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Abstract   31 

The Amazon is the largest continuous tropical forest in the world and plays a key 32 

role in the global carbon cycle. Human-induced disturbances and climate change have 33 
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impacted the Amazon carbon balance. Here we conduct a comprehensive synthesis 1 

of existing state-of-the-art estimates of the contemporary land carbon fluxes in the 2 

Amazon using a set of bottom-up methods (i.e., dynamic vegetation models and 3 

bookkeeping models) and a top-down inversion (atmospheric inversion model) over 4 

the Brazilian Amazon and the whole Biogeographical Amazon domain. Over the whole 5 

biogeographical Amazon region bottom-up methodologies suggest a small average 6 

carbon sink over 2010-2020, in contrast to a small carbon source simulated by top-7 

down inversion (2010-2018). However, these estimates are not significantly different 8 

from one another when accounting for their large individual uncertainties, highlighting 9 

remaining knowledge gaps, and the urgent need to reduce such uncertainties. 10 

Nevertheless, both methodologies agreed that the Brazilian Amazon has been a net 11 

carbon source during recent climate extremes and that the south-eastern Amazon was 12 

a net land carbon source over the whole study period (2010-2020). Overall, our results 13 

point to increasing human-induced disturbances (deforestation and forest degradation 14 

by wildfires) and reduction in the old-growth forest sink during drought.  15 

 16 

 Introduction 17 

The Amazon covers an area of ~7 million km2 and accounts for about 40% of 18 

global tropical forest area, storing around 229-280 Pg C (Petagram of carbon) in living 19 

biomass and dead organic matter in soils1,2, of which approximately 108 (95% CI 101-20 

115) Pg C is aboveground in live trees3. As a result, the Amazon forest plays a key 21 

role in the global carbon cycle and even small perturbations, as a consequence of 22 

human disturbances4 and climate change, can have an impact on global climate5,6, as 23 

well as on South America's hydrological cycle7. The carbon sink contribution of the 24 

old-growth forests (i.e., forests not impacted by contemporary human-induced 25 

disturbances) in the Amazon has been estimated to be undergoing a persistent 26 

decline, driven by an increase in tree mortality, associated with environmental 27 

change8–11. The old-growth Amazon forest may thus continue to lose its climate 28 

change mitigation role by absorbing less carbon from the atmosphere in the future8–29 

11.   30 

 Alongside the effects of environmental change, in particular the increasing 31 

concentration of CO2 in the atmosphere driven by anthropogenic activities, the 32 

Amazon has also been impacted by human-induced disturbances. These 33 
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disturbances are caused by large-scale land use and land cover changes (LULCC) 1 

and landscape fragmentation driven by deforestation, and extensive forest 2 

degradation through wildfires caused by anthropogenic activity in association to drier 3 

conditions and logging. These human-induced disturbances resulted in aboveground 4 

carbon (AGC) losses of 1.3 (±0.4) Pg C between 2012 and 201912. After reaching the 5 

lowest deforestation rate in 2012, the Brazilian Amazon suffered an upturn with 6 

consistent intensification of deforestation rates13. This pattern shift in deforestation 7 

caused an increase of about 140% in CO2 emissions in 2020 compared to the decadal 8 

low in 201214. Moreover, the areal extent and gross carbon emissions from forest 9 

degradation can even exceed those from deforestation, especially in extreme drought 10 

years15–19. Forest degradation through fire reduces the potential of secondary forests 11 

to accumulate carbon20 and regrowing burned Amazon humid forests are not able to 12 

offset the initial disturbance emissions even 30 years after the fire occurrence21. Other 13 

processes such as logging and edge effects induced by landscape fragmentation 14 

result in additional carbon losses and subsequent carbon emissions to the 15 

atmosphere12,22. When taken together, these disturbance processes increase the 16 

carbon sources impeding their offset by the carbon sink in old-growth forests, which 17 

shows evidence of a decline8 therefore, shifting the net carbon balance of the Amazon 18 

towards (higher) emissions to the atmosphere.  19 

There are multiple approaches to estimate the land carbon fluxes. Bottom-up 20 

approaches comprise the use of process-based Dynamic Global Vegetation Models 21 

(DGVMs)29 and bookkeeping models30–32, as well as remote sensing-based 22 

estimates24. Top-down approaches are based on atmospheric inversion models, 23 

which combine in situ CO2 measurements, aircraft measurements of CO2 24 

concentration and atmospheric transport model simulations33. There are 25 

discrepancies between bottom-up and top-down estimates for the South America 26 

carbon budget, with the top-down inversions estimating a net land source and bottom-27 

up a net land sink34.  Studies of Amazon carbon fluxes have concentrated mostly on 28 

the roles of old-growth forests as a carbon sink8, on the emissions from deforestation 29 

and forest degradation23–25, or on net biome productivity (NBP)26,27. They use different 30 

methodologies, study periods, and spatial domains of the Amazon area (e.g., whole 31 

Amazon vs Brazilian Amazon) which causes difficulties in comparing estimates.  The 32 

Brazilian Amazon forests was estimated to be a net carbon source of +0.06 (-0.01 to 33 

+0.31) Pg C yr-1 in 2010 based on a literature review and compilation of datasets27. 34 
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Estimates based on Earth observation data focusing on the carbon gains and losses 1 

in forest areas derived from the Global Forest change product28 and using emissions 2 

and removal factors from the Intergovernmental Panel on Climate Change (IPCC) 3 

guidelines, indicated that the whole Amazon Forest region was a net carbon sink 4 

between 2001 and 2019, while the Brazilian part of the Amazon forest acted as a net 5 

carbon source as a result of deforestation24. A study using in situ observations of 6 

gases (e.g., CO and CO2) by aircraft-borne flasks and an atmospheric transport 7 

inverse modelling approach concluded that the Amazon region was a small net carbon 8 

source over the 2010-2018 period, driven mostly by fire emissions from the south-east 9 

Amazon region26.  10 

Knowledge gaps remain about the processes included in bottom-up models (e.g., 11 

anthropogenic wildfires and fire and drought induced tree mortality21,35), the land use 12 

and land cover change data used in these model simulations36, as well as consistent 13 

uncertainty estimates. Therefore, a synthesis and standardisation of existing 14 

estimates of the net land carbon fluxes of the Amazon region is needed to characterize 15 

the contemporary state of the net land carbon fluxes, and to clarify where the main 16 

gaps remain to reconcile differences of flux estimates between top-down and bottom-17 

up approaches. Given the importance of the Amazon for the global carbon cycle and 18 

the recent changes in deforestation pattern, the main aim of this study is to provide a 19 

comprehensive state-of-the-art synthesis of the net land-atmosphere carbon flux of 20 

the whole Amazon as well as the Brazilian Amazon area for the 2010-2020 period. 21 

Here we quantify the net land carbon fluxes of the whole biogeographical domain 22 

of the Amazon37 and of the Brazilian Amazon, using existing data from top-down 23 

atmospheric transport inversion38, and a combination of bottom-up model-based 24 

estimates23,32,39. To estimate the net carbon sources from human-induced forest 25 

disturbances, we use a set of bottom-up estimates of disturbance fluxes including 26 

deforestation and forest degradation and subsequent regrowth using regional23,32 and 27 

global spatially explicit bookkeeping models31,39,40. These bookkeeping models are 28 

constrained with satellite estimates of deforestation and degradation area and use 29 

response curves of decomposition and tree growth to estimate the resulting net carbon 30 

fluxes caused by deforestation and degradation (see further detail of each model in 31 

the Methods section). To estimate the net carbon sink of old-growth forests, we use a 32 

set of Dynamic Global Vegetation Models (DGVMs) which participated in the Global 33 

Carbon Budget 2022 (GCB)39 assessment, called TRENDY-v11. We then combine all 34 
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estimates of net sources and sinks from the bottom-up models to calculate the 1 

spatiotemporal net land carbon fluxes for the whole Biogeographical Amazon and for 2 

the Brazilian Amazon, separately (see domain limits in SI Figure 1 and model 3 

combinations in Table 3 of Methods section). Finally, we synthesize and present the 4 

net land carbon fluxes based on the bookkeeping models combination with TRENDY-5 

v11 DGVMs (bottom-up estimates), the bottom-up net flux estimate from the 6 

CARDAMOM model-data fusion framework41,42 and top-down atmospheric inversion 7 

estimates (TOMCAT) using a global  atmospheric transport model38 that is constrained 8 

with atmospheric profile measurements26. Figure 1 shows an overview of the 9 

methodologies used to estimate the carbon fluxes of each domain. Note that the model 10 

combination used to calculate the net land carbon fluxes with bookkeeping models 11 

and TRENDY-v11 DGVMs differs between the whole Biogeographical Amazon and 12 

Brazilian Amazon due to differences in data availability for each region as described 13 

in Table 3 in the methods section. Hereafter we adopt a + sign convention to represent 14 

a net flux of carbon from land to the atmosphere (source) and a - sign convention for 15 

a net carbon flux into the land (sink). 16 

 17 

Figure 1 Overview of the existing methodologies applied to estimate the carbon 18 
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fluxes in the Brazilian Amazon and Biogeographical Amazon according to data 1 

availability. Details of each bookkeeping models (INPE-EM, BLUE, FATE and 2 

GFED), TRENDY-v11 DGVMs, TOMCAT atmospheric inversion (called top-down 3 

inversion in the results section) and CARDAMON can be found in the methods section 4 

and their combinations in Table 3. Further detailed information about the processes 5 

included in each model can be found in Table 2 and SI Table 3 for the TRENDY-v11 6 

DGVMs.  7 

 8 

Results  9 

Spatiotemporal attribution of the land carbon fluxes in the whole 10 

biogeographical Amazon 11 

For the whole biogeographical Amazon, we relied on two global models to 12 

estimate the disturbance flux. A combination of net land use flux estimates from the 13 

Bookkeeping of Land Use Emissions (BLUE) added to the net wildfire flux from a fire 14 

bookkeeping model (FATE) (BLUE+FATE, see Methods), suggests the whole 15 

biogeographical Amazon released a net flux of 192 Tg C yr-1 over 2010-2020 to the 16 

atmosphere from land use and land cover changes and forest degradation fires. Over 17 

the same period, the Global Fire Emissions Database (GFED) suggested an average 18 

flux of 89 Tg C yr-1 from deforestation and degradation fires (Table 1). Both 19 

BLUE+FATE and GFED show similar interannual variability (Figure 2a). However, the 20 

average flux simulated by BLUE+FATE is 116% higher than GFED, as the former 21 

includes more processes linked to land use and land cover changes, such as fluxes 22 

from transitions between different land uses, shifting cultivation, soil carbon and legacy 23 

fluxes, as well as the addition of the net legacy fluxes of forest degradation by fire from 24 

the FATE model, which include late tree mortality by fire. The GFED estimates used 25 

here only account for biomass burning flux from tropical forest fires linked to 26 

deforestation and degradation but assume that degraded forests are carbon neutral 27 

(i.e., GFED does not include late tree mortality fluxes). Spatially, both models show 28 

that most of the net disturbance fluxes are concentrated in the south-eastern Amazon 29 

region (i.e., in the Southern Brazilian Amazon) (Figure 2c-2d). As none of the two 30 

models used to estimate the disturbance flux for the whole Biogeographical Amazon 31 

provides regional uncertainty estimates, we are unable to quantify the uncertainty for 32 

the disturbance term.  33 
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 The average old-growth forest sink simulated by TRENDY-v11 DGVMs (16 1 

models) for the whole biogeographical Amazon was -333 (±195) Tg C yr-1 over the 2 

2010-2020 period (Table 1). The old-growth forest sink shows a high interannual 3 

variability driven by intense drought events which causes a water stress in the 4 

vegetation43 and is associated to the El Niño–Southern Oscillation (ENSO) years over 5 

our study period (R = -0.6; p = 0.051 in SI Figure 2c). Those drought events reduce 6 

the sink capacity of these forests in our estimates due to the reduced simulated 7 

productivity in the DGVMs (e.g., 2015/2016 in Figure 2b). Spatially, the average old-8 

growth forest sink was higher in the western and northern parts of the Amazon (Figure 9 

2e) where most of the old-growth forest is located. Lower values occur across the 10 

south-eastern regions along the areas with lower intact old-growth forest percentage 11 

due to deforestation and degradation (see the fraction mask of old-growth forests 12 

applied to the DGVMs in SI Figure 5). Stronger patterns in the old-growth forest sink, 13 

such as the pink grid-cells in Figure 2e, are driven by lower annual precipitation 14 

(<1000mm) during the 2015/2016 ENSO in the precipitation data used as input in the 15 

TRENDY-v11 DGVMs (SI Figure 3). Several DGVMs simulate a stronger transition of 16 

the old-growth forest from sink to source in this region in 2015/2016, which dominates 17 

the decadal mean flux (SI Figure 4). This localized pattern points to the general 18 

sparsity of climate datasets across this important region for interpolation in reanalysis 19 

datasets, which are used as in input for the DGVMs simulations.  20 

Between 2010 and 2015 the old-growth forest sink based on field data from the 21 

Amazon Forest Inventory Network (RAINFOR) upscaled to the Amazon was -271 (CI 22 

0.00-502) Tg C yr-1 9,44. The old-growth forest sink simulated by TRENDY-v11 DGVMs 23 

was 26% larger than RAINFOR over the same period (average of -348 ±167 Tg C yr-24 

1). Although there is a difference in magnitude between the TRENDY DGVMs and the 25 

RAINFOR intact sink, they are not statistically significantly different over this period (p 26 

= 0.37; SI Figure 8). We also compared the aboveground carbon (AGC) change in 27 

intact areas between the TRENDY-v11 multi-model mean and AGC derived from 28 

satellite data from the L-Band Vegetation Optical Depth (L-VOD) from a recent study12. 29 

Although L-VOD based AGC shows an average net loss of carbon to the atmosphere 30 

of about 35 Tg C yr-1 and TRENDY-v11 AGC an average net carbon gain to the land 31 

of 26 Tg C yr-1 over the period of 2011-2019, a Welch’s t-test shows that their average 32 

values over this common period is not significantly different (p = 0.5; SI Figure 9). Note 33 
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that these values need to be compared cautiously due to potential differences in their 1 

old-growth forest mask and Amazon area, as well as in the processes included.  2 

 3 

 4 

Figure 2 Attribution of the land carbon fluxes in the biogeographical Amazon 5 

over 2010-2020 from bottom-up and hybrid model combinations. A) Annual net 6 

disturbance fluxes from BLUE land use and land cover changes (BLUE ELUC) with 7 

FATE forest degradation fires, and GFED deforestation and degradation fires; b) 8 

Annual old-growth forest sink from TRENDY-v11 S2 simulations; shaded green area 9 

represents 1SD of the multi-model average and shaded orange area represents the 10 

ENSO years, which cause strong drought events and consequent water stress in the 11 

Amazon forests, and therefore a transition from sink to source in the old-growth forests 12 

(R = -0.6, p = 0.051; see SI Figure 2c for a correlation between the old-growth sink 13 

annual variation and a drought index); c) Mean annual land use and land cover flux 14 

from BLUE with wildfire flux from FATE (gC m-2 yr-1), negative values in this map show 15 

a sink from land use abandonment, secondary forest regrowth and/or regrowth after 16 

harvest; d) Mean annual deforestation and degradation fires from GFED (gC m-2 yr-1); 17 

e) Mean annual old-growth forest sink from TRENDY-v11 (gC m-2 yr-1). The spatial 18 

uncertainty from the TRENDY-v11 old-growth sink is shown in SI Figure 10. Positive 19 
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values (in pink) indicate sources to the atmosphere and negative values (in green) 1 

indicate sinks.  2 

 3 

Spatiotemporal attribution of the land carbon fluxes in the Brazilian Amazon 4 

A three-model combination that provides the net fluxes of forest disturbances 5 

(deforestation + degradation, including regrowth of these processes) was used to 6 

calculate one average estimate of the net disturbance flux (see Table 3 in Methods). 7 

We combine these three anthropogenic disturbances estimates due to the availability 8 

of regional estimates based on the official deforestation data from the Brazilian 9 

Amazon Monitoring Program (PRODES), as well as to be able to provide an estimate 10 

of the spread (uncertainty) for the Brazilian Amazon anthropogenic disturbance fluxes. 11 

The results show that the Brazilian Amazon released an average net flux of 115 Tg C 12 

yr-1 (±68; 1SD multi-model range) to the atmosphere from all forest disturbances 13 

between 2010 and 2020 (Figure 3a, black line). The multi-model mean net disturbance 14 

flux (Figure 3a, black line) shows emission peaks in 2010, 2015 and an increased flux 15 

after 2018. The differences in the magnitude of individual disturbance models used to 16 

calculate the average disturbance flux for the Brazilian Amazon is due to the 17 

processes included and different driving data (see Methods section and Table 3 for 18 

further details of the main processes included in each model). Spatially, the 19 

disturbance fluxes are concentrated in the ‘arc of deforestation’ region in the southern 20 

Brazilian Amazon and along major roads that facilitate the advance of deforestation 21 

and spread of fires into forest edges (Figure 3c).  22 

Annual estimates of old-growth forest cover loss from the Brazilian Amazon 23 

Monitoring Program of the Instituto Nacional de Pesquisas Espaciais (PRODES/INPE) 24 

show that 2020 had the highest deforestation area in old-growth forest in the last 25 

decade13. This large area of deforestation in 2020 led to an increase of 12% (from 68 26 

Tg C to 76 Tg C) in the emissions estimated by the INPE emission model (INPE-EM) 27 

compared to 201945. Yet, the multi-model disturbance average (black line in Figure 28 

3a) did not reproduce higher emissions in 2020 compared to 2019, which is due to the 29 

BLUE and GFED models showing a decrease in emissions between these two years 30 

(blue and orange lines in Figure 3a). The reason for the diverging results between 31 

INPE-EM and the other two models is because they use different driving data and 32 

mapping calendar (see Methods for detailed information). The INPE-EM uses the 33 
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Brazilian official deforestation dataset (PRODES/INPE) as driving data of the 1 

deforestation area. The area estimates are calculated based on observations from 2 

satellite data (e.g., Landsat) between August and July (e.g., August 2019 – July 2020). 3 

Moreover, PRODES/INPE only track deforestation within their old-growth forest mask. 4 

The BLUE model uses as the Global Land Use Harmonization database (LUH2) to 5 

estimate the area impacted by land use changes, which rely on changes in agricultural 6 

areas to model the deforested area within old-growth and secondary forests in a 7 

calendar year (January-December). The GFED data used here is based on burned 8 

areas estimates associated to deforestation and degradation in tropical forests 9 

estimated from satellite data (MCD64 A1 product46) in a calendar year (January-10 

December). Therefore, the different map periods in addition to the different methods 11 

to calculate the forest area loss, as well as the processes included are likely the 12 

reasons of the differences between the INPE estimates and the two other models 13 

based on global products.  14 

In old-growth forests, the simulated sink by the TRENDY-v11 DGVMs for the 15 

Brazilian Amazon was -170 (±144) Tg C yr-1 between 2010 and 2020. This is about 16 

51% of the old-growth sink simulated for the whole Amazon in this study (-333 ±195 17 

Tg C yr-1). Most of the simulated old-growth forests sink is concentrated in the central-18 

western part of the Brazilian Amazon (Figure 3d), where most of the old-growth forests 19 

are located. Likewise, as was explained in the Biogeographical Amazon section, the 20 

strong pink pattern in the old-growth forest sink (Figure 3d) is driven by lower annual 21 

precipitation during the 2015/2016 ENSO (SI Figure 3) and the simulated response 22 

from DGVMs to this lower precipitation in the decadal mean flux (SI Figure 4).  23 

 24 
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 1 

Figure 3 Attribution of the land carbon fluxes in the Brazilian Amazon over 2010-2 

2020 from bottom-up models. a) Annual net disturbance fluxes from the disturbance 3 

multi-model average (see Table 2-3 in Methods section); shaded grey area represents 4 

the 1SD of the multi-model average; individual uncertainty is not available for each 5 

model; b) Annual old-growth land sink from TRENDY-v11 S2 simulations; shaded 6 

green area represents the 1SD of the TRENDY-v11 DGVMs mean and shaded orange 7 

areas represent the ENSO years, which cause stronger drought events in the Amazon 8 

and consequent water stress and therefore a reduction in the old-growth sink (R = -9 

0.88, p <0.001; see SI Figure 2b for a correlation between the old-growth sink annual 10 

variation and a drought index); c) Multi-model mean annual disturbance flux (gC m-2 11 

yr-1); d) Multi-model mean annual old-growth land sink from TRENDY-v11 S2 12 

simulation (gC m-2 yr-1). The spatial uncertainty of c and d can be found in SI Figure 7. 13 

Positive values (pink) indicate a net carbon source to the atmosphere and negative 14 

values (green) indicate a net sink.  15 

 16 
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Net land carbon flux in the whole biogeographical Amazon  1 

Over the whole biogeographical Amazon, results of the net land carbon flux 2 

estimate from the bottom-up, hybrid and data assimilation (e.g., CARDAMOM) 3 

approaches suggest that the region was a net land carbon sink of -152(±192) Tg C yr-4 

1, -255(±192) Tg C yr-1 and -339 (CI -2945 –2452) Tg C yr-1 between 2010 and 2018, 5 

respectively (Figure 4a and Table 1).  The top-down inversion suggests a small net 6 

land carbon source of +27 (±130) Tg C yr-1 (2010-2018) (Figure 4a and Table 1). 7 

During the drought years of 2010 and 2015/2016, the bottom-up, hybrid, and top-down 8 

inversion approaches agree that the whole Amazon was a small net carbon source 9 

while CARDAMOM suggests it was carbon neutral.  Over 2019 and 2020, the bottom-10 

up, hybrid, and CARDAMOM estimates suggest the whole biogeographical Amazon 11 

to be a net land carbon sink (Table 1). However, large uncertainties remain in all 12 

estimates. Spatially, all the models show that the south-eastern Amazon (Figure 4b-c 13 

and SI Figures 14b,15a) was a carbon source to the atmosphere driven by land use 14 

and land cover changes, forest degradation and the effects of intense drought events 15 

such as the strong 2015/2016 El Niño.  16 

 17 

Figure 4 The net land carbon fluxes in the biogeographical Amazon. a) Annual 18 

net land carbon fluxes from the two bottom-up approaches using the anthropogenic 19 

disturbance estimates from BLUE land use and land use changes and forestry added 20 
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to FATE wildfire flux estimate (Bottom-up) and GFED deforestation and degradation 1 

fluxes (Hybrid), both added to the TRENDY-v11 intact land sink to yield the net land 2 

carbon flux; the net land carbon flux from CARDAMOM model and top-down 3 

atmospheric inversion; b) Spatiotemporal average of the net land carbon flux from the 4 

bottom-up approach (2010-2020) using the disturbances from BLUE land use and land 5 

cover changes emissions with FATE wildfire flux and TRENDY-v11 intact sink (gC m-6 

2 yr-1); c) Spatiotemporal average of the net land carbon flux from the Hybrid approach 7 

(2010-2020) using the GFED deforestation and degradation fluxes and TRENDY-v11 8 

intact sink (gC m-2 yr-1). The CARDAMOM uncertainty and spatial net average flux 9 

(2010-2020) can be found in SI Figure 14. The top-down spatial average net flux and 10 

its uncertainty can be found in SI Figure 15. Spatial uncertainty associated with the 11 

TRENDY-v11 old-growth forest sink over 2010-2020 can be found in SI Figure 10, 12 

both BLUE and GFED do not provide regional uncertainties. Positive values are 13 

source to the atmosphere and negative sink.  14 

 15 

Net land carbon flux in the Brazilian Amazon  16 

 For the Brazilian Amazon, we combined the disturbance flux from the multi-17 

model average (Figure 3a, black line) with the simulated sink in old-growth forests 18 

(Figure 3b, dark green line) to provide a bottom-up estimate of the net land carbon flux 19 

alongside the top-down inversion (see Methods for detailed information). The results 20 

from the bottom-up approach suggest that the Brazilian Amazon was a small net land 21 

carbon sink of -59 (±160) Tg C yr-1 over the 2010-2018 period (Figure 5a and Table 22 

1). Conversely, the top-down inversion suggests the same region as a small net 23 

carbon source of +36 (±125) Tg C yr-1 over 2010-2018. However, given the large 24 

uncertainties in both approaches, their mean estimate over 2010-2018 is not 25 

statistically significantly different (Welch’s t-test p = 0.13; SI Figure 11). Both 26 

approaches agree that the Brazilian Amazon was a net carbon source during the 27 

drought events of 2010 and 2015/2016. Spatially, the bottom-up approach (Figure 5b) 28 

and the top-down inversion (SI Figure 15a) agree that the south-eastern Brazilian 29 

Amazon was a net carbon source over the period of 2010-2020. Estimates from the 30 

bottom-up approach show that the Brazilian Amazon transitioned from a net land 31 

carbon sink of -91 (±186) Tg C yr-1 in 2019 to a small net land carbon source in 2020 32 
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of +12 (±165) Tg C yr-1, driven by a decrease in the simulated old-growth forest sink 1 

by TRENDY-v11 DGVMs and in addition to large disturbance fluxes (Table 1). 2 

There are some differences between the bottom-up and top-down inversion 3 

estimates of the net land carbon flux. The most evident difference is the opposing sign 4 

of the net land carbon flux in 2012 and 2018 between top-down and bottom-up/hybrid 5 

models. This difference is present in all model estimates over both the whole Amazon 6 

(Figure 3a) and Brazilian Amazon (Figure 5a).  The top-down inversion suggests a net 7 

carbon source in 2018, which is hypothesised to be related to reduced carbon uptake 8 

in the south-eastern Amazon26. Our bottom-up attribution shows a net lower 9 

disturbance flux in 2018 compared to 2015-2017 and a larger sink from old-growth 10 

forests (i.e., uptake), thus suggesting a net land carbon sink in 2018. We hypothesize 11 

that the large flux from the top-down inversion can be partly attributed to the difference 12 

in the spatial resolution of the datasets. For instance, the atmospheric inversion has a 13 

spatial resolution of 5.6°, therefore it could be potentially accounting for surrounding 14 

fluxes within these large grid-cells, such as fluxes from savanna fires and additional 15 

fluxes coming from fossil fuel emissions; these large fluxes are mostly from locations 16 

in the south and east Amazon (see 2012 and 2018 maps in SI Figure 12). The models 17 

used to estimate the net land carbon flux using the bottom-up approach have a spatial 18 

resolution that ranges from 30m to 1° (~100km) and are then expected to better 19 

constrain regional/local fluxes than the coarse spatial resolution of the top-down 20 

inversion. However, the bottom-up approach used to estimate the net land carbon flux 21 

in this study needs to be considered as a conservative estimate (i.e., potentially 22 

underestimating) the extent and magnitude of the disturbance flux due to difficulties in 23 

mapping understory fires as well as by not including additional fluxes associated with 24 

edge effects, for example, and limitations to represent the long-term impact of tree 25 

mortality on the carbon sink of old-growth forests from DGVMs. Thus, the top-down 26 

inversion could be capturing fluxes that are missing in the bottom-up approach, which 27 

could also contribute to explain the differences in specific years as well as in the 28 

magnitude and sign of the net land carbon fluxes.  29 
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  1 

Figure 5 The net land carbon fluxes in the Brazilian Amazon. a) Annual net land 2 

carbon fluxes from the bottom-up approach using the combination of the multi-model 3 

mean net anthropogenic disturbance flux and TRENDY-v11 old-growth sink and top-4 

down atmospheric inversion; shaded area represents the propagated error of both 5 

approaches (see methods); b) Spatial explicit bottom-up net land carbon flux over 6 

2010-2020 (gC m-2 yr-1). The spatial uncertainty over 2010-2020 can be found in SI 7 

Figure 13. Positive values are sources to the atmosphere and negative values are 8 

sinks.  9 

Table 1 Summary table with the average (Tg C yr-1 ± 1SD) carbon fluxes within the 10 

Brazilian Amazon and biogeographical Amazon over a common period (2010-2018). 11 

Estimates for 2019, 2020 and the average over 2010-2020 are provided separately 12 

subject to the availability of data. Individual disturbance models do not provide regional 13 

uncertainty estimates for the biogeographical Amazon. Therefore, the net land carbon 14 

flux uncertainty for the whole biogeographical Amazon is based only on the TRENDY-15 

v11 old-growth sink uncertainty. Uncertainty estimates for CARDAMOM are provided 16 

as 95% confidence interval (CI). Further details about the single models and 17 

approaches can be found in the methods section (Table 3). The net land carbon fluxes 18 

are highlighted in bold. The annual carbon fluxes from each model used in this 19 

research (disturbances, old-growth sink and net flux) for the Brazilian Amazon and 20 

whole Biogeographical Amazon are available in the Supplementary excel tables 4 and 21 

5, respectively.   22 

Brazilian Amazon 

 2010-2018 2019 2020 2010-2020 

Disturbances bottom-up (Multi-model average) +114 (±67) +129 (±90) +110 (±54) +115 (±68) 
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Old-growth forest sink (TRENDY-v11) -173 (±141) -219 (±163) -99 (±156) -170 (±144) 

Net land carbon fluxes (Bottom-up) -59 (±160) -91 (±186) +12 (±165) -55 (163) 

Net land carbon fluxes (Top-down inversion) 36 (±125) - - - 

Biogeographical Amazon 

 2010-2018 2019 2020 2010-2020 

Disturbances bottom-up (BLUE ELUC + FATE degradation 
fires)  

+190 +221 +161 +192 

Disturbances hybrid (GFED deforestation and degradation 
fires) 

+86 +99 +107 +89 

Old-growth forest sink (TRENDY-v11) -342 (±192) -343 (±212) -239 (±204) -333 (±195) 

Net land carbon fluxes (Bottom-up) -152 (±192) -111 (±212) -66 (±204) -141 (±195) 

Net land carbon fluxes (Hybrid) -255 (±192) -245 (±212) -131 (±204) -243 (±195) 

Net land carbon fluxes (CARDAMOM) -339 
(CI -2945 – 

2452) 

-444 
(CI -2621 – 

1587) 

-266 
(CI -2366 – 

1666) 

-342 
(CI -2863 – 

2287) 

Net land carbon fluxes (Top-down inversion) +27 (±130) - - - 

 1 

Discussion 2 

Our total net disturbance flux estimates by bottom-up models suggests an 3 

average offset of about 68% and between 27%-58% of the old-growth forest carbon 4 

sink of Brazilian Amazon and biogeographical Amazon, respectively, between 2010 5 

and 2020. Net forest disturbance emissions are large in 2010 and 2015, which is likely 6 

related to increases in wildfires in the Amazon as an outcome of anthropogenic 7 

activities in combination with intense drought47. The increase in the net disturbance 8 

emissions after 2018 is associated with an escalation in fire activity related to recent 9 

increases in deforestation rates48,49. This recent change in deforestation pattern, 10 

mostly in the Brazilian Amazon, is in response to a combination of changes in the 11 

Brazilian Forest Code in 2012, recent weakening of the Ministry of the Environment’s 12 

deforestation enforcement actions, and laws that may facilitate the regularization of 13 

illegally grabbed public lands50,51. If this current pattern of deforestation remains, it will 14 

likely contribute to further offsetting the old-growth forest carbon sink. 15 

However, high uncertainties remain on the magnitude of the net disturbance 16 

fluxes, as well as the old-growth forest sink and its impacts on the Amazon carbon 17 

balance. Previous studies have shown that the bookkeeping models used in earlier 18 

Global Carbon Budget assessments were not able to capture the magnitude and trend 19 

of land use changes for the Amazon in recent years due to deficiencies in the input 20 

data36,52. Major improvements were achieved by incorporating further satellite Earth 21 

Observation (EO) data for Brazil into the land use change data that are used as input 22 

in the BLUE model simulations for the Global Carbon Budget 202239, which we employ 23 

here. 24 



 

 18 

We also used estimates of a fire bookkeeping model (FATE) that quantifies the 1 

long-term net carbon fluxes of burned forests in the Amazon based on inventory data 2 

from burned forests and upscales them to the Brazilian Amazon using burned area 3 

maps. Yet, this is a conservative estimate (i.e., likely an underestimate) linked to 4 

limitations of mapping the extent of burned forests in the Amazon. Uncertainties are 5 

caused by 1) difficulties in mapping low intensity understory fires; 2) limited temporal 6 

availability of Landsat images used in FATE (i.e., the satellite passes over the same 7 

region twice per month, but since the Amazon has high cloud cover it limits the number 8 

of images available for classification)53. With the increasing availability of medium to 9 

high spatial resolution satellite images, such as the Sentinels from the Copernicus 10 

program, as well as higher temporal availability by integrating a range of images of 11 

different satellites, this limitation might be overcome in the future. Further work is 12 

needed to expand the wildfire emission estimates to the whole biogeographical 13 

Amazon using a set of aboveground biomass data and burned area products. This 14 

would allow a sensitivity analysis using different input data to better quantify the 15 

uncertainties related to the long-term effect of forest degradation through fire on the 16 

carbon balance. 17 

 Edge effects caused by fragmentation can induce indirect carbon losses, which 18 

were estimated to have caused gross emissions of 63 Tg C yr-1 for 2001-201522. This 19 

individual flux is unquantified in this research and should be included in future land 20 

carbon flux assessments. However, we do partially account for edge effects due to 21 

overlap of wildfires in forest edge areas, which is estimated to be around 25% of the 22 

total burned forest area19. The inclusion of additional edge effects would be possible 23 

by standardizing the same input dataset for the bottom-up models, such that we could 24 

overlay the edge and burned forest areas and separate each flux correctly. Moreover, 25 

currently there are still knowledge gaps on forest edge dynamics to produce estimates 26 

of its net carbon flux combined with wildfires on the Amazon carbon balance19. For 27 

example, the few models that consider edge-effects only include gross carbon fluxes 28 

and not the potential partial recovery. Therefore, the total disturbance flux estimate 29 

from this work can be considered conservative.  30 

Additionally, large uncertainties remain about the contemporary trends and 31 

magnitude of the old-growth Amazon forest sink. Observations show a weakening of 32 

the Amazon Forest sink9. Yet, the TRENDY-v11 multi-model mean shows no 33 

significant trend in the old-growth forest sink in the last 30 years54 (SI Figure 16). The 34 
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large flux and no significant decline in the old-growth forest sink simulated by 1 

TRENDY-v11 DGVMs is likely due to the lack of detailed processes related to drought-2 

induced mortality and plant hydraulics, such as potential legacy effects from droughts 3 

that are not well represented35. It has been estimated that approximately 41% of the 4 

whole Amazon forest has been impacted by strong drought events between 2001-5 

201819 and one weak, and two moderate to strong drought events happened during 6 

our study period (SI Figure 2). Thus, we hypothesise that despite simulating reductions 7 

in plant productivity during drought, current estimates from DGVMs are likely 8 

underestimating the long-term impact of contemporary drought-induced mortality over 9 

Amazon forests. Current studies investigating the fate of the Amazon under climate 10 

change using seven Earth System Models from Phase 6 of Coupled Model 11 

Intercomparison Project, CMIP6, indicate localised future reductions in vegetation 12 

carbon across Amazon by 210055–57. The inclusion of long-term drought induced tree 13 

mortality in current model developments is a priority, and will likely improve Earth 14 

System model representation of carbon stocks and fluxes58, thus providing a better 15 

quantification of the future evolution of the Amazon in response to climate change. 16 

Given the large uncertainties from the models used in this research, as well the 17 

remaining knowledge gaps on the impacts of forest disturbances on the carbon 18 

balance of Amazon, we have insufficient data to confirm whether the whole Amazon 19 

was a carbon source, a carbon sink or carbon neutral over the contemporary period 20 

according to the bottom-up methods (2010-2020) and the top-down inversion (2010-21 

2018). Our study does however provide further evidence from a range of bottom-up 22 

models, as well as top-down inversion that the south-east Amazon was a net land 23 

carbon source over the analysed time-period. This result is also corroborated with 24 

airborne measurements26. This area of the Amazon has warmed and dried in recent 25 

years, particularly  during the dry seasons, and it is subject to higher rates of 26 

deforestation and fire activity compared to the western Amazon, thus it has increased 27 

carbon losses and emissions with compromised forest resilience59–61.  28 

Further studies are needed to reconcile the bottom-up and top-down estimates 29 

of the net land carbon balance of the Amazon region used in this study. Key areas for 30 

future developments are 1) the exploration of how to separate the influence of fluxes 31 

from areas surrounding the Amazon due to atmospheric transport of greenhouse 32 

gases on the net land carbon fluxes from the top-down inversion; 2) a better 33 

representation of drought-induced tree mortality in DGVMs; 3) improved estimates of 34 
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the impact of forest degradation, including the edge-effect, as well as deforestation on 1 

the net land carbon fluxes; 4) improved uncertainty estimations of input data used by 2 

bottom-up and top-down models. This could provide a better constraint of 3 

local/regional net land fluxes and possibly reconcile estimates based on medium-to-4 

high spatial resolution models, such as the bottom-up approach used in this research. 5 

Finally, it is very important to expand and maintain long-term field-inventory 6 

measurements, in both old-growth and degraded forests, as well as atmospheric 7 

greenhouse gases measurements for model parametrization and quantification of 8 

uncertainties.  9 

 10 

Conclusion 11 

We provide a state-of-the-art assessment of net land carbon fluxes, the old-12 

growth forest sink, and the anthropogenic forest disturbance for the Amazon using 13 

bottom-up and top-down approaches, over 2010-2020. Our analysis shows that we 14 

still do not have sufficient data to reconcile bottom-up and top-down estimates of the 15 

net carbon balance of Amazon. Spatially, all the model combinations and the top-down 16 

inversion suggest that the south-eastern part of the Amazon was a net source of 17 

carbon over the analysed period due to deforestation, the impacts of wildfires, and 18 

climate trends. This finding agrees with previous studies based on atmospheric 19 

greenhouse gases measurements26. Consequently, the south-eastern Amazon acting 20 

as net carbon source now may have long-term effects on the Amazon carbon balance, 21 

compromising the mitigation potential of the Amazon Forest and the resilience of this 22 

ecosystem in a changing climate.  23 

  24 
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Methods 1 

The key terms in the contemporary net land carbon balance of the Amazon are: i) 2 

human disturbance fluxes (i.e., anthropogenic flux) due to land use and land cover 3 

changes and degradation, and ii) the old-growth forests sink (i.e., natural sink). In this 4 

section, we first present the models used to attribute and estimate the net disturbance 5 

fluxes and the net old-growth forest sink over the Brazilian Amazon and 6 

Biogeographical Amazon. We then describe the approach used to estimate the net 7 

land carbon fluxes with the atmospheric inversion and the combination of the source 8 

and sink components from various models.   9 

 10 

Disturbance fluxes attribution. We used a set of models to estimate net emissions 11 

from different forest disturbance components, such as deforestation, land use and land 12 

cover change, and degradation. Note, these disturbance fluxes are reported from 13 

different products and can overlap in terms of processes which are defined in Table 2. 14 

In this study, we combine different products such that we avoid double-accounting 15 

fluxes from the same process. Table 2 includes the main models used to attribute the 16 

disturbance fluxes. Further details of each model are given below. 17 

 18 

 19 

 20 

 21 

 22 

 23 



 

 22 

Table 2 Models used to attribute disturbance fluxes for the Brazilian Amazon* and for the whole Biogeographical Amazon†. 

Model Disturbance area input Biomass input 
Spatial 

Resolution 
Extent 

Emissions 

uncertainty 
Gross or net Main processes  Model reference 

*INPE-EM 

Based on remote sensing observation;  
Deforestation areas from PRODES;  
Degradation areas from DEGRAD and 

DETER-B;  

Spatial; 4th National 
Inventory of Greenhouse 

Gases (Brazil MCTI, 

2020) 

Output 5x5km 
 

Input 

30mx30m 

Brazilian 
Amazon 

NA 

Deforestation and 
degradation gross 

source and sink flux 
based on literature 

response curves (see 

parameters details in SI 
Table 1) 

Deforestation in old-

growth forest only and 
forest degradation (e.g., 

forest degradation by 

fire and logging) 

Aguiar et al, 2012; 
Assis et al, 2020 

*†BLUE 

Based on the Land Use Harmonization 2 
(LUH2) dataset. This product uses information 

on agricultural areas based on the History of 
the Global Environmental database (HYDE). 
HYDE is based on in-country FAO statistics 

and uses the ESA CCI Land Cover maps to 
scale the in-country areas from FAO to global, 
spatially explicit estimates.  
For Brazil it constrains the cropland and 

grazing areas using MapBiomas c6 areas at 
the state level. For wood harvest, LUH2 uses 
FAO/FRA statistics. 

Biome level carbon stocks 

based on literature 
(Hansis et al, 2015) 

0.25°x0.25° Global NA 

Land use and land use 

change and forestry 
gross source and gross 

sink flux based on 

carbon densities and 
response curves from 

literature (see 

parameters details in SI 
Table 2) 

Clearing of natural 
vegetation, including 

forests, for agricultural 

expansion (including in 
shifting cultivation); 
degradation through 

logging or use of 
natural vegetation for 

rangelands, regrowth of 

natural vegetation after 
agricultural 

abandonment and 

logging. 

Hansis et al, 2015 

*†GFED 
Based on remote sensing observation; Burned 
area is derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS). 

Biome level; Modelled by 
CASA 

0.25°x0.25° Global 
1𝜎 50% 

(Global) 

Net immediate fire 
fluxes 

Deforestation and 

degradation fires. 
GFED considers 

burned forests are 

carbon neutral in the 
long-term. So, GFED 

presents only 

immediate emissions 
and does not account 
for emissions from late 

tree mortality due fire 
occurrence. 

van der Werf et al, 2017 

*†FATE 
Based on remote sensing observation;  
Burned area from MapBiomas fire collection 1 
(beta version) 

Spatial; Carbon stocks 

from 4th National 
Inventory of Greenhouse 

Gases (Brazil MCTI, 

2020) 

30mx30m 
Brazilian 
Amazon 

NA 

Net flux based on field-

inventory relationship 
and scaled-up with 

remote sensing data 

(Silva et al, 2020) 

Long-term net carbon 
balance of degradation 
fires in burned forests 

not deforested up to 
2020. FATE accounts 
for late tree mortality 

fluxes due fire 
occurrence. 

Silva et al, in prep 
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INPE Emission Model (INPE-EM). The INPE-EM is a regional, spatially explicit 1 

bookkeeping model to estimate carbon emissions from deforestation based on the 2 

bookkeeping model developed by62,63 and adapted to the Brazilian Amazon32. INPE-3 

EM accounts for the spatial distribution of biomass stocks and observed deforestation 4 

by considering the intra-regional diversity of land use changes practices32.  5 

In this study, we use INPE-EM to provide consolidated estimates of deforestation 6 

without degradation (these are accounted for separately) from 2010 to 2020 (available 7 

at http://inpe-em.ccst.inpe.br) to estimate the annual net deforestation flux for the 8 

Brazilian Amazon. The net deforestation estimates from INPE-EM include emissions 9 

from clear-cutting of old-growth forests based on official Brazilian deforestation data, 10 

called PRODES (Deforestation Monitoring Project in the Legal Amazon by Satellite). 11 

It also accounts for the dynamics of regrowth and deforestation of secondary forests 12 

and legacy emissions from deforestation in previous years. INPE-EM also provides 13 

separate estimates of degradation, which include the trajectories and dynamics of 14 

forest degradation (e.g., fire and logging emissions and recovery). The disturbance 15 

estimates from INPE-EM used in this study includes the net integrated estimate using 16 

deforestation, degradation, and secondary forest fluxes. The degradation input data 17 

for INPE-EM is from the satellite-based Brazilian degradation monitoring system23; we 18 

used the DEGRAD product up to 2016 and the DETER-B product thereafter23. The 19 

dynamics of secondary forests implemented in the INPE-EM is based on the land use 20 

and land cover maps from the TerraClass product 64 and the cycles of regrowth and 21 

clear-cut of secondary forests from65. Details on default parameters used by INPE-EM 22 

for each component can be found in SI table 1. Uncertainty estimates are not available 23 

for this model because of the difficulties to estimate uncertainty of each input dataset 24 

and parameter. 25 

To produce the maps of net fluxes of deforestation and degradation, we used the 26 

gridded data from INPE-EM. The original resolution of the INPE-EM spatial output is 27 

5-km and contains the aggregated emission of each grid-cell and comes in a shapefile 28 

format. This data was then converted to raster format and re-gridded to 0.5° spatial 29 

resolution by aggregating the grid-cells with the sum of fluxes. 30 

Bookkeeping of Land Use Emissions (BLUE). The Bookkeeping of Land Use 31 

Emissions (BLUE)31 is a spatially explicit global model that tracks carbon emissions 32 

and removals due to historical changes and interactions of LULCC in each grid cell. 33 
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BLUE follows the bookkeeping approach developed by66,67. BLUE considers the 1 

conversion of natural vegetation to agriculture (cropland and pasture) and 2 

abandonment68,69. It also includes gross transitions at the sub-grid scale (‘shifting 3 

cultivation’), transitions between cropland and pasture, and wood harvesting, and 4 

accounts for legacy fluxes associated to LULCC over time. The model distinguishes 5 

11 natural plant functional types (PFTs). Average equilibrium biomass densities for the 6 

11 PFTs and cropland and pasture are based on observation-based literature, as are 7 

the dynamics of carbon gains or losses, represented via PFT and process-specific 8 

response curves, following land-use change and wood harvesting (for the Tropical 9 

PFTs see SI Table 2)31. Here we use the BLUE simulations that were performed for 10 

GCB 202239. 11 

 The land use forcing data used for BLUE in GCB 2022 and thus in our study is 12 

the gridded LUH2 data set68,69 (GCB 2022 version), which provides historical sub-grid-13 

scale transitions between land-use and land-cover categories, such as primary and 14 

secondary natural land, cropland, pasture, rangeland, and urban land68,69. LUH2 15 

incorporates multiple datasets at different spatial and temporal scales to produce a 16 

global gridded land use dataset. For example, it uses inputs from the History Database 17 

of the Global Environment (HYDE 3.3)70 for cropland and grazing areas, which are 18 

derived from FAO (Food Agriculture Organization) national statistical data (and sub-19 

national where available) and spatially allocated based on the ESA Climate Change 20 

Initiative (ESA CCI) land cover annual maps68,69. Therefore, the LUH2 natural 21 

vegetation cover is not constrained directly by observations, such as remote sensing 22 

data. Recently, there has been a major update in the LUH2/HYDE 3.3 (GCB 2021 23 

version) in cropland and pasture areas for Brazil derived from Food and Agriculture 24 

Organization (FAO) national statistics due to double-cropping issues71, and the 25 

adoption of multi-year ESA CCI land cover maps. This update improved the spatial 26 

allocation of land use changes within Brazil, but it still underestimated the fluxes 27 

estimates when based directly from remote sensing products such as the MapBiomas 28 

LULCC maps36. Furthermore, there is latency in FAO statistics, and annual data until 29 

2017 was used in HYDE3.3. To extrapolate to the end of 2021, a trend from the last 30 

five years of data (2012-17) is typically applied, which does not capture the recent 31 

upturn in deforestation for Brazil13. To better represent and improve the magnitude of 32 

LULCC in Brazil and consequently in the Amazon, the cropland and grazing areas of 33 

LUH2/HYDE3.3 (GCB 2022 version) dataset for the years 1700-2021 used by BLUE39 34 
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was based on the areas derived from the remote sensing classification from 1 

MapBiomas (collection 6) maps at state level for the contemporary period (1985 until 2 

year 2020), and then spatially allocated by the HYDE 3.3 algorithm. Due to challenges 3 

of estimating uncertainties of input parameters from the BLUE model, there is currently 4 

no regional uncertainty estimate available.  5 

In this study we provide estimates of the net land use and land cover change 6 

emissions (ELUC) for both study regions (Brazilian Amazon and Biogeographical 7 

Amazon) from the global BLUE model . To produce the ELUC maps, BLUE output at 8 

0.25° spatial resolution was converted to raster format and re-gridded to 0.5° of spatial 9 

resolution with the aggregated sum of the fluxes.   10 

FATE forest degradation fire flux estimate. The fire bookkeeping model (FATE) is 11 

a spatiotemporal model to estimate long-term net emissions from Amazon Forest fires. 12 

This is a spatially explicit approach based on21 which has been developed in 13 

partnership with the Brazilian Greenhouse Gas Emission and Removal Estimating 14 

System (SEEG) project and FATE network. The model is parametrized with a dataset 15 

derived from field information of burned plots in the Amazon and includes estimates 16 

of combustion emissions, as well as post-fire temporal biomass changes and delayed 17 

mortality and recovery21. The model is scaled-up to the Brazilian Amazon using the 18 

time-series of burned area (MapBiomas fire collection 1)53 and the biomass map 19 

derived from the 4th National Communication of the National Inventory of greenhouse 20 

gases (MCTIC,2020).  21 

This burned area product is based on a time-series of Landsat mosaics for the 22 

entire Brazil with spatial resolution of 30mx30m over the period 1985-2020. To classify 23 

the burned pixels, MapBiomas fire uses a deep learning algorithm (Deep Neural 24 

Network) within the Google Earth Engine platform. The methodology also takes 25 

advantage of ancillary data, such as the burned area product MC64A1 and the fire 26 

hotspot data from INPE to train the algorithm. The reported average accuracy of 27 

burned areas from MapBiomas fire was 89.35%53. However, it presents a conservative 28 

estimate (i.e., an underestimate) due to the limitations associated with the temporal 29 

availability of Landsat images, mainly in areas with high cloud coverage, such as the 30 

Amazon and the difficulty to map low intensity understory fires53.  31 

To estimate only the emissions from degraded forests by fire, the burned area 32 

product was overlaid with the deforestation data and LULCC maps from MapBiomas 33 
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to exclude the pixels that were deforested (e.g., deforestation fires) and fires outside 1 

forest pixels. The biomass product from the 4th National Inventory of Greenhouse 2 

Gases72 was used to estimate the biomass stocks and necromass. The mortality 3 

parameters were based on a previous study21 and additional permanent plots with 4 

measurements before and after fires, and the combustion loss and decomposition 5 

parameters were derived from literature. Formal uncertainty is not provided due to 6 

difficulties in propagating the uncertainty of the input data. The spatial output is 7 

available at a 30mx30m spatial resolution with the net CO2 flux over 1985-2020. To 8 

convert to carbon, we multiplied the values by the conversion factor CO2 - C of 12/44. 9 

We then summed the values within the Brazilian Amazon limits to produce the total 10 

annual data. To produce the spatial maps of net CO2 flux of burned forests from forest 11 

degradation by fire in the Brazilian Amazon, we aggregated it to 0.5° spatial resolution 12 

using the sum of the grid-cells to facilitate the comparison with the global models at a 13 

coarse spatial resolution. In this study, we add the FATE forest degradation flux from 14 

the Brazilian Amazon to ELUC from BLUE (which lacks degradation from fires) to 15 

provide an integrated estimate of the total disturbance from land use and land cover 16 

changes emissions and degradation.   17 

Global Fire Emissions Database (GFED). As an additional estimate of the 18 

disturbance emissions from deforestation and degradation for both the Brazilian 19 

Amazon and the whole Biogeographical Amazon, we used the Global Fire Emissions 20 

Database (GFED4.1s). The GFED is a modelling system based on the Carnegie-21 

Ames-Stanford Approach (CASA) biogeochemical model and has a spatial resolution 22 

of 0.25°x0.25°40. The burned area input of GFED is derived from MODIS (MCD64A1 23 

product) 46, which provide daily burned area at 500m spatial resolution and then GFED 24 

aggregates to a 0.25° grid. Formal uncertainty is not provided by GFED due to 25 

difficulties in assessing uncertainty of various layers used in the modelling. However, 26 

the best-guess global uncertainty provided could be 1𝜎 50% 40. In our analysis we 27 

extracted and aggregated the GFED annual emissions associated with tropical forest 28 

fires, which include burned biomass due to both deforestation and degradation 29 

processes, within both the Brazilian Amazon and the whole Biogeographical Amazon 30 

limits. Then, the spatial GFED maps were aggregated to 0.5° spatial resolution using 31 

the sum of the grid-cell fluxes.  32 
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Old-growth Forest carbon sink estimates. The old-growth forest sink was estimated 1 

from a multi-model mean of 16 DGVMs from the Trends in the land carbon cycle 2 

project (TRENDY-v11), using the simulations performed for GCB 202239. Each DGVM 3 

performed factorial simulations for TRENDY-v11 to attribute the carbon exchange to 4 

individual environmental drivers. To estimate the old-growth forest sink we used 5 

TRENDY-v11 simulation 2 (S2) which uses time varying atmospheric CO2 6 

concentrations, nitrogen deposition, and climate with a time-invariant pre-industrial 7 

(year 1700) land cover distribution. This approach is used by the Global Carbon 8 

Budget assessments to calculate the natural terrestrial sink. More details about the 9 

DGVM processes relevant for the intact sink can be found in SI Table 3. S2 does not 10 

account for LULCC dynamics, and thus includes the impact of environmental changes 11 

on land that in reality has been modified by humans. This leads to a large CO2 induced 12 

carbon sink in forests that existed in 1700, but do not exist anymore today. Previous 13 

work estimated this additional carbon flux to be ~100 Tg C yr-1 for Brazil over 2000-14 

202073. To mask out the proportion of the old-growth sink within disturbed grid-cells 15 

and account only for the sink from old-growth forests, we used a mask from INPE 16 

based on the Brazilian Amazon official annual accumulated deforestation data 17 

available since 1988 and for degradation data since 2007 (SI Figure 5). To maintain 18 

consistency in the old-growth forest mask, we used only the official data provided from 19 

INPE since it has a better manual control of its forest mask over time compared to 20 

other remote sensing-based products that rely on automatic classification and just 21 

account for degradation in primary forest pixels. However, this data is available only 22 

for Brazil and the degradation estimates start in 2007; consequently, it constitutes a 23 

conservative estimate of the old-growth forest fraction. Therefore, the old-growth sink 24 

estimates obtained with this mask could potentially still overestimate part of the natural 25 

sink in the non-Brazilian Amazon countries (i.e., western and north region). The 26 

application of this mask reduced the whole Amazon natural sink simulated by 27 

TRENDY-V11 models from -362 (±220 1SD) Tg C yr-1 to -333 (±195) Tg C yr-1 over 28 

2010-2020 (SI Figure 8). We applied this mask to each DGVM from TRENDY-V11. 29 

Then the annual old-growth sink was extracted for each model within the limits of both 30 

the Biogeographical Amazon shapefile and the Brazilian Amazon biome. Finally, we 31 

calculated the multi-model mean and standard deviation statistics. To evaluate the 32 

correlation between the annual variation of the old-growth forest sink and the drought 33 
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effects from ENSO years, we used as a drought metric the Annual Maximum 1 

Cumulative Water Deficit43 (MCWD) based on the precipitation data from 2 

CRUJRA2.474–76. The MCWD is an indicator of meteorologically induced water stress 3 

in forests. We then extracted the average annual MCWD within the Brazilian Amazon 4 

and Biogeographical Amazon domains and performed a correlation analysis 5 

(Pearson’s correlation test) between the annual old-growth forest sink and the MCWD. 6 

In order to assess the old-growth sink simulated by the DGVMs, we compared it 7 

against RAINFOR inventory based estimates8,9,44 for the common period (2010-2015) 8 

by using a Welch’s t-test to test whether the averages over the same period were 9 

significantly different. Additionally, we did a similar test comparing the aboveground 10 

carbon changes (AGC) in old-growth forests based on L-VOD12 and the AGC changes 11 

based on the TRENDY-v11 multi-model mean between 2011 and 2019. We used the 12 

annual biomass data from each model of TRENDY-v11 to calculate the change 13 

between the years and compare to AGC based on L-VOD. Since the biomass variable 14 

from TRENDY-v11 accounts also for belowground biomass, we assumed that 20% of 15 

this biomass is belowground based on previous studies77 and applied a factor of 0.8 16 

to each grid-cell to extract the aboveground stock. Finally, we performed a Welch’s t-17 

test to test whether the averages over the same period were significantly different. 18 

 19 

Net land flux approaches. To quantify the net carbon exchange flux between land 20 

and  atmosphere we used the chemical transport model TOMCAT78 and its inverse 21 

model, INVICAT79. The data was produced using a variational (4D-var) inverse model 22 

to optimise monthly non-fossil fuel land and ocean carbon fluxes through assimilation 23 

of in situ flask data from the Global Monitoring Laboratory (GML) of the National 24 

Oceanic and Atmospheric Administration (NOAA)80. A new addition to this model was 25 

the use of independent in situ lower-troposphere observations by aircraft-borne flask 26 

of greenhouse gases (CO2) made within the Amazon basin since 201049, thus 27 

providing a better-constrained regional estimate. The a priori inversion input was 28 

based on the Carnegie-Ames-Stanford model (CASA) for land fluxes. A climatology 29 

was used as a prior for the CASA fluxes, so all posterior variation was provided by the 30 

atmospheric observation data and varying meteorology. In addition to the CASA land 31 

fluxes as prior, TOMCAT inputs include fossil fuel data from the Carbon Dioxide 32 

Information Analysis Center (CDIAC) and ocean flux was a combination of gridded 33 

estimates81,82, as in previous TOMCAT inversions80 scaled to the Global Carbon 34 
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Project (GCP) values. Prior emissions are given grid cell uncertainties of 308% of the 1 

prior flux value. Also, for the assimilated observation data from both surface monitoring 2 

sites and the vertical profile sites83 uncorrelated random errors of 1 ppm were 3 

attributed to each observation. The TOMCAT output is available as monthly estimates 4 

between 2010 and 2018 with a 5.6°x5.6° spatial resolution38. In our analysis we 5 

calculated the annual mean of each grid cell for each year and then the total fluxes 6 

within the Brazilian Amazon and Biogeographical Amazon limits.  7 

To calculate a ‘bottom-up’ approach of the net carbon flux, we first combined the 8 

net source (deforestation + degradation) and net natural sink in old-growth forests from 9 

TRENDY-v11 S2 simulation, which is similar to the Global Carbon Budget annual 10 

assessments methodology. As the net source term (+) for the Brazilian Amazon, we 11 

used a multi-model average of the regional bookkeeping model (INPE-EM with 12 

degradation), the global bookkeeping model (BLUE) with the net forest degradation 13 

flux from FATE added, as well as deforestation and degradation fire emissions from 14 

GFED (Table 3). For the Biogeographical Amazon, due to data availability limitations, 15 

the disturbance term was based separately on bottom-up and hybrid approaches (see 16 

Table 3).  A summary of the main input and processes within each of the disturbance 17 

models can be found in Table 2. The old-growth forest sink term (-) was calculated 18 

using the annual multi-model average from TRENDY-v11 DGVMs over 2010-2020. To 19 

calculate the uncertainty of the net land carbon fluxes from the ‘bottom-up’ approach, 20 

we propagated the uncertainty by using the annual standard deviation of the average 21 

disturbance estimate and old-growth forest sink based on DGVMs. Since the bottom-22 

up disturbance models differ in their spatial extent (e.g., Brazilian Amazon and 23 

Biogeographical Amazon), we used a different combination for each region (Table 3). 24 

Spatial model outputs also differ in their spatial resolution and to avoid further error 25 

inclusion from spatial resampling, the annual values for the Brazilian Amazon and 26 

Biogeographical Amazon were extracted using each model’s original spatial 27 

resolution. Then, to produce the net carbon flux maps we spatially resampled the 28 

bottom-up approaches to a standard spatial resolution of 0.5° x 0.5°.  29 

For the whole biogeographical Amazon, we provide an additional estimate of the 30 

net land carbon fluxes from the CARbon Data Model fraMework (CARDAMOM)41,42. 31 

CARDAMOM uses a Bayesian approach within an Adaptative Proposal – Markov 32 

Chain Monte Carlo (AP-MCMC)84 to retrieve parameters, at pixel scale, for the 33 
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intermediate complexity C-cycle model DALEC85. Observational constraints include 1 

earth observation datasets and databased information on soil C stocks. Fire is 2 

imposed based on the MODIS Burned area product (MCD64A1) while deforestation 3 

was imposed based on the Global Forest Watch Forest loss estimates. The 4 

atmospheric CO2 driving dataset was based on the input for the TRENDY-v11 protocol 5 

from GCB 202239. The climate driving data was based on Climatic Research Unit 6 

gridded Time Series (CRU-TS 4.06)74 and Climatic Research Unit and Japanese 7 

reanalysis data (CRU-JRA v2.4). In this work we used the CARDAMOM version 8 

compatible to TRENDY-v11 protocol and the net land carbon fluxes was based on the 9 

net biome productivity output from simulation 3 (S3), which accounts for changes in 10 

atmospheric CO2 concentration, climate and land use over time. The output is 11 

available as annual estimates over 2000 and 2021 in a global grid of 1°x1° spatial 12 

resolution. Spatial uncertainty estimates were provided by CARDAMOM including 13 

explicit propagation of ensemble uncertainty from monthly to annual time scales. The 14 

annual net land carbon fluxes and its uncertainty from CARDAMOM were calculated 15 

within the limits of the whole biogeographical Amazon region over 2010 and 2020. 16 

 17 

Table 3 Components used to calculate the net land carbon flux for the Brazilian 18 

Amazon and the whole Biogeographical Amazon. Details of each component of the 19 

disturbance models are given in Table 2.  20 

Name  Brazilian Amazon Biogeographical Amazon 

Bottom-up  

 

Net disturbance (+): 

Multi-model average of  

INPE-EM (deforestation + degradation); 

BLUE ELUC + FATE net degradation fire 

flux; 

GFED (net deforestation and degradation)** 

 

Net old-growth forest sink (-): 

TRENDY-v11 Multi-model average39 

 

The bottom-up net land flux is calculated 

from the sum of the net disturbance 

multi-model average and the TRENDY-

v11 net old-growth forest sink 

Net disturbance (+): 

BLUE ELUC + FATE net degradation fire 

flux* 

 

 

 

 

Net old-growth forest sink (-): 

TRENDY-v11 Multi-model average39 

 

The bottom-up net land flux is 

calculated from the sum of net 

disturbance flux of BLUE+FATE and 

TRENDY-v11 net old-growth forest 

sink 
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Hybrid - 

Disturbance (+): 

GFED (net deforestation and 

degradation)** 

 

 

 

Net old-growth forest sink (-): 

TRENDY-v11 Multi-model average39 

 

The hybrid net land flux is calculated 

from the sum of GFED net fire 

emissions and TRENDY-v11 net old-

growth forest sink 

CARDAMOM - 
Net land flux from CARDAMOM 

model41,42  

Top-down 

inversion 

Net land flux from TOMCAT atmospheric 

inversion38  

Net land flux from TOMCAT 

atmospheric inversion38  

* Note that the FATE net wildfire flux is available only for the Brazilian Amazon, thus we 1 

potentially underestimate this flux for the whole Biogeographical Amazon. ** Note that GFED 2 

net estimates considers degraded forests by fire as carbon neutral; whereas FATE includes 3 

late tree mortality fluxes.  4 

Data availability 5 

INPE-EM deforestation and degradation estimates are freely available at http://inpe-6 

em.ccst.inpe.br/emissoes-liquidas-com-degracao-amz/. FATE dataset upon 7 

reasonable request to Camila Silva. The atmospheric inversion spatial data is 8 

available upon reasonable request to Luana S. Basso. The independent in situ lower-9 

troposphere observations by aircraft-borne flask of greenhouse gases (CO2) made 10 

within the Amazon basin since 2010 by Luciana Gatti group and used in the 11 

atmospheric inversion are available from PANGAEA Data Archiving at 12 

https://doi.org/10.1594/PANGAEA.926834 for data from 2010 to 2018 and at 13 

https://doi.pangaea.de/10.1594/PANGAEA.949643 for 2019 and 2020.  GFED4 fire 14 

emissions is freely available at https://www.globalfiredata.org/. TRENDYv11 DGVMs 15 

used in the Global Carbon Budget 2022 and in this research can be requested at 16 

https://globalcarbonbudgetdata.org/closed-access-requests.html. BLUE land use and 17 

land use change emissions is available upon reasonable request to Julia Pongratz 18 
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and Clemens Schwingshackl. CARDAMOM dataset is available upon reasonable 1 

request to Luke Smallman. The annual carbon fluxes from each model used in this 2 

research (disturbances, old-growth sink and net flux) for the Brazilian Amazon and 3 

whole Biogeographical Amazon are available in the Supplementary excel tables 4 and 4 

5, respectively.   5 

Code availability 6 

The code and tables used to reproduce the main paper graphics of Figures 2a,b, 3a,b, 7 

4a and 5a are available in Zenodo doi:10.5281/zenodo.8348435 (this link will be 8 

available upon publication). Further editions to combine the layout of graphics and 9 

maps were made in a design software (InkScape). 10 
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