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Abstract

Vascular flow modelling can improve our understanding of vascular pathologies
and aid in developing safe and effective medical devices. Vascular flow models
typically involve solving the nonlinear Navier-Stokes equations in complex anatomies
and using physiological boundary conditions, often presenting a multi-physics and
multi-scale computational problem to be solved. This leads to highly complex and
expensive models that require excessive computational time.

This review explores accelerated simulation methodologies, specifically focus-
ing on computational vascular flow modelling. We review reduced order modelling
(ROM) techniques like 0D/1D and modal decomposition-based ROMs and machine
learning (ML) methods including ML-augmented ROMs, ML-based ROMs, and
physics-informed ML models. We discuss the applicability of each method to vas-
cular flow acceleration and the effectiveness of the method in addressing domain-
specific challenges. When available, we provide statistics on accuracy and speed-up
factors for various applications related to vascular flow simulation acceleration.

Our findings indicate that each type of model has strengths and limitations
depending on the context. To accelerate real-world vascular flow problems, we
propose future research on developing multi-scale acceleration methods capable of
handling the significant geometric variability inherent to such problems.

Keywords: simulation acceleration; reduced order modelling; machine learning; vas-
cular flow modelling; haemodynamics.



Abbreviation Meaning

ND N -Dimensional, N ∈ {0, 1, 2, 3}
APHR A Priori Hyper Reduction
AW Area-weighted
CAE Convolutional Autoencoder
CFD Computational Fluid Dynamics
cPINN Conservative PINN
CPU Central Processing Unit
CVRC Continuously Variable Resonance

Combustor
DeepONet Deep Operator Network
DeepM&MNet Deep Multi-Physics and Multi-Scale

Network
DEIM Discrete Empirical Interpolation

Method
DL Deep Learning
DMD Dynamic Mode Decomposition
DMDc DMD with Control
DMDho High-order DMD
ECAP Endothelial Cell Activation Poten-

tial
EDMD Extended DMD
FCNN Fully-Connected Neural Network
FDS Flow-Diverting Stent
FEM Finite Element Model
FFR Fractional Flow Reserve
FOM Full-Order Model
FSI Fluid-Structure Interaction
GP Galerkin Projection
GPU Graphics Processing Unit
IST In-Silico Trial
LAA Left Atrial Appendage
LSTM Long Short-Term Memory
LVAD Left Ventricular Assist Device
mDMD Multi-stage DMD
mDMDc Multi-stage DMD with control
ML Machine Learning

Abbreviation Meaning

NN Neural Network
NT Normalised Time
PA Pulmonary Artery
PCA Principal Component Analysis
PGD Proper Generalised Decomposition
PI Pulsatility Index
PI-CNN Physics-Informed Convolutional

Neural Network
PINN Physics-Informed Neural Network
PIPN Physics-Informed Point-Net
PPINN Parallel-in-time PINN
POD Proper Orthogonal Decomposition
POD-GP POD with Galerkin Projection
POD-I POD with Interpolation
RBF Radial Basis Functions
RB Reduced Basis
RN Residual Network
RNN Recurrent Neural Network
ROM Reduced Order Model/Modelling
SBP Systolic Blood Pressure
SDR Spatial Dimension Reduction
SN Sequential Network
SR Super-Resolution
SST Sea Surface Temperature
ToF Tetralogy of Fallot
WSS Wall Shear Stress
WCT Wall Clock Time
XPINN Extended PINN



1 Introduction

The motivation for accelerating vascular flow simulations Despite the widespread
use of computational models across many scientific disciplines, their use in real-time and
many-query contexts is limited by their high computational cost. These scenarios fre-
quently arise in vascular blood flow modelling. Real-time vascular flow simulations could
provide guidance to clinicians prior to performing a treatment procedure or provide near-
instant feedback during the procedure [1, 2]. Many-query vascular flow simulations can
be used to iteratively design new vascular implements, establish safety and performance
measures for treatment devices, and simulate interventions on a population scale through
so-called in-silico trials [3].

Challenges in vascular flow modelling Vascular flow modelling poses various chal-
lenges due to the inherent complexities of the problem, which are highlighted in Figure
1 [4, 5]. Blood flow dynamics and tissue perfusion are governed by the Navier-Stokes
equations, which are a nonlinear set of time-dependent partial differential equations [6].
Coupling the haemodynamics to solid mechanics or biochemical reaction models may also
be required in certain applications. Fluid-structure interaction (FSI) is required when
vessel distensibility is important or when there is a complex interaction between blood
flow and valves or implanted devices [7, 8, 9, 10]. Biochemical reactions are crucial in
modelling thrombosis and endothelialisation depends on interactions between blood and
blood-contacting surfaces of devices [11, 12]. The constitutive nature of blood adds ad-
ditional complexity – it is a suspension containing various biochemically active particles
and molecules, meaning that multi-phase multi-component flow-biochemistry models may
be required when modelling flow-thrombosis in small vessels [13, 11].

As well as being multi-physical in nature, the length and time scales in vascular flow
problems can differ greatly. Vascular flow is inherently pulsatile, which leads to features
such as flow separation, vortex transport, mixing regions and impingement varying topo-
logically throughout the cardiac cycle [14]. Variation in length scale and morphology
can also influence these flow features. This leads to varying flow regimes in different
regions of the vasculature and at different times of the cardiac cycle. Vascular flow mod-
elling encompasses short-term processes such as systemic haemodynamics, autoregulation
and recanalisation in addition to long-term processes such as remodelling and thrombo-
sis [15, 16, 17, 18]. Physiological changes due to factors such as age and lifestyle also
have an impact on various flow problems. Vastly different length scales are also present,
with thrombosis and endothelialisation happening on a molecular level at the micro-scale,
whereas systemic blood flow occurs in arteries with diameters up to a few centimetres.

Nonlinear effects further complicate vascular flow modelling. This can result from
the convective nonlinearity in the Navier-Stokes equation, the geometric complexity of
blood vessels, or the interactions across different length and time scales between blood
flow and other physical and physiological phenomena. Nonlinear flow features are often
found in the presence of vascular pathologies such as stenosis, atherosclerosis, aneurysms
or valve defects [19, 20, 21, 22]. Flow-device interactions can be an additional source of
nonlinearity [23, 24, 25].

The most prominent complexities in vascular flow modelling can be summarised as:
(i) nonlinearity, (ii) geometrical complexity, (iii) multi-physics, (iv) multi-scale in time,
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(v) multi-scale in space. In practice, assumptions can be made to simplify or eliminate
these complexities for most problems, allowing for successful computational modelling.
When aiming to accelerate vascular flow simulations, problem-specific approaches that
are suited to handling particular types of complexity will be required depending upon the
specific target application.
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Acute Device
Complications

Nonlinearity

Geometric Complexity

Multi-Scale in Time

Multi-Scale in Space

Computational Vascular Flow Modelling

Time
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Figure 1: Vascular flow modelling is a multi-physics, multi-scale problem where nonlin-
earity and geometric complexity frequently arise.
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Reduced order models and machine learning for acceleration Simulation accel-
eration refers to reducing the run time of computational models and is typically achieved
through modelling assumptions and simplifications. Reduced order models (ROMs) are
low-order representations of high-order models that preserve essential model input-output
behaviour at the cost of some model accuracy and are a common approach for accelerating
expensive computational models [26, 27]. ROMs can be categorised into two families, a
priori ROMs and a posteriori ROMs. The former seek to reduce the order of the system
prior to solving the high-dimensional model, using techniques such as Spatial Dimen-
sion Reduction (SDR) or Proper Generalised Decomposition (PGD). A posteriori ROMs

are data-driven techniques that depend on first solving the high-dimensional model or
acquiring experimental data to generate snapshot solution fields. Snapshot data is de-
composed into a reduced representation using, for example, Proper Orthogonal Decompo-
sition (POD) [28, 29, 30, 31], Dynamic Mode Decomposition (DMD) [32, 33] or variants
thereof. The reduced representation can then be advanced in time directly or combined
with projection or interpolation techniques to construct a ROM. There are a multitude
of ROM techniques, some of which have been applied to vascular flow problems.

Recent advances in machine learning have improved some ROM methodologies and
provided alternative techniques to accelerate simulations. Machine learning acceleration
methods operate under a similar paradigm to many ROM techniques, with an expensive
offline training phase that primes the model for fast online inference in new geometries,
parameter values, or time points. There are various ways to use machine learning in
simulation acceleration. Machine learning ROMs typically use machine learning to aug-
ment/replace a component of a ROM or they use machine learning entirely in place of
existing ROM components [34, 35]. Physics-informed machine learning strategies are an-
other possibility. In this approach, flow measurements are supplemented by additional
constraints based on the underlying governing equations and boundary conditions [36].
Physics-agnostic techniques ignore the underlying physics of the problem, but instead use
large amounts of data to identify mappings from images or geometries to flow quantities
of interest [37]. Other techniques include tailor-made networks designed to handle point-
cloud data [38, 39] and operator learning strategies [40, 41]. Given the relatively recent
emergence of machine learning simulation techniques, they have not been widely applied
to acceleration of vascular flow simulations yet.

Overview This review aims to provide an overview of various methods for accelerating
simulations and to collate, categorise, and critique each method with respect to the target
application of vascular flow modelling. We decompose vascular flow modelling into a series
of complexities (nonlinearity, geometric complexity, multi-physics and multi-scale in time
and space) and assess various acceleration methods with respect to these complexities.
For ROM approaches, we provide guidance on what type of vascular problems the method
may be suitable for, what problems they have already been applied to, and how success-
ful these studies were in terms of the accuracy and acceleration offered by the approach
compared to traditional numerical methods. For machine learning approaches, we review
some common methods, discuss their benefits and limitations, and advise what vascular
problems they may be suitable for. Throughout this review, we measure acceleration
factors by comparing run times for a single evaluation of the accelerated and full-order
models, unless otherwise stated. For complementary reviews on parametric model reduc-
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tion, model order reduction in fluid dynamics, data-driven cardiovascular flow modelling,
machine learning for cardiovascular biomechanics, real-time simulation of computational
surgery, and the challenges of vascular fluid dynamics, see [26, 29, 42, 43, 44, 5]. Finally,
we note that although this review focuses on vascular flow acceleration, the complexities
of this application (nonlinearity, geometric complexity, multi-physics and multi-scale) are
encountered across many other computational modelling domains. Therefore, we believe
this review will be useful to computational vascular flow modelling researchers and the
broader computational modelling community.

Reduced Order Models (ROMs) Machine Learning (ML) ROMs Machine Learning Simulation

Equation-driven Data-driven

Spatial
Dimension
Reduction

Proper Orthogonal
Decomposition with
Projection (POD-P)

Reduced
Basis

POD with
Interpolation
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Dynamic Mode
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Figure 2: Taxonomy of various simulation acceleration methods reviewed in this paper.

2 Reduced Order Modelling of Vascular Flow

Reduced order models (ROMs) aim to reduce the dimensionality of a numerical problem
either by applying prior knowledge of the problem itself or by inferring knowledge based
on previously gathered data from the system of interest. ROM methods can be described
as a priori or a posteriori, depending on whether the reduction of the system exploits prior
knowledge about the full-order model (FOM) or information (data) collected after solving
it, respectively. A priori methods are useful when there exist symmetries or other known
information about the underlying system, or when the system is too complex to solve with
traditional techniques. A posteriori methods are useful when readily available data from
the FOM can be used to guide the construction of the ROM. Another categorisation for
ROM methods is whether the approach is intrusive or non-intrusive. Intrusive methods
require the explicit use of the underlying high-order numerical implementation of the
FOM, whereas non-intrusive methods operate entirely separate to the FOM. Intrusive
methods can be more numerically robust due to their incorporation of the underlying
governing equations, but non-intrusive techniques can be easier to implement and use in
conjunction with commercial solvers, which are common when studying fluid dynamics
problems. Many categories of ROM have been applied to vascular flow, with various
benefits and limitations to each approach. This section will describe some of the most
common ROM techniques and their suitability to model various vascular flow complexities.

2.1 Spatial Dimension Reduction

The 3D unsteady incompressible Navier-Stokes equations in non-dimensional form are:
find (u, p) ∈ H1(Ω;Rd)× L2(Ω;R) s.t.

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, ∇ · u = 0, (1)
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where u is the velocity, p is the pressure, and Re is the Reynolds number dependent upon
the fluid density ρ and dynamic viscosity µ. The spatial dimension is d = 3 except for
some cases of plane symmetric or axisymmetric flow, when d = 2, and the domain Ω ⊂ R

d

has a suitably regular boundary to ensure the existence of solutions. Spatial Dimension
Reduction (SDR) involves reducing these equations down to a 0D/1D/2D model that
describes bulk quantities instead of the full spatio-temporal flow fields. A comprehensive
review of 0D and 1D techniques has been provided by Shi et al. [45]. We provide an
overview of this approach, quantify the acceleration and accuracy offered, and discuss
how applicable this method is to vascular flow simulation acceleration.

0D Models Lumped parameter models (referred from hereon in as 0D models) exploit
the analogy between hydraulic networks and electrical circuits. Blood pressure and flow
rate are represented by voltage and current, and the frictional, inertial, and elastic effects
of blood flow are described by electrical resistance, inductance, and capacitance, respec-
tively [45]. Established methods for modelling electrical circuits (Kirchhoff’s current law,
Ohm’s law for voltage-current) with ordinary differential equations (ODEs) can then be
used to describe vascular flow problems.

The first 0D models were based on the Windkessel model, which consists of a capacitor
that describes the storage properties of large arteries and a resistor that describes the
dissipative nature of small peripheral vessels [45]. This simple approach cannot model
specific pressure and flow-rate changes in particular vascular segments and it cannot
fully describe the effects of arterial impedance, venous pressure fluctuations, or pulse
wave transmission. Various extensions to this model have been used to capture these
more complex physiological phenomena by adding additional resistors, inductances, and
capacitors. For example, in a system with capacitance/compliance C, voltage/pressure
P , charge/flow rate Q, inductance/inertia L and resistance R, the two ODEs describing
the system are [46]:

C
dP1

dt
+Q2 −Q1 = 0, L

dQ2

dt
+ P2 − P1 = −RQ2. (2)

Multi-compartment models can also be used to describe flow and pressure characteristics
within specific vascular segments.

1D Models In 1D models, the form of the velocity profile across the vessel radius is
constrained, which simplifies the 3D governing equations. One-dimensional blood flow is
governed by the axisymmetric forms of the incompressible continuity and Navier-Stokes
equations, which can be written as:

∂A

∂t
+

∂(AU)

∂x
= 0,

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂p

∂x
=

f

ρA
, (3)

where x is a local coordinate describing the vessel segment, A is the cross-sectional area,
U and p are the cross-sectionally-averaged velocity and pressure, ρ is the blood density
and f is a viscosity-dependent term describing the frictional force per unit length [45, 47].
These equations can be further coupled to a pressure-radius relationship that describes the
elasticity of the vessel wall. The reduced equations can be solved using various numerical
techniques, such as the method of characteristics [48, 49] or finite differences [50].
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A primary benefit of 1D models over 0D models is that they can capture pressure
and velocity pulse wave propagation [51]. Waves carry information about the medium in
which they travel, so capturing the pressure and velocity waves in blood vessels can tell
us about the function of the cardiovascular system and provide information about various
vascular pathologies, such as atherosclerosis and hypertension [52].

2D Models For 2D vascular models, the 3D vessel loses its torsion and curvature, be-
coming a straightened tube governed by the 2D Navier-Stokes equations. Two-dimensional
models include the radial variation of the velocity and pressure fields in an axisymmetric
tube, whereas 1D models only consider the cross-sectionally-averaged quantities. These
models are used less frequently now due to improved computer processing power and
widely available commercial solvers that make solving the 3D problem more tractable
[53]. However, in certain applications, such as the calculation of fractional flow reserve
(FFR), 2D models are shown to be significantly faster than 3D models while retaining a
clinically viable level of accuracy [54].

Summary Table 1 summarises several vascular flow ROM studies using SDR methods.
We include the specific application, the reported accuracy compared to the FOM as a
baseline, and the acceleration factor compared to the FOM. The accuracy reported for
most ROMs was > 90% and the acceleration factors ranged from 102–105. However, the
ROMs are limited to investigating simple flow parameters, such as FFR, pressure drop
or flow rates [55]. Gashi et al. [54] demonstrated that adding complexity (steady-state to
unsteady) reduces the acceleration offered by three orders of magnitude. Mirramezani and
Shadden [56] presented a comprehensive study applying distributed 1D lumped parame-
ter models to aortic, aorto-femoral, coronary, cerebrovascular, pulmonary, and paediatric
blood flow problems. Analytical expressions were used to allow the model to capture
energy losses along vascular segments due to viscous dissipation, unsteadiness, flow sepa-
ration, vessel curvature, and vessel bifurcations.
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Table 1: Various ROM papers using SDR for vascular flow problems. Acceleration is
measured by comparing the time taken for one ROM evaluation with one FOM evaluation.
This is the case for all tables presenting acceleration statistics, unless otherwise stated.

Reference Method Application Accuracy Acceleration
Factor

Grinberg et al. [47] 1D Pulsatile intracranial blood flow - 147,000∗

Blanco et al. [57] 1D
FFR calculation in
coronary arteries

98%
WCT: 302
NT: 2,870

Xiao et al. [58] 1D
Baseline CCA >99% -
Baseline aorta >98% -
Aortic bifurcation >98% -

Papadakis and Raspaud
[59]

1D (extended
for stenosis)

Wave propagation in stenotic vessels >99% -

Jonášová et al. [60] 1D
Outlet flow rate in hepatic
vein network

88%
-

AW: 99%

Mirramezani and Shad-
den [56]

1D Flow rate and pressure calculations
in various vascular domains

>93% >1,000

Gashi et al. [54]
2D steady FFR calculation in

coronary arteries
95% 162,000

2D unsteady 98% 195

∗ Calculated by assuming a linear relationship between number of CPUs and simulation execution
time.
Where accuracy is not reported, only qualitative ROM-FOM agreement was presented in the refer-
enced paper.
AW, area-weighted; CCA, common carotid artery; FFR, fractional flow reserve; NT, normalised
time (WCT × number of computation tasks); ROM, reduced order model; SDR, spatial dimension
reduction; WCT, wall clock time.

Conclusion 0D SDR models are suitable for global pressure/flow rate analysis of large
regions of the cardiovascular system [45]. One-dimensional models assume axisymmet-
ric flow solutions to capture pressure and velocity pulse wave propagation [51]. Two-
dimensional models can evaluate local flow fields with radial velocity variation in axisym-
metric domains [61]. A prominent use of SDR models is providing boundary conditions
to 3D models that incorporate information from significantly larger portions of the vas-
culature than it would be feasible to model in 3D [62, 63, 64, 65, 66, 67, 68, 69, 70]. In
this way, SDR models can facilitate multi-scale spatial models that provide well-resolved
3D flow information in local regions of interest while still including the effect of distal or
proximal regions. Zero-dimensional SDR models are unable to describe the nonlinearities
that can arise in cardiovascular mechanics due to the convective acceleration term in the
Navier-Stokes equations and/or the complex velocity-pressure relationship in distensible
vessels [45]. One-dimensional SDR models can approximate the effect of vessel wall elas-
ticity on blood flow by adding a constitutive law that relates blood pressure to vessel
cross-sectional area [51]. SDR models are generally only suitable for bulk velocity/pres-
sure analysis in relatively simple geometries (i.e. axisymmetry is a valid assumption).
They are typically unsuitable for complex multi-physics or multi-scale temporal problems
but well-suited for spatial multi-scale problems.
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2.2 Proper Orthogonal Decomposition

SDR methods depend upon being able to apply geometrical simplifications (i.e. axisym-
metry) or analogies with electrical circuit analysis to the vascular flow problem at hand to
simplify the 3D Navier-Stokes equation into something easier and faster to solve. While
SDR methods can be useful in capturing bulk quantities across large spatial scales, the
applicability of these methods to other vascular flow complexities is limited. An alter-
native approach is to solve the expensive 3D Navier-Stokes equations and leverage the
wealth of information contained in the data generated from these simulations to develop
a ROM for the specific problem solved in the first instance. This is often referred to as a
data-driven (or a posteriori) approach, as prior to ROM construction the FOM must be
solved for some instances.

The method used to extract low-dimensional structures from high-dimensional data
is key to any data-driven ROM. The most commonly used approach for this in fluid
dynamics is the Proper Orthogonal Decomposition (POD). POD was first introduced
in fluid dynamics to analyse the structure of experimental turbulent flow and was later
adopted for the purpose of efficient simulation and control of fluid flows [71, 72]. POD
extracts leading-order information from data in the form of orthogonal modes ordered
by their energetic contribution to the data. In fluid flows, these modes typically capture
spatial information contained within the data.

Before performing the POD, a snapshot matrix U is constructed by stacking columns
of spatial data from different timesteps or input parameter configurations in a large matrix.
A mean state derived by averaging over the timesteps or parameter configurations will
often be subtracted from the snapshot matrix prior to performing the decomposition.
Typically, the snapshot matrix will have many more rows than columns. POD is then
performed by taking the Singular Value Decomposition (SVD) of U :

U = ΦΣV ∗, (4)

where Φ is a matrix of the left singular vectors, or POD modes, Σ is a diagonal matrix
containing the singular values, and V ∗ is a matrix of right singular vectors. The success of
POD in model order reduction stems from the observation that, in most complex physical
systems, the meaningful behaviour of a system is captured by a low-dimensional subspace
spanned by the first few POD modes. The singular values quantify the relative importance
of each POD mode based upon its energetic contribution to the snapshot matrix. This
knowledge makes it possible to truncate the system to a certain energy level by discarding
the low-energy POD modes and retaining the high-energy modes.

POD-based ROMs have seen widespread application, including classical fluid dy-
namics problems [73, 74, 75], aerodynamics [76], FSI [77, 78] and blood flow problems
[79, 80, 81, 78, 82, 83, 30]. However, POD alone is not sufficient to build a ROM. POD pro-
vides a low-dimensional representation of the snapshots of the system, but the low-order
representation must be combined with projection or interpolation techniques to build a
ROM that can predict solution fields at new timesteps or input parameter configurations.

2.2.1 POD-Projection

Projection-based methods use the underlying governing equations of a system and POD
modes to construct a ROM. The governing equations are projected onto the POD basis
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to derive a set of reduced equations embedded in this low-dimensional space. A common
approach is to use the Galerkin projection (GP) [84, 85]. POD-GP ROMs are among the
most common ROMs that have been applied to vascular flow problems [30, 82, 83].

A POD-GP ROM can be derived by decomposing the velocity field u(x, t):

u(x, t) ≈
N∑

j=1

aj(t)Φj(x), (5)

where Φj denote the POD modes and aj are the temporal coefficients. The Galerkin
projection of the Navier-Stokes equations is written as

⟨Φi,
∂u

∂t
+ u · ∇u⟩ = −⟨Φi,∇p⟩+ ⟨Φi,

1

Re
∇2u⟩, (6)

where ⟨·, ·⟩ represents the inner product. Following some algebraic manipulation using
the decomposition from equation (5), the POD-GP ROM can be written as [86]:

dai(t)

dt
= Ai +

N∑

j=1

Bijaj(t) +
N∑

j=1

N∑

k=1

Cijkaj(t)ak(t), i = 1, . . . , N. (7)

Ai, Bij and Cijk are tensors determined by the specific form of the governing system. The
functional forms of the coefficient tensors are:

Ai = −
1

Re
⟨∇Φi,∇ū⟩ − ⟨Φi, (ū · ∇)ū⟩

Bij = −⟨Φi, (ū · ∇)Φj⟩ = ⟨Φi, (Φj · ∇)ū−
1

Re
⟨∇Φi,∇Φj⟩

Cijk = −⟨Φi, (Φj · ∇)Φk⟩,

(8)

where ū =
∫ T

0
u(x, t)dt is the time-averaged flow [29]. The double sum in equation (7)

arises due to the nonlinearity of the Navier-Stokes equations and is responsible for the
slower ROM speeds and greater storage demands required in the case of nonlinear systems.

Nonlinearity When applied to problems governed by nonlinear equations, POD-GP
does not fully decouple the ROM equations from the FOM, as the algebraic form of the
ROM equations retains dependence on the FOM [29]. This means that the algebraic
operators for the ROM need to be recomputed at every iteration of the system, which
limits the acceleration that this approach can offer for the target application of vascular
flow. It is possible to overcome this issue by using hyper-reduction techniques, such as the
Discrete Empirical Interpolation Method (DEIM), which approximates the algebraic op-
erators instead of calculating them exactly [87]. Buoso et al. [30] employed this technique
in a POD-GP-DEIM ROM to evaluate coronary blood flow, and found an acceleration by
a factor of 25 for this method compared to the FOM.

Geometric complexity Complex geometric variability can be modelled by POD-
Projection methods, as the POD modes can be made to contain spatial information about
the geometry used to generate the data by mapping them back to a fixed reference geom-
etry. However, applying any kind of ROM to a geometry not included in the training data

9



is typically very challenging. In particular, when looking at vascular flow, the variability
in morphology from one person to the next can be extreme, with entire vascular seg-
ments sometimes missing in certain regions [88]. In some cases, such as when modelling
relatively simple features such as stenosis in reasonably straight vessels, it is possible to
parameterise the geometric variation and include these parameters as input to the ROM,
as in [30]. However, for pathologies such as intracranial aneurysms, where blood flow is
highly dependent on the morphology, the number of parameters needed and the amount
of high-fidelity data required can be prohibitive. Buoso et al. [30] demonstrated the use
of DEIM to accelerate mesh generation by a factor of ten, which could help improve the
overall efficiency of a simulation pipeline studying blood flow in multiple geometries.

Multi-physics Provided the governing equations are known and data can be gener-
ated for the system, POD-Projection techniques are suitable for multi-physics problems.
A common multi-physics application of POD-Projection is to FSI problems [89, 90, 91].
Ballarin and Rozza [92] applied a POD-GP ROM to three idealised 2D FSI problems,
including a parameterised valve configuration. The ROM showed good qualitative agree-
ment across all cases and an acceleration factor of the order of ten.

Multi-scale (time) While POD-Projection ROMs are able to reduce simulation times
significantly, the long-term stability of the ROM for unsteady flow problems is not guar-
anteed [29, 93]. This instability can be related to the truncation of the POD basis, the
violation of boundary conditions, or an inherent lack of numerical stability [86]. Vari-
ous stabilisation techniques can overcome these issues, such as balanced truncation and
balanced POD [29], pressure stabilisation [74], or adding corrective terms to the ROM
equations to increase dissipation [94]. Adding these stabilisation techniques to a ROM
may increase its long-time accuracy, but will likely come at the cost of increased compu-
tational demands [90]. Lassila et al. [29] noted that periodically driven inflow problems
have been shown to demonstrate accurate long-term predictions. Given the quasi-periodic
nature of vascular flow, this may imply that ROM stability is satisfactory in this context.
However, care must be taken to train the ROM with data that is representative of the
entire cardiac cycle. Flow features will exhibit strong time dependence due to the pul-
satile nature of vascular flow [14]. As a result, training a ROM using data from only one
part of the cardiac cycle (e.g. flow acceleration) is unlikely to produce a ROM capable of
accurately predicting the flow at another time (e.g. diastole).

Multi-scale (space) The spatial information is contained within the POD modes when
constructing a POD-Projection ROM. The number of spatial degrees of freedom is the
same as the number of rows in each POD mode, which means that data and computing
requirements for POD ROMs will increase as the mesh size grows. Furthermore, as POD
requires input data from a FOM, using a refined mesh that captures fine flow details could
lead to prohibitive run times when solving the FOM. This means that POD-Projection
ROMs are often unsuitable for problems where large regions of the vasculature need to be
modelled. A possible strategy to mitigate this issue is to couple a POD-Projection ROM
with boundary conditions that are derived from a SDR ROM. Using this technique allows
for the high spatial resolution of the POD-Projection approach in the region of interest
while still accounting for the effects of the proximal and/or distal vasculature using the
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SDR model. This technique has been used in various haemodynamics studies to couple
high-fidelity 3D models to SDR models, but POD-Projection ROMs have not been used
for the 3D model [95, 81, 67].

Other comments While using the underlying governing equations is thought to im-
prove the robustness of projection-based ROMs, it is also a weakness regarding the ease
of implementation. Constructing a projection-based ROM requires explicit use of the un-
derlying numerical implementation of the FOM, which may not be available or straight-
forward to use. In particular, when solving fluid dynamics problems, researchers often
turn to commercial software for which source code is not readily available. This can
hinder incorporating projection-based ROMs into simulation pipelines that are not built
upon open-source software. Equation-free or non-intrusive methods offer an alternative
strategy that mitigates these issues.

2.2.2 POD-Interpolation

An alternative to projection-based ROMs is to use interpolation-based methods. Given
a snapshot matrix U , with SVD given by U = ΦΣV ∗, it is possible to reconstruct each
column of U using:

un(x, t;µ) =
N∑

j=1

anj (t;µ)Φj(x), (9)

where µ are the parameter configurations contained in the snapshots, anj (t;µ) are a set
of time and parameter dependent coefficients, N is the number of truncated POD modes
retained for the ROM and Φj are the POD modes. an are a set of temporal coefficients
that can be considered as a path through the coordinate system given by Φ [76]. The
goal of POD-Interpolation is to predict the trajectory of the system under a new set of
parameter values by using interpolation between the trajectories of previously computed
parameter values. To perform the interpolation step, authors have turned to various
techniques, such as linear interpolation [96], radial basis functions (RBFs) [76, 97, 98],
Taylor series methods, or Smolyak grids [99]. Once calculated, the new set of coefficients
can be multiplied by the retained POD modes to efficiently calculate the solution field of
interest for a new parameter configuration or time point.

Nonlinearity POD-Interpolation is a non-intrusive method, meaning that no modifi-
cation of the underlying FOM numerical code is required. This means that the ROM is
agnostic to the system it is being applied to and, therefore, POD-Interpolation does not
suffer the same drawbacks as POD-Projection when applied to nonlinear systems. This
does not guarantee that results with a POD-Interpolation approach will be accurate for
a nonlinear system, but the speed of the model is not drastically reduced in this scenario
as can be the case when using POD-Projection on nonlinear problems.

Geometric complexity Similarly to POD-Projection methods, POD-Interpolation is
suitable for complex-shaped individual geometries due to the POD modes containing rich
spatial information. However, the success of this approach is also limited when applied
to geometries that were not included in the training data. Girfoglio et al. [69] applied
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POD-Interpolation methods to patient-specific aortic blood flow in the presence of a left
ventricular assist device, but only constructed their ROM for a single patient geometry.
Geometric parameterisation approaches have been applied to POD-Interpolation methods,
but not in the context of vascular flow problems [76].

POD-Interpolation approaches can be applied to sub-domains of the FOM domain
used to generate the snapshots. For example, if high-fidelity data was generated for a
vessel with an aneurysm, it is possible to build a POD-Interpolation ROM only for the
aneurysm rather than the full geometry. This can further accelerate the ROM, as the
number of data and interpolation operations required is reduced. This feature of POD-
Interpolation ROMs gives them an advantage when modelling flow in complex geometries
where dense volumetric meshes are required (e.g. when modelling a flow-diverting stent),
as the amount of data is vastly reduced without affecting the model performance.

Multi-physics POD-Interpolation techniques have been applied infrequently to multi-
physics problems. Xiao et al. [77] used a non-intrusive POD-RBF ROM for one-way and
two-way coupled FSI problems and found acceleration factors of order 105–106 whilst
showing qualitative ROM-FOM agreement. Hajisharifi et al. [98] applied a POD-RBF
ROM to a fluidised bed problem. Compared to the FOM, the POD-RBF ROM provided
an acceleration factor of order 105 and an accuracy of approximately 99% when recon-
structing the time evolution of the Eulerian and Lagrangian fields. They tested local and
global POD approaches and found the local calculation of POD bases produced a more
accurate and efficient ROM.

Multi-scale (time) Similarly to POD-Projection techniques, POD-Interpolation meth-
ods do not have any guarantee of long-term solution stability.

Multi-scale (space) In principle, POD-Interpolation ROMs can be coupled with 0D/1D
models for boundary conditions by including the coupling parameters describing the in-
flow/outflow conditions in the ROM construction. When evaluating the POD-Interpolation
ROM, one can obtain the boundary condition parameter input from the output of the
0D/1D boundary condition model and use this to evaluate the 3D flow field using the
ROM. In this way, POD-Interpolation approaches can be suitable for modelling highly
resolved regions of interest in 3D while conscribing to the effects of the peripheral vas-
culature. This POD-Interpolation-SDR approach is yet to be applied to vascular flow,
but coupling 0D/1D models with 3D computational fluid dynamics (CFD) is common
[95, 81, 67].

Other comments Walton et al. [76] noted that POD-Interpolation, when all POD
modes are retained, is equivalent to performing element-wise interpolation across all
spatio-temporal coordinates. Therefore, the maximum accuracy for a POD-Interpolation
ROM will be bounded by the element-wise interpolation error. For this reason, the accel-
eration offered by POD-Interpolation ROMs should not only be calculated relative to the
high-fidelity CFD model, but also relative to the cost of performing element-wise interpo-
lation of the solution field. Despite this limitation, relative to element-wise interpolation,
POD-Interpolation is still capable of vastly reducing the number of interpolation opera-
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tions required to calculate a new solution and the amount of data that needs to be stored
offline.

Summary POD-Projection and POD-Interpolation techniques have been applied to a
wide range of vascular flow problems, including blood flow in tetralogy of Fallot patients
[80, 81], coronary blood flow [82, 100, 30], aneurysm blood flow [101], aortic blood flow
[102, 69], and FSI problems [92]. Tables 2 and 3 demonstrate that POD-Interpolation
ROM techniques typically accelerate by factors ranging from 102–106, while acceleration
factors for POD-Projection ROMs range from 101–103. Wang et al. [96] compared POD-
GP and POD-Interpolation approaches for steady-state heat conduction problems with
different numbers of parameters. They found that the POD-GP approach was more reli-
able, with better performance as the number of parameters grew. POD-Interpolation may
require more snapshots than POD-GP to achieve similar accuracy, so despite the faster
evaluation times of POD-Interpolation, the overall offline cost to build a ROM of equal
accuracy to the POD-GP ROM may be greater. Xiao et al. [99, 97] performed two studies
comparing POD-GP with various POD-Interpolation techniques (Taylors, Smolyak, RBF
interpolation). In both studies, the interpolation-based ROMs were found to be approx-
imately one order of magnitude faster while maintaining good accuracy relative to the
high-fidelity model.

Table 3: ROM papers comparing POD-Projection and POD-Interpolation approaches for
various applications.

Reference Method Application Accuracy Acceleration
Factor

Xiao et al. [99]
POD-GP

Flow past a cylinder
- 10

POD-I (Taylors) - 260
POD-I (Smolyak) - 390

Xiao et al. [97]
POD-GP

Lock exchange - 12
Flow past a cylinder - 10

POD-I (RBF)
Lock exchange - 496
Flow past a cylinder - 779

Wang et al. [96]
POD-GP

Four-variable heat conduction 99.81% -
Six-variable heat conduction 98.17% -

POD-I
Four-variable heat conduction >99.99% -
Six-variable heat conduction ∼ 50% -

GP, Galerkin projection; POD, proper orthogonal decomposition; POD-I, POD-Interpolation; RBF,
radial basis functions; ROM, reduced order model; .

Conclusion POD-Projection and POD-Interpolation approaches have been applied to
nonlinear, geometrically complex, multi-physics vascular flow problems. Both of these
approaches can be coupled to to 0D/1D models to capture multi-scale phenomena across
large spatial scales in the vasculature. Geometric parameterisations can be incorporated
into POD-based ROMs in an attempt to build models suitable for unseen geometries, but
these models are limited in their generality and in the complexity of geometry they can
model with a reasonable number of parameters. Attempts to build POD-based ROMs that
are entirely general to geometry have seen either large errors [80] or minimal acceleration
[81]. POD-based ROMs are often unsuitable for problems with large time scales, as the
long-term stability of the POD modes is not guaranteed.
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Table 2: Various ROM papers using POD for vascular flow and other selected problems.

Reference Method Application Accuracy Acceleration
Factor

General applications

Xiao et al.
[77]

POD-
Interpolation
(RBF)

One-way FSI: Flow past a cylinder - 727,000
Two-way FSI: Free-falling square - 73,200
FSI: Bending beam - 257,000

Hajisharifi
et al. [98]

Local POD-
Interpolation
(RBF)

Fluidised bed time evolution Eulerian field 98.9%, La-
grangian field 98.4%.

200,000

Parametric fluidised bed 88.8%

Vascular flow applications

McLeod
et al. [80]

Atlas-based
POD

ToF PA flow: case 1 ∼ 70%∗

-
ToF PA flow: case 2 ∼ 80%∗

ToF PA flow: case 3 ∼ 50%∗

ToF PA flow: case 4 ∼ 80%∗

Guibert
et al. [81]

Atlas-based
POD

ToF PA flow: patient 7 ∆p 95.7%, outlet flow
96.0%

∼ 1.33

ToF PA flow: patient 13 ∆p 93.9%, outlet flow
97.7%

Buoso et al.
[30]

POD-GP-
DEIM

FFR calculation in coronary steno-
sis: case 1

FFR 98%, min. p accuracy
70%.

25

FFR calculation in coronary steno-
sis: case 2

FFR 92%, min. p accuracy
90%.

Ballarin
and Rozza
[92]

POD-GP
Fluid problem on moving domain - 30
Stationary FSI of parameterised ide-
alised valve

- 16

Unsteady FSI of parameterised
channel

- 10

Ballarin
et al. [82]

POD-GP Coronary blood flow with varying
physical and geometric parameters

> 99% 100

Ballarin
et al. [100]

POD-GP Coronary blood flow with varying
physical and geometric parameters

> 99% 1,530†; 100†

Han et al.
[101]

POD-GP Aneurysm blood flow with varying
PI

> 95% 2,410

Zainib et al.
[103]

POD-GP Coronary artery bypass grafts > 99% 9‡

Girfoglio
et al. [102]

POD-
Interpolation
(RBF)

Aortic flow with LVAD p 99.5%, WSS 92.3%, ux
91.5%, uy 87.8%, uz 88.6%

240

Girfoglio
et al. [69]

POD-
Interpolation
(RBF)

Aortic flow with LVAD: case 1 (PF
3.45 l/min)

p 99.8%, WSS 95.9%, ux
95.0%, uy 92.2%, uz 94.2%

7,200,000

Aortic flow with LVAD: case 1 (PF
4.35 l/min)

p 99.5%, WSS 92.8%, ux
90.3%, uy 86.5%, uz 90.7%

∗ Maximum error estimated from graph in paper and used to calculate minimum accuracy (which
occurs close to systole).
† Authors report computational savings of 99% (therefore acceleration factor of 100). 1,530 acceler-
ation factor is calculated from simulations times presented for ten patients in Table 2 of [100].
‡ Mean acceleration calculated across three test cases in Table 1 of [103].
DEIM, discrete empirical interpolation method; FFR; fractional flow reserve;FSI, fluid-structure in-
teraction; GP, Galerkin projection; LVAD, left ventricular assist device; p, pressure; ∆p, pressure
drop; PA, pulmonary artery; PI, pulsatility index; POD, proper orthogonal decomposition; RBF,
radial basis functions; ROM, reduced order model; ToF, Tetralogy of Fallot; ux, x-component of
velocity; WSS, wall shear stress.
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2.3 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) was originally developed by Schmid [104] for
analysing spatio-temporal data from simulations and experiments. Modes are extracted
from the data and can then be used to describe the physical mechanisms present in the
data or for dimensionality reduction. For ROM construction, DMD can provide an alter-
native technique to POD for extracting leading-order modes from data. DMD trades the
optimal reconstruction property of POD for physical interpretability, as the eigenvalue
associated to each mode provides quantitative information on the oscillation frequency or
growth/decay rate of the given mode [105].

Both DMD and POD utilise the SVD, but the difference arises in the construction of
the snapshot matrix prior to performing SVD. In POD, the snapshot matrix is given by
U = [u1 . . .uN ]. For DMD, the snapshot matrix is first divided into two submatrices,
U 1 = [u1 . . .uN−1] and U 2 = [u2 . . .uN ]. The goal of DMD is to compute an approx-
imation to the matrix A, where U 2 ≈ AU 1 [106]. To do this, SVD is applied to U 1

and the resulting decomposition is used to calculate the pseudoinverse of U 1, which is
then used to calculate A. Thus, DMD finds a best-fit linear model that approximates
the underlying time dynamics present in the data. In DMD, N will typically be a set of
timesteps for the evolution of the system for one set of parameter values. Using the DMD
model, an initial state can be propagated forward in time at a low cost. DMD ROMs are
non-intrusive by being equation-free and entirely data-driven.

Since its inception, numerous extensions to DMD have been proposed to help tackle
complexities such as nonlinearity, varying characteristic time scales in a given application,
or handling externally driven data sequences. These extensions are thoroughly presented
in [33]. Despite its growing use as a tool for analysing complex spatio-temporal data,
DMD has seen limited application to vascular flow. We will discuss the applicability of
DMD and its extensions to modelling vascular flow.

Nonlinearity DMD aims to find an optimal linear model based on data. The under-
lying system in blood flow problems is nonlinear but the strength of this nonlinearity will
vary depending upon the application. Habibi et al. [105] found that more DMD modes
are required in an aneurysm model than in a stenosis model to achieve a particular recon-
struction accuracy, highlighting the problem-specific nature of the complexity of vascular
flow. In cases where nonlinearity is strong, a large number of measurements of the field of
interest may be required to ensure the nonlinearity is captured in the reduced model. Ex-
tended DMD (EDMD) is an approach designed to help with this issue by using nonlinear
functions of the measurements as input to the DMD algorithm [107, 33].

Geometric complexity Similarly to POD modes, DMD modes contain spatial in-
formation, so this approach is well-suited to constructing ROMs for individual complex
geometries. Habibi et al. [108, 105, 109] have demonstrated the use of DMD to identify
blood flow structures in cerebral aneurysms and stenosis models. However, as with POD,
using DMD to evaluate flow fields in an unseen geometry is very challenging. DMD is
a less well-established technique than POD, so few (if any) attempts have been made to
tackle this problem.
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Multi-physics DMD is suitable for multi-physics problems as the decomposition can
be applied separately to each field. DMD can also be used to identify spectral coherence
between each field in multi-physics applications, which can help to improve understanding
of the problem. So far, the main use of DMD in multi-physics problems is to study FSI.
Rodŕıguez-López et al. [110] used DMD to capture spatio-temporal evolution of flow over
a flexible membrane wing using experimental data. They found that basic DMD could
not reconstruct the fields accurately. Instead, they used high-order DMD (DMDho),
developed by Le Clainche and Vega [111]. Where basic DMD only uses the previous
snapshot, DMDho estimates each snapshot as a linear combination of a number of previous
snapshots, thus improving performance in regimes where the FSI was stronger. This
suggests that as the complexity of the system increases, accurate propagation of the time
dynamics may require more than just the previous snapshot. This is worth considering
when adding complexity (e.g. vessel elasticity, thrombosis models, device interactions) to
vascular flow DMD models.

Multi-scale (time) DMD ROMs are perhaps most beneficial for problems of complex
temporal nature. A DMD ROM is inherently designed to uncover time dynamics in a
system and then propagate the reduced system forwards in time. Vascular flow is often
modelled as periodic, with results from a single cardiac cycle taken to be representative of
the flow for all time. This assumption can break down when autoregulation occurs or when
complex long-term physiological phenomena, such as blood clotting, occur. The period of
a cardiac cycle is roughly one second, whereas processes such as blood clotting can occur
over a period of months. Multi-resolution DMD (DMDmr) provides a way to robustly
separate complex systems into a hierarchy of multi-resolution time components [112].
DMDmr uses iteratively shorter snapshot sampling windows and recursive extraction of
DMD modes from slow to fast time scales, which improves the predictions for short-
time future states. This technique has been further generalised by Dylewsky et al. [113].
Provided with the appropriate data, DMDmr may be able to produce ROMs that can
capture both long- and short-term effects of blood flow. Identifying a ROM for long-term
effects (clotting, plaque build-up, etc.) may be particularly useful in reducing the cost of
vascular models, as current approaches are too expensive to simulate these processes for
the time scales over which they occur [3]. Another approach to handle complex temporal
patterns is multi-stage DMD (mDMD) [105]. mDMD divides a temporal system into
stages and applies DMD to each stage in turn. This allows more DMD modes to be used
during periods with a more complex flow, while reducing the number of modes required
when the flow is simpler, as demonstrated by Habibi et al. [105]. This approach can
improve the efficiency of the ROM and reduce data storage requirements, but does not
extend the original DMD method to more complex problems.

Multi-scale (space) DMD modes are local to wherever the high-fidelity data was
generated, so using this approach for large regions of the vasculature is not possible
without generating enormous amounts of high-fidelity data. However, DMD with control
(DMDc) allows for input controllers to be integrated into the DMD algorithm. Habibi
et al. [105] used inlet velocity as a controller for cardiovascular flow. It may be possible to
extend this approach to account for other flow parameters or boundary conditions, thus
allowing the inexpensive DMD ROM to be coupled to 0D/1D SDR models that account
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for the large-scale flow changes in the vasculature.

Summary Despite DMD being used as a ROM technique, very few papers directly
compare the efficiency of the DMD ROM with the FOM used to generate the training
data. Table 4 highlights a few studies that did evaluate the DMD ROM efficiency. From
this, we can see speed-ups ranging from ∼ 100–102. This acceleration seems small, but
given the non-iterative equation-free nature of DMD ROMs, it is likely that they can
provide more acceleration than this in some scenarios. Furthermore, Lu and Tartakovsky
[114] included offline calculation times when determining the ROM speed-up, so higher
acceleration values would be found if they only compared the online evaluation time with
the FOM.

Only a few papers in the literature use DMD for vascular flow problems. Habibi et al.
[105] used multi-stage DMD with control (mDMDc) to reveal hidden low-dimensionality
in patient-specific blood flow in coronary stenosis and cerebral aneurysms. They found
that mDMDc requires fewer modes than DMD to reconstruct the velocity fields to a given
accuracy, but these modes were not used to construct a ROM. Habibi et al. [109] used
DMD for data assimilation in Womersley flow, 2D idealised aneurysm flow and 3D real
aneurysm flow, but in this instance the DMD analysis was not used to construct a ROM.
Di Labbio and Kadem [115] performed POD and DMD analysis of left ventricular flow
and found that while DMD requires more modes to achieve a particular energy level,
it also preserves global particle advection using fewer modes. Another important point
to consider when using DMD for vascular flow is that due to the periodic nature of the
flow, unstable modes will either decay or grow over time, thus potentially under- and
over-influencing the dynamics as time goes on [115].

Table 4: ROM papers using DMD for various applications.

Reference Method Application Accuracy Acceleration
Factor

General applications

Bourantas et al.
[116]

DMD Tumour ablation treatment simula-
tion

> 99.8% ∼ 13-37

Lu and
Tartakovsky [114]

Lagrangian DMD

1D advection - 0.21∗

1D advection-diffusion - 581∗

1D inviscid Burgers equation - 0.81∗

1D viscous Burgers equation - 993∗

POD-GP

1D advection - 0.15∗

1D advection-diffusion - 84.2∗

1D inviscid Burgers equation - 0.09∗

1D viscous Burgers equation - 69.4∗

Beltrán et al.
[117]

DMDho-
augmented FOM

1D Ginzburg-Landau equation - 6-254†

∗ Authors include include offline calculation times in DMD computational time, hence the ROM
sometimes being slower than the FOM [114].
† Authors define speed-up as ratio of total simulation time to the sum of the time-lengths of the
snapshots computational intervals, which is a particular definition suitable for their method [117].
DMD, dynamic mode decomposition; DMDho, high-order DMD; GP, Galerkin projection; FOM, full-
order model; ROM, reduced order model; POD, proper orthogonal decomposition.
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Conclusion DMD can be used to construct reduced order linear dynamical systems
from data that approximate underlying nonlinear dynamics. DMD ROMs can be inex-
pensively propagated forwards in time or used to extract coherent structures from data.
DMD offers the benefit of having an associated frequency attached to each mode, thus
providing interpretability (i.e. growth/decay/oscillation for each mode). DMD modes
contain spatial information so this approach can be used to model individual complex
geometries. DMD models are typically built with time as the only input parameter, so
parametric DMD ROMs are rare; however, very recent work has begun to investigate
this by adding interpolation into the DMD approach [118]. DMDc offers the potential
to include input controllers into a DMD model, so this approach can be used to include
the effects of, for example, varying inlet flow rate [105]. The input controllers could also
potentially be boundary conditions derived from 0D/1D blood flow models, thus allowing
DMD ROMs to account for larger portions of the vasculature. DMD can be applied to
multi-physics problems, however a high-order DMD approach may be required to cor-
rectly reconstruct the fields of interest [111]. DMD ROMs are not commonly applied to
vascular flow problems to date. A promising application of DMD in vascular flow is to
problems where evaluating the long-term effects is not possible with conventional models.
For these problems, DMD could perhaps be used to construct an efficient ROM for the
time dynamics of long-term blood flow phenomena.

2.4 Other Techniques

There are various other ROM techniques that have not been as widely used as those
discussed previously. Herein, we will discuss two of those techniques, the Reduced Basis
(RB) method, which has seen some application to vascular flow problems, and the Proper
Generalised Decomposition (PGD), which has not been applied to vascular flow modelling.

2.4.1 Reduced Basis

The RB method is usually applied to the fast solution of parameter-dependent problems
[119, 29, 120]. Similarly to POD-based ROMs, the RB method utilises a set of snapshots
of the FOM. Whereas POD uses the SVD to extract an optimal basis from the snapshots,
the RB method is more general and can use various alternative approaches (e.g. Gram-
Schmidt orthonormalisation [121]) to construct a basis spanning a sub-space of typically
much lower dimension than that of the full-order solution manifold. RB methods often
employ a greedy procedure for basis construction, whereby optimal snapshots are com-
puted based upon an a posteriori error estimation [122]. A key advantage of the greedy
approach is that the specific dynamics of the problem at hand guide the sample selection
process [26]. Following basis construction, a Galerkin projection is often applied to build
the ROM, similarly to POD-Projection ROMs.

The RB method has seen some application to vascular flow problems. Manzoni et al.
[123] used this approach with radial basis functions for interpolating the geometric param-
eters to calculate flow fields in 2D parameterised carotid artery bifurcation geometries.
For two test cases of global deformations of the carotid branches and stenosis near the
carotid sinus, they achieve speed-ups of 96 and 88 times, respectively. Lassila et al. [124]
applied the RB method to inverse problems in flow through stenosed arteries and in op-
timal shape design for femoropopliteal bypass grafts, reporting estimated speed-ups of
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30–175 times. While effective in predicting downstream shear rates in the stenosis prob-
lem and in identifying optimal design configurations, the models were only applied to 2D
steady-state problems. Colciago and Deparis [125] combined POD and the RB method,
specifically the greedy algorithm, to build a ROM for a haemodynamics problem, noting
CPU time gains of order 103. The application was to a femoropopliteal bypass problem,
which was modelled using a 3D reduced FSI formulation, highlighting the suitability of the
RB approach to multi-physics applications. The authors note that the greedy enrichment
scheme can favour reducing the error in certain variables, especially when the quantities
in the problem are of different orders of magnitude, so care should be taken in building
an appropriate error estimator for multi-physics applications. Aside from vascular flow
applications, the RB method has been applied to various other nonlinear Navier-Stokes
problems [126, 127], including FSI problems [128]. Coupling the parametric RB method
to boundary conditions derived from 0D vascular models is possible in order to capture
some multi-scale spatial effects.

2.4.2 Proper Generalised Decomposition

PGD generalises POD using separated representations while avoiding the need for any a

priori knowledge about the solution [129]. Not utilising snapshot generation allows PGD
to be applied to previously unsolved problems, which POD, DMD and RB ROMs are
mostly incapable of. For a problem defined in space of dimension D, PGD provides an
approximate solution uN in the separated form

uN(x1, . . . , xD) =
N∑

i=1

F 1

i (x1)× · · · × FD
i (xD). (10)

The PGD approximation is a sum of N functional products involving D functions F j
i (xj)

[130]. PGD solutions are constructed by successive enrichment, where a functional prod-
uct Fn is determined using the functions from the previous n−1 steps. It should be noted
that each enrichment step involves solving a nonlinear problem by means of a suitable
iterative process. In PGD, both the number of terms N and the functions F are unknown
a priori, making PGD an a priori ROM method. In a typical separation of variables, the
coordinates xi could be space and time coordinates, but in PGD additional coordinates
can be included for problem-specific inputs such as boundary conditions or material pa-
rameters. Furthermore, if M nodes are used to discretise each of the coordinate spaces,
the total number of PGD unknowns is N ×M ×D instead of the MD degrees of freedom
found in standard mesh-based discretisations [130]. When the solution field is sufficiently
regular, the number of terms N will be relatively small, highlighting how PGD overcomes
the curse of dimensionality [131].

PGD was initially developed for solving time-dependent nonlinear problems in struc-
tural mechanics [132]. It has since been applied to rheology [133] and the incompressible
Navier-Stokes equations [131]. Chinesta et al. [133] noted a speed-up on the order of 102

when using PGD for a transient rheology problem. Dumon et al. [131] found a speed-up
of ∼ 100 times for a 2D stationary diffusion problem, whereas a speed-up of 5–10 times
was found for various Navier-Stokes problems, the most complex of which was a 2D lid-
driven cavity flow. PGD has also been applied to multi-scale in time applications, where
it is possible to separate the time dimension (1D in nature) into a multi-dimensional
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time space; however in this study the authors are not able to draw conclusions on the
efficiency of the ROM [134]. PGD has also seen application to multi-scale in space and
multi-physics problems, where the authors highlight that the savings due to PGD increase
with problem complexity [135, 136]. Despite its potential usefulness in complex problems
with known/unknown equations, PGD has not seen as widespread use as other reduced
order techniques.

3 Accelerating Simulations with Machine Learning

Machine learning is a branch of artificial intelligence that excels at extracting underlying
patterns in data. The basic building block of many machine learning algorithms is the
neural network, shown in Figure 3. Neural networks consist of a collection of processing
units, called neurons, and a set of directed weighted synaptic connections between the
neurons. The connections between neurons symbolise the passing of information between
neurons, with a fully-connected neural network (FCNN) meaning that all neurons in a
given layer receive information from all neurons in the previous layer and pass information
to all neurons in the subsequent layer. Each neuron processes the information it receives
via some calculations and produces an output. The final layer is referred to as the output
layer, where the final output of the network is produced. The fully-connected neural
network in Figure 3 has two inputs, two hidden layers with four neurons per layer and
one output. The objective of the network is to approximate a mapping between the input
and output variables, given data to learn from. In vascular flow modelling, the inputs
may be variables like space, time or Reynolds number and the outputs may be velocity,
pressure or other variables of interest.
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Figure 3: Selected neural network designs that can be used for simulation acceleration.
(a) A fully-connected neural network with two inputs, two hidden layers with four neurons
per layer and one output. (b) A fully-connected autoencoder, consisting of an encoder,
a latent space and a decoder. (c) A physics-informed neural network, where physical
constraints based on partial differential equations (PDEs) and boundary conditions (BCs)
are included in the loss function of the network. x is position, t is time, u is velocity, p is
pressure, superscript D or B means data or boundary point, Fi are N residual equations.

Each neuron is characterised by three functions: the propagation function, the activa-
tion function and the output function. The propagation function converts the vectorial
input from the previous layer’s outputs into a scalar input. The activation function quan-
tifies the extent to which a particular neuron is active by applying a chosen function to the
net input, such as the hyperbolic tangent or rectified linear unit functions [137]. Including
activation functions for several sequential layers allows the deep network to approximate
nonlinear mappings from inputs to outputs. The output function calculates the scalar
output of a neuron based upon its activation state. Each neuron has a trainable weight
associated to it, and each layer often has a trainable bias. These weights and biases are
the network parameters that are optimised through training.

For a supervised learning problem, training data consists of a set of inputs with known
outputs. During the training procedure, input data is passed through the network to give
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an output that is compared to the ground truth values for the output. A loss function
is used to quantify the discrepancy between the network output and the ground truth
output. The parameters associated to the network are optimised, typically through back-
propagation and gradient descent algorithms, in order to minimise the loss [138]. Once
the network has been trained to accurately match predictions for the training data set, it
can be used for input data where ground truth output values are unknown. Typically, the
accuracy of the network will be assessed by evaluating its output on a data set that was not
used in training, or through procedures such as cross-validation. A trained neural network
can be considered to approximate a function that maps the input data to the output data.
Hornik et al. [139] have demonstrated the approximation power of sufficiently large and
deep networks. Variations on basic neural networks include autoencoders, convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and physics-informed neural
networks (PINNs), amongst others [140].

Machine learning and deep learning have both employed neural networks to great effect
in various classification and regression tasks in fields such as computer vision and natural
language processing [141, 142]. Common across all learning-based strategies is the utilisa-
tion of data and the framework of an expensive up-front training stage preceding a cheap
inference stage when evaluating the model for new data. In this way, machine learning
approaches bear resemblance to ROM methods. A benefit of machine learning compared
to ROMs is that the operations used in machine learning are highly parallelisable, which
allows them to be trained and tested using highly parallel computing hardware, such as
Graphics Processing Units (GPUs). This can reduce the time taken for training and in-
ference, which is driving the growing interest in using machine learning-based simulation
methods for acceleration.

Machine learning can be used in conjunction with ROMs, where the dimensionality
reduction inherent to the ROM provides acceleration and machine learning is used to im-
prove or replace some aspect of the ROM. For example, when constructing an interpolative
ROM, such as in the POD-Interpolation method, using a neural network for interpolation
can produce a ROM capable of outperforming POD-GP ROMs both in terms of accelera-
tion and accuracy for certain applications [143, 144, 145]. Alternatively, machine learning
can be used in place of conventional simulation methods to directly infer solutions fields
or other quantities of interest from inputs such as medical images and point clouds of
spatio-temporal coordinates [37, 36]. In this instance, the machine learning model it-
self provides acceleration relative to the full-order model, either through reduction of the
dimensionality of the problem or through exploitation of parallel computing hardware.

3.1 Machine Learning Reduced Order Models

Machine Learning-Augmented ROMs Various attempts have been made to aug-
ment ROMs with machine learning. Neural networks (NNs) are adept at interpolation, so
using them in POD-Interpolation ROMs is a natural choice. Hesthaven and Ubbiali [143]
were among the first to apply a POD-NN ROM to parameterised steady-state PDEs (the
Poisson equation and lid-driven cavity problems). In this model, the network approx-
imates a mapping from the input parameter vector (including, e.g. material/geometry
parameters) to the ROM coefficients. The POD-NN approach offers similar accuracy to
POD-GP, while reducing computation time by two to three orders of magnitude. Wang
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et al. [146] extended the work by Hesthaven and Ubbiali [143] to time-dependent PDEs
and applied it to a quasi-1D PDE problem. In this case, the time coordinate is included
as an additional input to the neural network, allowing evaluation of the ROM at different
timesteps. For the simple test problem, the authors found ROM accuracy of ∼ 99% and
an acceleration factor of order 107 relative to the FOM. San et al. [144] applied the POD-
NN approach to the viscous Burgers equation to model time-dependent nonlinear wave
propagation. San et al. [144] used a different network design to Hesthaven and Ubbiali
[143] and Wang et al. [146], with San et al. [144] building a network that maps from
the ROM coefficients at time tn and any controllable input parameters (e.g. Reynolds
number) to an output that characterises the ROM coefficients at time tn+1. Within this
framework, they present two variations: (i) a sequential network, where the outputs are
the ROM coefficients, and (ii) a residual network, where the outputs are the residual be-
tween the ROM coefficients of tn+1 and tn. Of these two approaches, the residual network
is found to be superior and both approaches outperform POD-GP for the Burgers equa-
tion application. Balzotti et al. [147] applied the POD-NN approach to optimal control of
steady-state flow in a patient-specific coronary artery bypass graft. The Reynolds num-
ber parameterised the inflow and was the single input parameter for which the ROM was
constructed. The objective of the optimal control algorithm was to identify the normal
stress that has to be imposed at the outlet to ensure a satisfactory agreement between
the computed and clinically measured velocity fields. Online evaluation of the ROM took
approximately 10−4 seconds, which is a speed-up of order 106 compared to the FOM.
The POD-NN model was comparably accurate to a POD-GP model applied to the same
problem, but the POD-NN ROM was four orders of magnitude faster [103].

It is also possible to augment POD-GP ROMs with machine learning. Two challenges
in POD-GP ROMs are: (i) the potential lack of long-term stability and accuracy, and (ii)
the lack of complete decoupling for nonlinear governing equation projection onto the re-
duced basis and the subsequent high cost of evaluating these nonlinear reduced operators.
To address the first challenge, Wang et al. [148] used a long short-term memory (LSTM)
network, a type of recurrent neural network designed to operate on sequential data. The
POD coefficients are fed into the LSTM units and the physical/geometric parameters are
fed into the initial hidden state of the LSTM. When applied to various problems (3D
Stokes flow, 1D Kuramoto-Sivashinsky equation, and 2D Rayleigh-Bernard convection),
the LSTM-POD-GP ROM is found to improve stability and accuracy compared to POD-
GP for nonlinear problems. Furthermore, the LSTM ROM facilitates accurate predictions
beyond the time interval of the training data. To address the second challenge, Gao et al.
[149] proposed a non-intrusive approach to hyper-reduction that approximates the ROM
velocity function using a FCNN. The FCNN-enhanced POD-GP ROM was applied to
two nonlinear PDEs (1D viscous Burgers equation and 2D flame model) and found to
be accurate to approximately 95%. The ROM was also shown to be more stable and
accurate for the test problems than POD-GP with alternative hyper-reduction methods
(DEIM), in the limit of a small basis. Another approach to improve accuracy is to use
machine learning to adapt the ROM to a given input. Daniel et al. [150] used a deep
classification network to recommend a suitable local POD-GP ROM from a dictionary
of possible ROMs. This approach could be used in conjunction with small local ROMs,
which have been shown to outperform a single global ROM in terms of accuracy and
acceleration [151, 98].
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Machine Learning-Based ROMs Dimensionality reduction is a crucial step in ROM
construction and is commonly performed using techniques such as POD or DMD. Autoen-
coders (Figure 3) are neural networks used to compress and decompress high-dimensional
data and are thus being increasingly used in the dimensionality reduction step in reduced
models. Autoencoders can provide nonlinear data embedding, whereas POD and DMD
offer only a linear reduced basis [34, 35]. This could allow autoencoders to compress
complex nonlinear data more accurately than POD or DMD. Another approach that can
offer nonlinear dimensionality reduction is manifold learning. Csala et al. [152] compared
four manifold learning (locally linear embedding, kernel principal component analysis,
Laplacian eigenmaps, isometric mapping) and two ML-based (autoencoder, mode decom-
posing autoencoder) nonlinear dimensionality reduction methods to principal component
analysis (PCA). They found that all six of the nonlinear dimensionality reduction meth-
ods achieved lower reconstruction errors than PCA for spatial reduction, but that only
the autoencoder-based reduction was definitively superior for temporal reduction. Maulik
et al. [34] used a ROM based on a convolutional autoencoder (CAE) and an LSTM to
model the viscous Burgers equation and the inviscid shallow-water equations. In these
advection-dominated systems, the deep learning (DL)-based ROM outperforms the POD-
GP method. The CAE-LSTM approach is 14 times faster than the POD-GP method,
producing errors of the same magnitude. Pant et al. [35] used a 3D CAE to compress
simulation data and advance the solution in time without solving the Navier-Stokes equa-
tions in an iterative fashion. Using a 3D CAE allows for features to be extracted in both
spatial and temporal axes, which mitigates the need for an additional network (e.g. an
LSTM) for time propagation. Using this approach, the authors reduce computational
Brun times by two orders of magnitude compared to traditional CFD solvers.

Fresca et al. [153] constructed a POD-DL-ROM that uses POD to reduce the di-
mensionality of the training data, improve training efficiency, and reduce complexity.
Compared to previous work by the same authors, enhancing with POD reduces the DL-
ROM training time from 15 hours to 24 minutes. The DL-ROM itself uses CAEs and
feedforward neural networks trained on the POD-reduced solution vectors. Fresca and
Manzoni [145] used the same approach for a series of additional applications including an
unsteady advection-diffusion-reaction system, a coupled PDE-ODE Monodomain/Aliev-
Panfilov system, a nonlinear elastodynamics problem and the unsteady Navier-Stokes
equations. For the most pertinent example, the Navier-Stokes problem, the acceleration
factor was of the order 105 compared to the FOM while achieving a comparable accuracy
to the more expensive non-enhanced DL-ROM. Fresca and Manzoni [154] used the same
POD-DL-ROM for flow around a cylinder, FSI between an elastic beam and a laminar
flow, and blood flow in a cerebral aneurysm. High levels of accuracy are qualitatively dis-
played for each application. Acceleration factors for all applications are of the order 105.
Essentially, the approach of Fresca et al. [153], Fresca and Manzoni [154, 145] reduces the
size of the data passed through the network and the amount of training parameters re-
quired, thus improving the efficiency of training and testing while preserving the precision
of the DL-ROM without POD enhancement.

Conclusion Machine learning (ML) has a lot to offer the ROM field, as demonstrated
by the various studies in Table 5 that used ML and ROMs in conjunction. ML can be used
to provide closure in projection-based ROMs, improve interpolation in POD-Interpolation
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ROMs, improve long-time ROM predictions, or offer alternative dimensionality reduction
algorithms that are essential in almost all ROMs. ML-ROMs are able to address the
weaknesses that hinder various reduced order methods, such as poor performance for
nonlinear problems, lack of stability or lack of generality. As a result, ML-ROMs will
typically be suitable for a wider array of vascular flow problems than the traditional ROM
techniques from which they are derived. Balzotti et al. [147] demonstrated the superior
acceleration capacity of a POD-NN ROM compared to a POD-GP ROM for a vascular
flow problem due to the POD-NN approach being better-suited for the nonlinear nature
of the problem. Similarly, Csala et al. [152] demonstrated the superior spatial reduction
capability of nonlinear ML-based dimensionality reduction techniques when applied to
aneurysm blood flow, which suggests that more accurate models may be possible using
ML-based reduction techniques. Fresca and Manzoni [154] conversely used traditional
dimensionality reduction techniques (POD) in conjunction with an ML-based ROM and
achieved high levels of accuracy and acceleration for aneurysm blood flow. While not
for vasclar flow applications, Wang et al. [148] and Gao et al. [149] augmented POD-
GP ROMs with machine learning and achieved improved stability and accuracy. These
findings demonstrate that ML-ROMs are a compelling option for vascular flow problems.
In particular, ML-ROMs can offer methods suitable for vascular flow problems that are
nonlinear, geometrically complex, multi-physics and multi-scale in time.
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Table 5: Machine learning ROM studies for various applications.

Reference Method Application Comments on accuracy and/or acceler-
ation

ML-augmented ROMs

Hesthaven
and Ubbiali
[143]

POD-NN Parameterised steady-state
PDEs (Poisson equation, LDC).

POD-NN achieves similar accuracy to POD-
GP while reducing CPU time by 2-3 orders
of magnitude.

Wang et al.
[146]

POD-NN Parameterised unsteady PDE
(quasi-1D CVRC flow).

Accuracy of ∼ 99% and acceleration factor of
107.

San et al.
[144]

POD-NN
(SN and
RN)

Viscous Burgers equation (time-
dependent nonlinear wave prop-
agation).

POD-NN approach outperforms POD-GP in
interpolation and extrapolation and is 102

times faster.

Balzotti
et al. [147]

POD-NN Steady-state flow in a coronary
artery bypass graft.

POD-NN achieves similar accuracy to POD-
GP and speed-up of 106 and 104 relative to
FOM and POD-GP, respectively.

Wang et al.
[148]

LSTM-
enhanced
POD-GP

3D Stokes flow, 1D Kuramoto-
Sivashinsky equation, 2D
Rayleigh-Bernard convection.

ROM improves stability and accuracy of
POD-GP for nonlinear problems and allows
time predictions beyond training data.

Gao et al.
[149]

FCNN-
enhanced
POD-GP

Nonlinear PDEs (1D viscous
Burgers equation and 2D flame
model).

ROM accuracy is ∼ 95%. ROM is more sta-
ble and accurate than POD-GP with DEIM
(in the small basis limit).

ML-based ROMs

Maulik
et al. [34]

CAE-
LSTM

Viscous Burgers equation and
shallow water equations.

CAE-LSTM has similar accuracy to POD-
GP and is ∼ 14 times faster.

Pant et al.
[35]

3D CAE 2D flow (past a circular/square
cylinder, over a plate, in a chan-
nel) and SST data.

Reconstruction accuracy is good and model
can predict future timesteps accurately. Ac-
celeration factor of 102.

Fresca et al.
[153]

POD-
enhanced
CAE NN

Left ventricular cardiac electro-
physiology.

POD-enhancement reduces training time
from 15 hrs to 24 mins.

Fresca and
Manzoni
[154]

POD-
enhanced
CAE NN

Flow around cylinder, FSI of
beam and laminar flow, cerebral
aneurysm flow.

High levels of accuracy are displayed and ac-
celeration factors are of order 105 for all ap-
plications.

Fresca and
Manzoni
[145]

POD-
enhanced
CAE NN

Flow past a cylinder. POD-enhanced ROM has similar accuracy to
non-enhanced DL-ROM. Acceleration factor
is 105.

CAE, convolutional autoencoder; CPU, central processing unit; CVRC, continuously variable reso-
nance combustor; DEIM, Discrete Empirical Interpolation Method; DL, deep learning; FCNN, fully-
connected NN; FOM, full-order model; GP, Galerkin projection; LDC, lid-driven cavity; LSTM, long
short-term memory; ML, machine learning; NN, neural network; PDE, partial differential equation;
POD, proper orthogonal decomposition; RN, residual network; ROM, reduced order model; SN, se-
quential network; SST, sea surface temperature.

3.2 Physics-Informed Machine Learning Simulation

Machine learning can be used to construct fast surrogate models for vascular flow prob-
lems that directly predict haemodynamic quantities of interest, as in work by Itu et al.
[37], Rutkowski et al. [155] and Liang et al. [156] (discussed further in section 3.3.1). A
criticism of this approach is that the models do not guarantee the underlying physics in
the problem will be respected. This can be somewhat resolved by incorporating known
physics into the learning procedure [157]. The most widely used technique to achieve this
are physics-informed neural networks (PINNs), which can combine data acquired from
simulations or experiments with knowledge of the underlying governing equations and
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boundary conditions [36, 158]. In contrast to most machine learning simulation tech-
niques, PINNs can be used in the absence of data. PINNs without training data may
be less accurate than with data, but data-free PINNs offer a direct alternative to stan-
dard numerical techniques [159]. While PINNs were initially developed for solution and
discovery of PDEs in forward and inverse scenarios, the development of data-free and
parametric PINNs have since seen them applied to simulation acceleration. PINNs have
been demonstrated to vastly reduce simulation times, particularly in the context of para-
metric design optimisation problems, hence our focus on this technique in this review
[160, 161].

A typical PINN is shown in Figure 3. The PINN consists of a network with simulation
parameters (e.g. space/time coordinates) as input and solution fields (e.g. velocity/-
pressure) as output. Fully-connected neural networks are typically used for PINNs, but
various other approaches have demonstrated superior results for certain applications [162].
For the chosen architecture, automatic differentiation is typically used to differentiate net-
work outputs with respect to its inputs, thus acquiring derivatives such as ux, px, ut, etc.,
which can be combined to formulate governing equation residuals. For the incompressible
Newtonian Navier-Stokes equations, the residual of the x-momentum equation will take
the form:

F1 = ut + uux + vuy + wuz + px −
1

Re
(uxx + uyy + uzz) , (11)

where u = (u, v, w) is velocity, p is pressure and Re is the Reynolds number. Reduced
Navier-Stokes equations (e.g. equation (3) for 1D blood flow) can also be used as residuals
[163]. The residuals are included in the loss function for the network, which encourages the
network to learn mappings that minimise the residuals and therefore satisfy the underlying
governing equations. It is possible to enforce additional loss constraints that penalise the
network for non-satisfaction of boundary conditions, such as the no-slip condition that is
often applied on blood vessel walls. Alternatively, boundary conditions can be imposed as
hard constraints through the network architecture [164]. Once trained, the PINN is able
to infer solution fields that satisfy data, governing equations, and boundary conditions.

PINNs are designed to improve the efficiency of non-informed networks through re-
ducing amount of data required and helping the network train efficiently by discarding
non-physical mappings. A further benefit of PINNs is their potential to be used as an
alternative to traditional numerical solvers. If data is unavailable, PINNs can be trained
on PDE residual points and boundary conditions alone, mirroring traditional numerical
techniques’ procedure. However, the input coordinates need only be a point cloud rather
than the volumetric mesh required for typical numerical solvers. Furthermore, unlike tra-
ditional numerical solvers, when a problem is ill-posed with incomplete or noisy boundary
conditions, PINNs are still a viable option [165]. A final benefit of PINNs is that they are
well-suited to solving inverse problems as well as forward problems, whereas traditional
numerical techniques are usually only suitable for forward problems.

Once trained, a PINN can quickly infer physics-respecting solution fields given spatio-
temporal inputs, making them a promising acceleration technique. However, generalising
a PINN for additional input parameters can decrease accuracy and increase training time,
so the fast inference speeds must be balanced against training cost and accuracy. Despite
their promise, PINNs are a relatively new technique for simulation and the application of
PINNs towards acceleration and vascular flow is in its infancy. We aim to address three
questions in order to determine the usefulness of PINNs for vascular flow acceleration: (i)
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How suitable are PINNs for simulation acceleration? (ii) How fast are PINNs relative to
traditional numerical techniques? (iii) Are PINNs suited to the complexities of vascular
flow acceleration?

Table 6: Various PINN papers that mention the acceleration capability of their method.

Reference Method Application Comments on accuracy and/or acceleration

General applications

Hennigh
et al. [161]

PINN Heat sink design optimisa-
tion problem.

Total compute time is reduced by ∼45,000 times
and ∼150,000 times compared to commercial and
OpenFOAM solvers, respectively.

Arthurs
and King
[160]

PINNs
with active
training

Parametric Navier-Stokes
(two parameters).

PINN parameter sweep takes 7.6 s compared to 54
minutes for FEM. 400 times faster.

Cardiovascular applications

Gao et al.
[149]

PI-CNN SR of parameterised flow
fields for idealised vascular
problems.

Model accurately refines spatial resolution by 400
times and provides speed-up of 3364 times relative
to CFD model.

Buoso et al.
[166]

PINNs with
RBF reduc-
tion

Left-ventricular biophysi-
cal modelling.

30 times faster than FEM including training (for
evaluating only one condition). Accuracy for ejec-
tion fraction 97%, peak SBP 93%, stroke work 96%,
myocardial strains 86%.

Sun et al.
[159]

PINNs Parametric flow in 2D
idealised stenotic and
aneurysmal vessels.

PINN evaluation is 2000 times faster than CFD
model, but training takes hundreds of times longer
than individual CFD simulations.

CFD, computational fluid dynamics; FEM, finite element model; PI-CNN, physics-informed convo-
lutional neural network; PINN, physics-informed neural network; RBF, radial basis functions; SBP,
systolic blood pressure; SR, super-resolution.

How suitable are PINNs for acceleration? Developing and using a PINN model
often consists of three stages: (i) Generating or acquiring data from simulations or ex-
periments (ii) Training the network whilst incorporating known physics and boundary
conditions (iii) Using the model to infer solutions for new inputs. In inference mode,
PINNs are usually faster than a traditional numerical model applied to the same prob-
lem. However, if the PINN relies on data generated by the numerical model and requires
a potentially expensive training procedure prior to use, then the question of how to use
PINNs for acceleration remains. In order to prove a useful and powerful tool for simula-
tion acceleration, PINNs will either need to be able to generalise to unseen problems in a
similar fashion to how parametric ROMs operate, or they will need to have a sufficiently
small training time such that training a new PINN model is more efficient than solving a
traditional numerical model.

Generalising a PINN model can require adding additional parameters into the training
procedure. These parameters could describe geometry, boundary conditions, or material
properties and there are various ways to incorporate this information into the PINN. The
most straightforward approach is to include additional network input parameters. Arthurs
and King [160] introduced two input parameters describing the peak inflow rate and diam-
eter in a pipe flow problem. Sun et al. [159] similarly included parameters that describe
geometry and viscosity as input to their PINN. When parameterising the network in this
manner, an active learning strategy can reduce the cost of up-front data generation. This
consists of refining the training data with additional finite element model (FEM) samples
in regions of the parameter space where the PINN prediction is poor. Costabal et al.
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[167] used a positional encoding mechanism for PINNs that creates an input space for
the network representing the geometry of a given object, improving PINN performance
in complex geometries. However, for a Poisson forward problem in a simple domain, the
positional encoding method was not observed to outperform traditional PINNs. de Avila
Belbute-Peres et al. [168] developed a hyper-PINN approach, where an additional network
is trained on sets of model input parameters (e.g. geometric parameters, boundary condi-
tions, material properties) and network weights from previously trained PINN models for
each simulation configuration. This precursor network learns how to map from the input
parameter space to the weights needed for the PINN model for that particular parameter
configuration. For a new parameter set, the precursor produces the weights needed to
directly use the PINN in inference mode, thus bypassing the need to train a new PINN
model entirely.

Alternatively to generalising PINNs, reducing training time sufficiently can mean that
training a new PINN for each problem is still a tractable approach. Kissas et al. [163]
suggested transfer learning to solve this problem. Transfer learning consists of intialising
new PINN models with the parameters from a model previously trained on a similar
problem, which can drastically reduce training time. This is similar to providing an
accurate initial guess in iterative numerical methods. A transfer learning approach could
allow for a new PINN to be trained for each new simulation configuration (new geometry,
boundary conditions, etc.) while still providing an acceleration relative to solving the
problem with traditional numerical techniques. For this approach to make sense, the
new PINN must be trained without the use of training data from solving the numerical
model. To this end, Desai et al. [169] proposed a one-shot transfer learning approach for
PINNs, which consists of training for a selection of PDEs and then reusing some of the
trained layers for an unseen PDE, thereby reducing training time. Another approach to
accelerate training is to incorporate a hyper-parameter into the activation functions in
the PINN [170]. The hyper-parameter dynamically changes the loss function topology
throughout training and is shown to accelerate PINN convergence and increase accuracy.
Residual-based adaptive refinement can also accelerate training [171, 172]. This approach
aims to increase the number of network training points in regions where the PDE residual
is inaccurate throughout training, thus accelerating convergence.

How fast are PINNs? Once the PINN training time is sufficiently reduced, or the
network is generalised appropriately, the question of how fast PINNs are relative to tradi-
tional numerical techniques remains. Table 6 collates the literature on PINNs where the
authors commented on the acceleration offered by their approach.

Arthurs and King [160] and Hennigh et al. [161] conducted design optimisation studies
using PINNs. Arthurs and King [160] developed a parametric PINN model for Navier-
Stokes applications and ran a parameter sweep experiment to identify the value of the
geometric input parameter that would lead to a target pressure drop. This is a typical
many-query problem, where repeated model evaluations are required to identify some
kind of threshold in the output variable. The trained PINN required only 7.6 seconds to
perform the sweep over 81 parameter points, whereas the same sweep using FEM would
have taken 400 times longer. Scaling up the number of parameter queries to 1 million
only increases the run time to 11.1 seconds, highlighting the scalability of the PINN
due to its fast inference speed. However, it should be noted that the PINN evaluation
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was only performed at two spatial points, as this is all that is required to calculate
the pressure drop. This demonstrates a benefit of PINNs, in that they can be used to
query specific regions of interest, but the FEM model inherently evaluates the entire
spatial field, so directly comparing model efficiency is not fair in this case. Hennigh et al.
[161] presented NVIDIA SimNet, an AI-accelerated multi-physics simulation framework
based on PINNs. They studied a design optimisation problem where SimNet is able to
reduce total compute time by approximately 45,000 times compared to a commercial solver
and 150,000 times compared to OpenFOAM. Gao et al. [173] trained physics-informed
CNNs for super-resolution of low resolution flow field inputs using only knowledge of the
conservation laws and boundary conditions. They applied this approach to 2D flow in a
vascular domain and parametric super-resolution for internal flow with a parameterised
inlet velocity profile. The model accurately refines the spatial resolution by 400 times for
the flow fields with any new inlet BCs sampled in the 20-dimensional parameter space.
The speed-up time for the trained model compared to the highly resolved CFD model is
3,364 times. Sun et al. [159] used data-free parametric PINNs for flow in 2D idealised
stenotic and aneurysmal vessels. They achieved accurate results in all test problems
with mean test errors of order 10−4–10−8 depending upon the problem and variable of
interest. The authors noted that in the data-free PINN regime, implementing boundary
and initial conditions with hard constraints improved performance when compared to the
more widely used soft constraints. The trained PINN can be evaluated in 0.02 seconds,
whereas the CFD model takes 40 seconds, yielding a speed-up of 2,000 times. However,
training the PINN took hundreds of times longer than an individual CFD simulation.
The PINN will therefore only reduce total computational cost in scenarios where a large
number of model evaluations are required, such as uncertainty quantification or design
optimisation. Sun et al. [159] suggested that the speed-up offered by their approach will
be increasingly advantageous when more complex applications are considered.

PINNs for vascular flow acceleration PINNs are inherently suited to nonlinear
problems due to the nonlinear function approximating capacity of the network. In fact,
the earliest applications of PINNs include nonlinear PDEs, such as the Navier-Stokes and
Schrödinger equations [36]. Since then, PINNs have been successfully applied to various
cardiovascular fluid dynamics problems, all of which are governed by the nonlinear Navier-
Stokes equations [163, 174, 175, 176, 177, 162, 178].

Individual complex geometries are relatively straightforward to handle with PINNs.
Instead of the usual volumetric mesh required for traditional numerical techniques, PINNs
require only spatio-temporal coordinates as input and do not require connectivity between
these points. Volumetric meshes may still be required in order to generate simulation data
to train the PINN, but if the PINN is used to generalise across geometries, then users
can forego the time-consuming meshing step for some of the geometries [159]. Raissi
et al. [179] used PINNs to infer flow fields from concentration fields in an image-derived
3D aneurysm model and Sun et al. [159] applied PINNs with hard boundary condition
enforcement to model flow in idealised stenosis and aneurysm models. This highlights
two geometrically relevant applications of PINNs.

PINNs can also tackle multi-physics problems. Figure 3 shows a single-physics PINN,
but additional physics can be added by using a second network that maps from the same
inputs as the first network (space and time) to different outputs (e.g. displacements
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and stresses for solid mechanics). It is therefore possible to calculate all the required
derivatives in order to impose the governing equations and boundary conditions from
each aspect of the multi-physics problem. This approach has been applied to an inverse
Navier-Stokes and Cahn-Hilliard blood flow-thrombosis problem [177], multi-phase heat
transfer [180] and FSI [181].

Basic PINNs are not commonly applied to extrapolating the associated PDE in time.
Kim et al. [182] proposed a Dynamic Pulling Method (DPM) to overcome this issue. DPM
manipulates the PINN’s gradients to ensure the PDE’s residual loss term continuously
decreases during training. This is shown to improve extrapolation in time for various
test problems. Basic PINNs are also not well-suited to problems spanning very large
spatial regions. This issue with large spatial and temporal domains is that the domain
can become arbitrarily large, leading to prohibitive training times. The primary approach
to tackling these problems is incorporating domain decomposition into the PINN frame-
work. Decomposing the large spatio-temporal domain into smaller sub-domains allows
for sub-PINNs to be trained in each sub-domain. This improves training efficiency as
well as reducing error propagation, allowing for domain-specific hyper-parameter tuning,
increasing representation capacity and facilitating parallelisation [183].

Conservative PINNs (cPINNs), extended PINNs (XPINNs) and parallel-in-time PINNS
(PPINNs) are three possible domain decomposition approaches that can tailor PINNS
for multi-scale problems. cPINNs enforce conservation properties at spatial sub-domain
boundaries using flux continuity and solution averaging across the interfaces [183]. XPINN
is an extension to cPINN that applies to any type of PDE, not only conservation laws, and
allows for decompositions in time and space [184]. Shukla et al. [185] compared cPINN
and XPINN for a series of forward problems and found that for space decomposition,
cPINNs are more efficient in terms of communication cost but that XPINNs are more
flexible as they can handle time decomposition, a wider array of PDEs and arbitrarily
shaped sub-domains. PPINNs are an extension to PINNs that mitigate the issue of long-
time integration through time-domain decomposition and using a coarse-grained solver
for long-time supervision [186]. The coarse-grain solver provides initial conditions for the
PPINN in each time sub-domain. The coarse-grain solver needs be fast enough to solve
the long-time PDE with some degree of accuracy cheaply, hence reduced-order or simpli-
fied models are viable options. Meng et al. [186] stated that the PPINN method could be
extended to spatial domain decomposition, with a coarse-grained solver used to estimate
the global solution and then a series of PINNs applied in parallel to spatial subdomains,
thus increasing training efficiency relative to applying one PINN for the entire domain.

Conclusion PINNs offer a mixture of numerical mechanistic models and data-driven
phenomenological models. Training a PINN model can be expensive compared to run-
ning a high-fidelity numerical model, so they are most useful for acceleration when a
once-trained PINN can be used for numerous parameter or geometry instances. Various
methods have been studied to parameterise PINNs [159, 160, 167, 168]. An alternative
approach is to use PINNs in conjunction with transfer learning techniques to quickly
retrain the model for a new system instance [169]. Employing techniques such as these
can make PINNs a viable option for accelerating vascular flow simulations, particularly
as PINNs (and extensions thereof) are well-suited to handling nonlinear, geometrically
complex, multi-physics and multi-scale modelling problems.
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3.3 Other Techniques

Given the relatively recent application of machine learning to simulation and the continued
growth of the machine learning field, there are numerous other machine learning methods
that have been or can potentially be applied to vascular flow acceleration. Reviewing them
all in detail is beyond the scope of this study, and in most instances, there is insufficient
relevant literature to do so, but we will briefly discuss several of these approaches and
highlight how they may prove useful in the future for our target application.

Table 7: Various machine learning simulation papers applied to vascular flow problems
that mention the acceleration capability of their method.

Reference Method Application Comments on accuracy and/or ac-
celeration

General applications

Cai et al.
[187]

DeepONet Steady-state electroconvection. Accuracy > 99%. Acceleration factor ∼
103.

Mao et al.
[188]

DeepONet Coupled flow and finite-rate chem-
istry.

MSE is ∼ 10−5. Acceleration factor ∼
105.

Cardiovascular applications

Itu et al.
[37]

FCNN FFR prediction from coronary
artery anatomy.

83.2% diagnostic accuracy for ischaemia.
Acceleration factor > 80.

Liang et al.
[156]

AE and
FCNN

Steady-state haemodynamics pre-
diction in thoracic aorta.

Velocity accuracy, 98.0%. Pressure accu-
racy, 98.6%. Acceleration factor ∼ 900.

Morales
et al. [189]

FCNN ECAP prediction from LAA
geometry.

Mean accuracy, 95.3%. Acceleration fac-
tor 144∗.

FCNN with
PCA

Mean accuracy, 94.8%. Acceleration fac-
tor 7,200∗.

Ferdian
et al. [190]

Residual
CNN

Super-resolution of aortic 4D flow
MRI.

Flow rate prediction accuracy > 95%.
Prediction time 40–90 seconds.

Gharleghi
et al. [191]

U-Net-style
CNN

Transient WSS prediction in left
main bifurcation of coronary arter-
ies.

Accuracy > 95%. Prediction time of 0.2
and 0.001 seconds with CPU and GPU,
respectively‡.

Li et al. [38] Point-Net Haemodynamics prediction before
and after coronary artery bypass
surgery.

Prediction accuracy ∼ 90%. Acceleration
factor 600.

Li et al. [39] Point-Net Haemodynamics prediction before
and after aneurysm treatment by
FDS.

Prediction accuracy > 87%. Acceleration
factor 1,800.

Yin et al.
[192]

DeepONet Predicting damage progression and
P-V curves in aortic dissection.

P-V accuracy > 95%†. Prediction time is
< 1 second, FOM simulation time is ∼ 12
hours using 20 processors.

∗ 10-fold cross-validation used with 300 geometries. One round of cross-validation on 30 geometries
took 30 seconds or 25 minutes for each model. This is used to calculate evaluation time for one
geometry and compared to reported 2 hour CFD simulation time to calculate acceleration factors.
† P-V accuracy taken for test cases with damage included, from Table 3 of [192].
‡ Network requires steady-state CFD result as input, which takes < 2 minutes to calculate. With
this included, acceleration factor is ∼ 90.
AE, autoencoder; CFD, computational fluid dynamics; CPU, central processing unit; DeepONet, deep
operator network; ECAP, endothelial cell activation potential; FCNN, fully-connected NN; FDS, flow-
diverting stent; FOM, full-order model; FFR, fractional flow reserve; GPU, graphics processing unit;
LAA, left atrial appendage; MRI, magnetic resonance images; MSE, mean-squared error; NN, neural
network; PCA, principal component analysis; P-V, pressure-volume.
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3.3.1 Physics-Agnostic Machine Learning Simulation

An alternative to augmenting/constructing ROMs using machine learning or attempting
to encode physics into machine learning is to build a machine learning model that directly
predicts the haemodynamic quantities of interest from inputs such as images or geometries
[37, 155]. Some of these approaches are collated in Table 7. One of the earliest examples
of this is by Itu et al. [37], who used a machine learning model to predict FFR given
parameterised coronary artery anatomy as input. The model consists of a FCNN with
inputs corresponding to features of the coronary anatomy and FFR as the solitary output.
Using this approach, the authors achieved an accuracy of 83.2% in correctly diagnosing
positive ischaemia and reduced model run time by a factor > 80.

Liang et al. [156] trained a deep neural network (DNN) to predict steady-state pres-
sure and velocity fields in the thoracic aorta using 729 aorta geometries generated from
a statistical shape model and CFD data generated for each geometry [193]. The DNN
consisted of autoencoders to encode the aorta shapes and the fields of interest and another
network to map between the encoded shapes and fields. The trained network predicted
velocity and pressure fields with mean errors of 2.0% and 1.4%, respectively. DNN evalua-
tion time is approximately one second, whereas each CFD simulation took approximately
15 minutes, giving a speed-up of ∼900 times. Liang et al. [194] applied this network
structure to identifying the geometry corresponding to a particular pressure field, thus
demonstrating an application of this method to inverse modelling. Morales et al. [189]
applied two FCNNs, one with prior dimensionality reduction and one without, to predict
endothelial cell activation potential (ECAP) from left atrial appendage (LAA) geometry.
Their models were trained on 210 LAA geometries using CFD data. With and without
dimensionality reduction, the average error was 5.8% and 4.7%, respectively. The network
with dimensionality reduction was approximately 50 times faster than the other network
when performing cross-validation. Gharleghi et al. [191] used a machine learning surrogate
to replace a transient CFD solver in order to calculate WSS in the left main bifurcation
of the coronary artery. The network requires the steady-state CFD solution for a given
case as an input, but can then predict the transient WSS to an accuracy of > 95% within
0.2 seconds using a CPU and 0.001 seconds using a GPU. Rutkowski et al. [155] trained a
CNN to map from 4D flow phase-contrast magnetic resonance images to highly resolved
flow fields using CFD data as labels. The focus of this work was fast and accurate flow
field generation directly from images, foregoing the need for time-consuming and expen-
sive simulation set-up and execution. The network successfully de-noised flow images,
improved velocity field accuracy and enhanced near-wall flow measurements. Ferdian
et al. [190] similarly developed a residual network that was applied to super-resolution
of 4D flow magnetic resonance images of aortic blood flow. Their approach was able to
predict flow rates in a real patient to greater than 95% accuracy within 40–90 seconds
depending on the image size.

Various physics-agnostic machine learning simulation methods have been able to ac-
curately and efficiently predict flow fields and flow-derived quantities in vascular flow
applications. Provided that a FOM can be constructed and that sufficient data can sub-
sequently be generated, the breadth of vascular flow problems that could be accelerated
by these surrogate models is large. However, the vast amount of data required to generate
accurate results could constrain these approaches, particularly in vascular flow applica-
tions where geometric data is typically derived from medical images that can be expensive
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to acquire and difficult to process. This is highlighted by Liang et al. [156], Morales et al.
[189] and Gharleghi et al. [191] relying upon data augmentation strategies to extend their
cohorts of real patients into larger cohorts of mostly synthetic patients. While this is
necessary to create sufficiently large data sets, there is a risk that the augmentation may
produce unrealistic results, as demonstrated by Morales et al. [189] discarding 30% of their
initial training samples due to unrealistic flow features. It is possible that data augmen-
tation approaches from the wider machine learning field, such as variational autoencoders
or generative adversarial networks, could provide techniques to generate highly realistic
synthetic data sets [195, 196, 197]. Another issue with physics-agnostic machine learning
simulation methods is that the up-front cost of running CFD simulations in large cohorts
to generate training data and the subsequent cost of training the complex network can
lead to large overall costs. Despite these challenges, machine learning surrogate models
are able to make predictions in previously unseen geometries due to being trained over an
extensive array of different geometries. This is a crucial challenge in many vascular flow
modelling problems that most acceleration techniques do not address with such generality.

3.3.2 Point Network Simulation

Typical convolutional deep learning architectures require regular input data, such as im-
ages. Point-Net was developed to allow the direct use of irregular point cloud data with
techniques typically applied to regular input data [198]. A benefit of using a Point-Net
architecture is its ability to generalise well to new input point clouds. This means general-
ising to unseen geometries for vascular flow applications, which can lead to large savings in
simulation times. Point-Net-based models have been applied to cardiovascular flow prob-
lems. Li et al. [38] used a Point-Net-based model to predict steady-state haemodynamics
before and after coronary artery bypass surgery. Their approach yielded a prediction
accuracy for velocity and pressure fields of around 90%. The time to evaluate the deep
learning model was 600 times less than for the CFD model (1 second vs. 10 minutes), al-
though 40 hours of training time was required prior to using the former. The same authors
also applied their Point-Net-based model to predict steady-state aneurysm haemodynam-
ics before and after treatment with a porous-medium flow-diverting stent model [39]. A
similar prediction accuracy was found (> 87%) and the calculation time was reduced by a
factor of 1,800. Kashefi and Mukerji [199] developed a physics-informed Point-Net (PIPN)
and evaluated it for steady-state incompressible flow problems. The acceleration factor is
approximately 35 for trained PIPN evaluation compared to the standard numerical solver.
Compared to PINNs, the accuracy of PIPNs is similar when trained to the same conver-
gence criterion, but the computational cost of PINNs is 18 times greater. This factor is
increased when exploiting the inherent generalisation of PIPN to model new geometries,
as in this scenario, the PINN will often need to be re-trained. PIPN is a recent technique
that has not yet been applied to vascular flow.

3.3.3 Operator Networks

The function approximation capacity of neural networks is well known, but it is also possi-
ble for neural networks to approximate operators that map between function spaces [200].
The first and most general operator network is the deep operator network (DeepONet)
[40]. DeepONet consists of a branch network, which encodes the input function space,
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and a trunk network, which encodes the domain of the output functions. The input to the
branch network are function values at fixed sensors and the input to the trunk network are
spatio-temporal coordinates at which to evaluate the operator. The output of the trunk
network is a set of basis functions, and the output of the branch network is the basis
coefficients [41]. Combining the basis coefficients and functions using the dot product
gives the operator network output. Following training, the DeepONet approximates the
underlying solution operator for the input function and coordinate spaces. Other oper-
ator learning methods include the Graph Kernel Network and Fourier Neural Operator
[201, 202]. Physics-informed extensions to operator networks that can reduce the required
training data have also been studied [41, 203].

Operator learning approaches have been applied to various linear and nonlinear prob-
lems involving explicit and implicit operators [40]. Cai et al. [187] used DeepONets for
electroconvection, which is a multi-physics problem involving coupled flow, electric and
concentration fields. They noted that training the DeepONets takes approximately 2
hours, but the evaluation time once trained is less than 1 second, representing a speed-
up of approximately 1,000 times when compared to the NekTar solver used to generate
training data. Mao et al. [188] used DeepONet for a hypersonic flow problem involving
a coupling between flow and finite-rate chemistry. They found that the trained network
was five orders of magnitude faster than the CFD solver used to generate the data. Fur-
thermore, Cai et al. [187] and Mao et al. [188] combined multiple DeepONets to build
a DeepM&MNet, which is specifically designed to handle multi-scale and multi-physics
modelling. DeepONets have also been used as a surrogate for expensive microscopic mod-
els, thus accelerating the coupling between micro- and macro-scale models [204]. Recent
work has also investigated using physics-informed DeepONets for long-time integration
of parametric partial differential equations [205]. Applications of operator learning to
vascular flow problems are limited, but two examples are by Yin et al. [192] and Arzani
et al. [206]. Yin et al. [192] applied DeepONets to simulation of aortic dissection, a com-
plex fluid-structure interaction problem. The DeepONet was able to make predictions
in less than 1 second, whereas the finite element model used to produce training data
took approximately 12 hours to run using 20 processors. Arzani et al. [206] applied an
operator learning surrogate model to 2D cardiovascular flow applications, but the focus
of this work was on the interpretability and generalisation rather than acceleration.

Compared to function-based learning strategies, a benefit of operator learning is that
they demonstrate small generalisation errors [40]. Furthermore, DeepONets have been
shown to overcome the curse of dimensionality, in that they do not require exponentially
more training data to improve the approximation accuracy [207]. These techniques can
potentially address many of the inherent complexities of vascular flow, particularly the
multi-physics and multi-scale nature of the problem, but they have not yet seen widespread
adoption.

4 Discussion and Outlook

4.1 Summary

This review presents simulation acceleration methods based on reduced order modelling
(ROM) and machine learning for the target application of vascular flow. The review
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focuses on five complexities that are common in vascular flow problems, but which are
also found across a multitude of other domains; namely: (i) nonlinearity, (ii) geomet-
ric complexity, (iii) multi-physics, (iv) multi-scale in time and (v) multi-scale in space.
Each complexity presents unique challenges for vascular flow simulations and their ac-
celeration. The ROM methods discussed in this review are spatial dimension reduc-
tion (SDR), proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD) ROMs, as well as brief overviews of reduced basis (RB) methods and proper gen-
eralised decomposition (PGD). The machine learning approaches reviewed are machine
learning-augmented ROMs, machine learning-based ROMs, physics-informed neural net-
works (PINNs), physics-agnostic networks, Point-Nets and operator networks. We found
that all acceleration methods are well-suited to some of the complexities of vascular flow
and limited for others, as highlighted in Table 8.

Table 8: Reduced order modelling and machine learning acceleration methods and their
suitability for modelling various vascular flow complexities. RB, PGD and Point-Net
simulation acceleration approaches were briefly reviewed in this paper but not in sufficient
detail to include in this table.

Method Nonlinearity Geometric
Complexity

Multi-
Physics

Multi-Scale
(Time)

Multi-Scale
(Space)

ROMs

SDR ✓ ✗ ∼ ✗ ✓

POD-P ∼ ✓ ✓ ✗ ✗∗

POD-I ✓ ✓ ✓ ✗ ✗∗

DMD ✓ ✓ ∼ ✓ ✗∗

Machine learning-augmented ROMs

POD-I-NN† ✓ ✓ ✓ ∼ ✗∗

POD-P-NN† ✓ ✓ ✓ ∼ ✗∗

Machine learning methods

Physics-agnostic ✓ ✓⋆ ✓ ✓⋄ ✓⋄

PINN ✓ ✓ ✓ ✓‡ ✓‡

DeepONet ✓ ✓ ✓ ✓ ✓

Key: ✓, method is suitable; ∼, somewhat suitable; ✗, not suitable.
∗ In isolation the methods are not well-suited for spatial multi-scale problems, but they can be coupled
to patient-specific SDR models so that boundary conditions are derived from large portions of the
vasculature.
† Includes various types of NN used in conjunction with the ROM approach, such as FCNNs or RNNs.
⋆ Physics-agnostic approaches are not only suitable for complex individual geometries, but are capable
of generalising to previously unseen geometries.
⋄ While suitable for multi-scale problems in principle, the data-hungry nature of physics-agnostic
approaches may make lead to prohibitive data requirements for problems spanning large spatial and
time scales.
‡ Basic PINNs are not designed for multi-scale problems, but extensions such as cPINNs, XPINNs
and PPINNs are.
cPINNs, conservative PINNs; DeepONet, deep operator network; DMD, dynamic mode decomposi-
tion; FCNN, fully-connected NN; PGD, proper generalised decomposition; POD, proper orthogonal
decomposition; POD-I, POD-Interpolation; POD-P, POD-Projection; NN, neural network; PINN,
physics-informed NN; PPINNs, parallel-in-time PINNs; RB, reduced basis; RNN, recurrent NN;
ROM, reduced order model; SDR, spatial dimension reduction; XPINNs, extended PINNs.
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4.1.1 Reduced Order Modelling

SDR methods are suitable for capturing spatial multi-scale behaviour and some nonlinear
and multi-physics effects, but only in simplified geometries where axisymmetry or other
assumptions are valid [45]. These methods calculate bulk quantities instead of full spatio-
temporal fields and are not designed for temporal multi-scale problems. SDR methods
are widely used in various vascular applications, with one of its most common uses in
deriving boundary conditions for 3D models [45, 63]. Due to their simplistic nature, SDR
models can provide large acceleration ranging from two to six orders of magnitude [54].

POD-based ROMs branch into two categories depending upon whether they combine
POD with projection or interpolation. POD-Projection and POD-Interpolation ROMs
are able to calculate three-dimensional time-varying solution fields in individual com-
plex geometries. POD-Projection has been applied to various vascular flow problems
[80, 81, 30, 92, 82, 100, 101]. Both approaches are suitable for multi-physics problems.
For nonlinear problems, the projection applied to the governing equations does not fully
de-couple the ROM and the full-order model, limiting the acceleration offered by POD-
Projection ROMs. POD-Interpolation does not depend upon the governing equations of
the system, so it does not suffer the same limitations for nonlinear applications. How-
ever, POD-Interpolation ROMs have been shown to generalise less effectively than their
projection-based counterparts [96]. Neither POD-Projection or POD-Interpolation are
well-suited to multi-scale modelling in time, with the long-term stability of POD modes
not guaranteed. Finally, while neither approach is inherently well-suited to spatial multi-
scale modelling, coupling the POD-based ROM to an SDR ROM could produce a model
that can quickly and accurately provide full spatio-temporal fields in a region of interest
while capturing the influence of the systemic vasculature. Due to the non-iterative nature
of POD-Interpolation, it can typically provide large accelerations ranging from two to
six orders of magnitude, whereas POD-Projection acceleration ranges from one to three
orders of magnitude [99, 97, 77, 100].

Similarly to POD-based ROMs, DMD ROMs can provide full spatio-temporal fields in
individual geometries and could be coupled to SDR models to capture the influence of large
regions of the vasculature. DMD ROMs are less common than POD-based approaches, so
application to multi-physics simulation acceleration has not been thoroughly investigated.
The main benefit to DMD ROMs is that they are designed to approximate the temporal
dynamics of the system, which makes them well-suited to the long-time model integration
required in temporal multi-scale problems.

Other techniques include RB methods and PGD. RB methods are a similar approach
to POD-Projection ROMs and have been successfully applied to various nonlinear, multi-
physics, geometrically complex problems [126, 127, 128]. RB methods have been applied
to vascular flow problems such as flow field calculation in 2D parameterised carotid ar-
teries, inverse modelling in stenosed arteries and flow in femoropopliteal bypass problems
[123, 124, 125]. The acceleration offered by RB methods ranges from two to three orders
of magnitude. PGD sits apart from most ROM methods, as it uses separated representa-
tions and successive enrichment a priori instead of applying dimensionality reduction to
snapshots from the full-order model a posteriori in order to construct the reduced basis
[129]. PGD has been applied to Navier-Stokes and rheology applications with acceleration
ranging from one to two orders of magnitude [131, 133]. This approach is well-suited for
separable problems, whether the separation is in space or time [134, 135, 130]; however
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it has not been applied as widely as other ROM methods and has seen no application to
vascular flow simulation acceleration.

4.1.2 Machine Learning Simulation Acceleration

Machine learning offers an array of approaches for simulation acceleration. A common ap-
proach is to use machine learning in conjunction with ROM methods, where the learning
algorithm augments or replaces part of the ROM method. Neural networks can be used
to provide a powerful high-dimensional interpolation algorithm in the POD-Interpolation
ROM approach [143, 146, 144] or to overcome the difficulties POD-Projection ROMs
encounter for nonlinear equations [148, 149]. Autoencoders can also replace the dimen-
sionality reduction common across most ROM methods [34, 35]. Another approach is to
build a machine learning ROM based on autoencoders and feedforward neural networks
whilst utilising POD for dimensionality reduction of the data passed to the machine
learning ROM [153, 154, 145]. Machine learning can overcome some of the limitations of
traditional ROMs and broaden the scope of problems for which the ROM methods are
suitable.

PINNs are a machine learning-based simulation method that lies at the intersection
of equation-based and data-driven modelling [36]. To be used for simulation acceleration,
PINNs needs to be able to generalise across new input parameters and/or geometries or
they need to be sufficiently fast to train that a new PINN can be constructed for each
new problem instance. The former can be achieved by adding extra inputs to the network
or by constructing a pre-cursor network that handles the parametric dependence in the
problem [160, 167, 168]. Faster training times can be achieved through techniques such as
transfer learning, trainable activation functions and residual-based adaptive refinement
[163, 169, 171, 172]. When used in an acceleration context, such as many-query parameter
sweeps, PINNs have been demonstrated to reduce total simulation time by two to five
orders of magnitude, depending upon the application and the number of queries [160, 161].
PINNs and its extensions are suitable for all of the complexities that commonly occur in
vascular flow problems and have been successfully applied to aneurysm flow modelling
and synthesis of non-invasive flow measurements in a bifurcating vessel model [179, 163].

Alternative machine learning-based simulation techniques include physics-agnostic
methods, Point-Nets and operator networks. Physics-agnostic simulation methods have
been applied to vascular flow problems such as fractional flow rate prediction in coronary
arteries, steady-state pressure and velocity prediction in the thoracic aorta, inverse geom-
etry prediction in the aorta, endothelial cell activation potential prediction and prediction
of flow fields from magnetic resonance images [37, 156, 194, 189, 155]. While these ap-
proaches can accelerate solution evaluations by two to three orders of magnitude and tend
to generalise well to previously unseen geometries, they require large data sets and the net-
work outputs do not necessarily respect the underlying physics in the problem. Point-Nets
facilitate the use of powerful convolutional deep learning architectures on data sets con-
sisting of point clouds. They have been used for steady-state haemodynamics predictions
before and after coronary artery bypass surgery and aneurysm flow diversion, producing
accurate predictions and reducing prediction time by two to three orders of magnitude
compared to the computational fluid dynamics model [38, 39]. Point-Nets generalise well
to new geometries despite paying no attention to underlying governing equations, but
require large data sets for training. Physics can inform Point-Nets, but this is a new
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technique with very few use cases to date [199]. Operator learning techniques, such as
DeepONets, are another powerful simulation technique that have demonstrated strong
generalisation capabilities, the ability to accelerate by two to five orders of magnitude,
and the ability to overcome the curse of dimensionality [40, 187, 188]. However, operator
learning is an emerging technique that has only seen a small number of applications to
vascular flow problems to date [192, 206].

4.2 Challenges

Despite years of research on ROMs and the recent application of machine learning to
simulation acceleration, applying these techniques to real-world vascular flow problems
remains challenging. Three key challenges to address that have been identified by this
review are:

1. The development of accelerated simulation methods that can handle large geometric
variability, facilitating their application to previously unsimulated and dynamically
varying geometries.

2. The development of accelerated simulation methods for multi-scale problems, en-
abling seamless evaluation of small -and large-scale processes over short- and long-
term time scales.

3. The development of a benchmarking framework for accelerated simulation methods,
allowing for systematic quantification and comparison of new approaches and driving
transparent progress in the field.

A critical challenge to widespread adoption of simulation acceleration in vascular flow
applications is incorporating large geometric variability into the models. Whether per-
forming large-scale testing of medical devices in cohorts with varying anatomy, simulating
medical device responses as part of treatment planning for an individual patient, or pro-
viding real-time surgical feedback during operation, the ability of the accelerated model to
accurately evaluate haemodynamics in a previously unsimulated or dynamically changing
geometries is essential. Efforts to introduce geometric variability into vascular flow ROMs
have mainly focused on developing parameterised models [30, 92, 82, 100]. While these
approaches yielded accurate results, acceleration was only of one order of magnitude in
most cases, with the largest acceleration roughly three orders of magnitude. Furthermore,
models typically only used a small number of parameters describing features such as ves-
sel diameter or stenosis severity and position [30]. In pathologies with highly complex
shapes, such as aneurysms, identifying descriptive parameterisations with few parame-
ters may not be possible. This would be further exacerbated by device modelling or
fluid-structure interaction. A possible approach to overcome this is to use domain de-
composition ROMs that can partition an unseen geometry into sub-geometries that bear
resemblance to the geometries for which snapshots were previously calculated [208, 209].
This approach has been applied to flow over urban landscapes and pipe flow problems so
far, but could potentially be applied to vascular flow problems, where the sub-geometries
could be a set of commonly required vascular segments and configurations. ML approaches
such as physics-agnostic simulation methods [156, 189, 191] and Point-Nets [38, 39] have
demonstrated the ability to generalise to unseen geometries by using large sets of mostly
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synthetic geometries and corresponding simulation data for training. These are the most
promising attempts to provide generalisation across geometries in vascular simulation ac-
celeration, but they are still hampered by the amount of data required and the risk that
data augmentation strategies can lead to unrealistic results. Informing these approaches
with physics could potentially reduce the data requirement and increase the reliability of
the results but there have been few studies into this to date [199].

Multi-scale problems represent the second challenge for accelerated simulation of vas-
cular flow models. When using computational models to inform treatment decisions or
in assessing medical device safety and efficacy, short- and long-term metrics are likely to
be required. Depending upon the specific problem, models of small-scale processes like
thrombosis or endothelialisation may need to be coupled to models of large-scale haemody-
namic effects. In principle, DMD ROMs are well-suited to long-term solution evaluation,
but the few studies using this approach for vascular flow applications have focused on
solution reconstruction rather than long-term prediction [105, 109]. Domain decomposi-
tion PINN methods, such as cPINNs, XPINNs, and PPINNs, are suitable for multi-scale
problems in time and space, but also have seen little use in vascular flow applications
[183, 184, 185]. DeepONets have also shown great potential for multi-scale applications.
Wang and Perdikaris [205] used DeepONets for long-time prediction of partial differential
equations, while Cai et al. [187] and Mao et al. [188] used modular DeepONets trained indi-
vidually on single-physics single-scale problems to facilitate multi-physics and multi-scale
modelling for electroconvection and flow-chemistry applications. Modular DeepONets are
referred to as DeepM&MNets (Deep Multi-Physics & Multi-Scale Networks) and repre-
sent a promising approach towards the challenge of long-time evaluation of multi-physics
and multi-scale models which are crucial in vascular flow applications.

The final challenge we want to highlight is the need for a benchmarking framework
for assessing simulation acceleration methods. Throughout this review, quantitatively
comparing different approaches has proved challenging due to the the following factors
that vary across studies: (i) amount of training data; (ii) training details, e.g. stopping/-
convergence criteria, number of modes retained in model; (iii) accuracy and acceleration
metrics, e.g. error metrics and variables of interest, acceleration relative to FOM or entire
offline cost; (iv) target applications. To overcome this challenge, we propose the devel-
opment of a benchmarking framework for use in the simulation acceleration community.
This should consist of a series of example problems of varying nature and complexity,
data sets for each example problem for use in training, specified allowances and/or met-
rics for the computational cost of data generation and training, and metrics defined for
assessment of accuracy and acceleration. The example problems should also be moti-
vated by real-world problems where a balance often must be struck between the amount
of training data available for the machine learning model and the task for which it is
to be used (e.g. many-query tasks, control problems, real time prediction, etc.). De-
velopment and subsequent use of this framework would enable objective assessment and
comparison of methodological advances in the field. Inspiration could also be taken from
the medical image analysis field, where challenge problems are commonly proposed with
publicly available data and predefined metrics to assess model performance for tasks like
registration and segmentation [210, 211].
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4.3 Outlook

Accelerated vascular flow models are essential for applications such as in-silico trials
(ISTs), patient-specific treatment planning, and real-time surgery feedback. ISTs can
require the evaluation of nonlinear, multi-physics, multi-scale models in large cohorts of
virtual patients, which are anatomically and physiologically diverse, undergoing treatment
with different devices [212, 3]. Patient-specific treatment planning requires similarly com-
plex models that can be evaluated in an individual patient in a reasonable time frame
given the prognosis of the pathology in question. Real-time surgery feedback requires
complex model evaluation in individual patients fast enough to provide haptic feedback
or visualisations to the surgeon performing the procedure [44]. These three applications
highlight some of the impact that accurate and efficient vascular flow models can have on
patient care, which makes developing these approaches a worthwhile endeavour. This re-
view has identified that the key challenge to be addressed is the development of multi-scale
simulation acceleration methods that can handle the large geometric variability inherent
to vascular flow problems. We also suggest that to achieve quantifiable and transparent
progress in simulation acceleration, the community should develop a benchmarking frame-
work consisting of a series of exemplar problems with standardised metrics for assessing
acceleration and accuracy. This would benefit both the simulation acceleration and the
vascular flow modelling communities.
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[44] Eĺıas Cueto and Francisco Chinesta. Real time simulation for computational surgery: a review.
Advanced Modeling and Simulation in Engineering Sciences, 1(1):1–18, 2014.

44



[45] Yubing Shi, Patricia Lawford, and Rodney Hose. Review of zero-d and 1-d models of blood flow in
the cardiovascular system. Biomedical engineering online, 10(1):1–38, 2011.

[46] Vuk Milǐsić and Alfio Quarteroni. Analysis of lumped parameter models for blood flow simulations
and their relation with 1d models. ESAIM: Mathematical modelling and numerical analysis, 38(4):
613–632, 2004.

[47] Leopold Grinberg, Elizabeth Cheever, Tomer Anor, Joseph R Madsen, and GE Karniadakis. Mod-
eling blood flow circulation in intracranial arterial networks: a comparative 3d/1d simulation study.
Annals of biomedical engineering, 39(1):297–309, 2011.

[48] Jiun-Jr Wang, Aoife B O’Brien, Nigel G Shrive, Kim H Parker, and John V Tyberg. Time-domain
representation of ventricular-arterial coupling as a windkessel and wave system. American Journal

of Physiology-Heart and Circulatory Physiology, 284(4):H1358–H1368, 2003.
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[98] Arash Hajisharifi, Francesco Romanò, Michele Girfoglio, Andrea Beccari, Domenico Bonanni, and
Gianluigi Rozza. A non-intrusive data-driven reduced order model for parametrized cfd-dem nu-
merical simulations. Journal of Computational Physics, 491:112355, 2023.

[99] Dunhui Xiao, Fangxin Fang, Andrew G Buchan, Christopher C Pain, Ionel M Navon, and Ann
Muggeridge. Non-intrusive reduced order modelling of the navier–stokes equations. Computer

Methods in Applied Mechanics and Engineering, 293:522–541, 2015.

[100] Francesco Ballarin, Elena Faggiano, Andrea Manzoni, Alfio Quarteroni, Gianluigi Rozza, Sonia
Ippolito, Carlo Antona, and Roberto Scrofani. Numerical modeling of hemodynamics scenarios of
patient-specific coronary artery bypass grafts. Biomechanics and modeling in mechanobiology, 16
(4):1373–1399, 2017.

[101] Suyue Han, Clemens M Schirmer, and Yahya Modarres-Sadeghi. A reduced-order model of a
patient-specific cerebral aneurysm for rapid evaluation and treatment planning. Journal of Biome-

chanics, page 109653, 2020.

[102] Michele Girfoglio, L Scandurra, Francesco Ballarin, Giuseppe Infantino, Francesca Nicolo, Andrea
Montalto, Gianluigi Rozza, Roberto Scrofani, Marina Comisso, and Francesco Musumeci. Non-
intrusive data-driven rom framework for hemodynamics problems. Acta mechanica sinica, 37(7):
1183–1191, 2021.

[103] Zakia Zainib, Francesco Ballarin, Stephen Fremes, Piero Triverio, Laura Jiménez-Juan, and Gi-
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