

Li, J., Xue, J., Naafs, B. D. A., Yang, Y., Yang, H., & Liu, D. (2022). Distribution and carbon isotopic composition of diploptene from epiphytic bryophytes in Wuhan, central China. *Organic Geochemistry*, *173*, [104506]. https://doi.org/10.1016/j.orggeochem.2022.104506

Peer reviewed version

License (if available): CC BY Link to published version (if available): 10.1016/j.orggeochem.2022.104506

Link to publication record in Explore Bristol Research PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://doi.org/10.1016/j.orggeochem.2022.10450 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Manuscript

1	Distribution and carbon isotopic composition of diploptene from epiphytic
2	bryophytes in Wuhan, central China
3	
4	Jingjing Li ^{a,1,*} , Jiantao Xue ^{b,1} , B. David A. Naafs ^c , Yang Yang ^d , Yang Huan ^d , Deng
5	Liu ^e
6	
7	^a State Key Laboratory of Lake Sciences and Environment, Nanjing Institute of
8	Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
9	^b Research Center for Environmental Ecology and Engineering, School of
10	Environmental Ecology and Biological Engineering, Wuhan Institute of Technology,
11	Wuhan 430205, China
12	^c Organic Geochemistry Unit, School of Chemistry, and School of Earth Sciences,
13	Cabot Institute for the Environment, University of Bristol, Bristol BS8 1TS, UK
14	^d Hubei Key Laboratory of Critical Zone Evolution, School of Geography and
15	Information Engineering, China University of Geosciences, Wuhan, 430078, China
16	^e School of Environmental Studies, China University of Geosciences, Wuhan 430074,
17	China
18	
19	¹ These authors contributed equally to this work: Jingjing Li, Jiantao Xue
20	* Author for correspondence: jjli@niglas.ac.cn (J. Li)
21	

22 ABSTRACT

24	Diploptene is a ubiquitous hopanoid in the geosphere, synthesized by all hopanoid-
25	containing bacteria. Variations in the concentration and stable carbon isotopic
26	composition (δ^{13} C) of diploptene in ancient peats and lignite can be used to
27	reconstruct certain aspects of the wetland methane cycle in the past. However, the
28	sources and mechanisms that control diploptene $\delta^{13}C$ values in wetlands are not fully
29	constrained. To address this, here we determined the distribution and $\delta^{13}C$ values of
30	diploptene, as well as <i>n</i> -alkanes, obtained from five genera of epiphytic bryophytes
31	(non-vascular plants such as mosses) that occupy three different habitats: soil, rock,
32	and tree bark. Our data show that the concentrations of diploptene are highly variable
33	with two order of magnitude differences between the various species. Mosses
34	collected from the soil habitat had higher concentrations compared to those from rock
35	and tree habitats. This suggests that the input from some habitats might dominate the
36	sedimentary signal. The $\delta^{13}C$ values of diploptene ($\delta^{13}C_{dip}$) also vary between species
37	with values ranging between -39.2% and -31.2% . Generally, the δ^{13} C values of
38	diploptene and long chain <i>n</i> -alkanes (i.e., C_{29} and C_{31}) are similar (± 2‰) in most of
39	the bryophyte species. This may suggest that diploptene is produced by heterotrophic
40	bacteria that live in symbiosis with the mosses. However, for some bryophytes the
41	$\delta^{13}C_{dip}$ values are much more ¹³ C depleted (> -2‰) compared to long chain <i>n</i> -alkanes,
42	implying that for some mosses bacterial methanotrophs or methylotrophs may
43	contribute to the diploptene pool. Our findings expand our understanding of the

44	biological sources of diploptene in terrestrial epiphytic bryophytes, which will allow
45	for a more detailed interpretation of the long chain <i>n</i> -alkanes and diploptene (δ^{13} C
46	values) in past environmental and paleoclimatic reconstructions.
47	
48	Keywords: Epiphytic bryophyte, Diploptene, Long chain n-alkanes, Carbon isotopic
49	composition
50	
51	1. Introduction
52	
53	Diploptene (hop-22(29)-ene) is one of the most common hopanoids and is often
54	present in immature sediments, such as soils, peat deposits, microbial mats, and
55	marine and lacustrine sediments (Venkatesan, 1988; Ries-Kautt and Albrecht, 1989;
56	Prahl et al., 1992; Pancost et al., 2000; Elvert et al., 2001; van Winden et al., 2012;
57	Davies et al., 2016). It is derived from a wide variety of microbial sources, including
58	cyanobacteria, purple non-sulfur bacteria, anammox and nitrifying bacteria, as well as
59	methylotrophic and methanotrophic bacteria (Rohmer et al., 1984; Douka et al., 2001;
60	Sinninghe Damsté et al., 2004; Härtner et al., 2005; Belin et al., 2018; van Winden et
61	al., 2020; Elling et al., 2022). Given the ubiquity of diploptene in bacteria, including
62	in hetero- and methanotrophic bacteria, its stable carbon isotopic composition (δ^{13} C)
63	has been used to reconstruct past dynamics of the carbon cycle (Spooner et al., 1994;
64	Schouten et al., 2001; Lattaud et al., 2021). For example, diploptene is considered to
65	predominantly derive from methanotrophs when its $\delta^{13}C$ value reaches below –60‰

66	due to the uptake of isotopically light, methane-derived, carbon (Pancost et al., 2000;
67	Elvert et al., 2001; Thiel et al., 2001; Davies et al., 2016; Lattaud et al., 2021).
68	However, in many environments methanotrophs are not the only biological source for
69	diploptene (van Winden et al., 2012). The δ^{13} C values of diploptene (δ^{13} C _{dip}) in peats
70	and modern peat mosses range from ca50‰ to -30‰ (Huang et al., 2010; van
71	Winden et al., 2010; Zheng et al., 2014; Inglis et al., 2019), exhibiting only limited
72	¹³ C depletion as a result of their mixed heterotrophic and methanotrophic origin.
73	Furthermore, methanotrophs that use the serine cycle (type II, alphaproteobacteria)
74	can be important methanotrophs in peat bogs (Chen et al., 2008; Kip et al., 2010),
75	which could use methane and CO ₂ as carbon source, diluting the ¹³ C depleted
76	methane-derived signal in diploptene (van Winden et al., 2012). Although in a
77	mesocosm experiment that used ¹³ C-labelled methane to track in situ methanotrophic
78	activity in Sphagnum the δ^{13} C values of diploptene (-41‰ to -34‰) in Sphagnum
79	moss were strongly correlated with the incubation temperature and rate of methane
80	production (van Winden et al., 2020), it is still difficult to explicitly distinguish the
81	contribution of ¹³ C-labelled methanotroph-derived diploptene to the total bacterial
82	diploptene pool.
83	Compared to the extensive investigation of diploptene (δ^{13} C) in a global
84	distribution of peat mosses and peat deposits (Inglis et al., 2019; Naafs et al., 2019),
85	the distribution of diploptene in terrestrial epiphytic bryophytes remains largely
86	undetermined (Smith, 1982; Tuba et al., 2011). These mosses that grow on trees,
87	rocks, and soils are the dominant cover plants in many forest ecosystems (Holland-

88	Moritz et al., 2021), and hence could be a significant source of diploptene to the
89	terrestrial sedimentary hopanoid pool. Although previous work has examined the
90	occurrence of diploptene from an epiphytic bryophyte in Japan (Toyota et al., 1998),
91	our knowledge about the distribution of diploptene and its $\delta^{13}C$ values in epiphytic
92	bryophytes remains limited. Here we investigate the distribution and $\delta^{13}C$ values of
93	diploptene, as well as the long chain <i>n</i> -alkanes, in several facultative epiphytic
94	bryophytes collected from three different substrates (i.e., soil, tree bark and rock), to
95	explore the mechanisms that control their abundance and stable carbon isotopic
96	composition.
97	
98	2. Materials and Methods
99	
99 100	2.1. Site description and sample collection
99 100 101	2.1. Site description and sample collectionDue to the diverse microclimate and substrata in Wuhan, the capital city of Hubei
99 100 101 102	2.1. Site description and sample collectionDue to the diverse microclimate and substrata in Wuhan, the capital city of HubeiProvince, central China, there is a large variety of epiphytic bryophytes in urban and
99 100 101 102 103	 2.1. Site description and sample collection Due to the diverse microclimate and substrata in Wuhan, the capital city of Hubei Province, central China, there is a large variety of epiphytic bryophytes in urban and suburban areas. <i>Haplocladium</i> and <i>Entodonaceae</i> are the two most abundant moss
99 100 101 102 103 104	 2.1. Site description and sample collection Due to the diverse microclimate and substrata in Wuhan, the capital city of Hubei Province, central China, there is a large variety of epiphytic bryophytes in urban and suburban areas. <i>Haplocladium</i> and <i>Entodonaceae</i> are the two most abundant moss genera (Liu et al., 2001; Fan et al., 2017). The regional climate of Wuhan is
 99 100 101 102 103 104 105 	 2.1. Site description and sample collection Due to the diverse microclimate and substrata in Wuhan, the capital city of Hubei Province, central China, there is a large variety of epiphytic bryophytes in urban and suburban areas. <i>Haplocladium</i> and <i>Entodonaceae</i> are the two most abundant moss genera (Liu et al., 2001; Fan et al., 2017). The regional climate of Wuhan is dominated by a typical subtropical East Asian monsoon, with maximum precipitation
 99 100 101 102 103 104 105 106 	2.1. Site description and sample collection Due to the diverse microclimate and substrata in Wuhan, the capital city of Hubei Province, central China, there is a large variety of epiphytic bryophytes in urban and suburban areas. <i>Haplocladium</i> and <i>Entodonaceae</i> are the two most abundant moss genera (Liu et al., 2001; Fan et al., 2017). The regional climate of Wuhan is dominated by a typical subtropical East Asian monsoon, with maximum precipitation and temperature in summer when the East Asian summer monsoon prevails, while the
 99 100 101 102 103 104 105 106 107 	2.1. Site description and sample collection Due to the diverse microclimate and substrata in Wuhan, the capital city of Hubei Province, central China, there is a large variety of epiphytic bryophytes in urban and suburban areas. <i>Haplocladium</i> and <i>Entodonaceae</i> are the two most abundant moss genera (Liu et al., 2001; Fan et al., 2017). The regional climate of Wuhan is dominated by a typical subtropical East Asian monsoon, with maximum precipitation and temperature in summer when the East Asian summer monsoon prevails, while the intensified East Asian winter monsoon leads to dry and cold weather during the winter
 99 100 101 102 103 104 105 106 107 108 	2.1. Site description and sample collection Due to the diverse microclimate and substrata in Wuhan, the capital city of Hubei Province, central China, there is a large variety of epiphytic bryophytes in urban and suburban areas. <i>Haplocladium</i> and <i>Entodonaceae</i> are the two most abundant moss genera (Liu et al., 2001; Fan et al., 2017). The regional climate of Wuhan is dominated by a typical subtropical East Asian monsoon, with maximum precipitation and temperature in summer when the East Asian summer monsoon prevails, while the intensified East Asian winter monsoon leads to dry and cold weather during the winter (Chen et al., 2019). The mean annual precipitation of this region is ca. 1266 mm, and

110	A total of 14 epiphytic bryophytes from five genera and eight species were
111	obtained, including Funaria hygrometrica ($n = 3$), Haplocladium angustifolium ($n = 3$)
112	4), Haplocladium disclor $(n = 1)$, Haplocladium strictulum $(n = 1)$, Entodon
113	auutrifolius $(n = 1)$, Entodon viridulus $(n = 1)$, Plagiomnium cuspidatum $(n = 1)$ and
114	<i>Taxiphyllum taxirameum</i> $(n = 2)$ (for more information, see Table 1). Their habitats
115	can be classified into three categories: surface soil $(n = 6)$, rock $(n = 6)$ and tree bark
116	(n = 2) (Table 1).

117

118 2.2. Lipid extraction, quantification and stable carbon isotope analysis

119 Lipid extraction of mosses followed Huang et al. (2010). Briefly, the whole plant was first rinsed thoroughly with distilled water to remove external contaminants, then 120 121 freeze-dried. About 1 g of each sample was ultrasonically extracted four times with a mixture of dichloromethane (DCM) and methanol (MeOH) (9:1, v/v) for 10 min. An 122 internal standard (cholane, C₂₄H₄₂, Sigma-Aldrich) was added prior to extraction. The 123 total lipid extracts were separated into apolar and polar fractions using activated silica 124 gel column chromatography with *n*-hexane and MeOH as the eluting solvents, 125 respectively. The *n*-alkanes and diploptene in the apolar fraction were quantified using 126 a Shimadzu 2010 gas chromatograph with flame ionization detector (GC-FID) 127 equipped with a DB-5 capillary column and identified by gas chromatography-mass 128 spectrometry (GC-MS) equipped with an Agilent 5973A mass selective detector. 129 The identification of diploptene was based on the comparison of previously 130 published mass spectra (Härtner et al., 2005; Huang et al., 2010; Sessions et al., 131

132	2013). The concentration of each compound was determined by comparative analysis
133	of its peak area with the internal standard (cholane) based on the GC-FID analysis.
134	The carbon isotopic compositions of <i>n</i> -alkanes and diploptene were determined
135	using a Finnigan Trace GC instrument coupled to a Thermo Finnigan Delta Plus XP
136	isotope ratio mass spectrometer. To check the reproducibility, an <i>n</i> -alkane standard
137	mixture (C_{16} – C_{30} , Indiana University) with known carbon isotopic composition values
138	was measured between every two samples (Xue et al., 2016). Squalene of known
139	carbon isotopic composition (-19.8%) was used as an internal standard. The standard
140	deviation for the $\delta^{13}C$ values of standards was < 0.5‰. The stable carbon isotope
141	ratios (δ^{13} C) are reported as per mil (‰) deviations from the Vienna Pee Dee
142	Belemnite (VPDB) standard, calculated using: $\delta^{13}C$ (‰) = ($R_{\text{sample}}/R_{\text{standard}}$) – 1, where
143	<i>R</i> is the ratio of ${}^{13}C/{}^{12}C$ in the sample and standard. The reproducibility (standard
144	deviation) of the δ^{13} C values for odd numbered long-chain <i>n</i> -alkanes and diploptene
145	was better than 0.5‰ based on the replicate analysis of several samples.
146	

- 147 **3. Results and discussion**
- 148

149 *3.1. Distribution of n-alkanes and diploptene in epiphytic bryophytes*

150 Three representative chromatograms of the aliphatic fraction are shown in Fig. 1,

- 151 i.e., *H. angustitolium* collected from the rock habitat (ID: 4, 5 and 6). The *n*-alkane
- 152 distribution displays a strong odd/even predominance with a dominance of long chain
- 153 *n*-alkanes (C_{23} - C_{33}), and hence high carbon preference index (CPI) (Table 1, Fig. 2).

154	The summed concentration of long-chain <i>n</i> -alkanes (C_{23} - C_{33}) ranged from 5 to 130
155	μ g/g dry weight, with an average of ~ 25 μ g/g dry weight (Table 1). We assigned
156	mosses to different categories based on the phylogenetic domain and growth habitat:
157	five genera (Fig. 2b–f) and three habitats (Fig. 2g–i). The predominant long chain
158	odd-carbon-numbered <i>n</i> -alkanes (C_{27} – C_{31}) of the mosses is consistent with the <i>n</i> -
159	alkane distributions found in terrestrial vascular plants (Bush and McInerney, 2013;
160	Diefendorf and Freimuth, 2017), with the long chain odd-carbon-numbered <i>n</i> -alkanes
161	as the most abundant homologues. However, the distribution is not uniform across the
162	habitats and genera. For example, n -C ₂₇ is the most abundant homologue in genus
163	Entodon, n-C ₃₁ dominates in the genera of Funaria and Taxiphyllum, while in the
164	genera of <i>Haplocladium</i> and <i>Plagiomnium</i> n-C ₂₉ dominates (Table 1, Fig. 2b–f). A
165	dominance of the C_{27} to C_{31} <i>n</i> -alkanes is consistent with the findings from the moss
166	species (e.g., Hypnum revolutum, Polytrichum commune, and Aulacomnium palustre)
167	collected from peatlands and mires in UK, China and northern Spain (Nott et al.,
168	2000; Huang et al., 2010; Ortiz et al., 2016). However, this distribution is different
169	from that reported for Sphagnum, the most abundant moss in acidic peat deposits,
170	where the <i>n</i> -alkane distribution is typically dominated by the mid-chain n -C ₂₃ alkane
171	(Baas et al., 2000; Bingham et al., 2010).
172	Diploptene is present in all moss species. Its concentration is highly variable,
173	ranging from 1 to 109 μ g/g dry wt, with an average of ~ 20 μ g/g dry wt (Table 1, Fig.
174	3). Interestingly, in some mosses, the concentration of diploptene is higher than that
175	found in Sphagnum (Huang et al., 2010), indicating that bacteria living with these

176	mosses could also be an important source to the sedimentary pool. Specifically, the
177	sample from <i>T. taxirameum</i> collected from soil surfaces (ID: 14; Table 1) has the
178	highest abundance of diploptene with concentrations more than two orders of
179	magnitude higher than those found in <i>H. disclor</i> and <i>F. hygrometrica</i> , collected from
180	the rocky habitat (ID: 8 and 2; Table 1, Fig. 3). No significant trend between moss
181	species and their concentrations is found (Fig. 3). However, by habitat level, mosses
182	collected from the soil habitat generally have higher concentrations of diploptene
183	compared to mosses from the rock and tree habitats (Table 1). Furthermore, we also
184	noticed varying relationships between the concentrations of diploptene and <i>n</i> -alkanes
185	among the moss species. For example, only T. taxirameum collected from rock habitat
186	(ID: 14; Fig. 3) has roughly equal amounts of diploptene and <i>n</i> -alkanes. The
187	abundance of diploptene is higher than the summed <i>n</i> -alkanes in <i>H. angustitolium</i>
188	from rock and soil habitats (ID: 4 and 7; Fig. 3), and in <i>T. taxirameum</i> from soil
189	habitat (ID: 14; Fig. 3). However, in other moss species, the concentrations of
190	summed <i>n</i> -alkanes are considerably higher than diploptene (Fig. 3). These results
191	indicate that the high concentrations of diploptene produced by certain terrestrial
192	epiphytic bryophytes from some habitats could form a major contribution to the
193	hopanoid pool of sedimentary archives.
194	
195	3.2. $\delta^{13}C$ values of n-alkanes and diploptene in epiphytic bryophytes
196	The stable carbon isotopic compositions of <i>n</i> -alkane are reported for the odd <i>n</i> -

alkanes C_{29} and C_{31} (Table 1; Fig. 2), the concentrations of the other homologues were

198	too low for compound-specific carbon isotopic analysis. Notably, the average $\delta^{13}C$
199	values for the <i>n</i> -C ₂₉ ($-32.9 \pm 1.4\%$) was less ¹³ C-depleted compared to <i>n</i> -C ₃₁ ($-34.0 \pm$
200	1.5%) (Table 1). The δ^{13} C values of <i>n</i> -C ₂₉ and <i>n</i> -C ₃₁ fall into the typical range of
201	values previously reported for terrestrial plants and Sphagnum mosses (Freimuth et
202	al., 2019; Naafs et al., 2019; Liu and An, 2020). Thus, there is no substantial
203	difference in δ^{13} values for <i>n</i> -C ₂₉ and <i>n</i> -C ₃₁ between terrestrial bryophytes and
204	previously reported values from Sphagnum. For example, our data are identical to the
205	average δ^{13} values for <i>n</i> -C ₂₉ and <i>n</i> -C ₃₁ (-32.4‰) reported from a Scottish montane
206	peat bog (Ficken et al., 1998), implying that it is difficult to distinguish moss species
207	using the δ^{13} C values of long-chain <i>n</i> -alkanes only.
208	The δ^{13} C values of diploptene have a wider range than the <i>n</i> -alkanes, ranging from
209	-39.2% to -31.2% (Table 1, Fig. 3). The average $\delta^{13}C_{dip}$ value is -34.9% , which is
210	close to the average value for C_{31} (-34.0‰), but ca. 2‰ more depleted in 13 C than the
211	average value of n -C ₂₉ (-32.9‰) (Table 1). However, for individual moss species, the
212	$\delta^{13}C_{dip}$ value shows high variability even for the same species collected from the same
213	habitat. For example, $\delta^{13}C_{dip}$ values in <i>F. hygrometrica</i> from the soil habitat vary by
214	8‰ (ID: 1 and 3; Table 1, Fig. 3). The $\delta^{13}C_{dip}$ values of terrestrial bryophytes are
215	much more enriched compared to those found in some marine and lake environments
216	with an active methanotroph community (Pancost et al., 2000; Thiel et al., 2001;
217	Davies et al., 2016; Lattaud et al., 2021). In comparison, our results fall into the range
218	of $\delta^{13}C_{dip}$ reported from peatlands (-50‰ to -30‰) (Zheng et al., 2014; Inglis et al.,
219	2019), as well as peat mosses collected from China (Huang et al., 2010), UK, and

220 Argentina (van Winden et al., 2010).

We also evaluated the average $\delta^{13}C_{dip}$ value by habitats. The average $\delta^{13}C_{dip}$ value 221 from the soil habitat is the most depleted $(-35.4 \pm 2.8\%)$, followed by those from the 222 rock habitat (-34.7 \pm 2.0‰). The average $\delta^{13}C_{dip}$ value of two moss species that 223 224 belong to the Entodon genus collected from the tree habitat is the most enriched (- $33.5 \pm 0.9\%$) (Table 1; Fig. 3). There is no significant difference in $\delta^{13}C_{dip}$ values 225 between the rock and soil habitats, which could be further demonstrated by an 226 independent sample *t*-test (t = 0.53; p = 0.61). Thus, species type and habitat are not 227 the main factors affecting diploptene δ^{13} C values. 228 229 3.3. Potential sources of diploptene in epiphytic bryophytes 230 231 The molecular and isotopic composition of *n*-alkanes and diploptene allows us to explore the sources of diploptene in epiphytic bryophytes. Most of the bryophytes 232 have similar δ^{13} C values for the long-chain *n*-alkanes and diploptene (Table 1; Fig. 4). 233 234 For instance, *H. angustitolium* collected from the rock habitat (ID: 4; Fig. 3) has a high ratio of diploptene relative to the summed *n*-alkanes and has a similar $\delta^{13}C_{dip}$ 235 value (-33.7%) compared to *n*-C₂₉ (-32.1%) and *n*-C₃₁ (-32.6%) (Table 1). This 236 could mean that the heterotrophic bacteria that live in symbioses with mosses 237 consume organic substrates like *n*-alkanes. Although direct proof of the interaction 238 between heterotrophs and moss species for our study is lacking, the presence of 239 Rhizobium, a heterotrophic N₂ fixer, has been observed in peatland and bryophytes in 240 karst rocky areas (Larmola et al., 2014; Cao et al., 2020). 241

242	In contrast, for some samples there is a significant difference between the $\delta^{13}C$
243	values of long-chain <i>n</i> -alkanes and diploptene. For example, <i>F. hygrometrica</i>
244	collected from the soil habitat (ID: 1) has the most depleted $\delta^{13}C_{dip}$ value (-39.2‰)
245	among the mosses (Table 1; Fig. 3). The δ^{13} C value of <i>n</i> -alkanes (avg33.8‰ for <i>n</i> -
246	C ₂₉ ~C ₃₁) is clearly more enriched than the $\delta^{13}C_{dip}$ value of this bryophyte (Table 1;
247	Fig. 4). Such ¹³ C-depleted values could imply that diploptene may partly derive from
248	endophytic methanotrophic bacteria that are in symbiosis with these mosses. This can
249	be confirmed by the presence of <i>Methylobacterium</i> on the surface of <i>F. hygrometrica</i> ,
250	a Funaria-associated Methylobacterium which can utilize methanol emitted by the
251	stomata of plants (Hornschuh et al., 2002). This is in agreement with previous studies
252	that suggested methylotrophs are abundant in peat ecosystems (Chen et al., 2008), and
253	the phyllosphere and rhizosphere of mosses (Hornschuh et al., 2002; Tani et al., 2012;
254	Iguchi et al., 2015).
255	Interaction between mosses and methanotrophic and methylotrophic bacteria has
256	been observed in peat bogs (Raghoebarsing et al., 2005; Kip et al., 2010) and karst
257	rocky desertification areas (Cao et al., 2020). On the other hand, <i>T. taxirameum</i> which
258	was collected from the soil habitat (ID: 14) has the highest amount of diploptene
259	among the mosses (Fig. 3) and has a more enriched δ^{13} C value for the <i>n</i> -alkanes (avg.
260	-34.7% for <i>n</i> -C ₂₉ ~C ₃₁) compared to $\delta^{13}C_{dip}$ (-37.4‰) (Table 1 and Fig. 4).
261	In general, the difference between average values of long chain <i>n</i> -alkanes (<i>n</i> -
262	$C_{29}\sim C_{31}$) and diploptene ($\Delta^{13}C_{alk-dip}$) is < 2‰ in most of the mosses (Fig. 4). This
263	could indicate that diploptene is derived from heterotrophic bacteria, which utilized a

264	variety of substrates such as <i>n</i> -alkanes. In contrast, mosses with a large $\Delta^{13}C_{alk-dip}$
265	offset likely have a contribution from bacterial methanotrophs and methylotrophs
266	(Kip et al., 2010). Overall, our results demonstrate that methylotrophic and
267	heterotrophic bacteria are both present in these mosses. Mosses emit methane and
268	methanol (C1 compounds) from their phyllosphere and provide habitats for
269	methylotrophs and heterotrophs. Meanwhile, methanotrophs/methylotrophs convert
270	methane/methanol into organic compounds, which are further utilized by
271	heterotrophs. Thus, our data are indicative of a mutually beneficial interactions
272	between mosses and methylotrophic and heterotrophic bacteria.
273	We also measured the $\Delta^{13}C_{alk-dip}$ values by species and habitat, however no
274	significant differences were observed (Fig. 4). Previous studies of diploptene in
275	terrestrial environments have mainly been focused on the Sphagnum moss-associated
276	methanotrophs in peatland (van Winden et al., 2020) where methanotrophic activity is
277	evident. Methane concentrations would be relatively low in the environments where
278	we obtained our terrestrial bryophytes, consistent with the lack of significantly
279	depleted δ^{13} C values in most samples.

280

281 **4. Conclusions**

We determined the distribution pattern of diploptene and long chain *n*-alkanes as well as their δ^{13} C values in epiphytic bryophytes obtained from three different habitats. The concentrations of diploptene and *n*-alkanes in bryophytes show a high variability across species and habitats. Bryophytes collected from the surface of soil

286	habitat have higher abundance of diploptene compared to those collected from the
287	rock and tree habitats. Likewise, the $\delta^{13}C_{dip}$ values also show a high variability among
288	the bryophytes. In some bryophytes, diploptene and long-chain <i>n</i> -alkanes have similar
289	δ^{13} C values, which can be attributed to the assimilation by shared carbon source(s),
290	i.e., the heterotrophic bacteria that are symbiotic with the bryophytes. However, there
291	are some bryophytes with much more depleted $\delta^{13}C_{dip}$ values than the long chain <i>n</i> -
292	alkanes, which could indicate a contribution of methanotrophs or methylotrophs. Thus
293	far, we have not been able to analyze the isotopic composition of methane and CO_2 in
294	these different microhabitats, which could have further assisted in the interpretation of
295	the results. However, our findings provide evidence for the biological sources of
296	diploptene in terrestrial bryophytes. Our study has helped ascertain the occurrence of
297	diploptene and its potential sources in terrestrial environments, which has improved
298	our understanding of the occurrence and $\delta^{13}C$ of the long chain <i>n</i> -alkanes and
299	diploptene in paleoenvironmental and paleoclimatic reconstructions.

300

301 Acknowledgements

We would like to thank M. Zheng from China University of Geosciences, Wuhan for sample collecting in the field and moss species identification. This work was funded by the National Natural Science Foundation of China (Grant No. 41977384) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20181508). J. Li acknowledges fundings from the Open Foundation of State Key laboratory of Biogeology and Environmental Geology and Hubei Key Laboratory of Critical Zone

308	Evolution, China University of Geosciences, Wuhan (GBL21805, CZE2022F01).
309	BDAN acknowledges funding through a Royal Society Tata University Research
310	Fellowship. We also like to thank Dr. John Volkman and two anonymous reviewers
311	for their constructive comments and suggestions, which improved the manuscript.
312	
313	Associate Editor–Klaas Nierop
314	
315	References
316	
317	Baas, M., Pancost, R., van Geel, B., Sinninghe Damsté, J.S., 2000. A comparative
318	study of lipids in Sphagnum species. Organic Geochemistry 31, 535-541.
319	Belin, B.J., Busset, N., Giraud, E., Molinaro, A., Silipo, A., Newman, D.K., 2018.
320	Hopanoid lipids: from membranes to plant-bacteria interactions. Nature
321	Reviews Microbiology 16, 304-315.
322	Bingham, E.M., McClymont, E.L., Väliranta, M., Mauquoy, D., Roberts, Z.,
323	Chambers, F.M., Pancost, R.D., Evershed, R.P., 2010. Conservative composition
324	of <i>n</i> -alkane biomarkers in <i>Sphagnum</i> species: Implications for palaeoclimate
325	reconstruction in ombrotrophic peat bogs. Organic Geochemistry 41, 214-220.
326	Bush, R.T., McInerney, F.A., 2013. Leaf wax <i>n</i> -alkane distributions in and across
327	modern plants: Implications for paleoecology and chemotaxonomy. Geochimica
328	et Cosmochimica Acta 117, 161-179.
329	Cao, W., Xiong, Y., Zhao, D., Tan, H., Qu, J., 2020. Bryophytes and the symbiotic
330	microorganisms, the pioneers of vegetation restoration in karst rocky
331	desertification areas in southwestern China. Applied Microbiology and
332	Biotechnology 104, 873-891.
333	Chen, W., Wang, L., Feng, J., Wen, Z., Ma, T., Yang, X., Wang, C., 2019. Recent
334	progress in studies of the variabilities and mechanisms of the East Asian

335 Monsoon in a changing climate. Advances in Atmospheric Sciences 36, 887-336 901.

337	Chen, Y., Dumont, M.G., McNamara, N.P., Chamberlain, P.M., Bodrossy, L., Stralis-
338	Pavese, N., Murrell, J.C., 2008. Diversity of the active methanotrophic
339	community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.
340	Environmental Microbiology 10, 446-459.
341	Davies, K.L., Pancost, R.D., Edwards, M.E., Walter Anthony, K.M., Langdon, P.G.,
342	Chaves Torres, L., 2016. Diploptene δ^{13} C values from contemporary
343	thermokarst lake sediments show complex spatial variation. Biogeosciences 13,
344	2611-2621.
345	Diefendorf, A.F., Freimuth, E.J., 2017. Extracting the most from terrestrial plant-
346	derived <i>n</i> -alkyl lipids and their carbon isotopes from the sedimentary record: A
347	review. Organic Geochemistry 103, 1-21.
348	Douka, E., Koukkou, AI., Drainas, C., Grosdemange-Billiard, C., Rohmer, M., 2001.
349	Structural diversity of the triterpenic hydrocarbons from the bacterium
350	Zymomonas mobilis: the signature of defective squalene cyclization by the
351	squalene/hopene cyclase. FEMS Microbiology Letters 199, 247-251.
352	Elling, F.J., Evans, T.W., Nathan, V., Hemingway, J.D., Kharbush, J.J., Bayer, B.,
353	Spieck, E., Husain, F., Summons, R.E., Pearson, A., 2022. Marine and terrestrial
354	nitrifying bacteria are sources of diverse bacteriohopanepolyols. Geobiology 20,
355	399-420.
356	Elvert, M., Whiticar, M.J., Suess, E., 2001. Diploptene in varved sediments of
357	Saanich Inlet: indicator of increasing bacterial activity under anaerobic
358	conditions during the Holocene. Marine Geology 174, 371-383.
359	Fan, M., Wu, YP., Hu, RG., Jiang, YB., 2017. Diversity and distribution of
360	bryophytes and their relationship with environmental factors in Wuhan. Plant
361	Science Journal 35, 825-834 (in Chinese with English abstract).
362	Ficken, K.J., Barber, K.E., Eglinton, G., 1998. Lipid biomarker, $\delta^{13}C$ and plant
363	macrofossil stratigraphy of a Scottish montane peat bog over the last two
364	millennia. Organic Geochemistry 28, 217-237.

365	Freimuth, E.J., Diefendorf, A.F., Lowell, T.V., Wiles, G.C., 2019. Sedimentary n-
366	alkanes and <i>n</i> -alkanoic acids in a temperate bog are biased toward woody
367	plants. Organic Geochemistry 128, 94-107.
368	Härtner, T., Straub, K.L., Kannenberg, E., 2005. Occurrence of hopanoid lipids in
369	anaerobic Geobacter species. FEMS Microbiology Letters 243, 59-64.
370	Holland-Moritz, H., Stuart, J.E.M., Lewis, L.R., Miller, S.N., Mack, M.C., Ponciano,
371	J.M., McDaniel, S.F., Fierer, N., 2021. The bacterial communities of Alaskan
372	mosses and their contributions to N ₂ -fixation. Microbiome 9, 53.
373	Hornschuh, M., Grotha, R., Kutschera, U., 2002. Epiphytic bacteria associated with
374	the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on
375	protonema development. Plant Biology 4, 682-687.
376	Huang, X., Wang, C., Xue, J., Meyers, P.A., Zhang, Z., Tan, K., Zhang, Z., Xie, S.,
377	2010. Occurrence of diploptene in moss species from the Dajiuhu Peatland in
378	southern China. Organic Geochemistry 41, 321-324.
379	Iguchi, H., Yurimoto, H., Sakai, Y., 2015. Interactions of methylotrophs with plants
380	and other heterotrophic bacteria. Microorganisms 3, 137-151.
381	Inglis, G.N., Naafs, B.D.A., Zheng, Y., Schellekens, J., Pancost, R.D., 2019. $\delta^{13}C$
382	values of bacterial hopanoids and leaf waxes as tracers for methanotrophy in
383	peatlands. Geochimica et Cosmochimica Acta 260, 244-256.
384	Kip, N., van Winden, J.F., Pan, Y., Bodrossy, L., Reichart, GJ., Smolders, A.J.P.,
385	Jetten, M.S.M., Sinninghe Damsté, J.S., Op den Camp, H.J.M., 2010. Global
386	prevalence of methane oxidation by symbiotic bacteria in peat-moss
387	ecosystems. Nature Geoscience 3, 617-621.
388	Larmola, T., Leppänen, S.M., Tuittila, ES., Aarva, M., Merilä, P., Fritze, H., Tiirola,
389	M., 2014. Methanotrophy induces nitrogen fixation during peatland
390	development. Proceedings of the National Academy of Sciences 111, 734-739.
391	Lattaud, J., De Jonge, C., Pearson, A., Elling, F.J., Eglinton, T.I., 2021. Microbial lipid
392	signatures in Arctic deltaic sediments-Insights into methane cycling and
393	climate variability. Organic Geochemistry 157, 104242.
394	Liu, J., An, Z., 2020. Leaf wax <i>n</i> -alkane carbon isotope values vary among major

- terrestrial plant groups: Different responses to precipitation amount and
 temperature, and implications for paleoenvironmental reconstruction. EarthScience Reviews 202, 103081.
- Liu, S.-X., Peng, D., Qin, W., Yu, X.-J., Pan, X.-Y., Liu, S., 2001. Studies on the
 bryophyta plants resources in Hubei Province—

 The bryophytes flora of

 Wuhan city. Journal of Central China Normal Unversity (Natural Sciences), 35,
 326-329 (in Chinese with English abstract).
- 402 Naafs, B.D.A., Inglis, G.N., Blewett, J., McClymont, E.L., Lauretano, V., Xie, S.,
- Evershed, R.P., Pancost, R.D., 2019. The potential of biomarker proxies to trace
 climate, vegetation, and biogeochemical processes in peat: A review. Global and
 Planetary Change 179, 57-79.
- Nott, C.J., Xie, S., Avsejs, L.A., Maddy, D., Chambers, F.M., Evershed, R.P., 2000. *n*alkane distributions in ombrotrophic mires as indicators of vegetation change
 related to climatic variation. Organic Geochemistry 31, 231-235.
- 409 Ortiz, J.E., Borrego, Á.G., Gallego, J.L.R., Sánchez-Palencia, Y., Urbanczyk, J.,
- Torres, T., Domingo, L., Estébanez, B., 2016. Biomarkers and inorganic proxies
 in the paleoenvironmental reconstruction of mires: The importance of landscape
- 412 in Las Conchas (Asturias, Northern Spain). Organic Geochemistry 95, 41-54.
- 413 Pancost, R.D., Sinninghe Damsté, J.S., De Lint, S., van der Maarel, M.J.E.C.,
- 414 Gottschal, J.C., 2000. Biomarker evidence for widespread anaerobic methane
- 415 oxidation in Mediterranean sediments by a consortium of methanogenic
- 416 Archaea and Bacteria. Applied and Environmental Microbiology 66, 1126-1132.
- 417 Prahl, F.G., Hayes, J.M., Xie, T.M., 1992. Diploptene: An indicator of terrigenous
 418 organic carbon in Washington coastal sediments. Limnology and Oceanography
 419 37, 1290-1300.
- 420 Qian, S., Yang, H., Dong, C., Wang, Y., Wu, J., Pei, H., Dang, X., Lu, J., Zhao, S.,
- 421 Xie, S., 2019. Rapid response of fossil tetraether lipids in lake sediments to
 422 seasonal environmental variables in a shallow lake in central China:
- 423 Implications for the use of tetraether-based proxies. Organic Geochemistry 128,
- 424 108-121.

425	Raghoebarsing, A.A., Smolders, A.J.P., Schmid, M.C., Rijpstra, W.I.C., Wolters-Arts,
426	M., Derksen, J., Jetten, M.S.M., Schouten, S., Sinninghe Damsté, J.S., Lamers,
427	L.P.M., Roelofs, J.G.M., Op den Camp, H.J.M., Strous, M., 2005.
428	Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.
429	Nature 436, 1153-1156.
430	Ries-Kautt, M., Albrecht, P., 1989. Hopane-derived triterpenoids in soils. Chemical
431	Geology 76, 143-151.
432	Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of hopanoid
433	triterpenes in Prokaryotes. Journal of General Microbiology 130, 1137-1150.
434	Schouten, S., Rijpstra, W.I.C., Kok, M., Hopmans, E.C., Summons, R.E., Volkman,
435	J.K., Sinninghe Damsté, J.S., 2001. Molecular organic tracers of
436	biogeochemical processes in a saline meromictic lake (Ace Lake). Geochimica
437	et Cosmochimica Acta 65, 1629-1640.
438	Sessions, A.L., Zhang, L., Welander, P.V., Doughty, D., Summons, R.E., Newman,
439	D.K., 2013. Identification and quantification of polyfunctionalized hopanoids
440	by high temperature gas chromatography-mass spectrometry. Organic
441	Geochemistry 56, 120-130.
442	Sinninghe Damsté, J.S., Rijpstra, W.I.C., Schouten, S., Fuerst, J.A., Jetten, M.S.M.,
443	Strous, M., 2004. The occurrence of hopanoids in planctomycetes: implications
444	for the sedimentary biomarker record. Organic Geochemistry 35, 561-566.
445	Smith, A.J.E., 1982. Epiphytes and Epiliths, in: Smith, A.J.E. (Ed.), Bryophyte
446	Ecology. Springer Netherlands, Dordrecht, pp. 191-227.
447	Spooner, N., Rieley, G., Collister, J.W., Lander, M., Cranwell, P.A., Maxwell, J.R.,
448	1994. Stable carbon isotopic correlation of individual biolipids in aquatic
449	organisms and a lake bottom sediment. Organic Geochemistry 21, 823-827.
450	Tani, A., Takai, Y., Suzukawa, I., Akita, M., Murase, H., Kimbara, K., 2012. Practical
451	application of methanol-mediated mutualistic symbiosis between
452	Methylobacterium species and a roof greening moss, Racomitrium japonicum.
453	PLoS One 7, e33800.
454	Thiel, V., Peckmann, J., Richnow, H.H., Luth, U., Reitner, J., Michaelis, W., 2001.

- 455 Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry 73, 97-112. 456 Toyota, M., Masuda, K., Asakawa, Y., 1998. Triterpenoid constituents of the moss 457 Floribundaria aurea subsp. nipponica. Phytochemistry 48, 297-299. 458 Tuba, Z., Slack, N.G., Stark, L.R., 2011. Bryophyte Ecology and Climate Change. 459 Cambridge University Press, Cambridge. 460 van Winden, J.F., Kip, N., Reichart, G.-J., Jetten, M.S.M., Op den Camp, H.J.M., 461 462 Sinninghe Damsté, J.S., 2010. Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotopic labelling. Organic 463 Geochemistry 41, 1040-1044. 464 van Winden, J.F., Talbot, H.M., De Vleeschouwer, F., Reichart, G.-J., Sinninghe 465 466 Damsté, J.S., 2012. Variation in methanotroph-related proxies in peat deposits
- van Winden, J.F., Talbot, H.M., Reichart, G.-J., McNamara, N.P., Benthien, A., 468

from Misten Bog, Hautes-Fagnes, Belgium. Organic Geochemistry 53, 73-79.

- Sinninghe Damsté, J.S., 2020. Influence of temperature on the δ^{13} C values and 469 distribution of methanotroph-related hopanoids in Sphagnum-dominated peat 470 bogs. Geobiology 18, 1-11. 471
- Venkatesan, M.I., 1988. Diploptene in Antarctic sediments. Geochimica et 472 Cosmochimica Acta 52, 217-222. 473
- 474 Xue, J., Dang, X., Tang, C., Yang, H., Xiao, G., Meyers, P.A., Huang, X., 2016. Fidelity of plant-wax molecular and carbon isotope ratios in a Holocene
- paleosol sequence from the Chinese Loess Plateau. Organic Geochemistry 101, 476 176-183. 477
- Zheng, Y., Singarayer, J.S., Cheng, P., Yu, X., Liu, Z., Valdes, P.J., Pancost, R.D., 478 2014. Holocene variations in peatland methane cycling associated with the 479 Asian summer monsoon system. Nature Communication 5, 4631.
- 481

480

475

467

482

Figure captions 483

Fig. 1. The total ion chromatogram (TIC) of aliphatic fraction of *Haplocladium angustitolium* that collected on the surface of rock (Sample ID: 4, 5 and 6) with
varying amouns of *n*-alkanes and diploptene.

488

489 **Fig. 2.** Histograms of normalized *n*-alkane distribution in bryophytes showing

490 averaged distribution values with mean standard deviation of each genus (b-f) and

491 habitat (g-i) including *n* samples as indicated, overlain by the average stable carbon

492 isotope (δ^{13} C) data for odd-numbered long-chained *n*-alkane (C₂₇, C₂₉, C₃₁ and C₃₃) 493 homologues.

494

Fig. 3. Concentration of the summed *n*-alkanes (C₂₃–C₃₃) and diploptene, and the δ^{13} C values of diploptene in 14 moss species belong to five genera that collected from three habitats including soil (S), rock (R) and tree (T).

498

499 **Fig. 4.** Differences between the average δ^{13} C values of long chain *n*-alkanes (C₂₉, C₃₁)

and diploptene ($\Delta^{13}C_{alk-dip}$) across the moss species (a) and habitats (b). The

abbreviation refers to the genus of moss in Table 1 and Fig. 2.

Table 1. Quantification and δ^{13} C values (‰) of <i>n</i> -alkanes and diploptene (Dip) in 14 moss species belong to five genera and collected from three
habitats including the surface of soil, rock and tree in Wuhan City, China (The standard deviation of δ^{13} C values is better than ±0.5‰)

ID	Species	Genus	Habitat	<i>n</i> -C ₂₃	<i>n</i> -C ₂₅	<i>n</i> -C ₂₇	<i>n</i> -C ₂₉	<i>n</i> -C ₃₁	<i>n</i> -C ₃₃	Sum	Dip.	<i>n</i> -C ₂₇	<i>n</i> -C ₂₉	<i>n</i> -C ₃₁	<i>n</i> -C ₃₃	Dip.
				μ g/g dry weight δ^{13} C (‰)												
1	Funaria hygrometrica Hedw.	Funaria	Soil	0.2	0.4	1	5	8	1	18	4	-34.1	-33.3	-34.2	-34.8	-39.2
2	Funaria hygrometrica Hedw.	Funaria	Rock	0.5	0.9	2	4	4	4	16	1	-33.5	-33.8	-35.0	-36.0	-34.4
3	Funaria hygrometrica Hedw.	Funaria	Soil	0.2	0.2	0.4	1	2	1	7	2	-30.3	-32.9	-34.1	-34.2	-31.2
4	Haplocladium angustitolium	Haplocladium	Rock	0.4	0.2	0.7	2	2		7	34	-30.1	-30.2	-32.1	-32.6	-33.7
5	Haplocladium angustitolium	Haplocladium	Rock	0.4	0.5	2	10	12	2	28	4	-32.6	-31.5	-32.4	-33.5	-38.5
6	Haplocladium angustitolium	Haplocladium	Rock	0.5	0.6	2	4	4	2	16	1	-31.8	-32.5	-32.9	-31.6	-34.2
7	Haplocladium angustitolium	Haplocladium	Soil	0.4	2	1	2	3		10	43		-31.0	-33.1	-38.4	-35.5
8	Haplocladium disclor	Haplocladium	Rock	0.3	0.4	1	3	2	4	11	1	-35.9	-35.4	-35.5	-36.9	-34.7
9	Haplocladium strictulum	Haplocladium	Soil	2	2	10	38	39	30	130	15	-36.8	-34.1	-34.8	-36.7	-36.1
10	Entodon auutrifolius	Entodon	Tree	0.2	0.1	1	1	1	1	5	2		-33.1	-33.5	-33.1	-32.9
11	Entodon viridulus	Entodon	Tree	0.5	0.5	7	3	3	1	16	3	-38.9	-32.7	-32.9	-32.6	-34.1
12	Plagiomnium cuspidatum	Plagiomnium	Soil	0.5	1	5	11	9	4	34	20		-34.4	-37.2	-38.6	-33.3
13	Taxiphyllum taxirameum	Taxiphyllum	Rock	0.5	3	7	9	10	3	36	40	-33.3	-32.3	-33.1	-32.9	-32.7
14	Taxiphyllum taxirameum	Taxiphyllum	Soil	0.8	2	4	8	12		33	109	-35.8	-33.7	-35.7		-37.4

1 **Fig. 1.**

2

Retention time (min)

Fig. 2.

Fig. 3.

