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ABSTRACT12

In recent times, pathogen genome sequencing has become increasingly used to investigate13

infectious disease outbreaks. When genomic data is sampled densely enough amongst infected14

individuals, it can help resolve who infected whom. However, transmission analysis cannot15

rely solely on a phylogeny of the genomes but must account for the within-host evolution of the16

pathogen, which blurs the relationship between phylogenetic and transmission trees. When only17

a single genome is sampled for each host, the uncertainty about who infected whom can be quite18

high. Consequently, transmission analysis based on multiple genomes of the same pathogen per19

host has a clear potential for delivering more precise results, even though it is more laborious to20

achieve. Here we present a new methodology that can use any number of genomes sampled from21

a set of individuals to reconstruct their transmission network. Furthermore, we remove the need22

for the assumption of a complete transmission bottleneck. We use simulated data to show that23

our method becomes more accurate as more genomes per host are provided, and that it can infer24

key infectious disease parameters such as the size of the transmission bottleneck, within-host25

growth rate, basic reproduction number and sampling fraction. We demonstrate the usefulness26

of our method in applications to real datasets from an outbreak of Pseudomonas aeruginosa27

amongst cystic fibrosis patients and a nosocomial outbreak of Klebsiella pneumoniae.28
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INTRODUCTION29

Pathogen genomic data has transformed our understanding of the epidemiology of infectious30

diseases, whether they are caused by viruses (Grenfell et al., 2004; Pybus and Rambaut, 2009)31

or bacteria (Didelot et al., 2012; Gardy and Loman, 2018). Most applications concern large-32

scale pathogen populations, for example to estimate their demographic history (Pybus et al.,33

2001; Ho and Shapiro, 2011) or the way that their ancestry relates to features of geography34

(Lemey et al., 2009; De Maio et al., 2015), epidemiology (Volz et al., 2013; Rasmussen et al.,35

2014) or host population (Mather et al., 2013; Dearlove et al., 2016). Genomic data can however36

also be useful to perform much finer inference, down to the level of transmission analysis which37

attempts to reconstruct who infected whom within an outbreak (Cottam et al., 2008; Jombart38

et al., 2011). Phylogenetic methods have a long successful history and can reconstruct the39

genealogy of a set of genomes given their sequences (Yang and Rannala, 2012; Kapli et al., 2020).40

However, a phylogenetic tree is not identical to a transmission tree (Pybus and Rambaut, 2009;41

Jombart et al., 2011; Romero-Severson et al., 2014). In particular, the nodes in a phylogenetic42

tree do not correspond to transmission events, but rather to lineages diverging during the43

evolutionary process that takes places within a host (Didelot et al., 2016). Several methods44

have therefore been developed over the past few years specifically aimed at the reconstruction45

of a transmission tree (Duault et al., 2022). Examples include SeqTrack (Jombart et al., 2011),46

outbreaker (Jombart et al., 2014), beastlier (Hall et al., 2015), bitrugs (Worby et al., 2016),47

SCOTTI (De Maio et al., 2016), phybreak (Klinkenberg et al., 2017), outbreaker2 (Campbell48

et al., 2018) and TiTUS (Sashittal and El-Kebir, 2020).49

Here we focus on one such method for transmission analysis called TransPhylo, which is based50

on colouring the branches of a dated phylogeny to reveal the transmission tree (Didelot et al.,51

2014). There are many software tools that can be used to construct such a dated phylogeny, for52

example BEAST (Suchard et al., 2018), BEAST2 (Bouckaert et al., 2019), BactDating (Didelot53

et al., 2018), treedater (Volz and Frost, 2017) and TreeTime (Sagulenko et al., 2018). An54

advantage of the TransPhylo colouring approach is that it separates the initial phylogenetic55

reconstruction from its epidemiological interpretation, which improves computational efficiency56

and therefore scalability (Didelot and Parkhill, 2022). Furthermore, the original TransPhylo57

model (Didelot et al., 2014) has been extended to deal with both partially sampled and ongoing58

outbreaks (Didelot et al., 2017). Consequently, TransPhylo is a flexible and versatile software59

to perform transmission analysis using pathogen genomic data (Didelot et al., 2021).60

Following infection, many pathogens evolve within hosts on a time scale that is relevant to61

transmission analysis (Lieberman et al., 2011; Bryant et al., 2013; Biek et al., 2015; Grote62

and Earl, 2022). Consequently, when information is available about the within-host pathogen63

diversity, this can help clarify who infected whom (Didelot et al., 2016; Leitner, 2019). This64

information can come in two forms: either heterogeneities in the genomic sequencing of a65

single clinical sample, or genomic sequencing of multiple separate clinical samples. Genetic66

heterogeneities within a sample are relatively easy to survey, and a few methods have been67

developed recently with the specific aim of exploiting this type of data to help infer transmission68

(De Maio et al., 2018; Wymant et al., 2018; Torres Ortiz et al., 2023). However this approach69

is based on the analysis of short sequencing reads individually which can be difficult and error-70

prone; additionally the clinical sample may not represent the full within-host diversity of the71

pathogen when it was collected, and it does not contain any information about evolution or72

changes of diversity over time in the within-host pathogen population. The alternative approach73
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of sequencing several clinical samples can provide a more thorough and reliable overview of the74

within-host diversity and evolution, especially if the samples are taken from multiple body sites75

and/or at different points in time. Examples of such studies have been carried on infection76

with Staphylococcus aureus (Young et al., 2012), Helicobacter pylori (Didelot et al., 2013) or77

Streptococcus pneumoniae (Tonkin-Hill et al., 2022). Existing methods that can incorporate78

such data include beastlier (Hall et al., 2015), bitrugs (Worby et al., 2016), SCOTTI (De Maio79

et al., 2016), phyloscanner (Hall et al., 2019) and TiTUS (Sashittal and El-Kebir, 2020).80

In principle, integrating multiple genomes into a joint model of phylogenetic and transmission81

trees, such as TransPhylo, is possible by having as many leaves in the phylogenetic tree as82

there are samples (Didelot et al., 2016; Leitner, 2019). However, this poses a significant number83

of theoretical challenges to overcome, which is why TransPhylo was not previously able to84

use more than one genome per host (Didelot et al., 2017; Xu et al., 2020). Furthermore,85

TransPhylo previously assumed a complete transmission bottleneck to simplify the relationship86

between transmission and phylogenetic trees (Didelot et al., 2014), but this assumption has87

been disproved in some pathogens. Here we present a solution to these issues, which leads us to88

formulate an extended version of the TransPhylo model, inference methodology and software,89

so that any number of genomes per host can be used as input of a transmission analysis that90

does not assume a complete transmission bottleneck.91

NEW APPROACHES92

We extend the latest TransPhylo framework (Didelot et al., 2017) to perform inference of93

infectious disease transmission through a relaxed bottleneck using multiple genomes per host,94

which may be sampled contemporaneously or longitudinally, or in any combination of both.95

The model in TransPhylo has three basic ingredients which we detail below, before explaining96

the changes needed to deal with multiple samples per host. Firstly, a coalescent model with97

constant population size and temporally offset leaves (Drummond et al., 2002) to represent the98

within-host evolution. Secondly, a branching process transmission model in which individuals99

are sampled either once or not at all, so that unsampled individuals can be accounted for in the100

transmission chains between sampled individuals. Thirdly, a complete transmission bottleneck101

meaning that only a single lineage is ever transmitted between hosts. In other words the within-102

host coalescent process is bounded so that the most recent common ancestor within a host occurs103

after the date of infection (Carson et al., 2022).104

The full bottleneck assumption can be problematic in settings where hosts are repeatedly105

sampled, as the resulting phylogenetic trees may have no compatible transmission trees106

(Romero-Severson et al., 2014, 2016). Therefore we remove this complete bottleneck assumption,107

so that the phylogenetic trees are much more likely to have compatible transmission trees.108

Removing this assumption was needed to allow for multiple samples per host, but it is also109

important to note that a number of studies have found that the transmission bottleneck is only110

partial for many pathogens including HIV (Boeras et al., 2011), FMDV (Cortey et al., 2019),111

influenza (Ghafari et al., 2020) and Staphylococcus aureus (Hall et al., 2019). Relaxing the112

transmission bottleneck assumption therefore leads to a more generally applicable model, in113

which it is possible to additionally estimate the scale of the transmission bottleneck.114
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We also relax the assumption of a constant within-host population size by allowing linear growth,115

following previous work on HIV (Romero-Severson et al., 2014, 2016; Leitner, 2019). This linear116

growth model is a generalisation of the constant population size model which can be obtained if117

the linear growth rate parameter is set to zero. It is also a generalisation of a linear growth with118

complete transmission bottleneck model (Klinkenberg et al., 2017) since this can be obtained119

if the linear intersect is zero at the date of infection. The linear growth model therefore has120

several advantages, on top of being simple and statistically tractable, but other options such as121

an exponential or logistic growth model could also be used as will be discussed later.122

Finally, in the transmission model we add the possibility that hosts are sampled multiple times,123

while also retaining the possibility that some hosts are sampled only once or not at all. We make124

the specific choice that the transmission model up to the first sample for each host is exactly the125

same as previously formulated (Didelot et al., 2017). The times of any further sampling depend126

only on the first observation times, and not the infection times. Since the infection times and127

secondary observation times are conditionally independent given the primary observation times,128

we can infer the infection times without the need to formally define this aspect of the model. In129

the Methods section we present a full mathematical description of this new extended model, and130

show how Bayesian inference can be performed using a Markov Chain Monte-Carlo (MCMC)131

scheme with reversible-jumps (Green, 1995) to accommodate the non-constant dimension of the132

parameter space.133

RESULTS134

Exemplary analysis of a single simulation135

We simulate an outbreak with 100 observed hosts, each with five observations. The observation136

cut-off time T is determined by the simulation in order to return the correct number of observed137

hosts. The generation time and primary observation time are both Gamma distributed (see138

section “Epidemiological model” in the Materials and Methods) with shape and scale parameters139

equal to 2 and 1, respectively. Secondary observations are placed at intervals of 0.25 years140

following the primary observation. For the transmission model, the offspring distribution is141

negative binomial with mean equal to the basic reproduction number R = 2, and the sampling142

proportion is π = 0.8. The within-host pathogen population size is κ + λτ at time τ after143

infection, with κ = 0.1 and λ = 0.2. The resulting simulation contains 124 hosts, four of which144

are infected with two lineages at the time of infection, one with three lineages, and the remaining145

119 with a single lineage.146

We investigate the ability of our methodology to recover the model parameters used in the147

simulation, and to recover transmission links between individuals. We also investigate what148

benefits are obtained by including multiple observations per host. To this end we construct149

additional phylogenetic trees by pruning the last observation for each host. Through repetition150

we obtain phylogenetic trees with four, three, two and one observations per host under the same151

transmission network. By comparing inference outcomes from these five trees we can establish152

the extent to which estimates are improved through the inclusion of secondary observations.153

We perform 12,000 MCMC iterations for each phylogenetic tree, using the first 2,000 as a burn-154
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Observations per host

1 2 3 4 5

π 0.85 [0.62, 0.99] 0.83 [0.62, 0.99] 0.85 [0.65, 0.99] 0.83 [0.63, 0.99] 0.84 [0.64, 0.99]

R 2.32 [1.84, 2.83] 2.32 [1.84, 2.86] 2.27 [1.78, 2.80] 2.25 [1.78, 2.77] 2.25 [1.79, 2.78]

κ 0.18 [0.01, 0.38] 0.15 [0.05, 0.29] 0.10 [0.03, 0.19] 0.10 [0.03, 0.17] 0.11 [0.05, 0.17]

λ 0.19 [0.01, 0.58] 0.18 [0.04, 0.30] 0.23 [0.14, 0.33] 0.20 [0.14, 0.27] 0.21 [0.15, 0.27]

Table 1: Posterior estimates of the simulation study given as the posterior mean and 95%
credible interval. The model parameter is given in the left column, and the remaining columns
indicate the number of observations per observed host. The values used in the simulation are
π = 0.8, R = 2, κ = 0.1 and λ = 0.2.

in. The prior distribution for π is uniform between 0 and 1, and the prior distributions for R, κ155

and λ are exponential with mean 1. The posterior means and 95% credible intervals are shown156

in the Table 1. These results demonstrate that we are able to recover the model parameters used157

in the simulation, even with no secondary observations. Comparing posterior estimates across158

the different trees indicates that our estimates of the transmission model parameters R and π159

are not considerably improved by the number of secondary observations. This makes sense, as160

most of the relevant information for these parameters is contained in the primary observation.161

However, the credible intervals for the coalescent model parameters κ and λ narrow as more162

secondary observations are added. Secondary observations provide considerable information163

about the within-host genomic diversity of infected hosts, leading to more precise estimates.164

In order to evaluate our ability to reconstruct transmission links we look at transmissions165

between observed hosts. Out of the 100 observed hosts, 67 are infected by another sampled166

individual. From our estimated transmission trees we consider both directional transmission167

links, where we must correctly establish the infector and infected host, and bidirectional168

transmission links, where a transmission link is established but the roles of infector and169

infected may swap. We define 0.5 as the posterior probability threshold for a transmission170

being identified, and define the sensitivity as the proportion of correctly identified transmission171

links (true positive rate). For the phylogenetic tree with one observation per host we obtain a172

sensitivity of 0.51 for bidirectional transmission links, and 0.28 for directional transmission links173

(Figure S1). For the phylogenetic tree with five observations per host the sensitivity increases174

to 0.64 for bidirectional transmission links, and 0.55 for directional transmission links (Figure175

1). The specificity (true negative rate) is greater than 0.996 in all cases. The full distributions176

of posterior probability estimates in each setting are shown in Figure 2. Increasing the number177

of secondary observations allows us to better reconstruct transmission links, and crucially, to178

better distinguish the direction of transmission.179

The within-host population model plays a key role in our ability to establish transmission180

links. If the transmission of multiple lineages is more common, the posterior probabilities of181

transmission links will tend to be lower. For example, repeating the simulation process above182

with a full bottleneck (fixing κ = 0) results in a bidirectional (directional) sensitivity of 0.57183

(0.43) with one observation per host, and 0.75 (0.63) with five observations per host, all higher184

than in the previous results with a partial bottleneck. On the other hand, increasing to κ = 0.4185

leads to a bidirectional (directional) sensitivity of 0.34 (0.25) with one observation per host,186

and 0.54 (0.39) with five observations per host, all lower than the example with κ = 0.1.187

When only a single genome per host is used, we are able to run the original TransPhylo algorithm188
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Figure 1: Difference in posterior probability estimates of transmission between a dataset with
one observation per host and a dataset with five observations per host. The underlying
transmission network remains the same; it is defined by the black squares, which show the
true transmissions in the simulated dataset. The gray squares show the reverse relationship,
switching the true infector and infected hosts. Black squares containing red demonstrate higher
posterior probabilities being assigned to the true transmission links as a result of including more
observations. Elsewhere, blue indicates lower posterior probabilities being assigned to incorrect
transmission links.
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Figure 2: Distribution of posterior link probabilities inferred in the simulation studies with one
(left) and five (right) observations per host. The top plots show bidirectional link probabilities
in which the roles of infector and infected host may switch, the bottom plots show the directional
link probabilities in which the infector and infected host must be correctly inferred. The red
lines relate to pairs of individuals for which a transmission link exists, and the blue lines relate
to pairs of individuals that are not linked.
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(Didelot et al., 2017) for comparison. The estimate of π is 0.93 with credible interval [0.76, 1.00],189

and the estimate of R is 2.38 with credible interval [1.88, 2.95], which are similar to the estimates190

obtained previously with one observation per host (Table 1). The probabilities for who infected191

whom are shown in Figure S2. The bidirectional (directional) sensitivity is 0.61 (0.37), as192

illustrated in Figure S3. Since a small value of κ = 0.1 is used in the simulation, the strict193

bottleneck assumption in TransPhylo is advantageous here, whereas using a relaxed bottleneck194

leads to additional uncertainty on who infected whom. TransPhylo would perform comparatively195

less well if the true bottleneck was more relaxed.196

Benchmarking using multiple simulations197

We now repeat this process, again using a simulated dataset with 100 hosts and five observations198

per host; but performing the inference on simulations generated from a range of key parameters199

(π, R, λ, and κ), totalling 43 datasets. As previously, both the generation time distribution200

and primary observation time distribution follow a Gamma distribution with shape parameter201

2 and scale parameter 1, and secondary observations occur 0.25 years later than the previous202

sample.203

For the MCMC chains we obtain 12,000 samples, and discard the first 2,000 as a burn-in.204

Figure 3 shows the posterior parameter estimates. The vertical lines show central 95% credible205

intervals for each parameter, and the posterior mean is shown with a solid circle. The horizontal206

and diagonal lines indicate the true parameter values used to generate the data. These results207

demonstrate strong performance of the algorithm across very different simulation settings.208

The linear growth assumption of the within-host population size model is unlikely to resemble a209

real-world population, and so we also test for robustness to the mis-specification of the within-210

host population model. We repeat the inference, but fix the within-host population growth211

rate λ at either half or double the true value. The posterior estimates are shown in Figure212

S4. Most notably, the mis-specification biases our estimates of the initial pathogen population213

size κ. There is a strong negative correlation between λ and κ, so that when λ is set lower214

(higher) κ is overestimated (underestimated). There are smaller changes in the transmission215

model parameters, with a lower λ resulting in higher estimates of π and lower estimates of r, but216

the true values for these parameters usually remain within the 95% credible intervals. These217

results suggest that estimates of the transmission model parameters are reasonably robust to218

the mis-specification of the within-host population model. However, caution is warranted when219

interpreting the estimates of the within-host model parameters. We can reasonably conclude,220

for instance, that different estimates of the initial population size κ may be obtained under221

different growth models.222

Application to Pseudomonas aeruginosa transmission between cystic fibrosis223

patients224

We reanalysed previously published genomic data from Danish cystic fibrosis (CF) patients225

infected with Pseudomonas aeruginosa (Marvig et al., 2013). This dataset included 42 genomes226

from 14 patients, sampled over almost 40 years between 1972 and 2008, after exclusion of227
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Figure 3: Varying the four key simulation parameters. Vertical bars show 95% central credible
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for simulations. (A) Varying π. (B) Varying R. (C) Varying κ. (D) Varying λ.
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hypermutator and recombinant isolates (Marvig et al., 2013). Previous studies explored within-228

host evolutionary dynamics (Yang et al., 2011), variations in gene content (Rau et al., 2012)229

and comparative adaptation in CF human hosts (Marvig et al., 2013). The hosts are designated230

CFXXX as in these previous studies. We use as our starting point the dated phylogeny231

previously computed (Marvig et al., 2013) using BEAST (Suchard et al., 2018) and shown232

in Figure S5. It was previously noted (Yang et al., 2011) that one of the individual (CF66) had233

been infected twice in the 1970s and the 1990s, and so we modelled this as two separate hosts234

(labeled CF66a and CF66b). Infection with P. aeruginosa can be stable over long periods of235

time in CF patients (Rossi et al., 2021) and indeed some of the patients had been sampled, and236

found positive, over a period of more than 20 years (Marvig et al., 2013). We therefore set the237

generation time distribution to be Gamma with shape 2 and scale 5, resulting in a mean of 10238

years, standard deviation of 7 years, and 95% range of 1.2 to 27.9 years. The last samples were239

from 2008 and the exact end of the sampling period was unclear from previous publications but240

we set it to the end of 2009.241

We performed four separate runs of 100,000 iterations, which took approximately 3 hours on a242

standard laptop computer. For each of the four parameters π, R, κ and λ we checked that the243

effective sample size in each run was over 1,000 and the multivariate Gelman-Rubin statistic244

comparing runs was less than 1.1 (Brooks and Gelman, 1998). Figure 4A shows the dated245

tree, coloured by host according to the MCMC iteration with the highest posterior probability.246

Changes in colours along the branches of the tree correspond to transmission events and are247

highlighted with red stars. Note that there are two simultaneous stars leading to the two248

genomes from patient CF180. These both correspond to infection from CF173, with the two249

lineages being transmitted through the relaxed transmission bottleneck. Figure 4A is useful250

to illustrate the colouring process which relates the phylogenetic tree to the transmission tree.251

However, this only represents a single transmission configuration explored by the MCMC, and252

other iterations of the MCMC would look different, maybe with some of the same transmission253

events and others being different. It is therefore important to consider the probability of the254

transmission events. Figure 4B shows the matrix of probabilities of infection from each host to255

another, computed as the frequency of each transmission event across all MCMC iterations.256

Figure S6 shows the trace and density of the parameters estimated in a single MCMC run.257

The sampling proportion was estimated to be π = 0.65, with a wide 95% credible interval258

[0.30 − 0.96]. The reproduction number was R = 1.20 [0.58 − 1.99]; as the credible interval259

includes one, it is not clear if the outbreak has the potential to cause a self-sustained epidemic.260

The within-host linear growth rate was λ = 0.56 [0.16 − 1.09] per year, which is lower than261

the prior exponential with mean one. On the other hand, the within-host starting population262

size was κ = 2.16 [0.41− 5.05] which is higher than the prior exponential with mean one. This263

suggest that the bottleneck was not complete, and indeed attempting to fit the model with κ = 0264

is impossible as it leads to a likelihood of zero. This is caused by the two samples from CF180265

and the ten samples from CF173 being “inconsistent” as previously designated for samples from266

two hosts that cannot be explained by transmission of a single lineage (Romero-Severson et al.,267

2014, 2016). The individual CF173 was found to have infected at least three other hosts (CF30,268

CF224 and CF243) with probability higher than 50% (Figure 4B). These transmission events269

and their directionality are made clear by the paraphyletic relationship of the ten samples from270

CF173 as shown in Figure 4A (Leitner, 2019). In contrast, the 15 samples from CF333 formed271

a single monophyletic clade (Figure 4A) so that they are unlikely to have infected many others272

except maybe CF248 (Figure 4B).273
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Figure 4: Transmission analysis of P. aeruginosa. (A) Dated phylogeny coloured by host
according to the iteration with highest posterior probability. (B) Matrix of transmission
probabilities from each host (row) to any other (column).
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Application to a nosocomial outbreak of Klebsiella pneumoniae274

An outbreak of carbapenem-resistant Klebsiella pneumoniae expressing the blaOXA-232 gene275

was identified over the course of 40 weeks at a single healthcare institution in California (Yang276

et al., 2017). A total of 17 infected patients were identified, from which 32 isolates were taken277

between 12th October 2014 and 17th July 2015. Case finding was performed using all samples278

in the 2014 and 2015 calendar years (Yang et al., 2017) and so we set the date for the end279

of the sampling period to the end of 2015. Whole-genome sequencing was applied to these280

K. pneumoniae isolates and a dated phylogeny was computed previously (Yang et al., 2017)281

using BEAST (Suchard et al., 2018) which is shown in Figure S7. The hosts are labeled either282

PtXXX if they were symptomatic or CPtXXX if they were colonized, as in the previous study283

(Yang et al., 2017). We set the generation time distribution to be exponential with mean 0.5284

year, following a previous study of another K. pneumoniae hospital outbreak (van Dorp et al.,285

2019). This diffuse distribution is well suited to capture transmission via hospital equipment286

contamination as was previously suggested (Yang et al., 2017). We used the same number of287

MCMC runs, length of runs, and convergence diagnostics as in the previous application.288

Figure S8 shows the trace and density of the parameters estimated in a single MCMC run.289

The sampling proportion was estimated to be high, with π = 0.88 [0.60− 0.99], suggesting that290

there were only few missing transmission links between the 17 sampled patients. The basic291

reproduction number was R = 0.97 [0.37− 1.74], with the credible interval including the value292

of one needed for an outbreak to spread beyond a few cases. The within-host linear growth rate293

was λ = 0.49 [0.03− 1.28] per year and the within-host population size at time of infection was294

κ = 0.066 [0.009− 0.158]. This is lower that the prior exponential with mean one and suggests295

that the transmission bottleneck was almost complete during this small outbreak. However, the296

transmission bottleneck was not absolutely complete, as indicated by the fact that fitting our297

model with κ = 0 would result in a likelihood equal to zero. This is because the six samples298

from Pt6 and the two samples from Pt9 are inconsistent, as can be seen in the dated phylogeny299

on Figure S7.300

Figure 5A shows the dated tree coloured by host according to the MCMC iteration with highest301

posterior probability, while Figure 5B shows the posterior probabilities of infection from any302

host to any other. For example, a high probability of transmission was found from Pt8 to Pt10,303

which is consistent with the fact that these two patients were staying in neighboring rooms for304

two weeks (Yang et al., 2017). Strikingly, according to our analysis patient Pt6 had a greater305

than 50% posterior probability of having infected seven other patients (CPt2, CPt4, CPt5,306

CPt6, Pt5, Pt7 and Pt9). There were six genomes isolated from Pt6, with dates ranging from307

7th January 2015 to 17th July 2015 which is more than half of the overall sampling period. The308

specimen types for these isolates were quite diverse: three from blood, one rectal and two from309

bile (Yang et al., 2017), suggesting that the patient was infected long enough for the pathogen to310

spread throughout their body. While other patients in the study do present a similar number of311

samples, a comparable variety of originating tissues, and a similarly long infection duration —312

for instance patient Pt1, with seven genomes from respiratory, abdominal and blood specimen313

over a period of several months — that does not translate in a similar amount of infection314

events estimated by our method. In fact, the genetic diversity of isolates from Pt6 appears to315

be very high (Figure 5A), thus backing our inference that Pt6 is a superspreading individual316

(Lloyd-Smith et al., 2005). This could not have been detected without the use of multiple317

genomes.318
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Figure 5: Transmission analysis of K. pneumoniae. (A) Dated phylogeny coloured by host
according to the iteration with highest posterior probability. (B) Matrix of transmission
probabilities from each host (row) to any other (column).
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DISCUSSION319

We have described new methodology for inferring who infected whom from a dated phylogenetic320

tree in which hosts have potentially been sampled multiple times. A key change compared to321

previous work (Didelot et al., 2014, 2017) is the removal of the full transmission bottleneck,322

meaning that hosts may be infected with multiple lineages from the transmission donor.323

Without this change many phylogenetic trees with multiple samples per host would not support324

compatible transmission trees (Romero-Severson et al., 2014, 2016; Leitner, 2019). Indeed the325

two real datasets we analysed, corresponding to outbreaks of Pseudomonas aeruginosa and326

Klebsiella pneumoniae, could not be explained without relaxing the transmission bottleneck.327

Most previous transmission analysis methods could not accommodate more than a single genome328

per host, so that leaves would need to be pruned from the phylogenetic tree in order to undertake329

transmission inference (Xu et al., 2020), leading to less informative outcomes. Under our new330

methodology we are able to incorporate multiple samples per host, resulting in the stronger331

identification of transmission links and their direction, as was showed when analysing simulated332

datasets.333

We build upon previous work (Didelot et al., 2014, 2016) that performs transmission analysis334

by colouring the branches of a pre-established dated phylogeny. This allows us to model335

the relationship between transmission tree and phylogeny through an explicit within-host336

evolutionary model, to develop an explicit transmission model in which sampled and unsampled337

individuals are featured, and to achieve better scalability by separating phylogenetic inference338

from its epidemiological interpretation. On the other hand, relying on a fixed dated tree could be339

problematic as this does not account for the uncertainty in the phylogeny or the dates of common340

ancestors. When this uncertainty is captured using a Bayesian phylogenetic method (Suchard341

et al., 2018; Didelot et al., 2018; Bouckaert et al., 2019), this effect can be tested by applying342

analysis to multiple samples instead of a single fixed tree (Nylander et al., 2008). However, this343

was found in practice to make little difference to the inferred transmission probabilities and344

parameters (Didelot and Parkhill, 2022).345

Our method implements a general pathogen population growth model rather than using the346

constant bounded coalescent model, in which the population size is constant and the most347

recent common ancestor is forced to occur after the infection time (Carson et al., 2022). By348

removing this restriction, we were able to model transmission through a relaxed bottleneck. The349

main restriction on the choice of model is that we must be able to calculate the likelihood of the350

phylogenetic tree, which in turn means that the coalescence rate must be integrable. However,351

this is not a strong requirement, as many widely used models satisfy it — among them the352

exponential growth model, the logistic growth model, or any piecewise models with separate353

growth and decay phases. For the work presented here we used a linear growth model, which354

has been used before in HIV work (Romero-Severson et al., 2014, 2016; Leitner, 2019), but for355

most other pathogens there is little information about which within-host population size model356

is most realistic (Didelot et al., 2016). We demonstrated that using phylogenetic trees with357

multiple samples per host improves the estimation of the population model parameters. With358

sufficient samples per host it should be possible to determine which within-host population size359

models are more strongly supported by the data, for example and comparing the evidence of360

each model (Friel and Wyse, 2012).361

Our methodology maintains some of the assumptions from previous work (Didelot et al., 2017),362
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for example the sampling proportion and reproduction number are assumed to remain constant363

through time. In many settings, users would have knowledge about whether and how the364

sampling proportion varied over time, for example by looking at the number cases for which365

genomic sequences are available divided by the number of confirmed cases (Jelley et al., 2022).366

This information could be integrated relatively easily into an analysis, by having users supply367

a function π(t) instead of the constant π. On the other hand, it would often be interesting368

to infer variations in the reproduction number R(t), since this would provide an additional369

genomic-based estimate compared to existing methods based on incidence data (Wallinga and370

Teunis, 2004; Cori et al., 2013). A simple approach would be to use a step-wise constant371

function. The dates of these steps may be fixed based on real-world policy changes, such as372

intensifying monitoring in response to an outbreak, or potentially inferred via change point373

detection (Tartakovsky and Moustakides, 2010).374

In conclusion, we presented a new Bayesian inference method for the reconstruction of375

transmission trees from dated phylogenetic trees in which hosts are sampled multiple times.376

This method is implemented in a R package that extends TransPhylo and is available at377

https://github.com/DrJCarson/TransPhyloMulti. When applied to multiple sampled genomes378

from several infected individuals, our method has the potential to improve our understanding of379

both the within-host and between-host dynamics of many pathogens causing infectious disease.380

MATERIALS AND METHODS381

Notation382

Let us denote P as the dated phylogenetic tree, T as a transmission tree, θP as the coalescent383

model parameters, and θT as the transmission model parameters. We want to sample from the384

posterior distribution385

p(θP , θT , T | P) ∝ p(P | T , θP )p(T | θT )p(θT )p(θP ), (1)

where the term p(P | T , θP ) is the likelihood of the coalescent model conditional on a given386

transmission tree, the term p(T | θT ) is the likelihood of the transmission model, and the terms387

p(θP ) and p(θT ) are prior distributions.388

We parameterise the transmission tree T as follows. Let x be a vector of infection times such389

that element xj gives the infection time of host j. Likewise let A be a vector of infectors, so390

that if Aj = i then host j was infected by host i. We indicate the root host by setting Aj = 0.391

Primary observation times are denoted by vector y, with the corresponding host denoted by392

vector Hy. Secondary observation times are denoted by vector z, with host Hz.393

For the phylogenetic tree P we need to consider the leaf and coalescent times. The leaves394

correspond to observations under the transmission tree. We denote the vector of leaf times s395

and corresponding hosts Hs, noting that s = (y, z) and that Hs = (Hy, Hz). We indicate the396

parent node of each sample using vector Cs. The coalescent node times are denoted by vector397

u, and their parent nodes Cu. We again denote the root node with Cj
u = 0.398
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Figure 6A demonstrates a transmission tree with399

x =



0.0
0.8
1.5
2.6
2.5
0.6

 , A =



0
1
6
3
3
1

 .

That is, host 1 infects hosts 2 and 6, host 6 infects host 3, and host 3 infects hosts 4 and 5. In400

addition we have primary and secondary observations (not shown), for example401

y =


1.9
2.6
3.2
3.1
3.0

 , Hy =


1
2
3
4
5

 , z =

(
3.5
3.4

)
, Hz =

(
3
4

)
,

indicates that hosts 1, 2 and 5 are observed once, hosts 3 and 4 are observed twice, and host 6402

is unobserved.403

Figure 6B shows an example phylogenetic tree obtained by combining the primary and secondary404

observations from the transmission tree. Here405

s =



1.9
2.6
3.2
3.1
3.0
3.5
3.4


, u =



0.2
0.4
0.9
2.3
2.9
3.1

 , Hs =



1
2
3
4
5
3
4


, Cs =



2
1
6
5
4
6
5


Cu =



0
1
2
3
3
4

 .

We can represent both the transmission and phylogenetic trees as a coloured phylogenetic tree,406

as shown in Figure 6C. Doing so highlights that each coalescent event is now assigned to a host.407

Epidemiological model408

The epidemiological model is a stochastic branching process in which infected individuals409

transmit to secondary cases (offspring). The number of offspring k is sampled from the offspring410

distribution α(k), assumed to be a negative binomial distribution with parameters (r, p), i.e.411

α(k) =

(
k + r − 1

k

)
pk(1− p)r. (2)

The time between the primary and any secondary infection is sampled from the generation time412

distribution γ(τ), which typically follows a Gamma distribution with known parameters.413

Under a finished outbreak scenario, each host is assumed to be observed with probability π. The414

time between the host being infected and first being observed is sampled from the observation415
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Figure 6: (A) Example transmission tree with six hosts. Points indicate the infected times of
each host. Filled circles show observed hosts, and empty circles show unobserved hosts. (B)
Example phylogenetic tree with seven leaves from five observed hosts. Leaf labels indicate the
host, followed by the sample number for that host. Each coalescence node is given a label. (C)
Example coloured phylogenetic host with seven leaves from five observed hosts, and six hosts
overall. The branch colour indicates the host, and the asterisks indicate transmissions. Here
host 3 is infected with two lineages.
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time distribution σ(τ). As with the generation time distribution this is typically a Gamma416

distribution with known parameters.417

In some applications observations occur over a restricted time interval, or possibly set of time418

intervals. In such applications the probability of a host being observed depends on their419

infection time. An example we will look at is the ongoing outbreak scenario, in which there420

is an observation cut-off time T . In this scenario a host infected at time t is observed with421

probability422

ζ(t) = π

∫ T−t

0
σ(τ)dτ.

In other words, we use the same observation distribution as the finished outbreak scenario, but423

treat observations later than T as censored.424

Finally, hosts may be observed multiple times. We assume that any host can only be infected425

once, and that any subsequent observations relate to the same infected period. We define β(b) as426

the distribution for the number of secondary observations b ≥ 0, and ρ(τ1:b) as the distribution427

for the times between the secondary observations and the primary observation assuming that428

b ≥ 1. Note that it is possible for the time between observations to be zero, meaning that429

multiple observations occur at the primary observation time.430

Secondary observations are an additional modelling component to the previous version of431

TransPhylo (Didelot et al., 2017). However, by assuming that the secondary observation432

times depend only on the primary observation times, we can undertake inference in a similar433

manner without formally specifying these distributions. Under our modelling assumptions we434

can express the likelihood of the transmission tree as435

p(T | θT ) = p(x, y, z, A,Hy, Hz | θT )

= p(z,Hz | y,Hy)p(y,Hy | x,A, θT )p(x,A | θT ),
(3)

where x, A, and θT are parameters we are trying to estimate, and y, z, Hy, and Hz are fixed436

by the dated phylogenetic tree. Within a Metropolis-Hastings algorithm, when we propose new437

values x′ and A′ (giving a new transmission tree T ′) or θ′T , the term p(z,Hz | y,Hy) will cancel438

in the likelihood ratio, i.e.439

p(T | θT )

p(T ′ | θ′T )
=

p(y,Hy | x,A, θT )p(x,A | θT )

p(y,Hy | x′, A′, θ′T )p(x′, A′ | θ′T )
. (4)

Consequently, p(z,Hz | y,Hy) does not need to be explicitly calculated to determine if proposals440

are accepted or rejected, and practically can be excluded from the transmission tree likelihood441

altogether.442

Host inclusion and exclusion443

Our goal is to infer a transmission tree from a dated phylogenetic tree. This can be visualised as444

colouring the branches of the phylogenetic tree, where each colour represents a distinct host. For445

a host to appear on the phylogenetic tree they must either be observed directly or be an ancestor446

to a different observed host. We refer to such hosts as included hosts. In many applications the447

number included hosts is dwarfed by the number of hosts implied by the epidemiological model448
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to not appear on the phylogenetic tree (excluded hosts). Examples include when π is small, or449

when r is large in an ongoing outbreak scenario. In the latter case, a large number of hosts450

will be infected shortly before the observation cut-off time, and so will be excluded with high451

probability. For this reason we instead formalise a transmission model for only the included452

hosts.453

Define ω(t) as the exclusion probability of a host infected at time t. Assuming that T is the454

cut-off time for observations ω(t) = 1 for t ≥ T . We can then define the following recursive455

relationships.456

The exclusion probability of an offspring from a host infected at time t is457

ω̄(t) =

∫ ∞
0

ω(t+ τ)γ(τ)dτ. (5)

The probability that all offspring from an individual infected at time t are excluded is458

φ(t) =
∞∑
k=0

α(k)ω̄(t)k. (6)

The exclusion probability of an individual infected at time t is459

ω(t) = (1− ζ(t))φ(t)

= (1− ζ(t))
∞∑
k=0

α(k)

(∫ ∞
0

ω(t+ τ)γ(τ)dτ

)k

.
(7)

That is, the probability of the host being unobserved and having no included offspring. In the460

finished outbreak scenario the recursive relationship is simply461

ω∗ = (1− π)
∞∑
k=0

α(k)ωk
∗ , (8)

with ω∗ being the exclusion probability for every host. Note that these calculations do not462

depend on the secondary observation times or their distribution.463

Numerical approximations464

The exclusion probabilities are intractable, and so we use numerical approximations. For465

example, consider the ongoing outbreak scenario with observation cut-off time T . For t ≥ T ,466

ωt = 1, and so467

ω̄(t) =

∫ T

t
γ(τ − t)ω(τ)dτ +

∫ ∞
T

γ(τ − t)dτ. (9)

The second term can be computed explicitly, and the first term can be approximated using the468

trapezoid method:469 ∫ T

t
γ(τ − t)ω(τ)dτ ≈

k∑
i=0

ciγ((k − i)∆t)ω(ti)∆t, (10)
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where ci = 1 for 0 < i < k and ci = 0.5 otherwise, and ti = T − i∆t. Assuming γ(0) = 0:470

ω̄(t) ≈ F (t) +

k−1∑
i=0

ciγ((k − i)∆t)ω(ti)∆t. (11)

where F (t) =
∫∞
T γ(τ − t)dτ .471

Using the probability generating function of a negative binomial distribution with parameters472

r and p, we can evaluate473

φ(t) =

(
p

1− (1− p)ω̄(t)

)r

, (12)

and finally474

ω(t) = (1− ζ(t))φ(t). (13)

Both will be approximate owing to the approximation of ω̄(t). All three exclusion probabilities475

are therefore approximated by iterating backwards through time from T in discrete steps of size476

∆t.477

Transmission tree likelihood478

We can now define a likelihood for the transmission tree for only included individuals.479

Throughout we will set T as the cut-off time for observations. Consider first the root host480

(the first infected individual in our transmission chain) with infection time x1, and let I1 = 1481

denote that the root host is included. The probability that the root host is unobserved (denoted482

by S1 = 0) given that they are included is483

p(S1 = 0 | I1 = 1, x1) =
p(I1 = 1 | S1 = 0, x1)p(S1 = 0 | x1)

p(I1 = 1 | x1)

=
(1− φ(x1))(1− ζ(x1))

1− ω(x1)
,

(14)

and the probability that the root host is observed (S1 = 1) is484

p(S1 = 1 | I1 = 1, x1) =
p(I1 = 1 | S1 = 1, x1)p(S1 = 1 | x1)

p(I1 = 1 | x1)

=
ζ(x1)

1− ω(x1)
.

(15)

In the event the root host is observed we also need to calculate the density of the primary485

observation time y1,486

p(y1 | S1 = 1, x1) =
σ(y1 − x1)∫ T−x1

0 σ(τ)dτ
, x1 < y1 < T. (16)

Additionally the full transmission tree likelihood incorporates the density of the secondary487

observation times. However, when it comes to undertaking inference these terms will cancel488

out, and so we skip this step.489
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Second, we calculate the probability that the root host has d1 included offspring. The probability490

of a host infected at time t producing d included offspring is491

p(d | t) =
∞∑
k=d

α(k)p(d | k, t)

=

∞∑
k=d

α(k)

(
k

d

)
ω̄(t)k−d(1− ω̄(t))d.

(17)

We then need to condition on whether or not the root host was sampled. If the root host was492

not sampled, they must produce at least one included offspring to be included, and so493

p(d1 | I1 = 1, S1 = 0, x1) =
p(I1 = 1 | d1, S1 = 0, x1)p(d1 | S1 = 0, x1)

p(I1 = 1 | S1 = 0, x1)

=
p(d1 | x1)
1− φ(x1)

, d1 > 0.

(18)

If the root host was sampled, then it is included for any value of d1, and so494

p(d1 | I1 = 1, S1 = 1, x1) =
p(I1 = 1 | d1, S1 = 1, x1)p(d1 | S1 = 1, x1)

p(I1 = 1 | S1 = 1, x1)

= p(d1 | x1), d1 ≥ 0.

(19)

In the event d1 > 0, we also calculate the density of the transmission times for any included495

offspring. Denoting H1 as the offspring labels, x̄1 =
{
xj | j ∈ H1

}
as the set of offspring496

infection times, and Ī1 = 1 that the set of offspring are included, the likelihood contribution is497

p(x̄1 | Ī1 = 1, x1) = d1!
∏
j∈H1

p(Ij = 1 | xj)p(xj | x1)
p(Ij = 1 | x1)

= d1!
∏
j∈H1

(1− ω(xj))γ(xj − x1)
1− ω̄(x1)

.

(20)

The d1! term arises from the fact that the infection times are labelled according to host, and the498

host labels are arbitrary. If we imagine simulating a transmission tree, the offspring infection499

times can be generated in any order (of which there are d1! possible orderings) to produce the500

same transmission tree.501

In summation, the likelihood contribution (sans secondary observations) for the root host in502

the unobserved case is503

L1T (θT ) =
(1− φ(x1))(1− ζ(x1))

1− ω(x1)
×

1

1− φ(x1)

∞∑
k=d1

α(k)

(
k

d1

)
ω̄(x1)k−d

1
(1− ω̄(x1))d

1×

d1!
∏
j∈H1

(1− ω(xj))γ(xj − x1)
1− ω̄(x1)

=
(1− ζ(x1))

1− ω(x1)

∞∑
k=d1

α(k)

(
k

d1

)
ω̄(x1)k−d

1
d1!

∏
j∈H1

(1− ω(xj))γ(xj − x1),

(21)
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and for the observed case is504

L1T (θT ) =
ζ(x1)

1− ω(x1)

σ(y1 − x1)∫ T−x1

0 σ(τ)dτ
×

∞∑
k=d1

α(k)

(
k

d1

)
ω̄(x1)k−d

1
(1− ω̄(x1))d

1×

d1!
∏
j∈H1

(1− ω(xj))γ(xj − x1)
1− ω̄(x1)

=
πσ(y1 − x1)
1− ω(x1)

∞∑
k=d1

α(k)

(
k

d1

)
ω̄(x1)k−d

1
d1!

∏
j∈H1

(1− ω(xj))γ(xj − x1).

(22)

The full likelihood is calculated by recursion, applying the same density calculations to each505

included host, i.e.506

p(T | θT ) =

N∏
j=1

LjT (θT ), (23)

with N being the total number of included hosts. Note that in doing so, with the exception of507

the root host, the terms 1− ω(xj) will cancel in the likelihood.508

Methods for simulating transmission trees are provided in Supplementary Text S1.509

Coalescent model510

In the original version of TransPhylo the coalescent model used was the bounded coalescent511

(Carson et al., 2022). This model follows the standard coalescent model with heterochronous512

sampling (Drummond et al., 2002), but conditions all lineages to coalesce before the infection513

time of each host. Here we need to choose a coalescent model that allows for the transmission of514

multiple lineages between hosts. With a bottleneck assumption many dated phylogenetic trees515

would not permit the overlaying of a transmission tree under our stochastic branching model.516

Here we assume that the within-host pathogen population size q(τ) grows linearly:517

q(τ) = κ+ λτ, (24)

where τ is the time since the host was infected. Should κ = 0 all lineages will coalesce by518

the host’s infection time. We could adopt alternative population models, so long as they are519

integrable.520

The likelihood of the phylogenetic tree conditional on the set of transmissions is calculated521

by taking the product of the likelihood of each subtree for each host. The subtree of any522

host j is formed by taking the parts of the phylogenetic tree assigned (coloured) by host j.523

Each subtree is rooted at the host’s infection time xj , with the number of roots being the524

number of lineages transmitted to the host. Leaves correspond to observations of the host and525

transmissions to the hosts included offspring, noting that each transmission may contribute526

multiple leaves (transmitting multiple lineages).527
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Let vmj , m = 1, ...,Mj be the times leaves are added within the subtree of host j, and let unj ,528

n = 1, ..., Nj be the coalescence times, supposing Nj > 0. Then we define the number of extant529

lineages at time t as530

Lj(t) =

Mj∑
m=1

I(vmj ≥ t)−
Nj∑
n=1

I(umj > t), (25)

so that if t is the time of a coalescence, Lj(t) is the number of lineages that could have coalesced.531

Denoting τj = t− xj , the phylogenetic likelihood contribution from each host is then532

LjP |T (θP ) = exp

(
−
∫ ∞
0

(
Lj(x

j + τj)

2

)
1

q(τj)
dτj

) Nj∏
n=1

1

q(unj − xj)
, (26)

and the full phylogenetic likelihood conditional on transmission tree T is given by the product533

p(P | T , θP ) =

N∏
j=1

LjP |T (θP ). (27)

Let wk
j , k = 0, ...,K be the ordered set of root, leaf, and coalescence times, with w0

j = xj . Let534

Lk
j be the number of lineages in the interval (wk−1

j , wk
j ). The integral in the exponent can then535

be partitioned accordingly536 ∫ ∞
0

(
Lj(x

j + τj)

2

)
1

q(τj)
dτj =

n∑
k=1

∫ wk
j−xj

wk−1
j −xj

(
Lk
j

2

)
1

q(τj)
dτj . (28)

For the linear growth model, these terms are then537

∫ tkj−xj

wk−1
j −xj

(
Lk
j

2

)
1

q(τj)
dτj =

(Lk
j

2

)
λ

(
log
(
κ+ λ(wk

j − xj)
)
− log

(
κ+ λ(wk−1

j − xj)
))

(29)

Phylogenetic tree simulation is described in Supplementary Text S2.538

Inference539

Inference is undertaken using reversible-jump Markov chain Monte Carlo (Green, 1995). We540

iterate through the following update steps:541

1. Update the transmission model parameters according to p(θT | T ).542

2. Update the coalescent model parameters according to p(θP | P, T ).543

3. Update the transmission tree according to p(T | P, θT , θP ).544

Steps 1 and 2 are performed using multivariate Gaussian random walks, conditional on the545

current transmission and phylogenetic trees. The scale and covariance in each case is determined546
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using the accelerated shaping and scaling algorithm of Spencer (2021) with target acceptance547

a = 0.234 and forgetting sequence f(n) = b0.5nc.548

In Step 3 we randomly select from three proposals that update the transmission tree conditional549

on the current model parameters: an add proposal for adding a new transmission to the current550

transmission tree, a remove proposal for removing a transmission, and a local move proposal for551

moving a transmission within the bounds set by its upstream and downstream transmissions.552

The add and remove proposals form a reversible pair that change the dimension of the model,553

whereas the local move proposal is its own reverse and maintains the dimension of the model.554

Each proposal ensures that the new transmission tree is compatible with the phylogenetic tree.555

For instance, observations from a single host cannot be split among multiple hosts when adding556

a transmission. Likewise, observations from different hosts cannot be assigned to the same557

host when removing a transmission. Full details including the acceptance probabilities for each558

proposal are provided in Supplementary Text S3.559

Step 3 makes relatively small changes to the transmission tree with each update. Additionally,560

the computational cost is relatively cheap as we only need to evaluate the likelihood561

contributions from the one or two affected hosts. Consequently it is beneficial to perform562

Step 3 multiple times in each scan, in order to improve the mixing of the MCMC. In general,563

we find that performing O(N) Step 3 updates in each scan works well, where N is the number564

of primary observations.565

Implementation566

We implemented the methods above into a new R package called TransPhyloMulti which extends567

TransPhylo. TransPhyloMulti is available at https://github.com/DrJCarson/TransPhyloMulti.568

This repository also contains all the code and data needed to reproduce all results shown in569

this paper. The R package ape was used to store, manipulate and visualise phylogenetic trees570

(Paradis and Schliep, 2019).571
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