RNN params}
θ← θ0 {init. synth. params}
h, e,∂h ← 0
for t = 1 to T do

e← γλ∂he+∇θg(h;θ) {update elig. trace}
h′ = f (xt,h;W), E ← E (h′, yt) {next state/error}
∂h = ∂h′

∂h , ∂E ← ∂E
∂h′ , ∂W = ∂h′

∂W {local gradients}
δ← [∂E +γg(h′;θ)]⊤∂h − g(h;θ) {synth. TD error}
∆θ =αδ⊤e {update synth.}
∆W = η[∂E + g(h′;θ)]⊤∂W {update RNN}
h←h′

end for

And et is the eligibility trace of θ at time t

et = γλ ∂ht

∂ht−1
e t−1 +∇θt g(ht;θt), (4.16)

With e0 defined as the zero vector, e0 = 0.

Point of clarity. Note that there is some abuse of notation with respect to the matrix

multiplication operations defined in Equations 4.14 and 4.16. If inθ,outθ are the sizes of the

input and output dimension of θ, respectively, then the eligibility trace et is a three-dimensional

vector of shape (|h|,outθ, inθ), where |h| is size of h. To compute the matrix product Aet for a

vector A of shape (r, |h|) the latter two dimensions of et are concatenated so that is of shape

(|h|,outθ× inθ) and once the product is computed reshape it as (r,outθ, inθ). Note that if r = 1 (as

in Equation 4.14) then the first dimension is removed.

The main analytical result of this Chapter is that accumulate BP(λ) provides an approxima-

tion to the online λ-SG algorithm. This Theorem uses the term ∆t
i defined as

∆t
i :=

(
Ḡλ|t

i − g(hi;θ0)
)⊤∇θi g(hi;θi), (4.17)

Where Ḡλ|t
i is the λ-weighted synthetic gradient which uses the initial weight vector θ0 for all

synthetic gradient estimations.

Theorem 4.3.1. Let θ0 be the initial weight vector, θBP
t be the weight vector at time t computed by

accumulate BP(λ), and θλt be the weight vector at time t computed by the online λ-SG algorithm.

Furthermore, assume that
∑t−1

i=0∆
t
i does not contain any zero-elements. Then, for all time steps t:∥∥θBP

t −θλt
∥∥

2∥∥θBP
t −θ0

∥∥
2
→ 0 as α→ 0

.
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Proof: The full proof can be found in Appendix Section B.1. In general, the structure of the proof

closely follows that provided in the analogous RL paradigm for accumulate TD(λ) [269] □.

Accumulate BP(λ) thus provides an online method for learning the λ-weighted synthetic

gradient which, analogous to accumulate TD(λ), avoids the memory and computational require-

ments of the online λ-SG algorithm. For example, when eligibility traces are unused and λ= 0,

i.e. accumulate BP(0), the synthesiser learns the one-step synthetic gradient G(1)
t and arrives at

the original implementation with truncation size n = 1 [129]. When λ= 1, i.e. accumulate BP(1),

for an appropriately small learning rate α the synthesiser learns the true BPTT gradient G t.

Importantly, Equations 4.15 and 4.16 only consider gradients between variables of at most 1

timestep apart. In this respect there is no BPTT.

4.3.5 Application to feedforward networks

Though synthetic gradients for temporal problems using RNNs is the focus of this study, accu-

mulate BP(λ) can also generalise to static problems using feedforward networks. As discussed

in the original paper, in this case the synthesiser is used to predict error gradients spatially

backpropagated through the networks layers [129].

Suppose that a feedforward network incorporates K hidden layers of the same size and let

hk denote the activity at the kth layer. Then Equations 4.14-4.16 can be applied by replacing

the timestep index t with layer index k, where the error Ek is the error at the output layer for

k = K +1 and Ek = 0 otherwise. Importantly, note that unlike in Jaderberg et al. [129], in this

case the same synthesiser parameters θ must be used at each layer of the network.

4.3.6 Biological interpretation and implications

The BP(λ) algorithm is of potential interest to neuroscience. Unlike BPTT which is considered

biologically implausible (see Section 2.1) [164], the algorithm is fully online and avoids the need

to store intermediate activations (and complex gradient calculations back in time) across an

arbitrary number of timesteps. In particular, unlike the conventional application of synthetic

gradients [129] as presented in Chapter 3, BP(λ) does not even require the more modest, but

still potentially biologically questionable, truncated BPTT.

How might BP(λ) be employed in the nervous system? As in Chapter 3 I argue that whilst

the primary network performing the task can be corresponded to a cortical circuit (either RNN or

feedforward network), the feedforward synthesiser network can be corresponded to the cerebellum.

In particular, I highlight that the bootstrapped learning strategy for learning synthetic gradients,

which is particularly essential in BP(λ), has been observed in the cerebellum [138, 203]. Moreover,

the algorithm makes specific predictions as to the function of eligibility traces (cf. Equation 4.16)

during learning, which are known to be incorporated at cerebellar parallel fibres over long

timescales [137, 222]. However, it should be noted that how the cerebellum might incorporate
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multiple eligibility traces at once at the same synapse/cell, as required in Equation 4.16, is

unclear (see Limitations in Section 4.7).

4.4 Implementation details

I experimentally validate the accumulate BP(λ), which for brevity I will simply call BP(λ), on a

variety of tasks. I will now present implementations details for these experiments.

4.4.1 Model details

For the experiments which analyse the alignment of synthetic gradients to true gradients

(Figure 4.2 and Appendix Figure B.1), I use an RNN with a linear activation function (i.e.

Equation 2.2 where φ is the identity function. For the experiments for which I train the RNN

using synthetic gradients (Figures 4.3 and 4.4), I use LSTM units in the RNN architecture (cf.

Section 3.3.1.3) [110].

The model output for a given task is a (trained) linear readout of the RNN (output) state. The

synthesiser network performs a linear operation (with a bias term) on the RNN hidden state

(concatenation of cell state and output state for LSTM) to produce an estimate of its respective

error gradient. The synthetic gradient at the final timestep is defined as zero. As in Jaderberg

et al. [129] and in Chapter 3, the synthesiser parameters θ are initialised at zero.

The model initialisation protocol is the same as the preceding Chapter (see Section 3.3.1.1).

4.4.2 Training details

When truncated BPTT with truncation size n is applied for a task sequence length T, the sequence

is divided3 such that the first truncation is of size R where R = T mod n and each following

truncation is of size n.

For BP(λ) I often find it empirically important to use a discount factor γ< 1. Except in the

toy paradigm task (Figure 4.2) for which γ= 1, for all simulations I set γ= 0.9.

I often find it necessary to scale down the synthetic gradient before it is received by the RNN.

I find this particularly necessary when using synthetic gradients alongside truncated BPTT, and

in this case generally find a scaling factor 0.1 optimal as in Jaderberg et al. [129] (and Chapter 3).

I find that BP(λ) is less sensitive to this condition and choose scaling factors depending on the

task (see below).

Data is provided to the model in batches. Though it is in principle possible to update the

model as soon as the synthetic gradient is provided (e.g. every timestep), I find that this can

lead to unstable learning, particularly when explicit supervised signals are sparse (as in the

3Note that this is in contrast to the division protocol in Chapter 3. This is because in this Chapter particularly I
focus on tasks with task targets (and therefore errors) only defined at the end, and for interpretability this error is
now ensured to backpropagated over n timesteps.
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sequential-MNIST task). For this reason I instead accumulate gradients over timesteps and

update the model at the end of the batch sequence. I use an ADAM optimiser for gradient descent

on the model parameters [142].

4.4.3 Toy paradigm to analyse gradient alignment

For the toy task I provide the model an input at timestep 1 and the model is trained to produce a

target 2-d coordinate at the final timestep T where T = 10. The input is a randomly generated

binary vector of dimension 10. The task error is defined as the mean-squared error between the

model output and target coordinate. The RNN is this experiment is fixed.

For this task I provide the model data in batches of size 10, where 1 epoch involves 100

batches. The number of RNN units is 30 and the initial learning rate for the synthesiser is set as

1×10−4.

4.4.4 Sequential-MNIST task

I consider the sequential-MNIST classification task as in the previous Chapter (cf. Section 3.3.3.2),

in which I present a row-by-row presentation of a given MNIST image to the model [63, 154].

That is, as before, the task is divided into 28 timesteps where at the tth timestep the tth row of

28 pixels is provided to the model. At the end of the presentation, the model must classify which

digit the input represents. The task error is defined as the cross entropy between the model

output and the target digit.

For this task I provide the model data in batches of size 50 with an initial learning rate of

3×10−4. The number of hidden LSTM units is 30. For BP(λ) the synthetic gradient is scaled by a

factor of 0.1.

During training, the models with the lowest validation score over 50 epochs are selected to

produce the final test error.

4.4.5 Copy-repeat task

For the copy-repeat task [91] the model receives a delimiter before an 8-dimensional binary

pattern of length N and then a repeat character R. The model must then repeat the binary

pattern R times followed by a stop character. The total sequence length is therefore N×(R+1)+3.

For easier absorption R is normalised by 10 when consumed by the model.

I follow the curriculum in Jaderberg et al. [129] and alternatively increment N and R when a

batch average less than 0.15 bits is achieved.

For this task I provide the model data in batches of size 100. For the RNN and readout

parameters I use an initial learning rate of 1×10−3, whilst I find a smaller learning rate of

1×10−5 for the synthesiser parameters necessary for stable learning. The number of hidden

LSTM units is 100. For BP(λ) I do not apply scaling to the synthetic gradient.
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4.4.6 Statistical analysis

As in Chapter 3, because the initial conditions can influence the learning trajectory, each model

is run across 5 different randomly chosen seeds. Following convention in machine learning I do

not apply t-tests but instead infer the significance of results can be inferred via error bars.

4.4.7 Code and computing resources

All experiments are run using the PyTorch library. Code4 can be found at https://github.com/

neuralml/bp_lambda.

The toy paradigm experiments used to analyse gradient alignment were conducted with an

Intel i7-8665U CPU, where each run with a particular seed took approximately one minute. The

sequential MNIST task and copy-repeat tasks were conducted on NVIDIA GeForce RTX 2080 Ti

GPUs. Each run in the sequential MNIST task took approximately 3 hours or less (depending on

the model used); each run in the copy-repeat task took approximately 12 hours or less. Running

over different seeds and hyperparameter settings I estimate the total compute time (including

unreported results) to be in the order of ∼ 3000 hours.

4.5 Experiments
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Figure 4.2: BP(λ) derives true BPTT gradients over multiple timesteps. In this toy
paradigm, input is only provided at timestep 1 and the task target is only available at the
end of the task at time T = 10. a, Alignment between synthetic gradients and true gradients for a
fixed RNN model across different timesteps within the task, where the synthetic gradients are
learned using (accumulate) BP(λ). Alignment is defined using the cosine similarity metric (cf.
Equation 3.27). b, The average alignment over the last 10% of epochs in a across all timesteps.
Error bars represent mean ± SEM across 5 different initial conditions.

I test empirically the ability of accumulate BP(λ) algorithm to produce good synthetic gra-

dients and thereby drive effective RNN parameter updates. For each experiment I take the

synthesiser computation g simply as a linear function of the RNN hidden state, g(ht;θ)= θht.

4If this code is not yet publicly available at time of reading, this can be made accessible via request.
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4.5.1 Approximation to true error gradients

Figure 4.3: Sequential MNIST task. a, Schematic of task. Rows of an MNIST image are fed
sequentially as input and the model must classify the digit at the end. b, Validation error during
training for BP(λ) models. c, Validation error during training for models which learn synthetic
gradients (SG) with n-step truncated BPTT as in original implementation [129]; performance
threshold of BP(1) (dotted green) is shown for reference. Error bars represent mean ± SEM
across 5 different initial conditions.

I first analyse the alignment of BP(λ)-derived synthetic gradients and true gradients derived

by full BPTT. For this I consider a toy paradigm in which a fixed (randomly connected) linear

RNN receives a static input x1 at timestep 1 and null input onwards, xt = 0 for t > 1. To test the

ability of BP(λ) to transfer error information across time the error is only defined at the last

timestep ET , where ET is the mean-squared error (MSE) between a two-dimensional target yT

and a linear readout of the final hidden activity hT . I use a task length of T = 10 timesteps. Note

that since the network is linear and the error is a function of the MSE, the linear synthesiser

should in principle be able to learn to exactly replicate the BPTT gradient [58].

I find that a high choice of λ improves the alignment of synthetic gradients and true gradients

compared to the λ = 0 case, i.e. BP(0) as in the original implementation [129] (Figure 4.2a).

Specifically, I see that the reliance on bootstrapping implicated in BP(0) means that error

gradients near the end of the sequence must first be faithfully captured before earlier timesteps

can be learned. When eligibility traces are applied in BP(1), however, the overreliance on the

bootstrapped estimate is drastically reduced and the synthesiser can almost immediately learn

faithful predictions across all timesteps. Indeed, I observe a negative correlation between the

value of λ – i.e. the relative strength of bootstrapping – and the rate of deterioration of synthetic

gradients over timesteps (Figure 4.2b). I also observe BP(λ) to often outperform learning n-step

synthetic gradients (Appendix Figure B.1)

I next consider how useful these synthetic gradients can be for RNN learning. To this end I

follow the scheme of Jaderberg et al. [129] and apply RNN weight updates at the same time as

synthesiser weight updates (Algorithm 1). This is in principle now harder for the synthesiser,

since changes to the RNN will affect is error gradients and therefore lead to a moving synthesiser
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target. For these results I now use non-linear LSTM units in the RNN [110].

4.5.2 Sequential MNIST task

Table 4.2: Overview of model performance for sequential MNIST and copy-repeat tasks.
Results for the sequential MNIST task show the average test error as a percentage after training
(lower is better). Results for copy-repeat shows the average task sequence length solved by the
model (error is < 0.15 bits; higher is better). Mean scores are shown across 5 different initial
conditions.

BPTT BPTT + SG no BPTT
n=2 n=3 n=4 n=5 n=2 n=3 n=4 n=5 n=1 BP(0) BP(0.5) BP(1)

seq-MNIST task 26.7 21.6 18.0 12.9 21.8 17.0 13.5 9.6 35.9 30.4 23.4 9.4
copy-repeat task 9.0 9.0 12.0 15.0 12.0 9.0 15.0 23.0 8.2 9.0 15.8 29.0

I consider the sequential MNIST task [154], referred to in the Chapter 3 as the online visuo-

motor discrimination task. In this task the RNN is provided with a row-by-row representation of

an MNIST image which it must classify at the end (Figure 4.3a). That is, like the toy example

above the task error is only defined at the final timestep and must be effectively associated to

prior inputs.

I observe that an RNN learning using synthetic gradients derived by BP(λ) significantly

improves on a standard no-BPTT model, i.e. with ∂E>t
∂ht

= 0 in Equation 4.3 (Figure 4.3b). Consistent

with the quality of synthetic gradients produced when the RNN is fixed ((Figure 4.2), I find a

high value of λ produces faster rates of learning and higher performance thresholds. For example,

BP(1) achieves an error less than a third of that achieved by the eligibility trace free BP(0)

(∼ 10% vs ∼ 30%). Moreover, BP(1) generally performs better than models in [129] which use

truncated BPTT and the n-step synthetic gradient with n > 1 (Figure 4.3c and Table 4.2).

4.5.3 Copy-repeat task

Finally I consider a task with more complex and longer temporal dependencies – the copy-repeat

task [91]. In this task the model receives as input a start delimiter followed by an 8-dimensional

binary sequence of length N and a repeat character R. The model must then output the sequence

R times before finishing with a stop character. The total sequence length is then T = N×(R+1)+3.

I follow the procedure as set out in Jaderberg et al. [129] and deem a sequence length solved

if the average error is less than 0.15 bits. Once solved I increment N and R alternatively (see

Section 4.4 for details).

I again observe that BP(1) provides the best BPTT-free solution in solving large sequence

lengths and again outperforms the original n-step synthetic gradient methods (Figure 4.4 and

Table 4.2). Note that my implementation of these n-step methods fails to reach the performance
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Figure 4.4: Copy-repeat task. a, Maximum sequence length solved for BP(λ) models. A sequence
length is deemed solved if the model achieves an average of < 0.15 bits error for that length.
b, Maximum sequence length solved for models with n-step synthetic gradient (SG) learning
methods [129]; performance threshold of BP(1) (dotted green) is shown for reference. See also
Table 4.2 for models which are overlain. Error bars represent mean ± SEM across 5 different
initial conditions.

thresholds as presented in the original paper for synthetic gradients [129], though are more

consistent with those reported in Bellec et al. [24].

4.6 Discussion

BPTT can be expensive and enforce long waiting times before gradients become available. Syn-

thetic gradients remove these locking constraints imposed by BPTT as well as the associated

computational and memory complexity with respect to the task length [129]. However, the boot-

strapped n-step algorithm for learning synthetic gradients, as proposed by Jaderberg et al. and

implemented in Chapter 3, can lead to biased estimates and also maintains some dependence on

(truncated) BPTT to be performed.

Inspired by the accumulate TD(λ) algorithm in Reinforcement Learning (RL), in this Chapter

I propose a novel algorithm for learning synthetic gradients: accumulate BP(λ). This algorithm

applies forward propagating eligibility traces in order to reduce the bias of its estimates and

is fully online (Algorithm 1). I therefore extend the work of Jaderberg et al. in developing a

computational bridge between estimating expected return in the RL paradigm and future error

gradients in supervised learning.

The main result of this Chapter is Theorem 4.3.1, in which I demonstrate analytically that

accumulate BP(λ) approximates learning λ-weighted synthetic gradients. This is analogous to

the approximation of the λ-return using the accumulate TD(λ) algorithm. In principle, by setting

λ= 1, BP(λ) can thereby be used to learn unbiased gradient estimates.

I validate BP(λ) empirically. I show that BP(λ) can faithfully learn unbiased estimates

of the error gradient over many timesteps, and that the algorithm outperforms the original
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implementation for synthetic gradients over a variety of tasks. Coupled with its independence

from biologically questionable BPTT, BP(λ) may therefore be of interest in understanding how

synthetic gradients could be incorporated in the brain. In particular, following the model in

Chapter 3, the learning rules of the algorithm may be implementable by the cerebellum, though

further work is still needed to justify BP(λ) as biologically feasible (see next Section).

Overall, this Chapter exploits RL theory to provide a theoretically grounded, and experimen-

tally justified, approach to learning synthetic gradients.

4.7 Limitations and future directions

I address two potential computational limitations of the (accumulate) BP(λ) algorithm presented

in this Chapter, before also discussing potential difficulties in mapping the algorithm within a

biological circuit.

4.7.1 Modeling synthetic gradients in complex tasks

In Section 4.5 I validated that BP(λ) outperforms truncated BPTT and the original method for

learning synthetic gradients as presented in Chapter 3 [129] over a variety of tasks. However,

whilst these tasks included the far from trivial sequential MNIST and copy-repeat tasks, I did

not include analysis for tasks with the high degree of complexity as might commonly be used to

evaluate novel machine learning algorithms (e.g. the image-captioning task in Chapter 3). Indeed,

when I did apply BP(λ) on the arguably more difficult task of word or character prediction, I was

unable to observe any significant benefit.

I speculate that, since highly complex tasks are likely to lead to less predictable dynamics

and error functions, the application of synthetic gradients becomes challenging. Specifically, the

primary assumption of BP(λ) (and indeed the original framework [129]) – that the future error

gradient can be faithfully derived from the current hidden activity – may not generalise as task

complexity increases. Indeed, that synthetic gradients fail for “difficult” tasks was demonstrated

in [181], though it should be noted that the authors demonstrate that many other online learning

algorithms also fail in this paradigm.

To mitigate this issue I predict that as the task complexity increases then so should the

synthesiser function g. For example, whilst in this Chapter I only consider a linear synthesiser, I

expect that performance benefits are likely to be seen with a more expressive (non-linear) synthe-

siser function which involves non-linear hidden layers. In addition, providing the synthesiser

with more informative inputs may be fruitful. For instance, it has been shown that in the case

of feedforward networks that providing target information as additional context can enhance

synthetic gradient predictions [129], and input feature optimisation may generally be as fruitful

as in RL [169].
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4.7.2 Time-independent complexity but still computationally expensive

I have emphasised that the computational and memory requirements of BP(λ) are desirably

independent of the number of timesteps in the task. However, the operations for the synthesiser

network in BP(λ) can still be expensive in terms of memory and computational requirements. In

particular, given an RNN population h with size |h|, storage of the eligibility traces (Equation 4.16)

is of complexity |h|3, whilst operations to derive synthesiser parameter updates (Equation 4.14)

involve the multiplication of matrices which has time complexity of |h|4. For RNN sizes which

are larger than the task length (or imposed truncation size), BP(λ) may therefore be expensive

than alternate algorithms (Table 4.3). Indeed, BP(λ) has the same complexity as the real-time

recurrent learning algorithm (cf. Equation 2.20) [284], which itself is typically recognised as too

computationally expensive to be practical.

Following on from the discussion and preliminary work presented in Section 3.6.4, I appeal

to low-rank representations of error gradients as a way to mitigate the computational expense.

Specifically, the error gradient of h might be encoded (e.g. by an autoencoder) into some low

dimensional representation (cf. Equation 3.29). Supposing this representation to have dimension-

ality l for l << |h|, the memory and time complexity of BP(λ) then becomes significantly cheaper,

at l3 and l4 respectively. Further investigation is required.

Algorithm Memory Time
(per timestep)

Time
(per pass)

Full BPTT |h|T |h|2 |h|2T
Truncated BPTT |h|n |h|2 |h|2n

Synthetic gradients (original) |h|n |h|2 |h|2n
BP(λ) |h|3 |h|4 |h|4

Table 4.3: Complexity of backpropagation through time (BPTT) and synthetic gradient
algorithms. |h| is the hidden size of the recurrent neural network; T is the task length; n is the
imposed truncation size. Time complexity is reported per timestep (i.e. the average complexity
over the sequence of timesteps) and per pass (for example, the complexity of the backward pass
at the end of the truncation).

4.7.3 Biological feasibility

I briefly discussed in Section 4.3.6 how BP(λ) alleviates potential biological issues of the original

implementation in Chapter 3 by avoiding multi-step BPTT altogether. However, one could argue

that BP(λ) replaces this biological problem with another relating to synthesiser learning: that is,

how might eligibility traces be stored and manipulated in the biological circuit.

I have mentioned that some form of eligibility traces are support to be implemented in the

cerebellum at the parallel fibre synapse. Still, how the eligibility trace involved in BP(λ) might be

implemented is unclear. Namely, under this scheme each individual parallel fibre would need to

store its influence for each of the prediction neurons, and this should meticulously be integrated
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with gradient information arising from the cortex. Whether this can indeed be achieved in a

biologically realistic manner requires further investigation.
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5
CEREBELLAR-DRIVEN CORTICAL DYNAMICS ENABLE TASK

ACQUISITION, SWITCHING AND CONSOLIDATION

Following the rather technical content of Chapter 4 which principally serves as an advancement in

machine learning (ML), in this Chapter I return our focus to biology. In particular, like Chapter 3,

this Chapter is primarily motivated by the neural dynamics and role of the cortico-cerebellar

loop. I return to the general assumptions made in Chapter 3 with the same broad architecture

and components: that is, I consider cortical recurrent neural networks (RNNs) with bilateral

projections to a cerebellar feedforward network (cf. Figure 2.2c).

The key distinction between the model of cortico-cerebellar interaction presented in this

Chapter and that presented in Chapter 3 (the algorithm for which is extended upon in Chapter 4)

are the imposed dynamics. Specifically, the ccRNN model in Chapter 3 considers that the cerebel-

lum, by mediating updates in the cortical RNN, teaches the cortex. The model presented in this

Chapter, on the other hand, considers that the cerebellum directly manipulates task-dependent

activations in cortical neurons and therefore drives the cortex. This driving model makes ar-

guably fewer biological assumptions compared to the teaching model. Moreover, I will show the

importance of this additional driving model in being able to capture recent experimental data

which the teaching model fails to do.

This Chapter is organised as follows. First, in Section 5.1, I will provide motivation for this

new driving model of cortico-cerebellar interaction; in particular, I will revisit the limitations

of the previous model. In Section 5.2 I will describe the dynamics of the model. I will then test

the model on a variety of experimentally inspired tasks, describing implementation details in

Section 5.3 before presenting the main results in Section 5.4. I will present an argument, with

analytical support, for why the many-neuron cerebellum is well-positioned to decode cortical

memories in Section 5.5. In Section 5.6 I will demonstrate how the driving model can become a
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teaching model as in Chapter 3 in a theory of cortico-cerebellar consolidation. I will then present

a discussion of the results in Section 5.7, before finally describing limitations of this modeling

framework in Section 5.8.

Overall, this Chapter offers a distinct but compatible approach to the multi-network dynamics

assumed in the prior Chapters. The model presented in this Chapter offers new benefits in

biological feasibility and capturing recent experimental phenomena.

Related papers

The content of this Chapter is strongly centred upon the content of the pre-print article Cerebellar-

driven cortical dynamics enable task acquisition, switching and consolidation [211]. Under the

supervision of Rui Ponte Costa and Paul Chadderton, I achieved all analytical and experimental

results.

5.1 Motivation

5.1.1 Recap: Limitations of ccRNN

The ccRNN model presented in Chapter 3 and algorithmically developed in Chapter 4, which

asserts that the cerebellum provides the cortex with predicted feedback in the form of error

gradients, provides, to the best of my knowledge, the first generalisable deep learning framework

of the cortico-cerebellar loop. As argued in Chapter 3, I believe ccRNN makes important progress

in our understanding of cortico-cerebellar interaction. In particular, ccRNN is conceptually

appealing in its resemblance to classical forward model hypothesis of the cerebellum, and

experimentally appealing in its ability to explicitly reproduce or predict observed data, e.g. the

behavioural symptom of cerebellar dysmetria.

However, as described in Section 3.6, there are notable limitations suffered by the ccRNN

framework. I highlight two principal classes of limitation which I seek to address in this Chapter.

The first class of limitation concerns the strong modeling assumptions made in ccRNN; in

particular, the biological feasibility of projecting and learning high-dimensional error gradients.

The second class of limitation concerns the experimental data which ccRNN is not able to

reproduce; specifically, ccRNN, whilst predicting that long-term changes in the cortex depend

on cerebellar feedback (via synaptic plasticity), fails to capture the near-instantaneous cortical-

cerebellar dependency as observed in vivo [59, 65, 84].

5.1.2 Weakly plastic cortical networks

In this Chapter I also argue, crucially, that it may in fact be more biologically faithful to incor-

porate constrained cortical plasticity. Cortical plasticity a pivotal assumption made by ccRNN

– and indeed in many other computational models of cortical dynamics [6, 204, 249] – since
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without these local changes the cortical network will struggle to optimise the task error. However,

unconstrained cortical plasticity poses three challenges.

Firstly, at this time it is fundamentally unclear how, or indeed if, biological RNNs implement

gradient descent on the task error [165, 218]. Due to the intricate, time-dependent nature of

RNNs the derivation of error gradients is particularly challenging. For example, it may be more

realistic to assume that cortical RNNs implement only local, perhaps unsupervised plasticity

rules such as Hebb’s Rule (Equation 2.5).

Secondly, it may be that the expression of cortical plasticity is not fast enough to enable rapid

changes in behaviour. Animals are known to rapidly adapt their behavioural response to the

environment (e.g. in the order of seconds). However, the expression of synaptic plasticity in the

cortex is typically observed over a period of minutes, hours or even days [51, 80, 145, 175]. Simply

due to this mismatch in timescales, it may be that other brain areas are responsible for at least

short term behavioural learning.

Third and finally, unconstrained cortical plasticity might lead to catastrophic forgetting.

By optimising local circuitry in the cortical RNN for the current task, there is a danger that

the dynamics required for previously learned tasks will be corrupted. This leads to a loss

– catastrophic forgetting – of acquired knowledge [79, 131]. Related to this, task-dependent

optimisation may lead to an over-specialisation in RNN function. For example, it may be more

resource efficient, or even computationally advantageous, if the same cortical RNN could be

incorporated across tasks.

5.1.3 Driving cortical dynamics via cerebellar feedback

The issues of ccRNN as described above motivated a new, distinct computational model of the

cortico-cerebellar loop. In this model cerebellar feedback is used to directly mediate cortical activ-

ity. With these dynamics, cerebellar representations with respect to a given task are inherently

encoded within cortical representations. Crucially, I therefore predicted with this model that

error-driven plasticity in the cerebellum may alleviate the need for plasticity in the cortex. That

is, I predicted that task acquisition may be acquired, or “driven”, by cerebellar feedback even

with cortical RNNs with fixed, task-agnostic local connectivity.

As I will describe in Section 5.2, this model of cerebellar feedback is relatively modest in its

assumptions compared to the ccRNN model. Specifically, the cerebellum now learns to predict

low-dimensional task representations, consistent with the relatively small size of the cerebellar

nuclei [98], using information provided by the cortex. Moreover, because the model assumes

constrained plasticity in the RNN, the problems associated to plastic RNNs are alleviated.

This model is in line with the recently proposed computational hypotheses that the cerebellum

reinforces goal-directed behaviour by appropriately manipulating cortical states in real-time

[163, 263]. It also specifically places emphasis on the cerebellum during the acquisition of tasks.

As described in Chapter 2, the cerebellum is a powerful learner and is well placed to drive cortical
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dynamics via a set of stereotypical, but functionally separable cortico-cerebellar loops [190, 220].

As with the ccRNN model and per the universal transform theory, the model introduced in this

Chapter naturally generalises to both motor and higher cognitive-based tasks.

5.1.4 Related work

The assumed dynamics of this proposed model, in which a “reservoir” RNN (i.e. a RNN of fixed,

possibly random connectivity) is driven by task-related feedback builds upon computational

models dating back to the early 2000s. This includes early architectures of reservoir networks

[130] as well as the FORCE architecture in which rapidly learned feedback is applied to naturally

chaotic RNNs [257]. Maass et al. also made significant theoretical progress in understanding

the computational power of such feedback-driven RNNs, showing under modest assumptions

such a network can theoretically represent any mapping from time-varied input to time-varied

output [174]. Each of these works however typically employ in practice the relatively simple

architecture in which the readout layer itself projects back onto the RNN, and do not consider

a distinct feedback generating network1. Moreover, these works are motivated primarily by

the computational implications, and are not necessarily compared to real brain circuits and

behaviour.

This work also follows recent advancements in considering neural computation from a control-

theoretic perspective, whereby an RNN is driven by some external “control” signals [135]. Two

recent works, in particular, derive analytical solutions to incorporate feedback for the preparation

and execution of motor-based dynamics, and propose this feedback to be implemented in the brain

by the thalamo-cortical pathway [136, 171]. However, there are two important computational

differences between these studies and my proposed model of cerebellar feedback. The first

different is that each of these studies, like the readout feedback models above, incorporate a linear

function of the RNN state as feedback; this function does not bear the same expressivity as a non-

linear, divergent feedforward network as I propose is implemented by the cerebellum. The second

difference is that, to derive an optimal feedback signal, these studies make strong assumptions

as to the availability of information with respect to the RNN; for example, knowledge of the

eigenvectors of the RNN connectivity matrix2. In my proposed model, only modest, biologically

plausible rules are required to produce feedback, and it should stressed that the feedback itself is

low-dimensional (unlike, for example, ccRNN in Chapter 3 or in [136]), conforming to the size

constraints of the output cerebellar nuclei and thalamus as discussed in Section 3.6.

1This feedback generating network is conceptually discussed, however, as a separate RNN [257].
2See e.g. Equation 2 in [171].
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Figure 5.1: Cortical RNN with driving cerebellar feedback. a, Schematic of model. Temporal
external input (xt) is fed to a cortical RNN (grey). a copy of RNN activity (ht) is sent to a
(feedforward) cerebellar network C , which returns to the cortical network its own cerebellar
predictions (ct). The final model prediction is given by the cortical readout (zt) b, Cerebellar
learning. A key property of the cerebellar network is that it learns via behavioural timing-specific
learning rules, in line with experimental observations [260]. In this learning rule the error
between the cerebellar prediction c and future behavioural outcomes y (150ms) triggers plasticity
via climbing fibers at the parallel fibre input of Purkinje cells.

5.2 Model description

Many elements of the model presented in this Chapter remain the same as the models in Chapters

3 and 4; in particular, the model incorporates the same architecture and is optimised to minimise

a supervised task error E. As stated, however, this model incorporates different dynamics to the

prior models and now drives cortical activity. In this Section I will describe these dynamics.

5.2.1 Cortico-cerebellar dynamics

I consider a model of cortico-cerebellar loops in which a cortical RNN is reciprocally connected to,

and driven by, a feedforward cerebellar network C (Figure 5.1a). In our model, temporal RNN

representations ht are passed onto the cerebellar network to compute task-specific predictions ct,

which are then used to directly update cortical activity. In particular, given a (potentially null)

temporal stream of input {xt}t≥1, the evolution of the RNN state ht can be written as

ht =αht−1 +Whh f (ht−1)+Wihxt +WC hct, (5.1)

Where α denotes the cortical internal memory of the RNN neurons and Whh,Wih, are the recur-

rent, input weights of the RNN respectively. The crucial element of this model is the final term

in Equation 5.1, which represents the cerebellar input onto the RNN and is computed as the

product of the cerebellar output activity ct and the cerebellar-cortical weights WC h. I refer to this

cerebellar input to the RNN as “driving”3 input, since it is used to directly updated the RNN

3It is arguably contentious to claim that the cerebellum is the driving force in this model, as this Chapter title
suggests. After all, it is also true that cerebellar activity depends on cortical input, and in that sense is driven itself
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hidden state (this is notably in contrast with the models presented in the previous Chapters).

Like the previous ccRNN model of cortico-cerebellar interaction (cf. Equation 3.11), the

cerebellar output ct is a feedforward computation - which is denoted by C - on the RNN activity.

However, since this output is now used to directly update the current timestep, it is assumed for

this model that the cerebellum receives a copy of the RNN activity at the previous timestep.

ct =C ( f (ht−1))=WPF f C (WMF f (ht−1)) , (5.2)

Where WMF represent the cerebellar (input) mossy fibre (MF) weights onto granule cells (GC)

and WPF the parallel fibre (PF) weights from GC to Purkinje cells (PC), here representing the

output. These pathways, as described in Section 2.2.1, constitute the main stages of processing in

the cerebellum [1, 13, 168, 179]. f C (x) denotes the cerebellar non-linearity at the granular layer.

Like in the previous models in Chapters 3 and 4 (cf. Equation 3.10), the final model output

zt, which is used to measure the model’s performance in a task, is a linear readout of the RNN

activity.

zt =Wrdt f (ht). (5.3)

5.2.1.1 Continuous dynamics of RNN model

A continuous version of the RNN dynamics (Equation 5.1) can be expressed as

τMḣ=−h+Rm (Whh f (h)+Wihx+WC hc)

z=Wrdt f (h)

c=C ( f (h)) ,

(5.4)

Where τM is the membrane time constant (not to be confused with the cerebellar time window

τ), Rm is the membrane resistance, and f is the rate-based non-linearity which is set as f =
tanh. Discretising Equation 5.4 with timesteps of ∆t yields Equations 5.1, 5.2 and 5.4, where

α= exp(− ∆t
τM

) [23]. Note that as in [25] the (1−α)Rm term (which would scale the weighted inputs

onto the RNN) is ignored in the discretised equations. This simplifies notation and has no effect

on dynamics if model weights are scaled accordingly. In general I use τM ≈ 20ms and ∆t = 50ms

for the drawing tasks and a higher τM ≈ 90ms with ∆t = 200ms for the cognitive tasks in line

with [249]). In both cases this yields a cortical internal memory α= 0.1, which unless otherwise

stated is the value considered in the simulations. However, to see how the effect of cerebellar

feedback generalises to settings in which the cortex has more powerful stronger internal memory

mechanisms, higher values of α are also considered (see Section 5.4).

by the cortex. However, I distinguish between providing arbitrary, unlearned inputs – as is the case for a fixed,
task-agnostic RNN – and learned, task-encoding inputs as provided by the cerebellum. In particular, from a causal
point of view, I argue that the cerebellum, due to its error-driven plasticity mechanisms (which the RNN might not
have), is responsible for driving task dynamics.
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5.2.2 Cortical and cerebellar learning

5.2.2.1 Plasticity constraints in cortico-cerebellar network

Before describing the plasticity rules of the network, I first outline the assumptions with respect

to the sites of plasticity. Indeed, where plasticity takes place in cortico-cerebellar networks is one

of the main questions I seek to explore using this model. Specifically, based on prior evidence that

the cerebellum is a strongly plastic network which is optimised for rapid pattern separation (cf.

Section 2.2.2), I explored whether task acquisition may be achieved predominantly via cerebellar,

rather than cortical, plasticity.

That cerebellar plasticity is “greater” than cortical plasticity during task acquisition might

be effectuated in the brain in various ways. For example, whilst both networks might be plastic,

the synaptic learning rate in the cerebellum might be higher (i.e. higher η in Equation 2.8).

Alternatively, the ratio of synapses ready to be optimised for the current task – plastic synapses

– may be higher in the cerebellar network than the cortical network. It might even be that the

mechanisms used to implement long-term plasticity take place more quickly in the cerebellum.

For example, long-term depression of parallel fibres in the cerebellum have been observed to take

place in the order of seconds in error-based learning [108, 167, 183, 292, 293], whilst changes in

cortical synapses might take minutes, hours, or even days to be effectuated [51, 80, 145, 175].

Each of these paradigms may have subtle implications and would be interesting to consider

in the future. However, at this stage, for simplicity, I consider the more extreme framework in

which all synapses in a particular area are in a binary state during learning: fixed or plastic. In

particular, in this model I consider three possible paradigms during learning.

1. fixed RNN. In a fixed RNN model, all synapses in the cortical RNN (each weight matrix

in Equation 5.1) remain fixed during learning. On the other hand, the parallel fibres WPF

in the cerebellar network are constantly updated while learning a task; in this sense

the cerebellar network is solely responsible for any modifications in the cortical hidden

representations of the task. Unless stated otherwise, this is the main paradigm of interest

during the simulations.

2. input plastic. In an input plastic model, the recurrent synapses Whh in the cortical RNN

remain fixed as above, but now the input synapses of the RNN are plastic. This includes

synapses which transmit the external stimulus (Wih) as well as the synapses WC h which

convey cerebellar output onto the RNN. This a subtle but as we will see later important

scenario to consider. In particular, this scenario enables modifications of the input signals

which may be more optimal for the specific fixed RNN circuit, and also appeals to the

observed changes in the cerebellar-cortical pathway during learning [9, 10].

3. fully plastic. In a fully plastic model, there are no constraints on plasticity in the cortical

RNN. In particular, in this case the recurrent synapses Whh are also optimised for the task
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at hand. This scenario supposes that unconstrained cortical and cerebellar learning takes

place in parallel.

I emphasise that in each of these cases the cerebellum is learning via updates to its parallel

fibre weights WPF; note that the mossy fibres WMF, in contrast, remain constant, in line with

classical theory that these synapses are (relatively) stable [1, 179].

Finally, I clarify that in each case the cortical readout weights Wrdt are plastic. This is arguably

an undesirable assumption, since (particularly for the fixed RNN case) I would like to demonstrate

that cerebellar plasticity alone suffices to enable task acquisition, whilst the cortex can remain

relatively stable. Indeed, such a paradigm is in principle, and a recent model of the cortical-

thalamo loop has shown that thalamic plasticity alone (with fixed readout connectivity) can

achieve desired cortical output [171]. However, this cortical-thalamo model, and necessarily any

other models which only optimise RNN input, assume significant knowledge about downstream

(i.e. readout) connectivity. Particularly in the case of the cerebellum, which is an altogether

distinct structure from the cortex, I deemed this assumption to be biologically implausible

(though for completeness I do briefly consider the case whereby the cerebellum does have such

access later on). In addition, I argue that cortical “readout” synapses in the brain may indeed

be more readily adaptable compared to synapses in cortical RNNs. This is supported by the

relatively simple plasticity rule required at readout synapses compared to recurrent synapses

[218], and also by the observed flexibility in the brain to reassociate4 the same (hidden) cortical

activity patterns [89]

5.2.2.2 Cortical and cerebellar plasticity rules

I now describe the plasticity rules for both the cortical and cerebellar networks. Suppose the

model is at timestep t of a given task and the desired task outcome yt is provided. As in the models

presented in the previous Chapters, the associated error is then computed as E t = E (zt,yt) for the

cortical network, where E denotes the task error function (mean squared error and cross-entropy

loss for regression and classification tasks respectively).

The cerebellum, alternatively, is optimised through a separate but related cerebellar error

EC
t . Like the cortical prediction error, the cerebellar error function depends on the desired

task outcome y. However, as we will see later, it is advantageous for the cerebellum to provide

predictions of future outcomes to the cortical RNN. To enable this I formulate a temporal

cerebellar learning rule (Figure 5.1b). In this rule the cerebellum learns by comparing its own

past output within a predefined time-window τ, with current desired outcomes (Figure 5.1b),

EC
t = E (ct−τ,yt). By considering the cerebellar error to be encoded in the inferior olive (as in

Chapter 3), this learning rule then predicts the need for temporally precise coordination between

parallel fibre inputs and subsequent climbing fibre error signals to achieve plasticity, in line

4Note that reassociation is in contrast to making structural changes in the latent representations of the cortex,
which have been observed to only be achieved, if at all, at relatively slow timescales in the brain [201, 230].
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with experimental findings (cf. Section 2.2.2) [184, 227, 242, 259, 260, 275]. This plasticity rule

enables the cerebellum to effectively predict future outcomes effectively, i.e. ct ≈ yt+τ. In line

with experimental findings I generally consider the value of τ to be in the order of hundreds of

milliseconds [260]: for the motor-based tasks I typically consider a cerebellar time window of

τ≈ 150ms and for the later cognitive tasks use longer windows τ≈ 600ms (see next Section 5.3).

The error gradients for the readout and cerebellar weights Wrdt, WPF are then obtained locally

with a simple delta-rule on the gradient of the cortical and cerebellar error signal, respectively.

That is,

∆Wrdt = η
dE

dWrdt
= ηdE t

dzt
f (ht)⊤

∆WPF = η dEC
t

dWPF
= η dEC

dct−τ
GC⊤

t−τ,
(5.5)

Where η denotes the learning rate of the cortico-cerebellar network and GC denotes the hidden

granule cell activity of the cerebellar network which is computed as GCt = f C (WMF f (ht−1)) (cf.

Equation 5.2).

For the input/recurrent weights Wih, WC h, Whh - when plastic - obtaining error gradients is

more difficult as temporal dependencies need to be considered. To improve biological feasibility

in this model I avoid backpropagation through time (BPTT) algorithm (as employed in Chapter 3

and 4) and instead use the eprop (“eligibility propagation”) algorithm [24, 25]. Details can be

found in [24, 25], but the core principle is that BPTT can be approximated with a mixture of

locally computed synaptic eligibility traces and the current error signal. Specifically, the error

gradient for a given synapse w ji from neuron i to j is computed as

∆w ji = η ∂E
∂w ji

= η∑
t

L j
t e ji

t , (5.6)

Where for ease of notation I now use the superscript to denote timestep t and L j
t = ∂E t

∂ f (h j
t )

is

the neuron j learning signal. et
ji is the synaptic eligibility trace of w ji which is computed as

e ji
t = f ′(h j

t)ϵ
ji
t , where f ′ is the derivative of f and ϵt

ji is the eligibility vector of w ji defined

recursively by

ϵ
ji
t = ∂h j

t

∂h j
t−1

ϵ
ji
t−1 +

∂h j
t

∂w ji
, (5.7)

Where ϵ0
ji is initialised as zero. Note that the terms in Equation 5.7 are locally available to the

synapse. In the case of our network dynamics (Equation 5.1), the eligibility vector is simply

defined by ϵ
ji
t = αϵ

ji
t−1 + ai

t, where ai
t is the activation of the presynaptic neuron i at time t

(e.g. tanh(hi
t) or ci

t). Interestingly, given that f ′ typically depends on the post-synaptic activity,

the eligibility trace e ji
t is therefore a product of pre- and post- synaptic activity expressions,

reminiscent of spike-time dependent plasticity (see Section 2.1.2) [24, 25].
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5.2.3 Control architectures

To help assess the role of cerebellar feedback, I consider various other architectures of neural

circuits (Figure 5.2). This includes a model in which cerebellar feedback is absent (i.e. the final

term in Equation 5.1 is removed) which I refer to as the no feedback model. Additionally, to

identify the significance of the cerebellar network itself, namely its idiosyncratic plasticity rules

as divergent hidden layer, I also consider a model in which feedback is produced by the readout

network; that is, ct := zt−1 in Equation 5.1. This incorporates the same architecture as other

models of feedback onto RNNs [130, 174, 257], and I refer to this as the readout feedback model.

Finally, I consider a model in which the cerebellum is employed not within a cortico-cerebellar

loop but to directly compute the final model output; that is, I use the no feedback model except

that the readout network has the same architecture as the cerebellar network, zt = C ( f (ht)).

This model conforms to classical frameworks in which the cerebellum is the direct actor in motor

tasks [1, 179] and is consistent with the inverse (rather than forward) model of cerebellar function

(see Section 2.2.4) [285].

The dynamics employed in each of these architectures are shown in Table 5.1.

No feedback Readout feedback No feedback
(cerebellar readout)

Cerebellar feedback

ht αht−1 +Whh f (ht−1)
+Wihxt

αht−1 +Whh f (ht−1)
+Wihxt+ Wzhzt

αht−1 +Whh f (ht−1)
+Wihxt

αht−1 +Whh f (ht−1)
+Wihxt+ WC hct

zt Wrdt f (ht) Wrdt f (ht) C ( f (ht)) Wrdt f (ht)

ct NA NA NA C ( f (ht−1))

Table 5.1: Dynamics of the different model variants. ht is the cortical RNN state, zt the
readout and ct cerebellar feedback. For the experiments presented here I set f = tanh and C

is the cerebellar feedforward network with one hidden layer, C ( f (h))=WPF f C (WMF f (h)). Whh,
RNN recurrent weights; Wih, stimulus-to-RNN weights; Wrdt, (cortical) readout weights; WC h,
cerebellar-to-RNN weights; WMF, cerebellar mossy fibre weights; WPF, cerebellar parallel fibre
weights; f C set as ReLU.

5.2.4 Biological interpretation

Like the ccRNN model in Chapter 3, the model of cerebellar feedback presented in this Chapter

generalises to any type of task or domain with supervised error signals, and the modeled cortico-

cerebellar network for a given task is regarded as a manifestation of one functionally relevant

cortico-cerebellar loop in the brain. Moreover, like the ccRNN model, this model can also be

corresponded to the forward model hypothesis, whereby a the cerebellum is providing a future

state estimation to the cortex (Section 2.2.4). In contrast to ccRNN, however, for which this future
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xt xt

xt

ht ht

ht

ct

zt

ztzt

a b

external 
input

RNN

readout

xt
ht

zt

c d
Cerebellar feedbackNo feedback (cerebellar readout)

No feedback Readout feedback

Figure 5.2: Different model architectures. a, No feedback; temporal input is fed to a cortical
RNN (grey) and a linear readout layer (blue) produces the final model output. b, Readout feedback;
now there is a feedback loop in which the RNN also receives readout predictions as extra input
[130, 257]. c, No feedback with cerebellar readout; a cerebellar network is attached to the RNN
and is used directly as the final readout of the model d, Cerebellar feedback; a copy of RNN
activity is sent to a cerebellar network C , which then returns its predictions back to the RNN
as extra input. Model activity and weight vectors are represented with the same notation as
Equations 5.1 and 5.2 (see also Table 5.1).

state is modeled as cortical-dependent error gradients, in this model the future state is (more

simply) the desired outcome with respect to the task.

For this reason it is assumed that the cerebellar error – which, consistent with the ccRNN

model and literature, is taken as the inferior olive (IO) – has direct access to the desired task

outcome. The source of this desired outcome may depend on the domain of the task. For example,

in motor-based tasks it is supposed that this access could stem from direct sensory information

which is known to be projected from the spinal cord [61, 205]. For cognitive tasks, on the other

hand, these desired outcomes may be encoded in higher regions of the brain, perhaps in the

cortex, and projected via the mesodiencephalic junction [61, 276].

It is worth clarifying, however, that the nature of cortico-IO projections between this model

and the ccRNN model have an important but subtle distinction. In particular, the ccRNN model
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assumes that cortico-IO projections contain error gradient information with respect to the cortical

activity responsible for the original model response; for this reason the natural assumption is

that this cortico-IO projection comes from the principle cortical RNN performing the task. The

model presented in this Chapter, conversely, only assumes that the cortico-IO projections contain

task information, and whilst this information might in principle be encoded by the cortex (e.g. for

cognitive tasks), this information might not necessarily stem for the principle cortical RNN. For

instance, the target for a cognitive task which employs cortical RNNs for working memory may

be encoded via a distinct cortical area associated with reward.

5.3 Implementation details

In this Section I describe implementation details with respect to the simulations of the model

presented in the next Sections. This includes hyperparameter choices made for the model and

training regime, as well as a description of the various tasks considered.

5.3.1 Model details

For each task simulation, network parameters are initialised as in the previous Chapters (see

Section 3.3.1.1), except that the cerebellar readout weight are no longer zero-initialised and

instead follows the same initialisation protocol as the cortical readout weight.

For computational efficiency and due to the relatively long duration of the tasks I train

the model using a discrete approximation of a continuous RNN (Equations 5.1,5.2 and 5.4). To

highlight the need for optimised network connectivity rather than inherent cortical memory

mechanisms, I employ, unless otherwise state, small cortical internal memory α= 0.1 (this implies

longer timescales, see Equation 5.4).

In all simulations I consider an RNN of 50 hidden units and a cortical activation function

f (x)= tanh(x). Unless otherwise stated, the feedforward cerebellar network contains a large single

hidden layer with 1000 units (granule cells), but other hidden layer sizes are also considered.

This yields a divergence from the cortical RNN to the cerebellar granular layer of 50:1000 = 1:20.

The cerebellar output layer, which is interpreted as Purkinje cells, on the other hand, mirrors

the desired task outcome and is therefore of significantly lower dimensionality (3 in the evidence

accumulation task and 2 in the other tasks). As in the ccRNN model in Chapter 3, the cerebellar

non-linearity f C (x) is modeled as the rectified linear function f C (x) = ReLU, in line with the

relatively linear responses super-threshold observed in granule cells [47].

5.3.1.1 Cerebellar ablation

To examine the role of cerebellar feedback I consider the effect of ablation to the cerebellar

network. It is worth highlighting that though this ablation strategy is the same as that considered

in Chapter 3 in so far as cerebellar output is silenced, I now consider the effect of cerebellar
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ablation post-learning. Specifically, whilst in the ccRNN model cerebellar ablation took place

before the task was acquired, in this model I consider cerebellar ablation when the task might

already be perfected by the model. Moreover, I consider a transient form of cerebellar ablation

whereby cerebellar feedback is only removed for a brief window within the trial. As we will see,

this is inspired by the observed effects of optogenetic experiments on expert animals.

5.3.2 Training details

During the learning of a task model parameters are updated using gradient descent from the

task error signal E = ∑
t E t with respect to to the model parameters (Equation 2.8). For each

dataset each training session covers 1000 random examples, presented to the model in batch

sizes of 10 which is called a “trial”. The test set (used after training) also covers 1000 randomly

generated examples. When analysing the learned network dynamics (e.g. model output with

and without cerebellar ablation) the model with the best validation error during training was

selected. An ADAM optimiser [142] was used with initial learning rate η= 0.001 for the RNN

(when plastic), readout and cerebellar network, except for the delayed association task for which

an RNN learning rate of η= 0.0025 was found to provide more stable learning. For all weights,

the error gradients are accumulated across multiple examples (i.e. batch update) and timesteps

before the weights themselves are updated.

The sites of plasticity in the cortico-cerebellar network, and the error gradients used to update

the (plastic) synaptic weights, have been described in Section 5.2.2.2.

5.3.3 Task details

5.3.3.1 Line drawing task

The line drawing task has the same general structure as the simple line drawing visuomotor task

presented in Chapter 3, with minor differences such as the dimensionality of input stimulus and

the number of timesteps.

Specifically, in this task the model has to transform one of six possible 10-dimensional binary

inputs x ∈ [0,1]10 at timestep 1 into an associative “go” 2-dimensional line yline (for five of the

inputs) or a “no-go” stay at the origin (for one of the inputs). The starting point for each line is

the origin, and the endpoints of each line are evenly spaced on the edge of the unit circle (see

Figure 5.3d, black dashed line). The model learns to draw the line over 20 discrete timesteps,

with the intermediate target points spaced evenly, i.e. for a line with endpoint yend we have

yline = {0, y1, y2, . . . , yend}= {0, 1×yend
19 , 2×yend

19 , . . . , 19×yend
19 }.

For the stimulus timestep (timestep 1) as well as the remaining 19 timesteps, the model

receives (through its Wih connection) zero-mean Gaussian noise ξ∼N (0;0.12). Model errors are

computed as the mean-squared error (MSE) to the target response. Unless otherwise stated a

cerebellar time window τ = 3 timesteps (≈ 150ms when α = 0.1) is used. The prediction error
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across time delay t0 between cortical output and cerebellar (or cortical) output (Figure 5.5d) is

computed as the cue/time average ||ct+t0 −zt||2, where ||.||2 is the Euclidean norm.

To analyse the effects of cerebellar ablation I consider partial cerebellar ablation at the start,

middle, and end of the sequence (Figure 5.6). The specific time windows of these ablation periods

are timesteps [1-6, 8-13, 15-20] (inclusive), respectively.

Curl-field variant: Once the models of the line drawing task are trained, I tested whether they

could re-translate the same external inputs to a curl-field variant of the task (see e.g. [215]). For

this I selected models with cortical internal memory α= 0.5, since I found that this value resulted

in faster learning which was comparable to the presented experimental data [215], but I also find

that α= 0.1 (as presented in Figure 5.3) also learns but more slowly. Switching and learning this

curl-field new task “context” involved retraining the models to new desired outcomes (central

grey curves in Figure 5.8c).

Specifically, the curl-field target responses have the same end-point for each line (or same

“no-go” zero cue), but intermediate target points now form a semi-ellipse between the origin and

the respective end-point. Given the desired endpoint yend =
(

y0
end

y1
end

)
, this is parameterised by

yt =
(

y0
t

y1
t

)
=

 y0
end
2 + 1

2 cosθ cos t− 1
2 sinθsin t

y1
end
2 + 1

2 sinθ cos t+ 1
2 cosθsin t

 , (5.8)

Where θ = arctan(
y1

end
y0

end
) is the angle to the end point and t runs uniformly between 0 and π (or, for

direction towards (xend, yend) as in our experiments, from π to 2π).

Neural activity and covariance during task switching: The change in activities and change in

covariances (Figure 5.9) are computed as in [74]. Specifically, I record the RNN time-dependent

activities (post non-linearity) given 1000 input examples in multiple periods: task 1 baseline,

task 2 and task 1 switching (Figure 5.9a). For the latter two periods these are recorded at their

respective end, whilst two samples are taken of the baseline period at its start and end. The

change in activity between any two periods P1 and P2 is the average change in activity for a

given neuron i, which is given by

∆
(P1,P2)
act hi =

|hP2
i −hP1

i |
stdi

, (5.9)

Where hP1
i , hP2

i are the time-varying input-dependent activities of neuron i for periods P1, P2

respectively, and stdi is the standard deviation of that neuron in the start of the task 1 baseline

period. Here |.| denotes the average (absolute) difference in activity across timesteps and input

examples.

For each period, I also compute the covariance matrix of the RNN population which better

represents its underlying geometry or “manifold”. The change in covariance between two sessions

∆
(P1,P2)
cov is then computed as 1 minus the Pearson correlation between their respective covariance

matrices (cf. Equation 3.28) [74].
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For the task 2 and task 1 (i.e. washout) switching periods changes are reported with respect

to the start of the task 1 baseline period. To account for natural variability in the network and

better compare to the neural data in [215], the changes are normalised by taking away the

changes observed within the baseline period itself. For example, the change in covariance in the

task 2 period is ∆(B1,T2)
cov −∆(B1,B2)

cov , where B1, B2, T2 are the start of the task 1 baseline, end of

task 1 baseline, and (end of) task 2 respectively. I apply the same normalisation to the reported

experimental changes in the monkey M1 and PmD [215]; this normalisation leads to zero, or

even negative5 change for the M1 and PmD. I report this as zero significant change.

The number of training trials for training in task 2 shown in Figure 5.8a (500 trials) leads to

good, but not perfect, performance. To demonstrate that the models can eventually perform task

2 to a near-perfect standard, the model outputs presented in Figure 5.8c underwent 1000 trials of

training.

5.3.3.2 Digit drawing task

For the digit drawing task the inputs are the same as the 10-dimensional binary vectors used in

the line drawing task, except now the model must draw an associative digit over 20 timesteps

instead of line (see black dashed lines in Figure 5.10f). The targets ydigit are constructed manually

within the space [0,1]2 and resemble the digits from 0 to 5 (inclusive). For exact implementation

refer to the provided code (see Section 5.3.8 below).

For the standard model with cerebellar feedback a cerebellar time window τ= 3 timesteps

(≈ 150ms when α = 0.1) is generally used. For the model using cerebellar feedback with a

temporal basis, I model the cerebellum with a range of time windows, i.e. τ = {τi}i for some

distinct τi ≥ 0ms. In this task I consider τ= {τi}i=5
i=0 with τi = i timesteps (i.e. 0-250ms), so that

the final cerebellar output is a concatenation of task predictions which span over the proceeding

250ms period. Explicitly, after training the cerebellar feedback is ct ≈⊕i=5
i=0 yt+i, where ⊕ denotes

vector concatenation.

Zero-mean Gaussian noise ξ∼N (0;0.12) is added to the input at each timestep. Model errors

are computed as the mean-squared error to the target response.

To analyse the effects of cerebellar ablation I consider the same partial cerebellar ablation

periods as in the line-drawing task. That is, I consider cerebellar ablation at the start, middle,

and end of the sequence (Figure 5.11), which correspond to timesteps [1-6, 8-13, 15-20] (inclusive),

respectively.

5.3.3.3 Evidence accumulation task

In the evidence accumulation task the model receives 2-dimensional binary inputs (i.e. x ∈ [0,1]2)

over a presentation period of Tpres = 45 timesteps. A non-zero input can occur for at most one

5That is, there was counter-intuitively a greater change between the control periods prior to the perturbation
compared the change between the control period and adaption period.
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of the two dimensions; that is, xt ∈ {(1 0)⊤, (0 1)⊤, (0 0)⊤}, where the rate of zero inputs

xt = (0 0)⊤ defines the sparsity of input ρ (ρ = 0.7 in our simulations). After this presentation of

input there is then a delay period of Tdel = 5 timesteps after which the model must classify at

which dimension more non-zero input was received (or whether the number at each dimension

was the same). That is, the desired outcome y takes one of three values which respectively

correspond to more input in the first dimension, more input in the second dimension, or the same.

This task resembles the experimental structure of [65], in which mice were trained to select the

side of their whiskers which received more air puffs .

Zero-mean Gaussian noise ξ∼N (0;0.12) is added to the input at each timestep. Model errors

are defined by the cross-entropy loss to the target response. Model “belief” (cf. Figures 5.12 and

5.13) is defined as the model probability (obtained by applying a softmax on the readout) of the

correct classification. Unless otherwise stated a cerebellar time window τ= 3 timesteps (≈ 600ms

when α= 0.1) is used. For both readout and cerebellar feedback models, the softmax operation is

applied to the feedback returned to the RNN so as to bound its values between 0 and 1.

To analyse the effects of cerebellar ablation I consider full cerebellar ablation (for the entire

sequence 1-50) and also partial periods of ablation: at the start, middle, and end of the sequence.

The specific time windows of these partial ablation periods are timesteps [1-15, 15-30, 30-45]

(inclusive), respectively. To improve readability of our results, the mean error presented in the

training curves for this task is smoothed using a Savitzky-Golay filter with window length 25

and polynomial order 3.

To compute the dependence of model choice on inputs over different temporal bins (Fig-

ure 5.13c), I follow the method in [65]. In particular, the presentation period is divided evenly

into 3 time windows - [1-15, 16-30, 31-45] - and the model behavioural choice is fitted according

to a logistic regression model:

ŷ= S(β1E1 +β2E2 +β3E3), (5.10)

Where ŷ denotes the predicted model choice probability, S is the sigmoid logistic function,

E i = #Ri −#L i is the different in the total number of ‘right’ and ‘left’ inputs in window i, and

βi is the respective weight on that window. ŷ is fitted to minimise the negative log likelihood of

the observed model decisions. To quantify the weight evidence designated by the model on each

window, I present the respective normalised weights βi
β1+β2+β3

.

History-centric cases: In line with [65], I observe cerebellar ablation to be particularly detri-

mental to input examples for which correct classification would depend on adequately maintaining

past inputs (Figure 5.13d,e and Appendix Figure C.4), which are referred to as “history-centric”

examples. I define an input example as being history-centric if exposure only to the final third of

the input sequence would lead strictly to the wrong answer. That is, task examples (x, y) such that

the “final-third target” yfinal third = max(
∑T=50

t=33 x0
t ,

∑T=50
t=33 x1

t ) is not equal to the desired outcome

y=max(
∑T=50

t=1 x0
t ,

∑T=50
t=1 x1

t ).
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Sub-second task lengths: To identify whether cortical dependency on cerebellar feedback holds

for shorter timescales, I consider cue presentation periods from 0.1−1s (Figure 5.14). For these

simulations there is no delay period and there is a greater frequency of inputs with a reduced

sparsity parameter value ρ = 0.5. A finer time discretisation is applied so that ∆t = 10ms; for

these experiments I redefine the cortical internal memory α and rescale the network parameters

accordingly (cf. Equation 5.4). The cerebellar network is trained with a time window τ = 3

timesteps in each case.

5.3.3.4 Delayed association task

In the delayed association task the model must associate one of two 10-dimensional binary inputs

at timestep 1 to a desired binary response y at timestep T, where T is the sequence length or

“delay” period [84]. In general the sequence length is T = 15 timesteps but other lengths are

also considered (Figure 5.20a). The task error (as presented in the main text) is defined at the

end of the sequence. For stability, the network output is trained 5 timesteps from the end of the

sequence.

Zero-mean Gaussian noise ξ∼N (0;0.12) is added to the input at each timestep. Model errors

are defined by the cross-entropy loss to the target response. Model “selectivity” is taken as

the model output (readout) at the dimension of the correct classification (prior to the softmax

operation). Unless otherwise stated a cerebellar time window τ= 3 timesteps (≈ 600ms when

α= 0.1) is used. For both readout and cerebellar feedback models, a softmax operation is applied

to the feedback returned to the RNN so as to bound its values between 0 and 1.

To analyse the effects of cerebellar ablation I consider a particular ablation time window

between timesteps 8-12 (inclusive) which approximately mirrors the experimental timings in

[84] (Figure 5.17a-e and Appendix Figure C.6). I also consider partial ablation periods during

the start, middle, and end of the sequence (Figure 5.17f); the specific time windows of these

partial ablation periods are timesteps [1-5, 6-10, 11-15], respectively. To improve readability of

the results, the mean error presented in the training curves for this task is smoothed using a

Savitzky-Golay filter with window length 25 and polynomial order 3.

For this task I also consider how the model evolves during a consolidation period (Figure 5.22).

At the end of each consolidation trial I inspect the model error (Figure 5.22b), activity (Fig-

ure 5.22e) and recurrent input (Figure 5.22f) over a test set of 1000 randomly generated examples.

The activity here is the concatenation of activity in the cortical RNN and the hidden layer of

the cerebellar network (over all examples and timesteps). The cosine similarity between these

activities and the initial activities prior to consolidation is computed; for comparison the cosine

similarity been the initial activities and a shuffled version of the initial activities (averaged

over 100 samples) is also computed. To analyse how the recurrent input changes I proceed

as follows. At each timestep the cortical RNN state h and cerebellar feedback c is obtained. I

then compute the cosine similarity between Whhh and Wpre
hh h+Wpre

C h c, where Wpre
hh ,Wpre

C h are the
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pre-consolidation RNN weights and cerebellar-cortical weights, respectively.

5.3.4 Control-theoretic estimation of cerebellar feedback

For the delayed association task I analyse cerebellar-to-cortical input from a control-theoretic

point of view. In particular, I quantify the effect of plasticity in the pathway between the cerebellar

network and cortical RNN (WC h) on cortical activations by estimating the energy cerebellar

feedback induces in RNN state space [135]. This level of energy reflects the potency of feedback

onto the RNN: a low energy would reveal a suppressed RNN response, whereas a high energy

would reveal an amplified response. I speculated that these two cases would arise from a non-

optimised WC h and optimised WC h, respectively (Figure 5.16A).

As per Kao and Hennequin [135], I compute the energy of cerebellar feedback using the

controllability Gramian P associated with RNN dynamics. Informally, P describes the “intrinsic

manifold” of the RNN and describes the directions in which the RNN is most (or least) likely to

visit. Formally, given a direction v in state space, the average energy generated along direction v
is given by

σ(v)= v⊤Pv. (5.11)

In general, the Gramian matrix P is only defined for linear systems. In this work I therefore

generalise the notion of controllability for the non-linear RNN dynamics as defined in Equation 5.1.

Here I use the noise covariance matrix Σ in its place, which for linear systems is shown to be

equivalent to the Gramian, Σ = P [135]. Explicitly, I compute Σ as the time-course average

covariance of RNN hidden activations ht under noisy inputs which follow a Wiener process [105].

That is, Σ = Et[cov(Ht)] where Ht = {h1
t ,h2

t , · · · ,hN
t } is a set of N samples of RNN states which

each evolve according to

ht =αht−1 +Whh f (ht−1)+WC hct +ξt; ξi,t ∼Wienerprocess. (5.12)

In the experiments I use N = 500 samples and simulate Equation 5.12. To ignore intrinsic RNN

transients that occur at the start of simulation, I discard the RNN states during the first 5

simulation timesteps when computing Σ. The energy generated from cerebellar feedback is then

σ(hC )= (hC )⊤ΣhC , where hC = WC hc
||WC hc|| is the normalised direction being driven by the cerebellum

in RNN state space. I report the energy generated (during the noise dynamics of Equation 5.12)

by cerebellar feedback at timestep 10, a time chosen strictly after the initial RNN transient phase

(Figure 5.16b). For comparison I compare this to the average energy generated by 100 randomly

sampled directions v∼N (0,I) where I is the identity matrix. To enable greater interpretability

these energies are then normalised by their highest possible value max||v||=1 v⊤Σv; i.e. the input

which elicits maximal amplification of RNN dynamics. This value can be computed as u⊤Σu
where u is the principal eigenvector of Σ.
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5.3.5 Cerebellum decodes low-signal cortical representations

In Section 5.5 I examine the dependence on the size of the cerebellar network for decoding cortical

representations. In particular, I analytically derive a relationship between the signal-to-noise

ratio (SNR) in the cortical representation and the number of granule cells (GC) necessary to (with

reasonable confidence) decode the task variable from that representation.

To estimate SNR(RNN) in the models for the delayed association task (Figure 5.20b, left

axis), I computed the variance of the task-agnostic component as the (average) variance of the

population under the same task stimulus s, i.e. σ2
ω = Es[Var( f (h)|s)]. Be equally calculating

the total variance σ2
rnn =Var( f (h)), the variance of the task-relevant component is then simply

computed as the difference to the total variance, i.e. σ2
ζ
=σ2

rnn −σ2
ω. To determine the minimum

number of granule cells required to decode the stimulus from the RNN activity (Figure 5.20b,

right axis), I tested whether the cerebellar network could be trained to successfully discriminate

the stimulus after 40 training sessions for varying quantities of granule cells (quantities as

described below). The cerebellar network was deemed to successfully decode the stimulus if, for

at least 9 of the 10 seeds, the average error during the last 4 training sessions was less than 5%.

I also generated synthetic inputs to directly test the ability of the cerebellar network for

different SNRs (Figure 5.21). In this case the network must classify one of two 10-dimensional

input of the form x = xω+xζ. Both xω and xζ are drawn randomly from normal distributions

of zero mean, but only xζ changes for each task condition (i.e. once sampled xω is fixed). The

distributions xω, xζ have distinct variances σ2
ω, σ2

ζ
respectively. The SNR of the input data is then

simply
σ2
ζ

σ2
ω

, where I set σ2
ω = 1 and vary σ2

ζ
across a range of values (see below). The architecture

of the cerebellar network remains the same as in the main cortico-cerebellar model, except that

a spiking activation function is used at the granular layer; that is, fC = fspike in Equation 5.2

where fspike(I)= 1 if I > 0 and 0 otherwise.

To verify whether Equation 5.18 holds empirically, I ran the network on the dataset described

above over a range of different SNRs s and network sizes m. I considered s = (1
2 )k and m = 2k for

k between 0 and 14 inclusive (i.e. 225 distinct SNR/size configurations). Each configuration was

ran over 10 random seeds for initialisation. To determine the number of GCs needed for a given

SNR s, I considered the minimum m needed such that (i) the GC population vector is distinct for

the two task inputs x1, x2 (Figure 5.21a) and correspondingly (ii) the cerebellar readout (Purkinje

cells) can successfully learn to classify the initial input (Figure 5.21b). Classification was again

deemed successful if the average error during the last 4 training sessions out of 40 was less than

5%. Importantly, the final success for that number of GCs would require a ratio of the confidence

θ random seeds to be successful (e.g. to have confidence θ = 0.6 would required 6/10 seeds to have

distinct responses). Naturally I observed a strong relationship between (i) and (ii) (Figure 5.21c),

since the ability to successfully discriminate at the readout level depends on discrimination at

the hidden GC level. In these experiments a confidence level θ = 0.9 is selected.
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5.3.6 Learning rules for cerebellar-to-cortical consolidation

In Section 5.6 a period of “consolidation” is considered for the trained models of the delayed

association task. During this period the model is presented with further trials (batch size 10) of

training data but without their associated targets. The forward dynamics of the model then run

as normal (Equation 5.1) but now a learning rule for the RNN weights specific to the consolidation

period is used. I consider both an optimal learning rule which uses the least-squares algorithm

and also a simple biological learning rule.

I first present the optimal consolidation learning rule, since this motivates the biological

rule. Now, a priori, we would like to change the recurrent (cortico-cortical) input to match the

cerebellar-cortico input over the task. To this end I concatenate the time-dependent RNN activities

H=⊕
t≥1 ht and cerebellar output activities C=⊕

t≥1 ht, where ⊕ denotes vector concatenation. I

then set the change in recurrent weight ∆consWhh with ∆consWhh = ηcons
RNNF lsq where ηcons

RNN is the

RNN consolidation learning rate and F lsq is the least-squares solution

F lsq f (H)=WC hC. (5.13)

At the same time the cerebellar-cortical weights WC h decay according to

∆Wcons
C h =−ηcons

C h WC h, (5.14)

Where ηcons
C h is the rate of cerebellar-cortical decay. In the experiments shown I select ηcons

C h =
ηcons

RNN = 0.1.

For the biological learning rule, the cerebellar-cortical weight decays as in Equation 5.14 but

now the RNN weights are updated according to the ratio of cerebellar feedback against the whole

population activity. That is, for the recurrent weight from neuron i to neuron j we have

∆conswi j = ηcons
RNN

cerebellar input to j
total RNN activity

= ηcons
RNN

W j
C hct∑

k f (hk,t)
, (5.15)

For arbitrary timestep t and where W j
C h denotes the jth row of the cerebellar-cortical weight

WC h.

To demonstrate that Equation 5.15 leads to changes in cortico-cortico input which are propor-

tional to the cerebellar-cortical input, we see that the change in recurrent input to a given RNN

neuron j at time t becomes
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∆W j
hh f (ht)︸ ︷︷ ︸

∆ recurrent input

= ∑
i∈RNN

∆w(hh)
i j f (hi,t)

= ∑
i∈RNN

ηcons
RNN

(
W j

C hct∑
k∈RNN f (hk,t)

)
f (hi,t)

∝ 1∑
k∈RNN f (hk,t)

W j
C hct

∑
i∈RNN

f (hi,t)

= W j
C hct︸ ︷︷ ︸

cerebellar input

.

That is, we recover a solution (up to proportionality) to Equation 5.13. For this biological learning

rule, to improve network stability, I found it beneficial to increase the RNN consolidation learning

rate such that ηcons
RNN = 3ηcons

C h = 0.3 (where ∆conswi j is accumulated over the whole sequence). This

explains the initially faster learning (over the first few trials) for the biological learning rule

(Figure 5.22f).

For this consolidation learning period a learning optimiser is not used (i.e. ADAM is not used).

Note that these consolidation learning rules do not require information about the desired task

outcome (i.e. target) and are in that sense unsupervised.

5.3.7 Statistical analysis

As in the previous Chapters, because the initial conditions of these type of models influence

its learning trajectory, each model is run across 5 different randomly chosen seeds. In general

the figures display the mean result over seeds with error bars. Because the effect of cerebellar

feedback is typically more extreme for the model used in this Chapter compared to the model

used in Chapter 3, and significant effects are often obvious by simply observing error bars, in this

Chapter I did not conduct t-tests.

5.3.8 Code and computing resources

The PyTorch library is used for all neural network models. The code and respective simulated

data used for the experiments are available at https://github.com/neuralml/ccLoops.

All experiments were conducted on the BluePebble super computer at the University of Bristol;

mostly on GPUs (GeForce RTX 2080 Ti) and some on CPUs. Though each individual simulation

was typically short for this model (typically 5-20 minutes), there were several architectures,

hyperparameters, and datasets considered. For this reason I estimate the total compute time

(including unreported results) to be in the order of ∼ 5000 hours.
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5.4 Experimental Results

5.4.1 Cerebellum learns to drive cortical dynamics during a line drawing task

Figure 5.3: Cerebellar-driven cortical learning in a simple line drawing task. Given
one of six possible stimuli at the first timestep the model must learn to draw a corresponding
line. a, Training curves (cortical internal memory α = 0.1) for the different models with fixed
(left), input plastic (middle) and fully plastic (right) RNN. b, Average error over training across
different cortical internal memory α; arrow denotes cortical internal memory used in the other
panels (α= 0.1). MSE denotes mean squared error. c, Change in average training error of the
cortico-cerebellar model with respect to the no feedback model across different levels of cortical
internal memory (α) and degrees of plasticity in the cortical RNN. d, Model output after training
given an example of each cue stimulus for three model architectures with a fixed RNN. Error
bars represent mean ± SEM across 5 different initial conditions.

To study the functional consequences of cerebellar-driven cortical RNNs I first test the model

in a motor-based line drawing task, which has the same general structure as the simple line

drawing task in Chapter 3. Specifically, in this task the model receives one out of six cues at

the beginning of the task and learns to either remain still or produce one out of five possible
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straight lines (see Section 5.3.3.1 for details). Note that unlike the analysis in Chapter 3 I do not

consider sparse teaching signals (though this might be interesting to consider in future work),

with desired task outcomes (i.e. straight lines) being provided at each timestep.

Consistent with behavioural studies on cerebellar patients [232], I find that cerebellar feed-

back improves learning of the task and final performance compared to control models (Fig-

ure 5.3a-c). I observe this across all plasticity assumptions in the cortical network, as well as

degrees of cortical internal memory. I find that cerebellar feedback is most valuable when memory

mechanisms of the cortical RNN are weak. In particular, cerebellar feedback is necessary when

the internal cortical memory is low (α<< 1) and cortical plasticity is most limited – the fixed RNN

case – for which the cortico-cerebellar model is able to learn whilst a cortical only model fails

(Figure 5.3d). This is due to the inability of a lone cortical RNN with task-agnostic connectivity

to successfully maintain the initial cue in memory; that is, the memory of inputs naturally

decay over time [172, 173], and desired readout dynamics are therefore unable to be decoded.

However, the incorporation of cerebellar feedback enables task-relevant representations to be

learned by the cerebellar network, which can then be transferred and maintained in the RNN via

cortico-cerebellar loops.

The superior performance of the cerebellar feedback model compared to the readout feedback

model in learning the task suggests that the unique features of the cerebellar network – timed

plasticity rules, and a large non-linear hidden layer - are beneficial for task acquisition in

cortico-cerebellar loops.

To explore this, I first analyse the effect of the non-linearity in the cerebellar network ( f C in

Equation 5.2) and observed that the use of the ReLU function significantly improved performance

compared to a linear response. Interestingly, incorporating ReLU also significantly outperforms

the tanh activation function, suggesting an important role for threshold responses in the granule

cell layer which might deserve further study (Figure 5.4a).

Next, I considered the effect of (i) the timed plasticity rules and (ii) the divergent hidden layer

of the cerebellum by testing a range of different values for the cerebellar time window τ as well

as the number of granule cells in the cerebellar network. Consistent with cerebellar features

observed experimentally, I indeed find that both a large time window and high number of granule

cells result in better learning (Figure 5.4b). In particular, I observe a strong correlation between

the rate of learning in the cerebellar network, directly enhanced by these cerebellar features,

and the rate of learning in the cortical network on which it projects (Figure 5.4c,d). This mutual

dependence on task acquisition is unsurprising: as cerebellar task predictions improve so do

the task representations in the cortical RNN, allowing easier decoding at the cortical readout

layer; similarly, as representations improve in the cortical RNN and become more separable, the

cerebellar network will more easily decode the relevant task predictions. However, I highlight that

this overall smooth learning trajectory in the cortico-cerebellar network does not imply smooth

error signals locally in either network. For example, error signals at the cerebellar network
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exhibit heterogeneous and seemingly unpredictable values both over time within a trial and a

trial by trial basis, reminiscent of the diverse spiking patterns observed in the inferior olive in

vivo (Figure 5.4d), inset).
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Figure 5.4: Cortical and cerebellar learning are strongly coupled. a, Training curves
using different choices of cerebellar non-linearity f C , where GC = f C (x), for f C (x) = ReLU(x),
f C (x)= tanh(x) and f C (x)= x. b, Average training error of cortico-cerebellar model under varying
numbers of granule cells and cerebellar temporal windows (τ). Orange arrow denotes default
parameter choices. c, Integrated errors for the cortical network against the cerebellar network for
the line drawing task. Each point denotes a specific cerebellar parameter configuration (1 of the
18 in d) and initialisation seed (1 of 5); r denotes the Pearson correlation. d, The learning curves
for the cortical network (solid line) and cerebellar network (dotted line) for the line drawing task
over different choices for the number of granule cells and cerebellar time window. The cerebellar
error for an example seed is shown in the inset over different task examples during training
(upper) and over time within one task example (lower). Error bars represent mean ± SEM across
5 different initial conditions.

The advantage of a large number of granule cells has been well studied is likely due to

better linear separability of its inputs [13, 42, 151, 168]. This is discussed further in Chapter 5.5.

However, what are the computational advantages of the cerebellum providing the cortical RNN
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with expected future outcomes? Due to the fading properties of RNNs sensory cues are rapidly

forgotten, with their respective representations naturally collapsing onto each other over time

[172, 173]. At the same time, due to the nature of the task the desired outcomes during later

periods of the task are more segregated (that is, the lines diverge from one another). A high

cerebellar τ, which gives the cerebellar network the ability to map RNN activity to segregated

task outcomes in the future, may therefore be an important means for driving task-specificity

in the initial RNN activities. Consistent with this I find that the predictive cerebellar output

drives outcome-dependent RNN representations (Figure 5.5a-c). This potent initial drive of

cortical activity could provide a justification for the observed role of the cerebellum in movement

initiation [48, 59]. Moreover, since both the cortical and cerebellar networks are trained on the

desired task outcome (but at different temporal delays), a high τ results in the cerebellar output

effectively predicting future cortical responses (Figure 5.5d). This is consistent with the observed

phenomenon that the cerebellum predicts upcoming motor responses, both at the level of neural

encodings within the cortex [263] as well as behavioural level [70, 290].
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Figure 5.5: Cerebellar predictions over long windows enables faster and stronger
decoupling of cortical representations. a, Average test error across different cerebellar
temporal windows τ. b, Evolution of first (upper panel) and second (lower panel) principal
components of cortical RNN for different stimuli, colour-coded as in Figure 5.3d, using small
(τ= 0ms) and large (τ= 250ms) cerebellar time windows. c, Average variance of first two principal
components across different cerebellar temporal windows τ. d, Prediction error between cortical
output and itself (gray) or cortical output and cerebellar output (orange) for different temporal
delays. Error bars represent mean ± SEM across 5 different initial conditions.

The above presents clear functional benefits of cortico-cerebellar interaction for learning the

task. However, the extent to which cerebellar feedback is necessary to maintain task dynamics

and performance after learning remains unclear. In particular, what is the result if cerebellar

output is inhibited - or “ablated” - in trained cortico-cerebellar networks?

I explore this by enforcing zero output in the cerebellar network (ct = 0 in Equation 5.1) for
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trained models during different stages of the task (Figure 5.6a). In each case I observe significant

impairment in the model output which returns to baseline (Figure 5.6b-d). Moreover, this effect is

most detrimental to task performance when cerebellar ablation occurs at the start (Figure 5.6e).

These results are consistent with the observed freezing effect of cerebellar lesions on gait [72]. In

line with both cortical and cerebellar networks working jointly to perform the task, I find that

when the RNN is fully plastic cerebellar ablations have a significant but reduced impact on the

cortical dynamics (Figure 5.6e and Appendix Figure C.2).

It is important to note that cerebellar dysfunction may not necessarily imply a “silent” cere-

bellum as implemented above, but rather a “noisy” one in which imperfect cerebellar predictions

are made. To consider this within the framework of the model, I also consider a case in which

Gaussian noise is added at the cerebellar feedback. I observe that increasing levels of cerebellar

noise leads to a degradation in cortical representations and increasingly unstable responses, in

line with the classical motor symptoms of cerebellar ataxia [182]. I also observe that the cortical

RNN is more sensitive to the presence of noise in cerebellar output stage than within the external

stimulus itself (Appendix Figure C.1); this is likely due to the training regime, since the cortical

network has been optimised to deal with external, but not cerebellar, noise.

Finally, I consider the generality of the results to other methods of cortical learning. In

particular, I reiterate that in the cortical network I employ a biologically plausible, but perhaps

modest, plasticity rule based on eligibility traces ([25]; see Section 5.2.2.2), and it is unclear if

cerebellar feedback remains useful when more a powerful cortical learning rule is applied. To

examine this, I also train cortico-cerebellar networks whereby the cortical network is optimised

via the powerful, but biologically implausible, backpropagation through time algorithm. In

this case I observe that cerebellar feedback is still necessary to maintain appropriate cortical

dynamics and behaviour, though at a reduced level compared to the case of weaker, eligibility

trace based cortical plasticity mechanisms (Figure 5.7). This suggests that the extent of cerebellar

involvement depends not only on the presence but also effectiveness of cortical plasticity.

Taken together, this motor-based task highlights the computational benefits of training a

cerebellar network to drive cortical dynamics, predicting that the cortex can critically depend

on cerebellar feedback for successful task execution. Furthermore, this task demonstrates that

cerebellar plasticity can alleviate the need for local cortical plasticity.

5.4.2 Cerebellar-mediated task switching in cortical networks

The line drawing task as presented above demonstrates that cortico-cerebellar loops can enable

successful task learning with minimal cortical plasticity. However, a natural question to pose is

why minimal cortical plasticity itself might be beneficial. Specifically, might cortical networks

with constrained plasticity enable greater flexibility across different contexts and behaviours?

To answer this question I appeal to an environmental paradigm in which rapid behavioural

changes were shown to be acquired in vivo without significant changes in local cortical connectivity
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Figure 5.6: Cerebellar feedback is necessary to maintain performance in line drawing
task. a, Control condition (left) and cerebellar ablation (right) for cortico-cerebellar interaction.
(Bottom) Schematic of cortico-cerebellar activities during cerebellar ablation. In the control
condition, cortical activity ct and cerebellar activity ht evolve unimpeded; during a period of
cerebellar ablation (shaded blue), the cerebellar feedback is silenced with ct = 0. Note that this
has an impact on the cortical state via cerebellar-cortico interaction (cf. Equation 5.1). b, Model
output for different periods of cerebellar ablation (blue box represents period of ablation). i,
Output x and y coordinates of the lines drawn in b. c, Average model error across all inputs for
ablation periods in a,b. d, Average error for different degrees of plasticity and ablation periods
(left to right) as in a-c. d, Average change in task error for models with versus without cerebellar
feedback during (black) and after (blue) training for different degrees of cortical plasticity. Error
bars represent mean ± SEM across 5 different initial conditions.
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Figure 5.7: Model learning and dynamics when the cortical RNN is trained with back-
propagation through time (BPTT) in the line drawing task (fully plastic). a, Training
curves (cortical internal memory α= 0.1) for the different models with BPTT. Green denotes the
model where no feedback is applied to the RNN but the readout network (usually linear) now has
the same architecture as the cerebellar network. b, Average error over training across different
cortical internal memory α. c-e, Effect of cerebellar ablation at different time periods; c, model
output, d, x, y components of model output, e model error. f, Average error for different degrees of
plasticity and ablation periods (left to right) as in c-e; fully plastic model trained with eligibility
traces (as presented in main text) is shown for reference. g, Change in task error for models with
versus without cerebellar component during and after training.

[215]. In particular, in this study Perich et al. recorded neural activity in premotor (PMd) and

primary motor (M1) cortices in macaque monkeys during adaptation to a curl-field perturbation

in a reaching out task. Interestingly, even though these animals were able to successfully change

their behavioural responses, no local changes in the structural connectivity of the PMd or M1

circuit was observed. Instead, it was argued that learning is achieved outside of these cortical

areas, and the authors actually identify the cerebellum as a possible candidate where error-guided

plasticity takes place. In principle, then, behavioural change can take place at the timescales of

cerebellar plasticity which have been observed to be relatively fast (see Section 2.2.2). Indeed,

the authors argue that this strategy of learning outside of the cortex enables behavioural change

at a considerably faster timescale than the relatively slow process of long-term plasticity in the

cortex, which may take days or weeks to effectuate [15, 16, 145, 215]. Crucially, this strategy also
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implies that the same cortical connectivity is used across each task condition (i.e. no perturbation

vs perturbation). I speculated that this might enable a more rapid transition between task

conditions compared to the case whereby local cortical changes continually take place during

learning.

Within the computational framework of the model I consider an analogous paradigm. In

particular, I examine how cortico-cerebellar networks originally trained in the line drawing task

(task 1) can change their responses based on new desired task outcomes which have undergone

a curl-field like perturbation (task 2; see Section 5.3.3.1 for details). Since the external inputs

remain the same in each case, it is possible to consider each task to reflect a specific context with

respect to desired behaviour. Whilst I consider different constraints on plasticity in the cortical

network, the cerebellar network continually learns according to the current desired task outcome.

Important, I analyse two related but distinct aspects of task flexibility in the cortico-cerebellar

networks: (i) the ability for the network to learn a new, unseen task context and (ii) the ability of

the network to rapidly revert, or switch, to a previously learned context.

I first examine whether the cortico-cerebellar networks can learn to respond to the different

task contexts. I observe that all models, regardless of their plasticity constraints, successfully

learn to modify their responses at the introduction of the enforced perturbation (task 2; Fig-

ure 5.8a, middle). Moreover, these changes occur for networks with fixed cortical RNNs and

fully plastic networks at comparable timescales which are each qualitatively consistent with the

learning speed in the macaque. However, once the original task is then reintroduced – “washout”

period – cortico-cerebellar networks with a fixed RNN are able to recapture the initially desired

(unperturbed) targets at a relatively fast timescale, consistent with experimental data. In con-

trast, fully plastic networks relearn task 1 at a slower timescale which is more akin to learning

from scratch (cf. model learning curves in Figure 5.8a, middle vs right). This suggests that fixed

cortical RNNs are less prone to suffer from catastrophic forgetting of the original task [79], and

may be specifically advantageous for switching between pre-learned task contexts.

I then explore the potential of even faster cerebellar-driven behavioural switching by en-

hancing the cerebellar network with context-dependent mechanisms. In particular, I make the

assumption that the parallel fibre weights of the cerebellar network are uniquely activated,

and optimised, for a specific task context. This is supported by experimental data which shows

both context-dependent activations [192] and plasticity rules [202] in the cerebellum. Moreover,

one recent computational model puts forward how such context-dependent processing can be

explicitly achieved via cerebellar interneurons [239].

In this study I abstract away details of biological implementation for context dependent

processing, and simply assume that some parallel fibres apply uniquely to a specific task, and

some apply across tasks. In particular, I refer to the “parallel fibre task overlap”, which is the

fraction of parallel fibres in the current task context which are also used across tasks. For

example, if the PF task overlap is 25%, then 25% of the PFs used for cerebellar processing apply
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Figure 5.8: Context-dependent cerebellar feedback can enable multi-task learning and
switching in the cortex. a, Training error of cortico-cerebellar models originally trained for
line drawing (cf. Figure 5.3; α= 0.5). The models continue to execute the line drawing task (left)
before being trained on a novel curl-field variant of the task (middle) and then finally switch
back to the original task (right). Data from behavioural experiments in macaque monkeys is
reproduced here for comparison (bottom; [215]). b, Average training error across different levels
of parallel fibre (PF) task overlap for the different tasks for the fixed RNN (top) and fully plastic
(bottom) models. Task periods colour-coded as in a. Arrows denote degree of PF task overlap
highlighted in a,c,d. c, Model output for each of the three training periods defined in A for the
zero-overlap condition; “zero-shot” output corresponds to the model output in the first trial when
task 1 is reintroduced. d, e, Model retention score for task 1 for d zero PF overlap and e non-zero
PF overlaps. The retention score is computed as the error of task 1 during baseline over the
error at the first trial after switching back to task 1. Error bars represent mean ± SEM across 5
different initial conditions.

to both task contexts, whilst 75% specifically apply (and are trained) to the current task context.

At their extremes, full overlap (100%) would imply that the same exact PFs are used across

task contexts, while zero overlap (0%) implies that a completely different set of PFs is used for

each task respectively. Note that before learning, the PFs which are not shared (e.g. those which
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uniquely apply to the curl-field context) are initialised randomly.

I observe that the degree of PF task overlap predicts a tradeoff between the speed of learning

the new task and the ability to rapidly switch back to the original task (Figure 5.8b). Specifically,

whilst maximal PF task overlap is beneficial when a new task is introduced (green curve in

Figure 5.8b), there is a greater ability for rapid switching when distinct PFs are used (dark

blue curve in Figure 5.8b). In particular, in the extreme case when wholly distinct PFs are used

in each context, there is a marked ability for the fixed RNN networks to immediately revert

– “zero-shot switch” – to the original task (Figure 5.8c-e). This is again in notable contrast to

networks with fully plastic cortical RNNs which display catastrophic forgetting of the initially

acquired behaviour.

Next, I aimed to better understand the causes of forgetting by analysing changes in the

network’s latent dynamics during these two tasks. I speculated that if the original latent dynamics

were effectively “overwritten” whilst learning the new task, then catastrophic forgetting would

be more likely. With this in mind I sampled population activity of the cortical RNN at time

when task 1 dynamics were initially acquired, and then examined how this activity changed

when compared to (i) the end of the task 2 learning period and (ii) the end of the relearning, or

“washout”, period for task 1.

Consistent with the need to learn a new task all models show a substantial change in the

neural activity – measured by the change in individual neural firing rates – when performing the

perturbed task 2; this change is apparent across different degrees of cortical plasticity as well as

degrees of parallel fibre task overlap (Figure 5.9a). However, it remained unclear whether this

change in activity reflected a slight adjustment or remapping of pre-existing neural patterns, or

a more fundamental change to its underlying geometry. That is, to what extent did learning task

2 adjust the neural manifold of the model? Significantly, experimental data from [215] suggests

that these adjustments are minimal and the original neural manifold is in fact largely preserved.

To test this, I measured changes in the the covariance of the neural activity between the

new task and the initial task (see Section 5.3.3.1 and [74, 215]). Notably, at the end of the

task 2 learning period, only the models with reduced cortical plasticity replicated the minimal

changes observed experimentally (Figure 5.9b). I speculated that the stronger changes in the

underlying dynamics produced by fully plastic RNNs meant that these models had to work harder

to rediscover a solution to the original task. I verified this by comparing the change in activity and

neural manifold after the end of the washout period for task 1. Whilst models with constrained

cortical plasticity exhibited highly similar neural activity as their initially acquired dynamics,

fully plastic models generally learned a new dynamic representation of the task (Figure 5.9c,d).

That is, networks with constrained cortical plasticity in general reused the initial dynamics of the

original task, whilst fully plastic networks effectively relearned a new solution. Since learning

a new solution necessarily takes time, I surmised that the preservation, and exploitation, of

previously learned dynamics was responsible for the enhanced “switching” abilities of fixed RNN
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Figure 5.9: Constraints on cortical plasticity reduce changes to latent neural dynamics.
a, b Change in a activity and b covariance in the RNN population between task 1 (baseline)
and after learning task 2. c, d Change in c activity and d covariance in the RNN population
between task 1 (baseline) and after relearning task 1. Mean changes in experimental data (dotted
black line) in b, d are reproduced from neuronal recordings obtained from premotor (PMd) and
primary motor (M1) cortices in macaque monkeys [215]. Error bars represent mean ± SEM across
5 different initial conditions.

Overall, I apply the models to demonstrate a cerebellar-driven solution to multi-task learning

and task switching. I show that the underlying dynamics preserved by a fixed cortical RNN,

supported by context-dependent cerebellar feedback, can support rapid behavioural changes

whilst minimising forgetting of previously acquired task knowledge.

5.4.3 Cerebellar temporal basis supports non-linear drawing task

In the previous motor tasks I have modeled a case in which the cerebellum learns to drive cortical

task dynamics using a specific predictive time-window (namely τ= 150ms). However, a recent

study has revealed a diversity of temporal plasticity windows to be at play in the cerebellum

[222, 260] (Figure 5.10a). Such diversity of temporal windows may enable the cerebellum to learn

a temporal basis for upcoming events, which may enhance the cerebellum’s ability to predict

future outcomes.
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To demonstrate the benefit of diversity in temporal windows, I now consider a more realistic

(and challenging) variant of the line drawing task in which the model is now trained to produce a

digit-like output (see Section 5.3.3.2). This task is selected so as to produce a non-linear and highly

varied set of future desired outcomes and therefore the need for richer cerebellar predictions. In

particular, I consider a cerebellar network which simultaneously learns with a range, or “temporal
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Figure 5.10: Cerebellar temporal basis supports learning in non-linear digit drawing
task. a, (Left) Cerebellar plasticity depends on the interaction between activity in the parallel
fibre (PF) and climbing fibre (CF); (Right) PF-CF intervals over a broad range of hundreds of
milliseconds induces calcium increases [275] and synaptic plasticity [231] in the Purkinje cell.
Figures taken from [222]. b, Schematic of cerebellar learning with a temporal basis employed in
cortico-cerebellar model. I consider multiple populations of Purkinje cells with different learning
time windows τ. c, Training curves (cortical internal memory α= 0.1) for the different models
with fixed (left), input plastic (middle) and fully plastic (right) RNN. d, Average error over
training across different cortical internal memory α. MSE denotes mean squared error. e, Change
in average training error of the cortico-cerebellar model with respect to the no feedback model
across different levels of cortical internal memory (α) and degrees of plasticity in the cortical
RNN. f, Model output after training given an example of each cue stimulus for three model
architectures with a fixed RNN. g, Performance of cerebellar feedback (fixed RNN; α= 0.1) for
different numbers of granule cells and and cerebellar time windows. h, Model error at the end of
training (averaged over last 10 training sessions) for different cerebellar time windows for (left)
line drawing task (cf. Figure 5.3) and (right) digit drawing task. Error bars represent mean ±
SEM across 5 different initial conditions.

basis”, of time-windows τ ∈ [0ms,250ms] such that its prediction effectively spans a relatively

long window of upcoming desired outcomes (Figure 5.10b; see Section 5.3.3.2 for details).

I find this heterogeneity of cerebellar time windows to enable both faster learning and higher

performance thresholds (Figure 5.10c-f). In particular, the temporal basis of cerebellar predictions

fed back onto cortical RNNs enable better task acquisition compared to cerebellar predictions

at homogeneous timescales. Consistent with the previous line drawing task, I find that a large

number of granule cells and larger predictive time windows in the cerebellar network are also

beneficial (Figure 5.10g). However, it is notable that the temporal basis of predictions itself, and

not simply the application of large time windows, uniquely applies to this more complex digit

drawing task (Figure 5.10h). That is, as expected, this richer set of future predictions provided

by the cerebellum appears particularly valuable in cases where the desired task outcomes obey

non-linear, diverse dynamics.

Finally, I verify that the cerebellar network is critical for preserving correct cortical dynamics

after learning. As with the simpler line-drawing task, I find that cerebellar ablation is detrimental

to the maintenance and development of these dynamics (Figure 5.11 and Appendix Figure C.3).

Overall, these results suggest that the diversity of cerebellar temporal windows observed

experimentally [222, 260] can be beneficial when in the presence of more challenging, temporally

diverse task conditions.
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Figure 5.11: Cerebellar feedback is necessary to maintain performance in digit drawing
task. a, Model output under control and cerebellar ablation conditions for example inputs (digit
2 in upper panels and digit 4 in lower panels); dashed red line represents model output during
and after ablation period. b, Average model error across all inputs for control (left) and ablation
(right) conditions. c, Average error for different degrees of cortical plasticity and ablation periods
(middle period illustrated in a, b). d, Average change in task error for models with versus without
cerebellar feedback during (black) and after (blue) training across different degrees of cortical
plasticity. Error bars represent mean ± SEM across 5 different initial conditions.

5.4.4 Cerebellar-driven cortical dynamics maintains beliefs in an evidence
accumulation task

So far in this Chapter I have considered only motor-based tasks, but, as discussed in Chapters

2 and 3, growing evidence strongly suggests that the cerebellum also plays important roles in

functions that go beyond direct motor control and may employ some “universal transform” which

extends to the cognitive domain (see Section 2.2.4) [66, 124, 220].

To demonstrate this I next model an evidence accumulation task that has been shown to be

cerebellar-dependent [65]. In this study, Deverett et al. showed that optogenetic inhibition of the

cerebellar output nuclei disrupts the ability of expert mice to determine whether the left or right

cheek received more air puffs over a period of time (Figure 5.12a). It is worth highlighting that

unlike in the previous drawing tasks, here the desired outcome is only provided at the end of the

task, making error-related signals highly sparse.

I first focus on the ability of cortico-cerebellar networks to learn the task. As with the

previous motor based tasks, when applying the constraints of interest on the cortical network –

fixed connectivity in the RNN and weak internal memory – I observe that cerebellar feedback

significantly improves learning (Figure 5.12b-d). Indeed, the competitive performance levels

obtained by cortico-cerebellar networks in this case are perhaps surprising given the highly

sparse nature of teaching signals and the relative simplicity of the learning rules employed.

However, when fully plastic RNNs are incorporated, or cortical internal memory is increased,
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Figure 5.12: Cortico-cerebellar model learns evidence accumulation task. a, Schematic of
evidence accumulation task [65]. A random sequence of non-zero inputs (“air puffs”) is delivered
in the leftward (-) or rightward (+) direction. The model (or mouse, left) must integrate this input
and decide at the end of the task which side received more input overall. Left figure taken from
[65]. b, Training curves (cortical internal memory α= 0.1) for the different models with fixed (left),
input plastic (middle) and fully plastic (right) RNN. c, Average error over training across different
cortical internal memory α. d, Change in average training error of the cortico-cerebellar model
with respect to the no feedback model across different levels of cortical internal memory (α) and
degrees of plasticity in the cortical RNN. e, Model belief during example trial for cortico-cerebellar
networks with fixed RNN. Error bars represent mean ± SEM across 5 different initial conditions.
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I observe a reduced, if any, benefit to cerebellar feedback. I speculate that this may be due to

the more sensitive nature of the networks in these cases: constantly changing RNNs, or RNNs

with very slow internal leak mechanisms, are potentially more prone to instability issues if the

cerebellar feedback is imperfect. This might be particularly problematic for “cognitive conditions”

– as in this evidence accumulation task – in which teaching signals are highly sparse and which

incorporate long timescales.
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Figure 5.13: Effects of cerebellar ablation captures behavioural results in the mouse
during evidence accumulation task. a, Model beliefs (fixed RNN) over time without (orange)
and with complete cerebellar ablation (purple) in model (upper panels) and data-derived be-
havioural model (lower panels) reproduced from Deverett et al. [65]. Thin model lines represent
one example seed. Belief P denotes model output probability. b, Model and data error under
different ablation periods and degrees of cortical plasticity. c, Normalised regression weights at
different periods of input presentation (cue) during control (left) and ablation (right) conditions for
both model (orange line) and behavioural data (black line). Dotted line denotes optimal strategy
where each cue period is weighted equally. d, Model error (fixed RNN) under different ablation
periods for all trials (orange) and “history-centric” (HC; blue) trials which demand preserving
input over long time windows (see text). e, Difference in error during ablation between HC and
all trials. f, Average change in task error for models with versus without cerebellar feedback
during (black) and after (blue) training across different degrees of cortical plasticity. Error bars
represent mean ± SEM across 5 different initial conditions.
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Next, I replicate the optogenetic experiments in [65] by observing the effect of cerebellar

ablation on trained cortico-cerebellar models. Strikingly, ablation analysis reveals strong sim-

ilarities to experimental observation. Specifically, I observe that cerebellar ablation greatly

impairs the model’s capacity to maintain and develop beliefs during the task, mirroring the

behavioural effects observed experimentally (Fig 5.13a). That is, whilst the model (and animal)

under control conditions is able to appropriately update and maintain its belief over time given

cue information, this belief is prone to a rapid deterioration to baseline levels in the event of

cerebellar ablation. When inducing cerebellar ablation at specific periods of the task I also observe

a negative effect in behaviour; interestingly, I observe that later periods of transient ablation are

particularly detrimental to model performance, consistent with behavioural data (Figure 5.13b).

This amplifying effect of cerebellar ablation near the end of the task is likely due to the simple

fact that at later times in the sequence, more overall information about the task is lost with

the (ablation-induced) deterioration of belief. Indeed, consistent with behavioural data, when

regressing the final choice of the model based on the cue information during different periods

of the task, I observe quantitatively that cerebellar ablation in latter periods leads to a final

choice which neglects inputs presented earlier on in the task (Figure 5.13c; see Section 5.3.3.3 for

details). Consequently, one would predict that the model (or animal) under cerebellar ablation

would particularly struggle when memory of inputs is necessary over a long period of time. I

explicitly tested this by considering model performance on “history-centric” trials which rely

on remembering the history of input in the first third period of the cue presentation (see Sec-

tion 5.3.3.3). As predicted, late cerebellar ablation is particularly detrimental for these trials

(Figure 5.13d,e and Appendix Figure C.4). Overall, under the assumption of constrained cortical

plasticity, cerebellar feedback is critical for appropriate behaviour (Figure 5.13f).

Finally, given that cerebellar feedback is necessary to preserve information over time and

avoid leaky cortical dynamics, I predicted that the behavioural effect of cerebellar ablation would

depend on the timescale of the task and would weaken for shorter task durations. To test this I

trained cortico-cerebellar networks for various sub-second task durations (see Section 5.3.3.3).

As expected, I find that the performance effect of ablation increases as a function of task length

(Figure 5.14). Like in the previous motor-based tasks, the model predicts that cerebellar feedback

is particularly helpful when in the presence of weak cortical plasticity.

Overall, the model conforms to the experimental observation that the proper maintenance of

task selectivity depends critically on cerebellar feedback during evidence accumulation. Consis-

tent with behavioural results, these effects are emphasised when cerebellar ablation occurs in

the later stages of the task.
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Figure 5.14: Effect of cerebellar ablation on evidence accumulation task with varying
cue durations. a, Test error over different cue durations for models trained with cerebellar
feedback (orange), models trained with cerebellar feedback but now subject to cerebellar ablation
(light blue), and models trained without cerebellar feedback (grey), with a fixed (left), input
plastic (middle) or fully plastic (right) RNN. b, Average change in training error over different
cue durations for models with versus without cerebellar component during and after training.
Error bars represent mean ± SEM across 5 different initial conditions.

5.4.5 Cerebellar feedback sustains cortical dynamics in a delayed association
task

Next, I aimed to demonstrate that cerebellar networks can also effectively drive cortical dynamics

in tasks with long delay periods, in which both input and target information is highly sparse.

To achieve this I model a delayed association task which was recently shown to dependent

on cortico-cerebellar loops [84]; impressively, this dependence was demonstrated not only by

examining behaviour (as in the previous evidence accumulation task), but also via direct neural

recordings. In this study mice were presented with one of two stimuli (left or right) followed by a

delay period, after which they were trained to lick in the corresponding direction (Figure 5.15a).

At the same time neural selectivity was recorded both in the anterior lateral motor cortex (ALM)

- a working memory and planning region - as well as the cerebellar output nuclei (Figure 5.15b).
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Figure 5.15: Cortico-cerebellar network learns delayed association task. a, Delayed
association task; a sensory cue is presented followed by a delay and decision period [84]. b,
The cortico-cerebellar loop models the interactions between a working memory region and a
cognitive module of the cerebellum. c, Learning curves (cortical internal memory α = 0.1) for
different model architectures with a fixed (left), input plastic (middle) and fully plastic (right)
RNN. d, Average error over training across different cortical internal memory α. e, Change in
average training error of the cortico-cerebellar model with respect to the no feedback model across
different levels of cortical internal memory (α) and degrees of plasticity in the cortical RNN.
f, Cue selectivity (model readout, top) and latent dynamics (first dPCA, bottom) for different
cortico-cerebellar models after training. g, Stability score for different models after training (see
Section 5.3). Error bars represent mean ± SEM across 5 different initial conditions.
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Timed photoinhibition was used to reveal ALM selectivity to strongly depend on the cerebellar

output nuclei, and vice versa.

To model this task I follow the same protocol used experimentally [84], where one of two

possible cues are presented followed by a delay period, after which the model makes a cue-based

response (left or right; see Section 5.3.3.4 for details). Given the lack of sensory or teaching

information during the delay period the cortico-cerebellar network it is particularly vital in

this task to sustain stimulus representations. It is important to note that a standard randomly

initialised RNN is unlikely to achieve this property, since memories of previous inputs naturally

decay in the absence of task-induced plasticity [173].

Like the evidence accumulation task, I observe that cerebellar feedback enables task acquisi-

tion to a competitive level in the case of constrained plasticity and weak internal memory in the

cortical network (Figure 5.15c-e). When the cortical network is fully plastic, or has a high degree

of internal memory, however, task acquisition is typically achieved without any feedback, and

cerebellar feedback is unnecessary and may even be harmful. Like the evidence accumulation

task, this suggests that cerebellar feedback is most valuable in conditions in which cortical

mechanisms by themselves are not sufficient for learning. However, for this delayed association

task I verify that the recurrent weights of the RNN, though random, are still crucial for learning.

Indeed, when this recurrency is removed (Whh in Equation 5.1), I observe a significant failure to

acquire adequate task dynamics (Appendix Figure C.5).

In this task I observe a more nuanced picture with respect to the plasticity assumptions in

the cortical RNN. Specifically, an interesting case arises when plasticity in the RNN is limited

strictly to its input synapses (input plastic; cf. Section 5.2.2). Unlike the previous tasks for which

plasticity at these synapses made little difference (Figures 5.3, 5.10 and 5.12), in this task I

observe a clear performance benefit in applying input plastic RNNs as opposed to completely

fixed RNNs (compare orange curve in left vs middle in Figure 5.15c). I speculated that this

improvement is due to the nature of this task and the advantage of finding steady, robust task

dynamics during the long delay period. Specifically, plasticity in cerebellar-cortico connectivity

(WC h) in Equation 5.1) might enable the cerebellar network a more refined controllability of

the cortical network which promotes stability in the task representations [135]. To examine

this I inspected the task selectivity and underlying dynamics during the delay period for input

plastic and fixed RNN models. As expected, I find that whilst a fixed RNN results in mixed,

quasi-chaotic dynamics, input plastic networks achieve attractor states and exhibit strong, stable

representations (Figure 5.15f,g).

To better understand how cerebellar-cortical plasticity leads to these desirable dynamics, I

examined the extent to which the cerebellar output influences the activity in the cortical RNN. I

theorised that plasticity enables cerebellar predictions to make a higher overall impact on cortical

dynamics (Figure 5.16a). To quantify this, I used concepts from control theory to measure the

energy generated by cerebellar feedback onto the RNN (see Section 5.3.4), [135]. As expected,
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input plasticity enables the cerebellum a greater potency on cortical dynamics (Figure 5.16b).

This extra potency likely enables the model to the reach and remain in the desired attractor

states described above.

h

c

Figure 5.16: A control-theoretic perspective of the cortico-cerebellar loop. a, Illustrative
schematic of cerebellar (orange) and cortical (grey) activities. Depending on the cerebellar-cortical
connectivity WC h, the same cerebellar output c might suppress (top right) or amplify (bottom
right) RNN trajectories. b, The energy generated by random and cerebellar feedback for models
trained with varying degrees of plasticity in the delayed association task (Figure 5.15). The
energy is normalised by the maximum possible energy generated by inputs that achieve the
greatest cortical response (see text). Error bars represent mean ± SEM across 5 different initial
conditions.

Finally, I replicated the optogenetic experiments performed by [84] and performed a simulated

ablation in which the cerebellum is transiently removed during the delay period. As in the previ-

ous tasks, I find that cerebellar ablation drastically disrupts cortical task selectivity and, more

prominently, the model captures the neural data acquired in vivo [84] (Figure 5.17a). I observed

a similar effect in the model’s latent dynamics: applying demixed principal component analysis

(see Section 3.3.4) [147] I find that the choice component of the RNN’s population dynamics

collapses rapidly during the ablation period, again consistent with neural data (Figure 5.17b).

Significantly, the model predicts that this effect should depend on the degree of plasticity in

the cortical RNN. Specifically, in the presence of a fully plastic RNN cerebellar ablation causes

minimal effect in network dynamics, therefore not capturing the strong cerebellar dependence
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observed experimentally (Figure 5.17c,d). Indeed, the model predicts a performance impact

caused by ablation only when local cortical connectivity is constrained (Figure 5.17e-g). Taken

together these results suggest that the cerebellum, not the neocortex, is the primary site of

learning during the acquisition of this working memory task in vivo [84].

Overall, these results demonstrate that the model can capture working memory tasks and

the observed dependency of cortical dynamics on cerebellar input. Moreover, when set against

experimental observation, the model makes the prediction that the cerebellum is a key site of

plasticity during acquisition of delayed association tasks in vivo.

5.4.6 Similar deficits for cortical and cerebellar ablation

So far I have exclusively considered the effects of ablation to the cerebellar network. In particular,

cerebellar feedback, which provides inputs onto the cortical RNN (Equation 5.1), has been shown

as a crucial component for preserving task dynamics and performance (Figures 5.6, 5.11, 5.13

and 5.17).

However, the model dynamics also require the cortical RNN, which is used as input to the

downstream readout network (Equation 5.3) and the (Equation 5.2) cerebellar network. Naturally,

then, one might also expect that interference or ablation to the cortical RNN to also lead to neural

behavioural deficits.

To examine this I simulate cortical ablation on the above working memory based tasks,

whereby I silence 75%6 of the units in the cortical RNN. As predicted, I observe comparable

deficits as cerebellar ablation both in the evidence accumulation task (Figure 5.18a-c) and

delayed association task (Figure 5.18d-f). Specifically, cortical ablation also leads to an inability to

preserve task information over long timescales and results in significant behavioural dysfunction.

Notably, the effect of cortical ablation on cerebellar selectivity in the delayed association task in

the model replicates experimental findings (Figure 5.18d) [84].

5.4.7 Alternative, optimal strategy for cerebellar learning

Until now I have only considered the behavioural timed plasticity rule, whereby the cerebellum is

trained to predict upcoming desired task outcomes, in the cerebellar network (see Section 5.2.2.2).

However, it remains to be seen how this this biologically motivated learning rule compares

against a more normative, theoretically optimal solution.

To test this I train cortico-cerebellar networks on the above tasks but now consider cerebellar

learning rules using backpropagation. In particular, I apply backpropagation of the task error

E computed at the cortical readout. I consider backpropagation through space, where the error

gradients are transferred through the cortical RNN onto the cerebellar network at a given

timestep, as well as the more powerful backpropagation through space and time (BPTT), whereby

6Note that 100% ablation of the cortical RNN would trivially result in null activity across the network, since the
only input to the cerebellar network is the RNN state.
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Figure 5.17: Cerebellar ablation captures experimental data in mouse. a Cue selectivity
(the model readout) during the delay period without (left) and with cerebellar ablation (right;
blue area denotes period of ablation and thin line shows control) in the model (upper panels) and
optogenetic experiments (lower panels) reproduced from Gao et al. [84]. b, First decision principal
component (dPC) during the delay period without (left) and with (right) cerebellar ablation in
the model (top) and in optogenetic experiments (bottom) [84]. c, Cue selectivity during the delay
period with cerebellar ablation when using the fully plastic RNN (cf. a). d, Model error during
cerebellar ablation (input plastic RNN; control error shown with dashed-dotted line). Dotted grey
line denotes chance level. e, Average error from cerebellar ablation at different points during the
delay period and different degrees of cortical plasticity. i, Average change in task error for models
with versus without cerebellar feedback during and after training across different degrees of
cortical plasticity. Experimental data is shown in black. Results are shown across 5 seeds. Error
bars represent standard error of the mean.

task errors are also backpropagated to cerebellar outputs at previous timesteps (see Section 2.1.4).

Note that though each of these cases make computational assumptions which are difficult to
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Figure 5.18: Effect of cortical ablation in working memory tasks. In this analysis 75% of
cortical RNN neurons are silenced (after training). a-c, Cortical ablation during the evidence
accumulation task (fixed RNN). a, Model output without (orange) and without (purple) cortical
ablation over the whole task period. b, Normalised regression weights at different periods of input
presentation (cue) during control (upper) and cortical ablation (lower; ablation period denoted in
blue) conditions. c, Model error under different ablation periods. d-f, Cortical ablation during
the delayed association task (input plastic RNN). d, Cue selectivity in the cerebellar network
during the delay period without (left) and with cortical ablation (ablation period denoted in
blue) conditions for example input in model (upper panels) and experimental data (lower panels)
reproduced from [84]. e, (Cortical) model error during delay period with (left) and without (right)
cortical ablation. f, Average error from cortical ablation at different periods during the task delay
period and different degrees of plasticity. Experimental data shown in black. Error bars represent
mean ± SEM across 5 different initial conditions.

justify in the biological cortico-cerebellar circuit, they provide a method of cerebellar learning to

improve performance directly.

Interestingly, I observe that the biological cerebellar learning rule shown competitive task-

performance when compared to backpropagation (Figure 5.19). Somewhat surprisingly, this

rule actually outperforms BPTT in the evidence accumulation, perhaps due to the problems of

gradient backpropagation over long task lengths [109].
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Figure 5.19: Performance of models with cerebellar feedback when the cerebellar
network learns with backpropagated teaching signals. In this scenario the cerebellum is
optimised to directly minimise the cortical error E t via global (cortico-cerebellar) backpropagation
through the cortical readout network and RNN (cf. Figure 5.1c). Two forms of backpropagation
are considered: 1. backpropagation through space (spatial), which only considers the effect of
cerebellar feedback on the current error 2. backpropagation through space and time (spatial +
temporal; i.e. BPTT), which also takes into account the effect of cerebellar feedback on future
cortical errors. The timing rule that we employ in the main text is shown for comparison
(behavioural timing rule), as well as the case for which there is no cerebellar learning at all
(fixed). In line with the main experimental results presented in the text, in all tasks a fixed
cortical RNN is considered, except for the delayed association task in which an input plastic RNN
is used. Note that for the evidence accumulation task, only our behavioural timing learning rule
successfully learns. Error bars represent mean ± SEM across 5 different initial conditions.

5.5 Theoretical Results: Cerebellum Decodes Low-Signal
Representations

A prevalent feature in classical cerebellar theories is that the divergence provided by the granular

layer enables better separation of its inputs [13, 42, 83, 168]. It has been suggested that this

feature enables the cerebellum to decode task-specific dynamics from cortical representations

during working memory tasks [253]. However, this has not been studied explicitly. In this Section

I study the ability that cerebellar networks have in decoding cortical task representations over
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time.

5.5.1 Observed dependence on cerebellar networks with divergent hidden
layers

I first examined the role of divergent cerebellar networks in the previous delayed association

task, for which the cerebellum must learn to associate cortical representations with a previously

provided cue. Interestingly, I observe that as the delay period increases in this task so does

the need for more granule cells (Figure 5.20a). I speculated that this was because the RNN

representations of the initial cue naturally weakened over time [172, 173]; projecting these

representations onto high-dimensional space, which increases their linear separability [56],

will therefore become increasingly necessary to decode the initial stimulus. To quantify this, I

analysed over time (i) the strength of representation of the initial stimulus, as measured by the

signal-to-noise ratio (SNR; see Section 5.3.5) and (ii) the number of granule cells needed for the

cerebellar network to decode the stimulus from the representation. As expected, I observe that

over time the SNR decreases, whilst the number of required granule cells increases (Figure 5.20b).

In particular, I observe an inverse relationship between the signal-to-noise ratio (SNR) of the

RNN activity and the required number of granule cells to decode the activity. To explore this, I

investigated this relationship analytically.
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Figure 5.20: Observed benefit of a large granular layer for decoding cortical representa-
tions with weak task-relevant signals in cortical RNN. a, Model error for different numbers
of cerebellar granule cells (GCs) and delay period lengths in the delayed association task (fixed
RNN; α= 0.1). b, Signal-to-noise ratio (SNR) of RNN activities (left y-axis) and number of GCs
needed to decode the stimulus from these activities (right y-axis). Error bars represent mean ±
SEM across 5 different initial conditions.

5.5.2 Formal relationship between cortical SNR and cerebellar size

I now derive an analytical relationship between the SNR of the cerebellar input and the required

hidden size to achieve successful decoding. I reformulate this problem by examining the required

hidden size for distinct representations of the input. The question can then be framed as follows:

given an SNR – i.e. particular ratio of task-dependent and task-independent input - what is the
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number of granule cells (GCs) required to ensure that the population vector will have distinct

activations over the different task conditions?

Formally, I make the assumption that the input a to the GC population can be expressed as a

sum of two Gaussians of zero mean

a =ω+ζ; ω∼N (0, σ2
ω), ζ∼N (0, σ2

ζ ), (5.16)

Where ω is assumed to be the “general” input (which comes from the task-agnostic environment)

and ζ is task specific (which changes, for example, given different task cues). ω and ζ are assumed

to be independent, and therefore a is itself normally distributed. Note that with the reasonable

assumptions that the number of cortical neurons is high and the cortico-cerebellar weights

(WMF) are distributed around zero, Equation 5.16 applies to the weighted cortico-cerebellar

inputs defined in Equation 5.2 by the central limit theorem. The SNR of a, which if applying

Equation 5.2 is the same as the SNR of the RNN (see Appendix Section C.1), is defined as the ratio

of the variance of the task-dependent input against the task-agnostic input; that is, SNR= σ2
ζ

σ2
ω
.

To avoid confusion I clarify that Equation 5.16 describes the input across all neurons, i.e. the

total input distribution. A given neuron will receive one sample of this and ω will be fixed given

the same task-agnostic environment, and ζ will be fixed given the same task-specific condition.

Finally, I now make the assumption that each granule cell uses a spiking activation function

fspike where fspike(I)= 1 if I > 0 and 0 otherwise.

To achieve a distinct population vectors as desired, I consider the probability that a given

granule cell encodes the task condition. That is, assuming the same general input ω, what is the

chances that two random samples of ζ produce two values of a of different signs. Assuming a

threshold of 0, this is like asking what are the chances of a random neuron spiking for exactly

one of the two task specific inputs. I label this case unique spike.

With some analytical work (presented in Appendix Section C.1), it is possible to show that

if the SNR is small (σ2
ζ
<< σ2

ω), then the probability of a unique spike for a given GC can be

expressed as

P(unique activation)≈
p

2
π

p
SNR . (5.17)

Given Equation 5.17 it is relatively simple to compute the number of GCs necessary to produce

distinct population vectors for different task conditions with reasonable confidence. Suppose

that we wish distinct population vectors with confidence θ with 0 < θ < 1. Since each neuron

receives independent samples of input (cf. Equation 5.16), the probability of distinct population

vectors can be computed using the binomial distribution. In particular, one can ask what is the

probability of at least one event which has probability p given N trials, where in this case p is

the expression in Equation 5.17 and N is the number of neurons in the population. To ensure

this probability is greater than θ as desired, some relatively simple algebraic manipulation (see

Appendix Section C.1) results in the following expression for the number of neurons required:
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# GCs needed=− πp
2

log(1−θ)
1p

SNR
, (5.18)

Which is the main analytical result.

5.5.3 Experimental validation

To verify that Equation 5.18 does indeed hold empirically I ran simulations in which a cerebellar

network must classify binary inputs with varying SNR (see Section 5.3.5). I observe that the

theoretical prediction for distinct population encodings at the granule cell layer aligns well with

those observed (Figure 5.21a). As expected, the distinct vectors is strongly correlated with the

ability for the network to correctly classify the original stimulus at the output layer (Figure 5.21b,

c).

Since the above analysis makes the strong assumption that the stimuli and respective neural

activations are identical throughout the training period, I also tested whether Equation 5.18

still holds in the presence of trial by trial variability. Specifically, I repeat the above but with an

additional noise factor ωtrial, where ωtrial is randomly sampled each trial according to a Gaussian

distribution with variance defined relative to the original input SNR. I observe that for noise

factors which are relatively small compared to the SNR, analytical predictions remain valid

(Figure 5.21d).

5.5.4 Relationship to previous work

The analysis performed in this Section builds upon the theoretical study performed by Babadi

and Sompolinsky. In their study the effect of expansion is considered on binary stimulus patterns

and their respective “clusters”. It is possible to conceptually relate these stimulus clusters to the

paradigm considered in this Section.

In particular, a specific environment condition in the current study (fixed ω in Equation

5.16) can be considered as analogous to a specific cluster in [13]. Moreover, the variance of the

task-agnostic component corresponds to the “cluster size” – i.e. the variation in stimulus pattern

which depends on (and only on) the specific task condition. Similarly to Equation 5.17, Babadi and

Sompolinsky derive an expression for the probability for different cluster responses downstream

at the granule cell layer (see Equations 11, 12 in [13]).

This current work can be viewed as a generalisation of this result in so far as we now consider

the weighted sum of stimulus neurons (RNN neurons in our model) from an unknown distribution,

rather than binary stimuli which are defined according to the Bernoulli distribution. With this

I can consider arbitrary variances in our task-agnostic conditions and examine how responses

change according to a more general SNR. I finally note the small but important difference in

computation: whilst Babadi and Sompolinsky compute the probability in different downstream
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Figure 5.21: Experimental validation of analytically predicted number of granule cells
required for signal decoding. Analytical and observed relationship between input signal-to-
noise ratio (SNR) and required number of granule cells (GCs) for a, distinct population encoding
and b, successful readout learning; C/

p
SNR denotes the theoretical prediction (see early section

on the cerebellum decoding fading memory). c, Tight coupling between a and b. d, Successful
readout learning when there is also trial-to-trial variability, where in each trial some Gaussian
noise ωtrial is added to the input. ωtrial is defined as a ratio of the SNR; the presented ratios
are ωtrial = 0.1×SNR (low trial variability), ωtrial = 0.5×SNR (medium trial variability) and
ωtrial = 1×SNR (high trial variability). Error bars represent mean ± SEM across 10 different
initial conditions.

responses between a stimulus pattern and the stimulus pattern of its cluster centre, I compare

across two arbitrary stimuli from the same cluster (i.e. same task-agnostic setting).

5.5.5 Biological interpretation

The above suggests that as the task-relevant signal in the cortical population decreases, there

is a greater need for a large number of neurons to decode that signal. The cerebellum, with

a vast numbers of cells in its “hidden” granular layer – > 50 billion in the human brain (see

Section 2.2.1) [107] – which each receive distinct combinations of cortical input, is therefore a

prime candidate for decoding representations in the cortex whose task-relevant signals have

naturally decayed over time.

This suggests a key cerebellar contribution in memory, where decoding and maintaining

initial stimuli features is crucial [253]. This has been recently supported experimental findings

132



5.6. CORTICO-CEREBELLAR CONSOLIDATION

showing that cerebellar disruption is more detrimental for learning when in the presence of long

delay periods [170].

However, it is important to note that since the number of neurons grows exponentially as the

task-relevant signal decreases (Equation 5.18), simply depending on the large hidden layer of

the cerebellum is not a scalable approach for long time windows. Indeed, this dependency on the

cerebellum only likely occurs at relatively short timescales (i.e. order of seconds) and during a

phase of learning whereby cortical task representations naturally decay quickly.

5.6 Cortico-cerebellar consolidation

In each of the previous tasks, cerebellar feedback is shown to mediate learning and the main-

tenance of task-specific cortical dynamics. However, it is not clear whether this cerebellar de-

pendence remains in the long term. For instance, it has been observed that whilst cerebellar

dysfunction is more detrimental at early periods of learning compared to later periods [82].

Indeed, this was one of the core predictions made by the cortico-cerebellar model introduced in

Chapter 3 (see e.g. Figure 3.7). Furthermore, for some brain-wide interactions, such as those

between the neocortex and hippocampus, the cortex is known to encode long-term representations

of tasks independently [146]. Together, these results raise the question of whether a “consolida-

tion” period might be effectuated in cortico-cerebellar loops, during which the memory stored

in the cerebellum may be transferred to cortical areas. Crucially, this would conceptually bring

together the model presented in this Chapter with the model presented in Chapter 3. That is,

the cerebellum would effectively become (eventually) a teacher for the cortex until the latter can

achieve appropriate task dynamics independently.

To demonstrate that cerebellar-to-cortical systems consolidation can take place in the model

presented in this Chapter I develop consolidation-specific learning rules. To achieve consolidation

cortical recurrent weights are trained to mimic cerebellar input. Specifically, the RNN weights

Whh are updated to minimise the consolidation error Econs where

Econs = E(h,c)||Whhh−WC hc||. (5.19)

That is, after consolidation the cortical-to-cortical input Whhh should approximate cerebellar-

cortical input WC hc. Note that the expectation in Equation 5.19 is over pairs of cortico-cerebellar

activity (h,c) during the task.

Given that (i) the RNN state h is of significantly higher dimensionality than the cerebellar

output c, and that (ii) c is a function of h (Equation 5.2), several solutions that enable the RNN

to capture the cerebellar input should exist. Here I consider two possible learning rules. The

first learning rule is based on the optimal solution of Equation 5.19 based on the least squares

solution. The second learning rule is biologically motivated and depends on the ratio of cerebellar
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Figure 5.22: Cerebellum can mediate task consolidation in the cortex. a, Schematic of
proposed theory of cerebellar-to-cortical task consolidation. During the initial learning phase
(left), task representations are primarily driven by the cerebellum and RNN connectivity is not
yet task-specialised. During the consolidation phase there is a period of cerebellar-to-cortical (CC)
task information transfer (middle), whereby CC interaction drives plasticity in the cortical RNN.
After consolidation (right), the RNN can operate effectively without the need for cerebellar input.
The colour of the structures reflects the importance of each component throughout consolidation.
b, Model error in the delayed association task (cf. Figure 5.15) throughout consolidation with
(purple) and without (orange) cerebellar ablation. For reference an optimal consolidation model
is also given (green). Dotted black line denotes chance. c, Model selectivity with and without
cerebellar ablation at different stages of the consolidation process; titles colour coded according
to arrows in b. d, Strength of the cerebellar-to-cortical weights (WC h; top), local cortical weights
(Whh; middle) and change in local cortical weights (∆Whh; bottom) over the period of consolidation.
Strength and change is measured by the Euclidean norm. e, Cosine similarity between cRNN
(RNN and cerebellar network; note this is different to the cRNN model in Chapter 3) activities
before and during consolidation. f, Cosine similarity between the learned recurrent input currents
(generated locally in the cortical RNN) during consolidation and the total cortical input current
(generated locally and by cerebellar-cortical input) in the pre-consolidation network. Similarity of
the consolidation model is shown in orange and the optimal consolidation model in green. g, Task
error after the consolidation period for models with different initial degrees of performance prior
to consolidation. Error bars represent mean ± SEM across 5 different initial conditions.
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input to total RNN activity. Specifically, the recurrent weight wi j from cortical neuron i to j

evolves according to

∆conswi j =
W j

C hct∑
k f (hk,t)

, (5.20)

Where W j
C h is the jth row of WC h and the denominator a normalising factor which encodes the

total RNN activity which in reality may, for example, by cortical interneurons [55]. It can be

shown that Equation 5.20 reduces the consolidation error in Equation 5.19 (cf. Section 5.3.6).

At the same time, the cerebello-cortical input weights W j
C h are gradually decayed so that over

training the cerebellum stops driving the cortical network, thereby giving full control of the task

to the cortical RNN (Figure 5.22a).

For both the theoretically optimal and biological learning rules, I observe that the RNNs

gradually learn to perform the task without the need for cerebellar input (Figure 5.22b,c).

During this period, the cerebello-cortical weights decay gradually to zero, whilst relatively

small but important weight modifications take place within the cortical RNN (Figure 5.22d). By

construction of the learning rule, the cerebello-cortical activities throughout the consolidation

period closely resemble, or “replay”, their original pre-consolidation values, and the RNN is

eventually able to independently recreate the (pre-consolidation) cerebellar-dependent dynamics

(Figure 5.22e,f). Such “replay” of task-dependent dynamics is consistent with experimental

observations of cerebello-cortical interactions during sleep [287].

I also find that a model with fixed RNN connectivity does not perform as well as the input

plastic condition (Appendix Figure C.7). Moreover, models trained on the line drawing task (cf.

Figure 5.3) display significant deficits during the consolidation (Appendix Figure C.8). I speculate

that this is due to the relative stability of the cortico-cerebellar networks in this task condition

(cf. Figure. 5.15; see Discussion in Section 5.7). Related to this, I find that models which have not

yet perfected the task exhibit worse performance after consolidation (Figure 5.22g).

In summary, these consolidation learning rules provide a proof of principle towards in systems

consolidation in cortico-cerebellar loops. Specifically, that task representations initially acquired

by the cerebellum can gradually be transferred to the cortex.

5.7 Discussion

Growing experimental evidence suggests that cortico-cerebellar loops support behaviour, but their

computational roles have remained unclear. Here I have introduced a systems-level modelling

framework in which a feedforward cerebellar network receives the state of a cortical RNN and

provides task-specific predictions in return. Crucially, unlike the ccRNN model presented in

Chapter 3, here the cerebellar network directly updates cortical activity. This enables cerebellar

feedback to facilitate learning by shaping the underlying cortical task dynamics. I show that
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this framework is consistent with behavioural and optogenetic studies that were not originally

captured by the ccRNN model.

5.7.1 Cortical dynamics driven by feedback

The model presented in this Chapter is related to previous network architectures in that it

uses feedback to enhance neuronal representations and selectivity in an otherwise fixed RNN,

thereby facilitating task-relevant downstream processes [174, 257]. There is a growing interest

in neuroscience on the role that feedback can play in cortical circuits. For example, two recent

theoretical studies demonstrate how thalamic feedback implemented by cortico-thalamic loops

can flexibly prepare and execute motor sequences [136, 171]. I highlight two key computational

differences in this work. First, in the model presented here feedback is not derived by a linear

function of the RNN (as usually done when using simple readout or thalamic networks), but

from a divergent, non-linear feedforward network inspired by the architecture of the cerebellum

(Figure 5.1). Second, this model incorporates behavioural timing-specific learning rules in line

with experimental findings idiosyncratic to the cerebellum [227, 242, 259, 260, 275]. I show

that these cerebellar features improve task-acquisition against a standard readout feedback

architecture [130, 174, 257] (Figure 5.4). Conceptually, therefore, the model makes the predic-

tion that cerebellar plasticity alone suffices to successfully learn and maintain adequate task

representations, whilst the cortex can remain relatively stable.

5.7.2 Low-dimensional, reusable cerebellar predictions

In this model cerebellar feedback is trained to predict future task outcomes. Since the dimension

of these outcomes are typically low (e.g. in the tasks presented often just 2-dimensional), the

cerebellar predictions are of low dimensionality. This model therefore avoids the unrealistic

assumptions made with respect to the high dimensionality of cerebellar output in Chapter 3. In

addition, this form of feedback, since it only encodes task information, can readily apply to other

RNNs of different connectivity. This is in contrast to the model in Chapter 3 and other models of

cortical feedback [136, 171], for which the feedback is highly specific to the RNN circuit and for

this reason often requires detailed, biologically unrealistic knowledge of that particular circuit’s

connectivity.

The model of cortical feedback presented in this Chapter better conforms to the constraints

observed in the brain. In particular, due to the discrepancy in neuronal sizes, it is unlikely these

subcortical structures can encode for each feedback-dependent cortical circuit on a one-to-one

basis (cf. Section 3.6.2.2). Instead the work in this Chapter proposes that cerebellar (and thalamic)

output is optimised instead to simply make predictions about the task at hand. Coupled with

the possibility that the cerebellar-cortico projection (in particular, thalamo-cortico) can itself be

optimised for the specific cortical circuit - which corresponds to our input plastic model - this
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solution allows both (i) cerebellar representations that can be reused throughout the brain and

(ii) specificity to the projected circuit to be achieved locally.

5.7.3 A cerebellar solution to flexible task switching

By retraining cortico-cerebellar networks in a novel task I propose a key role of the cerebellum

in task switching (Figure 5.8). In particular, cerebellar feedback may provide a solution to the

problem of context-dependent adaptation, which requires (i) an ability to learn a new context but

also (ii) an instant retrieval of appropriate response to previously learned contexts [103, 161].

Interestingly, I observe that while recurrent cortical plasticity enables adaptation to a new task

context there is catastrophic forgetting of the original context. This is at odds with well-known

behaviour in the primate, and provides a computational explanation for why local modifications

in the monkey cortex during motor adaptation appear to be limited [215]. Moreover, recent

observations suggest that the cerebellar-driven thalamus enables context-dependent responses

in the cortex for movement initiation [59, 240] and cognitive tasks [121].

To achieve context dependent processing, in this work I make the assumption some cerebellar

synapses are inherently context-dependent. Importantly, context-dependent synapses may in

principle also occur in the cortical RNN itself (see e.g. [216]). However, I speculate that fast

context-switching is easier to incorporate in the relatively simple, divergent and rapidly learnable

feedforward architecture of the cerebellum compared to the highly intricate cortical RNNs with

weak plasticity, but this deserves further study (see Section 5.8).

5.7.4 Cerebellar-driven dynamics for cognitive tasks

A unifying model of the cortico-cerebellar loop, and indeed the cerebellum itself, must extend

to non-motor tasks. Recent task-based fMRI studies have revealed functional diversity of the

cerebellar cortex across a range of cognitive functions [141]. Like the ccRNN model in Chapter 3,

this model inherently implies a high degree of functional heterogeneity; that is, it suggests that

different modules would be required to drive different parts of the cortex that in turn underlie

different cognitive functions.

In this study I modeled recent behavioural and optogenetic experimental observations [65,

84] which directly implicate the cerebellum in supporting cortical dynamics during evidence

accumulation and delayed association tasks. Under the constraint of limited cortical plasticity, I

observe that in each working memory task cerebellar feedback is vital for the development and

maintenance of task-specific dynamics over longer (in the order of seconds) periods of time. In

particular, ablation to the cerebellar ablation results in leaky dynamics and a substantial loss in

task selectivity, consistent with both experimental studies (Figs. 5.13 and 5.17). Interestingly,

these results do not apply when the cortical RNN is plastic. The model predicts, therefore, that

the cerebellum – and not the cortex – was the key site of plasticity for the cortico-cerebellar loops

in these in vivo studies.
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By combining simulations and theoretical analysis I show that the be benefit of cerebellar

feedback, in part, enabled by the sheer computational power of the cerebellum (Figure 5.20 and

5.21). Specifically, I observe that as the task-relevant signal decrease, as naturally occurs in

untrained RNNs over time, more hidden cerebellar granule cells are necessary to decode that

signal. This conforms to the view that cerebellar architecture is optimised for pattern separation

[13, 42, 83, 168]; in this work, incorporating other cerebellar features is likely to also be fruitful

(see next Section on Future Work).

These results raise the question of why is a cerebellum module not needed in previous

models of cognitive, working-memory based tasks. For example, computational models of evidence

accumulation typically do not incorporate a cerebellar network [33, 227]. The primary reason

for this, I argue, is that these cortical only models are relatively abstract and assume non-

leaky (unrealistic) dynamics. That is, cerebellar feedback is effectively abstracted out in these

models. Indeed, my results directly suggest that if more realistic leaky dynamics are used, as in

the case where task-agnostic connectivity is used or there is a weak cortical internal memory,

the cerebellum starts to play a role (Figure 5.12). Relatedly, I also show that the cerebellum

becomes more important for longer task timescales (Figure 5.14), which is in line with recent

experimental evidence and helps to explain why cerebellar contributions might have not been

observed [170, 294].

It is also worth relating the involvement of the cerebellum in these tasks to the cerebel-

lar contribution to reward processing. In this model the cerebellum drives cortical dynamics

based on prediction error signals that depend on the desired task outcome. In the case of the

working memory tasks and in line with the experimental task setup, the desired outcome can

be interpreted as a reward signal. From this perspective, therefore, the cerebellum learns to

predict future rewarding events. This is consistent with the growing literature showing that

the cerebellum encodes reward-related signals [148, 273, 274] and receives projections from

the reward system [40]. However, it remains to be tested exactly how the reward-predictive

representations developed by our model compare to those found experimentally.

5.7.5 Functional benefit of limited cortical plasticity

The working memory tasks above suggest that cortical plasticity was, at least initially, relatively

limited during learning. This provides an alternative to the commonly assumed view in systems

neuroscience that cortical areas are optimised for specific tasks [6, 204, 249]. A fundamental

question is why this phenomenon occurs, when for example a solution might be immediately

achievable via changes to local cortical connectivity (as in e.g. Figure 5.15).

It is first necessary to highlight that the speed and efficacy cortical plasticity may simply

be limited due to biological constraints. How and whether cortical RNNs can acquire task error

gradients is still in debate (see Section 2.1.5) [218]. Biological mechanisms of task learning

in feedforward neural networks, in contrast, currently appears more computationally feasible
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(e.g. [92]) and error-based plasticity rules in the cerebellum are relatively well understood. At

the same time long-term plasticity in the cortex, which may take days or weeks to effectuate

[15, 16, 145, 215], whilst long-term depression at the parallel fibre synapse has been shown to

take place in the order of seconds [108, 167, 183, 292, 293]

There may, however, be functional benefits to constrained cortical plasticity. As shown, limited

cortical plasticity enables more flexible switching between task contexts, and this is consistent

with neural data in the macaque during behavioural adaptation (Figure 5.8) [215]. Generalising

this result, I speculate that task-agnostic cortical RNNs – that is, RNNs whose connectivity is

not directly optimised for a given task – enables neural representations which are efficient to

produce and more readily generalise to new conditions. In particular, given the many situations

and problems advanced biological organisms are faced with, it may be that cortical connectivity

is optimised to simply encode the most informative temporal and spatial features of the world,

perhaps in an unsupervised manner. In this way the same RNN may be reused and exploited

across a variety of tasks and domains. The cerebellum (and perhaps other brain regions), in turn,

learns in a supervised manner and is entrusted with mapping, and redirecting via feedback,

these representations based on an error signal related to the task at hand. This idea is supported

by recent evidence that the task activity in the cerebellar-receiving thalamus instantiates cortical

task representations [250], and also relates to a recent computational model which supposes

cortical connectivity to be optimised for generalisable function across tasks [256].

5.7.6 Cerebellar-to-cortical systems consolidation

Though a central prediction of this model is that the cerebellum can drive cortical task repre-

sentations, it is unclear if this is a long term solution incorporated in the brain. In particular,

different phases of learning may occur in the brain which implicate different structures. For

example, increases in cerebellar output have been associated to short-term, but not long-term

learning in the human [77].

I explore the possibility of this by introducing a theory of cerebello-cortical task consolidation.

This theory suggests that cerebellar and cortical learning may operate at different timescales:

after an initial fast stage of learning driven by the cerebellum, a period of consolidation ensue

in which the cortex gradually acquires task-specific knowledge encoded in the cerebellum (Fig-

ure 5.22). This view of systems task consolidation is in line with growing experimental evidence

suggesting an important role of cerebellar-to-cortical task consolidation [37, 60, 287]. For exam-

ple, Xu et al. [287] have observed similar replay-like cerebellar-to-cortical task-specific neuronal

dynamics in awake and sleep. Such combination of fast and gradual learning is reminiscent

of recent experimental results which suggest significantly faster timescales of plasticity in the

hippocampus compared to the prefrontal cortex during a cognitive task [52]. Moreover, the consol-

idation period can be directly related to the ccRNN model in Chapter 3, in that a task-optimised

cerebellum can be utilised as a cortical teacher.
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It is in principle possible for cerebellar-thalamo-cortical projections to support this dual role

of the cerebellum as both a driver and teacher of cortical states. Indeed, anatomical evidence

suggests that this could occur by providing “driving” and “teaching” input to basal and apical

dendrites of cortical pyramidal cells, respectively [4]. This is discussed further in the Section 5.8.

This framework strongly relates to existing hippocampal-based consolidation theories which

point towards consolidation, or “corticalisation”, of episodic memories primarily during sleep

[62, 81, 146, 247]. As in these theories, sleep may also be when cerebellar-based consolidation

could take place in the cortex [37]. These two processes however are likely complementary in the

types of memories consolidated. In particular, the hippocampal representations transferred to

the cortex may reflect salient episodes or predictions [21, 252], whereas the cerebellar-mediated

consolidation may focus on outcome-specific predictions at shorter timescales.

5.7.7 Distinct cerebellar predictions for motor and cognitive tasks

This work highlights commonalities of cortico-cerebellar interactions in motor and cognitive tasks

alike. However, it also suggests interesting differences. I highlight four such differences and their

implications for future experiments.

The first is the importance of explicit error signals during the task. If these error signals

are abundant, as we assume in our motor-based tasks (every timestep), the cerebellum is a

particularly powerful tool which often outperforms even a completely unconstrained but lone

cortical RNN (Figures 5.3 and 5.10). In contrast, if the error signal is highly sparse (only at end)

as is the case for the cognitive-based tasks, I observe that though the cerebellum can successfully

drive cortical learning, the learning curve is often noisier and does not perhaps reach the same

performance levels as an unconstrained RNN (Figure. 5.15). In other words, the performance

benefit of cerebellar feedback scales with the amount of explicit environmental feedback. Secondly,

there is a noticeable contrast in the impact of cerebellar ablation at different points in task.

In short, whilst cerebellar ablation at the initial (at cue time or just after) phase of the task

is particularly detrimental for the motor based tasks, it is if anything the inverse case for the

cognitive tasks, for which cerebellar ablation at the final (preceding to and at feedback time)

phase is most harmful.

The third marked distinction relates to the increased significance of cerebellar-to-cortical

(input) plasticity during pure working memory (Figure 5.15). This is in line with recent experimen-

tal evidence showing stronger plasticity at higher-order thalamo-cortical pathways [9]. Indeed,

because of the need to sustain information during the delay period without sensory or teaching

input, it is advantageous for the network to encode a point attractor-like state. Cerebello-cortical

plasticity [9, 10] can enable greater controllability of cerebellar feedback to push the network

to these states during working memory tasks, but this may be less necessary or desirable in

motor-based tasks [135] (Supplementary Figure 5.16).

Related to the point above, the fourth and final difference I highlight is that cerebello-cortical
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consolidation is more readily achieved when in the presence of networks with stable dynamics (cf.

Figure 5.22 vs Appendix Figure C.7). I speculate that unstable network dynamics make cerebellar-

to-cortical consolidation less reliable. Specifically, slight imperfections in cerebellar feedback may

lead to uncontrolled steps towards novel, unlearned network states if the network has unstable

dynamics; in contrast, the steady states enabled by stable networks are inherently robust to

noise, whether from the environment or in this case the cerebellum. Therefore, I postulate that

while cerebellar-to-cortical systems consolidation might be possible for near perfected tasks which

involve discrete stable representations (e.g. working memory tasks), for tasks which are not yet

fully learned, or which require faster, more dynamic responses (as often required in the motor

domain), cerebellar control is likely to be required throughout life.

5.8 Limitations and Future Directions

One principal motivation for the model presented in this Chapter is biological plausibility. Indeed,

the assumptions made in this Chapter are relatively modest compared to that of the ccRNN in

the earlier Chapter 3 (cf. Section 3.6). However, alongside the general modeling and biological

assumptions made in this Thesis (see Sections 2.1.7 and 2.2.5), there are some important

limitations of this “driving” model of cortico-cerebellar interaction which should be addressed.

5.8.1 A non-normative framework of control

In this model the cerebellar feedback to the cortical RNN is a prediction of the future task

outcome. The intuition behind this modeling choice is that faithful task predictions should enable

some kind of task representation in the RNN, thereby enabling appropriate decoding downstream

(i.e. at the cortical readout). I argue that the cerebellum therefore provides an important form of

“control” for cortical representations during the task [135].

However, when compared to traditional methods in control theory (see e.g. [295]), there is

arguably a lack of normative principles with this form of feedback. In particular, here the cortical

RNN is simply exposed to task predictions, and is not driven to specific, desired hidden state

as often employed in other frameworks. Other works, for example, demonstrate that a feedback

function can be analytically derived to replicate given target dynamics directly [136, 171, 174].

In future work it would be interesting to derive more normative principles with respect to

cerebellar feedback. Indeed, I speculate that the strategy employed in this Chapter may align

with principles of information theory; specifically, that the most informative representation that

the cerebellum can provide the cortex with respect to the task is the desired task outcome itself. It

may be necessary, nonetheless, to “tailor” this task outcome to the specific RNN which is targeted

using plasticity in the cerebellar-cortical pathway. After all, as shown in the delayed association

task (Figure 5.16), some forms of feedback are inherently more potent in directing the RNN into

some (potentially far away) state.
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Relatedly, it is notable that in this study I make the assumption that whilst the cortical RNN

is constrained, the cortical readout layer is plastic. In principle this is not necessary; for example,

Logiaco et al. derives a solution for thalamo-cortical feedback using a fixed readout layer [171].

How this might be achieved in this model of cortico-cerebellar feedback would be interesting to

explore, and I speculate that after initial learning readout plasticity may not be strictly necessary.

For example, in the task switching analysis (Section 5.4.2) different forms of feedback are used

but the same (fixed) readout is applied across task contexts.

5.8.2 Means of context-dependent processing in the cerebellum

In Section 5.4.2 rapid task switching is achieved by context-specific activation of cerebellar

parallel fibres. However, the means of context-specificity is abstracted away in this study and a

specific, biologically feasible implementation of how it may be achieved is not considered.

In future work it would be of interest to compare different mechanisms by which the cere-

bellum may realise context-dependent processing. Contextual processing is an active area of

research in neural circuits [149, 216, 239]. In particular, Sezener et al. have recently proposed

that dendritic gating via cerebellar interneurons may perform this role [239]. Moreover, in this

work I make the assumption that the context (via these context-dependent synapses) is somehow

“available” to the model. It may be interesting to ask whether the cerebellum can instead infer

context in an unsupervised manner (that is, context is not inherently provided); for example,

one, recent computational model of thalamo-cortical interaction proposes that the thalamus can

effectively learn different contexts via task errors [120].

Relatedly, a natural question to pose is whether it is not easier to simply depend upon

intrinsic mechanisms of context-dependent processing in RNNs instead. I speculate that the

wide, feedforward nature of the cerebellar cortex affords greater freedom to be selectivity to

specific contexts compared to the smaller, densely wired RNNs in the cortex, but this deserves

exploration.

5.8.3 Integration of models and multi-phase learning

In Section 5.6 I introduce a framework by which cerebellar feedback can mediate plasticity in

cortical RNNs during a period of the task, which I refer to as cerebello-cortical consolidation.

During this period the cerebellum can be thought of as a teacher for the cortex, and therefore,

conceptually, is consistent with the cortico-cerebellar model described in Chapter 3. With this I

suggest that that there may be two distinct phases of cortico-cerebellar learning. The first phase

occurs early on in learning and is driven by the cerebellum, whilst the second phase leads to

cerebellar-dependent changes to the cortical connectivity for a local cortical solution.

At this point, however, the computational link between the two models proposed in this Thesis

is unclear. Specifically, the ccRNN model in Chapter 3 supposes that cerebellar feedback is in

the form of rather complex error gradients with respect to the current cortical state. The model
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in this Chapter, on the other hand, supposes the cerebellum to make predictions of the task

outcome itself. How and whether these two computationally distinct processes can be coordinated,

potentially simultaneously, in the cerebellum remains to be seen.

For future work it would be interesting to bring together these computational models of

cerebellar feedback. Specifically, the question of how the brain might optimally incorporate

two-phase learning using feedback (or “control”), should be of fundamental importance to sys-

tems neuroscience, and can draw on many exciting recent works (Figure 5.23). I highlight the

framework of feedback control as recently developed by Meulemans et al. in particular [186–188].

In this framework, Meulemans et al. provide a normative theory for how the same feedback

signal can be applied to both drive network representations as well as engage network plasticity

mechanisms [186]. These works therefore provide an explicit, theoretically grounded solution to

how the driving and teaching models presented in this Thesis may be unified.

Finally, it may be fruitful to pinpoint whether the second phase of learning – the later

consolidation phase – is actually beneficial for cortical network at all. As highlighted, task-specific

connectivity can cause issues of catastrophic forgetting. As one recent paper suggests, it may be

beneficial to only incorporate task-dependent plasticity in the cortical network specifically when

improvements for generalisation can be made [256].

two-phase learning

rapid behavioural change

controller-driven
limited RNN plasticity

stable behaviour but dynamical shift
consolidation

RNN plasticity/autonomy

Learning Phase 1 Learning Phase 2

RNN RNNChapter 5
Kao and Hennequin 2019

Logiaco et al. 2021
Kao et al. 2021

Chapters 3-5
Meulemans et al. 2022

Klinzing et al. 2019
Singh et al. 2019
Sun et al. 2023

Figure 5.23: Schematic of two-phase learning in neural networks and related con-
cepts/works. In this Thesis the feedback network C is generally considered as the cerebellum;
in principle, though, C can be generalised to any brain region thought to act as a controller.
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6.1 Overview of Thesis

A major hurdle in our quest to understand the brain is to understand the means by which it

learns. This Thesis conforms to the conventional view that learning involves changes in neural

activity, mediated via synaptic plasticity, which enables behavioural changes which are favourable

in the environment. The association between neural activity and favourable behaviour is highly

complex, particularly when they are temporally segregated, making appropriate modification of

the neural circuit challenging. This is the temporal credit assignment problem (TCA).

In this Thesis I challenge the cortical-centric viewpoint of the brain which is often taken in

systems neuroscience. In particular, I propose a key role of the cerebellum and its interaction

with the cortex via cortico-cerebellar loops, as a solution to TCA. I have presented two distinct but

mutually compatible frameworks to better understand the computational principles of cortico-

cerebellar interaction.

The first framework, as presented in Chapter 3 and computationally extended upon in

Chapter 4, proposes that the cerebellum mediates cortical plasticity by providing cerebellar-

cortical feedback in the form of predicted error gradients. The second framework, presented

in Chapter 5, assumes the cerebellum directly drives cortical networks with task-agnostic

connectivity and was introduced to capture the instantaneous cortico-cerebellar dependency as

observed experimentally, as well making more biologically plausible assumptions.

I have demonstrated that each framework predicts a significant contribution from the cere-

bellum for the learning and maintenance of task-specific dynamics. This is consistent with the

classical literature on the cerebellum and the more recent evidence that cortico-cerebellar loops

specifically are at play across a variety of environmental conditions. Using these frameworks I
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elucidate experimentally observed phenomena which until now had little theoretical grounding,

and make predictions which can be used to guide future experiments. In general, it is hoped that

the derived computational models can serve as a starting point for testable, in silico manifes-

tations of cortico-cerebellar interaction at a time currently dominated by a growing selection of

experimental data and higher conceptual hypotheses.

6.2 Moving forward and final remarks

For much of the history of neuroscience there has been a tendency to focus one’s attention to

relatively local regions of the brain at a time. This is a natural by-product of the sheer complexity

of the neural architecture. The brain is a highly intricate and almost inaccessible system which,

even when constrained to one specific subcircuit, is difficult to penetrate experimentally. From a

computational point of view, the rich and variable dynamics of feedforward or recurrent neural

networks in isolation has been challenging enough to fathom.

It cannot be ignored, however, that biological neural computation is not limited to any one

feedforward or fully connected recurrent circuit, but incorporates a variety of anatomically

separable structures which each have their own story and original purpose over the course of

evolution. Cerebellum for prediction, hippocampus for spatial navigation and pattern separation,

basal ganglia for reward processing, and so on. If we are to understand the neocortex, the last of

these structures to arise and considered as the source of higher learning and general intelligence,

it is essential to answer how the neocortex should exploit these preceding, lower-level stories.

Though challenging, there is reason to be optimistic that the time is better than ever for such

a feat. The advance in neural technology enables access to population-level recordings at multiple

brain regions at once [162], and even, as particularly relevant to learning, directly pinpoint any

changes to underlying circuitry [67, 213]. At the same time, over the last decade substantial

progress has been made into unraveling the blackbox of artificial neural networks, lending

computational neuroscientists increased confidence in their application with biologically-inspired

architecture and learning rules.

Focusing on the interaction between the neocortex and the cerebellum, specifically, it is hoped

this Thesis provides important insights into the computational and functional role of brain-wide

dynamics, but it is clear there is much to be done.
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This Appendix Section provides supplementary material for the content in Chapter 3.

A.1 Supplementary Figures
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Figure A.1: Learning for different cerebral feedback horizons for the line drawing task.
Feedback horizon is given as percentage of task duration (10 time steps). Results presented in
main text (Figure 3.2d) shown on top row along with RNN trained with full horizon (i.e. cerebral
feedback horizon = 100%). Error bars represent mean ± SEM across 10 different initial conditions.
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Figure A.3: Learning the online LD visuomotor (left), online DD visumotor (middle) and
online visual discrimination (right) tasks under varying degrees of input noise. The
input noise ω is normally distributed, with ω ∼ N (0,σ2). a, Learning curves for low, medium
and high levels of noise. b, (Total) training error across different noise levels (ns denotes not
significant: online DD visuomotor p=0.052 (σ= 1), p= 0.865 (σ= 2); online visual discrimination
p=0.153). **: p<0.01, ***: p<0.001, ****: p<0.0001 (two-sided paired t-test between cRNN and
ccRNN). Error bars represent mean ± SEM across 10 different initial conditions.
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Figure A.4: Learning the online LD visuomotor (left) and online visual discrimination
(right) tasks for different stimulus (chunks of image) sizes. Since each MNIST image
is of total size 784, the total sequence length of the task with input size N can be calculated
as 784

N ×∆t (where ∆t = 0.1s). Note that online DD visuomotor variant is not included here
since as the number of timesteps decreases there is not enough time for the model output to
construct a digit. a, Learning curves for long (as presented in main text), medium and small task
lengths. b, (Total) training error across different input size (and therefore task lengths) values
(ns denotes not significant: online LD visuomotor; p=0.093 (0.2s), p= 0.859 (0.4s); online visual
discrimination p=0.239). ****: p<0.0001 (two-sided paired t-test between cRNN and ccRNN).
Error bars represent mean ± SEM across 10 different initial conditions.
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Figure A.5: Learning for different cortical feedback horizons for the online visuomotor
and discrimination tasks (cf. Figure 3.3d). Feedback horizon is given as percentage of task
duration (28 timesteps). a, Learning curves; results presented in main text (Figure 3.3b) shown
on top row along with RNN trained with full horizon (i.e. cortical feedback horizon = 100%). b,
(total) error during learning across different feedback horizons. Error bars represent mean ±
SEM across 10 different initial conditions.
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Figure A.6: Learning of ccRNN in the online visual discrimination task without boot-
strapping. a, By removing the cerebellar bootstrap, the cerebellum no longer uses its own
estimates during training (i.e. the right hand side of Equation 3.9 is removed). b, Learning curve
for the ccRNN with no bootstrapping for the online visual discrimination task. For this task
external feedback only comes at the end, so bootstrapping is a critical component for cerebellar
learning. Error bars represent mean ± SEM across 10 different initial conditions.
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Figure A.7: Pair-wise correlations over learning. a, extension of Figure 3.6 for top 5 principal
components. b, Variance explained by each component (accumulation in orange). Data grouped
across 10 different initial conditions, where for each condition we sample 600 active pairs for the
simple LD visuomotor task and 1000 active pairs for the online tasks (see Section 3.3).
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Figure A.8: Pair-wise correlations over learning with a fixed cerebellar module. a,
Box plot showing the mean and distribution of pair-wise cerebro-cerebellar correlations over
learning. Mean correlation coefficient for the fully plastic ccRNN model (solid black line) and
fully fixed ccRNN (i.e. without any form of plasticity in both cortical and cerebellar networks;
dashed black line) are given for reference. Boxplot shows median (horizontal dark orange line),
interquartile range (IQR; box with centre at mean); whiskers show respective quartiles extended
by 1.5× IQR, where circles denote individual outliers beyond this range. b, Top 5 principal
components. c, Variance explained by each component (accumulation in orange). Data grouped
across 10 different initial conditions, where for each condition we sample 600 active pairs for the
simple LD visuomotor task and 1000 active pairs for the online tasks (see Section 3.3).
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Figure A.9: Example images and captions from the validation set with corresponding
model captions. cRNN generated captions are shown in grey, ccRNN generated captions in
orange, and gold standard captions in black. Here a combination of examples of how the models
describe the presented image are shown. In some case all or some models fail to give an accurate
description of the image. In other cases all models are able to provide an accurate caption for
the image, with each model displaying subtle differences in the generated captions. The images
shown here were generated on deepAI.org for illustration purposes only.
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This Appendix Section provides supplementary material for the content in Chapter 4.

B.1 Proof of theorem 4.3.1

As this section is more involved, for clarity I denote scalar variables in italics and vectors in bold.

Approach: I demonstrate that theorem 4.3.1 holds for arbitrary synthesiser parameter θ ji;

that is,

∥∥∥θ ji,BP
t −θ ji,λ

t

∥∥∥
2∥∥∥θ ji,BP

t −θ ji
0

∥∥∥
2

→ 0, as α→ 0

This is proved in Proposition B.1.7.

For reference, I explicitly write the weight updates for parameter θ ji according to the accu-

mulate BP(λ) algorithm:

δt = ∂E t+1

∂ht
+γg(ht+1;θt)⊤

∂ht+1

∂ht
− g(ht;θt) (B.1)

e ji
t = γλ ∂ht

∂ht−1
e ji

t−1 +∇
θ

ji
t

g(ht;θt) (B.2)

θ
ji
t+1 = θ

ji
t +αδ⊤

t e ji
t (B.3)

I also define the helper variable δa,t as

δa,t = ∂E t+1

∂ha
+γg(ht+1;θt)⊤

∂ht+1

∂ha
− g(ht;θt)⊤

∂ht

∂ha
=δ⊤

t
∂ht

∂ha
(B.4)
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In general, I follow the structure of the analogous proof for the accumulate TD(λ) algorithm

[269].

B.1.1 Statements and proofs

Lemma B.1.1. Gλ|t+1
a =Gλ|t

a + (λγ)t−aδ′
a,t, where

δ′
a,t =

∂E t+1

∂ha
+γg(ht+1;θt)⊤

∂ht+1

∂ha
− g(ht;θt−1)⊤

∂ht

∂ha
(B.5)

Proof:

Gλ|t+1
a −Gλ|t

a =(1−λ)
t−a∑
n=1

λn−1G(n)
a +λt−aG(t+1−a)

a Definition: Equation 4.12

− (1−λ)
t−a−1∑
n=1

λn−1G(n)
a −λt−a−1G(t−a)

a

=(1−λ)λt−a−1G(t−a)
a +λt−aG(t+1−a)

a −λt−a−1G(t−a)
a

=λt−aG(t+1−a)
a −λt−aG(t−a)

a

=λt−a
(
G(t+1−a)

a −G(t−a)
a

)
=λt−a

(
t+1−a∑
k=1

γk−1 ∂Ea+k

∂ha
+γt+1−a g(ht;θt)⊤

∂ht+1

∂ha
−

t−a∑
k=1

γk−1 ∂Ea+k

∂ha
−γt−a g(ht;θt−1)⊤

∂ht

∂ha

)

=λt−a
(
γt−a ∂E t+1

∂ha
+γt+1−a g(ht;θt)⊤

∂ht+1

∂ha
−γt−a g(ht;θt−1)⊤

∂ht

∂ha

)
=(λγ)t−a

(
∂E t+1

∂ha
+γg(ht;θt)⊤

∂ht+1

∂ha
− g(ht;θt−1)⊤

∂ht

∂ha

)
︸ ︷︷ ︸

δ′
a,t

□

Lemma B.1.2. Gλ|t
a =Gλ|a+1

a +∑t−1
b=a+1(γλ)b−aδ′

a,b

Proof: We apply Lemma B.1.1 recursively:

Gλ|t
a =Gλ|t−1

a + (λγ)t−1−aδ′
a,t−1

=
(
Gλ|t−2

a + (λγ)t−2−aδ′
a,t−2

)
+ (λγ)t−1−aδ′

a,t−1

=Gλ|a+1
a + (λγ)1δ′

a,a+1 +·· ·+ (λγ)t−1−aδ′
a,t−1

=Gλ|a+1
a +

t−1∑
b=a+1

(γλ)b−aδ′
a,b □

Lemma B.1.3. Gλ|a+1
a =δ′

a,a + g(ha;θa−1)
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Proof:

Gλ|a+1
a =G1

a

= ∂Ea+1

∂ha
+γg(ha+1;θa)⊤

∂ha+1

∂ha

= ∂Ea+1

∂ha
+γg(ha+1;θa)⊤

∂ha+1

∂ha
− g(ht;θt−1)⊤

∂ha

∂ha
+ g(ha;θa−1)⊤

∂ha

∂ha

=δ′
a,a + g(ha;θa−1) □

Lemma B.1.4.
∑t−1

b=a(γλ)b−aδ′
a,b =Gλ|t

a − g(ha;θa−1)

Proof:

Gλ|t
a =Gλ|a+1

a +
t−1∑

b=a+1
(γλ)b−aδ′

a,b Lemma B.1.2

=δ′
a,a + g(ha;θa−1)+

t−1∑
b=a+1

(γλ)b−aδ′
a,b Lemma B.1.3

= θ⊤
a−1ha +

t−1∑
b=a

(γλ)b−aδ′
a,b □

Lemma B.1.5. e ji
b =∑b

a=0(γλ)b−a ∂hb
∂ha

∇
θ

ji
a

g(ha;θa)

Proof:

e ji
b = γλ ∂hb

∂hb−1
e ji

b−1 +∇
θ

ji
b

g(hb;θb)

= γλ ∂hb

∂hb−1

(
γλ

∂hb−1

∂hb−2
e ji

b−2 +∇
θ

ji
b−1

g(hb−1;θb−1)
)
+∇

θ
ji
b

g(hb;θb)

= (γλ)b ∂hb

∂hb−1

∂hb−1

∂hb−2
. . .

∂h1

∂h0
∇
θ

ji
0

g(h0;θ0)+ (γλ)b−1 ∂hb

∂hb−1
. . .

∂h2

∂h1
∇
θ

ji
1

g(h1;θ1)

+·· ·+ ∂hb

∂hb−1
∇
θ

ji
b−1

g(hb−1;θb−1)+∇
θ

ji
b

g(hb;θb)

= (γλ)b ∂hb

∂h0
∇
θ

ji
0

g(h0;θ0)+ (γλ)b−1 ∂hb

∂h1
∇
θ

ji
1

g(h1;θ1)

+·· ·+ (γλ)
∂hb

∂hb−1
∇
θ

ji
b−1

g(hb−1;θb−1)+∇
θ

ji
b

g(hb;θb)

=
b∑

a=0
(γλ)b−a ∂hb

∂ha
∇
θ

ji
a

g(ha;θa) □

Lemma B.1.6.
∑t−1

b=a(γλ)b−aδa,b =Gλ|t
a − g(ha;θa−1)+O (α)
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Proof: Using δa,t =δ′
a,t − g(ht;θt)⊤ ∂ht

∂ha
+ g(ht;θt−1)⊤ ∂ht

∂ha
, we have

t−1∑
b=a

(γλ)b−aδa,b =
t−1∑
b=a

(γλ)b−a
(
δ′

a,t − g(ht;θt)⊤
∂ht

∂ha
+ g(ht;θt−1)⊤

∂ht

∂ha

)
=

t−1∑
b=a

(γλ)b−aδ′
a,b −

t−1∑
b=a

(γλ)b−a (g(ht;θt)− g(ht−1;θt−1))⊤
∂hb

∂ha

=
t−1∑
b=a

(γλ)b−aδ′
a,b +O (α)

=Gλ|t
a − g(ha;θa−1)+O (α) Lemma B.1.4 □

Proposition B.1.7. Let θ0 be the initial weight vector and let θ ji be an arbitrary parameter

of θ. θ ji
t be the weight at time t computed by accumulate BP(λ), and θ

t, ji
t be the weight at

time t computed by the online λ -SG algorithm. Furthermore, assume that
∑t−1

a=0∆
t, ji
a ̸= 0, where

∆
t, ji
a :=

(
Ḡλ|t

a − g(ha;θ0)
)⊤∇

θ
ji
a

g(ha;θa) and Ḡλ|t
a is the λ-weighted synthetic gradient which uses

θ0 for all synthetic gradient estimations. Then, for all time steps t:

∥∥∥θ ji
t −θt, ji

t

∥∥∥
2∥∥∥θ ji

t −θ ji
0

∥∥∥
2

→ 0 as α→ 0

Proof: The updates according to accumulate BP(λ) (Equations B.1 to B.3) follow

θ
ji
t = θ ji

0 +α
t−1∑
b=0

δ⊤
b eb Definition: Equation B.2

= θ ji
0 +α

t−1∑
b=0

δ⊤
b

(
b∑

a=0
(γλ)b−a ∂hb

∂ha
∇
θ

ji
a

g(ha;θa)

)
Lemma B.1.5

= θ ji
0 +α

t−1∑
b=0

b∑
a=0

(γλ)b−aδ⊤
b
∂hb

∂ha
∇
θ

ji
a

g(ha;θa)

= θ ji
0 +α

t−1∑
b=0

b∑
a=0

(γλ)b−aδ⊤
a,b∇θ

ji
a

g(ha;θa) Definition: Equation B.4

= θ ji
0 +α

t−1∑
a=0

(
t−1∑
b=a

(γλ)b−aδ⊤
a,b

)
∇
θ

ji
a

g(ha;θa)
n∑

b=k

b∑
a=k

xa,b =
n∑

a=k

n∑
b=a

xa,b

= θ ji
0 +α

t−1∑
a=0

(
Gλ|t

a − g(ha;θa−1)+O (α)
)⊤∇

θ
ji
a

g(ha;θa) Lemma B.1.6

= θ ji
0 +α

t−1∑
a=0

(
Ḡλ|t

a − g(ha;θ0)+O (α)
)⊤∇

θ
ji
a

g(ha;θa)

Where the last line holds as α→ 0. On the other hand, the updates according to the online

158



B.2. RECURSIVE DEFINITION OF Gλ
t

λ-SG algorithm produce

θ
t, ji
t = θ ji

0 +α
t−1∑
a=0

(
Gλ|t

a − g(ha;θa)
)⊤∇

θ
ji
a

g(ha;θa) Definition: Equation 4.13

= θ ji
0 +α

t−1∑
a=0

(
Ḡλ|t

a − g(ha;θ0)+O (α)
)⊤∇

θ
ji
a

g(ha;θa)

Hence ∥∥∥θ ji
t −θt, ji

t

∥∥∥
2∥∥∥θ ji

t −θ ji
0

∥∥∥
2

=

∥∥∥(
θ

ji
t −θt, ji

t

)
/α

∥∥∥
2∥∥∥(

θ
ji
t −θ ji

0

)
/α

∥∥∥
2

= O (α)
C+O (α)

Where

C =
∥∥∥∥∥ t−1∑

a=0

(
Ḡλ|t

a − g(ha;θ0)
)⊤∇

θ
ji
a

g(ha;θa)

∥∥∥∥∥
2

= ∥
t−1∑
a=0
∆

t, ji
a ∥2

From the condition that
∑t−1

a=0∆
t, ji
a ̸= 0 we have C > 0. Therefore

∥∥∥θ ji
t −θt, ji

t

∥∥∥
2∥∥∥θ ji

t −θ ji
0

∥∥∥
2

→ 0 as α→ 0 □

B.2 Recursive definition of Gλ
t

In Proposition B.2.2 we provide a recursive definition of the λ-weighted synthetic gradient

Gλ
t as defined in Equation 4.11. Note that this is similar, but not the same, as the recursive

definition defined in A.3 in the Supplementary Material of Jaderberg et al. [129]. In particular,

this definition strictly considers future losses as in the context of a synthesiser target, whilst that

provided in Jaderberg et al. [129] also considers the loss at the current timestep (E t).

We first require the following Lemma

Lemma B.2.1. For any sequence {xn}n≥1,

∞∑
n=1

λn−1xn = (1−λ)
∞∑

n=1
λn−1

n∑
k=1

xk (B.6)

Proof: By the sum rule,

(1−λ)
∞∑

n=1

n∑
k=1

λn−1xk = (1−λ)
∞∑

k=1

∞∑
n=k

λn−1xk
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Now,

∞∑
n=k

λn−1 =
∞∑

n=1
λn−1 −

k−1∑
n=1

λn−1

=
∞∑

n=0
λn −

k−2∑
n=0

λn

= 1
1−λ − 1−λk−1

1−λ
= λk−1

1−λ

So

(1−λ)
∞∑

n=1

n∑
k=1

λn−1xk = (1−λ)
∞∑

k=1

( ∞∑
n=k

λn−1

)
xk

= (1−λ)
∞∑

k=1

λk−1

1−λ xk

=
∞∑

k=1
λk−1xk

=
∞∑

n=1
λn−1xn □

Proposition B.2.2. We can define the λ-weighted synthetic gradient (Eq. 4.11) incrementally. In

particular,

Gλ
t = ∂E t+1

∂ht
+γλ(Gλ

t+1)⊤
∂ht+1

∂ht
+γ(1−λ)g(ht+1;θt)⊤

∂ht+1

∂ht
(B.7)

Proof: Let T ≤∞ be the sequence length and define G(τ)
t := 0 for τ> T. Then we can write Gλ

t+1

as

Gλ
t+1 = (1−λ)

∞∑
n=1

λn−1G(n)
t+1

= (1−λ)
∞∑

n=1
λn−1

[
n∑

k=1
γk−1 ∂E t+1+k

∂ht+1
+γn g(ht+1+n;θt+n)⊤

∂ht+1+n

∂ht+1

]

= (1−λ)
∞∑

n=1
λn−1

n∑
k=1

γk−1 ∂E t+1+k

∂ht+1
+ (1−λ)

∞∑
n=1

λn−1γn g(ht+1+n;θt+n)⊤
∂ht+1+n

∂ht+1

=
∞∑

n=1
λn−1γn−1 ∂E t+1+n

∂ht+1
+ (1−λ)

∞∑
n=1

λn−1γn g(ht+1+n;θt+n)⊤
∂ht+1+n

∂ht+1
Lemma B.2.1

=
∞∑

n=2
λn−2γn−2 ∂E t+n

∂ht+1
+ (1−λ)

∞∑
n=2

λn−2γn−1 g(ht+n;θt+n−1)⊤
∂ht+n

∂ht+1
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So

Gλ
t = (1−λ)

∞∑
n=1

λn−1G(n)
t

= (1−λ)
∞∑

n=1
λn−1

[
n∑

k=1
γk−1 ∂E t+k

∂ht
+γn g(ht+n;θt+n−1)⊤

∂ht+n

∂ht

]

= (1−λ)
∞∑

n=1
λn−1

n∑
k=1

γk−1 ∂E t+k

∂ht
+ (1−λ)

∞∑
n=1

λn−1γn g(ht+n;θt+n−1)⊤
∂ht+n

∂ht

=
∞∑

n=1
λn−1γn−1 ∂E t+n

∂ht
+ (1−λ)

∞∑
n=1

λn−1γn g(ht+n;θt+n−1)⊤
∂ht+n

∂ht
Lemma B.2.1

= ∂E t+1

∂ht
+λγ

[ ∞∑
n=2

λn−2γn−2 ∂E t+n

∂ht+1

]
∂ht+1

∂ht
+ (1−λ)γg(ht;θt)⊤

∂ht+1

∂ht

+λγ
[

(1−λ)
∞∑

n=2
λn−2γn−1 g(ht+n;θt+n−1)⊤

∂ht+n

∂ht+1

]
∂ht+1

∂ht

= ∂E t+1

∂ht
+λγ

[ ∞∑
n=2

λn−2γn−2 ∂E t+n

∂ht+1
+ (1−λ)

∞∑
n=2

λn−2γn−1 g(ht+n;θt+n−1)⊤
∂ht+n

∂ht

]
∂ht+1

∂ht

+ (1−λ)γg(ht+1;θt)⊤
∂ht+1

∂ht

= ∂E t+1

∂ht
+γλ(Gλ

t+1)⊤
∂ht+1

∂ht
+γ(1−λ)g(ht+1;θt)⊤

∂ht+1

∂ht
□
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Figure B.1: Learning synthetic gradients with the n-step synthetic gradient (Equation 4.9) as in
[129] in toy task; inputs are provided at timestep 1 and the corresponding target is only available
at the end of the task at time T = 10. a, Alignment between synthetic gradients and true gradients
for a fixed RNN model across different timesteps within the task, where the synthetic gradients
are learned with BPTT truncation size n = 2 (left) and n = 3 (right). Alignment is defined using
the cosine similarity metric. b, The average alignment over the last 10% of epochs in a across all
timesteps. c, Alignment of synthetic gradients at the first timestep of the task for different n;
BP(1) (dotted green) is shown for reference. Results show average (with SEM) over 5 different
initial conditions.
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This Appendix Section provides supplementary material for the content in Chapter 5.

C.1 Cerebellum decodes low-signal cortical representations:
technical details

C.1.1 Number of granule cells needed is inversely proportional to square root
of signal-to-noise ratio

C.1.1.1 Problem statement

The problem can be summarised as follows: given a particular ratio of task-dependent and task-

independent input - i.e. signal-to-noise ratio (SNR) - what is the number of granule cells (GCs)

required to ensure (with reasonable confidence) that the population vector will have distinct

activations over the different task conditions?

Formally, we make the assumption that the input a to the GC population can be expressed as

a sum of two Gaussians of zero mean.

a =ω+ζ; ω∼N (0, σ2
ω), ζ∼N (0, σ2

ζ ) (C.1)

Where we assume ω might be “general” input (which comes from the task-agnostic environment)

and ζ is task specific. We assume ω and ζ to be independent, and therefore a is also normally

distributed. To avoid confusion we clarify that Equation C.1 describes the input across all neurons,

i.e. the total input distribution. For a given neuron we will have one sample of this and ω will be

fixed given the same task-agnostic environment, and ζ will be fixed given the same task-specific

condition. Note that we use the notation a, ω, ζ in place of IGC, Iω, Iζ in Equation 17 of the main

methods section to avoid clutter.
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We make the assumption that each granule cell uses a spiking activation function fspike where

fspike(I)= 1 if I > 0 and 0 otherwise. To obtain a task-encoding granule cell we would therefore

like to know, assuming the same general input ω, what is the chances that two random samples

of ζ produce two values of a of different signs. Assuming a threshold of 0, this is like asking what

are the chances of a random neuron spiking for exactly one of the two task specific inputs. We

label this case unique spike. We first derive an expression for the probability of a unique spike,

before then considering how many neurons we would need to ensure with reasonable confidence

for a unique spike to occur.

C.1.1.2 Derivation of P(unique spike)

Without loss of generality we focus on the case whereby there is no spike for task condition 1 and

a spike for task condition 2. Assume that the same general input ω applies to each condition. The

probability of this occurrence can then be expressed as

P(no spike then spike)= P(ω+ζ1 < 0∪ω+ζ2 > 0); ω∼N (0, σ2
ω), ζ1,ζ2 ∼N (0, σ2

ζ ),

where ζ1, ζ2 denote the task-specific input for task 1 and task 2 respectively. We apply the sum

rule to the different possible values of this general input ω and solve as follows

P(no spike then spike)=
∫

p(ω= x)P(x+ζ1 < 0)P(x+ζ2 > 0)dx

=
∫

p(ω= x)P(ζ1 <−x)P(ζ2 >−x)dx

=
∫

p(ω= x)P(ζ1 < x)P(ζ2 <−x)dx

=
∫

p(ω= x)
1
2

[1+erf(
x

σζ
p

2
)]

1
2

[1+erf(
−x

σζ
p

2
)]dx

= 1
4

∫
p(ω= x)

(
1+erf(

x
σζ

p
2

)+erf(
−x

σζ
p

2
)+erf(

x
σζ

p
2

)erf(
−x

σζ
p

2
)
)
dx

= 1
4

∫
p(ω= x)dx+ 1

4

∫
p(ω= x)

[
erf(

x
σζ

p
2

)+erf(
−x

σζ
p

2
)

]
dx

+ 1
4

∫
p(ω= x)erf(

x
σζ

p
2

)erf(
−x

σζ
p

2
)dx

Where p(ω) is the probability density function (pdf) of ω and erf denotes the error function. By

the nature of pdfs, for the first term in the last expression above we have∫
p(ω= x)dx = 1.

For the second term we use the fact that the error function is odd, i.e. erf(−y)=−erf(y).
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∫
p(ω= x)[erf(

x
σζ

p
2

)+erf(
−x

σζ
p

2
)]dx =

∫
p(ω= x)[erf(

x
σζ

p
2

)−erf(
x

σζ
p

2
)]dx

=
∫

p(ω= x)[0]dx

= 0.

Finally, for the third term we take y= x
σζ

p
2

and apply the approximation1:

erf2(y)= 1−exp
(
−π

2

8
y2

)
+ε(y).

For some small error term ε(y). This yields

∫
p(ω= x)erf(

x
σζ

p
2

)erf(
−x

σζ
p

2
)dx =−

∫
p(ω= x)

(
erf(

x
σζ

p
2

)2

dx

≈−
∫

p(ω= x)

[
1−exp

(
−π

2

8
(

x
σζ

p
2

)2

)]
dx

=−
∫

p(ω= x)dx+
∫

p(ω= x)exp

(
−1

2

(
π

2
p

2σζ

)2

x2

)
dx

=−1+
∫

p(ω= x)exp

(
−1

2

(
π

2
p

2σζ

)2

x2

)
dx.

We compute the term inside the integral above and see it is actually proportional to the product

of two Gaussian pdfs:

∫
p(ω= x)exp

(
−1

2

(
π

2
p

2σζ

)2

x2

)
dx = 1

σω
p

2π

∫
exp

(
−1

2

(
1
σω

)2
x2

)
exp

(
−1

2

(
π

2
p

2σζ

)2

x2

)
dx

= 1

σω
p

2π

∫
exp

(
−1

2

((
1
σω

)2
+

(
π

2
p

2σζ

)2)
x2

)
dx

= 1

σω
p

2π

∫
exp(−ax2)dx

= 1

σω
p

2π

√
π

a
,

Where

1https://math.stackexchange.com/questions/1172474/erf-squared-approximation
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a = 1
2

((
1
σω

)2
+

(
π

2
p

2σζ

)2)

= 1
2

(
1
σ2
ω

+ π2

8σ2
ζ

)

= 1
2

(
8σ2

ζ
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ζ

+ π2σ2
ω
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)
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(
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.

Combining these results finally produces the approximation

P(no spike then spike)= 1
4

∫
p(ω= x)dx+ 1

4

∫
p(ω= x)

[
erf(

x
σζ

p
2

)+erf(
−x

σζ
p

2
)

]
dx

+ 1
4

∫
p(ω= x)erf(

x
σζ

p
2

)erf(
−x

σζ
p

2
)dx

≈ 1
4

[1]+ 1
4

[0]+ 1
4

−1+ σζ√
σ2
ζ
+ π2

8 σ
2
ω


= 1

4

√√√√√ σ2
ζ

σ2
ζ
+ π2

8 σ
2
ω

.

We can then use this probability to compute the more general case that there is exactly one spike

for the two different task conditions
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P(unique spike)= P(no spike then spike)+P(spike then no spike)

= 2P(no spike then spike)

≈ 1
2

√√√√√ σ2
ζ

σ2
ζ
+ π2

8 σ
2
ω

,

(C.2)

Let’s suppose σ2
ζ
= rσ2

ω for some r > 0, then this turns into

1
2

√√√√√ σ2
ζ

σ2
ζ
+ π2

8rσ
2
ζ

= 1
2

√√√√√ σ2
ζ

σ2
ζ

[
1+ π2

8r

]
= 1

2

√
1

8r+π2

8r

= 1
2

√
8r2

8r+π2 .

Note that we can test toy examples to gain an intuition. For example, if the variance of non-task

specific variance is very large (or the task-specific variance is very small), such that σω ≫ σζ

(r ≪ 1), then the denominator will dominate and we will have P(unique spike)→ 0. If, however,

the task-specific variance dominates, σζ≫σω (r ≫ 1), then the denominator will be approximate

to the numerator and we will be left with P(unique spike)≈ 1
2 . If we have equal variance between

the task agnostic and task specific distributions, i.e. σζ =σω, then we will have P(unique spike)≈
1
2

√
8

8+π2 ≈ 0.334 (approximately one in three chance).

More generally, we can consider the Taylor expansion of the above and use y= 8r
π2 .

1
2

√
8r

8r+π2 = 1
2

√√√√8r
π2

1
8r2

π2 +1

= 1
2

√
y

1
y+1

≈ 1
2

√
y

∑
n=0

(−y)n

= 1
2

√ ∑
n=1

(−1)n−1 yn

= 1
2

√
y− y2 + y3 − y4 +· .

Now, for small enough r we will get small y and be able to ignore the power terms (yn for n > 1)

above and finally achieve
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P(unique spike)= 1
2

√
8r

8r+π2

≈ 1
2
p

y

= 1
2

√
8r
π2

=
p

2
π

p
r .

(C.3)

Which is the result cited in Section 5.5.

C.1.1.3 # granule cells needed

Given the approximate probability of a unique spike given by Equation C.3, we now ask: how

many “trials” - or equivalently different neurons - do we need to ensure probability θ that there

will be distinct spiking in at least one trial (or one neuron). Let p be the probability of distinct

spiking for a given trial, and suppose there are n trials. The probability of at least one distinct

trial is then:

P(≥ one unique spike)= 1−P(no unique spikes)= 1− (1− p)n

We are interested in when this value > θ. This is easy to solve

1− (1− p)n ≥ θ
(1− p)n ≤ 1−θ

n log(1− p)≤ log(1−θ)

n ≥ log(1−θ)
log(1− p)

,

Where in the last line the inequality sign changes direction since log(1− p)< 0. Now, the Taylor

expansion of log(1+ x) is

log(x+1)= x− x2

2
+ x3

3
− x4

4
+ x3

5
+·· · .

Finally, we apply Equation C.3 and see that for small p (which is the case for small r) the power

terms disappear and we have

n ≥ log(1−θ)
−p

= log(1−θ)

−(
p

2
π

p
r )

=− πp
2

log(1−θ)
1p
r

, (C.4)

Which is the result cited in Section 5.5.

168



C.1. CEREBELLUM DECODES LOW-SIGNAL CORTICAL REPRESENTATIONS: TECHNICAL
DETAILS

C.1.2 Granule cell input is normally distributed and retains RNN SNR

In this section, by building on Babadi and Sompolinsky, we demonstrate that it is reasonable to

apply Equation C.1 to the cortico-cerebellar model considered in the main text.

Let h denote the random variable for the activity of an RNN neuron. We assume the distribu-

tion of this variable as unknown but that it can be expressed as the combination of task-agnostic

(which is the same across task conditions) and task dependent components (which varies across

task conditions). That is, we have h =ω+ζ, where ω is a sample of the task-agnostic component

with Var(ω)=σ2
ω, and ζ is a sample of the task-agnostic component with Var(ζ)=σ2

ζ
. The SNR of

the RNN can be expressed as SNR(RNN)= σ2
ζ

σ2
ω
.

Now, suppose that the RNN population is of size K . Let W represent the weights between the

RNN and the granule cell (GC) population, which we assume to be independently distributed

around zero with variance Var(W)=σ2
W . Now, for given GC j, we can write the input I j to the GC

as

I j =
K∑

i=1
Wjiωi +

K∑
i=1

Wjiζi, (C.5)

Where ωi, ζi are the task-agnostic and task-dependent components of RNN neuron j, respectively,

and Wji is the weight from RNN neuron j to GC i.

Now, for large RNN populations K >> 0, we can apply the central limit theorem to Equation

C.5 and see that both the first and second terms on the right hand side approximate a Gaussian

distribution. Since the mean of the weights W is zero, the mean of each distribution is zero. We

can also compute the variance of each as Kσ2
Wσ

2
ω, Kσ2

Wσ
2
ζ
, respectively. Thus the input current I

follows

I = Iω+ Iζ; Iω ∼N (0, Kσ2
Wσ

2
ω), Iζ ∼ Kσ2

Wσ
2
ζ ). (C.6)

That is, the input current is the sum of one task-agnostic Gaussian variable (Iω) and one task-

dependent Gaussian variable (Iζ). Thus we can apply Equation C.12.

Importantly, note that the signal to noise ratio of these inputs is the same as that of the

original RNN, since

kσ2
Wσ

2
ζ

kσ2
Wσ

2
ω︸ ︷︷ ︸

SNR(IGC)

=
σ2
ζ

σ2
ω︸︷︷︸

SNR(RNN)

. (C.7)

Thus Equation C.3 can be used to estimated the probability of a unique spike for a given GC,

and therefore Equation C.4 is a valid prediction for the number of GCs required for distinct

population vectors.

2Note that we obtain its exact form if σW =p
K
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C.2 Supplementary Figures
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Figure C.1: Cerebellar noise induces ataxic-like impairments. a, Output for trained models
on the line drawing task under different levels of cerebellar noise cnoise

t = ct + ξt with ξt ∼
N (0;σ2

C
I), where I is the identity matrix. Blue output is for “no go” cue (where model is trained

to remain at zero). b, Model error under various degrees of input and cerebellar noise.
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Figure C.2: Additional cerebellar ablation results for the line drawing task. Model output
(left, middle) and error (right) for example line drawing input under cerebellar ablation for an a,
input plastic and b, fully plastic RNN. For the corresponding fixed RNN case see Figure 5.3.
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a specific time window τ are removed. d, Error under partial ablation across individual τ for
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denotes performance under full cerebellar ablation (cf. a-c). e,f, Change in performance under
partial ablation versus e control and f full ablation conditions.
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with cerebellar feedback but zero recurrent weights (Whh = 0) with a fixed (left) and input plastic
(right) RNN. b, Average error over training across different cortical internal memory α.
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Figure C.6: Additional cerebellar ablation results for the delayed association task. a-c,
Model output (top) and error (bottom) for the delayed association task without (left) and with
(right) cerebellar ablation with a fixed, b input plastic, and c fully plastic RNNs. Thin line after
ablation shows control model. d, Model error as a function of ablation length (centred around the
middle of the delay period). Experimental data reproduced from Gao et al. [84]. Dotted black line
denotes chance.
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Figure C.7: Cerebellar-to-cortical consolidation of the delayed association task with
fixed RNN models. a, Accuracy of control and cerebellar ablation conditions (dotted line
denotes chance) and the corresponding b, strength of the cerebellar-cortical pathway (WC h)
over consolidation. Green denotes control condition with theoretically optimal learning rule. c,
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orange and the optimal consolidation model in green. d, Model selectivity for example (external)
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colour coded by arrow times in a.
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Figure C.8: Cerebellar-to-cortical consolidation in linedraw task (fixed RNN). a, Error
(mean-squared error) of control and cerebellar ablation conditions and the corresponding b,
strength of the cerebellar-cortical pathway (WC h) over consolidation. Green denotes control
condition with theoretically optimal learning rule. c, Cosine similarity between cortico-cortical
input and total cortical input (i.e. cerebellar-cortical and cortico-cortical inputs) pre-consolidation.
Similarity of the consolidation model is shown in orange and the optimal consolidation model in
green. Note that even though the similarity between these models is high, their small differences
result in significant changes in the overall trajectory of cortico-cerebellar activity, resulting in
poor final performance.
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